

DEGREE PROGRAMME IN ELECTRICAL ENGINEERING

MASTER’S THESIS

AUTOMATED FUNCTIONAL COVERAGE

DRIVEN VERIFICATION WITH UNIVERSAL

VERIFICATION METHODOLOGY

 Author Martti Tiikkainen

 Supervisor Jukka Lahti

 Second Examiner Timo Rahkonen

 Technical Advisor Pekka Kotila

March 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/131447425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tiikkainen M. (2017) Automated Functional Coverage Driven Verification with

Universal Verification Methodology. University of Oulu, Degree Programme in

Electrical Engineering. Master’s Thesis, 45 p.

ABSTRACT

In this Master’s thesis, the validity of Universal Verification Methodology in

digital design verification is studied. A brief look into the methodology’s history

is taken, and its unique properties and object-oriented features are presented.

Important coverage topics in project planning are discussed, and the two main

types of coverage, code and functional coverage, are explained and the methods

how they are captured are presented.

The practical section of this thesis shows the implementation of a monitoring

environment and an Universal Verification Methodology environment. The

monitoring environment includes class-based components that are used to collect

functional coverage from an existing SystemVerilog test bench. The Universal

Verification Methodology environment uses the same monitoring system, but a

different driving setup to stress the design under test. Coverage and simulation

performance values are extracted and from all test benches and the data is

compared. The results indicate that the Universal Verification Methodology

environment incorporating constrained random stimulus is capable of faster

simulation run times and better code coverage values. The simulation time

measured was up to 26 % faster compared to a module-based environment.

Key words: Universal Verification Methodology, coverage, coverage-driven

verification, methodology comparison.

Tiikkainen M. (2017) Automaattinen toiminnallisen kattavuuden ohjaama

verifiointi universaalilla varmennusmenetelmällä. Oulun yliopisto, sähkötekniikan

koulutusohjelma. Diplomityö, 45 s.

TIIVISTELMÄ

Tässä diplomityössä tutkitaan universaalin varmennusmenetelmän (Universal

Verification Methodology) soveltuvuutta digitaalisten laitteiden verifiointiin.

Työssä tehdään lyhyt katsaus menetelmän historiaan. Lisäksi menetelmän omia

ainutlaatuisia ja olio-pohjaisia ominaisuuksia käydään läpi. Kattavuuteen

liittyviä käsitteitä esitetään projektihallinnan näkökulmasta. Kattavuudesta

käsitellään toiminnallinen ja koodikattavuus, ja tavat, miten näitä molempia

kerätään simulaatioista.

Työn käytännön osuudessa esitetään monitorointiympäristön ja universaalin

varmennusmenetelmän pohjalta tehdyn ympäristön toteutus. Monitorointi-

ympäristössä on luokkapohjaisia komponentteja, joiden avulla kerätään

toiminnallista kattavuutta jo olemassa olevasta testipenkistä. Universaalin

varmennusmenetelmän pohjalta tehdyssä ympäristössä on samojen

monitorointikomponenttien lisäksi testattavan kohteen ohjaamiseen vaadittavia

komponentteja. Eri testipenkeistä kerätään kattavuuteen ja suorituskykyyn

liittyvää dataa vertaamista varten. Tulokset viittaavat siihen, että rajoitettua

satunnaista herätettä hyödykseen käyttävät universaalit varmennusmenetelmä-

ympäristöt pääsevät nopeampiin suoritusaikoihin ja parempiin koodikattavuus-

lukuihin. Simulaation suoritusaikaan saatiin parhaassa tapauksessa jopa 26 %

parannus.

Avainsanat: universaali varmennusmenetelmä, kattavuus, kattavuuden ohjaama

verifiointi, menetelmien vertailu.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 8

2. UNIVERSAL VERIFICATION METHODOLOGY 10

2.1. Introduction to UVM ... 10

2.2. History ... 12

2.3. Object-oriented programming ... 13

2.3.1. Definition of term object-oriented ... 13

2.3.2. Classes and objects .. 13

2.3.3. Inheritance ... 14

2.3.4. SystemVerilog classes ... 15

2.3.5. SystemVerilog interfaces ... 16

2.4. UVM features .. 17

2.4.1. Essential UVCs .. 17

2.4.2. Phasing ... 18

2.4.3. Transactions ... 18

2.4.4. Factory and configuration database ... 18

2.4.5. Message reporting .. 19

2.5. Related work .. 19

3. COVERAGE ... 20

3.1. Importance of coverage ... 20

3.1.1. Coverage planning ... 20

3.1.2. Reviewing coverage... 21

3.1.3. Verification driven by coverage .. 21

3.2. Code coverage ... 22

3.2.1. Line coverage... 22

3.2.2. Statement coverage .. 22

3.2.3. Branch coverage .. 22

3.2.4. Expression coverage .. 23

3.2.5. Toggle coverage... 23

3.2.6. FSM coverage .. 23

3.3. Functional coverage ... 23

3.3.1. Covergroups ... 24

3.3.2. Assertions .. 25

4. UVM MONITORING ENVIRONMENT .. 27

4.1. Design under test ... 27

4.2. UVM verification components .. 27

4.2.1. UVM monitors ... 28

4.2.2. UVM subscribers ... 29

4.3. Parallel test bench .. 29

5. COMPLETE UVM ENVIRONMENT ... 31

5.1. Addition of UVM agents ... 31

5.1.1. Drivers and sequencers .. 31

5.1.2. AHB slave .. 32

5.2. Test program .. 32

5.3. Final test bench .. 33

6. RESULTS ... 35

6.1. Coverage .. 35

6.1.1. Code ... 35

6.1.2. Functional .. 36

6.2. Test bench performance .. 38

7. DISCUSSION ... 40

8. SUMMARY .. 42

9. REFERENCES ... 43

FOREWORD

This Master’s thesis was conducted at Nordic Semiconductor ASA Finland. The work

had its ups and downs, and especially the first two months turned out to be quite

stressful. Nevertheless, resolving all problems on the way and completing the thesis

has been a very rewarding and satisfying process.

I would like to thank Nordic Semiconductor ASA Finland for the invaluable

opportunity to work as a thesis worker. I would also like to thank Dr. Jukka Lahti from

the Electronics laboratory and Pekka Kotila from Nordic Semiconductor ASA Finland

for being my supervisors and guiding me during the thesis. In addition to Pekka, I

would like to thank Ercan Kaygusuz from Nordic Semiconductor ASA Finland for the

technical support. Finally, I would like to thank my family and every acquaintance of

mine who has helped me throughout my studies.

Oulu, March 23, 2017

Martti Tiikkainen

LIST OF ABBREVIATIONS AND SYMBOLS

AHB AMBA High-performance Bus

APB Advanced Peripheral Bus

AVM Advanced Verification Methodology

CDV Coverage-Driven Verification

DMA Direct Memory Access

DUT Design Under Test

EDA Electronic Design Automation

eRM e Reuse Methodology

FEC Focused Expression Coverage

IP Intellectual Property

MAC Media Access Control

MECE Mutually Exclusive, Collectively Exhaustive

MDV Metric-Driven Verification

OOA Object-Oriented Approach

OOD Object-Oriented Design

OOP Object-Oriented Programming

OVM Open Verification Methodology

RVM Reuse Verification Methodology

SV SystemVerilog

TLM Transaction-Level Modeling

UCDB Unified Coverage Database

UML Unified Modeling Language

URM Universal Reuse Methodology

UVC UVM Verification Component

UVM Universal Verification Methodology

vAdvisor Verification Advisor

VMM Verification Methodology Manual

1. INTRODUCTION

Verification plays a very big role in the development of digital designs. It is used to

measure if a design has been implemented correctly. Since modern designs, especially

system-on-chips (SoCs), are getting bigger and more complex, planning and

implementing a verification environment becomes a large and demanding task.

Verification can take up to 75% of the total design time and it usually becomes a

bottleneck in project completion [1]. The availability of reusable off-the-shelf

components creates more problems for verification since it allows engineers to

implement more functionality without excessive project development time [2].

This verification problem is tackled by leaning towards more modular and abstract

verification environments that use randomization when generating stimulus. Class-

based environments give modularity and easy access to randomization, and Universal

Verification Methodology (UVM) is the current go-to candidate because it is a well-

known standard and is supported by all major electronic design automation (EDA) tool

vendors [3]. In addition, functional coverage can be used during the simulation to

determine whether to continue with new random values or stop the simulation, or to

modify constraints used in the simulation. Combining these principles one can create

very efficient automated coverage-driven verification (CDV) environments [4].

This thesis studies the advantages and disadvantages of a class-based CDV

environment for verifying intellectual properties (IPs). The objective is to create a

monitoring environment using UVM principles in parallel of an already existing

traditional SystemVerilog (SV) test bench. This monitoring system will enable the

collection of functional coverage from the design under test (DUT). In addition, a

complete UVM verification environment is created based on the original test bench.

The execution sequence of the new UVM environment is the same as the original test

bench, but the UVM environment uses constrained random stimulus and CDV to its

advantage.

The two verification environments are created in order to collect simulation data

regarding code and functional coverage, simulation performance and reusability. The

data from two environments is analyzed and conclusions are made about the

effectiveness of an UVM environment in IP verification. Depending on the results, this

type of verification environment could be used to verify future IPs or SoCs. Because

the implementation of the UVM environment is done keeping modularity in mind,

future reuse would not be as big of a step as creating from scratch.

Chapter 2 introduces the concept of UVM. A brief look is taken into the history of

class-based verification in SV; how UVM became what it is now. The general concepts

of object-oriented programming (OOP) are presented and the common structure of

UVM class hierarchy is explained using these OOP concepts. In addition, this chapter

shows how classes are used in SV verification.

Chapter 3 takes a look into coverage collection and usage in SV. The concepts of

code and functional coverage are presented and different coverage types are presented.

The chapter shows how coverage is captured in simulations and what are SV specific

coverage methods. The chapter also goes through some applications that use the

collected coverage data.

