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Abstract

This thesis discusses various large multi-dimensional dataset analysis methods and their
applications. Particular attention is paid to non-linear optimization analyses and general
processing algorithms and frameworks when the datasets are significantly larger than
the available computer memory. All new presented algorithms and frameworks were
implemented in the HyperSpy analysis toolbox.

A novel Smart Adaptive Multi-dimensional Fitting (SAMFire) algorithm is pre-
sented and applied across a range of scanning transmission electron microscope (STEM)
experiments. As a result, the Stark effect in quantum disks was mapped in a cathodolumi-
nescence STEM experiment, and fully quantifiable 3D atomic distributions of a complex
boron nitride core-shell nanoparticle were reconstructed from an electron energy loss
spectrum (EELS) tilt-series. The EELS analysis also led to the development of two new
algorithms to extract EELS near-edge structure fingerprints from the original dataset.
Both approaches do not rely on standards, are not limited to thin or constant thickness
particles and do not require atomic resolution. A combination of the aforementioned
fingerprinting techniques and SAMFire allows robust quantifiable EELS analysis of very
large regions of interest.

A very large dataset loading and processing framework, “LazySignal”, was developed
and tested on scanning precession electron diffraction (SPED) data. A combination of
SAMFire and LazySignal allowed efficient analysis of large diffraction datasets, successfully
mapping strain across an extended (ca. 1 µm × 1 µm) region and classifying the strain
fields around precipitate needles in an aluminium alloy.
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Chapter 1

Introduction

Electron microscopes (EMs) have become a large part of many sciences and technologies
where the spatial resolution of light microscopy is no longer sufficiently high. The field
recently passed an important tipping point leading to accelerated growth. In particular,
significant steps have been made from the technical side of EMs [1, 2], allowing previously
unprecedented spatial and spectral resolutions. However, there is a caveat that comes
with larger and more detailed data than ever before: the analysis often becomes just
as important and difficult as the experiment. Previously weak interactions that were
blurred and nearly invisible now have to be undone in the analysis stage. On the
other hand, the typical size of a dataset nearly doubles every year, requiring even more
computational resources. The end result is that old and historically tested data analysis
and handling tools cannot keep up with the EM development, even with the growing
computer processing power.

The goal of this thesis is to provide new and more advanced tools for data handling
and analysis. While the inspiration for the work comes from electron microscopy, I
believe to have managed to keep the methods reasonably general. Most experimental
examples did not rely on state-of-the-art microscopes, but instead employed new and
more powerful data analysis algorithms that offered previously unprecedented results.

Thesis outline

The Scanning Transmission Electron Microscope (STEM) and the electron interactions
with the specimen in STEM are introduced in chapter 2. Chapter 3 includes my earliest
work, which served as an inspiration to solve the encountered data analysis problems.
The rest of the thesis can be grouped into two parts. The first, containing chapters 4
to 6, considers general data analysis. It presents common analysis methods as well as
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often encountered problems when applying such methods to real data. Lastly it suggests
my solutions to these problems. Even though electron microscopy is used for most
examples, the methods are in principle general and can be applied to solve a large array
of problems in many fields. The second part contains chapters 7 to 9, which describe
various experimental data analysis results that were enabled by the algorithms and
frameworks described in the first part. A brief description of each chapter follows.

Chapter 2: A brief introduction to Scanning Transmission Electron Mi-
croscopy (STEM)

This chapter gives a brief introduction to STEM. It describes the main working principles
of an electron microscope and introduces the two STEM configurations that were used to
acquire the data presented later in the thesis. This is followed by succinct descriptions of
elastic and inelastic electron interactions with matter that are relevant to the rest of the
work.

Chapter 3: Plasmons

Plasmons and, in particular, localised surface plasmon resonances (LSPRs) are introduced.
Analytical solution for electron energy loss spectra (EELS) for an LSPR on a sphere
as well as the Discrete Dipole Approximation (DDA) LSPR simulation descriptions are
given. Finally, EELS response of a particle with smoothly changing shape from cube to
sphere is simulated and analysed using the theoretical sphere solution.

Chapter 4: Large Multi-dimensional Data Analysis

Two common data analysis techniques, model fitting and machine learning, are introduced.
Strengths, weaknesses and ease of use of both methods are discussed. The two main data
analysis and handling issues that will be addressed in the work are presented.

Chapter 5: Smart Adaptive Multi-dimensional Fitting (SAMFire)

This chapter introduces the SAMFire algorithm. It includes a motivating example,
explains the two proposed methods of solution, and finally discusses the architecture
of the implementation of the algorithm. Three synthetic datasets, two based on real
experimental results and one unrealistically complex, are analysed using both conventional
methods and SAMFire, and results are compared.
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Chapter 6: Big Data

A brief history of large dataset analysis tools is presented, followed by the description
of the proposed “LazySignal” framework for data analysis and handling. The chapter
also includes examples of operations that would otherwise be impossible to perform on
regular computer hardware.

Chapter 7: Monitoring the Stark effect in quantum disks

This chapter considers the analysis and results of Quantum Disks (QDisks) grown in a
nanowire. The cathodoluminescence (CL) response of the specimen was measured in a
STEM. Quantum Confined Stark (QCSE) and Auger effects and their influences on the
QDisk performance are introduced. Data from ten CL maps of the same nanowire are
analysed and presented. QDisks are shown to experience efficiency droop, tentatively
attributed to the Auger effect.

Chapter 8: Quantifying elemental and bonding maps in 3D in a TEM

This chapter describes the analysis and results of a core-shell BN nanoparticle measured
using EELS in a STEM. After underlining the importance of 3D information when
describing any system and presenting the sample, two new methods of extracting Energy
Loss Near-Edge Structure (ELNES) from the experimental data are presented. Electron
tomography is introduced and particular attention is paid to its compressed sensing (CS)
implementations. Finally, the experimental data is quantified and reconstructed in 3D
using the previously described methods, resulting in the first fully quantitative bonding
electron tomography. The measured atomic densities are compared to theoretical values,
followed by a discussion.

Chapter 9: Strain mapping in diffraction cartography

Two new ways of mapping strain over large areas of interest using scanning (precession)
electron diffraction (S(P)ED) are presented. Strain analysis around the precipitates of an
age-hardened aluminium alloy is presented. In parallel, machine learning (ML) is used
to decompose that same dataset, allowing the separation of the precipitates into four
categories based on their relative crystallographic orientations. ML and strain results
are then combined to estimate the strain around the mean precipitate of each class, and
later of the whole specimen.
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Chapter 10: Conclusions

This gives a summary of the work presented in the thesis. Ideas and suggestions for
further work follow.



Chapter 2

A brief introduction to Scanning
Transmission Electron Microscopy
(STEM)

Historically electron microscopes were developed to overcome the diffraction limit of
light, which approximately limited the spatial resolution of an image to (at best) the
wavelength of a photon. In contrast, a scanning transmission electron microscope (STEM)
uses electrons instead of light to probe the sample: emitted from a gun, collimated and
focused onto the specimen, the scattered electrons are collected and focused on a detector.
The de Broglie wavelength (λ = h/p) for an electron is given by

λ = h[
2m0eV

(
1 + eV

2m0c2

)]1/2 , (2.1)

where h is Planck’s constant and, p is the momentum of the electron expressed using the
electron rest mass m0, charge e, the potential through which it is accelerated V , and the
speed of light c. As the accelerating voltages in transmission electron microscopes (TEMs)
are usually in the range of 100 kV to 300 kV, the electron velocity is an appreciable fraction
of the speed of light and the corresponding wavelength of the order of few picometers,
serving the intended purpose.

In STEM the electron beam is raster-scanned over the sample, and the transmitted
beam is detected after the sample. In addition, various detectors can be placed above and
below the sample plane to collect any signal emitted by the specimen due to the electron
excitation or strongly scattered electrons themselves. Of course, the electron beam has
to be manipulated at least to the precision of the resolution we want to achieve. However
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Fig. 2.1 A classical (particle) view of electron scattering by a single atom. (a) Elastic
scattering by the nucleus. (b,c) show inelastic scattering by inner- or outer-shell electrons,
respectively. Adapted from [4]

the electromagnetic lenses are severely affected by aberrations, limiting the resolution
to approximately 150 pm. In specialized microscopes, however, spherical aberration
correction has been implemented, enabling 50 pm resolution to be achieved [3].

The swift electron interaction can be separated into two groups: elastic, when
no detectable energy is transferred to the sample and the electron interacts mainly
with nuclei, and inelastic, when the probing electron interacts with sample electrons,
transferring energy (Fig. 2.1). For most samples studied, elastic interactions dominate
the contrast seen in electron diffraction, conventional transmission electron microscopy
and high resolution electron microscopy. Inelastic scattering is the origin of the spectral
signals detectable in a TEM: probing the electron’s lost energy, which is measured as an
electron energy loss spectrum (EELS), and also energy-dispersive X-ray spectroscopy
and Cathodoluminescence (CL) experiments.

To acquire the data used in this work, two different configurations had to be used
(on different physical microscopes), with schematic representations shown in Fig. 2.2.
The first one is the traditional analytical STEM configuration, including bright and dark
field detectors (each measuring the total intensity on the detector per probe position,
just one number), as well as spectrometers both below the sample (for EELS) and above
it (for CL), both recording a spectrum per probe position. The second one is typical for
a scanning electron diffraction (SED) experiment. In this configuration the dark- and
bright-field detectors in the back-focal plane are replaced by a pixelated detector, such
as charge-coupled device (CCD) camera, able to measure not just a single intensity, but
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Post-specimen
lenses

Pre-specimen
lenses

Sample

Electron
source

EELS

CL

HAADF ADF

BF

HAADFADF

Parabolic
mirror

Back-focal
plane CCD

Analytical
STEM

SPED
STEM

Fig. 2.2 A schematic representation of a STEM in analytical and Scanning Precession
Electron Diffraction (SPED) configurations on the left and right respectively. Analytical
STEM includes bright field (BF), annular dark field (ADF) and high-angle ADF (HAADF)
detectors (each measuring the total intensity on the detector per beam position) and two
spectrometers - CL above the sample plane and EELS below. In analytical setup the
post-specimen lenses are focused with a large camera length, containing most coherently
scattered electrons (shown in green) on the small BF detector, allowing (HA)ADF detec-
tors to measure mostly incoherently scattered electrons. In SPED STEM configuration
all back-focal plane detectors are replaced by a CCD detector, and the camera length is
picked such that the coherently scattered part of the beam spans the full detector area.
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θ

dΩ

dθ

Unscattered
electrons

Scattered
electrons

Incident beam

Ω

θ/2
θ/2

k0
q

k1

(a) (b) (c)

θ

k0
q

k1

qmin
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Fig. 2.3 (a) Electron scattering angle notation diagram. (b) Elastic scattering k-vector
diagram, where k0 and k1 are for the initial and scattered beams respectively, and q for
the energy transfered to the scatterer. (c) Inelastic scattering k-vector diagram, where
qmin is the smallest lost momentum for the particular energy loss E. qy is the scattering
vector component perpendicular to k0.

the whole diffraction pattern. In addition, for precession experiment, the focused probe
is manipulated above the specimen to produce a hollow cone illumination as presented
in [5], with the opposite operation occurring before the detector, the net effect being
equivalent to precessing the sample about a stationary beam. In such an experiment a
diffraction pattern is measured in each probe position, resulting in a four-dimensional
dataset.

2.1 Electron interactions

In this section a succinct description of electron-matter interaction is presented, most
of it closely following the work of Egerton [4], which is also recommended for a more
in-depth review of the topic. The section on cathodoluminescence follows the review
article by Kociak and Zagonel [6].

2.1.1 Elastic scattering

A measure of interaction between an incident electron and an atom is the differential
cross section dσ

dΩ , which describes the effective area of the target in order for the exit
trajectory to be in the solid angle dΩ, Fig. 2.3(a). For elastic scattering this can be
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written as
dσ

dΩ = |f |2 , (2.2)

where f is a complex scattering amplitude, a function of the scattering angle θ or
scattering vector q. Within the first Born approximation, that is assuming only single
scattering within each atom, f is proportional to the three-dimensional Fourier transform
of the atomic potential V (r).

Elastically scattered electrons interact with the atom via Coulomb forces. The simplest
such interaction model is based on the unscreened electrostatic field of a nucleus, first
used by Rutherford [7]. Both classical and quantum theory lead to the same expression,
giving

dσ

dΩ = 4γ2Z2

a2
0q

4 , (2.3)

where γ = (1 − v2/c2)−1/2 is the relativistic factor for an electron moving at velocity
v, a0 = 4πε0ℏ2/m0e

2 = 0.529 × 10−10 m is the Bohr radius, ε0 = 8.854 × 10−12 F m−1

the vacuum permittivity, Z the atomic number of the scattering atom, and q is the
magnitude of the scattering vector, given by q = 2k0 sin

(
θ/2

)
, where ℏk0 = γm0v is the

momentum of the electron, Fig. 2.3(b).
The nucleus screening can be incorporated through the Yukawa potential with

screening radius r0 [8], leading to Lentz model:

dσ

dΩ = 4γ2

a2
0

(
Z

q2 + r−2
0

)2

≈ 4γ2Z2

a2
0k

4
0

1(
θ2 + θ2

0

)2 , (2.4)

where θ0 ≈ Z1/3/(k0a0) is the characteristic angle of elastic scattering. Integrating
eq. (2.4) over all scattering angles gives the total elastic cross section:

σe =
∫ π

0

dσ

dΩ2π sin θdθ = 4πγ2

k2
0

Z4/3 = (1.87 × 10−24m2)Z4/3(v/c)−2 . (2.5)

While the accuracy of this model decreases for heavy elements, it serves as a useful
approximation.

When the electron is scattered over large (50 − 150 mrad) angles, the electron passes
closer to nucleus and thus the effect of the atomic electrons is small. In this case the
differential cross section for elastic scattering is close to the Rutherford value, eq. (2.3),
which can be integrated between some smallest considered angle θ0 and π, resulting in
σR ∝ Z2. HAADF detectors are specifically made to image the large scattering angle
signals, with their measured intensities calculated as Id = NIσd, where N is the number
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Fig. 2.4 A beam (I) is incident on a crystal with lattice parameter d. The scattered
beam (D) is intense if the Bragg conditions are met.

of atoms per unit area, I is the number of electrons per second in the beam, and σd the
relevant cross section. At these large angles it means that HAADF images show not only
thickness (Id ∝ N), but also atomic number (Id ∝ Z2) contrast.

If the material is crystalline, the regular arrangement of atom positions requires
taking into account the phase difference between scattered beams when calculating the
final intensity. This is done by replacing the scattering amplitude f in eq. (2.2) with the
structure factor F (θ), a sum of all atoms j in a unit cell, each with the associated phase
q · rj:

F (θ) =
∑

j

fj(θ) exp
(
−iq · rj

)
,

F (θ) ∝
∫

V (r) exp(−q · r)dτ ,

(2.6)

where V (r) is the scattering potential, and the integral is over all volume elements dτ in
a unit cell.

Consider the interaction of an electron beam with a very thin slice of a perfect cubic
crystal, a cross-section of which is shown in Fig. 2.4. As swift electrons pass through
the crystal, some of the atoms, such as those marked A and B, will elastically scatter
the beam due to the Coulomb forces. Because the incident beam (I) is coherent and
the elastic scattering at small angles does not degrade the coherence, diffracted beams
are also coherent. As a result, the scattered electrons interfere. An intense beam (D)
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is formed if the path difference for the two shown trajectories is an integer number of
electron wavelengths:

nλ = CB + BE = 2d sin θ . (2.7)

This relation is well known as Bragg’s law, and is widely applied in many fields. Here n

is the diffraction order, and d is the distance between the considered atom planes.

2.1.2 Inelastic scattering

Inelastic electron scattering can be derived in both quantum (Bethe theory [9]) and
dielectric frameworks. For brevity, only the latter is presented in this work. Ritchie
in 1957 [10] considered the transmitted electron to have a coordinate r and velocity v

when moving in the ẑ direction. Such an electron can be represented as a point charge
−eδ(r − vt) that generates within the medium a spatially and time dependent potential
ϕ(r, t) which satisfies the Poisson’s equation

ε0ε(q, ω)∇2ϕ(r, t) = eδ(r, t) , (2.8)

where ε(q, ω) is the dielectric response function of the medium. The stopping power
(dE/dz) on the transmitted electron is equal to the force in the −ẑ direction, and can be
calculated from the potential gradient in the same direction. Using Fourier transforms,
Ritchie showed that

dE

dz
= 2ℏ2

πa0m0v2

∫∫ qyω Im[−1/ε(q, ω)]
q2

y + (ω/v)2 dqy dω , (2.9)

where E = ℏω and qy is the scattering vector component perpendicular to v (Fig. 2.3(c)).
The imaginary part of [−1/ε(q, ω)] is known as the energy-loss function and provides
a complete medium response description. The stopping power can be related to the
double-differential cross section (per atom) of the inelastic scattering by

dE

dz
=
∫∫

naE
d2σ

dΩdE
dΩ dE , (2.10)

where na is the number of atoms per unit volume of the medium. For small scattering
angles dqy ≈ k0θ and dΩ ≈ 2πθdθ, giving

d2σ

dΩdE
≈ Im[−1/ε(q, E)]

π2a0m0v2na

(
1

θ2 + θ2
E

)
. (2.11)
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Fig. 2.5 Example EEL spectrum for a BN nanoparticle, further discussed in chapter 8.
ZLP at 0 eV dominates the spectrum, with plasmon loses visible from just above 0 eV
to around 50 eV, depending on the material. In this example “low-loss” and “core-loss”
spectrum regions are clearly separated by the gain change at around 150 eV. B-K, C-K
and N-K edges are labeled, with clearly visible B-K ELNES structure around 50 eV after
the onset.

Here θE = E/(γm0v
2) is the characteristic angle, where the total scattering vector q

is approximated as q2 ≈ 4k2
0(θ/2)2 + q2

min = k2
0(θ2 + θ2

E) [4], see Fig. 2.3(c). Eq. (2.11)
allows the calculation of energy loss cross sections for the angles of interest. This full
response is usually further divided into the swift electron interaction with outer- and
inner-shell electrons of the scattering atom. The former scattering events are significantly
more frequent than the latter, and are described next.

Plasmons in EELS

The dominant feature in the low-loss part of the spectrum and in EELS in general is
the zero loss peak (ZLP), which represents electrons leaving the sample with negligible
energy difference (Fig. 2.5). As the electrons are usually highly relativistic with relatively
long mean free paths, the ZLP is often much more intense than other features in the
spectrum. The next major contribution for a solid comes from plasmons. Ritchie in
1957 [10] first identified that in addition to a volume plasmon, a resonance arising from
the boundary conditions for electric and magnetic fields also contributes to the energy
loss of an electron, named the surface plasmon. The description of EELS of surface
plasmons has been derived in both quantum [11] and classical dielectric theory, which I
will briefly describe here.
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A fast electron, moving with constant velocity v along a straight-line trajectory re(t),
loses energy by doing work against the force due to the scattered electric field Esca acting
back on the electron [10]:

∆E =
∫ ∞

−∞
dtē(v · Esca[re(t), t]) =

∫ ∞

0
dωℏωΓEELS(ω) , (2.12)

where ΓEELS is the probability that electron loses energy. Because Esca is real, the
expression can be simplified by Fourier transforms of the scattered field, resulting in

ΓEELS(ω) = ē

πℏω

∫ ∞

−∞
dt Re

[
exp(−iωt)(v · Esca[re(t), ω])

]
. (2.13)

The problem is then simplified to finding the Esca. The derivation shown in [12] uses the
quasi-static approximation, where the speed of light is assumed to be infinite, leading
to instantaneous interactions. Using the Greens function solution to express the swift
electron potential, the energy loss probability is written as [12]

ΓEELS = −1
ℏ

∫ ∞

−∞
dz Im

{
ρ∗(R0, z, ω)ϕind(R0, z, ω)

}
, (2.14)

which can, assuming small angles (zω/v → 0), be simplified further to

ΓEELS = −1
ℏ

∫ ∞

−∞
dz cos

(
zω/v

)
Im

{
ϕind(R0, z, ω)

}
≈ −1

ℏ

∫ ∞

−∞
dz Im

{
ϕind(R0, z, ω)

}
,

(2.15)
where ρ is the swift electron charge density in (R, z) spatial coordinates, and ϕind is the
induced potential. Eq. (2.15) suggests that the EELS probability can be approximately
described as the projection of the imaginary part of the induced potential.

The Plasmon EEL probability in the fully relativistic case was solved by García de
Abajo [13]. In principle calculating ΓEELS is possible if, in addition to frequency-dependent
dielectric function of the material, the screened interaction (quasi-static) or Green’s
tensor (relativistic) is known for the particular geometry. However, the latter part proved
to be rather challenging for arbitrary geometries, with full analytical solutions found
only in highly symmetric cases (e.g. a solution for a sphere is given in section 3.1.1).
A range of approximate methods have been developed to calculate the probabilities for
arbitrary geometries.
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Fig. 2.6 (a) Events, necessary to create incoherent CL emission. A swift electron
approaches the material (1) and excites its volume plasmon (2) which rapidly decays into
electron-hole pairs (3). Both electrons and holes then diffuse (possibly independently,
unlike shown in the figure) to local band gap variations representing energy minima
(4), and recombine either radiatively or non-radiatively (5). (b) Local optical transition
energy (band gap) variation with arbitrary position coordinate x. Both adapted from [6].

Cathodoluminescence

Cathodoluminescence (CL) is the emission of light from a material upon interaction with
an electron. While it has been used in the past as a regular characterisation technique [14],
recently the field received a lot of attention from various nanomaterial and nanostructure
researchers. The main reason of such resurgence of interest is the ability to make the
electron probe effectively arbitrarily small, allowing probing the specimen very locally
and precisely.

Following the review by Kociak et. al [6], there are two paths for creating luminescence
from a fast electron. The first considers coherent electrostatic waves such as a plasmon
or a polariton and their decay into photons. This type of CL experiments led to the first
ever electron-based spectroscopic measurement of a plasmon [15] and continued to be an
important tool in many other plasmonic nanoparticle experiments [6, 16]. This work,
however, does not consider any coherent CL excitations, thus the interested reader is
advised to use the previously mentioned review as an excellent reference.

Chapter 7 considers CL experiments where incoherent excitations are used to probe
the specimen, Fig. 2.6. We consider the photon emission process as a series of steps,
starting with the electron inelastically scattering from the thin specimen. As shown in
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Fig. 2.5, the most likely of such scattering events occur by exciting the bulk plasmon
of the material, typically in the 20–30 eV range, depending on the material. The bulk
plasmons, with a lifetime of a few fs, quickly decay into electron–hole (e-h) pairs [17].
The charge carriers then diffuse within the material and recombine at spots that represent
local energy minima. Importantly, these minima can be intentionally engineered by
locally changing the composition of the material, or more accidental, such as point defects
in nanodiamonds [17]. If the particular location of the minimum allows radiative decay,
a photon of the corresponding wavelength is emitted [17] and can be used to measure
the relative band gap with ∼1 nm spatial resolution [6].

Inner-shell electron excitations

If the swift electrons have sufficient energy, they are able to excite one of the inner-shell
electrons of the specimen atom. Usual excitation energies are often significantly higher
than those of plasmon interactions and highly depend on the atom species. This gives a
way to measure the chemical composition of the sample with the spatial resolution of the
focused probe.

Typically, tabulated values of ionization cross sections are used when analysing data.
The most basic approximation considers neutral isolated atoms described by hydrogenic
wave functions [4]. A more accurate set of cross sections has been calculated [18, 19]
using the Hartree-Slater method.

All core-loss edges have certain features that correspond to various energy-transfer
methods. In particular, the first ∼50 eV after the edge onset are called energy-loss
near-edge structure (ELNES), marked for B-K edge in Fig. 2.5. These modulations of
the single-scattering intensity can be related to the band structure of the scattering solid.
In a one-electron approximation Fermi’s Golden Rule [20] says that the transition rate is
proportional to the final density of states ρ(E) and the atomic transition matrix M(E):

dσ

dE
∝ |M(E)|2ρ(E) . (2.16)

Intuitively, the transition matrix represents the overall shape of the energy-loss edge,
determined by atomic physics, whereas ρ(E) describes the chemical and crystallographic
environment of the exited atom. Assuming M(E) to be slowly varying with energy-loss,
ρ(E) is a local density of states above the Fermi level, allowing a direct measure of the
surrounding environment of the atom in question. As a result, different chemical bonds of
an atom can be mapped as measurable ELNES shape differences [21]. Crucially, neither
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hydrogenic nor Hartree-Slater cross section calculations take these features into account,
and they have to be modelled separately.

The measured core-loss spectrum gets more complicated with increasing specimen
thickness. As the sample gets thicker, electrons are more likely to undergo multiple
inelastic scattering, “smearing” the single scattering distribution (SSD). As noted by
Verbeeck [22], in general the measured spectrum J(E) can be viewed as

J(E) = O(E) ⊗ P (E) + N(E) , (2.17)

where O(E) is the SSD, P (E) is the point-spread function describing both multiple
scattering and the instrumental broadening, and finally N(E) is the noise term. A
number of different deconvolution approaches are present to estimate O(E) from J(E) [4],
however their application and results are often subjective and provide few ways to
estimate the result quality and validity. Instead, when analysing core-loss EELS in this
work we will use the model-fitting approach [22, 23]. It relies on having access to both
the high-loss (HL) of interest and the low-loss (LL) spectra at the same time. By using
LL as the point-spread function, the O(E) term in eq. (2.17) can be directly modeled
and J(E) compared to the measured data. Such approach not only avoids the usual
deconvolution problems, but also allows an estimate of the error for the fit results.



Chapter 3

Plasmons

Plasmonics is a rapidly growing field of interest in many scientific communities with many
potential applications, pushing our current theoretical understanding of the phenomenon
forward. A plasmon is a collective coherent oscillation of electron “cloud” in a material
and on the surface. As will be shown in Section 3.1, plasmons are highly dependent
on the dielectric surroundings and the shape of the excited particle. These properties
make plasmons promising in all applications where sub-wavelength light manipulation
is desired. The high dependence on the geometry of the nanoparticle enables potential
applications using highly localized and enhanced electric fields (such as waveguides or sig-
nal enhancement), whereas the high sensitivity to the surrounding dielectric environment
drives research in sensing applications. Here I include a brief (and incomplete) overview
of the potential applications of plasmons.

Thermal activators

Metal nanoparticles, due to highly resonant plasmon absorption at certain wavelengths,
exhibit light-induced heating that can be used to control chemical reactions with high
spatial and temporal resolution [24]. The same property is also used in medical research,
enabling killing cancer cells while not affecting its surroundings [25] or delivering drugs
in temperature-controlled shells [26].

Sensing

The plasmonic properties of a metal nanoparticle are highly sensitive to its dielectric
surroundings. In particular, refractive index variations energy shift extinction and
scattering spectral features. The sensitivity enables real-time monitoring of molecular
changes [27] and nanoparticle sensors [28].
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Molecular spectroscopy

The high-intensity local electric fields near plasmonic nanoparticles at resonant frequencies
have been used in several molecular identification techniques, such as enhanced Raman
spectroscopy [29] and laser desorption ionization mass spectrometry [30, 31], reducing
the required incident radiation multiple times.

Light concentrators

Plasmonic responses of nanorods and metal strips include surface plasmons and surface
plasmon polaritons propagating according to Fabry-Pérot resonator laws, resulting in
surface plasmon resonances. These, in turn, have the potential to be used as sub-
wavelength dielectric waveguides [32, 33]. In order to couple light to the plasmonic
waveguides, other plasmon nanostructures have been proposed to act as lenses [34, 35].

Surface plasmons clearly have applications in many diverse fields, however this chapter
focuses on the study of fundamental physics of localised surface plasmon resonances at the
nanoscale. The measurement and excitation used for the study is Scanning Transmission
Electron Microscope (STEM), more specifically electron energy loss spectroscopy (EELS),
where the electron acts as a probe for plasmons, enabling direct study of the phenomenon.
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3.1 Theoretical background

The theoretical description and derivation closely follows [12] throughout this part of the
work, so only additional references are given in the text.

Drude model and volume plasmons

When considering light interactions with matter, the material properties have to be
known. The simplest model of electrical conduction of materials is called the Drude
model, which works remarkably well for many metals.

The Drude model considers a material to be a collection of stationary ions in a “sea”
of free electrons. The electrons are considered to be independent of other electrons, and
interact only with the ions (in hard sphere collisions) and external fields. The model also
assumes that the average time between subsequent electron collisions is τ , known as the
relaxation time of the free electron gas, resulting in a characteristic collision frequency
γ = 1/τ . At room temperatures typical values of τ are of the order of 1 × 10−14 s,
corresponding to γ = 100 THz. Then for an average electron in the plasma sea subjected
to an external electric field E a simple equation of motion (not including the ion cores,
because in the model they are of infinite effective mass) can be written:

m0ẍ + m0γẋ = −ēE . (3.1)

where ē and m0 is the electric charge and mass of the electron, respectively. Assuming
the driving field has a harmonic time dependence E(t) = E0e

−iωt, a particular solution
of the form x(t) = x0e

−iωt can be shown to be

x(t) = ē

m0(ω2 + iγω)E(t) . (3.2)

The displaced electrons contribute to the polarization P :

P = −ēnx = −nē2

m0

1
ω2 + iγω

E , (3.3)

where n is the number of free electrons per unit volume. Eq. (3.3) and the definition of
polarisation can then be used to write [36]

ε(ω) = 1 −
ω2

p

ω2 + iγω
, (3.4)
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where ω2
p = nē2/(ε0m0) is the plasma frequency.

