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ABSTRACT 

 

In this Master’s thesis, the validity of Universal Verification Methodology in 

digital design verification is studied. A brief look into the methodology’s history 

is taken, and its unique properties and object-oriented features are presented. 

Important coverage topics in project planning are discussed, and the two main 

types of coverage, code and functional coverage, are explained and the methods 

how they are captured are presented. 

The practical section of this thesis shows the implementation of a monitoring 

environment and an Universal Verification Methodology environment. The 

monitoring environment includes class-based components that are used to collect 

functional coverage from an existing SystemVerilog test bench. The Universal 

Verification Methodology environment uses the same monitoring system, but a 

different driving setup to stress the design under test. Coverage and simulation 

performance values are extracted and from all test benches and the data is 

compared. The results indicate that the Universal Verification Methodology 

environment incorporating constrained random stimulus is capable of faster 

simulation run times and better code coverage values. The simulation time 

measured was up to 26 % faster compared to a module-based environment. 

 

Key words: Universal Verification Methodology, coverage, coverage-driven 

verification, methodology comparison. 
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TIIVISTELMÄ 

 

Tässä diplomityössä tutkitaan universaalin varmennusmenetelmän (Universal 

Verification Methodology) soveltuvuutta digitaalisten laitteiden verifiointiin. 

Työssä tehdään lyhyt katsaus menetelmän historiaan. Lisäksi menetelmän omia 

ainutlaatuisia ja olio-pohjaisia ominaisuuksia käydään läpi. Kattavuuteen 

liittyviä käsitteitä esitetään projektihallinnan näkökulmasta. Kattavuudesta 

käsitellään toiminnallinen ja koodikattavuus, ja tavat, miten näitä molempia 

kerätään simulaatioista. 

Työn käytännön osuudessa esitetään monitorointiympäristön ja universaalin 

varmennusmenetelmän pohjalta tehdyn ympäristön toteutus. Monitorointi-

ympäristössä on luokkapohjaisia komponentteja, joiden avulla kerätään 

toiminnallista kattavuutta jo olemassa olevasta testipenkistä. Universaalin 

varmennusmenetelmän pohjalta tehdyssä ympäristössä on samojen 

monitorointikomponenttien lisäksi testattavan kohteen ohjaamiseen vaadittavia 

komponentteja. Eri testipenkeistä kerätään kattavuuteen ja suorituskykyyn 

liittyvää dataa vertaamista varten. Tulokset viittaavat siihen, että rajoitettua 

satunnaista herätettä hyödykseen käyttävät universaalit varmennusmenetelmä-

ympäristöt pääsevät nopeampiin suoritusaikoihin ja parempiin koodikattavuus-

lukuihin. Simulaation suoritusaikaan saatiin parhaassa tapauksessa jopa 26 % 

parannus. 

 

Avainsanat: universaali varmennusmenetelmä, kattavuus, kattavuuden ohjaama 

verifiointi, menetelmien vertailu. 
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1. INTRODUCTION 
 

Verification plays a very big role in the development of digital designs. It is used to 

measure if a design has been implemented correctly. Since modern designs, especially 

system-on-chips (SoCs), are getting bigger and more complex, planning and 

implementing a verification environment becomes a large and demanding task. 

Verification can take up to 75% of the total design time and it usually becomes a 

bottleneck in project completion [1]. The availability of reusable off-the-shelf 

components creates more problems for verification since it allows engineers to 

implement more functionality without excessive project development time [2]. 

This verification problem is tackled by leaning towards more modular and abstract 

verification environments that use randomization when generating stimulus. Class-

based environments give modularity and easy access to randomization, and Universal 

Verification Methodology (UVM) is the current go-to candidate because it is a well-

known standard and is supported by all major electronic design automation (EDA) tool 

vendors [3]. In addition, functional coverage can be used during the simulation to 

determine whether to continue with new random values or stop the simulation, or to 

modify constraints used in the simulation. Combining these principles one can create 

very efficient automated coverage-driven verification (CDV) environments [4]. 

This thesis studies the advantages and disadvantages of a class-based CDV 

environment for verifying intellectual properties (IPs). The objective is to create a 

monitoring environment using UVM principles in parallel of an already existing 

traditional SystemVerilog (SV) test bench. This monitoring system will enable the 

collection of functional coverage from the design under test (DUT). In addition, a 

complete UVM verification environment is created based on the original test bench. 

The execution sequence of the new UVM environment is the same as the original test 

bench, but the UVM environment uses constrained random stimulus and CDV to its 

advantage. 

The two verification environments are created in order to collect simulation data 

regarding code and functional coverage, simulation performance and reusability. The 

data from two environments is analyzed and conclusions are made about the 

effectiveness of an UVM environment in IP verification. Depending on the results, this 

type of verification environment could be used to verify future IPs or SoCs. Because 

the implementation of the UVM environment is done keeping modularity in mind, 

future reuse would not be as big of a step as creating from scratch. 

Chapter 2 introduces the concept of UVM. A brief look is taken into the history of 

class-based verification in SV; how UVM became what it is now. The general concepts 

of object-oriented programming (OOP) are presented and the common structure of 

UVM class hierarchy is explained using these OOP concepts. In addition, this chapter 

shows how classes are used in SV verification. 

Chapter 3 takes a look into coverage collection and usage in SV. The concepts of 

code and functional coverage are presented and different coverage types are presented. 

The chapter shows how coverage is captured in simulations and what are SV specific 

coverage methods. The chapter also goes through some applications that use the 

collected coverage data. 

Chapter 4 presents the implementation of the UVM monitoring system that is 

injected to the original IP test bench. A short description of the DUT is given. The 

chosen points in the design for coverage collection are explained. Finally, the added 
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UVM components are gone through and the test bench used in the simulations is 

presented. 

In Chapter 5, the finalized complete UVM verification environment is presented. 

Additions and changes needed for the environment are gone through. In addition, the 

chapter shows problems found when integrating a C-model to a class-based 

environment. 

Chapter 6 lists the results got from the two environments shown in Chapters 4 and 

5. This includes coverage numbers, number of total tests and execution times for 

different scenarios. 

Chapter 7 presents the final discussion about the topic of this thesis. The results are 

analyzed and the usability of class-based CDV environments for future use is 

concluded. 

Chapter 8 rounds up this thesis. The main chapters and the conclusions made from 

the results are summarized. 
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2. UNIVERSAL VERIFICATION METHODOLOGY 
 

This chapter takes a look into Universal Verification Methodology (UVM) as a whole. 

Section 2.1 gives a brief overview to UVM verification. Section 2.2 goes through some 

of the predecessor methodologies that led to the creation of UVM. Section 2.3 presents 

the concepts behind object-oriented programming (OOP) and the OOP practices in 

UVM. Lastly, Section 2.4 takes a look into some of the essential UVM-specific 

features. 

2.1. Introduction to UVM 

UVM is a complete methodology that presents the best practices for efficient, reusable 

and thorough digital design verification. Reusability is one of UVM’s key 

fundamentals and it is achieved by introducing the concept of UVM verification 

components (UVCs). These components, as well as other parts of UVM, follow the 

principles of OOP. UVM can be used to verify both small and large IP-based designs. 

On top of that, UVM is an open-source verification library, and Accelera provides 

reference manuals and user guides for the methodology [5][6]. [7, p. 1] 

The goal of UVM is to give the designer confidence that their design has been 

verified thoroughly in an efficient way, and to point out possible bugs as early as 

possible. The best way to get to this type of verification is to use automatic 

environments incorporating random stimulus. Figure 1 illustrates a verification flow 

that incorporates verification like that [7, p. 3]. 

Verification
Environment

Verification
architecture

Stimulus generation,
checkers, constraints,

coverage

Simulation,
acceleration,

emulation

Write a verification plan

Adjust and add
constraints, checkers and

stimulus sequences

Review coverage

Refine the coverage
model

 

Figure 1. A verification planning and execution flow. 
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In addition to automation and random stimulus, few other aspects need to be taken into 

account as well when creating these types of environments: 

1. The test bench needs to be self-checking to ensure the applied random stimulus 

gives correct response from the design under test (DUT). 

2. The different generated stimulus needs to be tracked to know what scenarios 

have been checked and what not. 