Chapter 4 presents the implementation of the UVM monitoring system that is

injected to the original IP test bench. A short description of the DUT is given. The

chosen points in the design for coverage collection are explained. Finally, the added

9

UVM components are gone through and the test bench used in the simulations is

presented.

In Chapter 5, the finalized complete UVM verification environment is presented.

Additions and changes needed for the environment are gone through. In addition, the

chapter shows problems found when integrating a C-model to a class-based

environment.

Chapter 6 lists the results got from the two environments shown in Chapters 4 and

5. This includes coverage numbers, number of total tests and execution times for

different scenarios.

Chapter 7 presents the final discussion about the topic of this thesis. The results are

analyzed and the usability of class-based CDV environments for future use is

concluded.

Chapter 8 rounds up this thesis. The main chapters and the conclusions made from

the results are summarized.

10

2. UNIVERSAL VERIFICATION METHODOLOGY

This chapter takes a look into Universal Verification Methodology (UVM) as a whole.

Section 2.1 gives a brief overview to UVM verification. Section 2.2 goes through some

of the predecessor methodologies that led to the creation of UVM. Section 2.3 presents

the concepts behind object-oriented programming (OOP) and the OOP practices in

UVM. Lastly, Section 2.4 takes a look into some of the essential UVM-specific

features.

2.1. Introduction to UVM

UVM is a complete methodology that presents the best practices for efficient, reusable

and thorough digital design verification. Reusability is one of UVM’s key

fundamentals and it is achieved by introducing the concept of UVM verification

components (UVCs). These components, as well as other parts of UVM, follow the

principles of OOP. UVM can be used to verify both small and large IP-based designs.

On top of that, UVM is an open-source verification library, and Accelera provides

reference manuals and user guides for the methodology [5][6]. [7, p. 1]

The goal of UVM is to give the designer confidence that their design has been

verified thoroughly in an efficient way, and to point out possible bugs as early as

possible. The best way to get to this type of verification is to use automatic

environments incorporating random stimulus. Figure 1 illustrates a verification flow

that incorporates verification like that [7, p. 3].

Verification
Environment

Verification
architecture

Stimulus generation,
checkers, constraints,

coverage

Simulation,
acceleration,

emulation

Write a verification plan

Adjust and add
constraints, checkers and

stimulus sequences

Review coverage

Refine the coverage
model

Figure 1. A verification planning and execution flow.

11

In addition to automation and random stimulus, few other aspects need to be taken into

account as well when creating these types of environments:

1. The test bench needs to be self-checking to ensure the applied random stimulus

gives correct response from the design under test (DUT).

2. The different generated stimulus needs to be tracked to know what scenarios

have been checked and what not.

3. Control logic should be created between the gathered results and applied

stimulus. This allows steering the generated stimulus towards uncovered

scenarios during the simulation.

The preferred way to track the stimulus and responses with UVM is to use functional

coverage. For example, in SystemVerilog (SV) this can be done by writing

covergroups. UVM provides one of the best frameworks to achieve this type of

versatile and thorough verification. [7, p. 2-3]

UVM test benches are built using already existing base building blocks and

customizing them how one sees fit. These base blocks are called UVCs. Since the

components are SV classes [8, pp. 8], a hierarchical environment can essentially be

built in endless possible ways. Although to build an UVM environment that follows

good verification principles, certain guidelines should be followed. A very common

UVM test bench structure from a top view perspective is presented in Figure 2 [6].

UVM Test bench

UVM Test

Design
Under Test

(DUT)

Config/Factory
Overrides

UVM Environment

UVM Agent
UVM

Subscriber

UVM
Scoreboard

UVM Agent

Figure 2. Typical UVM test bench architecture.

Generally speaking, if the test bench is able to drive the pins of the DUT, monitor

signals and check correctness, it is good to go. From this point more properties can be

added to make the test bench towards a CDV environment. A deeper look into some

of the UVM features is taken in section 2.4.

12

2.2. History

UVM was announced on December 23rd 2009 by Accellera Systems Initiative. The

first official UVM version (1.0) was accepted for release on February 18th 2011. Even

though UVM brought new improvements, like run-time phasing and callbacks, most

of what UVM provided was already introduced in Open Verification Methodology

(OVM). Nonetheless, the benefits UVM brought were massive; it provided a single,

industry- and vendor-wide standard for SV verification. Figure 3 shows the timeline

that includes the development of verification methodologies that led to UVM. [7, p.

xxii]

vAdvisor1

2000
eRM1

2002
URM1

2007
OVM1,3

2008
UVM1,2,3

2010
UVM-1.1a,b,c,d1,2,3

2011-2013

2003
RVM2

2006
AVM3

VMM2

Contributions from: 1Cadence
2Synopsys
3Mentor

UVM-1.21,2,3

2014

Figure 3. Verification methodology timeline.

Verisity Design, Inc. (currently part of Cadence Design Systems, Inc.) released a

collection of best verification practices in 2000. This collection was called Verification

Advisor (vAdvisor) and it was meant for the e verification language user community.

vAdvisor explained many points of verification, including stimuli creation, self-

checking test benches and coverage model creation, with the purpose of speeding up

development and supporting people working with verification. The package did not

have any ready-to-use verification code and this posed an area for further

improvement. Thus Verisity announced the first verification library, e Reuse

Methodology (eRM), in 2002. eRM contained packaging guidelines, architecture

requirements, messaging facilities, an objection mechanism and much more. Even a

register package was later added to the methodology. The library was very well

received and its core functionality guided the following methodologies to the same

direction, including UVM. [7, p. xxii]

In 2003, Synopsys took its part in the verification methodologies by announcing the

Reuse Verification Methodology (RVM). RVM included parts of the properties of

eRM and it was developed to the Vera verification language. Because RVM was

missing some of the eRM functionality, like sequences and objection mechanism, it

was considered as a subset of eRM. Nevertheless, RVM introduced the callback

solution which was new in the verification community. Later, RVM was transformed

into the SV Verification Methodology Manual (VMM) which supported the new and

growing SV standard. [7, p. xxii]

Cadence Design Systems, Inc. started developing a SV version of eRM in 2005 after

acquiring Verisity. Thus the Universal Reuse Methodology (URM) was introduced in

2007. Cadence took notes from Mentor’s Advanced Verification Methodology (AVM)

and made URM open-source. URM was a huge step in SV verification since it

transformed the proven eRM core functionalities into SV. New solutions, including

abstract factory and configuration mechanism, were also introduced to enhance SV

verification even further. [7, p. xxiii]

13

In 2008, Mentor and Cadence worked together and introduced OVM. Many of the

URM properties were used in OVM because of URM’s proven high-level

methodology infrastructure. OVM was once again a huge step in verification

methodologies since it was the first multi-vendor solution that could be used with more

than one vendor simulator. This led OVM to be the methodology of choice for people

who wanted their environments to be simulator-neutral. In addition, OVM spawned

larger scale community sites for questions and idea sharing. [7, p. xxiii]

In 2010, the development of UVM was started and the OVM version 2.1.1 was

chosen as the base. Soon after the first release of UVM it became the go-to verification

methodology. UVM removed all vendor specific gimmicks since it is supported and

tested with all major EDA tool vendor simulators. UVM versions 1.1a, 1.1b, 1.1c and

1.1d have improved the quality of the methodology while maintaining the APIs of the

standard. The latest version (1.2) remains a bit controversial since verification experts

disagree with some of the new features [9]. Thus 1.1d is currently the most used

methodology in SV verification, at least until 1.2 is more mature. [7, p. xxiii]

2.3. Object-oriented programming

This section explains few of the most important features of object-oriented

programming (OOP). This includes the common idea behind OOP, classes and objects,

and inheritance. SV classes and interfaces are also gone through separately. Even

though the OOP principles are explained from a general object-oriented (OO) point of

view, the same properties are present in UVM.

2.3.1. Definition of term object-oriented

From a programming point of view, object-oriented means that the software

components are organized as a selection of discrete objects that include data and

possible action over it [10, pp. 1-1]. The idea is to create more abstract, configurable

and reusable building blocks for programming. The user does not need to know all the

details what is going on under the hood. Only the needed attributes and commands

from the top view perspective can be given to the user and the more detailed

implementation remains hidden. With this kind of object-oriented approach (OOA),

the tools used in programming appear much more like how humans think of objects

instead of machine-like parameters and instructions. For example, in a UVM

verification environment it is not necessary to know how a driver controls an APB bus;

the availability of a write and read task is sufficient.

2.3.2. Classes and objects

For OOP, information hiding and abstraction are one of the key points for the

foundation of a clear design [11]. Both of these are introduced with classes. A class is

a derived data-type, similar to a structure. Instead of grouping together only elements

of different data-types like a structure, a class can also include functions [10, pp. 10-

1]. Therefore, a class can have attributes to store data and methods to implement

functionality. Figure 4 illustrates a Unified Modeling Language (UML) class diagram

14

used in object-oriented design (OOD) [12, p. 6]. UVM hierarchies including similar

class blocks can be extracted from UVM simulations.

ClassName

string attribute_name

int attribute_id

int attribute_data

string function_getName()

void function_setData(int d)

+

+

-

+

+

Figure 4. UML diagram presentation of a class. Diagram includes the class name,

attributes, methods and their types.

Attributes and methods can be declared as public, protected or private (local in SV).

This can be used to make some functionalities of the class unavailable to the outside

world, adding information hiding. In Figure 4 this can be seen as plus and minus signs,

plus meaning public and minus private.

Object is an instance of a defined class. It is important to remember that defining a

class is not enough to use its properties. Only after an object is created from a class

can the class attributes and methods be accessed through the object. Any number of

objects can be created from a class and thus they can have different identity, state and

behavior even though they are all derived from the same class [13, pp. 5]. When

creating an object, it allocates the needed amount of memory. It is required to keep

track of created objects to make sure they are destructed and the allocated memory is

freed. Fortunately, in SV this is handled very well automatically and the user does not

need to worry about memory leaks [8, pp. 8-29]. [14, pp 3-1]

2.3.3. Inheritance

Alongside with the concept of classes and objects, inheritance is one the most powerful

features of OOP. In OOP, the process of creating a new derived class from an already

existing class (base class) is called inheritance. This process is also known as class

extension. The extended class inherits all public and protected attributes and methods

from the base class. Inheritance is visualized in Figure 5 by extending the example

class presented in Figure 4 [13, pp. 8].