The model has to be extended for noble metals (e.g. Au, Ag, Cu) in the region
ω > ωp, where the response is dominated by free s electrons. Since the d band of the
aforementioned metals is very close to the Fermi energy, the threshold energies for the
d → s interband transitions are very small, lying in the visible or near-ultraviolet regimes.
The non-typical absorption at those energies not only results in the distinctive colours of
the metals, but also causes a highly polarized environment due to the positive background
of the ion cores. It can be taken into account by adding a new term P∞ = ε0(ε∞ − 1) the
polarisation definition, so that now P represents only the polarization (3.3) due to free
electrons, and this residual polarization is described solely by ε∞ (usually 1 ≤ ε∞ ≤ 10):

ε(ω) = ε∞ −
ω2

p

ω2 + iγω
(3.5)

By considering eq. (3.5) in transverse electric and transverse magnetic field cases [12],
the response is split into two different regimes: for ω < ωp transverse electromagnetic
waves do not propagate and decay exponentially in the metal plasma, whereas for ω > ωp

the metal is transparent to radiation, with transverse waves travelling with a dispersion
relation

ω2 = ω2
p + k2c2 (3.6)

Surface plasmon

The previous plasmon description only considered a homogeneous medium, hence is valid
only in the bulk of a conductor. If, however, there exists an interface across which the
real part of dielectric function changes sign, it will be able to support Surface Plasmon
Polaritons (SPPs)1. It can be briefly explained starting with the Helmholtz equation:

∇2E + ω2

c2 εE = 0 . (3.7)

By taking the interface to be in the z = 0 plane and with SPP propagating in the x

direction the equation simplifies to

∂2E(z)
∂z2 +

(
ω2

c2 ε − k2
x

)
E = 0 . (3.8)

1A polariton is a quasiparticle, resulting from strong coupling of electromagnetic waves with an
electric or magnetic dipole-carrying excitation, in this case a surface plasmon [37].
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Fig. 3.1 (a) Scheme of a homogeneous isotropic sphere of radius a and dielectric function
ε(ω) in a dielectric medium of dielectric constant εm in a uniform electric field E0 = E0ẑ.
(b) Electric field lines, in the case the same sphere is a conductor. Adapted from [12]

Writing out the wave equations for electric and magnetic fields along the interface reveals
that the system supports Transverse Magnetic (TM) (Ey, Hx, Hz = 0) and Transverse
Electric (TE) (Ex, Ez, Hy = 0) mode propagation. However, interface continuity require-
ments for the TE mode are only fulfilled with zero amplitudes, leaving TM as the only
allowed SPP mode, for which the dispersion relation is given by

kx = ω

c

√
ε1ε2

ε1 + ε2
, (3.9)

where ε1,2 correspond to the dielectric function of the conductor halfspace and a real
dielectric constant of the dielectric halfspace, respectively.

Localised surface plasmon resonance

If the considered geometry is finite and confined, for example a nanoparticle, the plasmon
excitations instead form non-propagating Localised Surface Plasmon Resonances (LSPRs),
with full analytical solutions only available for highly symmetric geometries [13]. As
an example, consider a homogeneous isotropic sphere of radius a under the quasi-static
approximation in vacuum (or air) (see Fig. 3.1). Due to the symmetry of the particle,
it can be described in terms of spherical coordinates. By considering the boundary
conditions at the surface of the sphere and at infinity, one can show that for an external
electric field E0 potentials inside and outside the particle can be expressed as Φin and
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Φout, respectively [36]:
Φin = − 3εm

ε + 2εm
E0r cos θ (3.10)

and
Φout = −E0r cos θ + ε − εm

ε + 2εm
E0a

3 cos θ

r2 . (3.11)

Here εm is the embedding medium dielectric constant, ε is the dielectric function of the
sphere, and r is the distance from the centre of the particle. Explicitly decomposing the
outside potential into a dipole moment p and the external field and using polarizability
α, definition of p = ε0εmαE0, this can be written as [36]

Φout = −E0r cos θ + p · r

4πε0εmr3 , (3.12)

p = 4πε0εma3 ε − εm

ε + 2εm
E0 , (3.13)

therefore allowing us to write
α = 4πa3 ε − εm

ε + 2εm
. (3.14)

The polarizability α, a complex quantity, clearly has resonances at minima of |ε+2εm|,
which can be simplified for materials with small imaginary part of ε to

Re
[
ε(ω)

]
= −2εm . (3.15)

For a sphere of Drude metal in air this relation gives a resonant frequency ω0 = ωp/
√

3.

3.1.1 Analytical EELS solution for a sphere plasmon

García de Abajo showed in 1999 [38] that a fully relativistic EELS probability for a
sphere of radius a and impact parameter b can be expressed as

ΓEELS(b, ω) = 1
ω

∞∑
l=1

l∑
m=−l

[
CEELS,a

lm Im(ial)

+ CEELS,b
lm Im(ibl)

] (3.16)

where al and bl are electric and magnetic Mie expansion coefficients, given as

al = εjl(x2)[x1jl(x1)]′ − jl(xl)[x2jl(x2)]′

ε
[
x1h

(1)
l (x1)

]′
jl(x2) − h

(1)
l (x1)[x2jl(x2)]′

(3.17)
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bl = jl(x2)[x1jl(x1)]′ − jl(xl)[x2jl(x2)]′[
x1h

(1)
l (x1)

]′
jl(x2) − h

(1)
l (x1)[x2jl(x2)]′

(3.18)

with x1 = ka, x2 = ka
√

ε, k = 2π/λ being the wave number, and jl and h
(1)
l spherical

Bessel functions and spherical Hankel functions respectively. Primes denote derivatives
with respect to the argument x1 or x2. In eq. (3.16) coefficients CEELS,a and CEELS,b are
given as

CEELS,a
lm = K2

m

(
ωb

vγ

)
1

l(l + 1) |2mNlm|2 (3.19)

CEELS,b
lm = K2

m

(
ωb

vγ

)
1

l(l + 1)

∣∣∣∣∣ c

vγ
Mlm

∣∣∣∣∣
2

(3.20)

where γ = 1/
√

1 − v2/c2 is the Lorentz factor, Km is the modified Bessel function of the
second kind, and Nlm and Mlm are given in terms of Gegenbauer polynomials Gu

n:

Nlm =

√√√√(2l + 1)
π

(l − |m|)!
(l + |m|)!

(2|m| − 1)!!
(vγ/c)|m| G

|m|+l/2
l−|m|

(
c

v

)
(3.21)

Mlm =Nlm+1

√
(l + m + 1)(l − m)

+ Nlm−1

√
(l − m + 1)(l + m)

(3.22)

By examining eq. (3.16) it can be seen that the full EELS response of a sphere can
be decomposed into an infinite collection of different order contributions (l = 1 → ∞),
each having a spectral shape of a peak. With small sphere radii (a ≤40 nm for silver)
all higher orders have roughly the same energy and increasingly smaller amplitudes,
allowing a truncation of the infinite series while still keeping an accurate spectral response.
However as the relativistic retardation effects increase, lower order peaks get broader
and redshifted, leading to higher order features becoming visible.

3.2 Simulations

For most particles of experimental interest no analytical LSPR solutions currently exist,
hence numerical simulations have to be employed in order to compare experiments
and theory. Usually such simulations rely on discretization of space or time, solving
either Poisson’s equations for quasi-static approximation, or Maxwell’s equations, if full
relativistic effects are required. Finite difference time domain [39] and discontinuous
Galerkin time domain [39] simulations have both been applied to plasmons. Other



24 Plasmons

methods, operating in the frequency domain, such as Boundary Elements Method
(BEM) [40] and Discrete Dipole Approximation (DDA), have also been successfully used
in plasmonics [41] and will be described in more detail.

Discrete dipole approximation (DDA)

The Discrete Dipole Approximation (DDA) is one of the ways to numerically solve
Maxwell’s equations by describing the volume in question as a collection of small dipoles.
The idea stems from the fact that every atom can be (to the first order) approximated as
a dipole, and hence by increasing the space discretization to sufficiently small subvolumes
the real response should be recovered. Draine and Flatau [42] established an empirical
limit when the DDA gives reasonable results: |m|kd < 0.5, where m is the complex
refractive index, k is the wavenumber of radiation, and d is the dipole spacing. For most
materials and wavelengths in question the dipole spacing (and the dipole volume) can be
appreciably larger than the inter-atomic or inter-molecular spacing, as long as the shape
of the particle is described faithfully enough (i.e. increasing the discretization does not
change the result).

At the heart of DDA is the Maxwell’s equation solution in terms of incident electric
field E, polarizations of the dipoles P and the polarizability matrix A:

E = AP . (3.23)

The polarizations are induced by the total field at the point of the dipole, which in turn
can be thought of as the sum of the incident field plus the field due to all the remaining
dipoles:

Pj = αjEj , (3.24)

Ej = Einc −
∑
k ̸=j

AjkPk . (3.25)

The Ajk is the complex relativistic Greens dyad of free space, usually expressed as

Ajk =
[
I3 + 1

k2 ∇∇
]

gjk ,

gjk = 1
4πrjk

eikrjk ,

(3.26)

with ∇ being the gradient with respect to rj, identity matrix I3, and rjk = |rj − rk|.
The trick is then to replace the diagonal elements of A, which are usually zero as the
dipole does not feel the field of itself, with α−1, which then allows us to recover eq. (3.25).
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This, in turn, can be expressed as a set of 3N equations for N dipoles. The two missing
pieces are the incident field and polarizability of the material. The former, in the EELS
case, has been shown [43] to be

E(r, ω) = 2ēω

v2γε
eiωz/v

 i

γ
K0

(
ωR

vγ

)
ẑ − K1

(
ωR

vγ

)
R̂

 , (3.27)

where hats represent unit vectors, ε the dielectric function, (x, y, z) = (R, z) due to
the cylindrical symmetry, and under the assumption that the electron does not slow
down as it interacts. K0,1 here are the modified Bessel functions of the second kind.
Polarizabilities, however, have not been expressed generally. The usual starting point is
Clausius-Mosotti relationship, giving the polarizability for dipole spacing d as

αj = 3d3

4π

ε − 1
ε + 2 . (3.28)

Further corrections and the inclusion of the radiative term have led to the lattice dispersion
relation [44], which in turn has been corrected as well [45].

While the 3N equations can be solved exactly (as far as floating point computation
allows) by matrix inversion, it is often more practical to use iterative methods, such as
conjugate gradient method, that converge to a solution with a required margin of error
much more quickly.

There are many publicly available DDA codes for light scattering, from the original
code by Draine and Flatau called “DDSCAT” [45], to openly developed “a-DDA” [46],
which is specifically optimized to make use of large computing clusters, hence allow-
ing extremely fine discretization of particles. Electron energy loss simulations using
DDA, however, have been sparser, with the Masiello group only in 2012 adapting the
DDSCAT v7.1 to simulate a swift electron and calculate energy losses [41]. We improved
their original code in our group by adding an arbitrary ambient medium, updating the
code base to DDSCAT v7.3 and enabling changes to the direction of the beam, allowing
for easier tomographic simulations. All of these codes are implemented with an additional
optimization of storing the locations of dipoles as a Fourier transform, hence decreasing
the memory required for the calculations to approximately scale linearly with the number
of dipoles, as opposed by quadratic scaling if traditional methods are used. The drawback
of this approach is that the dipoles have to be arranged on a rectangular lattice, hence
increasing the discretization requirement for highly irregular particles. This constraint,
however, is not present in Geuquet’s DDEELS [47].
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p=1 p=0.7 p=0.3

Fig. 3.2 Examples of particles, described using eq. (3.29).

The DDA formulation is advantageous when many dielectric materials have to be
simulated or the sample can be accurately described as a collection of dipolar particles (for
example dust). DDA also performs well when larger particles are considered (e.g. ca. µm
dimensions in EELS). The main drawback of this method is volumetric discretization,
leading to a rather high memory requirement, especially if curved geometries are simulated
to high accuracy.

3.3 Morphing a cube to a sphere

In Local Surface Plasmon Resonance studies using EELS spectral decomposition is espe-
cially important in order to untangle the complex responses. Indeed, many researchers [48–
51] study LSPRs not at specific frequencies, but as combinations of eigenspectra, unique
to a specific geometry. While machine-learning approaches are able to approximate such
decompositions [52, 53], curve-fitting offers a more controlled analysis that directly relates
to theory. However, optimization requires a precise mathematical formulation of spectral
features in question and even with recent breakthroughs in understanding of LSPRs,
some effects are still not fully understood for geometries where no analytical solutions
currently exist. In particular, with increasing particle sizes (due to the relativistic effects
and the finite speed of light) not all its surface is excited co-instantaneously, resulting in
“retardation”. As relativistic effects become more prominent, the spectral features become
increasingly more asymmetric and higher order resonances in the spectra become visible,
hence the usual Lorentzian approximation breaks down. Here I will empirically show
that a connection between the spectral features from a rounded cube and a sphere can
be used to extract more information from a subset of peaks in a cube spectrum, enabling
a more robust and quantitative analysis.
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Fig. 3.3 Normalised spectra of rounded cubes with edge lengths ranging from 10 nm (top)
to 480 nm (bottom) every 10 nm. Electron passes parallel to the edge of the cube in both
figures, with trajectories above the middle of a face and above two corners in (a) and (b)
respectively.

The resonances were studied by simulating electron energy loss spectra for rounded
silver nanocubes using the discrete dipole approximation code eDDA [41]. The incoming
beam energy was 300 keV in all cases. The cubes were modelled using the superellipsoid
function: ∣∣∣∣xr

∣∣∣∣2/p

+
∣∣∣∣yr
∣∣∣∣2/p

+
∣∣∣∣zr
∣∣∣∣2/p

= 1 , (3.29)

where rounding parameter values p = 1 and p = 0 give a sphere and a perfect cube
respectively (see Fig. 3.2). For realistic shapes, where the perfect nanocube is extremely
difficult if not impossible to manufacture, the smallest value of p = 0.255 was used.

To first examine how spectra change with increasing relativistic effects, EELS responses
of cubes with edge lengths ranging from 10 nm (top) to 480 nm (bottom), as shown in
Fig. 3.3, were calculated. The two shown trajectories are (a) with the electron passing
over the middle of a face and parallel to an edge, and (b) parallel and over the edge. In
all cases the trajectory was 10 nm above the closest points of the particle. It was shown
recently [52] that the strongest cube LSPRs can be considered as three different modes
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located at corners, edges and faces respectively, with multiple symmetry-constrained
orders in each. According to that interpretation, the lowest energy (∼3.3 eV) features in
the top spectra in the figure are the cube corner modes, with higher (up to third) order
features becoming visible at similar energies as the cube size (and hence retardation
effects) increase down the plot. The third order (octupolar) cube corner mode is forbidden
by symmetry of the electron trajectory in Fig. 3.3a and is not visible. Peaks emerging
at around 3.5 eV and then redshifting with increasing particle sizes, are associated with
cube edge modes. Finally, spectral features just below 3.7 eV and then redshifting were
shown to be located on the faces of the cube. All spectra in the figure are normalized,
so changing relative strengths of different features are also affected by the time the
swift electron spent in the vicinity of the particular plasmon. For example, as the cube
dimensions increase (towards the bottom spectra) in Fig. 3.3a, the time for the electron
to pass over the perpendicular edge plasmons gets increasingly smaller, when compared
to the time required to pass over the face plasmon, hence the “edge” peak gets less
pronounced, whilst the “face” mode becomes dominant. It is important to note that for
edge and face modes, higher than third orders are present but difficult to distinguish,
whereas the corner mode only has the three orders, which are relatively easy to visually
identify if relativistic effects are prominent.

Given the parametric form of particle shape and the ability to calculate spectra for
arbitrary geometries, further EELS simulations changing the rounding parameter were
performed. Fig. 3.4 shows results where the previously considered rounded cube (top)
was smoothly changed to to a perfect sphere (bottom) with particles having 100 nm
edge or equivalent. With the sphere (bottom) spectra being described by eq. (3.16), it
suggests that the dipolar (l = 1), quadrupolar (l = 2) and octupolar (l = 3) orders of
the sphere red-shift with decreasing rounding parameter to become dipolar, quadrupolar
and octupolar cube corner modes (the dipolar cube peak is out of the energy range of
the plot). As the cube corner modes do not have an analytical solution and represent
an important part of a nanocube EELS response, the apparent relation with the sphere
solution gives a handle to better deal with those spectral features.

To further explore the correspondence between cube and sphere modes, the first
order cube corner mode peak shape with increasing particle size was investigated and
compared to the evolution of the first order sphere mode EELS peak from eq. (3.16).
Both features were analysed using a Lorentzian fit to extract peak positions and FWHM
values. The change in FWHM and relative energy shift are plotted in Fig. 3.5. The
lowest energy peaks for both a rounded cube and a sphere are shown to be similar in
shape up until higher order cube peaks stop overlapping at around 50 nm particle size,
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b

Fig. 3.4 Spectra of particles with rounding parameters changed from p = 0.255 (top)
to p = 1 (bottom) with electron passing (a) over the middle of the face parallel to an
edge and (b) over the edge and parallel to it. All particles have the maximum dimension
in the electron trajectory direction of 100 nm. The two spectra for perfect spheres are
different due to different impact parameter of the beam in each case.

and the Lorentzian fit becomes worse. The procedure also displays the already mentioned
fundamental problem - for larger particles the spectral features become increasingly
asymmetric and require a different functional form to model them.

3.4 Fitting sphere solutions to cube simulations

The strong similarities between the low order sphere and cube corner modes suggest
that it is possible to use the sphere spectral lineshapes (eq. (3.16)) to model the cube
corner modes that cannot be accurately described by Lorentzian functions. Fig. 3.6 (a,b)
show the results of fitting simulated EEL spectra for two trajectories for 100 nm silver
rounded cubes to dipolar, quadrupolar and octupolar sphere modes, calculated using
fully retarded Mie theory, plus two Lorentzian function for the edge and face modes.
The free parameters for the sphere modes were a global redshift and sphere radius. In
addition, each mode has an independent scaling (area) parameter. It is important to
note that the sphere lineshape fit is more constrained than just a collection of three
Lorentzians, as the first (dipolar) mode has 3 free parameters (just like a Lorentzian
would), but every subsequent sphere mode adds only a single free parameter (area). The
energy difference and widths of different sphere modes were completely described by
the radius of the “effective” sphere. Fig. 3.6 (c) shows an equivalent model for a 10 nm
rounded cube. In Fig. 3.6 (d) the estimated sphere diameter parameters as a function of
cube edge lengths in the 10 nm to 100 nm size range is plotted.
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Fig. 3.5 (a) FWHM and (b) change in energy with increasing particle size for the first
corner mode of the cube (circles) and the dipole mode of the sphere (line). The values
were calculated using a Lorentzian fit. As the retardation effects become increasingly
more important, both spectral features become asymmetric and higher order modes stop
overlapping, leading to poorer Lorentzian fit.

As can be seen from the Fig. 3.6, the cube corner modes can be fitted rather well using a
truncated spectrum of a similar-sized sphere. This enables us to both extract quantitative
information about the shape of the cube from its spectrum (i.e. an approximate edge
length) and better separate out other, for example edge, cube modes that start to overlap
when significantly redshifted and therefore difficult to analyse.

Whilst the presented work is purely empirical, there exists a link between the spherical
and cubic plasmon modes from theoretical considerations. García de Abajo showed in
1999 that the EEL response from a sphere can be described using sums of the spherical
harmonics [38]. In 2012, Boudarham and Kociak derived the local density of states,
a quantity that is closely related to the plasmonic response, and EEL probability
descriptions in terms of the “geometric modes” that are described by the shape of the
considered particle alone [43]. We speculate that the rounded cube, considered in our
work, should have a geometric mode expansion describing the simulated EELS, which
is closely related (via the symmetry) to that of a perfect cube. Furthermore, in 1965
Altmann and Cracknell showed that the cubic harmonics can be expressed in terms of the
spherical harmonics [54], thus providing us with the link between spherical and rounded
cube plasmon modes.
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Fig. 3.6 Fitted EELS spectra of (a,b) 100nm and (c) 10nm edge length rounded silver
cubes with the electron beam 10nm above the surface. Separate fitting components
have been highlighted. In (a,b) the particle is sufficiently large to see retardation
effects: the lowest energy component can be approximated only with at least two (three)
spherical modes when the electron passes above the face (edge) of the cube. The octupole
component (highlighted in b) is forbidden by symmetry for the face trajectory. In (d)
“equivalent sphere diameter” versus the rounded cube edge length is plotted. A straight
line with gradient 1 is shown to guide the eye.





Chapter 4

Large Multi-dimensional Data
Analysis

With the best electron microscopes already pushing the spatial resolution beyond 1 Å,
the analytical electron microscopy (EM) field is beginning to aim for not only increased
accuracy and sensitivity, but also at probing more dimensions over larger fields of view.
This will inevitably mean two things. Firstly, measuring micron-sized regions with
sub-nanometer resolution will undoubtedly reveal new and exciting science, and help
apply the full power of EM in many fields that were previously limited to measuring
relatively small sample areas. The access to fine detail over large areas will offer previously
inaccessible insights based, for example, on much improved statistical analyses of the
specimen. Secondly, the size of the datasets will grow beyond what many conventional
data analysis and tools are currently capable of handling.

In the following section I will briefly introduce two Analytical Imaging techniques
that offer the most promise for large multi-dimensional data, and then explain them in
more detail in sections 4.1.1 and 4.1.2. Section 4.2 will discuss the most common current
and yet-to-be-encountered issues with these methods.

4.1 Analysis techniques

Having been used throughout the sciences [55–58], model fitting (described in more detail
in Section 4.1.1) is arguably one of the most versatile analysis methods to date. Its
huge success and analytical power can be credited to its ability to define a mathematical
expression and then find the parameter values (often the constants in the expression) that
match it to the data. This flexibility is however a two-sided coin – the method greatly
benefits from, and relies on, previous knowledge, for example in the form of a theorem
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describing the phenomenon. Fitting is also able to provide a direct link to the data,
enabling comparison of the two, and extracting direct physical results. However, if no
assumptions are made about the data or its origins, model fitting becomes significantly
less useful. In the end, both the results and their interpretability relies heavily on the
“set-up” of fitting analysis.

On the flip side, in some cases it is advantageous to not assume any knowledge of the
data and avoid bias as much as possible. While the relevant mathematical formalism
has been known for over a century [59], machine learning (ML) methods for EM data
analysis have only been used extensively over the last decade. The reasons for this are
twofold: first, relatively powerful and high-memory computers (historically speaking) are
required to perform the calculations for typical microscopy datasets at reasonable times.
Secondly, the general rule is that the more data the algorithm has to learn from, the
better the end results are. However, before the modern computer era both performing
sufficiently data-rich experiments and storing the said data were significant challenges.
While machine learning is introduced in more detail in section 4.1.2, in essence the
commonly used methods learn a model (components) by looking at all the data, and
then calculate their respective weights. This allows extracting significant information
that is simply not available from any one individual measurement, making it inaccessible
to model fitting.

4.1.1 Model Fitting

The model fitting analysis requires making a series of decisions that highly influence the
end results. This requires inserting previous knowledge into the process, allowing for a
path for human bias. Also, when the datasets become very large, the final result often
consists of a set of discrete smaller fits that are not ensured to be consistent with each
other. This requires reviewing and rechecking the validity of these results, which is rarely
done either automatically or manually. Nevertheless, a brief overview of the required
steps will be given in the following sections.

Defining the model

When fitting, the first and often most important step is assigning a mathematical
description to the data. It sets out what will be measured and thus should be chosen
carefully. Fortunately, many different approaches can be taken, ranging from highly
theory-based to data-based. A list of examples follows.
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A full simulation of the system could be performed for every optimization step, in
the end resulting in a fully coherent simulation model of the physical system. Such an
approach, however, is often time-prohibitive due to the computational costs for most
systems in question. If the phenomenon has a theoretical solution in the form of an
equation [38], it can be used to recover the physical parameters of the measured system,
allowing a comparison of physical and theoretical systems directly. Section 3.4 shows
an example how this can be achieved even when the assumed and real systems do not
match exactly, and are only used as approximations. Conversely, often the quantity of
interest can be seen directly in the data, and the model is used only to measure it, for
example the area under the curve. In such cases the functional form of the model does
not matter, as long as it matches the data shape well [60, 61]. Finally, sometimes it is
necessary to quantify the relative change of a measurement across the dataset. In such
cases the full model consists of a datum and functions that perturb or modify it, as will
be shown in Section 9.1.1.

Generally, the least complex model1that measures the required quantities should be
picked to avoid over-fitting [60, 62]. Here model “complexity” should take into account
its computational cost, interpretability, and how difficult it is to optimize.

The optimized cost function

Once a suitable model (or a family thereof) is decided, an optimization cost function
has to be defined. The cost function is the measure that enables calculating how well
the model represents the data. For most optimizers it should be a smooth, preferably
analytically differentiable function that represents a best fit at its extrema (minima or
maxima).

Traditionally the most common and general cost function is the sum of least squares
of deviations of the model from the data [60, 66]:

S(β) =
m∑

i=1

[
yi − f(xi, β)

]2 (4.1)

where f(x, β) and β are the model and the parameter value vector respectively, and the
data is described by (x, y). This so-called least-squares cost function promotes models
that match the data values as closely as possible, and is a suitable choice for many
optimization problems.

1As determined by one of Pearson’s χ2 test [63], Akaike’s Information Criterion (AIC) [64] or Bayesian
Information Criterion (BIC) [65]. Discussed in more detail in section 5.2.3.
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If the model can be interpreted as a probability distribution, a different cost function
is often preferred. In such cases the goal is to find the probability distribution of the
underlying mechanism that produced the data, and not just match the data itself. The
maximum likelihood [60, 67] is a better-suited measure to optimize such models. Putting
it simply, the maximum likelihood represents how likely the (probabilistic) model will
result in the data distribution that was measured, which may differ from the solution
given by optimizing the least-squares function.

The optimizer choice

Depending on the cost function being linear or non-linear with respect to the model
parameters, a linear or non-linear optimizer has to be used. Linear optimization presents a
significantly simpler problem, since the cost function by definition has only one minimum,
which in some cases allows calculating a closed-form solution analytically [68]. The largest
drawback is the linearity requirement, which greatly reduces the number of problems
that can be tackled. As a result, even though linear optimization is routinely used for
very simple problems, it is not the subject of this work as thus will not be discussed
further.

Non-linear optimizers, conversely, are able to deal with any models and cost functions
to find a good, but not necessarily best, match to the data. The effect is often named
the “local” or “false” minima problem, and is the reason why care should be taken when
picking the starting parameter values. All non-linear optimizers are iterative, meaning
they look for the solution by searching the parameter space in the neighbourhood of the
current guess. Consequently, the optimizer is able to get stuck in one of the local minima,
failing to find the best fit. Due to the nature of this search process, the starting guess is
often as important as a correct model for the data. A subset of non-linear optimizers
that perform the so-called “global optimization” are able to go around this problem at
the cost of significantly increased computational load [69].

A number of factors should be considered when deciding upon the choice of the
optimizer. The ability to constrain the allowed parameter space, while requiring to know
the viable parameter bounds beforehand, often eases the global solution search [66, 70–
72]. Some optimizers also support assigning weights to the data, allowing better fits to
be found if some data quality estimation is available (for example the variance of the
data) [73]. Finally, due to the wide use of common cost functions (the best example
being the least-squares), there are optimizers that perform these calculations faster and
more robustly at the cost of not being general [66, 74].



4.1 Analysis techniques 37

4.1.2 Machine learning

Machine learning is a subfield of computer science that has recently received much
attention from both the academic community [75] and industry [76]. In practical terms,
ML attempts to solve tasks where hand-crafting a suitable function or model is unfeasibly
complex, for example defining all rules how to distinguish a chair in an image. By
letting the computer figure out the necessary generalisations and rules, many previously
nearly impossible tasks become approachable. The main machine learning program
characteristics have been succinctly defined by Tom Mitchell [77] as:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T ,
as measured by P , improves with experience E.”

Various branches of ML have been successfully used to solve a host of different problems,
from drug discovery [78] to creating new pieces of art [79, 80]. Nevertheless, while the
field is indeed exceptionally diverse, it can be split into several categories based on what
kind of information is available for the algorithm to learn from:

• Supervised learning considers algorithms that can learn from examples with
known desired outputs. By generalising the knowledge encoded in the given
examples, the final model is then able to predict the outcome for previously
unseen input parameters. Best known supervised learning algorithms include spam
filters [81] and handwritten digit recognition [82].

• Unsupervised learning considers ML algorithms where the desired output is
either not known to begin with, or just not available when learning. The goal is
to find any hidden structure in the raw supplied data. Examples of unsupervised
learning include feature learning such as Independent Component Analysis and
Non-negative Matrix Factorization (both discussed in more detail later) or anomaly
detection [83, 84].

• Reinforcement learning algorithms are different to the two previous classes
because instead of directly accessing the data, they continuously interact with a
system to achieve a long-term goal. Usually such problems offer no ways to estimate
the correctness of moves while the interaction occurs, and the success can only be
determined at the end, for example when playing games [76, 85] or even recognising
images [86].
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• Semi-supervised learning is the area between supervised and unsupervised
learning. It considers algorithms where just a small subset of total available data
is labeled with known correct answers. Such datasets are generally common: for
example millions of hours of audio recordings are easily available, but labeling each
piece requires significant human effort. Semi-supervised learning algorithms are
used, amongst other examples, for image recognition [87] and text classification [81].
SAMFire, presented in chapter 5, can be considered to be a semi-supervised machine
learning algorithm.

Alternatively, ML methods can be divided into groups based on the expected out-
come [60]. Classification algorithms divide the inputs into two or more known classes.
These are normally tackled in a supervised way. If the classes are not known beforehand,
the process is done in an unsupervised manner, and is called clustering. Regression algo-
rithms, on the other hand, output a continuous function instead of (known or unknown)
discrete classes. Finally, dimensionality reduction algorithms simplify the given data by
mapping it into a lower-dimensional space.

With such a diverse field it is useful to concentrate on ML branches that are widely
used for electron microscopy data, in particular regression and dimensionality reduction.
The former, in the simplest form of curve fitting, has already been described in the
previous section. The latter will be discussed as a combination of data compression and
mixed signal unmixing (“blind source separation”).

Machine learning for EM data

The goal of dimensionality reduction procedures is to give means to reduce the rank of
the tensor representing the data: X [n] ≈ X ′[m], where X and X ′ are the original and
compressed tensors of ranks n and m respectively, with m < n. Principal Component
Analysis (PCA), the most often used dimensionality reduction method in EM, does
this by transforming the data tensor in such a way that it is possible to easily discard
the irrelevant information. With the original idea published in 1901 by Pearson [59],
according to Tipping and Bishop [88] the most common definition of PCA is as follows:

T = XW (4.2)

with X being the original data of n measurements each with f features, and W an
orthogonal linear transformation. W is picked such that the greatest variance of T

lies on the first coordinate (the first principal component), the second greatest on the
second, and so on. Even though T is still of identical rank as the original X, W can be
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Fig. 4.1 Visualization of Principal Component Analysis (PCA) decomposition. In (a)
two mixed distributions are shown in blue, orange arrows indicating PCA-computed
component directions. (b) shows the PCA-unmixed values. Due to the components
always being orthogonal, the unmixing is not complete.

truncated to some number m with m < n, leaving only m most significant components,
and reducing the dimensionality of T .

The clear statistical interpretability of each component significance is one of the
main appeals of PCA, allowing components that do not contain statistically significant
information, such as noise, to be discarded. In fact, due to the requirement that principal
components (the transformation axes) are orthogonal, often individual components are
not physically meaningful, and de-noising [89] is the main use of PCA in EM. Fig. 4.1
shows an example PCA decomposition for mixed two-dimensional observations. While the
first PCA component direction can be seen to roughly correspond to one of the “clouds”,
the second component is constrained to be orthogonal and hence still corresponds to a
mixture of sources.