3. Control logic should be created between the gathered results and applied 

stimulus. This allows steering the generated stimulus towards uncovered 

scenarios during the simulation. 

 

The preferred way to track the stimulus and responses with UVM is to use functional 

coverage. For example, in SystemVerilog (SV) this can be done by writing 

covergroups. UVM provides one of the best frameworks to achieve this type of 

versatile and thorough verification. [7, p. 2-3] 

UVM test benches are built using already existing base building blocks and 

customizing them how one sees fit. These base blocks are called UVCs. Since the 

components are SV classes [8, pp. 8], a hierarchical environment can essentially be 

built in endless possible ways. Although to build an UVM environment that follows 

good verification principles, certain guidelines should be followed. A very common 

UVM test bench structure from a top view perspective is presented in Figure 2 [6]. 

 

UVM Test bench

UVM Test

Design
Under Test

(DUT)

Config/Factory
Overrides

UVM Environment

UVM Agent
UVM

Subscriber

UVM
Scoreboard

UVM Agent

 

Figure 2. Typical UVM test bench architecture. 

 

Generally speaking, if the test bench is able to drive the pins of the DUT, monitor 

signals and check correctness, it is good to go. From this point more properties can be 

added to make the test bench towards a CDV environment. A deeper look into some 

of the UVM features is taken in section 2.4. 
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2.2. History 

UVM was announced on December 23rd 2009 by Accellera Systems Initiative. The 

first official UVM version (1.0) was accepted for release on February 18th 2011. Even 

though UVM brought new improvements, like run-time phasing and callbacks, most 

of what UVM provided was already introduced in Open Verification Methodology 

(OVM). Nonetheless, the benefits UVM brought were massive; it provided a single, 

industry- and vendor-wide standard for SV verification. Figure 3 shows the timeline 

that includes the development of verification methodologies that led to UVM. [7, p. 

xxii] 

 
vAdvisor1

2000
eRM1

2002
URM1

2007
OVM1,3

2008
UVM1,2,3

2010
UVM-1.1a,b,c,d1,2,3

2011-2013

2003
RVM2

2006
AVM3

VMM2

Contributions from: 1Cadence
2Synopsys
3Mentor

UVM-1.21,2,3

2014

 

Figure 3. Verification methodology timeline. 

 

Verisity Design, Inc. (currently part of Cadence Design Systems, Inc.) released a 

collection of best verification practices in 2000. This collection was called Verification 

Advisor (vAdvisor) and it was meant for the e verification language user community. 

vAdvisor explained many points of verification, including stimuli creation, self-

checking test benches and coverage model creation, with the purpose of speeding up 

development and supporting people working with verification. The package did not 

have any ready-to-use verification code and this posed an area for further 

improvement. Thus Verisity announced the first verification library, e Reuse 

Methodology (eRM), in 2002. eRM contained packaging guidelines, architecture 

requirements, messaging facilities, an objection mechanism and much more. Even a 

register package was later added to the methodology. The library was very well 

received and its core functionality guided the following methodologies to the same 

direction, including UVM. [7, p. xxii] 

In 2003, Synopsys took its part in the verification methodologies by announcing the 

Reuse Verification Methodology (RVM). RVM included parts of the properties of 

eRM and it was developed to the Vera verification language. Because RVM was 

missing some of the eRM functionality, like sequences and objection mechanism, it 

was considered as a subset of eRM. Nevertheless, RVM introduced the callback 

solution which was new in the verification community. Later, RVM was transformed 

into the SV Verification Methodology Manual (VMM) which supported the new and 

growing SV standard. [7, p. xxii] 

Cadence Design Systems, Inc. started developing a SV version of eRM in 2005 after 

acquiring Verisity. Thus the Universal Reuse Methodology (URM) was introduced in 

2007. Cadence took notes from Mentor’s Advanced Verification Methodology (AVM) 

and made URM open-source. URM was a huge step in SV verification since it 

transformed the proven eRM core functionalities into SV. New solutions, including 

abstract factory and configuration mechanism, were also introduced to enhance SV 

verification even further. [7, p. xxiii] 
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In 2008, Mentor and Cadence worked together and introduced OVM. Many of the 

URM properties were used in OVM because of URM’s proven high-level 

methodology infrastructure. OVM was once again a huge step in verification 

methodologies since it was the first multi-vendor solution that could be used with more 

than one vendor simulator. This led OVM to be the methodology of choice for people 

who wanted their environments to be simulator-neutral. In addition, OVM spawned 

larger scale community sites for questions and idea sharing. [7, p. xxiii] 

In 2010, the development of UVM was started and the OVM version 2.1.1 was 

chosen as the base. Soon after the first release of UVM it became the go-to verification 

methodology. UVM removed all vendor specific gimmicks since it is supported and 

tested with all major EDA tool vendor simulators. UVM versions 1.1a, 1.1b, 1.1c and 

1.1d have improved the quality of the methodology while maintaining the APIs of the 

standard. The latest version (1.2) remains a bit controversial since verification experts 

disagree with some of the new features [9]. Thus 1.1d is currently the most used 

methodology in SV verification, at least until 1.2 is more mature. [7, p. xxiii] 

2.3. Object-oriented programming 

This section explains few of the most important features of object-oriented 

programming (OOP). This includes the common idea behind OOP, classes and objects, 

and inheritance. SV classes and interfaces are also gone through separately. Even 

though the OOP principles are explained from a general object-oriented (OO) point of 

view, the same properties are present in UVM. 

2.3.1. Definition of term object-oriented 

From a programming point of view, object-oriented means that the software 

components are organized as a selection of discrete objects that include data and 

possible action over it [10, pp. 1-1]. The idea is to create more abstract, configurable 

and reusable building blocks for programming. The user does not need to know all the 

details what is going on under the hood. Only the needed attributes and commands 

from the top view perspective can be given to the user and the more detailed 

implementation remains hidden. With this kind of object-oriented approach (OOA), 

the tools used in programming appear much more like how humans think of objects 

instead of machine-like parameters and instructions. For example, in a UVM 

verification environment it is not necessary to know how a driver controls an APB bus; 

the availability of a write and read task is sufficient. 

2.3.2. Classes and objects 

For OOP, information hiding and abstraction are one of the key points for the 

foundation of a clear design [11]. Both of these are introduced with classes. A class is 

a derived data-type, similar to a structure. Instead of grouping together only elements 

of different data-types like a structure, a class can also include functions [10, pp. 10-

1]. Therefore, a class can have attributes to store data and methods to implement 

functionality. Figure 4 illustrates a Unified Modeling Language (UML) class diagram 
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used in object-oriented design (OOD) [12, p. 6]. UVM hierarchies including similar 

class blocks can be extracted from UVM simulations. 

 

ClassName

string attribute_name

int attribute_id

int attribute_data

string function_getName()

void function_setData(int d)

+

+

-

+

+

 

Figure 4. UML diagram presentation of a class. Diagram includes the class name, 

attributes, methods and their types. 

 

Attributes and methods can be declared as public, protected or private (local in SV). 

This can be used to make some functionalities of the class unavailable to the outside 

world, adding information hiding. In Figure 4 this can be seen as plus and minus signs, 

plus meaning public and minus private. 

Object is an instance of a defined class. It is important to remember that defining a 

class is not enough to use its properties. Only after an object is created from a class 

can the class attributes and methods be accessed through the object. Any number of 

objects can be created from a class and thus they can have different identity, state and 

behavior even though they are all derived from the same class [13, pp. 5]. When 

creating an object, it allocates the needed amount of memory. It is required to keep 

track of created objects to make sure they are destructed and the allocated memory is 

freed. Fortunately, in SV this is handled very well automatically and the user does not 

need to worry about memory leaks [8, pp. 8-29]. [14, pp 3-1] 

2.3.3. Inheritance 

Alongside with the concept of classes and objects, inheritance is one the most powerful 

features of OOP. In OOP, the process of creating a new derived class from an already 

existing class (base class) is called inheritance. This process is also known as class 

extension. The extended class inherits all public and protected attributes and methods 

from the base class. Inheritance is visualized in Figure 5 by extending the example 

class presented in Figure 4 [13, pp. 8]. 
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ClassName

string attribute_name

int attribute_id

int attribute_data

string function_getName()

void function_setData(int d)

+

+

-

+

+

ExtendedClassName

int attribute_addr

int function_getAddr()

+

+

Object made from
ExtendedClassName:

ObjectName

string attribute_name

int attribute_data

+

+

int attribute_addr+

string function_getName()

void function_setData(int d)

+

+

int function_getAddr()+

 

Figure 5. Inheritance presented in UML class diagram form with an object example. 

