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SUMMARY 

This PhD thesis investigated the role of the basal ganglia in memory and motor 

inhibition. Recent neuroimaging evidence suggests a supramodal network of inhibition 

involving the lateral prefrontal cortex. Here we examined whether this supramodal 

network also includes subcortical structures, such as the basal ganglia. Despite their 

well-established role in motor control, the basal ganglia are repeatedly activated but 

never interpreted during memory inhibition. 

We first used a series of meta-analysis to confirm the consistent involvement of the 

basal ganglia across studies using memory and motor inhibition tasks (including the 

Go/No-Go, Think/No-Think, and Stop-signal tasks), and discovered that there may be 

different subprocesses of inhibition. For instance, while the Go/No-Go task may require 

preventing a response from taking place, the Think/No-Think and Stop-signal tasks may 

require cancelling an emerging or ongoing response. 

We then conducted an fMRI study to examine how the basal ganglia interact with other 

putative supramodal regions (e.g., DLPFC) to achieve memory and motor inhibition 

during prevention and cancellation. Through dynamic causal modelling (DCM), we 

found that both DLPFC and basal ganglia play effective roles to achieve inhibition in 

the task-specific regions (hippocampus for memory inhibition; primary motor cortex 

(M1) for motor inhibition). Specifically, memory inhibition requires a DLPFC-basal 

ganglia-hippocampus pathway, whereas motor inhibition requires a basal ganglia-

DLPFC-M1 pathway. We correlated DCM coupling parameters with behavioural 

indices to examine the relationship between network dynamics during prevention and 

cancellation and the successfulness of inhibition. However, due to constraints with 

DCM parameter estimates, caution is necessary when interpreting these results.  

Finally, we used diffusion weighted imaging to explore the anatomical connections 

supporting functions and behaviour. Unfortunately, we were unable to detect any white 

matter variability in relation to effective connectivity or behaviour during the prevention 

or cancellation processes of memory and motor inhibition at this stage. 

This PhD thesis provides essential INITIAL evidence that not only are the basal ganglia 

consistently involved in memory and motor inhibition, but these structures are 

effectively engaged in these tasks, achieving inhibition through task-specific pathways. 

We will discuss our findings, interpretations, and future directions in the relevant 

chapters.  

Yuhua Guo 

The Role of the Basal Ganglia in Memory and Motor Inhibition 
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FIGURE 3.11. BASAL GANGLIA ACTIVATIONS IN THE INDIVIDUAL, CONJUNCTION, AND 
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1 INTRODUCTION 

Being able to stop actions and thoughts is fundamental to goal-directed behaviour. 

Much research has been conducted to understand how people stop prepotent responses 

when needed, a process known as inhibitory control. Although research on inhibitory 

control has often focused on stopping motor actions, there has also been significant 

interest in how people stop higher-level cognitive processes, such as memory retrieval. 

Recent evidence from neuroimaging studies suggests that inhibiting motor actions and 

memory retrieval may engage similar cortical mechanisms, and that a supramodal 

inhibition mechanism may be supported in part by the right dorsolateral and 

ventrolateral prefrontal cortices (DLPFC, VLPFC; Depue et al., 2015). However, 

whereas inhibiting memories and motor actions have been compared at the cortical 

level, no study has contrasted how these abilities engage subcortical structures. In the 

case of motor inhibition, subcortical mechanisms are known to contribute significantly, 

particularly the basal ganglia (Aron et al., 2014; Rae et al., 2015). Nonetheless, whether 

and how the basal ganglia are engaged in retrieval suppression remains unknown. 

This PhD thesis aims to examine the parallel and integrative neural networks underlying 

retrieval suppression as opposed to motor stopping, with particular focus on the basal 

ganglia. In this introduction chapter, we will review both behavioural and neuroimaging 

findings of motor stopping and retrieval suppression, and identify the involvement of 

the basal ganglia in the latter. The second chapter will discuss the importance of the 

basal ganglia in cognitive functions in addition to motor control. Evidence includes the 
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functional and neuroanatomical organisations of the basal ganglia in the context of 

multiple cortical-basal ganglia and subcortical-basal ganglia loops. Chapters three to six 

will present the analyses and experiments investigating the role of the basal ganglia in 

retrieval suppression and motor stopping. Finally, chapter seven will conclude the PhD 

findings and discuss future directions. 

1.1 Motor Stopping in the Go/No-Go and Stop-signal Paradigms 

Motor stopping refers to the ability to refrain from making a response through motor 

action, and is often used to index an individual’s capability of inhibitory control. For 

example, it is human nature to catch something that they dropped from their hands. 

However, as soon as people realise that it is a dangerous object that they have dropped 

(such as a kitchen knife), they would immediately refrain from catching that knife so as 

not to get hurt. Two experimental paradigms are often used to measure motor stopping: 

the Go/No-Go and the Stop-signal paradigms (Nigg, 2000; Zheng et al., 2008). In a 

typical Go/No-Go task (e.g., Garavan et al., 1999), participants are presented with visual 

stimuli, such as blue and green circles. When they see some stimuli (e.g., green circles), 

they need to respond with a motor action, such as pressing a button (hereinafter referred 

to as Go trials). In contrast, upon encountering other stimuli (e.g., blue circles), they 

need to refrain from making any motor responses at all (hereinafter, No-Go trials). The 

procedure ensures that go trials are much more frequent than are No-Go trials so that 

participants get into the habit of making the button press response, making it more 

challenging to stop the infrequent No-Go responses. A typical Stop-signal task (e.g., 

Logan & Cowan, 1984) is similar to the Go/No-Go task but with some differences. 

Participants also need to view visually presented stimuli and either carry out a motor 

response on a Go trial or stop a motor response on a Stop trial. However, in the Stop-

signal task, all stimuli represent Go trials, except when an independent stop signal (e.g., 

an auditory tone) is presented sometime after stimulus onset, signalling the participant 

to stop. Taking the coloured circles example, participants need to respond to both the 

blue and green circles, except when a ‘beep’ tone is played shortly after either a blue or 

a green circle appears, indicating that they need to cancel the motor response. 
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Figure 1.1: Typical Go/No-Go, Stop-signal, and Think/No-Think Paradigms and 

the Hypothesised Inhibitory Control Processes. In the hypothesised inhibitory 

control process panel, the arrows denote the time-flow within a single trial. In the 

bottom panel, the colour green represents the respond processes, the red “X” 

represents when inhibitory control is putatively engaged in the trial, and the grey 

represents the inhibited processes. On a Go or Think trial, participants would 

carry out the motor response or memory retrieval, respectively. On an inhibit trial, 

if prevention processes are engaged, inhibitory control should be effective from the 

very beginning of the trial, before the corresponding response is even started. If 

cancellation processes are engaged, inhibitory control would be recruited only to 

terminate an initiated response. In the lower right, the uncertain positioning of the 

“X” indicates that we do not know whether prevention or cancellation may be 

more important for the Think/No-Think task.  

 

Although the Go/No-Go and Stop-signal tasks are often used for examining inhibitory 

control abilities, some have suggested that the two tasks may tap distinct stopping 

processes (Schachar et al., 2007; Figure 1.1). On one hand, the Go/No-Go task 

potentially allows participants to prevent a motor response before it is even initiated: 
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upon recognising a No-Go stimulus, participants could decide not to prepare for a 

movement, and hence prevent any motor response entirely. On the other hand, the Stop-

signal task presents the stop-signal after the cue stimulus appears. Because of this delay 

in stop-signal onset, participants have likely initiated preparation or execution of the 

motor response, requiring them to cancel the action. It is unclear whether these different 

demands (hereinafter referred to as prevention and cancellation, respectively) engage 

distinct sub-processes that are implemented by different mechanisms within the basal 

ganglia. For example, whereas Eagle et al. (2008) suggested that the Go/No-Go and 

Stop-signal tasks have a similar anatomical basis but distinct neuropharmacological 

underpinnings, Dalley et al. (2011) argued that the tasks engage different brain regions 

due to the different subprocesses. Specifically, according to Dalley et al., stop-signal 

tasks primarily activate the right inferior frontal gyrus (IFG), whereas Go/No-Go tasks 

activate the left IFG. Within the basal ganglia, the specific regions involved in different 

tasks or subprocesses remain unresolved, although recent studies have emphasised the 

role of the STN in the stop-signal task (Aron et al., 2014). 

1.2 Retrieval Suppression and the Think/No-Think Paradigm 

It is suggested that retrieval suppression may be initiated by an individual's intrinsic will 

in order for the individual to remain emotionally and cognitively stable (Anderson & 

Huddleston, 2012). A typical way of studying retrieval suppression is by using the 

Think/No-Think paradigm (Anderson & Green, 2001; Figure 1.2). In the Think/No-

Think paradigm, participants are first required to learn cue-target associations to a 

certain level of accuracy. In the subsequent Think/No-Think phase, each trial presents 

one cue from one of the pairs. Upon seeing the cues, participants need to either recall 

the corresponding target to the presented cue if it appears in green (Think trial) or to 

refrain from recalling the target if the cue appears in red (No-Think trial). Some pairs 

serve as the Baseline and so are omitted from this phase. Finally, a surprise cued-recall 

test is administered to measure how recall performance was influenced by retrieving the 

associated items (Think condition) or by suppressing their retrieval (No-Think 

condition). Two memory tests are typically used – the Same Probe test and the 

Independent Probe test. The Same Probe test simply uses the original cues from the pair 

associations that participants learned in the study phase. The Independent Probe test, 
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however, uses new cues that are related to the targets, such as category names or 

associates. The Independent Probe test is argued to be a more pure measure for cue-

independent inhibition, uncontaminated by interference effects (Anderson & Spellman, 

1995). The level of accuracy, the number of repetitions, and the use of Independent 

Probe test are determined by test materials and task design. Two measures of memory 

recall can be derived from the Think/No-Think paradigm. First, recall of the No-Think 

pairs is compared with that of the baseline pairs to examine whether repeated attempts 

to suppress unwanted memories can actually impair those memories. Second, recall of 

the Think pairs is compared with that of the baseline pairs to examine if repeatedly 

retrieving previously learned associations can strengthen the memories. 

 

Figure 1.2: The Think/No-Think Paradigm. 

 

Typical findings from the Think/No-Think paradigm include impaired memory for the 

No-Think items relative to Baseline, sometimes referred to as the suppression-induced 

forgetting (SIF) effect. The magnitude of SIF indicates the general cognitive control 

capacity to suppress or inhibit unwanted memories. Similar results have been replicated 

in studies using a variety of test materials, such as word-word pairs, face-word pairs, 

face-scene pairs, word-object pairs and object-scene pairs (Anderson & Huddleston, 

2012; Gagnepain et al., 2014). People could perform equally well with emotional 

stimuli (as opposed to neutral stimuli; Depue et al., 2006), guilty knowledge (Bergström 

et al., 2013), episodic prospection (Benoit et al. 2016), and autobiographical memory 

(Noreen & MacLeod, 2013). The Think/No-Think paradigm has also been used to 

detect differences in ageing (Murray et al., 2015) and clinical populations, such as 

patients with ADHD (Depue et al., 2010) and PTSD (Catarino et al., 2015). It is 

important to note, though, the SIF effect may be attenuated if the items are not 
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suppressed for enough times in the Think/No-Think phase, or if the participants are 

fatigued (van Schie & Anderson, 2017).  

On the other hand, Tomlinson et al. (2009) argued against the inhibition account and 

proposed that the reduced recall for the No-Think items may instead be due to 

interference between the memorable materials. Participants may generate new 

associations during the No-Think trials in order to suppress the targets, which may then 

interfere with the original targets and impair recall at test. In response to Tomlinson et 

al. (2009), Bäuml and Hanslmayr (2010) pointed out that if Tomlinson et al. were 

correct, increased memory-related brain activity should have been observed. To the 

contrary, typical neuroimaging and electrophysiology findings for the No-Think trials 

exhibit down-regulation of memory-related activity, providing strong evidence for the 

inhibition account instead of the interference account. Tomlinson and colleagues (Huber 

et al., 2010) followed up and suggested that inhibition and interference might co-exist 

depending on whether retrieval suppression took place through selectively inhibiting 

target memories or replacing target memories to avoid retrieval. 

Indeed, Benoit and Anderson (2012) found that directly inhibiting retrieval processes or 

using alternative and potentially competitive thoughts to occupy awareness engage 

different neural mechanisms. They referred to the first as “direct suppression”, and the 

latter as “thought substitution”. In the experiment, Benoit and Anderson instructed 

participants to learn each cue word with two other words – one as the target, and the 

other as the substitute. During the Think/No-Think phase, participants were asked to 

directly suppress any associations they learned with the cue word if they were in the 

direct suppression group. In contrast, if they were in the thought substitution group, 

participants should retrieve the substitute so as to keep the target out of mind. While the 

direct suppression strategy down-regulates hippocampal activity through the right 

dorsolateral prefrontal cortex (DLPFC), the thought substitution strategy requires 

competition resolution through the interaction between left ventrolateral prefrontal 

cortex (VLPFC, including both anterior and middle) and the hippocampus. Critically, 

the hippocampal downregulation observed in direct suppression was not found in 

thought substitution. Later studies suggested that using direct suppression alone would 

be sufficient for suppressing both neutral and emotional unwanted memories (Küpper et 

al., 2014; Van Schie et al., 2013). 
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Subsequent studies replicated these phenomena and elucidated the relationship between 

prefrontal and hippocampal activations, as well as the possible stopping process that is 

recruited in retrieval suppression (Figure 1.3a). For example, Levy & Anderson (2012) 

introduced intrusion ratings into the Think/No-Think paradigm, where they asked 

participants to report whether the target had intruded into their minds after each No-

Think trial. Although the Think/No-Think task is procedurally similar to the Go/No-Go 

task, where participants are instructed to respond or stop by the colour of the stimulus, 

the initial attempt to refrain from retrieving the target on a No-Think trial often fails. As 

a result, participants may experience intrusions from the unwanted target. Indeed, Levy 

and Anderson found that participants experienced frequent intrusions especially in the 

first half of the Think/No-Think phase. Although intrusions decrease in number over 

time, they never fully disappear during the course of the task. Through further analyses 

(Figure 1.3b; Figure 1.3c), Levy and Anderson found that overcoming intrusions 

induced larger hippocampal downregulation than did preventing a thought from coming 

into mind. Critically, the magnitude of the hippocampal downregulation when 

overcoming intrusions significantly predicted the magnitude of SIF. No such 

relationship was observed for thought prevention. In addition, Benoit et al. (2015) found 

that overcoming intrusions triggered greater inhibitory modulation of the hippocampus 

by the DLPFC, supporting the proposition that DLPFC exerts top-down regulation of 

the hippocampus in the context of retrieval suppression. Furthermore, the engagement 

of the DLPFC in overcoming intrusions is recently replicated by Gagnepain et al. 

(2017) in the context of suppressing emotional memories induced by emotional 

pictures. Using dynamic causal modelling, Gagnepain et al. found parallel DLPFC 

downregulation of the hippocampus, the parahippocampal gyrus, and the amygdala. 

These pieces of evidence suggest that the DLPFC plays a consistent role in suppressing 

different forms of memories, and that overcoming intrusions in the Think/No-Think 

task may be more similar to reacting to a stop tone in the Stop-signal task and primarily 

require a cancellation process that interrupts retrieval (Figure 1.1). 
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Figure 1.3. a) Possible inhibition subprocesses engaged by memory inhibition 

during intrusion and non-intrusion. During the course of a single trial, participants 

are presented with the fixation cross followed by the cue word. If the participant 

did not experience an intrusion, it is likely that they have successfully prevented 

the unwanted target from coming to mind and have kept mind clear. However, if 

at a later point in the trial, the target did intrude into their mind (represented by 

the thought bubble “XXX”), they will likely have to cancel the retrieval process 

and push the target out of mind. b) The magnitude of right hippocampal activity 

during Think, Non-intrusion, or Intrusion trials. c) The relationship between 

hippocampal activity and the magnitude of memory inhibition during intrusion or 

non-intrusion. 

1.3 Parallel Functional Networks between Memory and Motor 

Inhibition 

Memory and motor inhibition both require stopping of a prepotent response, be it a 

memory retrieval or a motor action (Anderson & Green, 2001; Anderson et al., 2004). 