The second reason PCA is widely used concerns the computational effort to calculate
the transformation. In particular, Singular Value Decomposition (SVD), a highly opti-
mized [90, 91] matrix factorization method used in a wide array of fields, provides a very
useful way to compute PCA [92]. The SVD theorem states that for a real or complex
n × f matrix X there exists a factorization such that

X = UΣW ∗ (4.3)
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NMF

=×

Original

Fig. 4.2 NMF learns a parts-based representation of faces from the original dataset. A
particular face instance, shown at top right, is approximately represented as a linear
superposition of basis images. The basis image matrix is shown on the left, and their
coefficients in the middle. Adapted from [93].

where U is n × n unitary matrix, Σ is a diagonal n × f matrix with non-negative real
numbers on the diagonal, and W ∗ is a f × f unitary matrix. By substituting eq. (4.3)
into eq. (4.2) we get that T = UΣ, and hence efficient SVD algorithms allow fast PCA
estimation.

Non-negative Matrix Factorization (NMF) is an often-used ML algorithm that does
both compression and unmixing of the data at the same time [93, 94], Fig. 4.2. It is
defined such that the original matrix X can be approximated by a product of two non-
negative matrices W and H , each of possibly significantly lower dimensions. Calculating
the factor matrices can be done in a number of ways by using different cost functions
when measuring how well the product represents the original matrix. Since the problem
is significantly under-determined, usually some other constraints (in addition to non-
negativity) are imposed on the factor matrices, for example, sparseness. One major
appeal of using NMF on EM data comes from the requirement that the factor matrices
are non-negative, which is not present for PCA. However, NMF is usually significantly
more expensive to compute and requires guessing (or otherwise estimating) the number
of components to keep for subjectively good results.

Independent Component Analysis (ICA) is arguably the most often used pure “blind
source separation” algorithm for EM data. As mentioned before, the algorithm aims
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Fig. 4.3 Visualization of Independent Component Analysis (ICA) decomposition. In (a)
the mixed data is shown in blue, while orange and red arrows indicate PCA and ICA
component directions respectively. (b) shows the ICA-unmixed data by projecting the
raw values on the estimated component directions

to separate the dataset of mixed signals into its individual, statistically independent
contributions [95]. The two ways that the statistical independence has been defined for
ICA is (i) the minimum of mutual information (defined as the amount of information
that is obtained about some random variable by measuring a different one [96, 97]) and
(ii) non-Gaussianity. The second criterion comes from the Central Limit Theorem, which
states that under certain, often seen, conditions, when independent random variables are
added, their sum tends towards a normal (Gaussian) distribution even if the variables
themselves follow other distributions [98].

The most common mathematical form of ICA for noise-free data is identical to that
of PCA, but with different constraints of W – it does not have to be orthogonal, and is
instead calculated by minimizing the mixing according to one of the measures. Fig. 4.3
shows an example ICA unmixing. The data is shown in blue, while orange and red
arrows correspond to PCA and ICA component directions respectively. Once the data is
projected on the ICA components, the two sources are unmixed in Fig. 4.3(b).

While there are ICA algorithms that are able to deal with noisy data, the problem
offers few shortcuts, and thus is quite difficult to solve. To remedy this and allow more
practical use of the ICA algorithms, the data is usually pre-treated using PCA and
truncated to only include the mixed orthogonal significant components. Since modern
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implementations of SVD (and hence PCA) are exceptionally fast, it has become the
standard procedure in EM data blind source separation analysis.

4.2 Common Issues

Many scientific fields have already experienced the so-called “data explosion” in the past
decade [99], which both accelerated their growth and increased the importance of data
analysis. Electron microscopy, currently only at the beginning of the phenomenon, is
in a prime position to utilize tools that have emerged from other analytical imaging
communities, and also learn from their mistakes.

This section will briefly describe two issues the EM field has already encountered or
will encounter when performing data analysis, with proposed solutions.

4.2.1 Opening and manipulating the data

The first issue that the data explosion has already caused and that will likely become more
severe, is not being able to open the data in the usual way on a personal computer. This
limitation comes from the architecture of both most commercially and freely available
software packages. Upon the instructions to open a file from the hard disk, the software
attempts to decompress and lay out all the information of the dataset in the available
computer memory [100, 101]. This is the best approach for performance if the datasets
are just a small fraction of the available memory, as they have been for the past decade.
However, as the data sizes grow beyond the available computer memory, it quickly
becomes very limiting. It is not difficult to imagine the frustration of a scientist who is
not able to access results just because there are too many of them! Moreover, very few
data analysis approaches are able to perform in-place2.

There are different ways to avoid or at least delay these problems. The obvious one
involves using high-memory dedicated supercomputers. Its significant disadvantage is the
cost of such facilities, which may serve as a detriment to performing high data volume
experiments. An alternative way to delay this hardware limitation involves compressing
the data while performing the experiments, for example with PCA-like algorithms [102–
104]. This would significantly reduce the data volume while simultaneously de-noising it,
albeit being subject to compression artefacts that may hide interesting parts of the data.
Nevertheless, if a particular algorithm is able to extract the required features truthfully,
such an approach is worth considering.

2Not requiring significantly more memory than that of the data to perform the computations



4.2 Common Issues 43

x

y
ΔE

Fig. 4.4 Visualization of a STEM-EELS datacube. Adapted from [107]

An altogether different solution to the data size problem will be shown in Chapter 6.
It involves treating the data as a collection of “chunks” (each of which easily fit in the
computer memory) and the concept of “lazy computation”, where operations are not
performed immediately [105, 106]. Instead, a list of operations is stored, similar to writing
down equations to be calculated on a sheet of paper. Only when (and if) a particular
result is required, are all the required computations run. If the data loading is treated as
one of the lazy operations, this combination allows most conventional data analyses to
cease being memory-limited. The main examples where this approach does not work are
the machine learning compression algorithms. In these cases, the original algorithm has
to be replaced by an “online” version - one, where each row or column of the total data
tensor is only visible to the algorithm one by one and without the resources to record
them for later re-use.

4.2.2 Starting guess

The second issue for much-larger-than-traditional datasets concerns non-linear fitting.
For illustrative purposes I will use examples from electron microscopy, but the described
problems and solutions can be applied in other fields that use similar data structures
(tensors).

Many large EM datasets are some form of mapping across dimensions, for example
STEM EELS [4]. In such experiments the electron beam is focused to a small (often
sub-nm) spot, which is then raster-scanned over the surface of the specimen, with a full
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electron energy loss spectrum measured at every position of the scan. The result is a
three-dimensional data tensor, with two dimensions for space (corresponding directly
to the points on specimen) and one for energy, recording all the electron interaction
information, as illustrated in Fig. 4.4. In order to analyse such data using curve fitting,
each of the spectra has to be fitted independently, so the optimizer is only given access
to one spectrum at a time. This presents opportunities and challenges: the order in
which the spectra are passed to the optimizer and the starting parameters for each of the
fits are left to the implementors of the algorithms. At this point it is worth reminding
the reader that the starting guess is of paramount importance to the convergence and
correctness of the fit result [58], as was stressed in section 4.1.1.

Most of the currently available non-linear optimization implementations, when given
such a multi-dimensional data tensor, aim to run fast by doing as little as possible. The
algorithms access the spectra in the order they are stored in memory (i.e. raster-order),
and either always use the same starting guess, or re-use the end result of the prior
spectrum. This approach implicitly results in starting guesses that are either constant
by definition, or highly dependent on the order the spectra are stored on the hard disk,
which clearly has no bearing on the data it contains. If the dataset is relatively simple
and less sensitive to the starting guesses, these approaches indeed result in the fastest
non-parallel way to analyse such data. However, many specimens of interest (and hence
datasets) are sufficiently complex that the fast-access algorithm results contain numerous
errors. With the data sizes growing rapidly, such errors increase in both number and
proportion (due to more significant variations of information across the larger datasets),
thus increasing in difficulty for the scientist to correct them.

In Chapter 5 a new Smart Adaptive Multi-dimensional Fitting algorithm “SAMFire”
is proposed to significantly increase the robustness of starting guesses and ease such
non-linear analysis. Instead of re-using the last result, SAMFire attempts to estimate the
best starting guess and its confidence for each spectrum, based on all already-finished
fits at the time, learning the starting guesses in a semi-supervised way. It analyses the
dataset in the order that maximises the convergence for each subsequent spectrum and
has in-built Goodness of Fit (GOF) tests to re-run the failed fits once more information
for the starting guess estimate is available.



Chapter 5

Smart Adaptive Multi-dimensional
Fitting (SAMFire)

Fitting is one of the most often encountered analysis techniques, especially when spectra
are considered. It is able to provide a wealth of information about data if the observed
phenomena can be accurately described by a mathematical model. Many analytical imag-
ing fields use similar methods on a regular basis: integral field spectroscopy [108, 109] at
the astronomical end, cathodoluminescence, electron energy-loss and other spectroscopies
at the nanoscale. However, as shown in Section 4.2.2, most of the currently available
non-linear optimization algorithms approach the fitting problems in a non-optimal way
partly due to historic reasons. While it did not pose a significant problem just a few
years ago, as the size and number of dimensions of a typical datasets increase and the
specimens become more complex, better algorithms have to be found.

An illustrative example of the general problem is given in Section 5.1, with the
proposed method of solution and its implementation in Sections 5.2 and 5.3 respectively.
Finally, synthetic example datasets are analysed in Section 5.4.

5.1 Motivation

As shown in Section 4.1.1, model fitting requires making a number of steps that influence
the end results. For the purposes of the example let us assume that the exact model
is known, and choose to use the least-squares cost function (eq. (4.1)) and Levenberg-
Marquardt [110] optimization algorithm (LMA).

LMA, like almost every other numeric minimization algorithm, is iterative. The
search for a solution starts with a vector of initial guesses for parameters (β), which is
replaced in each iteration with a new estimate β + δ. The δ is determined by linearly



46 Smart Adaptive Multi-dimensional Fitting (SAMFire)

approximating the model f(xi, β) in the vicinity as a Taylor series:

f(xi, β + δ) ≈ f(xi, β) + Jiδ (5.1)

with Ji being the gradient:
Ji = ∂f(xi, β)

∂β
(5.2)

By combining this approximation with eq. (4.1) we can write the cost function S(β) as

S(β + δ) ≈
m∑

i=1

(
yi − f(xi, β) − Jiδ

)2 (5.3)

or, in vector notation and expanded for clarity

S(β + δ) ≈ ∥y − f(β) − Jδ∥2

= [y − f(β) − Jδ]T [y − f(β) − Jδ]
= [y − f(β)]T [y − f(β)] − [y − f(β)]T Jδ − (Jδ)T [y − f(β)] + δT JT Jδ

= [y − f(β)]T [y − f(β)] − 2[y − f(β)]T Jδ + δT JT Jδ ,

(5.4)
where the two-norm is defined as ∥x∥2 = x2

1 + x2
2 + . . . + x2

n. The derivative of eq. (5.4)
with respect to δ is zero at the minimum value of S, giving

(
JT J

)
δ = JT [y − f(β)

]
(5.5)

where J is the Jacobian matrix, making eq. (5.5) a set of linear equations to be solved
for δ. Eq. (5.5) is also known as the Gauss-Newton method for approximation, and is the
starting point for LMA [111]. Levenberg’s contribution was to replace it by a damped
version: (

JT J + λI
)

δ = JT [y − f(β)
]

(5.6)

with I being the identity matrix. The damping factor λ is adjusted at each iteration
to increase or decrease the reduction of the residual S. Marquardt followed by noting
that scaling each component of the gradient according to the curvature (JT J) avoids
slow convergence in small gradient direction. He replaced the identity matrix I with a
diagonal matrix, consisting of the diagonal elements of JT J , completing what is now
known as the Levenberg-Marquardt algorithm [110]:

(
JT J + λ diag

(
JT J

))
δ = JT [y − f(β)

]
(5.7)
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In fact, most non-linear optimizers search for optima in a very similar way by traversing
the parameter space. The major differences are the criteria for choosing the direction and
step size [91]. In Fig. 5.1 a two-dimensional cost function landscape is shown for a model
consisting of Gaussian and Lorentzian curves. The goal of the optimizers is, starting
from the starting guess (SG1-3), to make a series of steps δ (shown as grey lines) to find
a stationary point, which will hopefully be the global minimum (GM). Optimization
paths for a number of different algorithms are shown, with all of them eventually finding
just the local minima (LM1-3). Clearly, if a better starting guess was given, any of the
optimizers would have been able to find the correct solution. Such behaviour is often
called the “local minima problem”.

While there are many different optimizers that search the parameter space for the
optimum, the practical problem that most researchers face is different: finding the global
minimum is trivial if the user starts the search close to the true value, often easy to set
by hand. The difficulty arises when a typical dataset consists of thousands or more of
such “pixels” (spectra in this example) that span many dimensions and have to be fitted
individually—supplying the starting parameters by hand ceases to be viable, and an
algorithmic approach has to be found. However, as shown in Section 4.2.2, the currently
available algorithms are not suited to tackle such data. While the optimization methods
continue to improve [115], little attention is paid to finding the optimal ways to apply
these methods to datasets that are not analysed all at once.

The SAMFire (Smart Adaptive Multi-dimensional Fitting) algorithm eases the task of
fitting datasets that suffer from the aforementioned local minima problem by automatically
generating starting parameters from successfully fitted parts of the data. SAMFire
significantly decreases the effort to analyse large datasets by requiring a fit to only a
few pixels as “seeds” from which the algorithm automatically learns. Extensive result
validation ensures only sufficiently good fits get propagated while the SAMFire operates,
further increasing the method robustness. It has already been used for large multi-
dimensional fitting problems with highly successful results [116].

5.2 Method

The SAMFire algorithm operates by using structures and patterns in data to predict
both the order the fits should be performed in and the likely candidates for the starting
parameters, which are then passed to an optimizer. Currently there are two strategies in
SAMFire, both described in the subsequent sections. By creating an analysis workflow
that consists of a chain of such strategies, each exploring different structures, the algorithm
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Fig. 5.1 (a) The optimization landscape when fitting the same data and varying just
two parameters. Global minimum (GM) and local minima (LM1-3) are marked by
red circles. A number of different optimization algorithms (Nelder-Mead Simplex [112],
Levenberg-Marquardt’s [110], Powell’s [113], Polak-Ribiere’s [114] and L-BFGS-B [72])
were given three sets of starting guesses (SG1-3). Their convergence towards local minima
is shown: each step δ for each algorithm is shown as a grey line, with resulting β marked
as grey dots. (b) Global minimum and (c-e) local minima fits, corresponding to the red
circle marks in (a). The constant data is shown in red, with the corresponding fits in
black.
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Fig. 5.2 A toy example of local parameter estimation. Fitted pixels are shown as boxes
with the parameter values written in them, with distances to the central pixel marked.
The inverse of the distance is used as weight when calculating the average.

enables a robust fitting of the datasets that would be extremely time-consuming and
difficult—if not impossible—to fit using traditional methods [70]. All fits are checked by
a user-optimized goodness of fit (GOF) test, so only valid points are allowed to propagate
while SAMFire explores the dataset. In addition, SAMFire is able to use the GOF tests
to determine if all components are required to fit a particular pixel and “switch off” the
unnecessary ones, allowing for robust fits even with overcomplicated models.

5.2.1 Local strategy

Often multi-dimensional datasets that have to be fitted exhibit local similarity of pixels,
which occurs naturally if the data were measured with a finite resolution. Examples
include electron microscopy, astronomy, remote sensing and most other analytical imaging
techniques. In these cases all fine features below the resolution limit get blurred [117], and
the data exhibits a locally smooth landscape in the multi-dimensional space. SAMFire
uses this structure to estimate how much fitting information is available about each point
from its location. For example, if the fitted values for pixels surrounding a central pixel
are already known, in most cases the values for the unknown pixel can be confidently
predicted by just averaging with weights that decay with distance from the unknown pixel,
for example inversely proportional to the Euclidean distances between pixels, Fig. 5.2.
Such weights lessen the smoothing effect of the mean, allowing to follow the distribution
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(a) (b)

Fig. 5.3 (a) The order SAMFire fits pixels based on previous results. Better fits guide the
algorithm to follow the underlying dataset structure, significantly increasing the chance
of convergence. (b) conventional pixel fitting order.

more closely. GOF tests can act as a way to estimate the confidence in the fit results,
providing additional useful information.

To combine these two criteria for all fitted pixels and use the local average, SAMFire
assigns a scalar value that is high near better fits and decreases with distance. Such
behaviour is present in natural phenomena such as gravity or electrostatics, hence the GOF
measure can be interpreted as a positive theoretical “charge” (or “mass”) w, associated
with each pixel. By calculating the corresponding “potential” at unfitted pixels, it is
possible to express the relevant knowledge by a scalar. The following expression can use
any spatial decay function f(r), which in gravity and electrostatics would be f(r) = 1/r:

P = Pj =
∑

i

Pij =
∑

i

wif(rij) , (5.8)

where i spans all fitted pixels, Pj is the potential at point j, and rij is the distance
between i and j. When analysing real data, parameter smoothing in the spatial domain is
often detrimental to the results, thus SAMFire performs better with f(r) decaying faster
than previously suggested classical examples. Because the exact form of the function
does not matter, in the real implementation f(r) = e−r, is used by default.

P can be crudely interpreted as the measure of the useful available information, and
once calculated, the optimal pixel order to fit the full dataset can be trivially looked
up by always selecting the pixel with the highest current value of P . If P is updated
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after every fit, the optimizer can just follow the highest values until the full dataset is
processed.

To calculate the average for the starting guess of each new pixel, the algorithm uses
the individual P contributions of the fitted pixel as weights:

αj =
∑

i αiPij∑
i Pij

=
∑

i αiwif(rij)∑
i wif(rij)

, (5.9)

where j is the pixel of interest, i spans the previously fitted pixels, and αi is any fitting
parameter at i. With the exponential decay function it is often practical to specify a
“cut-off” radius rc to speed up the computations by considering much fewer points. Then
only pixels i for rij ≤ rc are used in estimation. The overall approach provides a way
to always pick the pixels about which SAMFire has the most information, enabling not
only following the data structure and its suggested “path of the least resistance”, but
also offering the highest chance of convergence. Fig. 5.3 shows the SAMFire pixel fitting
order, where selecting arg max P 1allows the algorithm to traverse it in the data-suggested
order.

5.2.2 Global strategy

While the previously described approach allows most experimental data to be fitted
straightforwardly, if the already fitted neighbouring pixels do not have the required
information, the fit propagation stops. This might happen in data with any kind of
sharp boundary in the parameter space (domain structure) or if part of a model was
deemed unnecessary for the neighbours by GOF tests, but was required for the pixel in
question. The parameter distributions with corresponding frequencies for both cases are
shown in Fig. 5.4. More generally, if the spatial location of the pixel does not provide
the necessary information, SAMFire tackles the problem differently.

The global approach is best used when the parameter values are significantly different
with no or very few intermediate values across the neighbourhood, as shown in Fig. 5.4(b).
The global strategy exploits such value separation by identifying the local peaks in the
histogram (shown as the shaded regions) and then using their most frequent values to
form a set of probable starting guesses for each parameter. The algorithm then attempts
to fit the pixel in question by trying out all combinations of such starting guesses until a

1Arguments of the maxima are the points of the domain of some function at which the function
values are maximised [118]:

arg max f(x) := {x | ∀y : f(y) ≤ f(x)} (5.10)
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Fig. 5.4 Two example parameter value distributions across pixels with corresponding
relative frequencies on the right. The shaded regions are selected by finding two largest
local maxima in the relative frequencies (i.e. peak positions on the right), with the width
of a histogram bin to either side. In (a) the parameter values are locally smooth, hence the
“nearest neighbour” strategy is able to provide accurate estimates for all pixels. Conversely,
while the frequency distribution shows clear maxima, a significant proportion of pixels
have intermediate values and fall outside the shaded regions, limiting the usefulness of
the relative frequency information for unknown value prediction. In (b) the parameter
values show a clear domain structure with values suddenly jumping and dropping around
pixels no. 250 and 750. The corresponding relative frequency distribution clearly shows
two maxima with most of the values falling inside the shaded regions. While in each flat
region (domain) the local average is able to provide an adequate estimate, crossing the
boundaries between domains is not possible due to the lack of pixels with intermediate
values. As a result, a better approach is to guess the unknown value to be inside one of
the shaded regions and just discard the unsuitable one using trial and error and GOF
tests.
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sufficient fit is found, at which point the result is saved and the corresponding histograms
are updated. In such case SAMFire does not assume any relation of a particular pixel
position in the dataset to its value, so it fits them in random order to ensure a uniform
sampling of the tensor.

It is worth noting that while the value separation in the frequency space is quite
easily seen even for very smoothly changing values in Fig. 5.4(a), a significant portion of
pixels fall outside the shaded regions. As a result, the intermediate-valued pixels would
likely fail to converge if given one of the most frequent values.

5.2.3 Robustness

Fit

In order to ensure that a sufficiently good fit is found, each pixel’s result has to pass a
GOF test, irrespective of the active strategy. The test is set-up by the algorithm user,
and should be adapted to match the data and the model. Based on my experience,
SAMFire performs best when the GOF test is similar to the quantity being optimized
– Pearson’s χ2 test [63] for least-squares family of optimizations, Akaike’s Information
Criterion (AIC) [64] or Bayesian Information Criterion (BIC) [65] for probability-based
optimizations [119].

Local strategy

The local strategy choice is robust to noise and value landscape by design. In particular,
there are four important factors when considering the robustness and scaling of the
algorithm: noise in parameters, noise in goodness of fit estimates, the rate of change of
parameters, and their number. As in many other natural phenomena, noise in parameter
αi is usually distributed normally2around the true value even if the underlying data
follows other (such as Poisson) distributions. Robustness to parameter noise is due to the
mean of normal distribution also being the most often encountered value. Using the local
mean of parameters converges towards the true value with increasing number of samples,
thus allowing reasonable estimates. When fitting noisy data with an appropriate model,
the GOF estimates wi usually follow some bell-shaped distribution around the mean
GOF value. The range of acceptable values around the tails of this distribution is strictly
controlled by the user, hence we do not considered it further.

2Normal (or Gaussian) distribution is one defined by the probability density

f(x|µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2 ,
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Fig. 5.5 Estimated parameter values when fitting a one-dimensional dataset from left to
right. Cut-off distance rc = 50. The estimates (shown in as coloured lines) lag behind
the true parameter values more as less weight is assigned to the nearest pixels (blue f(r)
curves). The distance weight functions f(r) are shown in the inset. With forward-heavy
weight functions (red) the local mean lags less and more closely follows the noise pattern,
while more evenly weighted functions (blue) are not as sensitive to noise but lag behind
the true values by ∼ rc/2.

The algorithm’s robustness to the rate of change of parameters is most important
when estimating the starting value at the edge of the fitted region and is highly dependent
on the particular fitting problem and optimizer. In essence, each such combination has a
region around the sought global minimum, from where the optimizer is able to converge
to the correct solution, such as the landscape shown in Fig. 5.1. If the strategy–suggested
starting guess falls within that window of acceptable values, the algorithm is able to
proceed. A one-dimensional simulated example is shown in Fig. 5.5. Keeping in mind
that the weighted local average results in estimates that always “lag behind” the actual
values, if the required window changes too fast and the lagging estimate is no longer close,
the fit fails. Reducing the cut-off radius rc or other distance function f(r) parameters
for less smoothing allows less lag between the estimate and real value at the price of less
robustness to noise.

The local average with P values as weights can be interpreted as fitting (in one spatial
and parameter space dimensions in Fig. 5.5) “horizontal” two-dimensional hyper-plane to
the neighbouring values, and then assuming that the unknown is also part of that plane.

where µ is the mean and σ2 the variance of the distribution.
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A more generalized approach could be used instead by allowing the said plane to tilt in
various directions. Then strategy estimates would be calculated by effectively extending
the plane past the measured region and extrapolating. This would have two main
consequences: on the one hand, the strategy would perform better with high parameter
gradients, on the other, it would become significantly more sensitive to noise and other
extrapolation artefacts. In practice, reducing rc values and using the simpler average
approach often gives sufficiently good estimates, while in addition being numerically
faster to compute and more robust to noise.

Finally, the number of components (and hence parameters) has no bearing on the
performance of the algorithm, as each parameter is estimated independently of all others.

Global strategy

The global strategy in essence is just a thinly-veiled histogram, and as a result it
depends on the way the parameter histograms are estimated. A number of “rules of
thumb” have been suggested over the years [120, 121] for samples of normally distributed
data. However, the main task of the global strategy is to be able to identify when the
underlying distribution consists of two or more such normal distributions, hence different
bin estimation algorithms had to be used. Knuth [122] suggested an algorithm that
allows for the calculation of the optimal bin width for the data using Bayesian probability
theory. Whilst powerful, such an approach is constrained to use uniform bins across the
dataset, which is unnecessary for the global strategy.

An alternative, one that is used in the global strategy, was suggested by Scar-
gle et al. (2013) [123]. Called a “Block histogram”, it allows estimating unbiased and
optimal non-uniform bins based on similar Bayesian theory calculations. Its robustness in
the original paper (and thus that of the global strategy) was measured by estimating the
required amplitude above the background to detect a signal with normally distributed
zero mean noise with variance σ2 from N measurements, such as shown in Fig. 5.4(b).
The authors based their analysis on the theoretically derived [124] lowest detection limit
intensity

A1 = σ
√

2 log N . (5.11)

Scargle et al. empirically measured the amplitude requirements for the Block histogram
algorithm, and defined the critical threshold to be

A2 = 11.3σ

√
log N

N
. (5.12)
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It was argued to be roughly consistent with the theoretical limit, with the differences
mainly due to eq. (5.11) being asymptotic in N while eq. (5.12) is for a specific N value.

We investigated the Block histogram further by measuring the number of detected
signals compared to the known ground truth. While not considered in the original study,
we found that in order to successfully detect all such signals (which corresponds to
successfully identifying domains in the parameter space) the smallest mean amplitude
differences had to be

A3 = ΩM,N · A2 , (5.13)

where N is again the number of points in each signal and M is the number of signals
in the dataset. Values for Ω as well as an example dataset for one M, N combination
are given in Fig. 5.6. The Ω table suggests that the algorithm struggles distinguishing
large number of domains when each domain is either very small (≤10 measurements)
or very large (>500 measurements). In the first (large M and small N) case, M is
underestimated if A3 (and thus Ω) is small. In the second case, with both M and N large,
M is overestimated. For the global strategy to function correctly, the estimated M has
to be at least equal to the true value, thus the degrading Block histogram performance
with large M values only impacts strategy’s performance, and not correctness.

Similarly to the previously considered local strategy, each parameter is estimated
independently and thus the number of components does not affect the algorithm perfor-
mance.

5.3 Implementation

SAMFire was implemented to complement the HyperSpy [101] framework that already
had convenient structures for data loading, preprocessing, creating models and fitting
using various optimizers.

The algorithm was realised using a “one master – many workers” paradigm. Such
architecture pattern was historically first used when large databases had to be repli-
cated [125–127], but since then it has been widely adopted for many other uses as well,
such as large data analysis [128, 129] and parallel execution [130] frameworks. The
master-workers pattern is well suited for algorithms with many independent and parallel–
running tasks. By dedicating a single process (“master”) to manage and coordinate all
the other processes (“workers”), the total task is completed efficiently: the master assigns
each worker a relatively small task to run independently, resulting in a parallel execution.
Once a particular task is finished, the result is sent to the master, which assigns the



5.3 Implementation 57

2 4 8 16 32 64 128 256
Number of signals M

4

8

16

32

64

128

256

512

Nu
m

be
r o

f p
oi

nt
s N

1.5(3) -- -- -- -- -- -- --

1.3(2) 2.2(1) 3.2(1) 3.9(3) 4.9(2) 5.9(2) 6.9(3) 8.0(3)

1.1(1) 1.5(1) 1.7(1) 1.9(1) 2.17(1) 2.38(7) 2.59(8) 2.81(6)

1.2(2) 1.44(8) 1.53(8) 1.71(5) 1.82(6) 1.93(6) 2.0(9) 2.13(5)

1.45(8) 1.54(7) 1.68(4) 1.72(6) 1.85(7) 1.91(5) 1.99(4) 2.05(6)

1.5(1) 1.79(7) 1.82(6) 1.98(6) 2.0(4) 2.09(4) 2.11(5) 2.2(4)

1.5(3) 2.1(1) 2.19(6) 2.34(5) 2.44(1) 2.47(6) 2.55(6) 2.65(8)

1.5(5) 2.6(1) 2.7(9) 2.81(9) 2.89(8) 3.08(8) 3.22(1) 3.21(9)

 for values of M,N

0 50 100 150 200 250 300
Measurement number

0
2
4

In
te

ns
ity

 in
 A

2 u
ni

ts

N = 100
M = 3
 = 10

Example dataset

Fig. 5.6 Example dataset for global strategy test is shown at the bottom. The test
requires determining the number of domains M = 3, where each domain consists of
N = 100 points distributed normally around the mean with variance of σ2 = 100. Ω
value matrix with errors in the last digit for logarithmically increasing M, N values is
shown at the top. We speculate that Ω ̸= 1 for M = 2 because only one value jump was
present.
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worker a new task. Such architecture elegantly deals with unequal execution times and
acts as an effective load-balancer.

The master-worker communications are best implemented not directly, but as two
queues: a worker-consumed “work queue”, where the master process is able to put
new tasks to be executed, and a master-consumed “result queue”, where workers put
the computed results. Such a design pattern is often named as “loose coupling”, and
is widely used in various cloud architectures [131]. Loosely coupled master-workers
communications allow not only significantly simpler and robust implementation, but also
changing the number of workers without stopping and restarting the algorithm.

SAMFire was straightforward to implement using the master-workers paradigm. The
master process was assigned to decide which pixels should be fitted next and estimating
their starting values, while workers were left to perform the actual fitting. This completely
separated the optimization from decision making steps, allowing developing and improving
each individually.

The SAMFire architecture and its decision tree are shown in Fig. 5.7. The master
process consists of two loops: the outer loop, applying different strategies to solve the
dataset, and the inner loop, looking for best pixels to fit and estimating starting guesses
for them. As explained in Sections 5.2.1 and 5.2.2, the exact methods used in the inner
loop depend on the strategy. Nevertheless, a pixel without currently known satisfactory
solution is always chosen, and at least one starting guess (SG) is estimated. After that,
this information is put in a queue that the worker processes consume. Any worker process
takes the first item from the queue and generates all combinations of possible starting
guesses for the parameters (often just one). The worker then enters its inner loop, where
each combination is attempted as a starting guess for the optimization. If the fit result
satisfies the GOF test, then the loop is terminated early, and the result is put in a result
queue, consumed by the master process.