 

As it can be seen in Figure 5, the example object ObjectName created from the 

extended class has access to all public attributes and methods from the classes 

ClassName and ExtendedClassName. The base class remains completely unchanged 

with extension. [10, pp. 12] 

The advantage got from inheritance is reusability. If more functionality is needed, it 

can be added with extension instead of changing already working and verified code. 

This allows creating new code from another company’s or person’s existing code 

without modifying the source [10, pp. 12]. In UVM, the idea is to extend existing UVM 

components and modify them to fit to the verification environment. The UVM base 

classes bring many positive properties to the verification environment like automatic 

phasing and transaction-level communication models. In addition, if a common class-

based verification environment is created for a larger project, all subtests can extend 

the common environment to make more targeted tests. 

2.3.4. SystemVerilog classes 

For SV classes, all OOP principles mentioned in the previous sections are present. In 

addition, the usage of tasks [8, pp. 13] is also possible alongside with functions in SV 

classes. Tasks need to be used if time-consuming statements are desired inside classes. 

SV classes also have properties, like rand type definition and constraints, that are 

essential with verification environments using random stimulus. The following 

paragraphs take a deeper look into these two features. 

A very powerful feature of SV classes is that the attributes can be defined with a 

randomize type (rand) [8, pp. 8-12]. This makes randomization of parameters very 

efficient because all rand defined attributes in the same hierarchy level can be assigned 
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a random legal value with a single function call. The randomization can also be 

targeted to single attributes. An example SV class and its randomization is presented 

in Figure 6 below. 

 

  class class_example;
      // attributes
      protected int id;
      rand int data;
      rand int addr;
      rand bit readwrite;
      // constructor, methods, etc.
      
  endclass

  Class definition:   Test program:

  class_example cl1;
  int check;
  
  initial begin
      cl1 = new();
      check = cl1.randomize();
      assert (check);
      else $error(”rand failed!”);
  end

 

Figure 6. Class instantiation and randomization in SV. 

 

In Figure 6, an instance cl1 of the class class_example is created with the new() 

constructor and the randomization is done with cl1.randomize(). The randomize 

method returns an integer that indicates whether the randomization was successful or 

not. The integer check and an assertion is used to report any errors regarding the 

randomization. In this example, the randomize call will change the values of data, addr 

and readwrite attributes to random integer and bit values. Integer id remains 

unchanged since it does not have a rand type defined. 

The legal range of values can be changed using SV constraints [8, pp. 18-5]. 

Constraints can be used to ensure that the randomized values will be reasonable and 

will actually stress the DUT. For example, without constraints the attribute data in 

Figure 6 will be randomized to any possible value of a 32-bit signed integer. A 

constraint could be added to limit the result of randomization into a small set of values. 

Inside these values, weight factor can also be used to make some values more likely to 

be the result of the randomization than ones with smaller weight. 

2.3.5. SystemVerilog interfaces 

In SV, interfaces encapsulate the communication between blocks, allowing a smooth 

migration from abstract system-level design through successive refinement down to 

lower level register-transfer and structural views of the design. At its lowest level, an 

interface is a named bundle of nets and variables. In addition, SV interfaces can include 

functionality in the form of SV tasks and functions, and module ports (modports) to 

restrict interface access by declaring the direction of the interface signals. Using 

module ports is an useful way to create different types of components, like masters 

and slaves, that use the same interface signals, but with different signal directions. [8, 

pp. 25]  

    Interfaces are not limited to class-based SV applications, but they are essential when 

giving SV classes access to specific signals found in the DUT. This is done by giving 

the class a reference to the original interface. The reference is given as a virtual 

interface. The component using the virtual interface can access any signal, task or 
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function it is permitted to use through the virtual interface. Using virtual interfaces 

adds abstraction and separates the test environment from the actual signals in the 

design, promoting code reuse. [8, pp. 25-9] 

2.4. UVM features 

This section shows the most important UVM components found in a typical UVM test 

bench. In addition, some of the essential UVM features are gone through. These 

features consist of simulation phasing, data transactions, factory registration, 

configuration and information reporting. To get the most out of UVM verification, 

these properties should be capitalized in the environment. 

2.4.1. Essential UVCs 

Even though UVM environments can be built in multiple possible ways and allow high 

amount of customization, nearly all of them include the most common UVCs that are 

needed for test bench creation and DUT interaction. Specific components should be 

used for their purposes only to ensure the code remains readable and follows the 

general verification guidelines. The most common UVCs are described in Table 1 

below [6, pp. 1-1]. 

 

Table 1. List of common UVM verification components 

UVM component Description 

Test The UVM Test is the top-level component in the UVM test 

bench. The UVM Test typically performs three main functions: 

instantiates the top-level environment, configures the environ-

ment and applies stimulus to the DUT with UVM Sequences. 

Environment The UVM Environment groups together other components that 

are interrelated. These components include UVM Agents, 

Subscribers, Scoreboards, or even other Environments. 

Subscriber The UVM Subscriber’s function is to check correct behavior 

and collect functional coverage. A UVM Scoreboard is a 

similar component to the UVM Subscriber. 

Agent The UVM Agent contains components that are dealing with a 

specific DUT interface. A typical UVM Agent includes a UVM 

Sequencer, Driver and Monitor. 

Monitor The UVM Monitor samples the DUT interface and stores the 

information to transactions, which are sent out to the rest of the 

UVM test bench for further analysis. 

Driver The UVM Driver receives individual transactions and trans-

forms them into DUT pin wiggles. 

Sequencer The UVM Sequencer serves as an arbiter for controlling 

transaction flow to a UVM Driver. The transaction flow is 

determined by UVM Sequences. 

Sequence UVM Sequences are objects that contain behavior for gene-

rating stimulus. 
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2.4.2. Phasing 

UVM has a set of automated function and task calls during UVM simulations that all 

UVCs execute at the same time. These function and task calls create the phasing 

mechanism of UVM. All UVCs are always synchronized with respect to these phases 

[15]. Thus if an extended UVM class has a specific named function or task declared, 

it will be executed automatically when the UVM simulation enters that specific phase.  

The UVM class library includes common phases and they can be found in the UVM 

class reference manual [5, pp. 9-6]. From these phases, the build, connect and run 

phase are used to set up the environment and run the simulation. Build phase is used 

to create all subcomponents (objects) for the class and to assign needed virtual 

interfaces. It is good to understand that the UVM environment does not exist until all 

build phase functions have been run. In connect phase, all transaction level modeling 

(TLM) connections are made between the required UVCs. Only after the connect 

phase is the environment complete and ready to be used in simulations. Lastly, all 

simulations are done in the run phase, or they can be divided into subsections of the 

run phase if desired. [5, pp. 9-6] 

2.4.3. Transactions 

Transactions in UVM are basic data objects that represent data movement between 

different UVCs [15]. They are used to represent communication at a more abstract 

level. Because transactions are SV classes as well, all necessary information can be 

stored in the attributes of the transaction class. It is up to the driver to transform 

transactions into pin wiggles the DUT can understand. With the help of a UVM 

sequencer [5, pp. 19-3], creating activity becomes a very simple task. Transactions 

eliminate the need to know all the details happening at pin level and the focus can go 

towards creating more scenarios. In addition, UVM sequences can be used to model 

multiple consecutive transactions. [5, pp. 5-3] 

2.4.4. Factory and configuration database 

The UVM factory mechanism is an implementation of the factory pattern found in 

OOP literature [15]. The factory can be used to create UVM objects and components 

if the type of the created class is registered to the factory. User-defined components 

and objects are usually registered to the factory with UVM macros. If a new object or 

component is requested to be created from the factory, the factory will create an object 

according to its configuration. A registered class can be overridden with another class 

that extends the original. This allows replacing components in the verification 

hierarchy with custom ones, and it can even be done during the simulation. [5, pp. 8-

2] 

The UVM configuration database functions as a centralized database where type 

specific information can be stored and retrieved [5, pp. 10]. The database also supports 

hierarchical configuration; information can be stored for specific components only or 

multiple components under one hierarchy level. The latest write to the database will 

always overwrite previous existing configurations for the selected level of hierarchy. 