Researchers have investigated whether similar functional networks underpin the 

inhibitory process supporting this stopping, and whether there exists a supramodal 

network of inhibition in the brain that encompasses memory and motor domains. Depue 
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et al. (2015) compared the brain mechanisms underlying memory, motor, and emotional 

inhibition through a within-subject study. In the experiment, participants performed the 

Think/No-Think task for memory inhibition, the Stop-signal task for motor inhibition, 

and an emotion stopping task for emotion inhibition. Through a conjunction analysis, 

Depue et al. found that the right DLPFC and the right angular gyrus were consistently 

activated in all three tasks. It is possible that the right DLPFC and angular gyrus are part 

of the supramodal inhibition network, responsible for inhibitory control across different 

task domains. In addition, researchers have also observed similar neurophysiological 

mechanisms in memory inhibition as in motor stopping. For example, Mecklinger et al. 

(2009) measured event-related potential (ERP) during retrieval and motor inhibition 

using the Think/No-Think and Stop signal task, respectively. They observed very 

similar centro-parietal N2 components during retrieval and motor stopping, and the two 

components were significantly correlated. This is evidence showing that memory and 

motor inhibition share common mechanisms not only in the network of brain structures 

involved but also in neurophysiological biomarkers. 

In a more recent study, however, both the right DLPFC and VLPFC were found to be 

critical for memory and motor inhibition. Schmitz et al. (in preparation) conducted a 

within-subject fMRI experiment where participants completed the Think/No-Think task 

and the Stop-signal task in one single session. In their conjunction analysis, Schmitz et 

al. found that both the right DLPFC and VLPFC were activated by both memory and 

motor inhibition. In order to investigate how these putative supramodal regions interact 

with task-specific regions (hippocampus for memory inhibition, and the primary motor 

cortex or M1 for motor inhibition) to achieve inhibitory control, they conducted 

effective connectivity analyses using Dynamic Causal Modelling (DCM). They found 

that not only are the DLPFC and VLPFC involved in the network dynamics to achieve 

memory and motor inhibition, but the VLPFC functioned to modulate the coupling 

between DLPFC and the task-specific structures. This is the first evidence showing that 

the DLPFC and VLPFC are both involved in memory and motor inhibition, and 

possibly form an integral part of the supramodal network. 

If the DLPFC and VLPFC are part of a supramodal network of inhibition, it leads to the 

question what other brain structures may be part of this network as well. One potential 

candidate is the basal ganglia. The basal ganglia have long been studied in the motor 
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domain. Through studying motor control, researchers have established neurobiological 

circuitries where the basal ganglia play important roles. A detailed review will be 

provided in the next chapter. On top of the motor functions, recent developments in the 

literature have suggested that the basal ganglia may be involved in various cognitive 

processes as well (e.g. Graybiel, 2005). Specific to retrieval suppression, a number of 

fMRI studies using the Think/No-Think task have reported basal ganglia activations 

(e.g., Anderson et al., 2004; Benoit & Anderson, 2012; Benoit et al., 2014; Levy & 

Anderson, 2012; Paz-Alonso et al., 2013; Schmitz et al., in preparation). However, these 

activations have been largely overlooked. To date, there has been no formal 

investigation of the role of the basal ganglia in memory inhibition and its possible 

parallelism to motor inhibition. This under-representation may be caused by the 

reliability of anatomical co-registrations due to the size and complexity of the basal 

ganglia structures, or the limited understanding of the basal ganglia cognitive functions.  

This PhD thesis aims to examine the potential supramodality of the basal ganglia in 

memory and motor inhibition. The following chapter will review some basic anatomy 

and functioning of the basal ganglia, and propose hypotheses of the role of the basal 

ganglia in retrieval suppression and motor stopping. 
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2 BASAL GANGLIA 

FUNCTIONS AND ANATOMY 

As introduced at the end of Chapter 1, the basal ganglia may be part of the supramodal 

network of inhibition due to its involvement in both cognitive and motor functions. It is 

important to first understand how the basal ganglia function through what sorts of brain 

networks and then develop specific hypotheses.  

The basal ganglia are a group of subcortical nuclei linked by a circuit of excitatory and 

inhibitory connections, which coordinate to generate the appropriate amount of 

excitatory or inhibitory functional outputs according to task goals. The most studied 

function of the basal ganglia is motor control (Aron, 2007; Kandel et al., 2012; 

Graybiel, 2005), especially in Parkinson’s disease (PD). However, an emerging body of 

research has suggested that the basal ganglia may contribute to cognitive control, and 

memory retrieval in particular, in a similar way. In this chapter, I will first review the 

intrinsic connections and the coordinating pathways between basal ganglia nuclei that 

allow for the selection and initiation of task-relevant responses, and hence the 

suppression of task-irrelevant responses. Second, I will illustrate the critical position of 

the basal ganglia in multiple cortical and subcortical networks, possibly implying the 

engagement of the basal ganglia in both high-level and low-level neural processing. 

Third, I will discuss the topographical and non-topographical inputs that the basal 

ganglia receive from the upstream structures, and how these may be related to the 
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possibility that the basal ganglia are involved in inhibitory processes across modalities. 

Finally, based on known anatomy, I will review existing theories and knowledge on 

basal ganglia functions and develop hypotheses regarding the specific role of the basal 

ganglia in memory and motor inhibition. 

2.1 Intrinsic Connections within the Basal Ganglia 

As summarised by Kandel et al. (2012), there are four principle structures in the basal 

ganglia - the striatum (consisting of the caudate, putamen, and nucleus accumbens), the 

internal and external global pallidus (GPi and GPe, respectively), the substantia nigra 

pars compacta (SNc) and pars reticulata (SNr), and the subthalamic nuclei (STN). These 

structures can be categorised as input, output, and intrinsic nuclei of the basal ganglia 

(Lanciego et al., 2012). While the input nuclei (mainly the striatum, and the STN) 

receives diffuse projections from all over the cortex and the thalamus, the output nuclei 

(GPi and SNr) send processed information to their efferent targets, such as the thalamus. 

As for the intrinsic nuclei, the GPe relays information between basal ganglia input and 

output nuclei; the SNc modulates the level of dopamine in the intrinsic connections to 

balance the amount of inhibitory and excitatory signals from the basal ganglia system. 

Almost all basal ganglia nuclei have inhibitory outputs, except the STN that sends 

excitatory signals to its downstream structures, and the SNc that modulate the level of 

dopamine. 

Through studying motor control, researchers have used primate and rodent models to 

establish three coordinating pathways in the basal ganglia, constituted by the above 

structures that contribute to the different processes that the basal ganglia are involved 

in: the hyperdirect, direct, and indirect pathways (Alexander & Crutcher, 1990; Aron, 

2007; Kandel et al., 2012; Graybiel, 2005; Nambu et al., 2002). In the context of 

movement control, the hyperdirect pathway has two primary roles (Takada et al., 2013): 

first, it globally inhibits all motor responses to prevent unnecessary movements from 

taking place prior to movement onset; and second, it engages an early selection process 

that implicitly determines the ideal goal-directed motor response. Following the 

hyperdirect pathway, the direct pathway initiates the selected motor response. Finally, 

the indirect pathway terminates the selected motor response either when it is achieved 

or when it needs to be cancelled (Freeze et al., 2013). 
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Figure 2.1. Intrinsic Basal Ganglia Pathways. The direct pathway involves the 

striatum and the GPi/SNr. The indirect pathway involves the striatum, GPe, STN, 

and GPi/SNr. The hyperdirect pathway involves the STN and GPi/SNr.  

 

The specific intrinsic basal ganglia pathways are depicted in Figure 2.1. These pathways 

are particularly established in the primate and rodent literature, which are often cited in 

human studies. In the hyperdirect pathway, the STN receives direct cortical and 

thalamic inputs, and sends out excitatory signals to the GPi/SNr. Exciting the GPi/SNr 

enhances the inhibition of the downstream structures, and hence limits movement 

responses. In both the direct and indirect pathways, cortical and thalamic inputs are 

received through the striatum. The striatum then engages the direct pathway to initiate 

motor response, or the indirect pathway to inhibit responses. Specifically, the direct 

pathway encourages the response by the striatum inhibiting the GPi/SNr, which in turn 

disinhibit their efferent targets and lead to enhanced responses. On the other hand, the 

indirect pathway inhibits responses through the striatum inhibiting the GPe, which 

reduces the constraint on the GPi/SNr output either through direct projections or via the 

STN. This disinhibition of the GPi/SNR increases inhibition of the efferent targets and 

hence limits motor responses. As mentioned earlier, outputs from the striatum are 

modulated by the dopaminergic signals from the SNc. While the D1 receptor enhances 

the direct pathway, the D2 receptor inhibits the indirect pathway.  



The Role of the Basal Ganglia in Memory and Motor Inhibition 

 

38  Yuhua Guo - October 2017 

 

The aforementioned intrinsic connections are well integrated into classic theories on the 

basal ganglia functional networks in primates and rodents. In addition, there also exist 

feedback connections from the STN to the GPe, and from the GPe to the striatum. 

However, these feedback connections are not entirely reciprocal to the corresponding 

feedforward connections, and usually target a larger population of neurones than that 

where the feedforward projections originate (Voorn, 2010). However, whether the same 

pathways exist in humans is less clear. Using diffusion tractography that allows for 

estimating white matter connections in vivo, researchers have found evidence 

suggesting direct cortical inputs to the GPe (Leh et al., 2007), and reciprocal 

connections between the basal ganglia and the cerebellum (Bostan et al., 2013). 

Nevertheless, these connections still need to be confirmed with post-mortem histology. 

2.2 Cortical and Subcortical Networks Involving the Basal 

Ganglia 

The basal ganglia are proposed to be involved in different cortical and subcortical 

networks (Figure 2.2). In the cortical-basal ganglia loop, the striatum receives top-down 

excitatory inputs from all over the cortex, and then outputs the processed information to 

the thalamus through the output nuclei, which then sends feedback to the cortex to 

inform responses (Kandel et al., 2012). In the subcortical-basal ganglia loop, subcortical 

structures such as the midbrain and brainstem regions send inputs to the thalamus, 

which are then relayed to the basal ganglia. The basal ganglia process this information 

and then send feedback to the brainstem areas (For review, see Winn et al., 2010). 

According to Whishaw and Kolb (1984), there are fundamental differences in the 

functions performed by the cortico- and subcortico-basal ganglia loops. On one hand, 

the cortico-basal ganglia loop is responsible for high-level cognitive and motor 

functions such as executive functions and voluntary movement coordination. On the 

other hand, the subcortico-basal ganglia loop is primarily responsible for low-level 

associative learning and instinctive behaviour, such as foraging. Since this PhD thesis 

aims to investigate the role of the basal ganglia in memory and motor inhibition that 

require high-level inhibitory control mechanisms, the cortical-basal ganglia loop will be 

more relevant to the rest of this thesis. Specifically, if the basal gnalgia are part of the 

supramodal network of inhibition, they may interact with the prefrontal cortex (e.g., 
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DLPFC and VLPFC) to process inhibitory commands. These commands may then be 

passed on to the task-specific structures, such as M1 for motor inhibition and the 

hippocampus for memory inhibition. 

 

Figure 2.2. The Cortico- and Subcortico-Basal Ganglia Loops. The cortico-basal 

ganglia loop involves cortical projections into the basal ganglia, followed by the 

thalamus, and finally feedback to the cortex. The subcortical-basal ganglia loop 

involves the brainstem regions projecting to the thalamus, followed by the basal 

ganglia, and finally feedback to the brainstem. 

 

2.3 Topographical and Non-Topographical Inputs to the Basal 

Ganglia 

The basal ganglia receive both topographical and non-topographical inputs from the 

cortex. Through the topographical projections, distinct cortical regions innervate 

concentrated regions in the striatum, allowing parallel processing of multiple functions. 

For example, Seger (2013) summarised four functional loops in the cortico-basal 

ganglia system based on previous models: the visual, motor, executive, and 

motivational loops (Figure 2.3a). The executive functions loop (green) involves the 

fronto-parietal network and the caudate head and body. The motor loop involves the 

motor cortices and the putamen. The motivational loop involves the ventral prefrontal 

cortex, the basal forebrain, and ventral striatum. The visual loop involves the visual 

cortex and caudate tail. In a more recent meta-analysis using neuroimaging data, Pauli 

et al. (2016) was also able to delineate distinct but overlapping functional zones in the 
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striatum by classifying their meta-analytic connectivity profiles based on regions of co-

activation in specific task contexts. As their first step, Pauli et al. used a large-scale 

fMRI database (Neurosynth; http://neurosynth.org) and identified 5,809 studies with 

basal ganglia activations. With these data, Pauli et al. constructed a meta-analytic 

connectivity profile of the basal ganglia by identifying regions of co-activation in the 

cortex. Using k-means clustering, Pauli et al. classified functional zones in the basal 

ganglia based on their connectivity profiles, and identified 5 distinct clusters that are 

large enough to be robustly detectable in human neuroimaging (Figure 2.3b). Their 

subsequent term-based analysis revealed the functional associations of these clusters to 

different task contexts. Specifically, the caudate is primarily associated with executive 

functions, the putamen for sensorimotor processes, and the ventral striatum for value 

processes. These clusters highly resemble the functional loops described in Seger 

(2013), providing meta-analytic evidence for the topographical organisation of the 

corticostriatal network. However, these results should not be taken for granted. First, 

Pauli et al. did identify stable solutions with up to 17 clusters in their k-means clustering 

analysis, suggesting that the functional topography in the striatum may be more like a 

continuum than clear-cut zones. Second, the term-based analysis may be biased by the 

amount of studies available for different tasks or psychological constructs, and may not 

reflect all of the functions that are associated with basal ganglia structures. For example, 

Pauli et al. found that the putamen is primarily part of the sensorimotor network. 

However, there has been evidence suggesting the involvement of the putamen in 

cognitive functions such as memory and probabilistic learning (Graybiel, 2005; Koster 

et al., 2015; Shohamy et al., 2008). Therefore, although these mapping efforts provide a 

useful rule-of-thumb for the basal ganglia functional divisions, care needs to be taken 

when making generalisation of the specific responsibilities of particular basal ganglia 

regions.  

http://neurosynth.org/
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Figure 2.3: A) The Cortical-Gasal Ganglia Functional Loops in Seger (2013); B) 

The Five-Cluster Solution in Pauli et al. (2016). 

 

The aforementioned functional divisions in the cortical-basal ganglia system are largely 

consistent with anatomical evidence from animal studies. Haber and Knutson (2010) 

reviewed the topographical corticostriatal projections based on tracing studies using 

macaque monkeys (Figure 2.4a). In general, ventromedial striatum receives input from 

the ventromedial prefrontal cortex (VMPFC), the orbitofrontal cortex (OFC), and the 

dorsal anterior cingulate cortex (dACC). Central striatum, such as caudate head/body 

and precommissural putamen, receives input from the DLPFC (areas 9 and 46). Finally, 

dorsolateral striatum receives input from the motor control areas. For example, the 

frontal eye field (FEF) projects to central and lateral caudate, as well as central 

putamen. The supplementary eye field (SEF) projections have more lateral striatal 

targets than the FEF. The rostral premotor cortex (rPMC) innervates both the caudate 

and the putamen. Hence the distribution of the topographical corticostriatal projections 

seems to follow a functional gradient – whereas the cognitive and limbic projections 

concentrate on the centromedial striatum, the motor projections concentrate on the 

lateral striatum. Notably, this functional topography also applies to the other 

connections relevant to the basal ganglia networks, including the intrinsic connections 
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between the basal ganglia nuclei, and the basal ganglia output to their efferent targets 

(Haber & Knutson, 2010). 

 

Figure 2.4: The (a) topographical and (b) non-topographical cortical projections 

into the striatum in macaque monkeys (Haber et al., 2006). The top panel presents 

the distinct target zones in the basal ganglia from different prefrontal regions. The 

bottom panel presents diffuse projections from the same prefrontal regions across 

different basal ganglia regions. 