With the described architecture, the two kinds of processes end up having rather
different properties. For example, only the master process is likely3 to require significant
amounts of memory, as it is the only process to require full access to the data and model.
Each worker only deals with one pixel at a time, hence its memory requirements are
significantly lower. Furthermore, while the worker computational load increases directly
with the difficulty of the particular fit, the master process only performs work when a
fitted result is submitted by one of the workers and a new starting guess estimate is
required. These properties, combined with the loose coupling, mean that given there

3Depends on the underlying architecture of the data loading. An alternative to the common approach
is given in Chapter 6
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Fig. 5.7 SAMFire architecture and its decision tree. The master process consists of two
loops: inner and outer. The outer loop selects strategies that are used for estimations.
The inner loop performs the best pixel selection (the one with the highest P value) and
starting guess (SG) estimation. The guess is then put in a queue, consumed by the
worker processes. The workers grab the top SG from the said queue, generate all possible
combinations of the given starting guesses, and attempt each in order. If any of the fit
results pass the GOF test, the search is terminated, and the result is put into the result
queue, consumed by the master process to update the P values.

are available processors, adding new worker processes is cheap and may significantly
boost the overall performance. In addition, the two kinds of processes may benefit from
different hardware, for example the master could be run on GPU-enabled machine to
efficiently calculate new starting guess estimates, whilst workers are best run on relatively
simple, but capable of fast numerical optimization machines. Finally, the loose coupling
allows part or even all of the workers to be run on remote clusters, enabling a highly
scalable approach to multi-dimensional fitting analysis.

5.4 Synthetic examples

In order to demonstrate SAMFire, three synthetic spectral images were created and
fitted, comparing results to the known ground truth.
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Fig. 5.8 The simulated photoemission dataset consisted of an exponential background
and five Gaussian peaks labeled P0 to P4. All peak areas as well as P0 and P4 centre
positions were free to change when fitting, because P1 to P3 were constrained to be a
set distance from P4, just like in the original study [58]. The P0 simulated area map,
showing the two domains, is shown on the left.

The first dataset was inspired by the work of Francisco de La Peña et al. [58], and is
similar to what might be measured in a photoemission spectroscopy (PES) experiment.
The original data from the paper was available, and the full presented analysis was
repeated with SAMFire in a significantly more straightforward way.4 However, to be
able to verify the results, a synthetic version of the dataset was created with known
true values. It contains an exponential background with multiple Gaussian-like peaks
that move in the spectral dimension between two regions, as shown in Fig. 5.8. In the
simulation all parameters had normal (Gaussian) variation around the mean intended
values, and the final simulated spectrum had Poisson noise added. When fitting, the
intensities of each peak, as well as the two background parameters, were free to float.
There were two more free parameters – the positions of the P0 and P4 peaks. The rest,
P1−3, were constrained to be a set distance from P4, just like in the original study.

In Fig. 5.9 the parameter distributions of the SAMFire fit results are compared
to the true values, as well as the fit results if true values were given as the starting
guesses. It can be seen that both the ideal fit solution and SAMFire suffered from a
parameter distribution broadening due to the Poisson noise that was added to the data.

4In fact, the paper served as the initial inspiration for SAMFire.
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Fig. 5.9 Simulated photoemission fitting results. Results for seven parameters not
associated with the background component are shown: peak areas in blue, centres in
yellow. In each of those histograms, the true value distribution is shown as the filled in
histogram, SAMFire results as a black line, and ideal fitting results as the red line. The
reduced χ2 of the SAMFire fit is shown in green in the bottom right.

Nevertheless, ideal and SAMFire results are nearly identical, showing that the algorithm
was able to always provide a starting guess sufficiently close to the true solution.

The second synthetic example dataset is inspired by the experiment and results
that will be presented in chapter 8. Again, in order to have the ground truth values
to gauge the accuracy of the analysis, a similar dataset was simulated. The simulated
EELS dataset considered a pure crystalline boron core, surrounded by a boron oxide
enclosed in a boron nitride shell. The simulation did not contain any multiple scattering
effects. Both pure B and oxide only require one component, but previous studies [61]
showed that due to the BN anisotropy, two electron loss near-edge structure (ELNES)
fingerprints have to be used for the outer shell. The final model consisted of a power-law
background and four EELS edges that completely overlapped in the spectral dimension,
corresponding to the four boron ELNES components that were used in the analysis.
The spatial distribution was simulated by creating model 3D masks and then projecting
them to the two measured dimensions, as shown in Fig. 5.10. The BN anisotropy was
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boron nitride anisotropy, two components are used for the outer shell simulation, with
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Fig. 5.12 Lorentzian and Gaussian curves exemplifying the parameter distributions A
and B domains of the synthetic dataset in (a) and (b) respectively. The actual fitted
spectra consisted of one Gaussian and Lorentzian pair with simulated Poisson statistics
noise. (c) abrupt and (d) smooth domain boundary is shown by plotting the peak centre
energies as a function of pixel positions. The shaded regions correspond to domains A
and B, with the “transition” domain only appearing in (d).

simulated by modulating the strength of BN components by the cosine and sine of the
angle between the virtual beam and the outer shell surface normal.

The analysis results and the residuals after subtracting the known true values for
a quarter of the full map are shown in Fig. 5.11. The quality of the results shows the
expected behaviour of components with more signal leading to more accurate results. We
notice that the two BN components were not unmixed perfectly, each resulting in larger
than expected and anti-correlated residuals. Nevertheless, the sum of the two results
leads to a higher precision total BN signal map that could be interpreted as the number
of boron atoms bonded with nitrogen.

Unlike the previous two examples, the final simulated spectrum image is not meant to
show a typical use-case of SAMFire, but rather the data complexity that is still readily
solved by the algorithm. The spectrum can be fully described by two peaks, a Lorentzian
and a Gaussian5, with their parameters (positions, widths and intensities) changing both
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Fig. 5.13 Goodness of fit measure results when the synthetic dataset was analysed using
regular fitting routines, which use (a) last results and (b) a constant values as starting
guesses. The χ2

red GOF measure was calculated for every pixel, its distributions are
shown in blue. The red lines show cumulative fraction of pixels fitted better than the
corresponding χ2

red values. (c-e) Fits when χ2
red ∼ 1, 9 and 29 respectively.

across the dataset and “jiggling” uniformly at random as shown in Fig. 5.12(a,b). The
dataset is constructed such that in some pixels (domain A) the Gaussian peak is at higher
energy, and in others (domain B) – lower. Fig. 5.12(c,d) shows how the two curve centres
shift in a sequence of spatial pixels that start in domain A and end in B. The dataset
was constructed such that both instant and gradual parameter change was present. Due
to the choice of the curves, the fitting landscape situation closely resembles the problem
shown in Fig. 5.1, where even a slightly wrong starting guess quickly leads to a local
minimum and a bad fit. As a result, the algorithm has to be able to deal with both a
smooth and an abrupt parameter value change in order to solve the dataset. To minimize
accidentally correct starting guesses, the dataset consists of domain boundaries in many
different orientations.

First, two regular fitting routines were run as control experiments. Both traversed
the dataset in the traditional raster–order row by row from top left, as it was stored

5Gaussian and Lorentzian functions for real constants a, b and c are defined as

G(x) = ae− (x−b)2

2c2 ,

L(x) = ac

(x − b)2 + c2
,

where a is the height of the curve, b the position of the center of the peak, and c controls the width of
the peak.
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(a) (b) (c)

Fig. 5.14 The local SAMFire strategy fitting dataset. The yellow line marks the sudden
A to B domain boundary, as shown in Fig. 5.12(c). (a) The seed pixel. (b) As defined,
the seeds neighbours have the highest P values and are fitted next. (c) Propagating
fitting front (marked in green) emerges as SAMFire proceeds.

in memory. The first approach used the last known optimization value as the starting
guess for the next pixel. In the second case, a constant starting guess (matching the
B domain) was used throughout. Note that the synthetic dataset was intentionally
created such that even with the peaks reversed, the conventional optimizers managed
to find a local minimum (corresponding to LM2 in Fig. 5.1). If this was not the case,
optimizers would have diverged in most pixels (as often happens with real-life examples),
preventing comparisons of the results. The χ2

red distributions for both methods are
shown in Fig. 5.13. According to its definition, best fits correspond to χ2

red = 1, with
overfitting and underfitting occurring below and above this value respectively. Based on
my experience fitting real spectral datasets, 0.5 < χ2

red < 1.5 typically corresponds to
sufficiently good fits. Both conventional methods managed to fit around 70% of pixels
well, which corresponds to the fraction of pixels in the domain B. The rest were fitted
poorly, χ2

red >> 1, due to the algorithms not being able to adapt to different domains
and converging on a local minima. Crucially, using the (a) “last-result” starting guess
estimates around 7% of pixels were fitted extremely poorly, with χ2

red ≈ 28.
Seed pixels, if possible, should be chosen to contain as much information as possible

by selecting pixels that require the most degrees of freedom and components to fit.
For the dataset all possible seed pixels in this sense were equal, thus one that resulted
in a visually interesting fitting path was chosen, as seen in the supplementary movie.
SAMFire was initialized with just one pixel already fitted as a seed to learn from, shown
in Fig. 5.14(a). As the dataset structure is known, a yellow line marks the sudden change
from domain A to B, as shown in Fig. 5.12(c). Once the starting pixel was given, the
local strategy was used to calculate the potential as described previously. As P was
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Fig. 5.15 (a) Fitted pixel spatial distribution when local strategy finished. (b) Gaussian
centre parameter value distribution at the same point as (a). The two domains can be
clearly identified as peaks in the histogram. In (a) unsuccessful fits are shown in red, with
other colours corresponding to regions in (b). (c) The final χ2

red SAMFire distribution,
with all pixels successfully fitted.

highest near the seed, the pixel’s neighbours were fitted next, shown in panel (b). As
the local strategy proceeded, good fits resulted in high P values and accurate starting
guesses, which in turn often allowed better fits. On the other hand, with only the local
information available for each pixel, SAMFire failed to find a good fit for domain B and
was not able to cross the domain boundary. Such positive feedback and containment
created a propagating “fitting front”, marked in green in Fig. 5.14(c). When the front
reached the dataset region with smooth A to B transition as shown in Fig. 5.12(d), the
local strategy was able to successfully follow parameter shifts, allowing the fitting front
to propagate into domain B.

Once finished, the local strategy ended up not fitting 6% of pixels, shown in red in
Fig. 5.15(a), and the global strategy was employed to finish fitting the dataset. Fig. 5.15(b)
shows the relative frequency for one of the parameters from the model. The two domains
can be clearly seen from the histogram. Regions, corresponding to parameter value
ranges are marked with identical colours in both (a) and (b) panels of the figure. Once
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Table 5.1 Table giving performance metrics when performing the fits for the three
synthetic datasets given in section 5.4 on a laptop with Intel® Core™ i5-3320M CPU @
2.60GHz × 4.

Dataset Metric Method Improvement
Traditional SAMFire

PES time (s) 189 350 x1.8
correct (perc) 67 100 33

EELS time (s) 676 219 x0.3
correct (perc) 99.9 100 0.1

Spiral time (s) 714-1362 1112 x0.8-1.5
correct (perc) 22-32 100 68-78

histograms were evaluated, this global information was used as described in section 5.2.2
to successfully fit the remaining pixels. Fig. 5.15(c) shows the final χ2

red distribution,
with all pixels well within the [0.5, 1.5] “good fit” window. A movie of SAMFire fitting
the synthetic dataset is available in the supplementary CD.

5.5 Performance

The fitting performance when analysing the three synthetic datasets on a laptop with
Intel® Core™ i5-3320M CPU @ 2.60GHz × 4 is given in table 5.1. Traditional fitting
running times for the simulated BN EELS data are relatively low due to the optimizer
getting stuck in a false minimum, thus converging on an incorrect solution for all
subsequent pixels abnormally quickly. Depending on the particular fitting problem,
SAMFire improves the fraction of correct fits or reduces the running time, or both.





Chapter 6

Big Data

As measurements become increasingly data-rich and specimens more complex, many
sciences experience “data explosion” [99]. The phenomenon always presents itself similarly,
however the peculiarities differ from one field to the next. While previously found solutions
often cannot be applied directly in other sciences, many general approaches can be reused
and learnt from. The big data problem for electron microscopy in the light of other fields
will be described in section 6.1. An overview of the available tools and the implemented
solution will be laid out in sections 6.2 and 6.3. An example workflow that previously
would have required expensive dedicated hardware is described in section 6.4.

6.1 Motivation

The modern computer can be said to be the main tool of many scientists. Computers
are used throughout all stages of a modern scientific discovery, from running most
experiments, some completely virtual in the form of simulations, to the final data analysis
and visualization. While many large–scale international projects rely on significant
computational resources (CERN, LIGO and others), few electron microscopy labs can
offer dedicated data analysis hardware for all its users. As a result, being able to use
consumer-grade personal computers (PCs) is of paramount importance.

Until recently, the self-fulfilling prophecy of Moore’s law [132] allowed many analysis
methods to be developed and easily applied to the data, as it usually fit comfortably in
the computer memory. However, in recent years the analysis of the EM data has become
significantly more demanding and important [133–135], sometimes justifying the term
“computational electron microscopy”. With both the specimens and experiments becoming
more complex, and microscopes operating faster and achieving higher resolution, the
average PC memory is quickly outpaced by the growing scientific needs.
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As briefly mentioned in section 4.2.1, one of the primary issues is that many of the
current analysis and data-handling software solutions rely on being able to store the full
dataset in the computer memory. If this first step is not possible, no further analysis or
visualization can take place, effectively rendering the data useless unless a more powerful
machine is used. Even if the software is able to open the dataset, in most cases further
memory is required to store the results of any calculations, limiting the largest datasets
that can be analysed on average workstations.

The matters are often complicated further if a machine learning algorithm is to be
used for the analysis. Such methods greatly benefit from large datasets, thus incentivizing
scientists to collect more data for better results. On the other hand, sometimes due to
the nature of the experiment only a subset of the acquired dataset is needed for the
analysis, but the measurements cannot be targeted sufficiently well to acquire the needed
data. With such overly-rich data, many redundant calculations (requiring additional
memory) have to be performed as intermediate steps in order to draw the final conclusions.
Fortunately, a number of different solutions exist to facilitate both types of analyses.

6.2 Frameworks

In the data processing fields there are numerous ways to approach “big data”. Historically,
large datasets were first analysed on distributed clusters. Such structures can be thought
of as an array of nodes, where each node is similar to a normal PC, with its own memory
and processing units. By connecting them to an exceptionally fast network, the full
structure can be effectively treated as one supercomputer. Crucially, each node could
perform its computations in parallel with all other nodes, as long as the whole process
was orchestrated well.

“MapReduce” [128] framework by Google, shown in Fig. 6.1, resulted in a major
break-through in the field. It offered a way to orchestrate and parallelize operations
on the many-node supercomputers. In particular, the algorithm managed loading a
chunk of the large dataset in each node, then applying the same function for each chunk
across all nodes (“map”). The map results then had to be “reduced” in groups (e.g.
counting items in each group), which was done by the intermediate result shuffling step
to appropriate workers, before actually running the reduction function. After that, the
result was written back to disk. The split-load-map-shuffle-reduce-write workflow is
suitable for many big data applications in both industry and sciences [136–140], however
the largest MapReduce limitation was the inability for the process to reuse previous
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Fig. 6.1 An example MapReduce diagram. Circles and squares mark functions and their
results respectively. The user is able to supply functions f1 for “mapping” and f2 for
“reduction”. After that, the results are saved back to the hard disk.

results without storing them to disk, hence rendering most iterative algorithms unsuitable
for the framework.

Inspired by these MapReduce limitations, an improved implementation, known as
“Spark” [129] (later “Apache Spark”) was suggested and quickly popularized by the
Berkeley group. The main idea of the framework involves expressing the computations as
operations on “Resilient Distributed Datasets” (RDDs) [141] that the Spark engine is able
to optimize and execute in parallel on the cluster. This is only possible due to the RDDs
keeping track of their lineage: each RDD keeps track of the function that generated it.
By writing computations using RDDs, algorithms were effectively expressed as Directed
Acyclic Graphs (DAGs), as shown in Fig. 6.2. Having the full DAG is useful on many
different levels – it allows culling unnecessary operations that are not used for the end
result, offers more insight for memory management, for example keeping intermediate
results if they are required for the next function, and enables lazy1 evaluation while
constructing the algorithm.

While Spark and RDD offer significant improvement over MapReduce, a number of
design decisions still limit the usefulness of the framework. Not giving the user direct
access to the data chunks is arguably the most important Spark drawback – all allowed
operations have to operate on the full RDD and not its parts. This restriction severely

1Lazy evaluation is an evaluation strategy, where an expression is only computed when (and if)
the results are requested [142–144]. This allows potentially infinite data sources and various other
optimizations.
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Fig. 6.2 An example Spark directed acyclic diagram (DAG). Circles and squares mark
functions and their results respectively. The user is able to define all functions and reuse
previous results (RDDs) for future calculations, however all internal chunking of the data
is hidden and not accessible.

limits the use of the tiled (blocked) algorithms2 which have been shown to perform well
on such clusters [146, 147]. Unless it has been explicitly implemented in the Spark engine,
adding new blocked algorithms is relatively difficult. Finally, while it is possible to run
Spark on a single machine, it is generally only recommended for testing purposes, further
limiting its usefulness for EM data analysis on traditional PCs.

In late 2014 Rocklin presented another similar framework called “dask” [105]. The
idea of dask was to use the DAG as the core concept, and build the structure from
there without abstractions like the RDD (Fig. 6.3). This resulted in a framework that
not only inherited the laziness, but also allowed direct access and manipulation of the
DAG and its members – most often the data chunks. Such freedom allowed users to
implement blocked algorithms easily and straightforwardly. The downside of dask is that
the framework is not aware of the large-scale computations, meaning only the DAG (not
the algorithm) can be optimized automatically, and many possible optimizations are left
to the algorithm implementor. Another great advantage of dask is its administrative side.
From the beginning, dask was intended to efficiently run on a single machine (and only
later expanded to be able to run on thousands of cores in a cluster), thus the setup is
virtually non-existent and very user-friendly.

2Tiled (blocked) algorithm is an algorithm that performs matrix operations by dividing it into many
smaller submatrices and their operations to construct the final result block by block [145]
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Fig. 6.3 An example dask DAG. Circles and rectangles mark functions and their results
respectively. The user has full control over functions (f1-3) and chunks (C11-32), allowing
flexible algorithm design. In dask framework loading the data is treated just like any
other function (in this case it’s f1). If only C32 is required, the DAG is simplified: C11
and C12 are not loaded to the memory, and C21 and C31 are skipped.

6.3 Implementation

The proposed implementation uses dask to solve the big data problem. Named “LazySig-
nal”, it has already been added to the HyperSpy toolbox [101]. Instead of attempting to
load the full dataset, LazySignal constructs a dask DAG, where each node only loads a
particular chunk of the data, as expected by the tiling algorithms. Any further operations
are then just added to the graph lazily. Once a result that cannot be left lazy (for
example, the visualization of the dataset) is required, dask uses the graph to identify
branches that can be run in parallel. If suitably small chunks were chosen, each branch
and its results fit comfortably in memory, allowing performing operations on the large
datasets. In practice, the best-performing chunk size is significantly smaller than the
standard available memory, allowing running the computations on multiple computer
cores at once.

Standard machine learning algorithms, as described in section 4.1.2, are, however,
more problematic. While there are matrix decomposition implementations [148] for tiled
matrices, for best performance the total data tensor should be “tall and skinny” [149].
Unfortunately, most experiments produce fairly square data tensors, leading to the
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algorithms still requiring too much memory for common computers. Instead, the tradi-
tional PCA and NMF formulations were replaced by “online” versions [102, 103]. Online
machine learning algorithms are created for potentially infinite data sources, such as the
Internet. They approximate a conventional algorithm by iteratively refining the learnt
results (in PCA and NMF case components) with each new datum that is presented.
By supplying such an algorithms with small data chunks, LazySignal is able to extract
the components from very large datasets. The main drawback of such an approach
is that for accurate loading maps the dataset should be read twice: the first time to
learn the components, and the second – to project the data on them and calculate the
loadings with the final component versions that hopefully converged. On the other hand,
a potentially infinite data source (a microscope) could be used to generate data and
extract the components while the experiment is still being performed.

6.4 Example workflow

In order to illustrate the possibilities of the LazySignal framework, I will describe a
typical workflow that was previously effectively impossible due to the size of the dataset.
The data in question was acquired on a transmission electron microscope (TEM) by
scanning the focused beam across the sample and measuring a 2D diffraction pattern
(DP) at each location, resulting in a 4-dimensional scanning electron diffraction (SED)
dataset.

With the data recorded as integers in 0 − 255 range, the full dataset amounts to
over 32 GiB and is already prohibitive for conventional data loading approaches on most
consumer-grade computers. Nevertheless, LazySignal allows opening multiple such files
on a conventional laptop. In fact, until further operations are performed, only the general
information about the data is read: the dimensions of the tensor and how many bytes
each element would require if loaded. This in effect sets up the internal infrastructure
for future processing. In particular, it chunks the dataset in such a way that each DP is
always whole in one chunk, and real-space is subdivided into sub-regions.

Next the dataset is explored by plotting. This can be done in a number of ways, but
the most often encountered method plots a particular DP from the selected real-space
position, recreating the exact image measured during the experiment. As this follows
both acquisition and chunking schemes, the operation is perceptually instantaneous and
no different if data were loaded conventionally. Behind the scenes, only the chunk that
contains the currently plotted DP is loaded at any point. This can also be extended with
Regions Of Interests (ROIs) of various shapes, where all real-space pixels inside the ROI
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Fig. 6.4 An example VDF with different chunks in real-space separated. In practice
chunks are much smaller, often around 10 to 20 pixels in each direction.

are averaged, for example, before plotting. In such case all chunks that span the ROI
have to be read from disk. If there is enough available memory, all required chunks are
loaded at once to perform the operation and plot the mean DP. Otherwise, the chunks
are read in sequence, storing the intermediate result of the operation before displaying
the final image.

Another often much-revealing way to plot SED data involves forming a Virtual Dark
Field (VDF) image. It entails selecting a pixel in the DP and forming the VDF at all
real-space positions using the selected reciprocal-space pixel. As shown in Fig. 6.4, even
a single VDF formation requires loading all chunks of the dataset. While the process
takes around 2 hours when using other software, HyperSpy with LazySignal performance
is bound by the disk reading speed and takes under a minute to perform an identical
operation.

Once the goal of the analysis is clear, the data is usually re-cast as floating-point
values for higher precision. If the dataset was loaded conventionally, this would increase
the required memory 8-fold to 260 GiB. In the LazySignal framework, however, such
re-casting operation merely gets added to the end of the DAG and is performed on each
chunk only if it is required for further processing.

Most analysis and other processing methods are defined for one DP, and applied
repeatedly on all real-space pixels of the dataset. For example, if the direct beam spot
drifted from the centre of the DP during the course of the experiment, it could be
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easily fixed for each pattern in post-processing. Using the LazySignal “compute-only-
when-needed” framework such alignments become much cheaper to perform. Instead of
replacing the loaded data with the post-processing result or doubling the required memory
to store it, each DP is only aligned when required. Chaining such operations allows
forming complex processing routines on large datasets without expensive hardware. If the
mentioned data were plotted after alignment, first the chunk with the required real-space
pixel would be loaded from the disk, then the integer-type data would be re-cast in higher
precision and aligned as required. Because both re-casting and alignment are relatively
cheap operations, both can be performed faster than perceptually noticeable, irrespective
of the size of the dataset.

LazySignal framework also works well with significantly more complex analysis
methods. For example, both traditional non-linear optimization and SAMFire can be
successfully run on such data without any changes. As already mentioned, if machine
learning methods such as PCA or NMF are required, their online versions are also
included in LazySignal: this allows us to iteratively perform the decompositions in two
steps. First, the “factors” are learnt by loading each chunk (also performing any required
pre-processing) and supplying this information to the online algorithm. After the data
were read once and suitably accurate factors are estimated, each chunk is loaded the
second time to project it in the learnt factor space. While such processing is slower
and only an approximation of the traditional algorithms, it requires significantly less
computer memory.

Finally, LazySignal framework supports operations in a distributed computing en-
vironment, which speeds up computations by loading the dataset into the distributed
memory. Even though groups of chunks are read in each machine’s memory, complex
operations requiring information transfer (such as forming a VDF) can still be run. Most
importantly, such distributed environments are cheap and simple to setup on online
services providers, making them available for most scientists.

6.5 Performance

The LazySignal and traditional method performances when summing all values in various
datasets are shown in table 6.1. Due to the laptop3 running usual background processes,
only around 8GB were available for computations. While the additional requirement
of more memory for operations and result storage prevented from opening even 8GB

3A laptop with Intel® Core™ i5-3320M CPU @ 2.60GHz × 4 with 12GB of RAM memory, running
Linux.
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Table 6.1 Table giving running times summing all pixels of respective datasets. Performed
on a laptop with Intel® Core™ i5-3320M CPU @ 2.60GHz × 4 with 12GB of RAM
memory, running Linux.

Dimensions Representation Size (GB) Method (s)
Traditional LazySignal

2048 × 2048 u-int (8bit) 0.004 0.004 0.013
(Traditional u-int (16bit) 0.008 0.003 0.013
TEM image) float (32bit) 0.016 0.002 0.016

float (64bit) 0.032 0.003 0.022

1024 × 1024 × 2048 u-int (8bit) 2 1.8 1.5
(Traditional u-int (16bit) 4 1.7 2.0
STEM EELS) float (32bit) 8 – 3.9

float (64bit) 16 – 4.4

256 × 256 × 256 × 256 u-int (8bit) 4 3.9 3.7
(Traditional u-int (16bit) 8 – 7.3
SPED map) float (32bit) 16 – 15.7

float (64bit) 32 – 61.5

256 × 256 × 2048 × 2048 u-int (8bit) 256 – 161
(Potential u-int (16bit) 512 – 271
SPED map) float (32bit) 1024 – 504

float (64bit) 2048 – 982

datasets, LazySignal framework was able to successfully finish the operations, while never
requiring more than 2GB additional memory.

The datasets were generated using either numpy or dask.array libraries, containing
only ones in each position. The sum result was checked to be equal to the number of
elements in the datset. The dataset dimensions and representations were picked to be
representative of typical or potential EM datasets.
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Monitoring the Stark effect in
quantum disks

This chapter includes work published in:

L. F. Zagonel, L. H. G. Tizei, G. Z. Vitiello, G. Jacopin, L. Rigutti, M. Tchernycheva,
F. H. Julien, R. Songmuang, T. Ostaševičius, F. de la Peña, C. Ducati, P. A. Midgley,
and M. Kociak. Nanometer-scale monitoring of quantum-confined Stark effect and
emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Phys.
Rev. B, 93:205410, May 2016

In particular, TO pre-processed and analysed the datasets and produced the figures
unless otherwise noted.

By growing semiconductor crystals with a high degree of control, a new generation
of potential optoelectronic devices with exciting properties have been achieved in lab-
oratories [150–152]. One example is nanowires (NW) grown with quantum-confined
heterostructures of different materials in layers called Quantum Disks (QDisks). One
such class uses III-nitride structures for light emitting diodes (LEDs) in the visible-
ultraviolet range [153, 154].

To engineer such NWs for practical use, a more thorough understanding of the various
effects changing their performance is required. It has been shown [156, 157] that a
high electric field is present inside such crystals due to strain. In turn, the high field
gives rise to the so-called Quantum Confined Stark Effect (QCSE) [158, 159], where the
electron and hole energy levels (p-doped and n-doped bands) are pushed closer together
in energy, leading to a redshift of the emission wavelength of these structures (Fig. 7.1).
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Fig. 7.1 (a) Electronic band structure sketch with no electric field. Red lines and green
curves mark energy levels and wavefunctions respectively. (b) Band structure with the
strain-induced electric field (QCSE). Both transition energy and wavefunction overlap
are reduced. (c) Accumulating charge carriers screen the strain-induced field, undoing
the QCSE. Adapted from [155].

Additionally, if the physical width of such quantum wells (or in this case the thickness of
the quantum disk) is large enough, the electron and hole wavefunctions are “squeezed” in
the opposite directions, reducing the overlap and hence transition probability between the
bands. The described QCSE changes if the quantum structure is driven strongly enough,
complicating attempts to study it. Namely, if the carrier injection into the crystal rate
exceeds that of the recombination, electrons and holes accumulate in the bands. The free
charge carriers (CC) screen the aforementioned internal electric field, reducing the effects
of QCSE. Thus as the CC density increases, the transition energy redshift gets undone
(effectively blueshifting the emission). The screening also makes the energy levels flatter,
hence increasing the carrier wavefunction overlap, increasing the transition probability
and the photon emission rate (Fig. 7.1(c)). On the other hand, with increasing carrier
density, high-order effects become dominant. One such example is the Auger effect, where
the excess energy is not released as a photon, but instead is transfered to a third charge
carrier, detrimental to the quantum structure performance [160].

Although the interplay of these two effects is thought to be the main cause of the
so-called “efficiency droop” for QDisks and similar crystal structures [160–162], the
contributions of each effect has proved difficult to isolate and evaluate in 3D materials
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Fig. 7.2 HAADF image of a NW with individual QDisks studied later marked.

using the traditional photoluminescence methods [163–165]. Instead, we used a different
approach by probing such NWs using CL-STEM.

7.1 Experiment

The specimens of interest were GaN NWs, each containing 20 GaN/AlN QDisks, shown in
Fig. 7.2. The NWs were grown by catalyst-free plasma-assisted molecular beam epitaxy,
as described in [116, 166]. Each GaN QDisk increased in thickness from ∼1 nm to
∼4.5 nm in the growth direction, while the AlN barrier thicknesses varied much less and
randomly between 2.6 nm and 3.6 nm. The spectroscopic measurements were performed
using a CL-STEM setup described in [166], with the sample kept at ∼150 K using a cold
finger during experiments.

In order to achieve highly different CC densities in the sample, both beam current
and dwell times per pixel were varied over orders of magnitude: 0.1 to 600 pA and
20 ms to 10 s respectively. The experimental beam current was measured using the EEL
spectrometer as a Faraday cup.

The aim of the study was to investigate how CC density influences the emission peak
properties. Under the QCSE interpretation, two possible scenarios are possible for a
QDisk and some electron beam current:

1. The beam induces CCs at a rate lower than the recombination, and emission at
constant energy and proportional to the current is measured.

2. The beam induces CCs faster than the recombination rate and electrons and holes
start to accumulate. With high CC densities not only high-order effects become
more pronounced, but also the free CCs partially screen the internal electric field,
resulting in two separate measurable effects:
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(a) QCSE gets “undone”, effectively blueshifting the emission.