Even though the database can be used for multiple different purposes, it has one 

especially important application: to configure the test bench as it is constructed [16]. 
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All references to top module-level components need to be transferred to the UVM class 

environment through the database. This is how the UVM agents get their accesses to 

the interfaces connected to the DUT. In addition, the whole behavior or structure of 

the UVM test bench can be changed according to the setup values fetched from the 

configuration database before building the UVM environment. 

2.4.5. Message reporting 

UVM also has a built in message reporting system. Available message types are info, 

warning, error and fatal. The system enables reporting messages with different severity 

levels and keeps track of messages with the same ID. In the end of the simulation, 

UVM gives a recap of all different sources and the number of reports from every 

source. Visibility of different severity level messages can be changed by UVM 

simulation parameters. Custom prints can be also added to the UVM info type 

messages. The common way to use the system is through the UVM report macros, 

which makes writing the reporting code more user friendly [5, pp. 21-1]. [5, pp. 6] 

2.5. Related work 

UVM has been in the spotlight in RTL verification for the past few years and 

verification engineers have been eager to put its praised features to use. Francesconi J. 

et al. successfully used UVM in the building of two RTL verification environments, 

and experienced increased productivity when reusing the UVM verification 

components from the first environment [17]. Zhaohui H. et al. studied the inte-gration 

of IP-level UVM test benches and test cases to SoC-level, which also showed a high 

amount of possible reuse while saving resources needed for the integration [18]. 

The two main points used for UVM validation in this thesis are coverage results got 

with CDV and simulation performance statistics. The measurement and analysis of 

functional verification and coverage, including CDV, has been studied by Piziali A. 

[19]. In his work, Piziali presents methods and guidelines for functional coverage 

related applications. Söderlund T. and Kärenlampi L. studied test bench performances 

in their theses [20][21]. Kärenlampi used profiling for accurate performance results in 

his work, and Söderlund implemented an UVM environment based on a legacy test 

bench and compared these two. 
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3. COVERAGE 
 

This chapter introduces the concepts of functional and code coverage in 

SystemVerilog (SV); how they are collected and what is done with them. Section 3.1 

starts with the reasons, phases and CDV. Sections 3.2 and 3.3 list the parts that make 

up code and functional coverage and go through how they are captured. 

3.1. Importance of coverage 

In verification, it is not practical to run test cases without any indicator telling when 

all required functionalities have been checked. Data got from code and functional 

coverage can be used to address this verification problem. Coverage models can be 

manually written to fit the needs of the design. However, even though the tools 

available nowadays make the verification environment creation process less painful, it 

is very important to think about all verification related problems from a coverage point 

of view [22]. This kind of approach is essential when creating a coverage collection 

infrastructure. 

Planning and implementing a thorough coverage environment requires more time 

and effort but when done correctly, it pays itself out in the end [23, pp. 1-4]. A well-

written coverage environment saves many hours of working time spent on manual 

checking for correctness and verification status. In addition, giving a thought to 

functional coverage before design implementation can help to bring out key points in 

the design specification. This can make the actual implementation process easier and 

reduce verification needs later in the project. 

3.1.1. Coverage planning 

The process of efficiently developing functional coverage models for today’s projects 

is still found fairly difficult amongst many engineers. The coverage models usually 

lack proper planning, and often contain poorly defined objectives, uncertain estimates 

of effort and unrealistic expectations. The implementation of the coverage 

environment is often prone to errors, regardless of using methodologies like UVM or 

SV’s built-in functional coverage features. Problems like this lead to incomplete 

coverage closure and might leave bugs unnoticed. [24] 

A coverage plan connects the requirements defined in the specification and the 

implemented model with the results got from simulations. Proper planning ensures that 

no points are missed from the specification and makes the actual implementation of 

the coverage model towards more routine programming. There are three important 

things when planning coverage: the model needs to be accurate, representative and 

complete [24]. Accurate coverage means that the model captures only the desired 

states or transitions from the design and avoids false positives and unnecessary events. 

For coverage to be representative, it needs to include the needed amount of the 

specified functionality and balance the covered core properties with the project’s 

business goals. Lastly, complete verification is defined based on a scope and 

representative subset of functionality; all functionalities in that scope and subset 

should be identified. 

Sometimes the specification can be quite demanding, and implementing a coverage 

model is a very difficult task. One method that can help when planning the coverage 
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model for hard-to-implement properties is the Mutually Exclusive, Collectively 

Exhaustive (MECE) approach [25]. Using the MECE approach, a coverage 

requirement can be divided into multiple definitions. All definitions are a subset of the 

full requirement and independent from each other, and together they form a coverage 

model for the original requirement. The MECE approach is illustrated in Figure 7 [24]. 
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Figure 7. MECE approach for coverage collection. 

3.1.2. Reviewing coverage 

A single coverage metric is not enough to get a complete coverage closure. Also, just 

looking at the coverage numbers got from the simulations is not sufficient; depending 

on the size of the project, a significant amount of processing and reviewing can be 

required to determine the actual coverage status. For example, having code coverage 

of 100 % does not necessarily mean that the DUT has been completely verified. Some 

functionalities might be missing and the 100 % comes from a subset of the whole 

requirement [26]. On the other hand, complete functional coverage but lacking code 

coverage might suggest that the coverage model is faulty, or the implementation has 

redundant, unnecessary properties that were never specified. 

This is why carefully reviewing coverage results is important, even with a flawless 

coverage plan. It helps to bring out the lacking aspects of the design or the coverage 

model and understand them better, and guide engineers towards what should be 

verified next. In addition, reviewing is a good time to make sure everyone related to 

the particular design is on the same information level. Just as with verification 

planning, frequent reviewing ensures on-time project completion with zero bugs 

unnoticed. 

3.1.3. Verification driven by coverage 

One application for coverage data is to use the data to automate or drive the verification 

during the simulation. The approach where coverage is used as the engine that drives 

the verification flow is called coverage-driven verification (CDV) [27]. With CDV, 
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the environment can be made automatic by using coverage as the indicator whether to 

continue the simulation or not. On the other hand, coverage can also be used to tweak 

the constraints that affect the randomized parameters during stimulus generation. With 

a proper algorithm, changing the constraints according to the coverage results can be 

very beneficial for reaching complete coverage closure [4]. Both of these scenarios 

require the use of manually declared functional coverage models. In SV, the 

recommended way to do this is to use covergroups and its built in features (see Section 

3.3.1.). 

3.2. Code coverage 

Code coverage is one of the first methods invented for systematic software testing. It 

is used as a measurement that tells how many structures within the source code files 

have been activated during the simulations. Code coverage itself is not enough for 

complete coverage closure since it does not tell whether all functionalities have been 

implemented or not. Functional coverage is always required in addition to code 

coverage. Even with this limitation, code coverage is a very efficient tool and it 

requires close to no extra work because the process of creating the coverage model is 

automated by the simulator [19, pp. 5]. Information regarding code coverage capture 

should be searched from vendor-specific user guides. The following subsections go 

through the most common code coverage metrics: line, statement, branch, expression, 

toggle and finite-state machine (FSM) coverage. [26] 

3.2.1. Line coverage 

Line coverage is a simple metric used to determine which lines of the source code have 

been executed during the simulations, excluding commented lines. In addition to the 

source code lines, the line coverage report incorporates a count associated with each 

line of source code notifying how many times each line has been executed. This can 

be used to determine if a line has been executed a minimum number of times required, 

or to spot out unexecuted code. [26] 

3.2.2. Statement coverage 

Statement coverage metric indicates whether a statement within the source code has 

been executed or not. Statement coverage analysis is often found to be more useful 

than line coverage since a statement may span multiple lines of source code, or one 

line of source code can include multiple statements [19, pp. 5-2-2]. The reasons for 

statement coverage usage are similar to line coverage. [26] 

3.2.3. Branch coverage 

Branch coverage (also known as decision coverage) metric reports if Boolean 

expressions tested in control structures have been evaluated to both true and false. In 