15

ClassName

string attribute_name

int attribute_id

int attribute_data

string function_getName()

void function_setData(int d)

+

+

-

+

+

ExtendedClassName

int attribute_addr

int function_getAddr()

+

+

Object made from
ExtendedClassName:

ObjectName

string attribute_name

int attribute_data

+

+

int attribute_addr+

string function_getName()

void function_setData(int d)

+

+

int function_getAddr()+

Figure 5. Inheritance presented in UML class diagram form with an object example.

As it can be seen in Figure 5, the example object ObjectName created from the

extended class has access to all public attributes and methods from the classes

ClassName and ExtendedClassName. The base class remains completely unchanged

with extension. [10, pp. 12]

The advantage got from inheritance is reusability. If more functionality is needed, it

can be added with extension instead of changing already working and verified code.

This allows creating new code from another company’s or person’s existing code

without modifying the source [10, pp. 12]. In UVM, the idea is to extend existing UVM

components and modify them to fit to the verification environment. The UVM base

classes bring many positive properties to the verification environment like automatic

phasing and transaction-level communication models. In addition, if a common class-

based verification environment is created for a larger project, all subtests can extend

the common environment to make more targeted tests.

2.3.4. SystemVerilog classes

For SV classes, all OOP principles mentioned in the previous sections are present. In

addition, the usage of tasks [8, pp. 13] is also possible alongside with functions in SV

classes. Tasks need to be used if time-consuming statements are desired inside classes.

SV classes also have properties, like rand type definition and constraints, that are

essential with verification environments using random stimulus. The following

paragraphs take a deeper look into these two features.

A very powerful feature of SV classes is that the attributes can be defined with a

randomize type (rand) [8, pp. 8-12]. This makes randomization of parameters very

efficient because all rand defined attributes in the same hierarchy level can be assigned

16

a random legal value with a single function call. The randomization can also be

targeted to single attributes. An example SV class and its randomization is presented

in Figure 6 below.

 class class_example;
 // attributes
 protected int id;
 rand int data;
 rand int addr;
 rand bit readwrite;
 // constructor, methods, etc.

 endclass

 Class definition: Test program:

 class_example cl1;
 int check;

 initial begin
 cl1 = new();
 check = cl1.randomize();
 assert (check);
 else $error(”rand failed!”);
 end

Figure 6. Class instantiation and randomization in SV.

In Figure 6, an instance cl1 of the class class_example is created with the new()

constructor and the randomization is done with cl1.randomize(). The randomize

method returns an integer that indicates whether the randomization was successful or

not. The integer check and an assertion is used to report any errors regarding the

randomization. In this example, the randomize call will change the values of data, addr

and readwrite attributes to random integer and bit values. Integer id remains

unchanged since it does not have a rand type defined.

The legal range of values can be changed using SV constraints [8, pp. 18-5].

Constraints can be used to ensure that the randomized values will be reasonable and

will actually stress the DUT. For example, without constraints the attribute data in

Figure 6 will be randomized to any possible value of a 32-bit signed integer. A

constraint could be added to limit the result of randomization into a small set of values.

Inside these values, weight factor can also be used to make some values more likely to

be the result of the randomization than ones with smaller weight.

2.3.5. SystemVerilog interfaces

In SV, interfaces encapsulate the communication between blocks, allowing a smooth

migration from abstract system-level design through successive refinement down to

lower level register-transfer and structural views of the design. At its lowest level, an

interface is a named bundle of nets and variables. In addition, SV interfaces can include

functionality in the form of SV tasks and functions, and module ports (modports) to

restrict interface access by declaring the direction of the interface signals. Using

module ports is an useful way to create different types of components, like masters

and slaves, that use the same interface signals, but with different signal directions. [8,

pp. 25]

 Interfaces are not limited to class-based SV applications, but they are essential when

giving SV classes access to specific signals found in the DUT. This is done by giving

the class a reference to the original interface. The reference is given as a virtual

interface. The component using the virtual interface can access any signal, task or

17

function it is permitted to use through the virtual interface. Using virtual interfaces

adds abstraction and separates the test environment from the actual signals in the

design, promoting code reuse. [8, pp. 25-9]

2.4. UVM features

This section shows the most important UVM components found in a typical UVM test

bench. In addition, some of the essential UVM features are gone through. These

features consist of simulation phasing, data transactions, factory registration,

configuration and information reporting. To get the most out of UVM verification,

these properties should be capitalized in the environment.

2.4.1. Essential UVCs

Even though UVM environments can be built in multiple possible ways and allow high

amount of customization, nearly all of them include the most common UVCs that are

needed for test bench creation and DUT interaction. Specific components should be

used for their purposes only to ensure the code remains readable and follows the

general verification guidelines. The most common UVCs are described in Table 1

below [6, pp. 1-1].

Table 1. List of common UVM verification components

UVM component Description

Test The UVM Test is the top-level component in the UVM test

bench. The UVM Test typically performs three main functions:

instantiates the top-level environment, configures the environ-

ment and applies stimulus to the DUT with UVM Sequences.

Environment The UVM Environment groups together other components that

are interrelated. These components include UVM Agents,

Subscribers, Scoreboards, or even other Environments.

Subscriber The UVM Subscriber’s function is to check correct behavior

and collect functional coverage. A UVM Scoreboard is a

similar component to the UVM Subscriber.

Agent The UVM Agent contains components that are dealing with a

specific DUT interface. A typical UVM Agent includes a UVM

Sequencer, Driver and Monitor.

Monitor The UVM Monitor samples the DUT interface and stores the

information to transactions, which are sent out to the rest of the

UVM test bench for further analysis.

Driver The UVM Driver receives individual transactions and trans-

forms them into DUT pin wiggles.

Sequencer The UVM Sequencer serves as an arbiter for controlling

transaction flow to a UVM Driver. The transaction flow is

determined by UVM Sequences.

Sequence UVM Sequences are objects that contain behavior for gene-

rating stimulus.

18

2.4.2. Phasing

UVM has a set of automated function and task calls during UVM simulations that all

UVCs execute at the same time. These function and task calls create the phasing

mechanism of UVM. All UVCs are always synchronized with respect to these phases

[15]. Thus if an extended UVM class has a specific named function or task declared,

it will be executed automatically when the UVM simulation enters that specific phase.

The UVM class library includes common phases and they can be found in the UVM

class reference manual [5, pp. 9-6]. From these phases, the build, connect and run

phase are used to set up the environment and run the simulation. Build phase is used

to create all subcomponents (objects) for the class and to assign needed virtual

interfaces. It is good to understand that the UVM environment does not exist until all

build phase functions have been run. In connect phase, all transaction level modeling

(TLM) connections are made between the required UVCs. Only after the connect

phase is the environment complete and ready to be used in simulations. Lastly, all

simulations are done in the run phase, or they can be divided into subsections of the

run phase if desired. [5, pp. 9-6]

2.4.3. Transactions

Transactions in UVM are basic data objects that represent data movement between

different UVCs [15]. They are used to represent communication at a more abstract

level. Because transactions are SV classes as well, all necessary information can be

stored in the attributes of the transaction class. It is up to the driver to transform

transactions into pin wiggles the DUT can understand. With the help of a UVM

sequencer [5, pp. 19-3], creating activity becomes a very simple task. Transactions

eliminate the need to know all the details happening at pin level and the focus can go

towards creating more scenarios. In addition, UVM sequences can be used to model

multiple consecutive transactions. [5, pp. 5-3]

2.4.4. Factory and configuration database

The UVM factory mechanism is an implementation of the factory pattern found in

OOP literature [15]. The factory can be used to create UVM objects and components

if the type of the created class is registered to the factory. User-defined components

and objects are usually registered to the factory with UVM macros. If a new object or

component is requested to be created from the factory, the factory will create an object

according to its configuration. A registered class can be overridden with another class

that extends the original. This allows replacing components in the verification

hierarchy with custom ones, and it can even be done during the simulation. [5, pp. 8-

2]

The UVM configuration database functions as a centralized database where type

specific information can be stored and retrieved [5, pp. 10]. The database also supports

hierarchical configuration; information can be stored for specific components only or

multiple components under one hierarchy level. The latest write to the database will

always overwrite previous existing configurations for the selected level of hierarchy.

Even though the database can be used for multiple different purposes, it has one

especially important application: to configure the test bench as it is constructed [16].

19

All references to top module-level components need to be transferred to the UVM class

environment through the database. This is how the UVM agents get their accesses to

the interfaces connected to the DUT. In addition, the whole behavior or structure of

the UVM test bench can be changed according to the setup values fetched from the

configuration database before building the UVM environment.

2.4.5. Message reporting

UVM also has a built in message reporting system. Available message types are info,

warning, error and fatal. The system enables reporting messages with different severity

levels and keeps track of messages with the same ID. In the end of the simulation,

UVM gives a recap of all different sources and the number of reports from every

source. Visibility of different severity level messages can be changed by UVM

simulation parameters. Custom prints can be also added to the UVM info type

messages. The common way to use the system is through the UVM report macros,

which makes writing the reporting code more user friendly [5, pp. 21-1]. [5, pp. 6]

2.5. Related work

UVM has been in the spotlight in RTL verification for the past few years and

verification engineers have been eager to put its praised features to use. Francesconi J.

et al. successfully used UVM in the building of two RTL verification environments,

and experienced increased productivity when reusing the UVM verification

components from the first environment [17]. Zhaohui H. et al. studied the inte-gration

of IP-level UVM test benches and test cases to SoC-level, which also showed a high

amount of possible reuse while saving resources needed for the integration [18].