 

On top of the topographical projections, the cortex also sends non-topographical or 

diffuse projections to the striatum, allowing the different functional divisions to 

communicate between each other to achieve task goals. Haber et al. (2006) injected 

tracers from multiple motivation-related cortical regions and observed diffuse 

projections from these regions to the striatum (Figure 2.4b), on top of the concentrated 

topographical projections. It is also worth noting that even the focal termination fields 

from the topographical projections overlap with each other. Hence Haber and Knutson 

(2010) proposed that the topographical and non-topographical mappings in the 

corticostriatal system may serve to integrate domain-specific signals across functional 

domains to inform goal-directed behaviour. 
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However, one should be cautious when using animal evidence to make inference on 

human anatomy and functions. Choi et al. (2016) proposed that similar corticostriatal 

pathways may exist in both humans and monkeys. However, Neggers et al. (2015) used 

diffusion tractography and observed differential anatomical connectivity profile in the 

corticostriatal motor loop between humans and macaque monkeys (Figure 2.5). 

Specifically, target striatal areas from the FEF and the primary motor cortex (M1) 

appeared to shift posteriorly and concentrate more in the putamen in humans than in 

monkeys. The human FEF and M1 target fields also seem to largely overlap, whereas in 

macaque monkeys the two are more differentiated. Therefore, although the human and 

macaque corticostriatal system share similarities in the organisation, the specific 

pathways and connections may vastly differ. More research is needed to map the 

corticostriatal projections in the human brain. 

 

Figure 2.5: Projections from motor cortical regions to the striatum in humans and 

macaque monkeys presented on axial sections of the striatum (Neggers et al., 

2015). The bounded areas represent the target regions from the projections. The 

thickness of the boundaries represent different thresholds they used (thicker lines 

represent more stringent threshold), showing the validity of the differences 

between human and macaque basal ganglia connectivity. 

 



The Role of the Basal Ganglia in Memory and Motor Inhibition 

 

44  Yuhua Guo - October 2017 

 

2.4 Theories of Basal Ganglia Functions 

As discussed previously, the basal ganglia have an established role in motor control, and 

most of the basal ganglia functional pathways were discovered in the motor domain 

through primate and rodent studies. However, recent evidence suggest that the basal 

ganglia pathways may not be responsible for motor control per se, but may be involved 

in higher-order cognitive processes in general (Alexander et al., 1986; Schroll & 

Hamker, 2013).  

Specific to the memory domain, it has long been perceived that the basal ganglia and the 

medial temporal lobe (MTL) support two distinct systems. While the basal ganglia are 

strongly associated with non-declarative memory, such as skill learning or classical 

conditioning (e.g., Cohen et al., 1997; Knowlton et al., 1994), the MTL system is 

necessary for declarative memory, including the formation, consolidation, and retrieval 

processes (Cohen et al., 1997; Squire, 1992). This distinction was extended to the 

context of spatial memory. For example, Döller et al. (2008) studied whether striatal 

and hippocampal systems interact during landmarks and boundaries processing in a 

spatial memory task. While the striatal system was more implicated in learning 

landmarks through associative reinforcement, the hippocampal system was more 

relevant to learning boundaries through more incidental processes. Using DCM, Döller 

et al. found more evidence for the two being independent than directly interacting, and 

hence concluded that the striatal and hippocampal systems are parallel in the context of 

spatial memory. 

However, recent evidence from neuroimaging and neuropsychological studies suggest 

that the basal ganglia may also play a role in declarative memory, both at encoding and 

retrieval (e.g., Cohn et al., 2010; Shohamy and Adcock, 2010). For example, Shohamy 

(2011) reviewed that the basal ganglia and the hippocampus may jointly contribute to 

learning and memory due the following reasons. First, both the striatum and the 

hippocampus are anatomically connected with the PFC, a likely pathway for mediating 

interactions between the two systems (Alexander et al., 1986; Goldman-Rakic et al., 

1984; Haber, 2003; Suzuki & Amaral, 2004). Second, functional interactions have been 

repeatedly observed between the basal ganglia and the hippocampus (e.g., Hartley & 
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Burgess, 2004; Voermans et al., 2004). These interactions may be competitive or 

collaborative in nature.  

Some suggested the basal ganglia and the hippocampal systems are competitive due to 

the observation that increased activity in one is associated with decreased activity in the 

other (Dagher et al., 2001; Poldrack & Packard, 2003). Poldrack and Rodriguez (2004) 

reviewed evidence for the competition between the hippocampal and basal ganglia 

systems in classification learning, and proposed that the competition may be modulated 

by task demands and behavioural success. For example, Rodriguez and Poldrack (2003) 

re-analysed a classification learning dataset wherein participants performed a weather 

prediction task. In this task, participants performed on-line learning where they 

associated visual stimuli with weather categories. Using structural equation modelling, 

Rodriguez and Poldrack identified that the competitive interaction between the basal 

ganglia and the MTL is not direct, but is mediated by the prefrontal cortex (PFC). 

Specifically, they found mostly negative coupling between the PFC and the 

hippocampus, but mostly positive coupling between the striatum and either the PFC or 

the hippocampus. It is unclear from these results whether one structure is upstream to 

the others. Nevertheless, this work provided evidence that there are indirect interactions 

between the basal ganglia and the hippocampus, and that the two systems are not 

completely independent from each other. 

Despite this evidence that the basal ganglia and the hippocampal systems are 

independent or interact through the prefrontal cortex, others have suggested that the 

basal ganglia and hippocampus may interact in other ways. For example, Sabatino and 

colleagues found evidence that basal ganglia activity influences hippocampal 

oscillations. Specifically, while caudate stimulation appeared to influence the 

hippocampal theta rhythm by inhibiting hippocampal spikes (La Grutta et al., 1985; 

Sabatino et al., 1985), pallidal stimulation triggered enhanced epileptiform activity, 

inducing generalised seizure activity (Sabatino et al., 1986). Berke et al. (2004) also 

found entrainment of ventral/medial striatal neurons to the hippocampal theta in rats. 

Moreover, using Granger Causal Modelling on fMRI data, Seger et al. (2011) found 

evidence for effective connectivity from the putamen to both the caudate and posterior 

hippocampus, as well as from posterior hippocampus to the caudate. These interactions 

were observed in two tasks. One was a weather prediction task, where participants 
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learned on-line whether a visual stimulus was meant to predict rain or sunshine. The 

other was a subjective judgement task, wherein the participants rated whether their 

weather categorisation was based on memories or guesses. These pieces of evidence 

point to the possibility that the basal ganglia and the hippocampal functions are closely 

associated. 

In addition to the potential interactions between the basal ganglia and the hippocampus, 

Scimeca and Badre (2012) proposed a more specific role of the basal ganglia in the 

goal-directed gating of declarative memory retrieval. Specifically, retrieval may be an 

adaptive process of re-encoding modulated by the striatum, where the likelihood for 

memories to be retrieved in a particular context is determined by the expected context-

specific utility of those memories. In addition, the striatum may selectively admit and 

maintain high utility information into working memory for successful future retrieval, 

while inhibiting irrelevant or misleading information that is of low utility. Finally, the 

striatum is involved in reinforcing and adjusting the utility level of each memory based 

on the outcome of retrieval.  

This dynamic on-line modulation of memory retrieval by the basal ganglia highly 

resembles the forward model of action control computationally. The forward model 

(Frith & Wolpert, 2000) aims to optimise the course of action towards a desired state by 

minimising the discrepancies between the current body position and the desired 

position. Parallel to declarative memory gating, the action goal is achieved by selecting 

and initiating an ‘optimal’ course of action based on prior experience, and at the same 

time constantly refining the course of action according to the outcomes suggested by 

concurrent sensory feedbacks from the environment. Therefore, it may not be 

unreasonable to postulate that memory and action control may involve parallel 

computational mechanisms supported by a common anatomical substrate in the basal 

ganglia. Indeed, in a more recent review, Schroll and Hamker (2013) analysed a range 

of computational models depicting the cognitive and motor functions of the basal 

ganglia with possible contributions from the interacting pathways. Specifically, global 

blocking of activations, such as premature-response prevention and working memory 

updating, may be modulated by the hyperdirect and the indirect pathways; response 

inhibition/deferral and working memory gate closing may be modulated by the 

interaction between the direct and the short indirect pathways. 
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2.5 Hypotheses for the Basal Ganglia in Inhibitory Control 

The goal of this PhD thesis is to answer the following questions.  

1. Whether the basal ganglia are consistently involved in both memory and motor 

inhibition? 

2. How are the basal ganglia involved in memory and motor inhibition, in relation 

to the prefrontal control regions and the task-specific regions? 

3. What are the anatomical pathways underlying the functional interaction? 

We plan to tackle the first question with a series of meta-analysis, the second question 

with an empirical fMRI study using univariate and effective connectivity analyses, and 

the final question with diffusion-weighted imaging. 

2.5.1 The Basal Ganglia are Involved in Memory and Motor Inhibition, 

with either Spatially Distinct or Overlapping Activations from Different 

Task Domains or Inhibitory Processes 

Based on previous literature, we would hypothesise that the basal ganglia do play a role 

in both memory and motor inhibition, as part of the supramodal network of inhibition 

including the DLPFC and VLPFC. On one hand, the basal ganglia seem to be involved 

in a range of cognitive functions, in addition to their well-established association with 

motor control. On the other hand, the basal ganglia have intrinsic pathways to modulate 

different inhibition processes, such as prevention and cancellation (e.g., Schroll & 

Hamker, 2014). 

Regarding the specific regions in the basal ganglia that are involved in memory and 

motor inhibition, there are two possible alternatives. First, due to the functional 

divisions in the corticostriatal loop, it is possible that we may see spatially distinct 

activations in the basal ganglia from memory and motor inhibition. While the memory 

task may activate medial striatum, the motor task may activate lateral striatum (Voorn et 

al., 2004; Yin et al., 2004). However, if we believe that memory and motor inhibition 

engage domain-general processes of inhibitory control, there may be overlapping 

activity in the basal ganglia across the memory and motor tasks. Similarly, between the 

prevention and cancellation processes, it is possible that there are discrepant basal 

ganglia activations from the distinct functions. Alternatively, the prevention and 
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cancellation processes may activate similar regions in the striatum, but engage different 

basal ganglia pathways as reviewed by Schroll and Hamker (2014). 

2.5.2 The Basal Ganglia are Part of the Supramodal Network that Supports 

Inhibition through Task-specific Pathways 

To conceptualise how the basal ganglia help achieve inhibition across different task 

domains, we need to consider 1) how the supramodal regions interact between 

themselves, and 2) how the supramodal regions interact with the task-specific regions. 

Within the supramodal network, we hypothesise that inhibition may be supported by the 

corticostriatal connections. As reviewed in Section 2.3, there are topographical 

projections from the lateral PFC to the centromedial striatum (including the caudate and 

putamen) as part of the executive functions division of the corticostriatal loop. It is 

possible that this pathway is also involved in cognitive control processes such as 

inhibition. Moreover, this supramodal pathway should selectively engage task-specific 

pathways to achieve inhibition, such as the hippocampus for memory inhibition and M1 

for motor inhibition. 

In terms of how the supramodal regions in the basal ganglia and the PFC interact with 

the task-specific regions such as the hippocampus and M1, we have a few hypotheses. 

First, it is possible that the basal ganglia are an intermediate station between the PFC 

and the hippocampus. According to this “intermediary” hypothesis, when the prefrontal 

signals reach the basal ganglia, the basal ganglia system may engage the hyperdirect or 

the indirect pathways to inhibit responses, and hence reduce hippocampal and M1 

activity. In the memory domain, although the specific pathway through which the basal 

ganglia communicates with the hippocampus remains unclear, there has been evidence 

showing influence from the caudate nucleus on hippocampal activity (La Grutta et al., 

1985; Sabatino et al., 1985), as well as effective connectivity from the putamen to 

posterior hippocampus during probabilistic learning and subjective judgment (Seger et 

al., 2011).  

Alternative to the intermediary hypothesis, it is also possible that the basal ganglia 

modulate the interaction between the PFC and the task-specific region. According to 

this “modulation” hypothesis, the basal ganglia may inform the inhibitory control 

processes from the PFC to the hippocampus or M1. Previous research has shown that 
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the basal ganglia are essential for goal-directed behavioural in both the memory and 

motor domains. In the memory domain, the basal ganglia may be involved in adaptive 

long-term memory retrieval, where memories with higher context-specific utility are 

gated into working memory so that they are more easily accessible, and memories with 

lower utility are gated out (Scimeca & Badre, 2012). Similarly, in the motor domain, the 

basal ganglia consist of the intrinsic pathways that modulate the initiation and 

termination of motor responses according to goal-context (see Section 2.1). These 

suggest that the basal ganglia may be critical for modulating commands of cognitive 

control from the PFC to the task-specific regions. 

Finally, we have an “indirect” hypothesis, where the basal ganglia interact with the task-

specific regions through other structures such as the PFC. Although there is 

electrophysiology and effective connectivity evidence suggesting the basal ganglia 

influence on hippocampal activity (Sabatino et al., 1985; Seger et al., 2011), the 

underlying anatomical pathways remain unclear. It is possible that this interaction is 

indirect. For example, using structural equation modelling, Rodriguez and Poldrack 

(2003) found that the interaction between the basal ganglia and the MTL is not direct, 

but through the PFC. Shohamy et al. (2011) also reviewed that the PFC may be a 

critical component through which the basal ganglia and the hippocampus interact. 

2.5.3 Possible Anatomical Pathways from the Basal Ganglia to Task-

specific Regions  

As reviewed in Sections 2.1 and 2.2, most basal ganglia outputs go through the 

thalamus in the corticostriatal loop. How information is projected from there depends on 

how interaction is achieved between the basal ganglia and the downstream structures, 

according to the hypotheses presented in Section 2.5.2. If the intermediary hypothesis 

were true, the thalamus should project to M1 and the hippocampus as the next step. 

There has been extensive literature on the thalamic pathways involved in memory and 

motor control. For example, the anterior thalamic nuclei communicates with the 

hippocampus through the cingulum bundle for declarative memory (e.g., Aggleton, 

2014), and the ventrolateral thalamic nuclei projects to M1 to deliver motor commands 

(e.g., Alexander et al., 1986). 
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Alternatively, if the modulation hypothesis were true, there may be projections from the 

thalamus to either the PFC or an intermediary between the PFC and the task-specific 

regions. According to the literature, there may be indirect pathways from the PFC to 

both M1 and the hippocampus. In the motor domain, Bracht et al. (2012) used diffusion 

tractography and identified that reduced motor activity in Huntington’s patients are 

associated with altered structural connectivity in the preSMA-SMA, and the SMA-M1 

pathways. In addition, pathological motor control is associated with altered involvement 

in the DLPFC-preSMA pathway. It is therefore possible that during motor inhibition, 

the DLPFC downregulates M1 activity through the preSMA and SMA. In the memory 

domain, Anderson et al. (2016) proposed two pathways from the PFC to the 

hippocampus that underlie retrieval suppression. First, memory inhibition may be 

achieved by the ACC modulating activity in the entorhinal cortex. Since the entorhinal 

cortex is a major input site to the hippocampus, suppressing these inputs may account 

for the reduced hippocampal activity during retrieval suppression, possibly leading to 

impaired memory retrieval. Second, the PFC modulation of hippocampal activity may 

be achieved through the ACC engaging the thalamic reuniens nucleus, which originates 

one of the major thalamic inputs to the MTL. It is possible that projections from the 

reuniens innervate inhibitory interneurons in the CA1 subregion of the hippocampus. 

This would result in local inhibition in the hippocampus and hence reduced memory 

retrieval. 

We will discuss our findings in relation to the above hypotheses in the following 

chapters. Chapter 3 will focus on findings from the fMRI meta-analyses using memory 

and motor inhibition tasks. In Chapter 4, we will layout the behavioural paradigms that 

we have used to delineate the cancellation and prevention processes in memory and 

motor inhibition. Chapter 5 will present the empirical fMRI findings from the univariate 

and effective connectivity analyses. Chapter 6 will discuss our approaches using 

diffusion-weighted imaging to investigate the anatomical pathways underlying 

inhibitory control. Finally, we will conclude this PhD thesis in Chapter 7. 
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3 META-ANALYTIC EVIDENCE 

CONFIRMS BASAL GANGLIA 

INVOLVEMENT IN MEMORY 

AND MOTOR INHIBITION 

The first two chapters discussed the possibility that there may be overlapping 

mechanisms between memory and motor inhibition especially in the basal ganglia. In 

the current chapter, we will test this idea by comparing meta-analytic activations both 

qualitatively by localising the clusters to specific basal ganglia structures, and 

quantitatively by computing conjunction and contrast maps between tasks. This 

coordinate-based meta-analysis approach is convenient for illustrating common 

activities across studies and task modalities. It is worth noting that this method does not 

address whether the activated regions are actually engaged by the task, or the 

anatomical connectivity underlying the functional roles. However, we will be able to 

compare meta-analytic activation patterns between the putative prevention and 

cancellation processes in the memory and motor domains. We will tackle the remaining 

questions in the later chapters where we present our imaging results. 