SV, the control structures include if, case, while, repeat, forever, for and loop 

statements [19, pp. 5-2-3]. The expression in the statement is considered as one true-

or-false evaluation regardless whether the expression contains multiple logical 
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operators or not. Very typical application for branch coverage is to check that reset 

paths or all states in a case statement have been executed. [26] 

3.2.4. Expression coverage 

Expression coverage (referred also as condition coverage) is a coverage metric used to 

identify if each condition evaluated true and false values. The conditions are Boolean 

operands that do not contain logical operations. Thus, expression coverage measures 

the Boolean conditions separately from each other. Focused expression coverage 

(FEC) is a variation of expression coverage, and it is stronger than condition and 

decision coverage. [26] 

3.2.5. Toggle coverage 

Toggle coverage metric measures the number of times each bit of a register or a wire 

has toggled its value. A 100 % toggle coverage is often very hard to reach, and usually 

projects settle on a requirement where all ports and registers must have experienced a 

zero-to-one and one-to-zero transitions. For example, toggle coverage is often used for 

basic connectivity checks between IP blocks. [26] 

3.2.6. FSM coverage 

Today’s coverage collection tools can also identify FSMs from the source code and 

create coverage models for them. For example, it is possible to extract information 

regarding how many times each state was visited and each transition occurred. Even 

sequential arc coverage to identify state visitation transitions is available. Figure 8 

presents an example FSM and its coverage status [19, pp. 5-2-7]. [26] 
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Figure 8. FSM and coverage data with a coverage hole. 

3.3. Functional coverage 

The goal of functional coverage is to determine if the implemented design 

requirements defined in the specification are working as intended. In addition, 
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functional coverage is a good indicator to measure verification progress, better than 

code coverage. From a high-level perspective, there are two main steps present when 

creating a functional coverage model: identifying the functionality or design to be 

verified, and implementing the coverage model using language features to measure the 

intended functionality or design [26]. The downside with functional coverage is that it 

cannot be extracted automatically; manual work is required. With SV, the 

implementation of coverage models can be done with covergroups, or with assertions 

while using its cover directive [28]. These SV features are explained more thoroughly 

in subsections 3.3.1. and 3.3.2. Figure 9 below demonstrates verification paths to reach 

definitive functional coverage [29, p. 9]. 
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Figure 9. Verification steps to achieve complete functional coverage. 

3.3.1. Covergroups 

The covergroup construct encapsulates the specification of a coverage model. The 

construct is a user-defined type and it can include the following components: 

1. A clocking event that is used to synchronize the sampling of the defined 

coverage points. 

2. A set of coverage points. 

3. Cross coverage between defined coverage points. 

4. Coverage options to change the behavior of the covergroup or to modify how 

multiple covergroup instances are handled. 

5. Optional formal arguments used when creating a covergroup instance. 

 

Covergroups can be used to collect information from simple temporal sequences, but 

its main advantage comes from collecting and correlating information from multiple 

data points [30, pp. 18-2-3]. Once defined, multiple instances of the covergroup can 

be created in different contexts. Covergroups can be defined in packages, modules, 

programs, interfaces, checkers and classes. Covergroups are instantiated with the 

new() operator, similar to classes. When instantiating covergroups inside classes, it 

needs to be done inside the class constructor. Figure 10 presents the usage of the 

mentioned covergroup components in SV syntax. [8, pp. 19-3] 
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  covergroup cg_example @(sampling_event);
      type.option.merge_instances = 1;  // covergroup options
      // coverpoints
      LABEL1 : coverpoint readwrite;  // automatic bin creation
      LABEL2 : coverpoint data {
          bins data_point_1 = { 8'h12 };
          bins data_point_2 = { 8'hbe };
      }  // manual bin creation
      LABEL3 : cross LABEL1, LABEL2;  // cross coverage
  endgroup

 

Figure 10. Covergroup syntax in SystemVerilog. 

 

A sampling event (clocking event) defines when a covergroup is sampled [31]. In 

Figure 10, the sampling of the covergroup is defined on the first line as 

@(sampling_event). If a sampling event is not specified, the user must manually 

trigger the covergroup sampling by calling its built-in sample() method [8, pp. 19-3]. 

This is often the preferred way in UVM environments since hierarchical references are 

not allowed inside classes, and the sampling event is easy to synchronize with a 

transaction sent by a monitor. 

A coverpoint covers a variable or an expression, and it includes a set of bins 

associated with its sampled values or its value transitions. The bins can be 

automatically generated by the tool or manually declared. Automatic generation is 

useful when creating separate bins for a range of values. A bin will be marked as 

covered if the value associated to the bin is present in the coverpoint variable at the 

covergroup sampling event. Coverpoints can also include a label, and in Figure 10 the 

coverpoints and their labels can be found as LABEL1-3. Cross coverage can also be 

created between all the bins for the chosen coverpoints (LABEL3). A covergroup can 

contain one or more coverpoints. [8, pp. 19-5] 

The cumulative covergroup coverage considers the contribution of all instances of 

a particular covergroup, and it can be obtained by calling the covergroup’s built-in 

get_coveage() method. In contrast, the coverage of a specific covergroup instance can 

be acquired by calling the get_inst_coverage() method. The coverage value of a single 

covergroup is the weighted average of the coverage of all items (coverpoints and cross 

coverages) defined in the covergroup. For coverpoints and cross coverage, the 

coverage is simply calculated by dividing the number of covered bins with the total 

number of bins. Cross coverage calculation excludes ignored and illegal bins, and 

possible duplicates created with the cross coverage. With automatically declared 

coverpoints, the maximum number of automatically declared bins is taken into account 

in the coverage calculation. [8, pp. 19-11] 

3.3.2. Assertions 

An assertion specifies excepted behavior in a design and it is mainly used to validate 

that the behavior is correct. In addition, the cover directive found in assertions can be 

used to provide functional coverage [8, pp. 16-2]. Assertions are not as practical as 

covergroups at checking data values, delays and multiple data points, but they are 



26 

 

 

useful at detecting the occurrence of some specific series of Boolean values [30, pp. 

18-2-3]. 

There are two types of assertions: immediate and concurrent assertions. Immediate 

assertions are simple, non-temporal domain assertions that are executed like 

statements in a procedural block [32, pp. 3]. Immediate assertions can only be specified 

with a procedural statement and the evaluation happens immediately with the values 

updated at that moment. On the other hand, concurrent assertions describe behavior 

that spans over time and are great at verifying specific sequences. The evaluation 

model is based on a clock and the assertions is evaluated only at the occurrence of a 

clock tick [8, pp. 16-5]. In this work, assertions are only used in the design and the 

functional coverage is captured only with covergroups in the test bench. 
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4. UVM MONITORING ENVIRONMENT 
 

This chapter goes through the implementation of the UVM monitoring environment, 

which runs in parallel with the existing SV test bench. First, a brief description of the 

DUT is given. Then, the chosen coverage points and the implementation of 

environment components, like UVM monitors and subscribers, are gone through. 

Lastly, the whole test bench is presented. 

4.1. Design under test 

The DUT chosen for this experiment is a decoder. In normal operation, the decoder is 

configured and run, and the results can be checked during and at the end of each run. 

The decoders interface includes Advanced Peripheral Bus (APB) and AMBA High-

performance Bus (AHB) buses, and a general interface for interrupt, status and control 

signals. Figure 11 shows a top view of the DUT including the interfaces, which are the 

main points for collecting the functional coverage. 
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Figure 11. DUT top view. 

 

The APB bus is used to access the registers of the decoder. The registers include 

configuration, control and status registers. The APB bus is the key point with the 

functional coverage model since it provides register access and decoder configuration 

data values. The decoder has an AHB master that fetches data from memory through 

an AHB bus. The memory is modeled with a SV class-based AHB slave. 

4.2. UVM verification components 

Since no extra DUT driving is required at this point, the first UVM environment 

created was quite straightforward. A separate UVM test environment was still required 

because if the classes had been instantiated in the SV module environment, the 

automatic UVM properties would not have been present. The created UVM hierarchy 

includes test, environment, monitor and subscriber classes. The test and environment 
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classes only create the needed subclasses, in this case monitors and subscribers, pass 

the virtual interface references and make necessary connections between the 

subcomponents. The following subsections take a more detailed look into the 

implementation of the UVM monitors and subscribers, which create the actual 

functional coverage collection model. 