(b) Electron and hole wavefunction overlap increases, increasing the emission
intensity.

If the electron beam currents allow a probing of the second regime, the emission energy
can be used as a proxy to monitor the CC density while observing the intensity variations.
A transition from constant to intensity-dependent emission energy marks the break point
between the two regimes, allowing an estimate of the recombination rate.

7.2 Analysis and Results

As the electron probe scanned the specimen, a smoothly varying CC density was induced
at any one point on the sample. This led to emission peaks smoothly appearing (due
to different QDisks being hit with different intensities by the probe) and shifting in
energy. As ML methods are not suitable for tracking smooth changes in energy space,
the analysis was performed by fitting a Lorentzian peak in the wavelength domain.

The main analysed dataset consisted of ten spectral images (SIs) of the same NW
acquired at different currents and dwell times. Due to vastly different experimental
parameters, some SIs were of significantly worse quality than others. In order to provide
an unbiased collection of fitting results, we used the SAMFire algorithm (chapter 5) to
facilitate changing models, robust fitting suitable for different data quality, and a large
number of spectra to fit.

The first experimental evidence of a possible link between carrier density and the
emission energy and intensity can be seen from a separate NW with an isolated emitting
QDisk measurement, shown in Fig. 7.3(a-d). Pixels within the corresponding total
intensity windows in (b,c) were extracted and spectra averaged in (d). The expected trend
of higher intensities corresponding to higher energies can be seen. As the corresponding
selected pixels tend to be further from the geometrical centre of the QDisk, such an
effect could also be explained by different energy emission of different parts of the QDisk.
To disprove such a possibility, a virtual dataset was formed from the ten SIs of the
main dataset. By extracting the pixels closest to the geometrical centre of QDisk#10
across all SIs with different beam energies, a similar behaviour was recovered, shown in
Fig. 7.3(e). Individual measurements of energy and intensity of the emission from all parts
of QDisk#10 across all ten SIs are shown in panel (f), with no signs of beam damage. For
further verification, collaborators performed theoretical simulations of energy-intensity
relations for previously measured NWs [116], supporting the QCSE interpretation.
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Fig. 7.3 (a) ADF image of a NW containing two QDisks. (b) CL emission map for the
same region. Only one of the QDisks emit. (c) Regions of the map with emission in
the corresponding intensity windows, and (d) the averaged lineshapes for those regions.
(e) CL intensity from the geometrical centre of QDisk#10 with varying beam currents,
formed in post-processing. Similar emission energy–intensity behaviour is recovered.
(f) Emission energy as a function of emission intensity from all parts of QDisk#10,
considering all ten SIs. Colours in (e,f) indicate different electron beam currents.

The fitting analysis results of seven selected QDisks from the ten SIs are presented
in Fig. 7.4. QDisk#6 displays a flat energy-intensity region, where the emission energy
stayed roughly constant with the intensity increasing over two orders of magnitude.
Within the QCSE interpretation this corresponds to carrier injection being lower than
the recombination rate, and the “break point” in the curve at ∼3 × 104 counts/s allowed
us to estimate the recombination lifetime to be ∼100 ns [116]. This was consistent with
similar results in literature [159]. The estimated energy-intensity curves for QDisks#8-10
show a maximum intensity of ∼2 × 106 counts/s that that was measured at multiple
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Fig. 7.4 Bivariate histograms of emission energy as a function of the emission intensity
for seven QDisks, with different electron beam current measurements combined. Each
data point has been spread according to its standard deviation. This allows interpreting
the shown colours as probability of finding a spectrum with particular emission energy
and intensity. Values larger than 1 correspond to more than one such spectrum in the
full dataset, thus the sum of the images equals the total number of spectra considered,
15790. Only QDisk#6 shows a flat region, where energy stays approximately constant
with increasing intensity. The “break point” (indicated by a line) allows to estimate total
recombination rate.

excitation energies and with different driving currents, as more explicitly shown for
QDisk#10 in Fig. 7.3(f). As the internal electric field (via the QCSE) was the only
factor changing the emission wavelength, this upturn shows that increasingly larger CC
densities were created during the measurements, however the emission intensity did not
increase, leading to the first sign of the efficiency droop. Finally, QDisks#14,16,19 show
that thicker QDisks contained more non-radiative paths for the CC recombination, hence
significantly reducing the overall emission.

Band filling was considered as one of the possible explanations for the constant intensity
with increasing injection rate. Previous photoluminescence studies of similar structures
found that when the electronic bands are full, the FWHM of the emission increases and
the energy saturates [167]. To compare, emission properties from geometrical centres of
the QDisks in question were carefully extracted. Fig. 7.5 shows the energy increase with
current with the FWHM varying little over the range.
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Fig. 7.5 (a) FWHM as a function of intensity of the emissions from the centres of
the QDisks. Little variation can be seen for most QDisks across over three orders of
magnitude of intensity. Although with decreasing estimation confidence, QDisks #14
and #16 show some systematic increase in FWHM. (b) emission energy as a function of
the beam current, with no consistent saturation energy.
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Fig. 7.6 Estimated emission efficiency with the beam hitting the geometrical centre of
each QDisk. Lines correspond to fitted ABC models. A drop in efficiency past 1 pA
current can be clearly seen, reminiscent of the droop in nitride LEDs.
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External Quantum Efficiency (EQE) is an important measure for optoelectronic
devices, in this case corresponding to the number of emitted photons per incident
electron. Emission rates with the beam directly hitting the geometrical centre of the
QDisks were extracted and then converted to photons per second. The calculations of
conversion factor to estimate emitted photons per measured counts are explained in more
detail in [116]. Considering all factors, the sample emitted approximately 30 photons per
detected CCD count. The measured EQE factors for various electron currents are shown
in Fig. 7.6, indicating that 7 to 100 electrons are required to generate a single photon. A
clear droop in emission probability can be seen above 4 × 107 electrons per second. It
cannot be attributed to the QDisks changing due to irradiation damage, as the process
is reversible.

A similar and well researched droop may be observed in nitride LEDs. To explain
it, the so-called “ABC” model is used [161], shown as fitted lines in Fig. 7.6. With no
CC leakage due to the AlN barriers, three mechanisms contribute to EQE with different
CC density dependencies. Non-radiative defect contributions, represented by the A
term, are modeled to have linear dependency on the density n: dominant at low, but
negligible at high n values. The B term usually denotes the radiative efficiency. It is
considered to have n2 dependency, however it has been shown to tend towards n1 at
high densities [168]. While this prevents theoretically perfect EQE, it cannot account for
the observed droop [161]. Finally, the C term in the model represents the detrimental
Auger effect contribution with n3 dependency. It becomes dominant at high n values,
successfully explaining the observed efficiency droop.

It is much more difficult to apply such analysis to the measured QDisks due to the
internal electric field screening, which changes the wavefunction overlap, adding extra
complexity to A and B terms in the model. Nevertheless, the model can be used as
a framework for reasoning about the cause of the measured effect. In particular, the
changes in interaction probability are supposed to be the same for both non-radiative (A)
and radiative (B) contributions, and thus are not able to account for the droop. What
is left is the C term of the model, the Auger effect, supported by similar findings in
LEDs [160].

Fig. 7.6 also allows estimating emitted photons per second. In particular, it shows
that these systems could not emit at higher than the measured 107 photons per second
no matter how strongly driven, with the maximum EQE achieved at roughly 1 pA.
Considering that the electron velocities in SEMs are significantly smaller and interactions
are stronger, it is likely that many conventional CL-SEM setups create much higher carrier
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densities even with low currents, thus operating in the droop regime and overshooting
the optimal efficiency.

7.3 Conclusions

A nanowire with multiple GaN QDisks separated by AlN barriers was investigated
measuring the CL emission in a TEM across four orders of excitation intensity magnitude.
The measured emission energy–intensity relations were investigated with 1 nm spatial
resolution for seven QDisks, supporting the QCSE interpretation. The emission efficiency
droop was measured to be present with beam currents above approximately 10 pA, and
tentatively attributed to the Auger effect.





Chapter 8

Quantifying elemental and bonding
maps in 3D in a TEM

This chapter includes work that is prepared for publication as:

Francisco de La Peña, Tomas Ostaševičius, Rowan K. Leary, Caterina Ducati,
Paul A. Midgley, and Raúl Arenal. Quantitative three-dimensional elemental and
bonding mapping of a complex hybrid nanoparticle

In particular, RA and FdlP conceived the experiment, RA, FdlP and RKL performed the
tomo-EELS measurements, TO came up with the fingerprinting algorithms, TO fitted
the spectra, FdlP and TO performed the EELS quantification, FdlP and RKL performed
the 3D-CS tomography.

Nanoparticles and other nanostructures have been a major part of many research fields
due to their potential to have a high impact on our lives – from medical applications [25],
to LEDs [153, 170]. The ability to efficiently determine nano material properties and
structure is of paramount importance. The behaviour of such materials is controlled
not only by their chemical composition and electronic state (bonding), but also by their
shape and size. As a result, measurement techniques able to provide all the required
information are of great interest.

The Transmission Electron Microscope (TEM) has been the cornerstone of nanocharac-
terization because of its ability to quantify chemical composition and determine specimen
morphology with atomic spatial resolution [1]. In particular, the most general way to
determine the atomic species that constitute the sample involves either energy-dispersing
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the emitted X-rays, or measuring the electron energy loss spectrum (EELS) as the
electron passes through the sample.

However, as in bulk materials, in order to fully describe the particle and its properties,
the chemical composition alone is often not enough. An experiment that not only
determines the positions and species of atoms, but also their immediate surroundings
is significantly more useful. There have been two ways to attempt to extract such
information. The first involves atomic resolution scanning TEM (STEM), where each
atom species is determined from the measured signal (either high-angle annular dark
field (HAADF) [171, 172] or EELS [4]). For such an experiment, the specimen should
be very thin, often just tens of layers of atoms, making the technique less than ideal for
morphologically-complex large particles.

The alternative measurement uses STEM-EELS, which is capable of both absolute
quantification and determining the chemical composition, all without the need to use
standards [4]. For the local atomic surroundings, it uses the fine EELS spectral features
in the few tens of eV following the elemental edge onset. The so-called energy loss near
edge structure (ELNES), described in section 2.1.2, can be directly related to the local
density of states of the measured atom. Importantly, the ELNES features stay present
and meaningful even if the spatial resolution of the EELS map is significantly worse than
atomic. This opens a way for a much faster nanocharacterization, where the necessary
experimental spatial resolution is determined only by the specimen morphology.

Finally, the 3D morphology for sufficiently complex structures has been shown to
be of key importance for their properties. Even though the STEM-EELS measurement
produces two-dimensional elemental or bonding maps, electron tomography [173] provides
a way to reconstruct 3D information. Such EM tomography of individual nanoparticles is
usually performed by measuring the quantities of interest in as many different directions
as possible, often with 1° steps. Many samples are not able to withstand such radiation
damage without significant changes, breaking the key assumptions of tomography [173].
Compressed-sensing (CS) techniques have been used to successfully side-step this require-
ment by reducing the number of required projections by using various assumptions about
the information content of the projections [52, 174, 175].

8.1 Methods

To the author’s knowledge, there are just three examples of bonding tomography in the
scientific literature [21, 176, 177] to date. Jarausch [21] investigated the 3D distribution
of silicon oxidation states in a cylindrical nanopillar of diameter ∼200 nm (Fig. 8.1).
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Fig. 8.1 (a) Extracted fingerprint EEL spectra, (b) corresponding fitting results and (c)
tomographic reconstructions from the said results. Figure from [21].

This allowed the researchers to assume that multiple scattering was approximately
constant throughout the dataset and use the traditional curve fitting approach to extract
qualitative tilt-series by fitting oxidation states with respective fingerprints. The signature
EELS signals were estimated from selected areas of the specimen, where each state was
dominant. This step again relied heavily on the fact that the effects of multiple scattering
were approximately identical across all spectra. The bonding maps are the input for the
tomographic approach of choice, reconstructing each state 3D distribution independently.

The second approach, shown by Goris [176], follows a significantly more computation-
ally demanding route. The specimen of interest was composed of ∼10 nm ceria nanopar-
ticles, where multiple scattering effects were negligible (Fig. 8.2). One tomographic
reconstruction per energy channel of the full recorded EEL spectrum was performed,
such that their combination allowed extracting a spectrum from any voxel. Fitting those
spectra with a linear combination of oxidation state fingerprints from thin standards
allowed an estimation of their abundance in 3D. This approach is not only exceptionally
computationally demanding (and hence subject to tomographic reconstruction artefacts
more than others), but also applicable only to specimens where multiple scattering, to a
good approximation, is not present.

The final ELNES quantification, presented by Torruella [177], reconstructed the 3D
abundance distributions of iron oxidation states in a 40 nm cubic core-shell nanoparticle
(Fig. 8.3). The corresponding tilt-series maps in this case were extracted from the full
EELS dataset using a blind source separation machine learning technique without using
standards or references. While such an approach has the advantage of learning the
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Fig. 8.2 (a) HAADF-STEM reconstruction of the investigated particle, (b) reconstruction
visualizations of ceria with different valency, and (c) slices through the volumes in (b).
Figure from [176].

Fig. 8.3 3D surface visualization of iron nanoparticle core and shell, with (a) only core,
(b) only shell and (c) both core and shell visible. Figure adapted from [177].

fingerprints automatically, it is applicable only in cases without significant multiple
scattering. The 3D reconstructions were performed using a compressed sensing (CS)
electron tomography algorithm, with additionally imposed mirror symmetry to double
the number of effective tilts for the reconstruction.

It is important to note that in all three examples the final intensity was in arbitrary
units. Furthermore, in all cases multiple scattering was assumed to be either negligible
or constant throughout the specimen, hence significantly restricting the applicability of
these techniques.

This chapter describes how a combination of the quasi-simultaneous acquisition of
low-loss (LL) and high-loss (HL) EEL spectra and novel analysis techniques has enabled
truly quantitative analytical tomography without the need for standards and not limited
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to specimens with constant or weak multiple scattering. First, after pre-processing
the dataset for measurement artefacts, the fingerprints were extracted using one of the
algorithms suggested in section 8.1.1. The procedures do not put any constraints on
multiple scattering conditions by using the simultaneously measured LL signal. Then the
reference single scattering distributions (SSDs) were fitted as described in section 2.1.2 for
the full dataset. As the resulting model contained multiple elements, each with multiple
corresponding SSDs (up to four), the SAMFire algorithm (presented in chapter 5) was
used to increase the stability of the solutions and ease the analysis. The resulting intensity
maps can be directly converted to atoms with the particular oxidation state per pixel
area. In addition, curve fitting allowed a calculation of an estimate for the errorbars of
the results. The 3D reconstruction was performed using a CS tomographic algorithm,
explained in section 8.1.2, capable of using both the tilt-series and the corresponding
confidence weights, calculated from the errorbars that were estimated whilst fitting.
Therefore the resultant 3D distributions are measured in numbers of atoms of particular
species and oxidation state in each voxel, an example of state-of-the-art quantitative
analytical tomography of highly complex nanoparticles.

8.1.1 Extracting “fingerprint” spectra

As the thickness of the investigated particle varied from just a few to almost 100 nm,
multiple scattering contributions changed drastically throughout the area of interest.
As a result, conventional blind source separation methods to extract the corresponding
“unmixed signals” were unsuitable and a more robust algorithm was sought.

We propose two curve fitting based approaches to extract SSDs from EELS measure-
ment maps, where HL and LL signals are available. Neither algorithm uses any form
of deconvolution, but instead relies on modelling an already broadened SSD, as will be
explained in more detail in section 8.3, eq. (8.5). Both start with preparing the datasets
by removing various measurement artefacts, such as beam energy drift, X-ray spikes,
removing the detector afterglow effects and normalising detector pixel gain. Both the LL
and HL signals are de-noised using Principal Component Analysis (PCA) and examined.
The LL signal (or EELS maps) will be used as an effective point-spread function for
each of the SSDs, and thus should be as artefact-free (both PCA and measurement) as
possible in both energy-loss and energy-gain regions of the spectrum. In addition to
ensuring that the HL spectra are artefact-free in the energy windows of interest, both
the cleaned data and PCA results are used as a guide to identify the elements and their
oxidation states. While the elements present can also be determined by examining the
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total average spectrum, the different oxidation states would overlap and all real-space
information would be lost.

After the real-space positions of the different oxidation states are estimated, the
SSDs are ordered in a list in such a way that allows unambiguous fitting if following the
order. That is, for each SSD in the list, in the energy range of the particular SSD and
in its associated real-space pixels (or just a subset of pixels), all other bonding states
present are already estimated and above in the list. Any known compounds found in the
specimen can be incorporated to help create the list.

The first proposed analysis approach makes use of specific favourable conditions,
where a particular spectrum (with the appropriate edges from above in the list subtracted)
is assumed to be very close to the required SSD convolved with the corresponding LL
spectrum. These pixels can be just adequate estimates. By fitting the convolved SSDs
to their respective spectra, a library of first guesses is formed. If required, the next two
steps can be repeated for possibly increased accuracy. First, the edge intensity maps for
the full dataset (or just the first EELS map in the series in this case) are estimated by
fitting the library of SSDs and convolving appropriately. Then the maps are used to
determine the pixels that have the most favourable conditions to be used to fingerprint
each of the edges, and the SSD library is updated with the new estimate. For example,
to determine the boron in a BN fingerprint SSD, a pixel with the most nitrogen (for BN)
and, for example, the least oxygen (for BO/B2O3) could be selected.

The second approach does not rely on finding particular “magic” pixels in the EELS
dataset. Instead, all spectra that satisfy the conditions for the previously created
fingerprint list are used, with the assumption that if multiple scattering was not present
or deconvoluted [4], the mean spectrum would correspond to the required SSD. To
achieve this, two optimization problems are solved at different scales simultaneously
over the particular subset of pixels. The “outer” loop optimizes the particular SSD in a
global way, where the outer optimization parameters (“superparameters” further) are
constant throughout the map. For each goodness of fit evaluation in the outer loop, the
inner optimization is run at least one full cycle, where each pixel is fitted individually
with appropriate convolutions with LL, resulting in intermediate intensity maps for all
considered edges. Therefore the solution consists of superparameters that have just one
value throughout the fitted dataset, and normal parameters with one value per pixel.
With such a scheme, multiple scattering is taken into account by using the LL spectrum
on a per-pixel basis, but the appropriate SSD is determined for the full map, hence the
region of interest can be selected without much consideration for specimen thickness.



8.1 Methods 95

l

f (x,y)

y

x
D

L

θ

Fig. 8.4 The 2D Radon transform R can be visualised as the integration through a body
D in real space f(x, y) along all possible line integrals L with its normal at an angle θ to
the horizontal. Figure taken form [173].

8.1.2 Compressed-sensing tomography with weights

Probably the best known examples of tomography in everyday life come from its use
in medicine, namely the Computer Assisted Tomography (CAT-scan). The first real
application of the technique, however, came from astronomy in 1956 by Bracewell [178],
proposing reconstructing a 2D map of solar microwave emission from a series of 1D
profiles. Midgley and Weyland [173] reviewed the history, developments and limitations
of tomography in electron microscopy, pointing out that the first EM tomography papers
came out in 1968. However, relatively few experimental results followed due to important
limiting factors that have since been overcome: lack of processing power and goniometer
precision.

The mathematical principles behind tomography were first outlined by Radon in
1917 [179], defining the Radon transform, see Fig. 8.4. It described mapping the original
real-space function f(x, y, z) to projections in (r, θ) space via appropriate line integrals.
Here θ defines the projection direction and r the position of the integral in the 2D
projection. In principle, if some measurement produced a Radon space representation of
an object, an inverse of the transform could then reconstruct the real-space structure. In
practice, experiments only subsample Radon space (most notably in θ), and hence the
reconstruction is always just an approximation. Thus the main challenge is recovering
the best real-space reconstruction from the limited measurement data.

A measurement is suitable for use in tomographic reconstruction if it satisfies the
projection requirement [173, 180]. In particular, the detected signal should be a monotonic
function of the measured phenomenon or material. Such a requirement limits the
usefulness of bright-field TEM measurements for EM tomography, as the detected signal
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in general is highly dependent on particular diffraction conditions. HAADF measurements,
on the other hand, are mostly formed from incoherently scattered electrons, and hence are
much better suited for recording tomograms. In this work the EEL measurements were
converted to numbers of atoms in particular beam trajectories before the tomographic
reconstruction took place, perfectly satisfying the projection requirement. If the EELS
signals were used directly, only compounds with an isotropic dielectric function (that is
with the detected intensity not dependent on the direction of the swift electron trajectory)
would be suitable for a reconstruction, which is known to not be the case for BN [61].

In many cases the difficulty of tomographic reconstruction is directly related to, for
example, the number of sampled angles in the original dataset. With finer sampling
(<5°), simpler reconstructions such as Filtered Back projection [181] or Simultaneous
Iterative Reconstruction Tomography [182] can be used relatively straightforwardly.
However, as the tilt step increment increases, the quality of such reconstructions quickly
deteriorates beyond an acceptable level. Furthermore, often in EM tomography the
measurement system is physically limited to only a subset of angles, contributing to
the so-called “missing wedge” problem [173]. To increase the quality of the final result,
prior information can be incorporated into the reconstruction algorithm. The field
of Compressed Sensing (CS) [174] discovered the mathematical foundations for such
approaches in the 2000’s suggesting that the object can be reconstructed from a small
subset of measurements if the object is sparse in some domain. In this context an image
is said to be sparse if most of its pixels are zero, and the fraction of zero coefficients
measures the sparseness of the image. Examples include reconstructing a spectrum from
a truncated Fourier spectrum (frequency domain) or compressing an image in a JPEG
format (discrete cosine transform domain) [183]. An often reasonable assumption in EM
tomography states that the true object consists of constant density regions. It can be
directly related to sparsity in the gradient of the density, called the total variation (TV)
of the object. The final solution is then found iteratively by penalising reconstructions
with large TV values:

x = arg min
x

[
1
2∥y − P x∥2 + βT V TV (x)

]
, (8.1)

TV (x) =
∑

pixels

√∑
i

(∂ix)2 , (8.2)

where x is the reconstruction, P is the projection operator and y are the measurements.
Here βT V is a constant that controls how strongly the TV regularisation is taken into
account. In this work in particular we used a modified version of PyHST2 [175]. The
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main minimization problem in eq. (8.1) was extended to support 3D reconstructions and
weighting each projection by its error σx:

x = arg min
x

1
2

∥∥∥∥∥y − P x

σx

∥∥∥∥∥
2

+ βT V TV (x)
 . (8.3)

In contrast to often previously used “slice-by-slice” algorithms, this allowed not only to
perform the reconstruction on the full volume all at once, but also take into account the
confidence of each quantification result.

8.2 Specimen and experiment

The specimen in this study was a boron nitride core-shell nanoparticle, often called a
“cage” or “nano-cocoon”. Such particles are a by-product of one of the BN nanotubes
manufacturing processes and are believed to play a significant role in their growth [61, 184].
In particular, the samples were synthesized using a laser vaporization technique described
in [170, 184]. Briefly, an h-BN target was vaporized by a continuous laser under 1 bar of
flowing nitrogen. Importantly, the target was not pure and contained 4.5% by weight
B2O3 that was used as a binder, as well as other impurities such as carbon, silica
and calcium. The vapour from the target condenses in the form of soot, which was
ultrasonicated in ethanol, and the solution pipetted onto TEM grids with a holey carbon
film.

A HAADF image, low-loss and high-loss STEM-EELS tilt-series from an isolated
nanoparticle were recorded quasi-simultaneously using a Tecnai Osiris Gatan Enfinium
ER spectrometer equipped with DualEELS™. In order to minimize beam damage, the
microscope acceleration voltage was set to 80 keV, and the tilt range was −70° to 70° with
acquisition every 17.5°. A separate HAADF tilt-series was acquired by recording just the
HAADF image of the particle before the simultaneous HAADF and EELS measurement,
to be used later to correct sample drift during the longer acquisition.

When the goal of the analysis is determination of areal densities of atoms, the size of
the probe and the step size of the mappings become particularly important to consider
when setting up the experiment. Namely, the diameter of the probe should be very
similar to the experimental step size in order to avoid both counting the sampled atoms
multilpe times when the probe is much larger than the step, and under-estimating the
measured densities, when the probe is much smaller than the step. Unfortunately, the
latter effect is also present when the probe is larger than the smallest detectable atom
clusters, and should be taken into account when reasoning about the final results.
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8.3 Analysis

All measured EELS data was corrected for detector readout noise1 and dark current2 by
subtracting the exposure-scaled dark current and constant readout noise spectra from the
raw values [185]. Acceleration voltage fluctuations and similar effects were corrected by
applying a sub-channel energy shift to both spectra on a pixel basis so that the highest
zero-loss peak intensity was at exactly 0 eV [101]. Once a noise-free high-loss part of the
data was available (described later), the energy channel width and lowest energy were
calibrated by comparing detected edge onset energies and their differences for B-K and
N-K with previously established values [186].

The HAADF image at 0° tilt as well as EEL spectra from three real-space locations
and the total summed spectra are shown in Fig. 8.5. Six different edges are marked at
their respective ionisation energies, corresponding to Si, B, C, Ca, N and O. Due to the
necessary wide spectral range to detect all these elements, the EELS signal counts were
very different at high and low energies, leading to the signal to noise ratio (SNR) ranging
from 17 for boron to 0.5 for oxygen. In addition, even the edges with relatively high SNR
can be seen to have different ELNES shapes throughout the series, showing additional
complexity of the data that has to be unraveled. Fig. 8.6 shows two LL spectra from the
shell and core of the particle, corresponding to spots (b) and (c) in Fig. 8.5, respectively.

In order to de-noise the data as described in section 4.1.2, principal component
analysis (PCA) was performed on each spectral image (SI) of the series. The important
results for 0° tilt are shown in Figs. 8.7 and 8.8. While the component spectra are clearly
mixed and not physical, the results help to determine how many fitting components will
be needed when performing the quantitative analysis as well as real-space regions where
various edges have the strongest and weakest signal. In particular, the decomposition
split the BN signals into two components, one of which seems to form a ring around the
outer shell (number 5), while the other is more uniform throughout the particle (number
3). It has been shown previously in [61] that such separation is due to the anisotropy
of the BN, where the ELNES shape varies with orientation of the electron beam with
respect to the anisotropic axis. The PCA results further confirm that the outer shell BN
c-axis is perpendicular to the surface of the particle.

1Readout noise is a fixed noise value each time a particular pixel is read out. It arises from the
conversion of CCD charge carriers to a voltage signal, as well as any further processing. It does not
depend on the exposure time. Readout noise is measured by recording a spectrum with the shortest
possible exposure.

2Dark current arises from thermally generated electrons within the CCD. It increases with exposure
time. The dark current reference is measured by recording a spectrum from a long, for example 10
seconds, exposure, but with the beam blanked, from which the readout noise is subtracted.
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Fig. 8.5 (a) HAADF image of the nanoparticle at 0° tilt. Spectra from three pixels
marked in (a) are shown in panels (b-d). Clear B-K ELNES shape differences can be
seen, showing sensitivity to the local environment. In (e) the total average over full EELS
map spectrum is shown. Edge onsets of the elements are marked with labeled vertical
lines. The data was multiplied by 6 and 4 at 270 eV and 515 eV, respectively, for clarity.
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Fig. 8.6 Low-loss spectra from the shell and core of the particle, corresponding to (b) and
(c) in Fig. 8.5, respectively. Plasmon contributions (5 eV to 50 eV) significantly increase
with electrons passing through more material. Both spectra have been denoised using
PCA.

The curve-fitting analysis described in section 2.1.2 requires low-loss (LL) EELS
spectra for each real-space pixel with as little noise and few artefacts as possible. The
de-noising of the LL part of the dataset was performed as previously described, by
using PCA and truncating the component list. Unfortunately, the experimental setup
introduced a spectral artefact that had to be corrected. Due to how the DualEELS™
spectrometer operates by acquiring both energy ranges quasi-simultaneously, significant
leakage of the high-loss part of the spectrum was visible in low-loss spectra where the HL
signal was strong as the beam trajectory intersected the particle, as shown in Fig. 8.9.
The artificial energy-gain bump in the LL shape was fixed by first calculating the mean
LL spectrum of 810 pixels without the particle and hence the artefact, and then fitting
this reference shape to all pixels of the LL part of the signal. Only the spectral range
corresponding to the artificial bump, −60 to 0 eV, was replaced by the fitted template.
The overall procedure resulted in a LL EELS map for every tilt with very little noise
or known de-noising or experimental artefacts. Lastly, the LL signal intensities were
calibrated with high-loss. After converting both signals from raw experimental counts
to counts per second, at identical energies the two signal magnitudes were different by
a factor of (2.663 ± 0.078) due to a combination of experimental factors such as gain
change and spectral CCD binning.
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Fig. 8.7 First 12 PCA loadings and corresponding factors. The first 9 components were
used to reconstruct close to noise-free EELS dataset.
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Fig. 8.8 Scree plot, showing the fraction of total variance that is included in each
component. The first 9 components were used to reconstruct close to noise-free EELS
dataset.
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Fig. 8.9 The EELS low-loss spectrum energy gain tail as measured (red) and after
template fixing (black) for one pixel are shown at the top. The difference, shown as
the shaded region, was an artefact of a high intensity signal from the high-loss part of
DualEELS™. The integrated difference for the 0° tilt (left) is proportional to the total
measured high-loss intensity (right).

EELSCLEdge components from HyperSpy [101] with Hartree-Slater cross-sections [18,
19] were used for fitting as fingerprints unless stated otherwise. Each component was
able to model the fine structure intensity modulations by a spline3 in the first few tens
of eV as described by Verbeeck [23]. The fitting method is described in detail in de la
Peña’s thesis [188]. Briefly, the full model consists of a linear combination of all edges
that are present in the energy range and a power law background:

J ′
SSD(E) = A · E−r + IZLP

n∑
i=1

Ni

m1∑
j=1

σi,j(E) , (8.4)

3A spline is a numeric function that is piecewise-defined by polynomial functions and which is highly
smooth at the places where the polynomial piece connect, called “knots” [187]
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where J ′
SSD(E) is the fitted core loss spectrum as a function of energy loss E, and IZLP the

zero loss peak intensity, Ni are the areal densities of atoms, n is the number of chemical
elements in the energy range, mi the number of ionisation edges of the i element, σi,j

gives the ionisation cross-section of an atom of element i and excitation of shell j, and
A and r model the power law background. Eq. (8.4) can be used directly for very thin
samples with negligible multiple scattering, but in general these effects have to be either
removed from the data before fitting, or incorporated into the model. We model the
multiple scattering by not just multiplying the cross-sections by the ZLP intensity, but
instead convolving with the LL spectrum JLL(E) on a per-pixel basis

JHL(E) = A · E−r + JLL(E) ⊗
n∑

i=1
Ni

m1∑
j=1

σi,j(E) , (8.5)

This gives the final modeled core loss spectrum. The ELNES structure spline model is
included in each σi,j. Once a fingerprint was determined, the fine structure modulations
were fixed and only relative scaling of intensity Ni (in addition to the effects of the
convolution with LL) was allowed.