The meta-analyses included data from the Go/No-Go, Stop-signal, and Think/No-Think 

tasks (Figure 1.1), as introduced in Chapter 1. All three tasks share the feature of having 
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to stop an active process in either the memory or the motor domain. These tasks thus 

provide the opportunity to evaluate support for a supramodal inhibitory control 

mechanism that contributes to stopping processes in general. If so, the basal ganglia 

activations induced by each task may co-localise. However, as reviewed in Chapter 1, 

each task may also engage different subprocesses through which stopping is achieved. 

The current meta-analysis would therefore be invaluable for examining both whether 

and how the basal ganglia contribute to different motor inhibition sub-processes. If 

domain- or subprocess-specific mechanisms are engaged during action prevention and 

cancellation, basal ganglia activations may be distinct. The meta-analysis will also be 

useful to examine basal ganglia activations during the Think/No-Think task, and to 

compare any findings to activations observed during the Go/No-Go and Stop-signal 

tasks and test if memory inhibition is more similar to action cancellation or action 

prevention.  

To characterise the specific localisation of basal ganglia activations, we manually 

segmented the caudate head, body, tail, and putamen subregions of the striatum, as 

existing atlases either do not have these subregions available, or have imprecise 

segmentations. For the other fine nuclei in the basal ganglia, we used an existing ultra-

high resolution basal ganglia atlas (Keuken et al., 2014). As suggested by previous 

findings, we hypothesised that if a supramodal inhibition mechanism existed in the 

basal ganglia, the task-induced clusters should overlap extensively with each other, 

possibly in the caudate head and anterior putamen that receive projections from the 

DLPFC (Haber, 2006). However, if inhibitory control is achieved in a domain-specific 

or process-specific fashion, the basal ganglia clusters may be distinct across tasks. 

Specifically, if basal ganglia involvement is domain-specific, there should be co-

localised clusters between the motor inhibition tasks (i.e. Go/No-Go and Stop-signal), 

which also differ spatially from clusters observed in the memory inhibition task (i.e. 

Think/No-Think). However, if basal ganglia involvement is process-specific, there 

should be co-localised clusters in tasks tasks requiring cancellation of ongoing cognitive 

or motor operations (i.e. Think/No-Think and Stop-signal), which also differ spatially 

from clusters observed in the task that primarily engages prevention of motor responses 

(i.e. Go/No-Go). If this pattern is observed, it would raise the possibility of a 

supramodal basal ganglia contribution to the cancellation of both actions and thoughts. 
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Due to the emphasis of STN involvement in the human motor stopping literature (e.g. 

Aron et al., 2007), we will also explore whether the STN is engaged by the memory and 

motor inhibition tasks, or whether STN activation is specific to certain tasks or 

processes, in addition to the striatum.  

3.1 Selection Criteria and the Meta-Analytic Approach 

Studies using the Go/No-Go and Stop-signal tasks were selected for the motor 

inhibition meta-analyses, whereas studies using the Think/No-Think task were selected 

for the memory inhibition meta-analysis. Data from the relevant studies were selected 

according to the following criteria: 

1. fMRI studies reporting results from whole brain analyses in a standardised 

coordinate space (MNI or Talairach); 

2. Only data from healthy adults were included; 

3. For the Stop-signal and Go/No-Go tasks, participants responded by hand; 

4. Only contrasts concerning differences between inhibition and an active 

condition were included, i.e. No-Think>Think, Stop>Go, and No-Go>Go. We 

requested the relevant data from the author if they are not already reported in the 

original article. 

According to these criteria, 16 Think/No-Think, 39 Stop-signal, and 30 Go/No-Go 

studies were identified (Appendix) and included in the meta-analyses. 

The meta-analyses were conducted using Activation Likelihood Estimation with 

GingerALE v2.3.6 (Eickhoff et al., 2009; 2012; 2016; Turkeltaub et al., 2012). The 

following default settings were applied: less conservative mask size; non-additive ALE 

method (Turkeltaub et al., 2012); no additional FWHM; cluster analysis peaks at all 

extrema. Where applicable, coordinates reported in Talairach space in the original 

studies were transformed into MNI space using the icbm2tal transform in GingerALE 

(Laird et al., 2010; Lancaster et al., 2007) prior to the analyses. 

The first step of the meta-analytic approach is to examine the spatial convergence across 

different studies within each task domain. To do this, three separate meta-analyses were 

conducted for the Think/No-Think, Stop-signal, and Go/No-Go tasks using cluster-level 

inference (p<.05, cluster-forming threshold uncorrected p<.001, threshold 
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permutations=1000). Secondly, to examine the spatial convergence and divergence 

between different task domains, contrast analyses (Eickhoff et al., 2011) were 

conducted between each pair of the Think/No-Think, Stop-signal and Go/No-Go Tasks 

(i.e., Think/No-Think & Stop-signal; Think/No-Think & Go/No-Go; Stop-signal & 

Go/No-Go). For analysing each pair of the tasks, the thresholded activation maps from 

the individual analyses, as well as the pooled results from both tasks were used as 

inputs. The outputs were conjunction and contrast maps between the conditions. The 

same GingerALE settings were applied to the contrast analyses (less conservative mask 

size; non-additive ALE method; no additional FWHM; cluster analysis peaks at all 

extrema.). The results were thresholded to voxel-wise uncorrected p<.001, with the p-

value permutations of 10,000 iterations, and the minimum cluster volume of 200 mm3. 

3.2 ROI Definition and Analyses 

Focused ROI analyses were performed to examine whether the memory and motor 

inhibition tasks consistently activated similar regions in the basal ganglia with similar 

likelihood. The basal ganglia ROIs were defined with both manual segmentation and an 

existing atlas (Atlasing of the Basal Ganglia; ATAG; Keuken et al., 2014). Although the 

ATAG atlas took averages of structural images from ultra-high resolution 7T MRI and 

thus provides very fine details of basal ganglia structures, it only treated the striatum as 

one single structure. No other existing atlases provided high-resolution parcellations of 

the relevant striatal subregions. We therefore performed manual segmentation of the 

striatal subregions, including bilateral caudate head, body, tail, and putamen, according 

to established anatomy and segmentation protocols (Eliez et al., 2002; Levitte et al., 

2002; Nolte, 2013; segmentation guidelines provided by the Centre for Morphometric 

Analysis (CMA; http://www.cma.mgh.harvard.edu/manuals/segmentation/). The 

segmentations were performed using ITK-SNAP v3.2 (Yushkevich et al., 

2005; www.itksnap.org) from the high-resolution ICBM 2009b template structural 

image (0.5mm isotropic; Fonov et al., 2009; 2011). Together, these segmentations of the 

human caudate and putamen improve upon the anatomical precision of several widely 

used atlases, such as Anatomical Automatic Labelling in SPM (AAL; Tzourio-Mazoyer 

et al., 2002) and Atlasing of the Basal Ganglia (ATAG; Figure 3.1 compares our 

segmentation with these atlases. The resulting subcortical activations are projected onto 
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the 3D rendering of the segmented structures using Mango v4.0 (Lancaster & Martinez; 

http://ric.uthscsa.edu/mango/).  

 

Figure 3.1: Segmentation of the Striatal Subregions. The three columns compare 

the AAL and ATAG atlases with our manual segmentation. The top row shows the 

coronal section, the middle row shows the axial section, and the bottom row shows 

the 3D rending of the structures in the sagittal plane. The relevant structures are 

labelled, and the differences are marked with black circles. Anatomical underlay 

and subcortical renders are displayed in MNI space. 

 

3.2.1 Segmentation Protocols for the Striatal Subregions 

3.2.1.1 Caudate head 

The head of the caudate was segmented through the coronal plane, starting from the 

slice where it first appears in between the lateral boundaries of the lateral ventricle and 

the internal capsule, ending at the posterior edge of the anterior commissure, cutting in 
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the middle of the interventricular foramen of Monroe across the frontoparietal axis 

(Eliez et al., 2002; Levitt et al., 2002; Nolte, 2013). Care was taken not to include the 

sheet of meninges between the lateral ventricle and the caudate.  

The nucleus accumbens was excluded from the caudate head following guidelines 

provided by the Centre for Morphometric Analysis (CMA) for creating the Harvard-

Oxford Subcortical Atlas (http://www.cma.mgh.harvard.edu/manuals/segmentation/). 

See Figure 3.1 for an example of this parcellation error in the AAL. 

3.2.1.2 Caudate body 

The body of the caudate was segmented through the coronal plane, starting from the 

posterior edge of the anterior commissure until the slice where the cerebral aqueduct 

enlarges to form the opening of the fourth ventricle (Eliez et al., 2002; Nolte, 2013). 

The dorsal and ventral boundaries of the caudate body were refined in the sagittal plane, 

following the lateral ventricle and the internal capsule. 

3.2.1.3 Caudate tail 

The tail of the caudate started from the coronal slice containing the opening of the 

fourth ventricle, and was followed until it curved around the thalamus in the sagittal 

plane. The rest of the tail was traced cross-referencing the coronal, sagittal, and axial 

planes until it reaches the amygdala.  

3.2.1.4 Putamen 

The putamen was traced through the coronal plane, starting from the slice where it first 

shows up lateral to the internal capsule, surrounded by the other white matter tissues, 

and ending when it is no longer seen. Care was taken not to include blood vessels 

inferior to the putamen, the claustrum lateral to the putamen, or white matter tracts 

posterior to the putamen. 

The nucleus accumbens was segmented out from the putamen when the internal capsule 

no longer separates the caudate nucleus and the putamen. Existing pipelines usually 

draw arbitrary lines to segment between the putamen and the accumbens, such as 

drawing a straight vertical line downwards from the lateral inferior tip of the internal 

capsule as suggested by the CMA guidelines. This is possibly due to the lower 

resolution of the structural image used in those segmentations. However, the anatomical 

http://www.cma.mgh.harvard.edu/manuals/segmentation/
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boundaries between the putamen and the nucleus accumbens in the ICBM 2009b 

structural template are more visible, and hence are directly used as references for 

segmentation. 

3.2.2 Basal ganglia descriptive statistics 

By using cluster-level inference with the ALE analysis, the results may predominantly 

represent activations that are highly clustered and may fail to detect activations that are 

more dispersed. To examine the dispersion of basal ganglia activations in each task, we 

adopted an ROI-based approach, focusing on the basal ganglia as a whole. To do this, 

we used our pre-defined basal ganglia ROIs to extract basal ganglia coordinates from 

the studies that we included in the meta-analyses. Subsequently, we counted the number 

of coordinates that located in these ROIs in the left and right hemispheres. Finally, we 

present the peak coordinates from each task on the 3D renders of the basal ganglia 

structures to illustrate the level of dispersion in these activations. It would be ideal to 

perform quantitative analyses of the spatial distribution of task-specific activations 

within these ROIs, preferably at the level of basal ganglia subregions, but the available 

data did not permit well-powered tests.  

3.3 Results 

On the whole, the ALE meta-analyses revealed both cortical and subcortical clusters in 

the Go/No-Go, Stop-signal, and Think/No-Think tasks. On the cortical level, preventing 

motor actions in the Go/No-Go task activated bilateral DLPFC and the right VLPFC, as 

well as regions in the right parietal lobes. Cancelling motor actions in the Stop-signal 

task, on the other hand, activated the right DLPFC, VLPFC, and precentral gyrus. 

Action cancellation also activated bilateral insula, temporal and parietal regions, and 

cingulate gyrus. The Think/No-Think task activated the right DLPFC, VLPFC, 

cingulate gyrus, precentral gyrus, and the parietal lobe, as well as the left insula and 

supramarginal gyrus. These results were generated using cluster-level inference (p<.05, 

uncorrected p<.001, threshold permutations=1000). Our observations provide strong 

evidence for the existence of domain-general regions that contribute to both memory 

and motor stopping. As illustrated in Figure 3.2, all of the Go/No-Go, Stop-signal, and 

Think/No-Think tasks activated the right DLPFC, VLPFC, and supramarginal/angular 
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gyrus primarily in the right hemisphere. In addition, the Stop-signal and Think/No-

Think tasks also both activated the insula and posterior middle frontal gyrus (MiFG), 

possibly due to the potential engagement of cancellation processes in these tasks.  

 

Figure 3.2: Cortical activations from the Go/No-Go, Stop-signal, and Think/No-

Think Tasks. All clusters are thresholded at uncorrected p<.001, with the p-value 

permutations of 10,000 iterations, and the minimum cluster volume of 200 mm3.  

 

On the subcortical level, all three tasks produced reliable clusters in the basal ganglia, 

suggesting that the basal ganglia are involved in both memory and motor inhibition and 

may be part of a supramodal network of inhibitory control. By qualitatively comparing 

the ALE results, we found a task-specific hemispheric asymmetry in the location of 

basal ganglia clusters. Specifically, significant activation clustering was localised in the 

left hemisphere for the action prevention (Go/No-Go) task, whereas significant 

activation clustering was localised in the right hemisphere for the action cancellation 

(Stop-signal) and memory inhibition (Think/No-Think) tasks. However, our subsequent 

ROI based descriptive statistics, which take into account the dispersion of activation 

coordinates reported in each task, provided a slightly more nuanced picture. The 

following results sections will elaborate on findings in the basal ganglia. 
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3.3.1 Comparing the Cancellation and Prevention of Motor Actions 

On the whole, our analyses indicated that both action cancellation and prevention 

yielded clusters of activation in the basal ganglia. However, action cancellation yielded 

more spatially extensive clusters, which scarcely overlapped with the clusters from 

action prevention. The largely distinct localisation of basal ganglia clusters suggests that 

action cancellation and action prevention may be two separate stopping processes that 

should not be assumed to be equivalent. This section illustrates these findings by 

detailing and comparing the clusters from the Go/No-Go and Stop-signal tasks. 

3.3.1.1 Action Cancellation Engaged Right Basal Ganglia Structures 

Across the 39 Stop-signal studies included in the analysis, cancelling a motor action 

yielded a consistent cluster in the right basal ganglia (Figure 3.3). First, cancelling a 

motor action is associated with a cluster in the right centromedial striatum, primarily in 

the caudate head, spanning into the caudate body and the right anteromedial putamen. 

This cluster also extended to the right anterior GPe. Visual inspection suggests that the 

localisation of this cluster may coincide with the putative homologue of the region that 

receives DLPFC projections identified in the monkey literature (Haber & Knutson, 

2010). Second, significant clusters were also observed in bilateral STN and the left SN. 

The STN finding is compatible with the significant action cancellation role consistently 

attributed to this structure in previous literature (Aron & Poldrack, 2006). The SN 

activations are compatible with the dopaminergic modulation that is required by basal 

ganglia control mechanisms (Alexander & Crutcher, 1990). Finally, cancelling a motor 

action also yielded a cluster in the ventral thalamus. The ventral thalamus is 

downstream to the basal ganglia and is specifically implicated in motor processes 

(Alexander et al., 1986). 
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Figure 3.3: Basal Ganglia Activation for Action Cancellation. Top row: Clusters 

are presented on coronal slices of a high-resolution MNI atlas. Reference lines for 

the coronal slices are presented in the sagittal plane. Middle row: Clusters are 

displayed on high-resolution parcellations of the caudate, putamen, and external 

globus pallidus (GPe). Bottom row: Clusters are displayed on high-resolution 

parcellaions of the subthalamic nucleus (STN) and substantia nigra (SN). All 

clusters are thresholded using cluster-level inference (p<.05, uncorrected p<.001, 

threshold permutations=1000). 