4.2.1. UVM monitors 

UVM monitors were created for the APB bus and the general interface. AHB bus 

monitoring was left out since the traffic consists only of decoder memory data 

transfers. This did not bring any addition to the functional coverage model. The 

monitors connect the class-based UVM environment to the module-based DUT. They 

watch the interfaces during the whole simulation, and automatically send transactions 

to the higher hierarchy levels when there is valid data on the interface. With the APB 

monitor, all read and write commands are captured. Similarly, the general interface 

monitor captures all interrupt and status signal changes. The transactions are sent 

forward through an UVM analysis port [5, pp. 16]. Figure 12 illustrates the behavior 

of the APB monitor. With a different interface and transaction forwarding condition, 

a similar model could be used with the general monitor. 
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Figure 12. APB monitor operation flow. 

 

The analysis port (ap) presented in Figure 12 is of type uvm_analysis_port#(), which 

is parameterized with the APB transaction. The port is a class that has a built-in 

function write that takes a transaction as an argument. Whenever the virtual interface 

VIF has valid data, the data is fetched to a local APB transaction parameter and the 

analysis port’s write function is called with this transaction. The port’s write function 

forwards the function call automatically to every component that is connected to the 

analysis port and has the same write function implemented. The monitor also has a 

message printing system for sent transactions that can be enabled or disabled with the 

UVM severity levels. The behavior and naming of the APB monitor was made to be 

as general as possible to ensure reusability in other APB buses. The same was done 

with the general monitor by parameterizing the amount of interrupts and status signals. 
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4.2.2. UVM subscribers 

The UVM subscribers implement the covergroup models for the decoder and use the 

transactions sent by the monitors to sample the covergroups. Two subscribers were 

created in total: one for APB and one for the general interface related covergroups. 

The APB subscriber collects data regarding register access (read and write) and 

decoder configuration values set through the APB bus, and the general interface 

subscriber keeps track that all interrupt, status and control signals have been set and 

cleared. Both of these subscribers include covergroups and their constructors, and the 

write function with additional logic to determine what covergroups to sample with 

each transaction. Figure 13 demonstrates how the transactions sent by the monitor are 

handled inside the APB subscriber. 
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 apb_rw  t;
 t.addr = tx.addr;
 t.data = tx.data;
 t.rw = tx.rw
 case (t.addr) begin
     12'h518 : cg1.sample();
     
 end

cg_* sample()

 

Figure 13. APB subscriber transaction processing. 

 

The subscribers extend UVM subscribers and thus have a built-in analysis export 

(ae) used for receiving transactions. As mentioned in the previous section, the write 

function is executed automatically whenever the export receives a transaction. The 

write function captures the transaction information to a local transaction parameter to 

ensure the data used remains the same, and samples the correct covergroups. The 

covergroups were implemented using the covergroup properties presented in Chapter 

3.1.1. 

4.3. Parallel test bench 

The finished test bench uses the IP’s existing test bench to execute the original test 

program flow: stimulate the DUT and check design correctness. The original test 

bench is done in a SV module based manner. In addition, the test bench has the UVM 

monitoring environment described in the previous sections running in parallel to the 

module environment. The whole test bench structure is presented in Figure 14, 

highlighting the separation of the UVM and module hierarchies. 
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Figure 14. Full test bench for the monitoring environment. 

 

The top SV module instantiates the DUT module, and the decoder test program as 

automatic SV program. The test program uses the built-in direct programming 

interface (DPI) [33] to integrate a C-model for the decoder, which is used to calculate 

the configuration parameters and expected results, and to do correction checks between 

the C-model and DUT results. In one run, the test program starts the C-model with a 

set of parameters and the C-model calculates required decoder parameters and starts 

the DUT with the chosen settings. Finally, the DUT and reference results are 

compared. The DUT is configured and started via the APB interface. 

In addition, the top module also starts the construction of the UVM environment and 

sets the references of the DUT interfaces to the UVM configuration database. The top 

selects which UVM test class is the top class in the UVM hierarchy, and that test will 

construct the rest according to its build and connect phase functions. Here, the 

cl_Decoder_Test test class creates the cl_Decoder_Env environment class and the 

environment creates the monitors and subscribers, connects them and sets the correct 

interface references to the monitors. 

The simulations are done with Mentor’s Questa simulator. Coverage is captured by 

storing the code and functional coverage into a UCDB file in the end of simulations. 

The coverage data is transformed into HTML format using Questa’s coverage features 

for better readability. The simulator also keeps log of messages that appear during 

compile, optimization and simulation phases, and the logs are stored to separate files. 

Questa’s simstats formal argument is used to get accurate data regarding different 

simulation execution times. This information is used in performance comparison of 

the different test benches. The results are gone through in Chapter 6. 
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5. COMPLETE UVM ENVIRONMENT 
 

This chapter presents the second part of the experiment, where the whole test bench is 

converted into the UVM environment. The chapter starts with the modifications made 

to the UVM environment shown in previous chapter to make it able to drive the 

interfaces and model the AHB memory. In addition, the test program conversion to 

UVM test format is gone through and the final test bench is presented. 

5.1. Addition of UVM agents 

With the final test bench, the UVM environment needed to be able to do the same DUT 

driving as the original module based test program. Thus UVM agents were created for 

the APB, AHB and general interface. The APB and general interface agents include a 

driver and a sequencer as new components, and the existing monitor presented in the 

previous chapter. The AHB agent has only a slave component since its only function 

is to act as memory that is connected to a AHB bus. The general structure of a driving 

and monitoring UVM agent is illustrated in Figure 15. 
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Figure 15. UVM agent and its subcomponents. 

5.1.1. Drivers and sequencers 

The drivers extend the UVM driver class and their main function is to wait for new 

transactions to be ready in the sequence item port found inside the drivers, and to 

transform the transactions into DUT pin wiggles by using the virtual interface 

reference to the DUT interface. The drivers were built to capitalize the UVM phasing, 

making them start and operate automatically. They also support passive-active 
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configuration, where passive agent only instantiates a monitor and active adds the 

driving components as well. The APB driver checks whether the incoming transaction 

is a read or write operation and executes them according to the APB protocol, and the 

general interface driver simply sets the selected control signals active and releases 

them after few clock cycles. 

The sequencers were implemented to make the transaction passing to different 

drivers more straightforward. The sequencers in this test bench did not need any extra 

features, thus the base UVM sequencers were used with minor naming changes to fit 

the IP’s test bench. In this test bench, the top UVM test class adds sequences to the 

sequencers, and the sequencers parse the sequences into transactions for the drivers to 

fetch. 

5.1.2. AHB slave 

The implemented AHB slave follows the same functionality as the original slave to 

ensure timing regarding AHB memory accesses remains the same. Thus the slave’s 

functionality was ported unchanged to be UVM environment compatible, and only 

minor additions were made to the slave automation using the UVM phases. The slave 

uses a SV queue as the memory container, and an automatically running function that 

either stores data to the container (write) or puts data from the container to the AHB 

bus (read). Because the DUT uses two memories with different AHB bus data widths, 

the AHB slave class and its functions were parameterized. 

5.2. Test program 

In the new UVM environment, the test program was implemented inside the top UVM 

test class cl_Decoder_Test. Linking the C-model to the UVM test class was 

problematic since the C code required access to SV tasks through the DPI, and class 

tasks cannot be exported unless they are declared as static. On the other hand, static 

tasks would have nullified the hierarchical benefits got from the UVM environment. 

This problem was bypassed by importing the C-model inside an SV interface wrapper 

and giving the UVM test class a reference to this interface. This structure is presented 

in Figure 16 below. 

 

VIF

cl_Decoder_Test in_CModel

C-MODEL

- Tasks to call C-Model and vice versa
- Update VIF
- Inform cl_Decoder_Test class

Functionality:

cl_Decoder_Env

virtual in_CModel  vif;
vif.ta_callCModel;

 

Figure 16. UVM Test class and C-model communication. 
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The structure presented in Figure 16 allows the test class to call any tasks found 

inside the in_CModel interface through the virtual interface reference. All data 

between the test class and C-model is transferred through the reference. This requires 

some additional synchronization compared to a straight task call, but nevertheless was 

found to be the best solution without modifying the C source code. 