Ten spectral fingerprints for five elements were extracted as described in section 8.1.1:

• Boron (4) for B2O3, BN∥, BN⊥ and Bβ−rhombic;

• Oxygen (2) for SiO2 and B2O3;

• Nitrogen (2) for BN∥ and BN⊥;

• Calcium (1) Ca-L2,3;

• Carbon (1) C-K;

Silica (SiO2) was found everywhere in the background of the specimen, hence the oxygen
O(SiO2) SSD was estimated first from a background region. Even though carbon was
also present in the background, a more accurate SSD estimate was fitted from the middle
of the particle, where the C-K edge signal was particularly strong. Afterwards B and O in
B2O3 SSDs were fitted to the pixels in the region where no nitrogen (for BN) was visible.
Even though oxygen SSDs overlap, the silica oxygen edge was already estimated. The
process was then repeated for two boron and nitrogen SSDs in BN (one from the edge of
the shell and second from the middle, as required by the anisotropy of BN). In each case
pixels with the least detected oxygen were sought to make estimations as independent of
others as possible. Finally, crystalline boron and calcium SSDs were fitted from the core
of the particle.
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The Si-L2,3 edge is tabulated to start around 99 eV with a delayed onset [189], and
due to the experimental setup, the lowest detected EEL in the high-loss part of the
dataset was at 99.8 eV. This meant that the data contained insufficient information for
the fitting algorithm to accurately fit both the exponential background and the edge,
thus a Si edge fingerprint was extracted from parts of dataset that did not contain the
particle using machine learning methods used in the previous studies [61]. Assuming the
support and silica layer were sufficiently thin, the fingerprint was assumed to be a good
approximation of the silicon SSD multiplied by a scalar factor.

Once all fingerprints were determined, noisy calibrated data from each experimental
tilt was fitted using the SAMFire algorithm described in chapter 5. The analysis was
performed using a least-squares optimizer MPFIT [74], which also returns the standard
deviation of the solution. In order to minimize the errors of the power law background
model over large energy ranges [4], each tilt was fitted in energy windows. For example,
150-250 eV energy window was used for all boron edges, 250-275 eV for carbon and
calcium, and so forth.

One fitted spectrum with highlighted components is shown in Fig. 8.10. All edge
components except C-K were tripled in intensity for visual clarity. Note that for both
boron and nitrogen in BN the total corresponding signal is encoded in a two-dimensional
(“perpendicular” vs “parallel”) space. To access both dimensions, two components were
fitted to the required fingerprints. Nevertheless, the two SSD pairs can only be interpreted
as physical when summed, which is how they are shown in the figure. In addition to the
high degree of control over the model, fitting also allows us to estimate the standard
deviation of the result, shown in the figure as a darker region around the final fitted
spectrum.

Finally, performing tomographic reconstruction using CS requires tilt-series maps
without significant backgrounds. As carbon and silica were found everywhere, three
background tilt-series had to be estimated and subtracted. It was further complicated by
beam damage to the substrate, leading to holes right next to the particle at the later
(high angle) tilts. First, a binary mask of the particle at all tilts was created to define
the boundary between background signal that was visible (outside) and underneath the
particle (inside), shown in Fig. 8.11. The masked region was iteratively filled in from the
boundary inwards. The estimated background values for each iteration were calculated
using weighted mean with weights proportional to the inverse distance squared [190].
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Fig. 8.10 A fit for one EEL spectrum (a) with individual edge components (b-h). In
(a) all edges except carbon C-K were tripled in intensity for visual clarity. The data is
shown as red dots, and the fitted model as a black line. The dark shaded region around
the model marks the uncertainty of the fit. The fitted pixel did not contain any silica,
thus the two relevant edges are not shown.
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Fig. 8.11 Estimated backgrounds for the carbon C-K fit result tilt series. Tomographic
alignment artefacts around the edges of the maps are intentionally shown. Outline of the
particle mask is shown in white in each corresponding tilt. Three iterative background
filling-in steps are shown in the bottom for the −70° tilt.

8.4 Results and discussion

The quantification maps for the first tilt (0°) in the tilt-series are shown in Fig. 8.12.
Nine independent tomographic reconstructions, one per bonding or elemental map, were
performed following the method outlined in section 8.1.2. If the amplitudes of the fitted
tilt series are proportional to the number of atoms per nm2, then the reconstructions, by
definition, are proportional to the number of atoms per nm3.

Fig. 8.13 shows composite particle reconstruction iso-surfaces for five of its elements.
Due to measurement errors being used as weights, high fidelity reconstructions were
achieved with only 9 experimental tilts and no favourable symmetries. The particle is
best explained using the simplified scheme on the right of Fig. 8.13. In particular, the
crystalline boron forms the ∼38 nm diameter core (red) surrounded by carbon (grey),
enclosed by boron nitride as the main ∼5 nm thick shell (green). Two cavities were found
in the carbon. The first one corresponds exactly to the crystalline core, the second, while
of similar volume, was reconstructed to be almost empty. The BN shell is not continuous
and has well reconstructed holes. Carbon was reconstructed to “leak” through the shell
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Fig. 8.12 Quantification maps and HAADF image at 0° tilt. The colourbars are in
atoms/nm2. Colourbars include a vertical line with the length of the magnitude of the
errorbar for the largest intensity in the map. The error estimation was performed during
the curve fitting, and thus is not available for Si, which relied on machine learning
methods.
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Shell (Si, B(O), O(B, Si))
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Fig. 8.13 Reconstructed elemental iso-surfaces on the left and a simplified scheme of
the investigated composite particle on the right. The ring structure in the experimental
results emerges only when considering the absence of boron in the corresponding voxels,
and thus is incorporated in the yellow (Si) isosurface. For clarity, the scheme shows
the ring separately. Each colour in the scheme corresponds to a mixture of elements
indicated in the legend. To decrease the figure complexity, only iso-surfaces of the first
element in each colour are shown. The corresponding atoms/nm3 for the surfaces are:
18, 20, 18, 1.2, 1.2

gap nearest the support and form a disk around the base of the particle. The interface
between the crystalline boron core and carbon surrounding it was reconstructed to contain
a thin shell of oxygen bonded with both boron, silicon and calcium, shown in blue. The
oxides also form an elongated continuous ∼6 nm diameter wire-like structure from the
core via a well reconstructed path in the carbon and finally through a different gap in the
BN shell, where it “flows” on the outer surface of the shell towards the support. For the
sake of simplicity, this elongated structure will be called “the tail”. Trace quantities of
calcium were reconstructed on the walls of the nearly empty void in the carbon, as well
as in both the core and the tail. Two more structures are observed in the reconstructions.
First, the BN shell is encapsulated in a very thin (at the detection limit) outer shell
containing boron, oxygen and silicon (yellow). Secondly, a thin (∼3.5 nm thickness) ring
of silica (SiO2) is reconstructed on top of the carbon ring that “leaked” from the BN
shell and formed a support at the bottom (orange).

Slices through the nine reconstructed volumes are plotted in Fig. 8.14, showing distinct
separation of the core, the inner shell, the carbon filling, the main BN shell and the thin
outer oxide shell. In addition, a gap in the BN shell with corresponding higher intensities
in the tail element reconstructions is visible.



8.4 Results and discussion 109

Ca B ( R)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
20
40
60
80
100
120
140
160

N B (BN)

0

10

20

30

40

50

60

0

10

20

30

40

50

60

O (B2O3) B (B2O3)

0
5
10
15
20
25
30
35
40

0

10

20

30

40

O (SiO2) Si

0
5
10
15
20
25
30
35

0

2

4

6

8

10

C

30 nm
0

20

40

60

80

90 nm

Fig. 8.14 Quantitative reconstruction slice. The shown colourbars are in atoms/nm2.
Bottom right shows the slice plane location.
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Fig. 8.15 (a) Mean number of atoms as a function of distance from the centre of the
core, averaged over all directions. The inset diagram displays the relative positions of
the centres of the core and the shell. Arrows mark one of the averaged radial profiles for
clarity. (b) Zoomed-in version of the marked region in (a). Boron, silicon and calcium
oxides can be seen between the metallic core and carbon. (c) Mean number of atoms as
a function of distance from the centre of the shell, considering only half of the particle
to exclude the “tail” structure. Three vertical black lines mark the peak positions for
BN (30 nm), B2O3 (32 nm) and SiO2 (34.5 nm).

Radially averaged profiles showing number of atoms/nm3 from the centres of the
core and the shell are shown in Fig. 8.15. Panels (a,b) show profiles when the zero is at
the centre of the core (marked as black in the inset) and averaged over 4π, whereas (c)
corresponds to using the centre of the shell as the origin (red in the inset) and considering
only 2π. (a) shows that the metallic boron is contained almost entirely within the first
20 nm. Also, boron and silicon oxides can be detected between the core and it surrounding
carbon, forming a thin shell. (b) shows the zoomed-in on the oxides version of (a). The
measured mean number of atoms at 20 nm are 7.5 ± 3.0, 10.5 ± 5.0, 1.5 ± 1.1 and 6.0 ± 2.8
for B(B2O3), O(B2O3), Si(SiO2) and O(SiO2) respectively. Finding the oxygen in SiO2

signal to be double the expected value, we include calcium with 1.8 ± 0.3 atoms at the
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Fig. 8.16 Nominal and experimental (extracted from the 3D reconstructions) number
densities for elements in corresponding compounds. Fractions of the theoretical values
are shown as percent [191].

same radius into consideration and conclude that on the surface of the core there are, in
fact, three oxides – boron, silicon and calcium, with the oxygen signal corresponding to
the last oxide incorporated into what we thought to be just O(SiO2).

Because the structure of the particle contains an elongated “tail” of similar oxide
composition as the inner shell, we exclude it by considering only half of angles for
Fig. 8.15(c) (thick red line in the inset). The profiles suggest a thin B2O3–SiO2 shell
on the outside of the thick BN shell. Black vertical lines mark the peak positions for
BN (30 nm), B2O3 (32 nm) and SiO2 (34.5 nm).

The results were verified to be consistent by comparing relative fitted intensities for
the expected compounds – for example boron and nitrogen atom counts in BN were
verified to be equal within ±5% where the SNR was sufficient. Fig. 8.16 compares
the reconstruction results to theoretical compound atomic densities. We note that the
errorbars only represent the error of the estimation from the reconstruction, and thus
do not take into account the error of reconstruction itself or, for that matter, the error
of the fitting analysis. The measured density of the core of the particle is just 0.3%
below the theoretical density of the beta-rhombic boron crystal, one of its four known
allotropes. The difference could be attributed to the small but detectable quantity of
calcium in the core, which is estimated to be around 1.6%. The estimated number
of carbon atoms was found to be 73% of the nominal graphite value, suggesting that
a fraction of the graphene sheets might be rolled. While both boron and nitrogen in
BN densities were underestimated by only around 12%, carbon, silica and boron oxide
number densities were on average 50% lower than expected. The values are speculated to
be a result of finite-sized beam measuring atom clusters of comparable or smaller spatial
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dimensions, resulting in accurate numbers of atoms, but overestimated corresponding
volumes. Calcium in CaO results suggest that compared to the beam size, CaO crystals
were of significantly smaller dimensions. The seemingly unfavourable CaB6 result is in
fact consistent with the current knowledge, as both reported and simulated Ca–B phase
diagrams support very low mole fractions of Ca with β-rhombic boron [192, 193].

The described morphology agrees with the previously suggested findings and growth
mechanisms of such nanoparticles [61, 170, 184]. Namely, the particles were made by
evaporating a h-BN target under a partial pressure of nitrogen gas. As the boron vapor
cooled it condensed into boron droplets. Liquid boron is known to be highly reactive [61]
with both carbon and oxygen, thus both elements (originally coming from the target
itself [184]) dissolve in the boron droplet. As the droplets cool past ∼2700 K, the surface
boron atoms react with the gaseous nitrogen to form the BN networks. If the droplet
happened to not contain any dissolved oxygen, the BN networks form root-growing
single-walled BN nanotubes. If oxygen is present in the droplet, as was the case for
the investigated specimen, the B-N2 reaction is claimed to be highly inhibited [184],
and BN only forms at the surface as the boron droplet solidifies at 2000 K, creating a
“cage” around the core. As carbon is not soluble in a now solid boron, it diffuses and
precipitates at the surface of the core, filling the BN cage. In this particular specimen
the carbon is reconstructed to either punch a hole in the BN shell, or just form around
an already present gap in the cage. The dissolved oxygen precipitates when the particle
cools past ∼1000 K, forming yet another shell around the nearly pure boron core. Again,
the reconstructed B2O3 spatial distribution supports these claims. The oxide is found to
seemingly flow through the possibly porous carbon and via an already present gap in
the BN cage, or deform the said structures to create such path. In addition, the oxide
is found to contain not only boron and oxygen as claimed in the previous studies, but
also other trace elements that were initially present in the evaporation target, namely
calcium and silicon. Interestingly, while no Si was reconstructed inside the kernel, a trace
amount of Ca was still present.

We speculate that the unambiguously detected thin shell of Si, B(O) and O(B, Si)
on the very outside of the measured particle was created during the STEM-EELS
measurement. A thin layer of silica was found on the holey carbon film everywhere
around the particle. We suggest that the silica layer was in fact created when preparing
the specimen, covering both the particle and the support. As the high-energy electron
beam scanned the specimen, it supplied the necessary energy to break the B–N bonds
and allowed to form a shell of boron oxide by using SiO2 as the source of oxygen. Even
though the combination of spectral SNR and the spatial resolution of the reconstruction
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are too low to confidently confirm it, borosilicate glass (B2O3 − SiO2) may have formed
as the outmost shell. The hypothesis of reaction during experiment is supported by the
ring of silica at the base of the particle: because silica did not touch the BN shell, the
boron oxide–forming reaction could not take place.

8.5 Conclusions

A complex multi-layered BN core-shell nanoparticle was investigated using EELS where
both high-loss and low-loss regions of the spectrum were acquired quasi-simultaneously.
Owing to the SAMFire algorithm significantly increasing curve-fitting stability, two new
ELNES fingerprinting approaches were presented and used to quantitatively unravel
both elemental and bonding maps from the measured dataset. Crucially, due to having
both LL and HL of the dataset, both fingerprinting approaches are not subject to
particle thickness limitations. Finally, a full 3D-TV compressed sensing tomography was
performed to reconstruct the number of atoms of each species with high fidelity. The
resulting 3D distributions confirmed previously suggested particle growth mechanisms and
also revealed new, previously unnoticed details of the process. Because the reconstructions
were also quantitative, atomic densities were estimated and compared with nominal
values for corresponding compounds. The combination of the data analysis approaches
serves as the first example where numbers of atoms were measured in 3D with nanometer
precision but without sub-atomic experimental resolution. The analysis is not limited to
small or symmetric particles, and hence can be extended to significantly larger structures
and regions of interests.





Chapter 9

Strain mapping in diffraction
cartography

This chapter includes work by Tomas Ostaševičius, Duncan N. Johnstone, and Sigurd
Wenner. In particular, SW performed the experiment, DNJ developed the strain mapping
ideas that were then extended with SAMFire by TO. TO analysed the datasets and
produced the figures.

Strain has long been used in many areas to adapt and improve material properties: from
the semiconductor industry to improve electronic devices [194] or to tune the emitted
photon frequency [195] in opto-electronics, to the more traditional and widely-used
mechanical strengthening of alloys [196, 197]. In all cases strain mapping with high
spatial resolution and precision is the key to better models and understanding of the
effects.

In the last few years the transmission electron microscope (TEM) has become the tool
of choice for experimental measures of strain in thin specimens. A number of techniques
that enable access to such information have been developed or recently improved. Some
rely on high resolution real-space imaging by comparing unstrained atom positions
with the strained region of interest [198], while others analyse atomic-resolution image
geometry using so-called geometrical phase analysis [199]. Other measurements use
electron holography, interfering two waves following different trajectories, one of which
is through the strained specimen [199, 200]. Finally, two diffraction-based TEM strain
measurement techniques are available: nanobeam electron diffraction (NBED) and
scanning precession electron diffraction (SPED) [5], the technique used in this work.
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The main focus of the chapter are new NBED and SPED data analyses, and experi-
mental data and results are used only to demonstrate their capabilities.

9.1 Strain in diffraction

Strain is generally defined as the relative change of the object shape due to outside
forces [201]. For crystals this directly corresponds to change in the planar spacing, which
is readily visible in the reciprocal space section of a diffraction pattern. Writing a strain
component as ε = d0−d

d
= g−g0

g0
, where d,g corresponds to real and reciprocal lattice

spacings respectively, the main task when mapping is often simplified to measuring how
diffraction spots move compared to an unstrained crystal lattice.

The traditional way to perform such a task is via peak finding, where each measured
spot is registered and its centre position is determined with sub-pixel accuracy. The
estimated coordinates can then be used to find the basis vectors of both strained and
reference diffraction patterns, which are directly used in the strain definition. Such an
approach relies heavily on the peak finding algorithm, which may be unstable with noisy
data. In addition, each peak location is estimated independently of all others, allowing for
more ways of error propagation. Nevertheless, it has been shown that such an approach,
while slow, is able to produce precise strain maps [202].

In this work, two alternative ways to estimate strain from diffraction patterns are
shown. The first one, described in section 9.1.1, operates purely in reciprocal space and
neither requires nor provides any knowledge of the crystal structure apart from the relative
deformation of the reference. The method was tested by analysing an age-hardened Al
sample, as described in section 9.2. Section 9.1.2 briefly describes the second approach,
where the strain is found by perturbing the locations of atoms in a simulated crystal
lattice and comparing with the experimental result. While very promising, the practical
side of the method is not fully realised and is still work in progress. Importantly, both
approaches are, in effect, non-linear optimization problems, and hence both are best used
with SAMFire.

9.1.1 Reference diffraction pattern

An atom in the strained crystal lattice is described by a position vector x. If the same
atom is at X in the unstrained reference lattice, a mapping x = ϕ(X) can be constructed.
The deformation gradient is then defined as

F = ∇ϕ . (9.1)
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While ϕ(X) is a general mapping that also includes arbitrary particle motion, F (X)
operates on infinitesimal parts of the crystal, and hence represents the relative element
coordinate shift: dx = F dX. The gradient can be further decomposed into a product of
a rotation matrix R and a stretch matrix U using a polar decomposition F = RU [201].
By noting that generally a displacement (importantly, without rotation) can be defined
as x = X + u, we can expand eq. (9.1):

U = ∂

∂X
(X + u)

= I + ∂u

∂X
,

(9.2)

which in the matrix notation is written as

Uij = δij + ∂ui

∂Xj

. (9.3)

Here the second term is the displacement gradient and corresponds directly to the strain
tensor, thus the problem is formulated in terms of finding the deformation gradient F

and does not require peak finding.
To find F in each pixel, we use an affine transformation in two (reciprocal space)

dimensions, defined as
x = a0X + a1Y + a2 ,

y = b0X + b1Y + b2 ,
(9.4)

where (x, y) and (X, Y ) are the resultant and original coordinates. Such a transformation
fully describes rotation, shift and shear in both directions of the diffraction pattern plane.
Importantly, writing the transformation as a matrix we realise that it is exactly the
deformation gradient:

F =


a0 a1 a2

b0 b1 b2

0 0 1

 . (9.5)

The final algorithm to map strain with respect to some reference pattern then involves
finding an affine transformation matrix F for each of the experimentally measured
DPs, decomposing each into rotation R and displacement U , and then calculating the
strain components from eq. (9.3). The affine transformation is found using a non-linear
optimizer with the matrix elements as parameters and the correlation as the cost function.
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9.1.2 Forward model

The second approach to estimate strain from a SPED dataset approaches the problem
from the material, and not image processing, side. It requires knowing the crystallographic
structure of the specimen – the type and size of the lattice, and the species of atoms
that the crystal is made of. If this information is known, then the strain mapping for
one particular DP can be done the following way.

The task is again formulated as a non-linear optimization problem. First, a model of
the investigated lattice is created, where a theoretical diffraction pattern in some direction
can be calculated, for example using the kinematic theory of electron diffraction [203]. By
applying geometrical (atom position) transformations that correspond to rotations and
strain effects, DPs for different strains can be simulated and compared to the experimental
data.

While the process itself is fairly straightforward from the theoretical point of view,
the biggest difficulty lies in applying such analysis to real data. Because the model is
very sensitive to the starting parameters of the simulation, in particular the direction of
electron trajectories, normally each pixel in a SPED dataset would require a great deal
of attention. Fortunately, SAMFire was created to solve this exact problem and becomes
particularly useful when analysing polycrystalline samples. By first identifying different
grains in the specimen, each can be given one “seed” pixel for the particular orientation,
letting SAMFire propagate them outwards to the grain boundaries. In this particular
framework the local SAMFire strategy can be interpreted in a very physical sense: it
assumes that the strain field is continuous when considering neighbouring real-space
pixels in the same grain. In addition, if many similar grains are visible in the field of
view, the global SAMFire strategy is able to propagate the direction information from
distant similar grains automatically.

The remaining challenge of using such forward model to analyse SPED data in
practice involves comparing the model to the data. The difficulty arises from different
representations: the model usually consists of a list of coordinates and the respective
intensities of the diffraction spots, whilst each DP is measured, and thus represented,
as a pixelated image. Comparing these two results efficiently is challenging and better
approaches are needed. The currently attempted method compared the real diffraction
intensities at the coordinates returned by the simulation with the theoretical results.
The method, however, proved to be insufficiently precise for practical strain analyses if
conventional DP resolutions, for example 512 px × 512 px, were used. We speculate that
interpolating the measured DP up to a much higher resolution (as well as acquiring higher
resolution patterns experimentally to begin with) should increase the method effectiveness
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for strain mapping. Another alternative involves calculating image representation of
the simulated DPs for the comparison with data, however it may be prohibitively
computationally expensive.

The biggest strength of the forward model strain mapping is the ability to directly
relate and compare DPs from completely different directions, which makes the approach
more robust to buckling and similar non-ideal samples. In addition, while the idea
is not yet extensively explored, the forward model allows mapping strain in all three
dimensions. This would complement 3D X-ray diffraction strain mapping [204–206] but
with nanometer spatial resolution.

9.2 Example: mapping strain in Al alloy

As an example of the type of analysis made possible by the methods described in
section 9.1, we present a study of an Al–Mg–Si alloy. It is widely used in many industries
due to the excellent mix of strength, cost, weight and corrosion properties. The exceptional
increase in strength of the material has long been shown to be a result of precipitation
hardening [196, 207]. During the age hardening, for this alloy in particular, long needle-like
(4 nm × 4 nm × 50 nm) β′′ precipitates form in the Al matrix. Because the precipitates
have a positive misfit with respect to the bulk Al, they strain the matrix, significantly
inhibiting deformation propagation and thus strengthening the alloy. However, a number
of mechanisms are present that reduce the coherency of the precipitates and thus the
alloy strength [197]. In this work we demonstrate the affine transformation approach
described in section 9.1.1 to extract strain fields from a SPED dataset of a large field of
view of such a sample.

9.2.1 Experiment

SPED was performed using a NanoMEGAS DigiSTAR scan generator [208] fitted to a
JEOL JEM 2100F FEG-(S)TEM operated at 200 kV, with a precession angle of 1° and
a step size of 1.92 nm. The PED patterns were recorded using an externally mounted
StingRay camera to capture the image on the phosphor viewing screen of the microscope.
The microscope was operated in nano-beam diffraction mode using a probe size of 1 nm
and a convergence angle α = 4 mrad. A PED pattern is recorded at each probe position
yielding 160 000 (400 × 400) diffraction patterns covering areas up to ∼1 µm × 1 µm. The
diffraction patterns were recorded with a camera length of 20 cm and an exposure time
of 40 ms per pattern.
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Fig. 9.1 (a) Virtual dark field (VDF) image with inverted contrast, where precipitates
are darker than the surrounding matrix. (b) Reference DP used in strain analysis as
described in section 9.1.1. (b) was calculated by taking the mean DP from an unstrained
region, marked with red rectangle in (a).

The sample was an Al-Mg-Si 6xxx series alloy aged for 4 h at 195 ◦C to achieve
the peak-aged condition. In this condition the predominant precipitate phase is β′′–
Al2Mg5Si4 as well as β′ formed at dislocation cores. β′′, the main phase of interest of the
experiment, is described by the monoclinic C2/m space group. Its lattice parameters
have been measured to be a = 1.516 nm, b = 0.405 nm, and c = 0.674 nm, with a
monoclinic angle of 105.3° [209, 210]. The specimen was prepared so that [001]Al ∥ [010]β′′

is parallel to the electron beam trajectory, with the long needle axis corresponding to
[010]β′′ .

9.2.2 Analysis

Strain in the large (ca. 0.5 µm2) field of view was mapped using an affine transformation
of the reference pattern as described in section 9.1.1 using the SAMFire algorithm for
the necessary starting parameter stability. The virtual dark field (VDF) image with
inverted contrast, where precipitates are darker than the surrounding matrix, is shown
in Fig. 9.1(a). The VDF allowed to calculate the mean DP of an unstrained region,
marked with red rectangle in (a), to be used as a reference DP in further analysis. Strain
and rotation components calculated from fitted eq. (9.5) matrix elements are shown in
Fig. 9.2. The strain is given in percent and calculated in crystal coordinates, where (x, y)
correspond to ([100], [010]) of the aluminium matrix. This required rotating the strain
basis vectors by 52.7° to align with the image axes. The rotation about the central spot
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Fig. 9.2 Strain components (εxx, εyy, εxy, θ) estimated according to eq. (9.5). The full
field of view is shown in (a-d), with two 150 nm × 75 nm marked regions in (e-h). The
angle is given in mrad clockwise from the vertical, and strain in percent.
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is given in the clockwise direction in milliradians. In the figure the local strain fields
around small precipitates are visible and reconstructed, however a slow smoothly varying
background prohibits accurate evaluation. We speculate that the background is caused
by the sample preparation for TEM procedure. To remove it, a Gaussian blurring with
large (3 pixel) radius was applied and subsequently subtracted from the strain fields. This
effectively removed low spatial frequency variations and allowed background-independent
fields to be extracted around most of the precipitates, as shown in Fig. 9.3.

It is useful to note that the diffraction spots from the precipitates themselves were
neither used nor required to be visible in the original dataset. Nevertheless, most needles
were readily identifiable in the background-subtracted strain components. The strain
values around each precipitate were found to be roughly a factor of 2 lower than previously
reported [197]. We believe it to be due to a combination of the previously mentioned
non-ideal background subtraction, limited SPED spatial resolution (blurring the rapidly
decaying strain field), and the necessary oversaturation of the Al matrix DP spots to
have sufficient signal to image the needles. Despite these issues, the results can be used
for further analyses using high resolution strain field maps to investigate precipitate
interaction (Fig. 9.3 (h)) or dislocation dynamics.

A strain map with ∼200 precipitates with 1 nm spatial resolution, while rich in
information, is difficult to interpret. Fortunately, the experiment was set up to allow
sufficient diffraction intensity from the precipitates to be used in a parallel analysis
that can be later combined with the strain results. Machine learning, in particular non-
negative matrix factorisation (NMF) was used to factor out DPs corresponding to the
precipitates in question. We found that because the total number of pixels with needles
was just a small fraction and in each such DP Al matrix spots were at least 100 times
more intense, the fraction of total counts attributed to the precipitates was not sufficient
for NMF to straightforwardly separate out the required components from the full dataset.
Instead, we used a VDF image (Fig. 9.1) to construct a binary mask containing the
precipitates and their surrounding pixels. By then performing NMF on only the masked
pixels of the full dataset, four different DP components associated with a subset of the
considered needles were extracted, shown in Fig. 9.4. The four spatial distributions
of precipitate sub-classes were then used as class markers in real-space. The patterns
themselves were investigated by DNJ and matched to two pairs of matrix-precipitate
lattice alignments with mirror symmetry, [31̄0]Al ∥ [001]β” and [230]Al ∥ [100]β”, supporting
previous results [209, 210].

In addition to the physical locations of each class of the precipitate, NMF results
also reveal their crystallographic directions via the learnt diffraction patterns. Keeping
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Fig. 9.3 The Gaussian-smoothing estimated backgrounds (a-d) and background-subtracted
strain components (e-h)
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Fig. 9.4 The four precipitate diffraction pattern NMF components (right) and their
corresponding real-space locations. Notably, some precipitates show multiple phases even
if just 5 pixels are considered, confirming the method sensitivity.

in mind that NMF results correspond to needles while strain was measured in the Al
matrix, there are two ways to combine the information and perform a crude statistical
analysis. Both require first to identify the needles where each strain field can be readily
isolated from any surrounding artefacts or other strong strains and segmenting the result
map into the four subsets based on the learnt real-space locations. The first and more
straightforward analysis involves calculating the mean strain field from all four classes
combined. It can be interpreted as the strain field around a statistically average (in
terms of both crystallographic direction and size) precipitate. In this case the original
strained lattice is kept as the strain basis coordinates. Alternatively, a similar analysis
could be performed using the β′′ lattice as the basis. By determining relative rotations
and mirror symmetries from the learnt DPs, each subset of strain maps can undergo
independent coordinate transformation to align the strain basis vectors with the β′′ lattice.
The average strain fields for each detected β′′ direction after appropriate alignments are
shown in Fig. 9.5(a-d). Panel (f) shows the mean across all four classes (a-d), and can
be interpreted as the mean strain environment of a β′′ needle in the matrix. Fig. 9.5(e)
shows the estimated distribution of needle cross-section areas for the four classes. In
agreement with the previous studies [197], most precipitate cross-sections are 17 ± 3 nm2,
which corresponds to around 4.5 px2.
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Fig. 9.5 (a-d) show mean strain fields across classes, each marked with corresponding
colour. Here the strain basis vectors of all classes were aligned according to the DPs
shown in Fig. 9.4 by rotating and mirroring where required. (e) shows needle cross-section
area distribution across the four NMF-learnt components. (f) shows the total average
strain field across all four classes (that is the mean of (a-d)), interpreted as the mean
strain environment around such precipitates.
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9.3 Conclusions

We presented a new strain mapping from SPED data approach that was very sensitive to
starting parameters and required using SAMFire to operate. Strain in an age-hardened
aluminium alloy was mapped. The dataset was also decomposed using the NMF machine
learning algorithm into component-loading pairs, corresponding to diffraction patterns
and spatial maps respectively. NMF components revealed four distinct DPs associated
with precipitates. Strain results from the four classes of precipitates were extracted using
the associated loadings as real-space markers. Because crystallographic directions within
classes were identical by definition, mean strain fields for each class were estimated. By
rotating each class strain field bases to align the corresponding β′′ lattices, the mean
strain environment of the needle in the matrix could be estimated.