 

3.3.1.2 Action Prevention Reliably Activated Left Putamen and GPe, but not Caudate 

Across the 30 Go/No-Go studies included in the analysis, preventing a motor action 

yielded a cluster in the left basal ganglia, including anterior putamen, spanning into 

anterior GPe, only touching on the medial wall of the caudate head (Figure 3.4). The 

putamen involvement aligns with classic models of the cortico-basal ganglia circuit for 

motor control (Alexander et al., 1986). However, the absence of a caudate cluster during 

action prevention, as compared to action cancellation, suggests that these motor 

inhibition tasks may place different demands on neural mechanisms in the basal ganglia.  
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Figure 3.4 Basal Ganglia Activation for Action Prevention. Top row: Clusters are 

presented on coronal slices of a high-resolution MNI atlas. Reference lines for the 

coronal slices are presented in the sagittal plane. Bottom row: Clusters are 

displayed on high-resolution parcellations of the caudate, putamen, and external 

globus pallidus (GPe). All clusters are thresholded using cluster-level inference 

(p<.05, uncorrected p<.001, threshold permutations=1000). 

 

3.3.1.3 Action Prevention and Cancellation Showed No Significant Co-Localisation in 

the Basal Ganglia 

From the meta-analyses of individual task types, it is striking that action cancellation 

and prevention shared so few clusters, given that the Stop-signal and the Go/No-Go 

tasks are often used interchangeably to measure response inhibition. To formally test 

whether action cancellation and action prevention engaged similar basal ganglia 

structures, we computed a conjunction analysis between the Go/No-Go and Stop-signal 

tasks. No overlapping clusters were identified at the current threshold (Figure 3.5), 

although subthreshold clustering might exist in the Go/No-Go task (see contrast analysis 

in 3.3.1.4). It is unlikely that this surprising lack of similarity between these tasks is due 

to insufficient statistical power, given the large number of studies included in the 

analysis.  
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Some have suggested that putative differences between the two tasks may be due to the 

variations in the administration of the Go/No-Go task (Levy & Wagner, 2011). 

Typically, the prepotency of the to-be-stopped motor response in the Go/No-Go and 

Stop-signal tasks is created by having frequent Go trials and infrequent No-Go or Stop 

trials. However, some Go/No-Go studies have had equiprobable Go and No-Go trials, 

making the prepotency of the motor responses uncertain, and possibly undermining the 

necessity of inhibitory control. This is unlikely to be the case in our analysis, as only 9 

out of 30 Go/No-Go studies used an equiprobable design, and another 2 with varying 

frequency of No-Go trials in different blocks of their task phase. The limited number of 

studies should not exert a strong influence on the results (Eickhoff et al., 2009; 2011). 

To confirm this, we conducted a control meta-analysis including only Go/No-Go studies 

with infrequent No-Go trials (N=19), which revealed an identical cluster of activation in 

the left basal ganglia as the one reported in the original Go/No-Go meta-analysis (see 

Figure 3.4). We then re-ran the conjunction between the Stop-signal and Go/No-Go 

tasks using the modified Go/No-Go sample (N=19). Again, we found no significant BG 

co-localisation of clusters between tasks. Hence, the null conjunction effect cannot be 

attributed to variation of prepotency in the Go/No-Go task.  

3.3.1.4 Action Cancellation Engaged the STN and SN Significantly More than Action 

Prevention 

Visual comparison of the clusters yielded by the Go/No-Go and Stop-signal tasks 

suggests that action cancellation engages both STN and SN, but that action prevention 

does not. To determine whether these differences are reliable, we computed a contrast 

analysis between the Stop-signal and Go/No-Go tasks. The results confirmed 

significantly greater clustered activation during action cancellation in bilateral STN and 

the left SN than during action prevention (Figure 3.5), indicating a robust difference 

between the two stopping processes. Although in the separate meta-analyses action 

cancellation yielded clusters in the right caudate and Go/No-Go did not, this apparent 

difference was not statistically significant in the direct contrast analysis. This finding 

suggests that conclusions about the lack of right caudate involvement in action 

prevention should be tempered until firmer evidence of differential engagement across 

cancellation and prevention is clearly established (see section 3.3.3 for data indicating 

that this apparent difference in caudate involvement is better described as a difference in 
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the spatial dispersion (clustering) of reported activation coordinates, as opposed to an 

absolute absence of reported coordinates per se). Nevertheless, our findings strongly 

suggest that the Go/No-Go and Stop-Signal tasks should not be assumed to be 

equivalent mechanistically, given that they place demands on distinct stopping 

processes in the STN and possibly in the caudate nucleus.   

 

Figure 3.5 Action Cancellation Reliably Engaged STN and SN More than Action 

Prevention. Top row: Clusters are presented on coronal slices of a high-resolution 

MNI atlas. Reference lines for the coronal slices are presented in the sagittal plane. 

Bottom row: Clusters are displayed on high-resolution parcellaions of the 

subthalamic nucleus (STN) and substantia nigra (SN). The contrast analysis was 

computed using the thresholded ALE images from the individual analyses. All 

clusters are thresholded at uncorrected p<.001, with the p-value permutations of 

10,000 iterations, and the minimum cluster volume of 200 mm3.  

 

3.3.1.5 Action Cancellation Engaged the Basal Ganglia More Extensively than Action 

Prevention 

As mentioned previously, we observed significant clustering in the right striatum and 

GPe, bilateral STN, and left SN in the action cancellation task. By contrast, significant 

clustering was limited to the left striatum and GPe in the action prevention task. To 

quantify the extensiveness of basal ganglia clusters yielded by these tasks, we compared 

the total volumes of the clusters from the individual analyses. At our current threshold 
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(cluster-level inference p<.05, uncorrected p<.001, threshold permutations=1000), 

cancelling a motor action yielded more extensive basal ganglia activation clusters 

overall (1120 mm3 in the right hemisphere and 216 mm3 in the left hemisphere) than 

preventing a motor action (864 mm3 in the left alone).   

3.3.2 Comparing Memory and Motor Inhibition  

Overall, our analysis revealed that memory inhibition yielded consistent activation 

clusters in the right basal ganglia, but not in the left. Importantly, when we compared 

the basal ganglia activation clusters observed for memory and motor inhibition, we 

found that memory inhibition yielded clusters that were highly similar to those involved 

in action cancellation, but not to those involved in action prevention. This section 

delineates the basal ganglia clusters observed for memory inhibition, and compares 

them with those yielded by action cancellation and action prevention.  

3.3.2.1 Memory Inhibition Engaged Right Caudate, Putamen, and GPe 

Across the 16 Think/No-Think studies included in the analysis, memory inhibition 

yielded a significant activation cluster in the right basal ganglia. This cluster was 

primarily located in the caudate head, spanning into caudate body, anterior putamen, 

and anterior GPe (Figure 3.6). This cluster is highly similar to the one yielded by action 

cancellation in the centromedial striatum, suggesting that a similar DLPFC-basal 

ganglia control mechanism may be engaged by both memory inhibition and action 

cancellation. Memory inhibition yielded a more extensive basal ganglia activation 

cluster in the right hemisphere (1648 mm3) than did action cancellation (1120 mm3). 
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Figure 3.6 Memory Inhibition Engaged the Right Basal Ganglia. Top row: 

Clusters are presented on coronal slices of a high-resolution MNI atlas. Reference 

lines for the coronal slices are presented in the sagittal plane. Bottom row: Clusters 

are displayed on high-resolution parcellations of the caudate, putamen, and 

external globus pallidus (GPe). All clusters are thresholded using cluster-level 

inference (p<.05, uncorrected p<.001, threshold permutations=1000). 

 

3.3.2.2 Memory Inhibition and Action Cancellation Engaged Right Caudate, Putamen, 

and GPe 

To formally test whether the basal ganglia activation clusters generated by memory 

inhibition and action cancellation overlapped, we computed a conjunction analysis 

between the ALE maps for the Think/No-Think and Stop-signal meta-analyses. The 

results demonstrated that both memory inhibition and action cancellation activated the 

right caudate head/body, anterormedial putamen, and anterior GPe (Figure 3.7). 

Specifically, at the cluster-corrected threshold, the conjunction cluster resulted in an 

extensive overlap (552 mm3) between the Think/No-Think and Stop-signal basal 

ganglia clusters, constituting 33% of the basal ganglia cluster volumes activated by 

memory inhibition, and 49% of those activated by action cancellation in the right 

hemisphere, or 41% overall. This indicates that the putative DLPFC-basal ganglia 

pathway may serve a supramodal inhibitory control function across memory and motor 

domains. 
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Figure 3.7 Spatial Co-localisation of Memory Inhibition and Action Cancellation in 

Basal Ganglia Subregions. Top row: Clusters are presented on coronal slices of a 

high-resolution MNI atlas. Reference lines for the coronal slices are presented in 

the sagittal plane. Bottom row: Clusters are displayed on high-resolution 

parcellations of the caudate, putamen, and external globus pallidus (GPe). All 

clusters are thresholded using cluster-level inference (p<.05, uncorrected p<.001, 

threshold permutations=1000). 

 

3.3.2.3 Memory Inhibition and Action Prevention Did Not Reliably Co-localise in the 

Basal Ganglia 

Intriguingly, memory inhibition and action prevention did not seem to share basal 

ganglia activation clusters from the individual maps, as the first yielded a cluster 

exclusively located in right basal ganglia, and the latter, a cluster exclusively in left 

basal ganglia. To quantitatively verify this finding, we computed a conjunction analysis 

between the Think/No-Think and Go/No-Go tasks. The results did not reveal any basal 

ganglia activation clusters at our current threshold. As with the stop-signal task, we also 

examined whether the failure to detect conjunction effects may be due to variation of 

prepotency in the Go/No-Go task. This was not the case: When we re-analysed the 

conjunction between the Think/No-Think and Go/No-Go tasks using the modified 

Go/No-Go sample (studies with offset ratios of Stop and Go trials; N=19), we were 
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unable to recover significant basal ganglia co-localised clusters between the Think/No-

Think and Go/No-Go tasks.   

3.3.2.4 Memory Inhibition Engaged Basal Ganglia Subregions More Reliably Than 

Motor Inhibition 

To quantify the differences between memory inhibition, action cancellation, and action 

prevention, we computed contrast analyses between the Think/No-Think and Stop-

signal tasks, and between the Think/No-Think and Go/No-Go tasks. Comparing the 

Think/No-Think and Stop-signal tasks, although both tasks yielded activation clusters in 

similar regions in the right basal ganglia, memory inhibition engaged the right 

anteromedial putamen and anterior GPe more than did action cancellation (Figure 3.8). 

This finding is intriguing as the putamen is usually construed as part of the motor circuit 

(Alexander et al., 1986). However, recent studies have shown putamen activations 

thought to reflect the interaction between memory, action and reward (Koster et al., 

2015), indicating that the putamen is not functionally limited to involvement in motor 

control tasks. Indeed, Seger et al. (2011) reported evidence for effective connectivity 

between the putamen and the posterior hippocampus, providing at least one precedent 

for a potentially important role of the putamen in hippocampal interactions.   

 

Figure 3.8 Memory Inhibition Engaged Putamen and GPe More Reliably Than 

Action Cancellation. Top row: Clusters are presented on coronal slices of a high-

resolution MNI atlas. Reference lines for the coronal slices are presented in the 

sagittal plane. Bottom row: Clusters are displayed on high-resolution parcellations 
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of the caudate, putamen, and external globus pallidus (GPe). All clusters are 

thresholded using cluster-level inference (p<.05, uncorrected p<.001, threshold 

permutations=1000).  

 

When we compared the Think/No-Think and Go/No-Go tasks (Figure 3.9), memory 

inhibition engaged more clustered activity in the right anteromedial putamen and 

anterior GPe than did action prevention. This echoes the contrast between memory 

inhibition and action cancellation. In addition, memory inhibition yielded stronger 

evidence of clustered activations in the right caudate head. The caudate is usually 

construed as part of the executive function circuit (Alexander, 1986; Seger, 2013). It is 

possible that inhibiting memory retrieval requires more active control processes 

especially when intrusions take place, whereas action prevention can be achieved by 

low-level associative learning. 

 

Figure 3.9 Memory Inhibition Engaged Caudate, Putamen, and GPe More 

Reliably Than Action Prevention. Top row: Clusters are presented on coronal 

slices of a high-resolution MNI atlas. Reference lines for the coronal slices are 

presented in the sagittal plane. Bottom row: Clusters are displayed on high-

resolution parcellations of the caudate, putamen, and external globus pallidus 

(GPe). All clusters are thresholded using cluster-level inference (p<.05, 

uncorrected p<.001, threshold permutations=1000). 
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3.3.2.5 Action Cancellation Engaged STN More Reliably Than Memory Inhibition 

We also examined which regions yielded greater activation clustering during action 

cancellation than by memory inhibition. Our individual analyses had revealed bilateral 

STN and left SN activation clusters in action cancellation but not in memory inhibition. 

To formally test these differences, we computed a contrast analysis between the Stop-

signal and Think/No-Think tasks. Our results revealed that action cancellation yielded 

reliably greater activation clustering in bilateral STN than did memory inhibition, as 

well as the ventral thalamus (Figure 3.10). As action cancellation showed consistently 

more activation clustering in bilateral STN and ventral thalamus than memory inhibition 

or action prevention, it is possible that distinct processes relevant to these structures are 

required to achieve cancellation of a motor response.  

 

Figure 3.10 Action Cancellation Engaged STN More Reliably Than Action 

Prevention. Top row: Clusters are presented on coronal slices of a high-resolution 

MNI atlas. Reference lines for the coronal slices are presented in the sagittal plane. 

Bottom row: Clusters are displayed on high-resolution parcellaions of the 

subthalamic nucleus (STN). The contrast analysis was computed using the 

thresholded ALE images from the individual analyses. All clusters are thresholded 

at uncorrected p<.001, with the p-value permutations of 10,000 iterations, and the 

minimum cluster volume of 200 mm3.  
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3.3.3 Summary of ALE results 

The ALE results are summarised in Figure 3.11, including basal ganglia activations 

from the individual, conjunction, and contrast analyses. This summary gives the 

impression that while the Go/No-Go task primarily engages the left putamen and GPe, 

the Stop-signal and Think/No-Think tasks primarily engage the right caudate, putamen, 

and GPe. However, due to the cluster-based nature of the ALE analyses, we wondered if 

this lateralisation effect could be influenced by the dispersion of the basal ganglia 

activity from the original studies. Section 3.3.4 presents ROI-based descriptive statistics 

of the basal ganglia activations from the original studies to examine that possibility. 

 

Figure 3.11. Basal Ganglia Activations in the Individual, Conjunction, and 

Contrast Analyses. The left column shows basal ganglia activations from the 

individual meta-analyses, colour-coded by task contrasts (Blue=Stop>Go, Red=No-

Go>Go, and Green=No-Think>Think). The middle column shows the conjunction 

analyses. Activations shared by two tasks are presented in the mixed colour based 
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on the colours that we used to represent the individual tasks. The right column 

shows basal ganglia activations from the contrast analyses, with the colours 

denoting task-specific activity. For example, bilateral STN was activated more 

strongly in the Stop>Go contrast (blue) than the No-Go>Go and No-Think>Think 

contrasts. The top panel summarises activations in the left basal ganglia structures, 

while the bottom panel summaries those in the right. 

 

3.3.4 Descriptive Statistics of Basal Ganglia Activations  

The foregoing ALE analysis tests for spatial clusters of activation in our three main 

tasks. Absence of significant clusters in a region does not, however, necessarily mean 

that the region is not engaged by a task; in some cases, coordinates of activation may be 

too spatially diffuse within a region to be detected by the analysis we conducted. To 

examine this possibility, we considered the individual coordinates of studies yielding 

significant basal ganglia activation. 

Table 3.1 summarises the basal ganglia coordinates extracted using the pre-defined 

basal ganglia ROIs as a whole from the studies included in the meta-analyses. Figure 

3.12 shows the dispersion of these coordinates across the three tasks in both the left and 

right hemispheres. Several novel observations emerge from these summaries. First, 

although our ALE analysis only revealed significant clusters of activation in the left 

basal ganglia for the Go/No-Go task, there are, in fact, equally many coordinates that 

appear in both the left and right hemispheres. The key difference between the left and 

right basal ganglia activations seems to be the somewhat greater dispersion of 

coordinates in the right, reducing the apparent clustering. Second, although the ALE 

analysis only demonstrated significant clusters of activation in the right basal ganglia 

for the Stop-signal task, there are equally many coordinates in the left and right 

hemispheres. The coordinates seemed more dispersed in the left, again reducing the 

apparent clustering. Finally, memory inhibition qualitatively appears to be more right 

lateralised than the other tasks, consistent with the impression offered by ALE. A more 

precise characterisation of task differences in the spatial distribution of activations 
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across sub-regions is limited by the moderate number of coordinates available in this 

dataset. 