Apart from the C-model integration, there were no compatibility issues with the test 

program implementation inside the UVM test class. The program was divided into 

subtasks inside the class, and parameters regarding configuration and simulation 

conditions were declared with the rand type with additional constraints. Tasks to fetch 

and check the covergroup coverage values from the subscribers were also 

implemented. The main program loop was changed to be coverage-driven, where the 

covergroup coverage values are used as a condition whether to continue or not. The 

top includes a set of coverage goal parameters that can be tweaked to modify the 

importance of some coverage segments in the evaluation of the end condition. In 

addition, reporting tasks were implemented to inform the user about test progress, and 

configuration and coverage values. 

5.3. Final test bench 

The final UVM test bench consists of the new components presented in this chapter 

and the previous test bench shown in Chapter 4.3. All DUT driving is now done by 

different UVM agents and the data is processed inside the top UVM test class 

cl_Decoder_Test, disregarding the data calculated by the C-model running inside the 

in_CModel interface. The complete test bench is presented in Figure 17. 

 

cl_Decoder_Test

cl_Decoder_Env

Top

C-MODELin_CModel

cl_Ahb
Agent

cl_Apb
Agent

cl_General
Agent

DUT

cl_Apb
Subscriber

cl_General
Subscriber

Config

 

Figure 17. Final UVM test bench. 
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Here, the cl_Decoder_Env environment instantiates the agents instead of only 

monitors. The environment also includes additional configuration parameters used 

when creating the agents. The Top module only instantiates the DUT and necessary 

interfaces for the UVM test bench, leaving out the test program found in the parallel 

test bench. Other than these changes, the test bench structure and instantiation remains 

the same as in the previous test bench shown in Chapter 4.3. No changes were made 

to the coverage data collection or simulation logs. 
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6. RESULTS 
 

This chapter presents the coverage and simulation performance results got from the 

original, original with monitoring and full UVM test benches shown in Sections 4.3. 

and 5.3. First, Section 6.1 shows code and functional coverage statistics got from 

Questa’s coverage reports. Then, Section 6.2 presents data regarding test bench 

performance for all test benches used in this experiments. 

6.1. Coverage 

Both code and functional coverage results were extracted from the HTML reports 

generated by Questa. Practically, 100 % coverage should be reached in all coverage 

fields, and if not, exclusions with explanations should be used. The results presented 

in this chapter use no exclusions. And since the UVM environment uses the original 

test program flow, some functional coverage misses present in the original test bench 

will be present in the UVM the bench as well. The changes mainly come from 

changing the decoder configuration parameters to randomized parameters. Code and 

functional coverage results are shown in the following subsections. 

6.1.1. Code 

The code coverage statistics for the original and UVM test bench are presented in 

Figures 18 and 19, and the coverage number differences of these two are highlighted 

in Figure 20 (UVM compared to original). The code coverage was limited to the 

decoder unit, leaving out all test bench items. With the UVM test bench, 85 % coverage 

goal was used for the cg_Decoder_Config_Iterations covergroup (see Section 6.1.2.), 

and 100 % for other configuration and interrupt covergroups. These simulation goals 

resulted in a total of 7112 decoder test runs. The original test bench was run for the 

whole test program duration, which resulted in a total of 9144 test runs. 
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Figure 18. Code coverage statistics (percentage) of the decoder unit got from the 

original test bench. 
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Figure 19. Code coverage statistics (percentage) of the decoder got from the UVM 

test bench. 
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Figure 20. Differences of the UVM test bench code coverage compared to the 

original one (in percent). 

 

It was known that the original test bench did stress the DUT quite thoroughly in the 

functional aspect. The behavior of the test program and the DUT operation also caused 

the code coverage to reach reasonably high values rather quickly, only getting small 

improvements with a very high number of tests. However, even with this baseline the 

randomization present in the UVM environment brought some increase to the code 

coverage with a lesser amount of tests, as it can be seen from Figure 20. The main 

reason for this is the different toggle values got from randomization, which also caused 

few extra statements, branches and expression to be executed. 

6.1.2. Functional 

Figures 21 and 22 show the functional coverage got from the covergroups for the 

original and UVM test bench, in respective order. The simulation coverage goals for 

the UVM environment, and the total number of decoder test runs for the UVM and the 

original test bench were the same as shown in Section 6.1.1. If 100 % coverage goal 

was also used for the iterations covergroup, the total number of test runs was 10033. 
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Covergroup Total Bins Hits Hits % Goal % Coverage %

68.07%100.00%46.92%84179cg_Decoder_Registers

100.00%100.00%46.01%127127cg_Decoder_Config_Length

16.12%100.00%16.12%531cg_Decoder_Config_Iterations

100.00%100.00%100.00%44cg_Decoder_Config_Prediction

100.00%100.00%100.00%22cg_Decoder_Config_CRC

100.00%100.00%100.00%22cg_Decoder_Config_ABS

100.00%100.00%100.00%1212cg_Decoder_Interrupts

100.00%100.00%100.00%1212cg_Decoder_Status

0.00%100.00%0.00%08cg_Decoder_Control

84

 

Figure 21. Covergroup functional coverage of the original test bench. 

 

Covergroup Total Bins Hits Hits % Goal % Coverage %

68.07%100.00%46.92%84179cg_Decoder_Registers

100.00%100.00%46.01%127127cg_Decoder_Config_Length

87.09%100.00%87.09%2731cg_Decoder_Config_Iterations

100.00%100.00%100.00%44cg_Decoder_Config_Prediction

100.00%100.00%100.00%22cg_Decoder_Config_CRC

100.00%100.00%100.00%22cg_Decoder_Config_ABS

100.00%100.00%100.00%1212cg_Decoder_Interrupts

100.00%100.00%100.00%1212cg_Decoder_Status

25.00%100.00%25.00%28cg_Decoder_Control

84

 

Figure 22. Covergroup functional coverage of the UVM test bench with iterations 

coverage goal of 85 %. 

 

As it can be seen from Figures 21 and 22, the main neglects of the original test bench 

are the iterations configuration, and control covergroups. The parameter that 

determines the maximum iterations of the decoder was added to the pool of 

randomized parameters in the UVM test bench, making the coverage results much 

better for the cg_Decoder_Config_Iterations covergroup. The usage of control inputs 

was missing, and a small feature was added to make the usage possible, resulting in 

the 25 % coverage increase in the cg_Decoder_Control covergroup. The UVM envi-

ronment goes through a wider range of configuration values than the original test 

bench with lesser tests. However, if all combinations of the configuration values would 

be gone through, the total number of test runs would be much higher than the 9144 test 

runs with the original test bench due to duplicate random values. 

As it was stated in the previous section, the functional aspect of the DUT was already 

thoroughly tested with the original test bench. The results show that randomization 

itself did not bring much addition to the overall functional coverage. The main reason 
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for this was that the DUT operates in one specific way, not allowing much free space 

other than the decoder configuration. The iterations configuration in the original test 

bench was low due to using the most fitting value with majority of the runs, and 

stressing only both maximum and minimum values. Nevertheless, if a range of 

possible values have been implemented, all of them should be tested. The iterations 

covergroup being higher with the UVM test bench is reasoned with the original test 

bench being partly lacking, rather than with the benefits of the randomization. The 

same can be said about the cg_Decoder_Control covergroup. 

6.2. Test bench performance 

Test bench performance is measured in the terms of total CPU run time for each 

simulation using the different test benches presented so far. The total CPU run time 

consists of CPU time spent on optimization (Vopt), elaboration, simulation and Tcl 

command phases. The run time logging was enabled by using Questa’s simstats formal 

argument. The CPU times were taken straight from Questa’s log, and no extra profiling 

properties were used. 

Simulation run times were measured with a shorter, single decoder test runs with 

multiple recursions, and a full decoder test runs with fewer recursions due to long 

simulation times. The UVM environment was run in manual mode to make sure the 

test flow was identical to the original test program. The total CPU run time results for 

these both cases can be found in Figures 23 and 24 below. 

 

Figure 23. Total simulation CPU run time comparison using one decoder test run. 
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Figure 24. Total simulation CPU run time comparison using the full set of test runs. 