The two main points used for UVM validation in this thesis are coverage results got

with CDV and simulation performance statistics. The measurement and analysis of

functional verification and coverage, including CDV, has been studied by Piziali A.

[19]. In his work, Piziali presents methods and guidelines for functional coverage

related applications. Söderlund T. and Kärenlampi L. studied test bench performances

in their theses [20][21]. Kärenlampi used profiling for accurate performance results in

his work, and Söderlund implemented an UVM environment based on a legacy test

bench and compared these two.

20

3. COVERAGE

This chapter introduces the concepts of functional and code coverage in

SystemVerilog (SV); how they are collected and what is done with them. Section 3.1

starts with the reasons, phases and CDV. Sections 3.2 and 3.3 list the parts that make

up code and functional coverage and go through how they are captured.

3.1. Importance of coverage

In verification, it is not practical to run test cases without any indicator telling when

all required functionalities have been checked. Data got from code and functional

coverage can be used to address this verification problem. Coverage models can be

manually written to fit the needs of the design. However, even though the tools

available nowadays make the verification environment creation process less painful, it

is very important to think about all verification related problems from a coverage point

of view [22]. This kind of approach is essential when creating a coverage collection

infrastructure.

Planning and implementing a thorough coverage environment requires more time

and effort but when done correctly, it pays itself out in the end [23, pp. 1-4]. A well-

written coverage environment saves many hours of working time spent on manual

checking for correctness and verification status. In addition, giving a thought to

functional coverage before design implementation can help to bring out key points in

the design specification. This can make the actual implementation process easier and

reduce verification needs later in the project.

3.1.1. Coverage planning

The process of efficiently developing functional coverage models for today’s projects

is still found fairly difficult amongst many engineers. The coverage models usually

lack proper planning, and often contain poorly defined objectives, uncertain estimates

of effort and unrealistic expectations. The implementation of the coverage

environment is often prone to errors, regardless of using methodologies like UVM or

SV’s built-in functional coverage features. Problems like this lead to incomplete

coverage closure and might leave bugs unnoticed. [24]

A coverage plan connects the requirements defined in the specification and the

implemented model with the results got from simulations. Proper planning ensures that

no points are missed from the specification and makes the actual implementation of

the coverage model towards more routine programming. There are three important

things when planning coverage: the model needs to be accurate, representative and

complete [24]. Accurate coverage means that the model captures only the desired

states or transitions from the design and avoids false positives and unnecessary events.

For coverage to be representative, it needs to include the needed amount of the

specified functionality and balance the covered core properties with the project’s

business goals. Lastly, complete verification is defined based on a scope and

representative subset of functionality; all functionalities in that scope and subset

should be identified.

Sometimes the specification can be quite demanding, and implementing a coverage

model is a very difficult task. One method that can help when planning the coverage

21

model for hard-to-implement properties is the Mutually Exclusive, Collectively

Exhaustive (MECE) approach [25]. Using the MECE approach, a coverage

requirement can be divided into multiple definitions. All definitions are a subset of the

full requirement and independent from each other, and together they form a coverage

model for the original requirement. The MECE approach is illustrated in Figure 7 [24].

Feature /
Scenario

Definition 2

Definition 3

Definition 1

CE
Collectively
Exhaustive

Together, definitions fully
describe the area to be covered

ME
Mutually
Exclusive

Definitions are
independent
from each other

Figure 7. MECE approach for coverage collection.

3.1.2. Reviewing coverage

A single coverage metric is not enough to get a complete coverage closure. Also, just

looking at the coverage numbers got from the simulations is not sufficient; depending

on the size of the project, a significant amount of processing and reviewing can be

required to determine the actual coverage status. For example, having code coverage

of 100 % does not necessarily mean that the DUT has been completely verified. Some

functionalities might be missing and the 100 % comes from a subset of the whole

requirement [26]. On the other hand, complete functional coverage but lacking code

coverage might suggest that the coverage model is faulty, or the implementation has

redundant, unnecessary properties that were never specified.

This is why carefully reviewing coverage results is important, even with a flawless

coverage plan. It helps to bring out the lacking aspects of the design or the coverage

model and understand them better, and guide engineers towards what should be

verified next. In addition, reviewing is a good time to make sure everyone related to

the particular design is on the same information level. Just as with verification

planning, frequent reviewing ensures on-time project completion with zero bugs

unnoticed.

3.1.3. Verification driven by coverage

One application for coverage data is to use the data to automate or drive the verification

during the simulation. The approach where coverage is used as the engine that drives

the verification flow is called coverage-driven verification (CDV) [27]. With CDV,

22

the environment can be made automatic by using coverage as the indicator whether to

continue the simulation or not. On the other hand, coverage can also be used to tweak

the constraints that affect the randomized parameters during stimulus generation. With

a proper algorithm, changing the constraints according to the coverage results can be

very beneficial for reaching complete coverage closure [4]. Both of these scenarios

require the use of manually declared functional coverage models. In SV, the

recommended way to do this is to use covergroups and its built in features (see Section

3.3.1.).

3.2. Code coverage

Code coverage is one of the first methods invented for systematic software testing. It

is used as a measurement that tells how many structures within the source code files

have been activated during the simulations. Code coverage itself is not enough for

complete coverage closure since it does not tell whether all functionalities have been

implemented or not. Functional coverage is always required in addition to code

coverage. Even with this limitation, code coverage is a very efficient tool and it

requires close to no extra work because the process of creating the coverage model is

automated by the simulator [19, pp. 5]. Information regarding code coverage capture

should be searched from vendor-specific user guides. The following subsections go

through the most common code coverage metrics: line, statement, branch, expression,

toggle and finite-state machine (FSM) coverage. [26]

3.2.1. Line coverage

Line coverage is a simple metric used to determine which lines of the source code have

been executed during the simulations, excluding commented lines. In addition to the

source code lines, the line coverage report incorporates a count associated with each

line of source code notifying how many times each line has been executed. This can

be used to determine if a line has been executed a minimum number of times required,

or to spot out unexecuted code. [26]

3.2.2. Statement coverage

Statement coverage metric indicates whether a statement within the source code has

been executed or not. Statement coverage analysis is often found to be more useful

than line coverage since a statement may span multiple lines of source code, or one

line of source code can include multiple statements [19, pp. 5-2-2]. The reasons for

statement coverage usage are similar to line coverage. [26]

3.2.3. Branch coverage

Branch coverage (also known as decision coverage) metric reports if Boolean

expressions tested in control structures have been evaluated to both true and false. In

SV, the control structures include if, case, while, repeat, forever, for and loop

statements [19, pp. 5-2-3]. The expression in the statement is considered as one true-

or-false evaluation regardless whether the expression contains multiple logical

23

operators or not. Very typical application for branch coverage is to check that reset

paths or all states in a case statement have been executed. [26]

3.2.4. Expression coverage

Expression coverage (referred also as condition coverage) is a coverage metric used to

identify if each condition evaluated true and false values. The conditions are Boolean

operands that do not contain logical operations. Thus, expression coverage measures

the Boolean conditions separately from each other. Focused expression coverage

(FEC) is a variation of expression coverage, and it is stronger than condition and

decision coverage. [26]

3.2.5. Toggle coverage

Toggle coverage metric measures the number of times each bit of a register or a wire

has toggled its value. A 100 % toggle coverage is often very hard to reach, and usually

projects settle on a requirement where all ports and registers must have experienced a

zero-to-one and one-to-zero transitions. For example, toggle coverage is often used for

basic connectivity checks between IP blocks. [26]

3.2.6. FSM coverage

Today’s coverage collection tools can also identify FSMs from the source code and

create coverage models for them. For example, it is possible to extract information

regarding how many times each state was visited and each transition occurred. Even

sequential arc coverage to identify state visitation transitions is available. Figure 8

presents an example FSM and its coverage status [19, pp. 5-2-7]. [26]

Transition Visits

S1 → S1
S1 → S2
S1 → S3
S2 → S3
S3 → S4
S4 → S1

255
0

45
0

45
45

State Visits

S1
S2
S3
S4

300
0

45
45

S4

S1

S2

S3A * BA

A * C D

EF

_

Figure 8. FSM and coverage data with a coverage hole.

3.3. Functional coverage

The goal of functional coverage is to determine if the implemented design

requirements defined in the specification are working as intended. In addition,

24

functional coverage is a good indicator to measure verification progress, better than

code coverage. From a high-level perspective, there are two main steps present when

creating a functional coverage model: identifying the functionality or design to be

verified, and implementing the coverage model using language features to measure the

intended functionality or design [26]. The downside with functional coverage is that it

cannot be extracted automatically; manual work is required. With SV, the

implementation of coverage models can be done with covergroups, or with assertions

while using its cover directive [28]. These SV features are explained more thoroughly

in subsections 3.3.1. and 3.3.2. Figure 9 below demonstrates verification paths to reach

definitive functional coverage [29, p. 9].

Functional
coverage

Directed
Testcases

Minimal code
modifications

Constrained
Random tests

Many runs,
different seeds

Identify
holes

Add
constraints

Figure 9. Verification steps to achieve complete functional coverage.

3.3.1. Covergroups

The covergroup construct encapsulates the specification of a coverage model. The

construct is a user-defined type and it can include the following components:

1. A clocking event that is used to synchronize the sampling of the defined

coverage points.

2. A set of coverage points.

3. Cross coverage between defined coverage points.

4. Coverage options to change the behavior of the covergroup or to modify how

multiple covergroup instances are handled.