 
Left Hemisphere Right Hemisphere  

 
Studies Coordinates 

% of 

studies 
Studies Coordinates 

% of 

studies 

Go/No-Go 7 9 23% 7 10 23% 

Stop-signal 10 15 26% 13 15 33% 

Think/No-Think 3 3 19% 8 10 50% 

Table 3.1 Number of Studies Reporting Basal Ganglia Coordinates in the Left and 

Right Hemispheres from the Go/No-Go, Stop-Signal, and Think/No-Think tasks. 

 

 

Figure 3.12 Peak Coordinates from the Basal Ganglia Activations in the Go/No-

Go, Stop-signal, and Think/No-Think tasks.  

3.4 Discussion  

The current investigation examined the potential existence of common mechanisms in 

the basal ganglia that underlie the inhibition of actions and thoughts. Although the basal 

ganglia have an established role in motor inhibition, whether and how this structure is 

involved in memory inhibition remains unexplored. To address these issues, we 

conducted a set of meta-analyses using fMRI data from the Go/No-Go, Stop-signal, and 

Think/No-Think tasks. While the first two tasks require inhibiting motor actions, the 
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last task requires inhibition of episodic memory retrieval. After examining the ALE 

maps for each task, we computed conjunction and contrast analyses to formally examine 

the similarities and differences between the locations of significant basal ganglia 

clusters recovered in each task. Moreover, we also provided ROI based descriptive 

statistics to illustrate the prevalence and dispersion of basal ganglia activations yielded 

by each task. We precisely localised the observed basal ganglia clusters by manually 

segmenting the striatal sub-regions from a high-resolution template brain, including the 

caudate head, body, and tail, and the putamen. This is the first segmentation to our 

knowledge that has individual compartments of the striatum at this level of spatial 

resolution and precision. Our key observations and their implications are discussed 

below. 

Although we observed basal ganglia clusters in all three tasks, the specific localisation 

of these clusters differed in informative ways. Strikingly, the Go/No-Go and Stop-

Signal tasks – two of the most widely studied forms of motor stopping that are often 

assumed to engage similar functions – showed clusters in different basal ganglia 

regions. Whereas the Go/No-Go task consistently activated the left anterior putamen 

(spanning into anterior GPe), the Stop-signal task yielded more extensive right-

lateralised spatial clusters of activation in the caudate head/body, anterodorsal putamen, 

anterior GPe, as well as bilateral STN and left SN. A formal conjunction analysis 

revealed that overlap between the activation clusters observed in these tasks was not 

statistically reliable. The differing localisations of these clusters may be very important 

for two reasons. First, distinct basal ganglia structures constitute different coordinating 

pathways supporting the prevention, initiation, and termination of motor or cognitive 

processes (Alexander & Crutcher, 1990; Graybiel, 2005; Scimeca & Badre, 2012). 

Second, cortical and subcortical structures project topographically to the basal ganglia 

(Haber, 2003; Winn et al., 2009). Therefore, differently localised activation clusters, 

such as those observed here, could indicate different computational functions 

(Alexander & Crutcher, 1990; Haber et al., 2006; Lanciego et al., 2012; Seger, 2013). 

These observations converge with recent findings suggesting that the Go/No-Go and 

Stop-signal tasks may differ in important respects, including the underlying cognitive 

processes engaged (Schachar et al., 2007; Verbruggen & Logan, 2008), cortical regions 

recruited (Dalley et al., 2011), their electrophysiological markers (Johnstone et al., 
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2007) and neuropharmacological underpinnings (Eagle et al., 2008). These differences 

may arise because the Go/No-Go task primarily requires the prevention of a motor 

action from taking place, whereas the Stop-signal task requires cancelling an emerging 

or ongoing motor process. Thus, the current analysis of activation clusters support the 

view that despite their similarity as motor stopping procedures, these tasks may tap 

different control processes and should not be treated equivalently. 

After comparing the Go/No-Go and Stop-signal tasks, we examined whether the basal 

ganglia were involved in stopping memory retrieval. Interestingly, we found that, like 

stopping actions, stopping thoughts also engages the basal ganglia. Memory inhibition 

in the Think/No-Think showed a consistent cluster of activation in the right caudate 

head/body, anterodorsal putamen, and anterior GPe. This cluster of activations was 

exclusively right lateralised, and was more spatially extensive than the analogous 

clusters from the motor stopping tasks. This clearly indicates that basal ganglia 

structures play an important role in stopping retrieval, perhaps akin to its role in 

stopping actions. This commonality raises the possibility that basal ganglia structures 

are involved in stopping in a more general way than is usually assumed in research on 

motor inhibition.  

Although both memory and motor inhibition consistently activated the basal ganglia, 

the current data provide some evidence that memory inhibition in the Think/No-Think 

task may be more similar to action cancellation in the Stop-signal task than it is to 

action prevention in the Go/No-Go task. Indeed, a formal conjunction analysis revealed 

strong overlap between the activation clusters observed for memory inhibition and 

action cancellation, including the right caudate head/body, anterior putamen, and the 

anterior GPe. Critically, the conjunction cluster between memory inhibition and action 

cancellation constituted 33% of the voxels activated by memory inhibition, and 49% of 

those activated by action cancellation in the right hemisphere (or 41% when considering 

both hemispheres). These findings suggest that the particular basal ganglia regions 

observed here might play a computational role in cancelling a process, irrespective of 

whether that process involved motor action. Action cancellation, however, did engage 

bilateral STN and ventral thalamus more reliably than did memory inhibition. It is 

possible that these regions are uniquely required for cancelling a motor response, as the 

ventral thalamus is typically construed as the downstream target of the basal ganglia 



Chapter 3: Meta-Analytic Evidence Confirms Basal Ganglia Involvement in Memory and Motor Inhibition 

 

Yuhua Guo - October 2017   75 

 

during motor control (Alexander et al., 1986). The STN is also shown to be integral for 

cancelling a motor action (Aron & Poldrack, 2006), although which specific pathway 

the STN engages (either the hyperdirect or the indirect pathway) remains unresolved. 

However, given their small size and the lack of attention to these structures in the 

literature on memory inhibition, their activity during memory inhibition tasks might not 

have been consistently reported, even if it occurred. Future studies of memory inhibition 

should specifically examine the role of the STN in this process. More generally, 

connectivity analyses could be conducted to investigate the network dynamics between 

the basal ganglia structures to isolate the particular basal ganglia mechanisms 

underlying the inhibition of memory retrieval.  

Despite the foregoing between-task differences in the STN activation clustering, the 

overall similarity between the clusters observed for memory inhibition and action 

cancellation in the striatum and GPe suggests that inhibiting thoughts may require 

active cancellation. This observation argues against the possibility that people prevent 

retrieval of an unwanted item by simply directing the retrieval process to distracting 

thoughts, or, instead, by passively failing to engage retrieval. Rather, the recruitment of 

cancellation-related striatal processes suggests that retrieval is being actively stopped. 

This interpretation converges with findings indicating that the engagement of inhibitory 

mechanisms during retrieval stopping is particularly robust when memories intrude into 

awareness and need to be purged (Levy & Anderson, 2012; Benoit et al. 2014). Using 

trial-by-trial intrusion reports, it has been found that intrusions elicit greater recruitment 

of right prefrontal cortex (Benoit et al., 2014) and greater down-regulation of 

hippocampal activity (Levy & Anderson, 2012), compared to trials without intrusions. 

The current findings suggest that retrieval cancellation may be key to overcoming 

intrusions. In contrast, we observed no overlap in activation clusters between memory 

inhibition and action prevention from the ALE analyses. These findings are consistent 

with the possibility that different basal ganglia regions contribute to distinct cancellation 

and prevention-related sub-processes, and that cancellation is not tied uniquely to motor 

action, but rather may be supramodal. To establish these conclusions more firmly, 

however, requires that we move beyond mere co-localisation of activations to study 

dynamic interactions of these basal ganglia structures with other elements of the 

putative control network, under conditions of cancellation and prevention.  
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Our findings raise questions about the connectivity underlying these dynamic 

interactions. Of particular interest is the connectivity of these basal ganglia regions with 

other putative supramodal areas associated with inhibitory control (e.g., DLPFC, 

VLPFC), and also with domain-specific regions involved in memory and action, such as 

the hippocampus and M1 respectively. For example, in our meta-analyses, by precisely 

localising clusters within the Basal Ganglia, we observed that all of the Go/No-Go, 

Stop-signal, and Think/No-Think tasks recovered clusters in the centromedial striatum, 

including the caudate head/body, spanning across the internal capsule into medial 

putamen. This cluster roughly coincides with the region identified by Haber et al. 

(2006) that receives projections from the DLPFC (areas 9/46). Although much care is 

needed when comparing anatomical landmarks across species, Neggers et al. (2015) 

presented evidence based on diffusion imaging that the frontostriatal projections from 

anterior prefrontal cortex are more similar between humans and macaque monkeys than 

those from posterior frontal regions such as the frontal eye field (FEF) and M1. Since 

the DLPFC is known to play important roles in stopping actions and thoughts 

(Anderson et al., 2004; Anderson & Hanslmayr, 2015; Depue et al., 2010; 2015), this 

putative DLPFC-striatal pathway could be a candidate through which memory and 

motor inhibition are achieved, a possibility that must await further confirmation.  

Despite its similarity to action cancellation, the memory inhibition cluster extended to 

parts of the right putamen and GPe more than did motor stopping in general. It is 

unclear what functions these potentially memory-inhibition-specific activations of 

putamen and GPe may be performing, or whether these functions are unique to this 

process or simply a more robust and spatially extensive engagement of putamen 

processes observed during action cancellation. The possibility that parts of the putamen 

may serve functions specific to memory control should be considered. It is worth 

noting, for example, that although the putamen is often seen as a motor structure 

(Alexander et al., 1986), recent evidence suggests that it is involved in cognitive 

processes such as working memory (Voytek & Knight, 2010), episodic memory 

encoding (Sadeh et al., 2011), and cognitive control (Badre & Wagner, 2007), and both 

neuroimaging and computational modelling suggest that the basal ganglia play critical 

roles in memory processes (Gruber et al., 2006; O’Reilly and Frank, 2006; Scimeca & 

Badre, 2012). Indeed, Koster et al. (2015) also found that the putamen is significantly 
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activated in the interaction between memory, action, and reward. Specifically, 

participants learned four different categories of objects, each indicating whether the 

participants should respond to a following visual stimulus, and whether the correct 

action/inaction would lead to a reward or avoid a loss. They found that activity in the 

right dorsal putamen significantly predicted memory retrieval when the associated 

action/inaction led to the expected, than the unexpected, level of reward. Although these 

related findings don’t speak to a role of the putamen in memory inhibition, they do 

indicate that this structure interacts with the medial temporal lobes during memory 

tasks, providing precedent for such a role. The circuitry underlying this potential 

contribution to memory inhibition remains to be identified.  

On top of the established network of motor control involving the basal ganglia, several 

authors have discussed potential interactions between the basal ganglia and the 

hippocampus. While some found that the basal ganglia and the hippocampus may be 

largely independent from each other (Döller et al., 2008), others have suggested more 

complex relationships between the two systems during memory functions. On one hand, 

basal ganglia and hippocampal processes may be competitive in nature, such that 

increased activation in one structure is associated with decreased activation in the other 

(Dagher et al., 2001; Poldrack & Packard, 2003). Specifically, this competition may be 

mediated by the PFC (Rodriguez & Poldrack, 2003). On the other hand, the basal 

ganglia may be able to influence hippocampal activity in a causal way. For example, 

stimulation of the basal ganglia nuclei can modulate hippocampal spikes (La Grutta et 

al., 1985; Sabatino et al., 1985; Sabatino et al., 1986). Berke et al. (2004) also found 

entrainment of ventral/medial striatal neurons to the hippocampal theta in rats. The 

foregoing findings raise the possibility that the basal ganglia may exert a controlling 

influence on target structures in both memory and motor inhibition. In the case of 

memory inhibition, this controlling influence may arise through complex polysynaptic 

interactions with the hippocampus. Further research is needed to elucidate how these 

interactions might be achieved. 

Although we sought to precisely localise basal ganglia clusters in memory and motor 

inhibition tasks, our approach is not without caveats. For example, Wager et al. (2007) 

discussed a few limitations in Activation Likelihood Estimation (ALE). Due to the 

coordinate-based nature of the ALE algorithm, the analysis only considers the peak 
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coordinates reported in each study, but not the extent of each cluster of activation where 

the peaks lie. In addition, the peak coordinates may be influenced by the specific 

methods used in each study (e.g., thresholding, smoothing). Furthermore, the ALE 

activation maps, rightfully, model the spatial uncertainty of the reported peak 

coordinates from each study, which introduces a certain level of spatial smoothness. 

These factors recommend caution when drawing conclusions about the precise 

localisation of our observed activations, given limitations on spatial resolution inherent 

to the meta-analytic method. Reporting bias is also a consideration, because some 

researchers may choose to omit activation peaks that do not fit prior expectations for a 

task, especially if the spatial extent of the activation is small, as would be true for some 

of the structures of key interest within the basal ganglia. These caveats have led some to 

argue that results from coordinate-based meta-analysis should be treated as an 

integration of existing knowledge instead of the absolute truth (Rottschy et al., 2012), as 

more accurate and complete information would require an image-based meta-analysis or 

‘mega-analysis’ (Salimi-Khorshidi et al., 2009).  

One final caveat, applicable to this and all other ALE meta-analyses, concerns how to 

interpret lack of significant clusters in a structure of interest. On one hand, failing to 

find a significant cluster for a particular task may indicate that the structure is genuinely 

not engaged in the task. On the other hand, because the ALE algorithm seeks to identify 

clusters of activation, lack of a significant cluster may also be consistent with the 

presence of more dispersed activation peaks that fail to constitute a significant cluster. 

Indeed, from our ROI-based descriptive statistics, there exist activations in basal ganglia 

structures in both hemispheres, especially for our two motor stopping tasks (see Table 

3.1). Thus, whether one should interpret the differently lateralized clusters for action 

prevention and cancellation derived from ALE as indicating a meaningful task 

dissociation depends on the assumption that spatially clustered activations are more 

meaningful than those that are more dispersed. Regardless of the method of analysis, 

however, memory inhibition in the Think/No-Think task appeared to yield more 

spatially concentrated activations predominantly lateralised to the right basal ganglia. 

Due to the moderate number of coordinates available in current studies, however, 

quantitative examination of task-related differences in the spatial distribution of 

coordinates across sub-regions of the basal ganglia must await future studies.  
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Despite these limitations, our meta-analyses have provided the first evidence that 

memory and motor inhibition (action cancellation in particular) engage overlapping 

regions within the basal ganglia. These patterns suggest that similar frontostriatal 

pathways may be involved when people stop thoughts or actions. Moreover, by 

localising the observed clusters within our high-resolution manual segmentation of 

striatal subregions, we hope that our results can serve as a useful reference against 

which the results of future studies may be compared.  

3.5 Conclusions  

The current meta-analyses demonstrate that the basal ganglia are consistently activated 

in the inhibition of both actions and thoughts. This basic finding is broadly congruent 

with recent literature indicating that the basal ganglia are not merely involved in motor 

control, but also in higher-level cognitive processes, such as memory. Importantly, 

however, the surprising similarity of memory inhibition to action cancellation more than 

action prevention suggests that the nature of the stopping processes that are recruited 

may dictate the localisation of basal ganglia activity more so than does task domain, at 

least for the tasks we studied. Our data indicate that, during cancellation, similar regions 

in the basal ganglia are engaged, irrespective of the domain of the process that is 

controlled, consistent with the possibility of a supramodal cancellation process. 

Meanwhile, the differences in activation clusters between the Go/No-Go and Stop-

signal tasks suggest that they may engage very different stopping processes that should 

not be treated equivalently. However, it bears emphasis that the current ALE meta-

analysis is more sensitive to clustered activations than to dispersed ones. The inference 

that motor cancellation and motor prevention are distinctly localized in these data 

depends on the assumption that highly clustered activations (as detected by ALE) 

provide a more informative signature of functional specialization in the basal ganglia 

than more dispersed activations would, an assumption that deserves to be critically 

examined when more data is available. Importantly, future studies should characterise 

the specific basal ganglia engagement in memory and motor inhibition and how the 

frontal, basal ganglia, and domain specific target regions (e.g., motor cortex and 

hippocampus) interact to perform specific stopping processes in different task domains. 