 

Figures 23 and 24 show an expected result that the original test bench with 

monitoring enabled has longer run time compared to the original test bench only. With 

monitoring enabled, the increase in total CPU run time is around 4 % in both cases, 

which is not a groundbreaking time delay considering there are two test programs 

running in parallel. 

The run times got from the UVM environment runs are surprising, since the UVM 

test program has extra synchronization compared to the original test bench because of 

the inconvenience of the C-model implementation. Due to this, the expectations were 

even worse than with the original test bench with monitoring enabled. Nevertheless, 

with this test program flow the UVM test bench provided significantly faster total CPU 

run times than the other two test benches. In the single test run, the UVM test bench 

total run time was around 24 % faster compared to the original test bench, and with 

the full test run, around 26 % faster. With longer simulations, improvements like this 

have a notable impact. 
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7. DISCUSSION 
 

The objective of this thesis was to develop a UVM simulation environment based on  

an existing SV test bench. The environment was created to test the applicability of a 

UVM environment in IP verification compared to a more traditional module-based SV 

environment. The results got from this thesis show both positive and negative aspects 

of the adequacy of the UVM test bench with this particular IP. 

The compatibility of a module-based SV test program and a class-based UVM test 

is good. The implementation done in this thesis showed only difficulties with the C-

model integration. This problem seems to occur only when the C-model also uses tasks 

or functions from the SV side. The problem can be bypassed with some gimmicks, but 

it can be impractical for people working with test benches that often incorporate 

bidirectional C-models. This proposes that an update to the SV DPI and UVM interface 

could be done, making the C-model integration less problematic. In addition, it is 

important to remember that hierarchical references to the DUT do not go well together 

with class-based environments. With the test bench used in this thesis, this did not 

prove to be a problem, but with module-based environments incorporating a lot of 

hierarchical references, or with users accustomed to use hierarchical references in their 

verification, this limitation can feel frustrating. Class-based environments simply need 

a different kind of approach. Regardless, the use of hierarchical references is 

considered as a bad verification practice since it greatly reduces reusability of the 

verification components, and they should only be used when necessary. 

Code coverage can be improved with constrained random stimulus. This is mostly 

due to large increase in signal bit toggles, and the amount of total test run. Only the 

high quantity of tests itself is enough to test most conditions, statements and branches 

found in the source code, giving high code coverage. On the other hand, a good 

functional coverage is mainly determined whether the test program executes specific 

functional patterns or not. The most crucial part is to understand the DUT operation 

and write test patterns that stress the different operation schemes. Randomization itself 

does not automatically give a good functional coverage, but it can always bring out 

new bugs in the tested operation scheme since a larger amount of different values are 

used in the stimulus. For both code and functional coverage, the way how the DUT 

operates matters a lot. Even with larger designs, if the operation is limited to one 

specific way, the improvement received from random stimulus is not that great. The 

DUT used in this thesis partially represents this kind of scheme. On the other hand, if 

the DUT has data inputs with a wide range of legal values, randomization usually 

brings major benefits. Yehia A. studied constrained random stimulus for achieving 

faster coverage closure [34]. In his work, Yehia used a direct memory access (DMA) 

IP and an Ethernet media access control (MAC) IP, both allowing a high degree of 

direct input stimuli, to compare constrained random stimulus to directed testing. The 

results Yehia measured showed that constrained random stimulus provided much 

faster coverage closure and coverage values with lesser amount of transactions used to 

stimulate the DUTs. 

The different test bench performance results presented in Chapter 6 indicate that 

UVM environments can provide significantly faster total test bench run times 

compared to module-based SV environments. With the DUT and test program used in 

this thesis, the UVM test bench’s total run time was between 24 % and 26 % faster 

than the original module-based SV test bench’s. With test cases lasting multiple hours, 

the time saved was measured in hours. Because no simulator profiling properties were 
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used, it is hard to pin point the specific reasons for the improvement in the test bench 

total run time. Since the C-model integration required concurrent processes to 

implement the additional synchronization and communication between the UVM 

environment and the C-model, it is possible that the simulation server distributed its 

work load more efficiently, giving the DUT simulation more computation capacity. 

To find out whether this or something else causes the speedup, profiling needs to be 

used to acquire instance specific data, but that falls outside of the scope of this thesis. 

Söderlund T. also studied the performance of an UVM environment compared to a 

legacy test bench in his thesis [20]. Söderlund’s UVM test bench was around 50 % 

slower compared to the original test bench, but also had added functionality, making 

the scenario slightly different than in this thesis. 

There are also some downsides when adopting UVM verification. The UVM can be 

a bit overwhelming in terms of environment complexity. Typically, more time spent 

with UVM environments is required to be familiar with the common structure and 

operation of a UVM environment than with traditional, module-based environments. 

In addition, creating a single UVM environment from scratch is not much more 

efficient than creating an environment of a different type; sometimes it can be even 

more time consuming. The real benefit with UVM is acquired when a base set of UVM 

components exist and the verification engineers have the basic skillset to work with 

UVM. At this point most of the unnecessary hassle when working with UVM 

environments has been eliminated, and creating new verification environments for the 

project’s needs requires much less working hours. 

The goal of this thesis was to study the validity of UVM in IP verification. The goal 

was achieved by successfully creating an efficient UVM environment based on an 

existing SV test bench. The most interesting results got from this experiment were the 

UVM environment performance gains. Proving that porting versatile test benches to 

UVM is possible while gaining more code coverage by enabling randomization also 

serves its purpose. It would be really beneficial to replicate this kind of study, where 

no additional functionality is added to the UVM test bench, with different IPs. This 

would provide data regarding whether the performance or coverage improvements 

would be present with other types of test benches, or not. Nevertheless, based on the 

results presented in this thesis, UVM is an excellent option for versatile IP verification 

for any size of a design. 

This thesis can serve as a starting point for future experiments regarding class-based 

IP verification involving existing test benches. When creating a coverage-driven UVM 

environment, the basic steps should be similar to what was presented in this thesis. In 

addition, the created UVM agents for different buses can be reused if more UVM 

environments are desired in the future. 
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8. SUMMARY 
 

This thesis studies the advantages and disadvantages of UVM in IP verification. This 

is done by creating a CDV environment using UVM from an already existing module-

based SV test bench. The history, concept and main features of UVM is presented, and 

a look into code and functional coverage is taken. The final conclusions are made 

based on the coverage and simulation performance results got from the different test 

benches. 

UVM is a widely supported SV class library used for digital design verification. 

UVM follows the principles of object-oriented programming and utilizes proven OOP 

features like classes and inheritance. In addition to the OOP principles, UVM has 

multiple useful built-in properties, like phasing, transactions, message reporting and 

configuration database, to help with the test bench creation. Typical environments built 

with UVM have a clear class hierarchy, are able to drive and monitor the DUT, and do 

functional checking and coverage collection. 

Coverage can be divided into two concepts: code and functional coverage. Code 

coverage is an automatically generated metric used to measure whether specific 

sections of the source code have been executed or not. Functional coverage is a 

manually declared model that represents the key functional features of the DUT, and 

shows whether those features have been tested or not. In SV, functional coverage 

models can be written with covergroups or assertions. Covergroups can also be used 

to enable CDV. Both code and functional coverage go hand-in-hand, and both are 

required to achieve complete coverage closure. 

In the practical part, UVM monitor and subscriber components were first created to 

capture functional coverage from the IP’s original test bench. For the full UVM test 

bench, UVM agents were created to enabled driving of the DUT, and the monitors 

were transferred inside the agents. The original test program was ported to the UVM 

side, leaving out the original test program. The coverage results were collected in the 

same manner as with the monitoring test bench. 

The results got from the three different test bench setups show that the full UVM 

environment provided performance improvements of 24 - 26 % to total simulation run 

time. Also, the constrained random stimulus found in the UVM test bench gave slight 

improvements to code coverage, but the random stimulus itself did not have a big 

impact on functional coverage. With functional coverage, randomization can aid the 

process of creating stimulus with multiple different values, but the final coverage 

results are determined mainly by the test patterns gone through and the coverage model 

itself. In this experiment, the DUT’s operation flow was quite restricted, which also 

contributed to the low impact of the randomization. Nonetheless, UVM is an excellent 

option for IP verification based on the experiment done in this thesis. 
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