5. Optional formal arguments used when creating a covergroup instance.

Covergroups can be used to collect information from simple temporal sequences, but

its main advantage comes from collecting and correlating information from multiple

data points [30, pp. 18-2-3]. Once defined, multiple instances of the covergroup can

be created in different contexts. Covergroups can be defined in packages, modules,

programs, interfaces, checkers and classes. Covergroups are instantiated with the

new() operator, similar to classes. When instantiating covergroups inside classes, it

needs to be done inside the class constructor. Figure 10 presents the usage of the

mentioned covergroup components in SV syntax. [8, pp. 19-3]

25

 covergroup cg_example @(sampling_event);
 type.option.merge_instances = 1; // covergroup options
 // coverpoints
 LABEL1 : coverpoint readwrite; // automatic bin creation
 LABEL2 : coverpoint data {
 bins data_point_1 = { 8'h12 };
 bins data_point_2 = { 8'hbe };
 } // manual bin creation
 LABEL3 : cross LABEL1, LABEL2; // cross coverage
 endgroup

Figure 10. Covergroup syntax in SystemVerilog.

A sampling event (clocking event) defines when a covergroup is sampled [31]. In

Figure 10, the sampling of the covergroup is defined on the first line as

@(sampling_event). If a sampling event is not specified, the user must manually

trigger the covergroup sampling by calling its built-in sample() method [8, pp. 19-3].

This is often the preferred way in UVM environments since hierarchical references are

not allowed inside classes, and the sampling event is easy to synchronize with a

transaction sent by a monitor.

A coverpoint covers a variable or an expression, and it includes a set of bins

associated with its sampled values or its value transitions. The bins can be

automatically generated by the tool or manually declared. Automatic generation is

useful when creating separate bins for a range of values. A bin will be marked as

covered if the value associated to the bin is present in the coverpoint variable at the

covergroup sampling event. Coverpoints can also include a label, and in Figure 10 the

coverpoints and their labels can be found as LABEL1-3. Cross coverage can also be

created between all the bins for the chosen coverpoints (LABEL3). A covergroup can

contain one or more coverpoints. [8, pp. 19-5]

The cumulative covergroup coverage considers the contribution of all instances of

a particular covergroup, and it can be obtained by calling the covergroup’s built-in

get_coveage() method. In contrast, the coverage of a specific covergroup instance can

be acquired by calling the get_inst_coverage() method. The coverage value of a single

covergroup is the weighted average of the coverage of all items (coverpoints and cross

coverages) defined in the covergroup. For coverpoints and cross coverage, the

coverage is simply calculated by dividing the number of covered bins with the total

number of bins. Cross coverage calculation excludes ignored and illegal bins, and

possible duplicates created with the cross coverage. With automatically declared

coverpoints, the maximum number of automatically declared bins is taken into account

in the coverage calculation. [8, pp. 19-11]

3.3.2. Assertions

An assertion specifies excepted behavior in a design and it is mainly used to validate

that the behavior is correct. In addition, the cover directive found in assertions can be

used to provide functional coverage [8, pp. 16-2]. Assertions are not as practical as

covergroups at checking data values, delays and multiple data points, but they are

26

useful at detecting the occurrence of some specific series of Boolean values [30, pp.

18-2-3].

There are two types of assertions: immediate and concurrent assertions. Immediate

assertions are simple, non-temporal domain assertions that are executed like

statements in a procedural block [32, pp. 3]. Immediate assertions can only be specified

with a procedural statement and the evaluation happens immediately with the values

updated at that moment. On the other hand, concurrent assertions describe behavior

that spans over time and are great at verifying specific sequences. The evaluation

model is based on a clock and the assertions is evaluated only at the occurrence of a

clock tick [8, pp. 16-5]. In this work, assertions are only used in the design and the

functional coverage is captured only with covergroups in the test bench.

27

4. UVM MONITORING ENVIRONMENT

This chapter goes through the implementation of the UVM monitoring environment,

which runs in parallel with the existing SV test bench. First, a brief description of the

DUT is given. Then, the chosen coverage points and the implementation of

environment components, like UVM monitors and subscribers, are gone through.

Lastly, the whole test bench is presented.

4.1. Design under test

The DUT chosen for this experiment is a decoder. In normal operation, the decoder is

configured and run, and the results can be checked during and at the end of each run.

The decoders interface includes Advanced Peripheral Bus (APB) and AMBA High-

performance Bus (AHB) buses, and a general interface for interrupt, status and control

signals. Figure 11 shows a top view of the DUT including the interfaces, which are the

main points for collecting the functional coverage.

DECODER

CORE
FUNCTIONALITY

REGISTER
INTERFACE

AHB
MASTER MEMORY

APB
INTERFACE

GENERAL
INTERFACE

Figure 11. DUT top view.

The APB bus is used to access the registers of the decoder. The registers include

configuration, control and status registers. The APB bus is the key point with the

functional coverage model since it provides register access and decoder configuration

data values. The decoder has an AHB master that fetches data from memory through

an AHB bus. The memory is modeled with a SV class-based AHB slave.

4.2. UVM verification components

Since no extra DUT driving is required at this point, the first UVM environment

created was quite straightforward. A separate UVM test environment was still required

because if the classes had been instantiated in the SV module environment, the

automatic UVM properties would not have been present. The created UVM hierarchy

includes test, environment, monitor and subscriber classes. The test and environment

28

classes only create the needed subclasses, in this case monitors and subscribers, pass

the virtual interface references and make necessary connections between the

subcomponents. The following subsections take a more detailed look into the

implementation of the UVM monitors and subscribers, which create the actual

functional coverage collection model.

4.2.1. UVM monitors

UVM monitors were created for the APB bus and the general interface. AHB bus

monitoring was left out since the traffic consists only of decoder memory data

transfers. This did not bring any addition to the functional coverage model. The

monitors connect the class-based UVM environment to the module-based DUT. They

watch the interfaces during the whole simulation, and automatically send transactions

to the higher hierarchy levels when there is valid data on the interface. With the APB

monitor, all read and write commands are captured. Similarly, the general interface

monitor captures all interrupt and status signal changes. The transactions are sent

forward through an UVM analysis port [5, pp. 16]. Figure 12 illustrates the behavior

of the APB monitor. With a different interface and transaction forwarding condition,

a similar model could be used with the general monitor.

APB
TRANS

ap

cl_ApbMonitor

1

0

ap.write

VIF.data
valid

VIF

Figure 12. APB monitor operation flow.

The analysis port (ap) presented in Figure 12 is of type uvm_analysis_port#(), which

is parameterized with the APB transaction. The port is a class that has a built-in

function write that takes a transaction as an argument. Whenever the virtual interface

VIF has valid data, the data is fetched to a local APB transaction parameter and the

analysis port’s write function is called with this transaction. The port’s write function

forwards the function call automatically to every component that is connected to the

analysis port and has the same write function implemented. The monitor also has a

message printing system for sent transactions that can be enabled or disabled with the

UVM severity levels. The behavior and naming of the APB monitor was made to be

as general as possible to ensure reusability in other APB buses. The same was done

with the general monitor by parameterizing the amount of interrupts and status signals.

29

4.2.2. UVM subscribers

The UVM subscribers implement the covergroup models for the decoder and use the

transactions sent by the monitors to sample the covergroups. Two subscribers were

created in total: one for APB and one for the general interface related covergroups.

The APB subscriber collects data regarding register access (read and write) and

decoder configuration values set through the APB bus, and the general interface

subscriber keeps track that all interrupt, status and control signals have been set and

cleared. Both of these subscribers include covergroups and their constructors, and the

write function with additional logic to determine what covergroups to sample with

each transaction. Figure 13 demonstrates how the transactions sent by the monitor are

handled inside the APB subscriber.

cl_Decoder_ApbSubscriber

ae
APB

TRANS

 write (apb_rw tx)

 apb_rw t;
 t.addr = tx.addr;
 t.data = tx.data;
 t.rw = tx.rw
 case (t.addr) begin
 12'h518 : cg1.sample();

 end

cg_* sample()

Figure 13. APB subscriber transaction processing.

The subscribers extend UVM subscribers and thus have a built-in analysis export

(ae) used for receiving transactions. As mentioned in the previous section, the write

function is executed automatically whenever the export receives a transaction. The

write function captures the transaction information to a local transaction parameter to

ensure the data used remains the same, and samples the correct covergroups. The

covergroups were implemented using the covergroup properties presented in Chapter

3.1.1.

4.3. Parallel test bench

The finished test bench uses the IP’s existing test bench to execute the original test

program flow: stimulate the DUT and check design correctness. The original test

bench is done in a SV module based manner. In addition, the test bench has the UVM

monitoring environment described in the previous sections running in parallel to the

module environment. The whole test bench structure is presented in Figure 14,

highlighting the separation of the UVM and module hierarchies.

30

cl_Decoder_Test

cl_Decoder_Env

Top

C-MODEL
Test

Program

cl_Apb
Subscriber

cl_General
Subscriber

DUT

cl_Apb
Monitor

cl_General
Monitor

UVM hierarchy SV module hierarchy

Figure 14. Full test bench for the monitoring environment.

The top SV module instantiates the DUT module, and the decoder test program as

automatic SV program. The test program uses the built-in direct programming

interface (DPI) [33] to integrate a C-model for the decoder, which is used to calculate

the configuration parameters and expected results, and to do correction checks between

the C-model and DUT results. In one run, the test program starts the C-model with a

set of parameters and the C-model calculates required decoder parameters and starts

the DUT with the chosen settings. Finally, the DUT and reference results are

compared. The DUT is configured and started via the APB interface.

In addition, the top module also starts the construction of the UVM environment and

sets the references of the DUT interfaces to the UVM configuration database. The top

selects which UVM test class is the top class in the UVM hierarchy, and that test will

construct the rest according to its build and connect phase functions. Here, the

cl_Decoder_Test test class creates the cl_Decoder_Env environment class and the

environment creates the monitors and subscribers, connects them and sets the correct

interface references to the monitors.

The simulations are done with Mentor’s Questa simulator. Coverage is captured by

storing the code and functional coverage into a UCDB file in the end of simulations.

The coverage data is transformed into HTML format using Questa’s coverage features

for better readability. The simulator also keeps log of messages that appear during

compile, optimization and simulation phases, and the logs are stored to separate files.

Questa’s simstats formal argument is used to get accurate data regarding different

simulation execution times. This information is used in performance comparison of

the different test benches. The results are gone through in Chapter 6.