Extending the study of the role of the basal ganglia in inhibitory control to measure the 
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stopping of both actions and thoughts will provide a valuable source of constraint on 

hypotheses about the computational functions that the basal ganglia perform.  
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4 BEHAVIOURAL PARADIGMS 

TO COMPARE INHIBITORY 

PROCESSES IN MEMORY 

AND MOTOR STOPPING 

The meta-analyses revealed common cortical and basal ganglia involvement in both 

memory and motor stopping. Critically, there may be different subprocesses of 

inhibition that can be engaged across task domains, such as prevention and cancellation. 

The first refers to the process of preventing the thought or action from taking place at 

all, whereas the latter refers to cancelling the thought or action after it has emerged. The 

next step is to further investigate the specific role of the basal ganglia in these putative 

prevention and cancellation processes across the memory and motor domains. In this 

chapter, we will establish behavioural paradigms that can allow for parallel comparisons 

between prevention and cancellation across the memory and motor inhibition tasks.  

In the Think/No-Think task, thought prevention and cancellation are assumed to 

manifest in whether participants experience intrusions for a given No-Think trial, i.e. 

whether the unwanted targets involuntarily came into mind. On one hand, if a 

participant did not experience an intrusion during a No-Think trial, it is likely that either 

the participant forgot the target already and no inhibition was needed, or the participant 
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was able to proactively prevent the unwanted target from coming into mind at all. On 

the other hand, if the participant did experience an intrusion, it is likely that the initial 

prevention processes failed. To follow the No-Think instructions, the participant would 

instead need to react to the intrusion and cancel the retrieval process that has emerged. 

However, this cancellation may be hampered by the willingness or ability to follow 

instructions. For example, some participants may be less willing to comply with the No-

Think instructions either because they expect a final test on the learned items and want 

to maintain a good memory performance, or because they do not deem it necessary to 

supress retrieval, as they believe that the intrusion will dissipate on its own (Sahakyan et 

al., 2008). Other participants may be less able to cancel the unwanted retrieval process 

either because they are intrinsically less capable of controlling unwanted thoughts or 

they are affected by fatigue during the course of the task (van Schie & Anderson, 2017). 

Considering existing evidence, it is likely that a cancellation process is often engaged 

during intrusions. For example, Levy and Anderson (2012) differentiated Intrusion and 

Non-intrusion trials by asking participants to rate to what extent the unwanted target 

came into mind after each trial in the Think/No-Think phase. Subsequently, they 

extracted BOLD signal from the hippocampus for the Think, Non-Intrusion, and 

Intrusion trials, and observed increased hippocampal activity during the Think trials, 

and robustly decreased hippocampal activity during the Intrusion trials. Hippocampal 

activity during Non-intrusion trials did not significantly differ from Think or Baseline 

activity (Figure 4.1). On one hand, the magnitude of hippocampal downregulation 

during Intrusion, rather than Non-intrusion, significantly correlated with SIF. These 

results indicate that there may be a larger contribution of the cancellation process to 

achieve memory inhibition than prevention in the hippocampus. In addition, this down-

regulation of hippocampal activity may be achieved through prefrontal executive 

control regions such as the DLPFC (for review, see Anderson et al., 2016). 

Furthermore, this DLPFC control mechanism not only applies to suppressing word 

memory, but also emotional memory. Gagnepain et al. (2017) recently replicated the 

pattern of hippocampal activity when suppressing emotional memories. Using DCM, 

they found that the DLPFC down-regulates the hippocampus, amygdala, and 

parahippocampal gyrus in parallel. This observation points to the possibility that the 

DLPFC is involved in inhibitory control in a domain-general fashion.  
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On the other hand, the lack of hippocampal down-regulation in the Non-Intrusion 

condition may suggest that no retrieval process was suppressed during the Non-

intrusion trials. However, in cases where the unwanted target is still retained, it is 

possible that the retrieval has been prevented before cue input engages the 

hippocampus. One possible prevention mechanism is the Entorhinal Gating Hypothesis 

(Anderson et al., 2016). This hypothesis suggests that the anterior cingulate cortex 

(ACC) may modulate the information flow by modulating activity in the entorhinal 

cortex, so as to suppress input to the hippocampus. Alternatively, this prevention may 

be achieved through prefrontal control regions such as the DLPFC, which appears, in 

some instances, to have elevated activity during Non-intrusion trials relative to baseline 

(Benoit et al., 2014). 

 

Figure 4.1. Hippocampal activity during Think, Non-intrusion, and Intrusion trials 

in Levy and Anderson (2012). 

 

At the subcorticortical level, the basal ganglia are a prime candidate for engaging the 

prevention and cancellation processes through different pathways. As reviewed in 

Chapter 2.1, there are three intrinsic pathways in the basal ganglia system: the 

hyperdirect, direct, and indirect pathways. While the hyperdirect pathway is responsible 

for global inhibition and early selection of goal-directed responses (Takada et al., 2013), 

the direct pathway initiates the selected the response, and the indirect pathway 

terminates a response either because response has been achieved or the response needs 

to be cancelled (Freeze et al., 2013). Schroll and Hamker (2013) also reviewed 
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computational models describing the involvement of different basal ganglia pathways in 

cognitive and motor functions. They suggested that prevention may be modulated by the 

hyperdirect and the indirect pathways, whereas cancellation may be modulated by the 

interaction between the direct and indirect pathways. Overall, cancellation and 

prevention seem to engage distinct neural mechanisms on both the cortical and 

subcortical levels. In this PhD thesis, we want to compare these mechanisms in the 

memory and motor domains, and investigate whether and how the basal ganglia are 

involved. 

In addition to incorporating intrusion ratings to segregate the distinct processes 

underlying preventing and cancelling memory retrievals, there are two other factors to 

consider for adapting the Think/No-Think paradigm – what strategies participants use to 

approach the Think/No-Think task, and how compliant participants are to inhibit 

unwanted targets instead of intentionally recalling them (Anderson & Huddleston, 

2012). First, not all strategies adopted during the Think/No-Think task lead to SIF. In a 

typical Think/No-Think paradigm, participants are simply instructed to ‘avoid thinking’ 

of the target item when seeing the cue. This instruction is arguably ambiguous, as it 

does not specify how participants are expected to approach the task. For example, some 

participants may suppress the targets so that they can no longer retrieve them (memory 

inhibition), treating the instruction as an instruction to forget the association. Other 

participants may not assume that the associations are to be forgotten, but may merely 

seek to keep the targets out of awareness without breaking the original associations. 

This may enable them to remember the targets at a later point (awareness control). We 

were interested in comparing whether these strategies would influence the magnitude of 

SIF, and whether they would engage distinct neural mechanisms. We expected that 

while memory inhibition should induce significant SIF, awareness control may not lead 

to any SIF at all. At the neural level, it is possible that memory inhibition will engage 

the inhibition network more than awareness control, such as in the PFC and the basal 

ganglia. However, since both strategies involve keeping information out of mind, there 

may be overlapping activations from the memory inhibition and awareness control 

strategies, but memory inhibition may engage additional mechanisms to actually 

achieve memory suppression. For example, both memory inhibition and awareness 

control may engage the basal ganglia to keep the unwanted targets out of mind, since 
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these structures are associated with the adaptive gating of memory retrieval (Scimeca & 

Badre, 2012). However, memory inhibition may additionally engage neocortical regions 

to achieve suppression of the target that is associated with the cue. 

Second, the level of compliance to following the inhibition instructions significantly 

correlate with SIF. Having a low level of compliance means that the participant are 

likely to intentionally retrieve the unwanted items, which may hamper the SIF effect. In 

a typical Think/No-Think study, participants often have varied levels of compliance 

because they are likely to expect a final test after the Think/No-Think phase for two 

reasons. First, their memories are not monitored during the task. Participants do not 

need to report how well they are accomplishing the No-Think instructions, nor are they 

tested in any way. Second, they are not provided with any reasons or motivations to 

properly suppress the target. This expectation of the final test may make the participants 

more likely to adopt the awareness control strategy or even covertly recall the unwanted 

target, possibly attenuating the SIF effect. For example, in a recent study, Yang et al. (in 

preparation) investigated the effect of compliance on memory inhibition using a large 

sample (N=146). In the study, Yang et al. administered a classic Think/No-Think 

paradigm and recorded participant’s level of compliance using a 5-point Likert scale in 

a post-experimental questionnaire. They found that participants more compliant with the 

memory inhibition instructions showed larger magnitude of SIF. However, only 67% of 

their participants never (0 rating on the scale) intentionally recalled the unwanted 

targets. To obtain a more reliable SIF effect, it is therefore important to revise the 

Think/No-Think paradigm to maximise participant’s compliance. 

In the motor domain, as discussed in Section 1.1, the Go/No-Go and Stop-signal tasks 

may primarily require the prevention and cancellation process, respectively. In the 

Go/No-Go task, participants usually learn to associate specific stimulus with either the 

Go or the No-Go response. Therefore, as soon as a No-Go stimulus is presented, 

participants would know that they should not respond to the stimulus and hence prevent 

any motor actions from taking place. It is also possible that participants start to respond 

on a No-Go trial and catch themselves, since No-Go stimuli are only presented on a 

minority of the trials. However, this is unlikely because participants are usually trained 

with task instructions before performing the Go/No-Go task. On the other hand, for the 

Stop-signal task, participants only learn that they should not respond to a particular 
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stimulus after a delay (when the stop signal is presented). In that case, participants could 

have initiated a motor response already, and would need to cancel that motor response 

accordingly. To be able to compare prevention and cancellation processes in memory 

and motor stopping, it is hence important to combine the Go/No-Go and Stop-signal 

tasks into one paradigm. The following sections will introduce the behavioural 

paradigms for memory and motor inhibition for the fMRI study presented in Chapter 5. 

We will first describe the motor inhibition task that we adopted from Weaver and 

Anderson (unpublished), and then present two behaviour studies that we conducted to 

develop an adapted Think/No-Think paradigm for memory inhibition. 

4.1 A Combined Go/No-Go and Stop-signal Task 

We have discussed that one of the defining differences between the Go/No-Go and the 

Stop-signal procedure is when participants learn that they must stop on each trial. In the 

Go/No-Go procedure, participants know that they should stop as soon as they see the 

No-Go stimulus, and would be able to engage stopping processes concurrent to stimulus 

onset. Participants are likely to have engaged a prevention process to stop the motor 

response from taking place at all. The Stop-signal procedure, however, signals 

participants to stop well after stimulus onset, imposing a necessary delay in when 

participants may engage the stopping process. To successfully stop the motor response, 

participants will likely have to engage a cancellation process. As revealed by the meta-

analysis, the concurrent and delayed stopping conditions in the Go/No-Go and Stop-

signal tasks may engage distinct neural mechanisms both on the cortex and in the basal 

ganglia. Here we describe a Combined Go/No-Go and Stop-signal paradigm (Weaver & 

Anderson, unpublished) that incorporated both concurrent and delayed stop signals. We 

can use this paradigm to compare how preventing and cancelling motor actions differ in 

their underlying processes.  

4.1.1 Materials and Procedure 

This Combined Go/No-Go and Stop-signal task is a computer based procedure, wherein 

participants responded using a customised button box (Figure 4.2a). The Go stimuli are 

four visually discriminable coloured circles of 2.5 cm in diameter presented in a grey 

background (Figure 4.2b). The four coloured circles are randomly assigned to two 
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response buttons for each participant, each button associated with two colours. The stop 

signal is a 100 ms 1000 Hz beep tone that is presented at a comfortably audible volume. 

Responses are made by pressing the button associated with the colour of the circle. 

Participants always respond with the thumb of their dominant hand. Between trials, 

participants always rest their thumb in the centre of the button box, equidistant from 

both buttons. 

 

Figure 4.2: The button box (a) and procedure (b) for the Combined Go/No-Go and 

Stop-signal paradigm. 

 

The Combined Go/No-Go and Stop-signal procedure is divided into a training phase 

and a main experimental phase. In the training phase, participants first learn the colour-

button mappings in two blocks. In each block, they learn to associate two colours, with 

the first colour associated to one button, and the second colour associated to the other 

button. They practice the colour-button mappings extensively to make sure that they can 

press the correct button as soon as they see a coloured circle. Upon completion of these 

two blocks, each button is associated to two distinct coloured circles, yielding a total of 

4 colour-button mappings. After that, participants practice the mappings with all four 

colours presented in random order, and again until they respond correctly for each 

colour on 10 consecutive trials. In the final practice, stop tones are added. There are 176 

trials in this final practice, 25% of which are stop trials. Of the 25% of trials, 1/3 is 

Concurrent Stop trials, and 2/3 are Delayed Stop trials. Each trial starts with a fixation 
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cross (500 ms), followed by presentation of the coloured circle. For a Go trial, the 

coloured circle either remains on the screen for 3000 ms when no response is detected, 

or disappears immediately when a response is made. For a No-Go or Concurrent Stop 

trial, the stop signal is presented simultaneously with a coloured circle. On a Stop or 

Delayed Stop trial, the stop signal is presented after a 250 ms, 500 ms, or 750 ms delay. 

While the Concurrent Stop trial is similar to the No-Go trial in the Go/No-Go task that 

primarily engages the prevention process, the Delayed Stop trial is identical to the Stop 

trial in a Stop-signal task that primarily requires the cancellation process. For the 

Delayed Stop trials, the three delay latencies (250 ms, 500 ms, 750 ms) are varied 

according to an adaptive algorithm on a trial-by-trial basis, the staircase tracking 

algorithm (Logan, 1997), and correspond to three levels of inhibitory success 

(approximately 70%, 50% and 30%). The stop signal and the stop signal latencies occur 

with equal probability after each colour. Participants are instructed to respond as 

quickly and accurately as possible when they see a coloured circle, but they should be 

attentive to the beep tones and try to stop when they hear them. They are also told that 

they may not be able to stop in time since the beep tone is sometimes delayed. 

However, instead of slowing down and “waiting” for the beep tone to be better at 

stopping, participants are instructed to treat this failure to stop as normal and keep 

responding quickly and accurately for the rest of the trials. Feedback is provided if the 

participants responded too slowly for a Go trial (reaction time greater than 1000 ms; 

“TOO SLOW”), pressed the wrong button (“ERROR”), or responded to a Stop trial 

(“OOPS”). 

After the training phase, participants moved on to the experimental phase, which 

comprises of six blocks that are identical to the final practice. The adaptive algorithm 

varying the delay latencies for each trial is similarly implemented for all six blocks. 

4.2 A Modified Think/No-Think Task 

As mentioned earlier, the modified Think/No-Think paradigm should 1) isolate memory 

inhibition processes from awareness control, 2) better maximise participants’ 

compliance in following the No-Think instructions, and 3) incorporate intrusion ratings 

in the design. In this section, we report data from two behavioural studies that achieve 
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these modifications. The first study addressed the first two issues, and the second study 

subsequently added intrusion ratings. 

4.2.1 Think/No-Think Behavioural Study 1 

In the first behavioural study, we devised two new versions of the Think/No-Think 

paradigm to compare whether adopting the memory inhibition or awareness control 

approaches would have differential effects on suppressing the retrieval of unwanted 

thoughts, the Forget and the Suspend conditions (Figure 4.3). Both conditions 

manipulated participants’ metacognitive beliefs – the subjective understanding of the 

task that they were performing – in order to successfully separate the different 

approaches to retrieval suppression. The metacognitive belief for a typical Think/No-

Think paradigm would be Unspecified, since participants are only instructed to avoid 

thinking of the unwanted targets. We conducted a between-subjects experiment with 

three separate groups, each following the Forget, Suspend, or Unspecified instruction.  

The Forget condition was designed to encourage memory inhibition by providing a 

reason to suppress. Participants in this condition believed that they had to suppress 

targets for the No-Think trials so that they could be prepared for learning new 

associations. Specifically, participants were told to discard the previously-learned 

original pair-associations for the No-Think items so that they could better re-associate 

the cue to a different target that would be presented when the No-Think cue (wherein 

the cue word was presented in red) changed to a Think cue (wherein the cue word was 

presented in green) for the first time. The impression of having these trial switches was 

achieved through an additional set of filler items that we will introduce in detail in later 

paragraphs. Critically, however, the main Think and No-Think items for which we 

ultimately measured recall remained unchanged throughout the Think/No-Think phase, 

i.e., they were always Think or always No-Think items. Participants were told that 

because they only had one chance to learn the new target, they had to make sure that the 

original target was successfully inhibited so that it would not intrude into awareness and 

interfere with the new target.  