Chapter 10

Conclusions

In this thesis I showed that data analysis tools play an increasingly important role in
electron microscopy irrespective of the measured signal nature. In particular, chapter 5
presented a new algorithm for non-linear optimizations called SAMFire (Smart Adaptive
Multi-dimensional Fitting), which was then used throughout the work to tackle challenging
data analysis problems for a variety of experimental datasets, with analysis diagrams
shown in Appendix A:

• Chapter 7 considered Cathodoluminescence (CL) measurements of a nanowire with
Quantum Disks (QDisks). SAMFire was key to robustly and consistently extracting
energy–intensity relationships of many QDisks across the ten considered CL maps.
The results offered a better understanding of the efficiency droop of the structures
by attributing it to the Auger emission, which enables further optimizations in such
structures.

• Chapter 8 presented Electron Energy Loss Spectrum (EELS) analysis of a complex
BN core-shell nanoparticle. Two new Energy Loss Near-Edge Structure (ELNES)
estimation algorithms were developed that neither require standards nor limit the
thickness of the specimen. Combined with SAMFire, it enabled extracting quanti-
tative bonding maps across the particle without atomic resolution. By performing
the quantification over a tilt-series and using a 3D total variation (TV) compressed
sensing (CS) tomography, the first absolutely quantitative bonding tomography
without atomic resolution was performed. These technique developments act as a
milestone for electron tomography and for the first time allow such quantitative
information to be extracted from thick irregular specimens.

• Chapter 9 showed how SAMFire was used for Scanning (Precession) Electron
Diffraction (S(P)ED) strain analysis, where it was essential for two new strain
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mapping approaches from such data. Strain in an age–hardened aluminium alloy
was mapped over large (ca. 0.5 µm2) area containing many precipitate needles.
The dataset was also decomposed using a Machine Learning (ML) algorithm, in
particular Non-negative Matrix Factorisation (NMF), which allowed the precipitates
to be classified. Strain and NMF results were combined to estimate the mean
displacement fields around each class of precipitates.

Large data sizes arose as the one common problem when dealing with the afore-
mentioned experimental results, and a solution was proposed in chapter 6. Named
“LazySignal”, the framework allows seamless analysis of datasets that do not fit into the
computer memory and would prove impossible to access without special high-memory
hardware. It uses state-of-the-art Python libraries to enable almost any type of analysis
on both consumer-grade computers and large distributed computing environments, as
long as the dataset fits on the disk. LazySignal makes the electron microscopy field
well-equipped to deal with most “big data” problems that are likely to arise in the near
future.

Finally, chapter 3 considered cube and sphere plasmon EELS responses and showed by
example that first-order cube modes can be approximated by theoretical sphere plasmon
solutions. It offers a more robust way to unravel plasmonic large nanocube EELS signals,
which in turn allows more control when designing nanoplasmonic devices.

10.1 Further work

As electron microscopes and computer hardware grow in effective data throughput, it is
left to the analysis and further data interpretation to make the most of it. As a result,
various data analysis and treatment routines are likely to get significantly closer to the
experiment itself.

The global parameter fitting, presented as one of the ELNES estimation methods
in chapter 8, is in fact a completely general approach. As such, in addition to the
mentioned use for EELS data, it also allows measurement of any other experiment or
sample property that is constant throughout, but unreliable to estimate from just a
single measurement. Another example might be lens distortions in S(P)ED experiments
for high-angle reflections. As the non-linearity of the experimental setup is constant
throughout the dataset, it can be modelled in terms of global parameters and corrected.

With faster yet still accurate algorithms, many analyses can be performed live while
the experiment is still running. This would reduce guesswork and human factors when
optimizing experimental parameters for the sought result by making it immediately
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available. In particular, performing online ML to de-noise and optionally decompose the
data would allow an accurate way to gauge experimental dwell times or the specimen
composition. Another example may be performing the reference-based strain analysis
presented in chapter 9. Both approaches require minimal setup to get started, but provide
information that is usually only available once the experiment is finished.

Compressed sensing may allow making large strides towards lowering the necessary
experimental electron doses. Shown to be able to reasonably reconstruct the ground
truth with just a few percent of information [174], CS algorithms may benefit EM in a
multitude of ways. From simply providing much faster initial previews when searching
for areas of interest, to greatly reducing the total electron dose in any EM experiment.
Even if the specimen does not suffer from beam damage, performing experiments using
CS approaches may increase the experimental “time resolution” by simply lowering the
number of required measurements.

Finally, with increasingly powerful analyses becoming routine, previously “too chal-
lenging” experiments can be attempted. One example follows from SPED, where the
de-scan coils are either not used at all or their current is less than in normal SPED
experiments. This would result in measuring diffraction rings instead of spots across the
sample. If de-scan is adjusted to minimise ring overlap while still keeping the directional
information available, forming Virtual Dark Field (VDF) images around the ring may
allow virtually rocking the sample. In addition, most strain mapping algorithms are
likely to perform better by having more information from each diffracted beam – be it
measuring the centre of the ring, or transforming it to match a different one.

10.2 Open source data analysis tools

With analysis tools becoming significantly more complex and important for the final
results, more attention should be paid to ensure both their correctness and longevity.
This is best achieved by releasing research tools as new or contributing them to already
active open-source and preferably open-development projects. There are many benefits
in making the algorithm and its implementation available to everyone. Open source
analysis tools:

• allow analysis and hence experimental result replication.

• save time for other scientists that are interested in the algorithm or its modifications.
Often it is simpler to modify an existing solution to suit the particular experiment
than writing one from scratch.
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• often serve as the groundwork upon which new tools and algorithms are built.

• encourage collaborations both among peers and between different disciplines.

• have to pass the scrutiny of peer review and hence both the algorithms and their
implementations are often of higher quality.

• are encouraged to have tests. Combined with the peer review, it often means that
improving the algorithms performance or general approach can be done in a reliable
way that still allows result replication.

HyperSpy [101] is an open-source and open-development Python based analysis
framework that benefits from all these points. Both SAMFire and LazySignal were
contributed to HyperSpy and are therefore publicly available to use, modify, study, test,
and build upon.



References

[1] Philip E Batson, Niklas Dellby, and Ondrej L Krivanek. Sub-ångstrom resolution
using aberration corrected electron optics. Nature, 418(6898):617–620, 2002.

[2] Ondrej L Krivanek, Tracy C Lovejoy, Niklas Dellby, Toshihiro Aoki, RW Carpenter,
Peter Rez, Emmanuel Soignard, Jiangtao Zhu, Philip E Batson, Maureen J Lagos,
et al. Vibrational spectroscopy in the electron microscope. Nature, 514(7521):209–
212, 2014.

[3] N Zabala and A Rivacoba. Electron energy loss near supported particles. Physical
Review B, 48(19):14534, 1993.

[4] Ray F Egerton. Electron energy-loss spectroscopy in the electron microscope.
Springer Science & Business Media, 2011.

[5] Roger Vincent and PA Midgley. Double conical beam-rocking system for measure-
ment of integrated electron diffraction intensities. Ultramicroscopy, 53(3):271–282,
1994.

[6] M Kociak and LF Zagonel. Cathodoluminescence in the scanning transmission
electron microscope. Ultramicroscopy, 174:50–69, 2017.

[7] Hans Geiger and Ernest Marsden. On a diffuse reflection of the α-particles.
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 82(557):495–500, 1909.

[8] Hideki Yukawa. On the interaction of elementary particles. i. Nippon Sugaku-
Buturigakkwai Kizi Dai 3 Ki, 17(0):48–57, 1935.

[9] Mitio Inokuti. Inelastic collisions of fast charged particles with atoms and
molecules—the Bethe theory revisited. Reviews of modern physics, 43(3):297,
1971.

[10] R. Ritchie. Plasma Losses by Fast Electrons in Thin Films. Physical Review,
106(5):874–881, June 1957.

[11] RH Ritchie and A Howie. Inelastic scattering probabilities in scanning transmission
electron microscopy. Philosophical Magazine A, 58(5):753–767, 1988.

[12] S.A. Maier. Plasmonics: Fundamentals and Applications: Fundamentals and
Applications. Springer, 2007.



132 References

[13] F. J. García de Abajo. Optical excitations in electron microscopy. Reviews of
Modern Physics, 82(1):209–275, February 2010.

[14] Ben G Yacobi and David Basil Holt. Cathodoluminescence microscopy of inorganic
solids. Springer Science & Business Media, 2013.

[15] N Yamamoto, K Araya, and FJ García de Abajo. Photon emission from silver
particles induced by a high-energy electron beam. Physical Review B, 64(20):205419,
2001.

[16] R Gómez-Medina, N Yamamoto, M Nakano, and FJ García de Abajo. Mapping
plasmons in nanoantennas via cathodoluminescence. New Journal of Physics,
10(10):105009, 2008.

[17] S Meuret, LHG Tizei, T Cazimajou, R Bourrellier, HC Chang, F Treussart, and
M Kociak. Photon bunching in cathodoluminescence. Physical review letters,
114(19):197401, 2015.

[18] Peter Rez. Cross-sections for energy loss spectrometry. Ultramicroscopy, 9(3):283–
287, 1982.

[19] Peter Rez. Accurate cross sections for microanalysis. Journal of research of the
National Institute of Standards and Technology, 107(6):487, 2002.

[20] S Manson. The calculation of photoionization cross sections: An atomic view.
Photoemission in Solids I, pages 135–163, 1978.

[21] Konrad Jarausch, Paul Thomas, Donovan N Leonard, Ray Twesten, and Christo-
pher R Booth. Four-dimensional STEM-EELS: Enabling nano-scale chemical
tomography. Ultramicroscopy, 109(4):326–337, 2009.

[22] J Verbeeck and G Bertoni. Deconvolution of core electron energy loss spectra.
Ultramicroscopy, 109(11):1343–1352, 2009.

[23] J Verbeeck and S Van Aert. Model based quantification of EELS spectra. Ultrami-
croscopy, 101(2):207–224, 2004.

[24] G Baffou, R Quidant, and C Girard. Heat generation in plasmonic nanostructures:
Influence of morphology. Applied Physics Letters, 94(15):153109, 2009.

[25] LR Hirsch, RJ Stafford, JA Bankson, SR Sershen, B Rivera, RE Price, JD Hazle,
NJ Halas, and JL West. Nanoshell-mediated near-infrared thermal therapy of
tumors under magnetic resonance guidance. Proceedings of the National Academy
of Sciences, 100(23):13549–13554, 2003.

[26] SR Sershen, SL Westcott, NJ Halas, and JL West. Temperature-sensitive polymer–
nanoshell composites for photothermally modulated drug delivery. Journal of
biomedical materials research, 51(3):293–298, 2000.

[27] Jeffrey N. Anker, W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and
Richard P. Van Duyne. Biosensing with plasmonic nanosensors. Nature Materials,
7(6):442–453, Jun 2008.



References 133

[28] G Raschke, S Kowarik, T Franzl, C Sönnichsen, TA Klar, J Feldmann, A Nichtl,
and K Kürzinger. Biomolecular recognition based on single gold nanoparticle light
scattering. Nano letters, 3(7):935–938, 2003.

[29] Adam D McFarland, Matthew A Young, Jon A Dieringer, and Richard P Van Duyne.
Wavelength-scanned surface-enhanced Raman excitation spectroscopy. The Journal
of Physical Chemistry B, 109(22):11279–11285, 2005.

[30] Sandy Owega, Edward PC Lai, and Wayne M Mullett. Laser desorption ionization
of gramicidin S on thin silver films with matrix isolation in surface plasmon
resonance excitation. Journal of Photochemistry and Photobiology A: Chemistry,
119(2):123–135, 1998.

[31] Sougata Sarkar, Surojit Pande, Subhra Jana, Arun Kumar Sinha, Mukul Prad-
han, Mrinmoyee Basu, Joydeep Chowdhury, and Tarasankar Pal. Exploration of
electrostatic field force in surface-enhanced Raman scattering: an experimental
investigation aided by density functional calculations. The Journal of Physical
Chemistry C, 112(46):17862–17876, 2008.

[32] Lukas Novotny. Effective wavelength scaling for optical antennas. Physical Review
Letters, 98(26):266802, 2007.

[33] Thomas Søndergaard and Sergey Bozhevolnyi. Slow-plasmon resonant nanos-
tructures: Scattering and field enhancements. Physical Review B, 75(7):073402,
2007.

[34] Tineke Thio, KM Pellerin, RA Linke, HJ Lezec, and TW Ebbesen. Enhanced light
transmission through a single subwavelength aperture. Optics Letters, 26(24):1972–
1974, 2001.

[35] H Ditlbacher, JR Krenn, A Hohenau, A Leitner, and FR Aussenegg. Efficiency of
local light-plasmon coupling. Applied Physics Letters, 83(18):3665–3667, 2003.

[36] John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed.
edition, 1999.

[37] James Baker-Jarvis and Sung Kim. The interaction of radio-frequency fields with
dielectric materials at macroscopic to mesoscopic scales. Journal of research of the
National Institute of Standards and Technology, 117:1, 2012.

[38] FJ García de Abajo. Relativistic energy loss and induced photon emission in the
interaction of a dielectric sphere with an external electron beam. Physical Review
B, 59(4), 1999.

[39] Christian Matyssek, Jens Niegemann, Wolfram Hergert, and Kurt Busch. Com-
puting electron energy loss spectra with the Discontinuous Galerkin Time-Domain
method. Photonics and Nanostructures-Fundamentals and Applications, 9(4):367–
373, 2011.

[40] FJ García de Abajo and J Aizpurua. Numerical simulation of electron energy loss
near inhomogeneous dielectrics. Physical Review B, 56(24):15873, 1997.



134 References

[41] Nicholas W Bigelow, Alex Vaschillo, Vighter Iberi, Jon P Camden, and David J
Masiello. Characterization of the electron- and photon-driven plasmonic excitations
of metal nanorods. ACS nano, 6(8):7497–504, August 2012.

[42] Bruce T Draine and Piotr J Flatau. User guide for the discrete dipole approximation
code DDSCAT 7.3. arXiv preprint arXiv:1305.6497, 2013.

[43] Guillaume Boudarham and Mathieu Kociak. Modal decompositions of the lo-
cal electromagnetic density of states and spatially resolved electron energy loss
probability in terms of geometric modes. Physical Review B, 85(24):245447, June
2012.

[44] Bruce T Draine and Piotr J Flatau. Discrete-dipole approximation for scattering
calculations. JOSA A, 11(4):1491–1499, 1994.

[45] D Gutkowicz-Krusin and Bruce T Draine. Propagation of electromagnetic waves
on a rectangular lattice of polarizable points. arXiv preprint astro-ph/0403082,
2004.

[46] Maxim A. Yurkin and Alfons G. Hoekstra. The discrete-dipole-approximation
code ADDA: Capabilities and known limitations. Journal of Quantitative Spec-
troscopy and Radiative Transfer, 112(13):2234 – 2247, 2011. Polarimetric Detection,
Characterization, and Remote Sensing.

[47] Nicolas Geuquet and Luc Henrard. EELS and optical response of a noble metal
nanoparticle in the frame of a discrete dipole approximation. Ultramicroscopy,
110(8):1075–1080, 2010.

[48] Jaysen Nelayah, Mathieu Kociak, Odile Stéphan, F Javier García de Abajo, Marcel
Tencé, Luc Henrard, Dario Taverna, Isabel Pastoriza-Santos, Luis M Liz-Marzán,
and Christian Colliex. Mapping surface plasmons on a single metallic nanoparticle.
Nature Physics, 3(5):348–353, 2007.

[49] J Nelayah, M Kociak, Odile Stephan, N Geuquet, L Henrard, F Javier García de
Abajo, Isabel Pastoriza-Santos, Luis M Liz-Marzan, and C Colliex. Two-dimensional
quasistatic stationary short range surface plasmons in flat nanoprisms. Nano letters,
10(3):902–907, 2010.

[50] D Rossouw, M Couillard, J Vickery, E Kumacheva, and GA Botton. Multipolar
plasmonic resonances in silver nanowire antennas imaged with a subnanometer
electron probe. Nano letters, 11(4):1499–1504, 2011.

[51] Stefano Mazzucco, Nicolas Geuquet, Jian Ye, Odile Stephan, Willem Van Roy, Pol
Van Dorpe, Luc Henrard, and Mathieu Kociak. Ultralocal modification of surface
plasmons properties in silver nanocubes. Nano letters, 12(3):1288–1294, 2012.

[52] Olivia Nicoletti, Francisco de la Peña, Rowan K Leary, Daniel J Holland, Caterina
Ducati, and Paul a Midgley. Three-dimensional imaging of localized surface plasmon
resonances of metal nanoparticles. Nature, 502(7469):80–4, October 2013.



References 135

[53] Anton Hörl, Andreas Trügler, and Ulrich Hohenester. Tomography of particle
plasmon fields from electron energy loss spectroscopy. Physical review letters,
111(7):076801, 2013.

[54] SL Altmann and AP Cracknell. Lattice harmonics I. Cubic groups. Reviews of
Modern Physics, 37(1):19, 1965.

[55] Bethany A Bradley, Robert W Jacob, John F Hermance, and John F Mustard. A
curve fitting procedure to derive inter-annual phenologies from time series of noisy
satellite NDVI data. Remote Sensing of Environment, 106(2):137–145, 2007.

[56] Aimee M Morris, Murielle A Watzky, and Richard G Finke. Protein aggregation
kinetics, mechanism, and curve-fitting: a review of the literature. Biochimica et
Biophysica Acta (BBA)-Proteins and Proteomics, 1794(3):375–397, 2009.

[57] Junichiro Shiomi, Keivan Esfarjani, and Gang Chen. Thermal conductivity of
half-Heusler compounds from first-principles calculations. Physical Review B,
84(10):104302, 2011.

[58] F De la Peña, N Barrett, LF Zagonel, M Walls, and O Renault. Full field chemical
imaging of buried native sub-oxide layers on doped silicon patterns. Surface Science,
604(19):1628–1636, 2010.

[59] Karl Pearson. Principal components analysis. The London, Edinburgh and Dublin
Philosophical Magazine and Journal, 6(2):566, 1901.

[60] Christopher M Bishop. Pattern recognition. Machine Learning, 128, 2006.

[61] R Arenal, F De la Peña, O Stephan, M Walls, M Tence, A Loiseau, and C Colliex.
Extending the analysis of EELS spectrum-imaging data, from elemental to bond
mapping in complex nanostructures. Ultramicroscopy, 109(1):32–38, 2008.

[62] Douglas M Hawkins. The problem of overfitting. Journal of chemical information
and computer sciences, 44(1):1–12, 2004.

[63] Karl Pearson. X. on the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 50(302):157–175, 1900.

[64] H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723, Dec 1974.

[65] Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464,
03 1978.

[66] Kenneth Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[67] Ronald Aylmer Fisher. Statistical methods for research workers. Genesis Publishing
Pvt Ltd, 1925.



136 References

[68] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming, volume 2.
Springer, 1984.

[69] Arnold Neumaier. Complete search in continuous global optimization and constraint
satisfaction. Acta numerica, 13:271–369, 2004.

[70] Jorge Nocedal and Stephen J Wright. Numerical optimization 2nd. 2006.

[71] Stephen G Nash. Newton-type minimization via the Lanczos method. SIAM
Journal on Numerical Analysis, 21(4):770–788, 1984.

[72] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:
L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on Mathematical Software (TOMS), 23(4):550–560, 1997.

[73] Noel Cressie. Fitting variogram models by weighted least squares. Journal of the
International Association for Mathematical Geology, 17(5):563–586, 1985.

[74] Craig B Markwardt. Non-linear least squares fitting in IDL with MPFIT. arXiv
preprint arXiv:0902.2850, 2009.

[75] Margaret A Shipp, Ken N Ross, Pablo Tamayo, Andrew P Weng, Jeffery L
Kutok, Ricardo CT Aguiar, Michelle Gaasenbeek, Michael Angelo, Michael Reich,
Geraldine S Pinkus, et al. Diffuse large b-cell lymphoma outcome prediction
by gene-expression profiling and supervised machine learning. Nature medicine,
8(1):68–74, 2002.

[76] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[77] Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870–
877, 1997.

[78] Robert Burbidge, Matthew Trotter, B Buxton, and Sl Holden. Drug design
by machine learning: support vector machines for pharmaceutical data analysis.
Computers & chemistry, 26(1):5–14, 2001.

[79] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[80] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[81] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002.

[82] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition
with a back-propagation network. In Advances in neural information processing
systems, pages 396–404, 1990.



References 137

[83] Eleazar Eskin. Anomaly detection over noisy data using learned probability
distributions. In In Proceedings of the International Conference on Machine
Learning. Citeseer, 2000.

[84] Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 305–316. IEEE, 2010.

[85] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[86] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition
with visual attention. arXiv preprint arXiv:1412.7755, 2014.

[87] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning
via semi-supervised embedding. In Neural Networks: Tricks of the Trade, pages
639–655. Springer, 2012.

[88] Michael E Tipping and Christopher M Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):611–622, 1999.

[89] M Bosman, M Watanabe, DTL Alexander, and VJ Keast. Mapping chemical and
bonding information using multivariate analysis of electron energy-loss spectrum
images. Ultramicroscopy, 106(11):1024–1032, 2006.

[90] Gene H Golub and Christian Reinsch. Singular value decomposition and least
squares solutions. Numerische mathematik, 14(5):403–420, 1970.

[91] William H Press, SA Teukolsky, WT Vetterling, and BP Flannery. Numerical
recipes in C: the art of scientific computing, second edition, 1992.

[92] Daniel P Berrar, Werner Dubitzky, Martin Granzow, et al. A practical approach to
microarray data analysis. Springer, 2003.

[93] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[94] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative fac-
tor model with optimal utilization of error estimates of data values. Environmetrics,
5(2):111–126, 1994.

[95] Pierre Comon. Independent component analysis, a new concept? Signal processing,
36(3):287–314, 1994.

[96] Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[97] Andrew M Fraser and Harry L Swinney. Independent coordinates for strange
attractors from mutual information. Physical review A, 33(2):1134, 1986.



138 References

[98] Pierre Simon marquis de Laplace. Théorie analytique des probabilités. V. Courcier,
1820.

[99] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009.

[100] Gatan Inc. Digital micrograph™ software. http://www.gatan.com/products/
tem-analysis/gatan-microscopy-suite-software.

[101] Francisco de la Peña, Tomas Ostasevicius, Vidar Tonaas Fauske, Pierre Burdet,
Petras Jokubauskas, Magnus Nord, Eric Prestat, Mike Sarahan, Katherine E.
MacArthur, Duncan N. Johnstone, Joshua Taillon, Jan Caron, Tom Furnival,
Alberto Eljarrat, Stefano Mazzucco, Vadim Migunov, Thomas Aarholt, Michael
Walls, Florian Winkler, Ben Martineau, Gaël Donval, Eric R. Hoglund, Ivo Alxneit,
Ida Hjorth, Luiz Fernando Zagonel, Andreas Garmannslund, Christoph Gohlke,
Ilya Iyengar, and Huang-Wei Chang. hyperspy/hyperspy: Hyperspy 1.3, May 2017.

[102] Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust pca via stochastic
optimization. In Advances in Neural Information Processing Systems, pages 404–
412, 2013.

[103] Renbo Zhao and Vincent YF Tan. Online nonnegative matrix factorization with
outliers. In 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2662–2666. IEEE, 2016.

[104] Naiyang Guan, Dacheng Tao, Zhigang Luo, and Bo Yuan. Online nonnegative
matrix factorization with robust stochastic approximation. IEEE Transactions on
Neural Networks and Learning Systems, 23(7):1087–1099, 2012.

[105] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task
scheduling. In Kathryn Huff and James Bergstra, editors, Proceedings of the 14th
Python in Science Conference, pages 130 – 136, 2015.

[106] Dask Development Team. Dask: Library for dynamic task scheduling, 2016.

[107] J Nelayah, L Gu, W Sigle, CT Koch, I Pastoriza-Santos, LM Liz-Marzán, and
PA Van Aken. Direct imaging of surface plasmon resonances on single triangular
silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Optics
letters, 34(7):1003–1005, 2009.

[108] RI Davies, F Müller Sánchez, R Genzel, LJ Tacconi, EKS Hicks, S Friedrich, and
A Sternberg. A close look at star formation around active galactic nucleibased on
observations at the european southern observatory vlt (60. a-9235, 070. b-0649, 070.
b-0664, 074. b-9012, 076. b-0098). The Astrophysical Journal, 671(2):1388, 2007.

[109] E. K. S. Hicks, R. I. Davies, M. A. Malkan, R. Genzel, L. J. Tacconi, F. Müller
Sánchez, and A. Sternberg. The role of molecular gas in obscuring Seyfert active
galactic nuclei. The Astrophysical Journal, 696(1):448, 2009.

[110] Jorge J Moré. The Levenberg-Marquardt algorithm: implementation and theory.
In Numerical analysis, pages 105–116. Springer, 1978.

http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software
http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software


References 139

[111] Donald W Marquardt. An algorithm for least-squares estimation of nonlinear param-
eters. Journal of the society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[112] John A Nelder and Roger Mead. A simplex method for function minimization. The
computer journal, 7(4):308–313, 1965.

[113] Michael JD Powell. A fast algorithm for nonlinearly constrained optimization
calculations. In Numerical analysis, pages 144–157. Springer, 1978.

[114] Elijah Polak and Gerard Ribiere. Note sur la convergence de méthodes de directions
conjuguées. Revue française d’informatique et de recherche opérationnelle, série
rouge, 3(1):35–43, 1969.

[115] Luis Miguel Rios and Nikolaos V. Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. Journal of Global
Optimization, 56(3):1247–1293, 2013.

[116] L. F. Zagonel, L. H. G. Tizei, G. Z. Vitiello, G. Jacopin, L. Rigutti, M. Tchernycheva,
F. H. Julien, R. Songmuang, T. Ostaševičius, F. de la Peña, C. Ducati, P. A. Midgley,
and M. Kociak. Nanometer-scale monitoring of quantum-confined Stark effect and
emission efficiency droop in multiple GaN/AlN quantum disks in nanowires. Phys.
Rev. B, 93:205410, May 2016.

[117] Lord Rayleigh. Xxxi. investigations in optics, with special reference to the spectro-
scope. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 8(49):261–274, 1879.

[118] Wikipedia. Arg max — wikipedia, the free encyclopedia, 2017. [Online; accessed
17-July-2017].

[119] Ken Aho, DeWayne Derryberry, and Teri Peterson. Model selection for ecologists:
the worldviews of AIC and BIC. Ecology, 95(3):631–636, 2014.

[120] David Freedman and Persi Diaconis. On the histogram as a density estimator:
L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
57(4):453–476, 1981.

[121] David W Scott. On optimal and data-based histograms. Biometrika, pages 605–610,
1979.

[122] Kevin H Knuth. Optimal data-based binning for histograms. arXiv preprint
physics/0605197, 2006.

[123] Jeffrey D Scargle, Jay P Norris, Brad Jackson, and James Chiang. Studies in astro-
nomical time series analysis. vi. bayesian block representations. The Astrophysical
Journal, 764(2):167, 2013.

[124] Ery Arias-Castro, David L Donoho, and Xiaoming Huo. Near-optimal detection of
geometric objects by fast multiscale methods. IEEE Transactions on Information
Theory, 51(7):2402–2425, 2005.



140 References

[125] mongoDB. Documentation: Replication, 2016. [Online; accessed 13-December-
2016].

[126] Redis. Cluster specifications, 2016. [Online; accessed 13-December-2016].

[127] AB MySQL. MySQL, 2001.

[128] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[129] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: cluster computing with working sets. HotCloud, 10:10–10, 2010.

[130] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface stan-
dard. Parallel computing, 22(6):789–828, 1996.

[131] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. The
characteristics of cloud computing. In 2010 39th International Conference on
Parallel Processing Workshops, pages 275–279. IEEE, 2010.

[132] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 34(6):52–
59, 1997.

[133] Paul A Midgley and Rafal E Dunin-Borkowski. Electron tomography and holography
in materials science. Nature materials, 8(4):271–280, 2009.

[134] Olivia Nicoletti, Francisco de La Peña, Rowan K Leary, Daniel J Holland, Caterina
Ducati, and Paul A Midgley. Three-dimensional imaging of localized surface
plasmon resonances of metal nanoparticles. Nature, 502(7469):80–84, 2013.

[135] Alexander S Eggeman, Robert Krakow, and Paul A Midgley. Scanning precession
electron tomography for three-dimensional nanoscale orientation imaging and
crystallographic analysis. Nature communications, 6, 2015.

[136] Bowen Meng, Guillem Pratx, and Lei Xing. Ultrafast and scalable cone-beam
CT reconstruction using MapReduce in a cloud computing environment. Medical
physics, 38(12):6603–6609, 2011.

[137] Michael C Schatz. CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics, 25(11):1363–1369, 2009.

[138] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian
Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel,
Mark Daly, et al. The genome analysis toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome research, 20(9):1297–
1303, 2010.

[139] Keith Wiley, Andrew Connolly, Jeff Gardner, S Krughoff, Magdalena Balazinska,
Bill Howe, Y Kwon, and Yingyi Bu. Astronomy in the cloud: using MapReduce
for image co-addition. Publications of the Astronomical Society of the Pacific,
123(901):366, 2011.



References 141

[140] Hadoop Wiki. Powered by Apache Hadoop, 2016. [Online; accessed 10-November-
2016].

[141] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[142] Christopher Peter Wadsworth. Semantics and Pragmatics of the Lambda-Calculus.
PhD thesis, University of Oxford, 1971.

[143] Peter Henderson and James H Morris Jr. A lazy evaluator. In Proceedings of the
3rd ACM SIGACT-SIGPLAN symposium on Principles on programming languages,
pages 95–103. ACM, 1976.

[144] D.P. Friedman and D.S. Wise. cons should not evaluate its arguments. 1976.

[145] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kågström. Recursive blocked
algorithms and hybrid data structures for dense matrix library software. SIAM
review, 46(1):3–45, 2004.

[146] Monica D Lam, Edward E Rothberg, and Michael E Wolf. The cache performance
and optimizations of blocked algorithms. In ACM SIGARCH Computer Architecture
News, volume 19, pages 63–74. ACM, 1991.

[147] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class
of parallel tiled linear algebra algorithms for multicore architectures. Parallel
Computing, 35(1):38–53, 2009.