31

5. COMPLETE UVM ENVIRONMENT

This chapter presents the second part of the experiment, where the whole test bench is

converted into the UVM environment. The chapter starts with the modifications made

to the UVM environment shown in previous chapter to make it able to drive the

interfaces and model the AHB memory. In addition, the test program conversion to

UVM test format is gone through and the final test bench is presented.

5.1. Addition of UVM agents

With the final test bench, the UVM environment needed to be able to do the same DUT

driving as the original module based test program. Thus UVM agents were created for

the APB, AHB and general interface. The APB and general interface agents include a

driver and a sequencer as new components, and the existing monitor presented in the

previous chapter. The AHB agent has only a slave component since its only function

is to act as memory that is connected to a AHB bus. The general structure of a driving

and monitoring UVM agent is illustrated in Figure 15.

Agent

Sequencer VIFDriver

Monitor

Figure 15. UVM agent and its subcomponents.

5.1.1. Drivers and sequencers

The drivers extend the UVM driver class and their main function is to wait for new

transactions to be ready in the sequence item port found inside the drivers, and to

transform the transactions into DUT pin wiggles by using the virtual interface

reference to the DUT interface. The drivers were built to capitalize the UVM phasing,

making them start and operate automatically. They also support passive-active

32

configuration, where passive agent only instantiates a monitor and active adds the

driving components as well. The APB driver checks whether the incoming transaction

is a read or write operation and executes them according to the APB protocol, and the

general interface driver simply sets the selected control signals active and releases

them after few clock cycles.

The sequencers were implemented to make the transaction passing to different

drivers more straightforward. The sequencers in this test bench did not need any extra

features, thus the base UVM sequencers were used with minor naming changes to fit

the IP’s test bench. In this test bench, the top UVM test class adds sequences to the

sequencers, and the sequencers parse the sequences into transactions for the drivers to

fetch.

5.1.2. AHB slave

The implemented AHB slave follows the same functionality as the original slave to

ensure timing regarding AHB memory accesses remains the same. Thus the slave’s

functionality was ported unchanged to be UVM environment compatible, and only

minor additions were made to the slave automation using the UVM phases. The slave

uses a SV queue as the memory container, and an automatically running function that

either stores data to the container (write) or puts data from the container to the AHB

bus (read). Because the DUT uses two memories with different AHB bus data widths,

the AHB slave class and its functions were parameterized.

5.2. Test program

In the new UVM environment, the test program was implemented inside the top UVM

test class cl_Decoder_Test. Linking the C-model to the UVM test class was

problematic since the C code required access to SV tasks through the DPI, and class

tasks cannot be exported unless they are declared as static. On the other hand, static

tasks would have nullified the hierarchical benefits got from the UVM environment.

This problem was bypassed by importing the C-model inside an SV interface wrapper

and giving the UVM test class a reference to this interface. This structure is presented

in Figure 16 below.

VIF

cl_Decoder_Test in_CModel

C-MODEL

- Tasks to call C-Model and vice versa
- Update VIF
- Inform cl_Decoder_Test class

Functionality:

cl_Decoder_Env

virtual in_CModel vif;
vif.ta_callCModel;

Figure 16. UVM Test class and C-model communication.

33

The structure presented in Figure 16 allows the test class to call any tasks found

inside the in_CModel interface through the virtual interface reference. All data

between the test class and C-model is transferred through the reference. This requires

some additional synchronization compared to a straight task call, but nevertheless was

found to be the best solution without modifying the C source code.

Apart from the C-model integration, there were no compatibility issues with the test

program implementation inside the UVM test class. The program was divided into

subtasks inside the class, and parameters regarding configuration and simulation

conditions were declared with the rand type with additional constraints. Tasks to fetch

and check the covergroup coverage values from the subscribers were also

implemented. The main program loop was changed to be coverage-driven, where the

covergroup coverage values are used as a condition whether to continue or not. The

top includes a set of coverage goal parameters that can be tweaked to modify the

importance of some coverage segments in the evaluation of the end condition. In

addition, reporting tasks were implemented to inform the user about test progress, and

configuration and coverage values.

5.3. Final test bench

The final UVM test bench consists of the new components presented in this chapter

and the previous test bench shown in Chapter 4.3. All DUT driving is now done by

different UVM agents and the data is processed inside the top UVM test class

cl_Decoder_Test, disregarding the data calculated by the C-model running inside the

in_CModel interface. The complete test bench is presented in Figure 17.

cl_Decoder_Test

cl_Decoder_Env

Top

C-MODELin_CModel

cl_Ahb
Agent

cl_Apb
Agent

cl_General
Agent

DUT

cl_Apb
Subscriber

cl_General
Subscriber

Config

Figure 17. Final UVM test bench.

34

Here, the cl_Decoder_Env environment instantiates the agents instead of only

monitors. The environment also includes additional configuration parameters used

when creating the agents. The Top module only instantiates the DUT and necessary

interfaces for the UVM test bench, leaving out the test program found in the parallel

test bench. Other than these changes, the test bench structure and instantiation remains

the same as in the previous test bench shown in Chapter 4.3. No changes were made

to the coverage data collection or simulation logs.

35

6. RESULTS

This chapter presents the coverage and simulation performance results got from the

original, original with monitoring and full UVM test benches shown in Sections 4.3.

and 5.3. First, Section 6.1 shows code and functional coverage statistics got from

Questa’s coverage reports. Then, Section 6.2 presents data regarding test bench

performance for all test benches used in this experiments.

6.1. Coverage

Both code and functional coverage results were extracted from the HTML reports

generated by Questa. Practically, 100 % coverage should be reached in all coverage

fields, and if not, exclusions with explanations should be used. The results presented

in this chapter use no exclusions. And since the UVM environment uses the original

test program flow, some functional coverage misses present in the original test bench

will be present in the UVM the bench as well. The changes mainly come from

changing the decoder configuration parameters to randomized parameters. Code and

functional coverage results are shown in the following subsections.

6.1.1. Code

The code coverage statistics for the original and UVM test bench are presented in

Figures 18 and 19, and the coverage number differences of these two are highlighted

in Figure 20 (UVM compared to original). The code coverage was limited to the

decoder unit, leaving out all test bench items. With the UVM test bench, 85 % coverage

goal was used for the cg_Decoder_Config_Iterations covergroup (see Section 6.1.2.),

and 100 % for other configuration and interrupt covergroups. These simulation goals

resulted in a total of 7112 decoder test runs. The original test bench was run for the

whole test program duration, which resulted in a total of 9144 test runs.

TOTAL

la_Include

 u_Decoder_Control

 u_Decoder_ApbAdapter

Scope TOTAL Statement Branch

65.12

87.50

85.61

78.14

88.99

100.00

100.00

100.00

66.98

--

--

--

FEC Expr. FEC Cond. Toggle

 u_Decoder_PeripAccess

 u_Decoder_Tcm

 u_Decoder_Ram

 u_Decoder_MemoryIntf

 u_Decoder_Core

 u_PowerControl 31.64

51.90

85.21

71.38

92.96

91.02

84.46

51.88

95.76

82.53

100.00

99.47

37.02

60.06

92.13

77.41

100.00

97.64

64.64

75.00

20.00

78.57

66.66

53.84

100.00

100.00

--

75.00

31.75

--

0.00

--

--

33.78

82.14

50.00

--

90.00

73.24

--

16.74

78.26

67.76

59.96

56.02

46.94

78.89

93.00

Figure 18. Code coverage statistics (percentage) of the decoder unit got from the

original test bench.

36

TOTAL

la_Include

 u_Decoder_Control

 u_Decoder_ApbAdapter

Scope TOTAL Statement Branch

65.65

100.00

87.99

78.48

89.03

100.00

100.00

100.00

67.07

--

--

--

FEC Expr. FEC Cond. Toggle

 u_Decoder_PeripAccess

 u_Decoder_Tcm

 u_Decoder_Ram

 u_Decoder_MemoryIntf

 u_Decoder_Core

 u_PowerControl 31.67

52.31

85.21

71.38

92.96

91.11

84.46

52.09

95.76

82.53

100.00

99.47

37.02

60.36

92.13

77.41

100.00

97.64

66.66

100.00

20.00

85.71

66.66

53.84

100.00

100.00

--

75.00

31.75

--

0.00

--

--

33.78

82.14

50.00

--

90.00

73.74

--

16.89

78.26

68.78

61.47

56.02

46.94

78.89

93.48

Figure 19. Code coverage statistics (percentage) of the decoder got from the UVM

test bench.

TOTAL

la_Include

 u_Decoder_Control

 u_Decoder_ApbAdapter

Scope TOTAL Statement Branch

+ 0.53

+ 12.50

+ 2.38

+ 0.34

+ 0.04

--

--

--

+ 0.09

--

--

--

FEC Expr. FEC Cond. Toggle

 u_Decoder_PeripAccess

 u_Decoder_Tcm

 u_Decoder_Ram

 u_Decoder_MemoryIntf

 u_Decoder_Core

 u_PowerControl + 0.03

+ 0.41

--

--

--

+ 0.09

--

+ 0.21

--

--

--

--

--

+ 0.30

--

--

--

--

+ 2.02

+ 25.00

--

+ 7.14

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

+ 0.50

--

+ 0.15

--

+ 1.02

+ 1.51

--

--

--

+ 0.48

Figure 20. Differences of the UVM test bench code coverage compared to the

original one (in percent).

It was known that the original test bench did stress the DUT quite thoroughly in the

functional aspect. The behavior of the test program and the DUT operation also caused

the code coverage to reach reasonably high values rather quickly, only getting small

improvements with a very high number of tests. However, even with this baseline the

randomization present in the UVM environment brought some increase to the code

coverage with a lesser amount of tests, as it can be seen from Figure 20. The main

reason for this is the different toggle values got from randomization, which also caused

few extra statements, branches and expression to be executed.

6.1.2. Functional

Figures 21 and 22 show the functional coverage got from the covergroups for the

original and UVM test bench, in respective order. The simulation coverage goals for

the UVM environment, and the total number of decoder test runs for the UVM and the

original test bench were the same as shown in Section 6.1.1. If 100 % coverage goal

was also used for the iterations covergroup, the total number of test runs was 10033.

37

Covergroup Total Bins Hits Hits % Goal % Coverage %

68.07%100.00%46.92%84179cg_Decoder_Registers

100.00%100.00%46.01%127127cg_Decoder_Config_Length

16.12%100.00%16.12%531cg_Decoder_Config_Iterations

100.00%100.00%100.00%44cg_Decoder_Config_Prediction

100.00%100.00%100.00%22cg_Decoder_Config_CRC

100.00%100.00%100.00%22cg_Decoder_Config_ABS

100.00%100.00%100.00%1212cg_Decoder_Interrupts

100.00%100.00%100.00%1212cg_Decoder_Status

0.00%100.00%0.00%08cg_Decoder_Control

84

Figure 21. Covergroup functional coverage of the original test bench.

Covergroup Total Bins Hits Hits % Goal % Coverage %

68.07%100.00%46.92%84179cg_Decoder_Registers

100.00%100.00%46.01%127127cg_Decoder_Config_Length

87.09%100.00%87.09%2731cg_Decoder_Config_Iterations

100.00%100.00%100.00%44cg_Decoder_Config_Prediction

100.00%100.00%100.00%22cg_Decoder_Config_CRC

100.00%100.00%100.00%22cg_Decoder_Config_ABS

100.00%100.00%100.00%1212cg_Decoder_Interrupts

100.00%100.00%100.00%1212cg_Decoder_Status

25.00%100.00%25.00%28cg_Decoder_Control

84

Figure 22. Covergroup functional coverage of the UVM test bench with iterations

coverage goal of 85 %.

As it can be seen from Figures 21 and 22, the main neglects of the original test bench

are the iterations configuration, and control covergroups. The parameter that

determines the maximum iterations of the decoder was added to the pool of

randomized parameters in the UVM test bench, making the coverage results much

better for the cg_Decoder_Config_Iterations covergroup. The usage of control inputs

was missing, and a small feature was added to make the usage possible, resulting in

the 25 % coverage increase in the cg_Decoder_Control covergroup. The UVM envi-

ronment goes through a wider range of configuration values than the original test

bench with lesser tests. However, if all combinations of the configuration values would

be gone through, the total number of test runs would be much higher than the 9144 test

runs with the original test bench due to duplicate random values.

As it was stated in the previous section, the functional aspect of the DUT was already

thoroughly tested with the original test bench. The results show that randomization

itself did not bring much addition to the overall functional coverage. The main reason

38

for this was that the DUT operates in one specific way, not allowing much free space

other than the decoder configuration. The iterations configuration in the original test

bench was low due to using the most fitting value with majority of the runs, and

stressing only both maximum and minimum values. Nevertheless, if a range of

possible values have been implemented, all of them should be tested. The iterations

covergroup being higher with the UVM test bench is reasoned with the original test

bench being partly lacking, rather than with the benefits of the randomization. The

same can be said about the cg_Decoder_Control covergroup.

6.2. Test bench performance

Test bench performance is measured in the terms of total CPU run time for each

simulation using the different test benches presented so far. The total CPU run time

consists of CPU time spent on optimization (Vopt), elaboration, simulation and Tcl

command phases. The run time logging was enabled by using Questa’s simstats formal

argument. The CPU times were taken straight from Questa’s log, and no extra profiling

properties were used.

Simulation run times were measured with a shorter, single decoder test runs with

multiple recursions, and a full decoder test runs with fewer recursions due to long

simulation times. The UVM environment was run in manual mode to make sure the

test flow was identical to the original test program. The total CPU run time results for

these both cases can be found in Figures 23 and 24 below.

Figure 23. Total simulation CPU run time comparison using one decoder test run.

3
1

8
,5

5 3
3

1
,0

2

2
4

1
,0

2

3
1

9
,5

4 3
3

1
,2

6

2
4

2
,7

2

3
1

9
,9

6 3
3

1
,5

2

2
4

4
,8

5

200

220

240

260

280

300

320

340

Original Original + monitoring UVM

Si
m

u
la

ti
o

n
 t

im
e

(s
)

Test bench used

Min

Average

Max

39

Figure 24. Total simulation CPU run time comparison using the full set of test runs.

Figures 23 and 24 show an expected result that the original test bench with

monitoring enabled has longer run time compared to the original test bench only. With

monitoring enabled, the increase in total CPU run time is around 4 % in both cases,

which is not a groundbreaking time delay considering there are two test programs

running in parallel.

The run times got from the UVM environment runs are surprising, since the UVM

test program has extra synchronization compared to the original test bench because of

the inconvenience of the C-model implementation. Due to this, the expectations were

even worse than with the original test bench with monitoring enabled. Nevertheless,

with this test program flow the UVM test bench provided significantly faster total CPU

run times than the other two test benches. In the single test run, the UVM test bench

total run time was around 24 % faster compared to the original test bench, and with

the full test run, around 26 % faster. With longer simulations, improvements like this

have a notable impact.

2
6

3
,4

6 2
7

3
,3

3

1
9

4
,2

7

2
6

5
,3

0 2
7

7
,1

3

1
9

5
,5

8

2
6

8
,6

7 2
7

9
,3

2

1
9

7
,5

1

160

180

200

220

240

260

280

300

Original Original + monitoring UVM

Si
m

u
la

ti
o

n
 t

im
e

(m
in

)

Test bench used

Min

Average

Max

40

7. DISCUSSION

The objective of this thesis was to develop a UVM simulation environment based on

an existing SV test bench. The environment was created to test the applicability of a

UVM environment in IP verification compared to a more traditional module-based SV

environment. The results got from this thesis show both positive and negative aspects

of the adequacy of the UVM test bench with this particular IP.

The compatibility of a module-based SV test program and a class-based UVM test

is good. The implementation done in this thesis showed only difficulties with the C-

model integration. This problem seems to occur only when the C-model also uses tasks

or functions from the SV side. The problem can be bypassed with some gimmicks, but

it can be impractical for people working with test benches that often incorporate

bidirectional C-models. This proposes that an update to the SV DPI and UVM interface

could be done, making the C-model integration less problematic. In addition, it is

important to remember that hierarchical references to the DUT do not go well together

with class-based environments. With the test bench used in this thesis, this did not

prove to be a problem, but with module-based environments incorporating a lot of

hierarchical references, or with users accustomed to use hierarchical references in their

verification, this limitation can feel frustrating. Class-based environments simply need

a different kind of approach. Regardless, the use of hierarchical references is

considered as a bad verification practice since it greatly reduces reusability of the

verification components, and they should only be used when necessary.

Code coverage can be improved with constrained random stimulus. This is mostly

due to large increase in signal bit toggles, and the amount of total test run. Only the

high quantity of tests itself is enough to test most conditions, statements and branches

found in the source code, giving high code coverage. On the other hand, a good

functional coverage is mainly determined whether the test program executes specific

functional patterns or not. The most crucial part is to understand the DUT operation

and write test patterns that stress the different operation schemes. Randomization itself

does not automatically give a good functional coverage, but it can always bring out

new bugs in the tested operation scheme since a larger amount of different values are

used in the stimulus. For both code and functional coverage, the way how the DUT

operates matters a lot. Even with larger designs, if the operation is limited to one

specific way, the improvement received from random stimulus is not that great. The

DUT used in this thesis partially represents this kind of scheme. On the other hand, if

the DUT has data inputs with a wide range of legal values, randomization usually

brings major benefits. Yehia A. studied constrained random stimulus for achieving

faster coverage closure [34]. In his work, Yehia used a direct memory access (DMA)

IP and an Ethernet media access control (MAC) IP, both allowing a high degree of

direct input stimuli, to compare constrained random stimulus to directed testing. The

results Yehia measured showed that constrained random stimulus provided much

faster coverage closure and coverage values with lesser amount of transactions used to

stimulate the DUTs.

The different test bench performance results presented in Chapter 6 indicate that

UVM environments can provide significantly faster total test bench run times

compared to module-based SV environments. With the DUT and test program used in

this thesis, the UVM test bench’s total run time was between 24 % and 26 % faster

than the original module-based SV test bench’s. With test cases lasting multiple hours,

the time saved was measured in hours. Because no simulator profiling properties were

41

used, it is hard to pin point the specific reasons for the improvement in the test bench

total run time. Since the C-model integration required concurrent processes to

implement the additional synchronization and communication between the UVM

environment and the C-model, it is possible that the simulation server distributed its

work load more efficiently, giving the DUT simulation more computation capacity.

To find out whether this or something else causes the speedup, profiling needs to be

used to acquire instance specific data, but that falls outside of the scope of this thesis.

Söderlund T. also studied the performance of an UVM environment compared to a

legacy test bench in his thesis [20]. Söderlund’s UVM test bench was around 50 %

slower compared to the original test bench, but also had added functionality, making

the scenario slightly different than in this thesis.

There are also some downsides when adopting UVM verification. The UVM can be

a bit overwhelming in terms of environment complexity. Typically, more time spent

with UVM environments is required to be familiar with the common structure and

operation of a UVM environment than with traditional, module-based environments.

In addition, creating a single UVM environment from scratch is not much more

efficient than creating an environment of a different type; sometimes it can be even

more time consuming. The real benefit with UVM is acquired when a base set of UVM

components exist and the verification engineers have the basic skillset to work with

UVM. At this point most of the unnecessary hassle when working with UVM

environments has been eliminated, and creating new verification environments for the

project’s needs requires much less working hours.

The goal of this thesis was to study the validity of UVM in IP verification. The goal

was achieved by successfully creating an efficient UVM environment based on an

existing SV test bench. The most interesting results got from this experiment were the

UVM environment performance gains. Proving that porting versatile test benches to

UVM is possible while gaining more code coverage by enabling randomization also

serves its purpose. It would be really beneficial to replicate this kind of study, where

no additional functionality is added to the UVM test bench, with different IPs. This

would provide data regarding whether the performance or coverage improvements

would be present with other types of test benches, or not. Nevertheless, based on the

results presented in this thesis, UVM is an excellent option for versatile IP verification

for any size of a design.