[148] Eran Rabani and Sivan Toledo. Out-of-core SVD and QR decompositions. In
PPSC, 2001.

[149] Austin R Benson, David F Gleich, and James Demmel. Direct QR factorizations
for tall-and-skinny matrices in MapReduce architectures. In Big Data, 2013 IEEE
International Conference on, pages 264–272. IEEE, 2013.

[150] Neil P Dasgupta, Jianwei Sun, Chong Liu, Sarah Brittman, Sean C Andrews,
Jongwoo Lim, Hanwei Gao, Ruoxue Yan, and Peidong Yang. 25th anniversary
article: semiconductor nanowires–synthesis, characterization, and applications.
Advanced materials, 26(14):2137–2184, 2014.

[151] Yat Li, Fang Qian, Jie Xiang, and Charles M Lieber. Nanowire electronic and
optoelectronic devices. Materials today, 9(10):18–27, 2006.

[152] Charles M. Lieber. Semiconductor nanowires: A platform for nanoscience and
nanotechnology. MRS Bulletin, 36(12):1052–1063, Dec 2011.

[153] Shunfeng Li and Andreas Waag. GaN based nanorods for solid state lighting.
Journal of Applied Physics, 111(7):5, 2012.



142 References

[154] Hieu Pham Trung Nguyen, Shaofei Zhang, Kai Cui, Xueguang Han, S Fathololoumi,
M Couillard, GA Botton, and Z Mi. p-type modulation doped InGaN/GaN dot-in-
a-wire white-light-emitting diodes monolithically grown on Si (111). Nano letters,
11(5):1919–1924, 2011.

[155] Dmitry Turchinovich. Study of ultrafast polarization and carrier dynamics in
semiconductor nanostructures: a THz spectroscopy approach. PhD thesis, Ph. D.
Thesis, University of Freiburg, 2004.

[156] Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt. Spontaneous polariza-
tion and piezoelectric constants of III-V nitrides. Physical Review B, 56(16):R10024,
1997.

[157] Mathieu Leroux, Nicolas Grandjean, M Laügt, Jean Massies, Bernard Gil, Pierre
Lefebvre, and Pierre Bigenwald. Quantum confined Stark effect due to built-in
internal polarization fields in (Al, Ga) N/GaN quantum wells. Physical Review B,
58(20):R13371, 1998.

[158] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H.
Wood, and C. A. Burrus. Band-edge electroabsorption in quantum well structures:
The Quantum-Confined Stark Effect. Phys. Rev. Lett., 53:2173–2176, Nov 1984.

[159] Pierre Lefebvre and Bruno Gayral. Optical properties of GaN/AlN quantum dots.
Comptes Rendus Physique, 9(8):816–829, 2008.

[160] Justin Iveland, Lucio Martinelli, Jacques Peretti, James S Speck, and Claude
Weisbuch. Direct measurement of Auger electrons emitted from a semiconductor
light-emitting diode under electrical injection: identification of the dominant
mechanism for efficiency droop. Physical review letters, 110(17):177406, 2013.

[161] Joachim Piprek. Efficiency droop in nitride-based light-emitting diodes. physica
status solidi (a), 207(10):2217–2225, 2010.

[162] Hideaki Murotani, Hiroya Andoh, Takehiko Tsukamoto, Toko Sugiura, Yoichi
Yamada, Takuya Tabata, Yoshio Honda, Masatoshi Yamaguchi, and Hiroshi Amano.
Emission wavelength dependence of internal quantum efficiency in InGaN nanowires.
Japanese Journal of Applied Physics, 52(8S):08JE10, 2013.

[163] Jochen Bruckbauer, Paul R Edwards, Jie Bai, Tao Wang, and Robert W Martin.
Probing light emission from quantum wells within a single nanorod. Nanotechnology,
24(36):365704, 2013.

[164] James R Riley, Sonal Padalkar, Qiming Li, Ping Lu, Daniel D Koleske, Jonathan J
Wierer, George T Wang, and Lincoln J Lauhon. Three-dimensional mapping of
quantum wells in a GaN/InGaN core–shell nanowire light-emitting diode array.
Nano letters, 13(9):4317–4325, 2013.

[165] Lorenzo Rigutti, Ivan Blum, Deodatta Shinde, David Hernández-Maldonado,
Williams Lefebvre, Jonathan Houard, François Vurpillot, Angela Vella, Maria
Tchernycheva, Christophe Durand, et al. Correlation of microphotoluminescence



References 143

spectroscopy, scanning transmission electron microscopy, and atom probe tomogra-
phy on a single nano-object containing an InGaN/GaN multiquantum well system.
Nano letters, 14(1):107–114, 2013.

[166] Luiz Fernando Zagonel, Stefano Mazzucco, Marcel Tencé, Katia March, Romain
Bernard, Benoît Laslier, Gwénolé Jacopin, Maria Tchernycheva, Lorenzo Rigutti,
Francois H Julien, et al. Nanometer scale spectral imaging of quantum emitters in
nanowires and its correlation to their atomically resolved structure. Nano letters,
11(2):568–573, 2010.

[167] Georg Rossbach, Jacques Levrat, G Jacopin, Mehran Shahmohammadi, J-F Carlin,
J-D Ganière, Raphael Butté, Benoit Deveaud, and Nicolas Grandjean. High-
temperature Mott transition in wide-band-gap semiconductor quantum wells. Phys-
ical Review B, 90(20):201308, 2014.

[168] Aurélien David and Michael J Grundmann. Droop in InGaN light-emitting diodes:
A differential carrier lifetime analysis. Applied Physics Letters, 96(10):103504, 2010.

[169] Francisco de La Peña, Tomas Ostaševičius, Rowan K. Leary, Caterina Ducati,
Paul A. Midgley, and Raúl Arenal. Quantitative three-dimensional elemental and
bonding mapping of a complex hybrid nanoparticle.

[170] RS Lee, J Gavillet, M Lamy de La Chapelle, A Loiseau, J-L Cochon, D Pigache,
J Thibault, and F Willaime. Catalyst-free synthesis of boron nitride single-wall
nanotubes with a preferred zig-zag configuration. Physical Review B, 64(12):121405,
2001.

[171] A Howie. Image contrast and localized signal selection techniques. Journal of
Microscopy, 117(1):11–23, 1979.

[172] SJ Pennycook. Z-contrast STEM for materials science. Ultramicroscopy, 30(1-2):58–
69, 1989.

[173] PA Midgley and M Weyland. 3D electron microscopy in the physical sciences: the
development of Z-contrast and EFTEM tomography. Ultramicroscopy, 96(3):413–
431, 2003.

[174] David L Donoho. Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306, 2006.

[175] Alessandro Mirone, Emmanuel Brun, Emmanuelle Gouillart, Paul Tafforeau, and
Jerome Kieffer. The PyHST2 hybrid distributed code for high speed tomographic
reconstruction with iterative reconstruction and a priori knowledge capabilities.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 324:41–48, 2014.

[176] Bart Goris, Stuart Turner, Sara Bals, and Gustaaf Van Tendeloo. Three-dimensional
valency mapping in ceria nanocrystals. ACS nano, 8(10):10878–10884, 2014.



144 References

[177] Pau Torruella, Raul Arenal, Francisco de la Peña, Zineb Saghi, Lluís Yedra,
Alberto Eljarrat, Lluis Lopez-Conesa, Marta Estrader, Alberto Lopez-Ortega,
Germán Salazar-Alvarez, et al. 3D visualization of the iron oxidation state in
FeO/Fe3O4 core–shell nanocubes from electron energy loss tomography. Nano
Letters, 16(8):5068–5073, 2016.

[178] Ronald N Bracewell. Strip integration in radio astronomy. Australian Journal of
Physics, 9(2):198–217, 1956.

[179] J Radon. On determination of functions by their integral values along certain
multiplicities. Ber. der Sachische Akademie der Wissenschaften Leipzig,(Germany),
69:262–277, 1917.

[180] Joachim Frank. Electron tomography. Springer, 1992.

[181] Roy A Crowther and Linda A Amos. Three-dimensional image reconstructions
of some small spherical viruses. In Cold Spring Harbor symposia on quantitative
biology, volume 36, pages 489–494. Cold Spring Harbor Laboratory Press, 1972.

[182] Jeannot Trampert and Jean-Jacques Leveque. Simultaneous iterative reconstruction
technique: physical interpretation based on the generalized least squares solution.
J. geophys. Res, 95(12):553–9, 1990.

[183] Gregory K Wallace. The JPEG still picture compression standard. IEEE transac-
tions on consumer electronics, 38(1):xviii–xxxiv, 1992.

[184] Raul Arenal, Odile Stephan, Jean-Lou Cochon, and Annick Loiseau. Root-growth
mechanism for single-walled boron nitride nanotubes in laser vaporization technique.
Journal of the American Chemical Society, 129(51):16183–16189, 2007.

[185] Gatan Inc. Optimize spectrum. http://www.eels.info/how/spectroscopy/
optimize-spectrum.

[186] Raúl Arenal de la Concha. Synthèse de nanotubes de nitrure de bore : études de la
structure et des propriétés vibrationnelles et électroniques. PhD thesis, Université
Paris-Sud 11 Orsay, 2005. Thèse de doctorat dirigée par Loiseau, Annick Physique
des solides Paris 11 2005.

[187] Carl De Boor. On calculating with b-splines. Journal of Approximation Theory,
6(1):50–62, 1972.

[188] Francisco Javier de la Peña Manchón. Advanced methods for Electron Energy Loss
Spectroscopy core-loss analysis. PhD thesis, Université Paris-Sud 11 Orsay, 2010.
Thèse de doctorat dirigée par Colliex, Christian et Walls, Michael.

[189] CC Ahn and OL Krivanek. EELS atlas. Gatan, 1983.

[190] Technariumas. Inpainting. https://github.com/Technariumas/Inpainting.

[191] John Emsley. Nature’s building blocks: an AZ guide to the elements. Oxford
University Press, 2011.

http://www.eels.info/how/spectroscopy/optimize-spectrum
http://www.eels.info/how/spectroscopy/optimize-spectrum
https://github.com/Technariumas/Inpainting


References 145

[192] Thaddeus B Massalski, Hiroaki Okamoto, PR Subramanian, Linda Kacprzak, and
William W Scott. Binary alloy phase diagrams, volume 1. American society for
metals Metals Park, OH, 1986.

[193] Shunli Shang and Zi-Kui Liu. Thermodynamics of the B–Ca, B–Sr, and B–Ba
systems: Applications for the fabrications of CaB6, SrB6, and BaB6 thin films.
Applied Physics Letters, 90(9):091914, 2007.

[194] Min Chu, Yongke Sun, Umamaheswari Aghoram, and Scott E Thompson. Strain:
A solution for higher carrier mobility in nanoscale MOSFETs. Annual Review of
Materials Research, 39:203–229, 2009.

[195] Oliver Stier, Marius Grundmann, and Dieter Bimberg. Electronic and optical
properties of strained quantum dots modeled by 8-band k · p theory. Physical
Review B, 59(8):5688, 1999.

[196] John D Verhoeven. Fundamentals of physical metallurgy. John Wiley & Sons Inc,
1975.

[197] Sigurd Wenner and Randi Holmestad. Accurately measured precipitate–matrix
misfit in an Al–Mg–Si alloy by electron microscopy. Scripta Materialia, 118:5–8,
2016.

[198] PH Jouneau, A Tardot, G Feuillet, H Mariette, and J Cibert. Strain mapping of
ultrathin epitaxial ZnTe and MnTe layers embedded in CdTe. Journal of applied
physics, 75(11):7310–7316, 1994.

[199] MJ Hÿtch, E Snoeck, and R Kilaas. Quantitative measurement of displacement
and strain fields from HREM micrographs. Ultramicroscopy, 74(3):131–146, 1998.

[200] Christoph T Koch, V Burak Özdöl, and Peter A van Aken. An efficient, simple,
and precise way to map strain with nanometer resolution in semiconductor devices.
Applied Physics Letters, 96(9):091901, 2010.

[201] Javier Bonet and Richard D Wood. Nonlinear continuum mechanics for finite
element analysis. Cambridge university press, 1997.

[202] David Cooper, Armand Béché, Jean Michel Hartmann, Veronique Carron, and Jean-
Luc Rouvière. Strain mapping for the semiconductor industry by dark-field electron
holography and nanobeam electron diffraction with nm resolution. Semiconductor
Science and Technology, 25(9):095012, 2010.

[203] John Brian Pendry. Low-energy electron diffraction. In Interaction of Atoms and
Molecules with Solid Surfaces, pages 201–211. Springer, 1990.

[204] BC Larson, Wenge Yang, GE Ice, JD Budai, and JZ Tischler. Three-dimensional
X-ray structural microscopy with submicrometre resolution. Nature, 415(6874):887–
890, 2002.

[205] Mark A Pfeifer, Garth J Williams, Ivan A Vartanyants, Ross Harder, and Ian K
Robinson. Three-dimensional mapping of a deformation field inside a nanocrystal.
Nature, 442(7098):63–66, 2006.



146 References

[206] Marcus C Newton, Steven J Leake, Ross Harder, and Ian K Robinson. Three-
dimensional imaging of strain in a single ZnO nanorod. Nature materials, 9(2):120–
124, 2010.

[207] GA Edwards, K Stiller, GL Dunlop, and MJ Couper. The precipitation sequence
in Al–Mg–Si alloys. Acta materialia, 46(11):3893–3904, 1998.

[208] NanoMEGAS. http://www.nanomegas.com.

[209] HW Zandbergen, SJ Andersen, and J Jansen. Structure determination of Mg5Si6
particles in Al by dynamic electron diffraction studies. Science, 277(5330):1221–
1225, 1997.

[210] SJ Andersen, HW Zandbergen, J Jansen, C Traeholt, U Tundal, and O Reiso. The
crystal structure of the β′′ phase in Al–Mg–Si alloys. Acta Materialia, 46(9):3283–
3298, 1998.

http://www.nanomegas.com


Appendix A

Analysis diagrams

This appendix provides data analysis diagrams for the three results chapters, chapters 7
to 9, with corresponding Figs. A.1 to A.3. Circles and rectangles represent operations
and their results respectively. Steps that require SAMFire and LazySignal are highlighted
in yellow and green respectively.

HDD
CL DataLoad

Fit
(SAMFire)

2D maps Visualise Figures

Fig. A.1 The diagram showing chapter 7 analysis workflow. Circles and rectangles
represent operations and their results respectively. Steps that require SAMFire are
highlighted in yellow.
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LL Data
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HL Data
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PCA PCA
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Num.

components

Fingerprint
estimation
(SAMFire)

Fingerprints

Fit
(SAMFire)

2D maps

Tomography

3D maps

Fig. A.2 The diagram showing chapter 8 analysis workflow. Circles and rectangles
represent operations and their results respectively. Steps that require SAMFire are
highlighted in yellow.
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Fig. A.3 The diagram showing chapter 9 analysis workflow. Circles and rectangles
represent operations and their results respectively. Steps and results that require SAMFire
and LazySignal are highlighted in yellow and green respectively.





Appendix B

Extracting fingerprints code

In [ ]: import hyperspy.api as hs

In [ ]: import numpy as np
%matplotlib

In [ ]: cl = hs.load('clean_calibrated_cl_stacked.hdf5', lazy=True)
ll = hs.load('clean_normalised_fixed_calibrated_stacked_ll.hdf5', lazy=True)

In [ ]: m = cl.create_model(ll=ll, auto_add_edges=True, auto_background=True)

In [ ]: m.suspend_auto_fine_structure_width()

In [ ]: m[1].name = 'O substrate'
m.append(hs.model.components1D.EELSCLEdge('O_K'))
m[-1].name = 'O part'

m.components.B_K.name = 'BN 1'
m.append(hs.model.components1D.EELSCLEdge('B_K'))
m[-1].name = 'BN 2'
m.append(hs.model.components1D.EELSCLEdge('B_K'))
m[-1].name = 'B metallic'
m.append(hs.model.components1D.EELSCLEdge('B_K'))
m[-1].name = 'BO'

m.components.N_K.name = 'N 1'
m.append(hs.model.components1D.EELSCLEdge('N_K'))
m[-1].name = 'N 2'



152 Extracting fingerprints code

In [ ]: m.components

In [ ]: for cn in ['O substrate',
'N 1',
'Ca_L3',
'C_K',
'BN 1',
'B metallic',
"BO"]:

m[cn].intensity.bmin = 0

m.components.BN_2.intensity.bmin = None
m.components.N_2.intensity.bmin = None

In [ ]: m.components.Ca_L3.fine_structure_smoothing = 0.27
m.components.Ca_L3.fine_structure_width = 7

m.components.N_1.fine_structure_width = 45.
m.components.N_1.fine_structure_smoothing = 0.1

m.components.N_2.fine_structure_width = 45.
m.components.N_2.fine_structure_smoothing = 0.1

m.components.O_substrate.fine_structure_width = 40.
m.components.O_substrate.fine_structure_smoothing = 0.15

m.components.O_part.fine_structure_width = 40.
m.components.O_part.fine_structure_smoothing = 0.15

m.components.BN_1.fine_structure_width = 40.
m.components.BN_1.fine_structure_smoothing = 0.35

m.components.BN_2.fine_structure_width = 40.
m.components.BN_2.fine_structure_smoothing = 0.35

m.components.B_metallic.fine_structure_width = 40.
m.components.B_metallic.fine_structure_smoothing = 0.1
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m.components.BO.fine_structure_width = 40.
m.components.BO.fine_structure_smoothing = 0.2

m.components.C_K.fine_structure_width = 50
m.components.C_K.fine_structure_smoothing = 0.12

In [ ]: m.components.BO.onset_energy.value = 190.9732998459634
m.components.BN_1.onset_energy.value = 190.4451714029937
m.components.BN_2.onset_energy.value = 190.4451714029937

m.components.N_1.onset_energy.value = 399.7069556719910
m.components.N_2.onset_energy.value = 399.7069556719910

m.components.Ca_L3.onset_energy.value = 347.0857902879798

m.components.O_substrate.onset_energy.value = 533.3136858795248
m.components.O_part.onset_energy.value = 533.3136858795248

B.0.1 Getting fine structure fingerprints

Osubstrate

In [ ]: m.axes_manager.indices = (69, 14, 4)
m.enable_fine_structure(edges_list=['O substrate'])

In [ ]: m.disable_edges()
m.components.O_substrate.active = True
m.set_signal_range(480., 590.)
m.remove_signal_range(573., 575.)

In [ ]: m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: m.components.O_substrate.fine_structure_coeff.free = False
m.assign_current_values_to_all(components_list=['O substrate',])
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B2O3 and Oparticle

In [ ]: m.axes_manager.indices = (74, 48, 4)
el = ['BO', 'O part', 'O substrate']
m.enable_fine_structure(edges_list=el[:-1])

In [ ]: m.disable_edges()
m.enable_edges(edges_list=el[1:])

In [ ]: # for the Oxigen edge fitting:
m.set_signal_range(480., 590.)
m.remove_signal_range(573., 575.)
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: # for the Boron edge fitting:
m.set_signal_range(None, 270.)
m.disable_edges()
m.enable_edges(edges_list=el[:1])
m.components.PowerLaw.r.value = 3.4
m.components.PowerLaw.A.value = 9.3e10
m.components.BO.intensity.value = 2e-5
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: ox_ratio = m.components.O_part.intensity.value / m.components.BO.intensity.value
print(ox_ratio)

In [ ]: m.components.BO.fine_structure_coeff.free = False
m.components.O_part.fine_structure_coeff.free = False

m.assign_current_values_to_all(components_list=['BO', 'O part'])

In [ ]: m.plot()

BN and N2 - first edge

In [ ]: m.axes_manager.indices = (35, 60, 4)
el = ['BN 1', 'N 1']
m.enable_fine_structure(edges_list=el)
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In [ ]: m.disable_edges()
m.enable_edges(edges_list=el)

In [ ]: # for the Nitrogen edge fitting:
m.set_signal_range(370., 480.)
m.components.BN_1.active = False
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: # for the Boron edge fitting:
m.set_signal_range(None, 270.)
m.components.BN_1.active = True
m.components.N_1.active = False
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: n1_ratio = m.components.N_1.intensity.value / m.components.BN_1.intensity.value
print(n1_ratio)

In [ ]: m.components.N_1.fine_structure_coeff.free = False
m.components.BN_1.fine_structure_coeff.free = False

m.assign_current_values_to_all(components_list=el)

BN and N2 - Second edges

In [ ]: # m.axes_manager.indices = (54, 40, 4)
m.axes_manager.indices = (54,41, 4)
el = ['BN 1', 'BO', 'BN 2']
m.disable_edges()
m.enable_fine_structure(edges_list=['BN 2', 'N 2'])
#

In [ ]: # for the Oxigen edge fitting:
m.set_signal_range(480., 800.)
m.disable_edges()
m.components.O_part.active = True
m.components.O_substrate.active = True
m.two_area_background_estimation()
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m.fit(fitter='mpfit', bounded=True)
#

In [ ]: # for the Boron edge fitting:
m.set_signal_range(None, 270.)
m.components.BN_1.intensity.free = True
m.components.BO.intensity.free = True
m.disable_edges()
m.enable_edges(edges_list=el[:-1])

m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)
m.remove_signal_range(206., 280.)
m.remove_signal_range(188., 196.)
m.fit(fitter='mpfit', bounded=True)

m.components.BN_1.intensity.free = False
m.components.BO.intensity.free = False
m.set_signal_range(None, 270.)
m.components.BN_2.active = True
m.components.BN_2.fine_structure_coeff.value = tuple(np.zeros(61).tolist())
m.fit()
m.components.BN_1.intensity.free = True
m.components.BO.intensity.free = True
#

In [ ]: # for the Nitrogen edge fitting:
m.set_signal_range(370., 480.)
m.disable_edges()
m.components.N_1.active = True
m.components.N_2.active = True
m.components.N_2.intensity.value = 0.
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: m.components.BN_2.fine_structure_coeff.free = False
m.components.N_2.fine_structure_coeff.free = False
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m.assign_current_values_to_all(components_list=['BN 2' ,'N 2'])

In [ ]: print (m.components.BN_1.intensity.value / m.components.BN_2.intensity.value)
print (m.components.N_1.intensity.value / m.components.N_2.intensity.value)

In [ ]: bn_n1 = m.components.BN_1.intensity.value / m.components.N_1.intensity.value
bn_n2 = m.components.BN_2.intensity.value / m.components.N_2.intensity.value
print (bn_n1)
print (bn_n2)

Metallic B

In [ ]: m.axes_manager.indices = (41, 32, 4)
m.disable_edges()
el = ['BN 1', 'B metallic', 'BO', 'BN 2']
m.components.B_metallic.fine_structure_active = True
m.components.B_metallic.fine_structure_coeff.free = True

In [ ]: # for the Nitrogen edge fitting:
m.set_signal_range(370., 480.)
m.components.N_1.active = True
m.components.N_2.active = True
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: # for the Oxigen edge fitting:
m.set_signal_range(480., 590.)
m.disable_edges()
m.components.O_part.active = True
m.components.O_substrate.active = True
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: # for the Boron edge fitting:
m.set_signal_range(None, 270.)
m.disable_edges()
m.enable_edges(edges_list=el)
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m.components.BN_1.intensity.value = m.components.N_1.intensity.value * bn_n1
m.components.BN_2.intensity.value = m.components.N_2.intensity.value * bn_n2
m.components.BN_1.intensity.free = False
m.components.BN_2.intensity.free = False

m.components.BO.intensity.value = m.components.O_part.intensity.value
m.components.BO.intensity.value /= ox_ratio

# BO free to float, but starting point is the previous ratio
m.components.BO.intensity.free = True

m.two_area_background_estimation()
m.components.B_metallic.intensity.value = 5e-3
m.fit(fitter='mpfit', bounded=True)

In [ ]: m.components.B_metallic.fine_structure_coeff.free = False

m.components.BN_1.intensity.free = True
m.components.BN_2.intensity.free = True
m.components.BO.intensity.free = True

m.assign_current_values_to_all(components_list=['B metallic'])

C edge

In [ ]: m.axes_manager.indices = (56, 74, 4)
# for the Carbon and Calcium edge fitting:
m.set_signal_range(250., 380.)
m.disable_edges()
el = ['Ca_L3', 'Ca_L2', 'Ca_L1', 'C_K']
m.enable_edges(edges_list=el[-1:])

In [ ]: m.enable_fine_structure(edges_list=el[-1:])
m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: m.components.C_K.fine_structure_coeff.free = False
m.assign_current_values_to_all(components_list=['C_K'])
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Ca edge

In [ ]: m.axes_manager.indices = (71, 45, 4)
m.set_signal_range(None, 380.)
el = ['Ca_L3', 'C_K', 'BO', 'BN 1', 'BN 2']
m.enable_edges(edges_list=el)

In [ ]: m.enable_fine_structure(edges_list=el[:1])

In [ ]: m.two_area_background_estimation()
m.fit(fitter='mpfit', bounded=True)

In [ ]: m.components.Ca_L3.fine_structure_coeff.free = False
m.assign_current_values_to_all(components_list=['Ca_L3'])
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Extracting strain code

In [ ]: %matplotlib
import hyperspy.api as hs
import numpy as np
from scipy import ndimage as ndi

In [ ]: s = hs.load('./20160623-Sigurd5.blo',
lazy=True).as_lazy()

st = s.transpose(signal_axes=s.axes_manager.navigation_axes)

In [ ]: st.plot()

In [ ]: m = s.create_model()
rect = hs.roi.RectangularROI(left=343.9,

top=651.7,
right=381.9,
bottom=691.6)

ref = rect(s).mean()
if ref._lazy:

ref.compute()
ref.change_dtype('float')
comp = hs.model.components2D.ScalableFixedPattern2D(ref)
m.append(comp)

In [ ]: ref.plot()

In [ ]: m.fit()

In [ ]: m.print_current_values()
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C.1 SAMFire

In [ ]: samf = m.create_samfire()
samf.remove(1)
samf.plot_every = 30

In [ ]: samf.refresh_database()

In [ ]: samf.plot()

In [ ]: samf.start()
while samf.pool.collect_results():

pass

In [ ]: m.save_parameters2file('AlMgSi_parameters_bottom_ref')

In [ ]: m.corr.save('bottom_ref_correlation')

C.2 Plotting Results

In [ ]: sm = m.as_signal()

In [ ]: hs.plot.plot_signals([s, sm])

C.3 Strain tensor

In [ ]: import numpy as np
from scipy import linalg
import math

dp =s
def construct_displacement_gradient(ref):

shape = (dp.axes_manager.navigation_shape[1],
dp.axes_manager.navigation_shape[0],
3,
3)

D = hs.signals.BaseSignal(np.ones(shape))
D.axes_manager.set_signal_dimension(2)
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D.data[:,:,0,0] = ref.d11.map['values']
D.data[:,:,1,0] = ref.d12.map['values']
D.data[:,:,2,0] = 0.
D.data[:,:,0,1] = ref.d21.map['values']
D.data[:,:,1,1] = ref.d22.map['values']
D.data[:,:,2,1] = 0.
D.data[:,:,0,2] = 0.
D.data[:,:,1,2] = 0.
D.data[:,:,2,2] = 1.

return D

def _transform_basis2D(D, angle):
"""Method to transform the 2D basis in which
a 2nd-order tensor is described.

Parameters
----------
D : 3x3 matrix

angle : float
The anti-clockwise rotation angle between
the diffraction x/y axes and the x/y axes
in which the tensor is to be specified.

Returns
-------
T : TensorField

Operates in place, replacing the original
tensor field object with a tensor field
described in the new basis.

"""

a=angle*np.pi/180.0
r11 = math.cos(a)
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r12 = math.sin(a)
r21 = -math.sin(a)
r22 = math.cos(a)
R = np.array([[r11, r12, 0.],

[r21, r22, 0.],
[0., 0., 1.]])

T = np.dot(np.dot(R, D), R.T)
return T

def polar_decomposition(D, side='right'):
shape = (dp.axes_manager.navigation_shape[1],

dp.axes_manager.navigation_shape[0],
3,
3)

R = hs.signals.BaseSignal(np.ones((shape))
R.axes_manager.set_signal_dimension(2)
U = hs.signals.BaseSignal(np.ones(shape))
U.axes_manager.set_signal_dimension(2)

for z, indices in zip(
D._iterate_signal(),
D.axes_manager._array_indices_generator()

):
thing = linalg.polar(D.data[indices], side=side)
R.data[indices] = thing[0]
U.data[indices] = thing[1]

return R, U

def get_rotation_angle(R):
"""Return the
Parameters
----------
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R : RotationMatrix
RotationMatrix two dimensional signal object of the form:
cos x sin x

-sin x cos x
Returns
-------
angle : float
"""
arr_shape = (R.axes_manager._navigation_shape_in_array

if R.axes_manager.navigation_size > 0
else [1, ])

T = np.zeros(arr_shape, dtype=object)

for z, indices in zip(
R._iterate_signal(),
R.axes_manager._array_indices_generator()

):
T[indices] = -math.asin(R.data[indices][1,0])

X = hs.signals.Signal2D(T.astype(float))

return X

In [ ]: disp = construct_displacement_gradient(comp)

R, U = polar_decomposition(disp)

theta = get_rotation_angle(R)

In [ ]: disp.T.plot()

In [ ]: theta.plot()

In [ ]: e11 = U.isig[0,0]
e11 = e11.as_signal2D(image_axes=e11.axes_manager.navigation_axes)
e11.data = 1. - e11.data

e12 = U.isig[0,1]
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e12 = e12.as_signal2D(image_axes=e12.axes_manager.navigation_axes)
e12.data = e12.data

e21 = U.isig[1,0]
e21 = e21.as_signal2D(image_axes=e21.axes_manager.navigation_axes)
e21.data = e21.data

e22 = U.isig[1,1]
e22 = e22.as_signal2D(image_axes=e22.axes_manager.navigation_axes)
e22.data = 1. - e22.data

strain_results = hs.signals.Signal2D(np.ones((4,
dp.axes_manager.navigation_shape[1],
dp.axes_manager.navigation_shape[0])))

strain_results.data[0] = e11.data
strain_results.data[1] = e22.data
strain_results.data[2] = e12.data
strain_results.data[3] = theta.data

for ax1, ax2 in zip(strain_results.axes_manager.signal_axes,
s.axes_manager.navigation_axes):

ax1.scale = ax2.scale
ax1.offset = ax2.offset
ax1.units = ax2.units
ax1.name = ax2.name

strain_results.plot(cmap='RdBu_r')#, vmin=-0.03, vmax=0.03)

In [ ]: strain_results.save('./strain_results_bottom_ref', overwrite=True)

In [ ]: strain_results.plot(cmap='RdBu_r', scalebar_color='k')
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