This thesis can serve as a starting point for future experiments regarding class-based

IP verification involving existing test benches. When creating a coverage-driven UVM

environment, the basic steps should be similar to what was presented in this thesis. In

addition, the created UVM agents for different buses can be reused if more UVM

environments are desired in the future.

42

8. SUMMARY

This thesis studies the advantages and disadvantages of UVM in IP verification. This

is done by creating a CDV environment using UVM from an already existing module-

based SV test bench. The history, concept and main features of UVM is presented, and

a look into code and functional coverage is taken. The final conclusions are made

based on the coverage and simulation performance results got from the different test

benches.

UVM is a widely supported SV class library used for digital design verification.

UVM follows the principles of object-oriented programming and utilizes proven OOP

features like classes and inheritance. In addition to the OOP principles, UVM has

multiple useful built-in properties, like phasing, transactions, message reporting and

configuration database, to help with the test bench creation. Typical environments built

with UVM have a clear class hierarchy, are able to drive and monitor the DUT, and do

functional checking and coverage collection.

Coverage can be divided into two concepts: code and functional coverage. Code

coverage is an automatically generated metric used to measure whether specific

sections of the source code have been executed or not. Functional coverage is a

manually declared model that represents the key functional features of the DUT, and

shows whether those features have been tested or not. In SV, functional coverage

models can be written with covergroups or assertions. Covergroups can also be used

to enable CDV. Both code and functional coverage go hand-in-hand, and both are

required to achieve complete coverage closure.

In the practical part, UVM monitor and subscriber components were first created to

capture functional coverage from the IP’s original test bench. For the full UVM test

bench, UVM agents were created to enabled driving of the DUT, and the monitors

were transferred inside the agents. The original test program was ported to the UVM

side, leaving out the original test program. The coverage results were collected in the

same manner as with the monitoring test bench.

The results got from the three different test bench setups show that the full UVM

environment provided performance improvements of 24 - 26 % to total simulation run

time. Also, the constrained random stimulus found in the UVM test bench gave slight

improvements to code coverage, but the random stimulus itself did not have a big

impact on functional coverage. With functional coverage, randomization can aid the

process of creating stimulus with multiple different values, but the final coverage

results are determined mainly by the test patterns gone through and the coverage model

itself. In this experiment, the DUT’s operation flow was quite restricted, which also

contributed to the low impact of the randomization. Nonetheless, UVM is an excellent

option for IP verification based on the experiment done in this thesis.

43

9. REFERENCES

[1] Chen, KC. (2003) Assertion-Based Verification For SoC Designs. In: IEEE

5h International Conference on ASIC, Vol. 1, pp. 12-15, San Jose,

California, USA.

[2] Vitullo F., Saponara S., Petri E., Casula M., Fanucci L., Maruccia G.,

Locatelli R. & Coppola M. (2009) A reusable coverage-driven verification

environment for Network-on-Chip communication in embedded system

platforms. In: IEEE Seventh Workshop on Intelligent solutions in Embedded

Systems, June 25-26, pp. 71-77.

[3] Stotland I., Shpagilev D. & Starikovskaya N. (2016) UVM Based

Approaches to Functional Verification of Communication Controllers of

Microprocessor Systems. In: IEEE 2016 East-West Design & Test

Symposium (EWDTS), October 14-17, pp. 1-4.

[4] Šimková M. & Kotásek Z. (2015) Automation and Optimization of

Coverage-driven Verification. In: IEEE 2015 Euromicro Conference on

Digital System Design (DSD), August 26-28, pp. 87-94.

[5] Accelera. (Accessed 30.1.2017) Universal Verification Methodology

(UVM) 1.2 Class Reference. URL:

http://www.eda.org/downloads/standards/uvm.

[6] Accelera. (Accessed 30.1.2017) Universal Verification Methodology

(UVM) 1.2 User’s Guide. URL:

http://www.eda.org/downloads/standards/uvm.

[7] Meade K. & Rosenberg S. (2013) A Practical Guide to Adopting the

Universal Verification Methodology (UVM) Second Edition. Cadence

Design Systems, Inc., San Jose, California, USA, 296 p.

[8] IEEE. (2013) IEEE Standard for SystemVerilog--Unified Hardware Design,

Specification and Verification Language. IEEE Std 1800-2012, New York,

USA, 1315 p.

[9] Doulos. (Accessed 31.1.2017) Doulos Infocenter for Universal Verification

Methodology. URL: https://www.doulos.com/knowhow/sysverilog/uvm/.

[10] Yadav H. N. (2008) Object-oriented C++ programming. Laxmi Publications

Pvt. Ltd., New Delhi, India, 452 p.

[11] Schuster S. & Schulze S. (2012) Object-Oriented Design in Feature-

Oriented Programming. In: ACM Proceedings of the 4th International

Workshop on Feature-Oriented Software Development (FOSD), September

24-25, Dresden, Germany, pp. 25-28.

[12] Barclay K. A. & Savage J. (2003) Object-Oriented Design with UML and

Java. Butterworth-Heinemann, Oxford, United Kingdom, 428 p.

44

[13] Parsons D. (1997) Object-Oriented Programming With C++ 2nd edition.

Continuum International Publishing Group, New York, USA, 395 p.

[14] Booch G. (1994) Object-Oriented Analysis and Design with Applications

2nd Edition. Addison Wesley Longman, Inc., 608 p.

[15] Raghuvasnhi S. & Singh V. (2014) Review On Universal Verification

Methodology (UVM) Concepts for Functional Verification. In: International

Journal of Electrical, Electronics and Data Communication, Vol. 2, pp. 101-

107.

[16] Bromley J. (2013) If SystemVerilog Is So Good, Why Do We Need the

UVM? Sharing responsibilities between libraries and the core language. In:

IEEE 2013 Forum on Specification & Design Languages (FDL), September

24-26, pp. 1-7.

[17] Francesconi J., Rodriguez J. & Julián P. M. (2014) UVM Based Testbench

Architecture for Unit Verification. In: IEEE 2014 Argentine Conference on

Micro-Nanoelectronics, Technology and Applications (EAMTA), July 24-

25, pp. 89-94.

[18] Zhaohui H., Pierres A., Shiqing H., Fang C., Royannes P., See E. P. & Hoon

Y. L. (2012) Practical and Efficient SOC Verification Flow by Reusing IP

Testcase and Testbench. In: IEEE 2012 International SoC Design

Conference (ISOCC), November 4-7, pp. 175-178.

[19] Piziali A. (2008) Functional Verification Coverage Measurement and

Analysis. Springer Science+Business Media LLC, New York, USA, 193 p.

[20] Söderlund T. (2016) Reusable UVM Testbench Template. Master’s thesis.

University of Oulu, Electrical Engineering, Oulu.

[21] Kärenlampi L. (2016) Simulation performance profiling and optimization in

UVM based verification environment. Master’s thesis. University of Oulu,

Electrical Engineering, Oulu.

[22] Montesano J. & Litterick M. (2014) Verification Mind Games: how to think

like a verifier. In: DVCon 2014, March 4, pp. 1-7.

[23] Wile B., Goss J. C. & Roesner W. (2005) Comprehensive Functional

Verification: The Complete Industry Cycle. Morgan Kaufmann Publishers,

San Francisco, USA, 704 p.

[24] Sprott J., Marriott P. & Graham M. (2015) Navigating The Functional

Coverage Black Hole: Be More Efficient At Functional Coverage

Modelling. In: DVCon 2015, March 4, pp. 1-12.

[25] Minto B. (2010) The Pyramid Principle: Logical Writing, Thinking and

Problem Solving Third Edition. Prentice Hall, 177 p.

45

[26] Allan G., Chidolue G., Ellis T., Foster H., Horn M., James P. & Peryer M.

(Accessed 10.2.2017) Coverage Cookbook. Mentor Graphics, URL:

https://verificationacademy.com/.

[27] Guo Y., Qu W., Li T. & Li S. (2007) Coverage Driven Test Generation

Framework for RTL Functional Verification. In: IEEE 10th IEEE

International Conference on Computer-Aided Design and Computer

Graphics, October 15-18, pp. 321-326.

[28] Flake P. (2013) Why SystemVerilog? In: IEEE 2013 Forum on Specification

& Design Languages (FDL), September 24-26, pp. 1-6.

[29] Spear C. (2008) SystemVerilog for Verification: A Guide to Learning the

Testbench Language Features Second Edition. Springer Science+Business

Media LLC, 465 p.

[30] Cerny E., Dudani S., Havlicek J. & Korchemny D. (2014) SVA: The Power

of Assertions in SystemVerilog Second Edition. Springer International

Publishing, 590 p.

[31] Cheng A.-C., Yen C.-C. & Jou J.-Y. (2012) A Formal Method to Improve

SystemVerilog Functional Coverage. In: IEEE 2012 IEEE International

High Level Design Validation and Test Workshop (HLDVT), November 9-

10, pp. 56-63.

[32] Mehta A. B. (2014) SystemVerilog Assertions and Functional Coverage:

Guide to Language, Methodology and Applications Second Edition. Sprinter

International Publishing, 406 p.

[33] Aynsley J. (Accessed 28.2.2017) SystemVerilog Meets C++: Re-use of

Existing C/C++ Models Just Got Easier. Doulos, URL:

http://www.doulos.com/knowhow/sysverilog/DVCon10_dpi_paper/System

Verilog%20meets%20C++.pdf.

[34] Yehia A. (2013) Faster Coverage Closure: Runtime Guidance of

Constrained Random Stimuli by Collected Coverage. In: IEEE 2013 Saudi

International Electronics, Communications and Photonics Conference

(SIECPC), April 27-30, pp. 1-6.