In contrast to the Forget condition, the Suspend condition was designed to test the effect 

of awareness control on later retention. Participants in this condition believed that they 

were only temporarily suspending the No-Think items but would need to eventually 



The Role of the Basal Ganglia in Memory and Motor Inhibition 

 

90  Yuhua Guo - October 2017 

 

recall the target when the No-Think cue (in red) became a Think cue (turned green). 

Therefore, for the Suspend group, on No-Think trials, participants could simply block 

everything out of mind without necessarily actively suppressing the target. In fact, 

participants in the Suspend condition may choose to prevent memory suppression from 

happening due to the potential future relevance of the No-Think items. In a third and 

final group of participants, the meta-cognitive belief about the task was simply left 

Unspecified, as in the standard Think/No-Think task, allowing participants to interpret 

the instructions either way. 

The meta-cognitive beliefs were manipulated through the introduction of a group of 

additional “filler” items (i.e. items that we didn’t ultimately score – hereinafter referred 

to as “context fillers”), which served different purposes in different conditions as 

discussed previously. In all conditions, these additional context filler pairs were learned 

along with all of the other critical pairs in the learning phase. In the Forget and Suspend 

conditions, however, these pairs would differ from critical Think and No-Think pairs in 

one critical respect during the Think/No-Think phase. Whereas the critical Think and 

No-Think pairs would be consistently presented as Think or No-think items, the context 

filler pairs would, at a certain point, switch status. The context fillers would always first 

show up as No-Think items, and then eventually switch to become Think items (the 

exact repetition on which this switch happened was varied over items, to make it hard to 

predict). The addition of these context fillers made it plausible that all pairs could 

change at any point, encouraging participants to properly follow the No-Think 

instructions. In the Forget condition, this would be to properly suppress the No-Think 

targets in preparation for learning new associations. In the Suspend condition, this 

would be to keep the No-Think targets out of awareness, until when the switch takes 

place and they would need to retrieve the targets instead. In the Unspecified condition, 

the context fillers did NOT switch between trial types in the Think/No-Think phase. We 

simply used them to match the distribution of the Think and No-Think trials as in the 

Forget and Suspend conditions. Finally, participants were not aware of any distinction 

between the context fillers and the critical Think, No-Think, and Baseline items at any 

point throughout the experiment. 
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Figure 4.3: Example procedure of the Forget (A) and Suspend (B) conditions. Each 

cue word is presented for 3 s, with the inter-trial interval (ITI) jittering between 

1.4 – 2.2 s. The update trial in the Forget condition lasts for 5 s. 

 

Based on previous research, we hypothesised that the Metacognitive Belief 

manipulations should influence the extent of retrieval suppression. Two Specific 

predictions were made. First, we expected to replicate the typical SIF effect. That is, 

recall for the No-Think items should be impaired compared to Baseline. Second, the 

Metacognitive Belief conditions should modulate the probability of the participant 

invoking the inhibitory control mechanism to suppress unwanted memories. While the 

probability is unclear in the Unspecified condition, as participants may adopt different 

strategies given their belief on whether they will need to later recall the targets, this 

probability is much greater in the Forget condition, since participants believe that they 

need to truly suppress the unwanted targets to better learn the new associations. Finally, 

this probability is reduced in the Suspend condition due to the certainty that unwanted 

targets will need to be recalled later. Facilitation effects and participants’ experience 

during the task will be examined for exploratory reasons. 
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4.2.1.1 Methods 

4.2.1.1.1 Participants 

We recruited 88 healthy young adults. 16 participants were excluded because 7 did not 

pass the learning criteria in the study phase, 4 showed medium to high depression as 

assessed by Beck Depression Inventory II (BDI-II; Beck et al., 1996), and 1 reported 

history of ADHD and dyslexia. As a result, data were available from 24 participants for 

each of the Unspecified (Male=6; Mean Age = 23.42 years; SD Age = 6.82 years), 

Forget (Male=7; Mean Age = 24.17 years; SD Age = 5.09 years), and Suspend 

(Male=15; Mean Age = 23.71 years; SD Age = 4.64 years) conditions.  

All participants were native English speakers with normal or normal-corrected vision. 

All self-identified to have normal colour perception, to be exempt from ADHD and 

other learning, language or attentional deficits, and to be free from other psychological 

or neurological impairments.  

4.2.1.1.2 Design  

The experiment used a mixed-subjects design. There was one between-subjects variable, 

Metacognitive Belief (Unspecified vs. Forget vs. Suspend); and two within-subjects 

variables, Memory Control (Think vs. No-Think vs. Baseline) and Test Type (Same 

Probe vs. Independent Probe). Participants were randomly assigned to one of the Meta-

cognitive Belief conditions. The word lists assigned to the Memory Control conditions 

were counterbalanced.  

4.2.1.1.3 Materials and Procedure 

We used 84 weakly relatable word pairs for this experiment constructed from the 

University of South Florida Free Association Norms (Nelson et al., 1998). For each 

pair, we generated a separate “independent probe” that is semantically related to the 

target but not the cue word. We used 16 pairs for each group of the critical items 

(Think, No-Think, and Baseline) and context fillers. Word lists for the critical items 

were counterbalanced. The remaining 20 were fillers to control for recency and primacy 

effects and block randomisation in list learning. In addition, we chose substitute words 

for new learning during the Forget condition. Of the substitute words, 16 were for the 

context fillers during the Think/No-Think phase, and 4 were for the fillers used in the 

Think/No-Think practice.  
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We used PsychToolbox (Brainard, 1997; Pelli, 1997) in MATLAB to execute the 

Think/No-Think task and to collect responses. In the study phase, participants learned 

the word pairs (each presented for 5 s) to at least 60% accuracy through 2 study and 

test-feedback blocks. Each study and feedback block trained them with half of the word 

pairs. In the study blocks, participants were presented with one pair of words on each 

trial for 5 s, with an inter-stimulus interval of 1 s. The word pairs were presented as 

white text on a grey background, centred on the screen, with the cue words on the top 

and the target at the bottom. In the test-feedback blocks, participants were presented 

with a cue words from the learned associations on each trial for 5 s and were asked to 

recall the corresponding target. Regardless of whether they recalled correctly, they were 

presented the associated target as feedback immediately after the cue word disappeared. 

The feedback was presented for 2.5 s and the inter-stimulus interval was .5 s.  

Following learning, a criterion test was subsequently administered to examine the 

outcome of learning. The purpose of the criterion test is to identify which word pairs the 

participants truly learned. Items that they did not successfully encode by the criterion 

test were excluded from the final analyses, a procedure that we call conditionalization. 

If the participants could not recall certain words during the final test, it could either be 

that they successfully inhibited those targets due to repeated attempts of memory 

suppression, or that the words were never learned and they simply did not have an 

answer. Conditionalising the data therefore allows us to more reliably detect the effect 

of suppression-induced forgetting.  

After the criterion test, participants had two chances to practice the main Think/No-

Think task on filler items. After each practice, we administered a diagnostic 

questionnaire to ensure that the participants have fully understood and followed the 

instructions. Specifically, in the questionnaire, we asked them whether they have 

focused their attention on the screen the entire time without shifting their eyes. For the 

Think trials, we made sure that they recalled the targets as soon as possible and kept 

them in mind the entire time when the cue word was on the screen. For the No-Think 

trials, we ensured that they never intentionally retrieved the associated target for the cue 

word on the screen. If the target involuntarily intruded into their minds, we instructed 

them to push those targets out of mind and keep their minds clear. For participants in 

the Forget group, we additionally ensured that they paid attention to the switch trials, as 
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they were only allowed one chance to learn the new association, and hence giving them 

more incentive to dissociate the original target. For participants in the Suspend group, 

we made sure that they only started recalling the targets after the switch took place.  

After a short break, participants briefly reviewed the 84 word pairs again before 

proceeding to the main Think/No-Think phase. The word pairs were presented for 2.5 s 

each, with an inter-stimulus interval of .8 s. In the Think/No-Think phase, participants 

performed corresponding tasks depending on the Meta-cognitive Belief conditions, as 

specified in the previous section. Only cues for the Think, No-Think (or Suspend), and 

context fillers were presented in this phase. Each cue word was presented for 3 s on 

each trial. The inter-stimulus interval was jittered between 1.4 – 2.6 s. The Think trials 

had the cue words presented in green font, indicating that the participants should recall 

the corresponding target as quickly as possible and keep it in mind as long as the trial 

lasts. The No-Think trials had the cue words presented in red font, indicating that the 

participants should keep the corresponding target out of mind without replacing the 

target with anything else. For the Forget and Suspend conditions, the context fillers 

always began as No-Think items, but switched to become a Think item at a later trial. 

We systematically ensured that the switch was distributed over delays of 1 to 9 trials, 

and the switches were evenly distributed across blocks. Each word was presented for 10 

repetitions throughout the Think/No-Think phase, which is separated into 5 blocks (2 

repetitions in each block). Due to the switch, the amount of Think and No-Think trials 

varied as the Think/No-Think phase progressed. We matched the distribution of Think 

and No-Think trials across the three Meta-cognitive Belief groups. Participants had 

around 40 s short breaks in between the blocks. Another diagnostic questionnaire was 

administered during the 3rd break to further ensure that participants were closely 

following instructions. 

In the testing phase, participants first practiced cued-recall with filler items. Critically, 

since participants only saw part of the word pairs they learned (Think, No-Think, and 

context fillers) during the Think/No-Think phase, it is important to get them back in the 

context of the criterion test phase so that they could recall all items equally. Following 

the context reinstatement, participants completed the final recall, where we tested their 

memories with both the Same Probe and the Independent Probe tests. The order of the 

Same Probe and Independent Probe tests was counterbalanced across participants. 
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Before the Independent Probe test, we also administered an Independent Probe practice 

to help participants get familiar with what they need to do (as they have never 

experienced this test form in the previous stages of the Think/No-Think task). In both 

the Same Probe and the Independent Probe tests, each trial lasted for 3 s, with an inter-

stimulus interval of .5 s.  

Finally, participants completed a demographics questionnaire and a post-experimental 

questionnaire. The post-experimental questionnaire captured experiences and strategies 

used in the main Think/No-Think task, as well as noncompliance. Specifically, to 

understand participants’ experiences during the Think/No-Think task, we asked how 

often they experienced intrusions overall during the Think/No-Think phase and how 

much effort they had to spend keeping the unwanted targets out of mind. In addition, we 

asked to what extent they anticipated a final test. Finally, we measured how closely the 

participants followed the No-Think instructions by asking if they intentionally recalled 

any unwanted targets during different stages of the Think/No-Think phase as an index 

for compliance. We asked participants to rate how often then intentionally recalled 

unwanted target during the fixation cross, when the cue word was presented, and after 

the cue word disappeared on three separate 0-4 scales. We then used the sum of the 

three ratings to index the level of compliance. 

4.2.1.2 Results  

According to the criterion test, participants in all three conditions reached on average 

84% of accuracy in recalling the word pairs. Recall performance on the final tests were 

conditionalised by excluding items that were not initially learned, to ensure that 

variations in recall across conditions reflect the effects of our manipulations on 

demonstrably learned items.  

4.2.1.2.1 The Forget Condition Yielded Stronger SIF than the Suspend and Unspecified 

Conditions 

In order to examine the SIF effect, we compared the percentage of correct recall 

between the No-Think and Baseline items across conditions for both the Same Probe 

and Independent Probe tests (Figure 4.4). We conducted a 3 (Meta-cognitive Belief: 

Unspecified vs. Forget vs. Suspend) by 2 (Memory Control: Baseline vs. No-Think) by 

2 (Test Type: Same Probe vs. Independent Probe) mixed-model ANOVA, taking into 
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account the counterbalancing for word lists and orders of test. Our results showed a 

main effect of Memory Control, F(1,66)=13.19, p<.001, ŋp
2=.17, and Test Type, 

F(1,66)=880.94, p<.001, ŋp
2=.93, but not for Meta-cognitive Belief, F<1, or the 

interaction, p>.05. To compare the magnitude of SIF across the Metacognitive Belief 

conditions, we computed suppression scores (by subtracting the No-Think recall from 

the Baseline recall) in each. We predicted that the Forget condition should generate the 

largest SIF, followed by the Unspecified and then the Suspend condition. We found that 

the Forget condition yielded significantly larger suppression-induced forgetting than the 

Unspecified condition, t(69)=-2.40, p=.02. The difference in suppression scores 

between the Unspecified and Suspend conditions, and between the Suspend and Forget 

conditions were not significant, p>.05.  

 

Figure 4.4: Percentage Recall for the Think, No-Think and Baseline Items in Same 

Probe and Independent Probe Tests across Meta-cognitive Belief Conditions.  

 

4.2.1.2.2 Retrieval Practice Facilitated Recall than Baseline for the Same Probe Test, 

but Reduced Recall for the Independent Probe Test 

For the facilitation effect, we conducted a 3 (Meta-cognitive Belief: Unspecified vs. 

Forget vs. Suspend) by 2 (Memory Control: Baseline vs. Think) by 2 (Test Type: Same 

Probe vs. Independent Probe) mixed-model ANOVA, again taking into account the 

counterbalancing for word lists and test orders. We observed a significant main effect of 

Test Type, F(1,66)=1165.31, p<.001, ŋp
2=.95, and a significant interaction between 

Memory Control and Test Type, F(1,66)=6.73, p=.01, ŋp
2=.09. As we can see from 
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Figure 4.4, a facilitation effect was present on the Same Probe test, but a reverse 

facilitation effect was present on the Independent Probe test. This difference was 

significant according to a paired-sample t-test, t(71)=2.519, p=.014. 

The reverse facilitation effect is often observed in the Independent Probe test, where 

recall for the Think items is lower than that for the Baseline items (e.g., Paz-Alonso et 

al., 2009). In the current study, this reverse facilitation effect is present in all three 

manipulations. Although seemingly counterintuitive, this effect may be caused by 

encoding specificity, where the initial encoding and the repeated retrieval practice 

during the Think/No-Think phase biased the meaning of the target to the cue word, and 

made it less accessible by a different cue, especially when the association between the 

original cue and target is strong (e.g. Murphy & Wallace, 1974; Thomson & Tulving, 

1970). 

4.2.1.2.3 The Suspend Condition Induced Numerically Higher Intrusions and 

Noncompliance 

Figure 4.5 exhibits responses from the post-experimental questionnaire, where we asked 

participants about their experiences during the task and whether they intentionally 

retrieved the unwanted targets during the No-Think trials. We found that participants in 

the Suspend condition showed a trend to experience more intrusions during the 

Think/No-Think phase, although a one-way ANOVA did not reveal significant group 

effect on intrusions (p>.10). They also showed a marginally significant tendency to 

cheat more often, F(2, 70)=2.96, p=.059, meaning that they were more likely to 

intentionally bring the unwanted target into awareness on a No-Think trial. It is possible 

that the increase in intrusions in the Suspend condition is due to the instructions – 

participants were told to supress the target from coming into mind during a No-Think 

trial, but retrieve it later when the No-Think items switched to become Think items. 

This may encourage the participants to keep the unwanted targets active at the back of 

the mind so that they are ready to recall them when needed, making the target more 

likely to intrude. The amount of perceived effort to successfully limit awareness of 

unwanted targets did not differ across groups. Participants from the Unspecified group 

showed slightly higher likelihood to anticipate a final test but this tendency was not 

significant. 
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Figure 4.5. Post-Experimental Questionnaire. 

 

4.2.1.3 Discussion 

In this first behavioural study of the new Think/No-Think task, we aimed to 1) compare 

whether memory inhibition and awareness control yield different SIF effect, and 2) 

improve participants’ compliance with the No-Think instructions. Our results showed 

that participants in Forget group had the most reliable SIF effect and were the best at 

using a dissociation strategy to supress the unwanted memories. This could be due to 

the fact that they were provided a reason to suppress the No-Think targets, that they 

should clear their mind to get ready for re-associating the original cue word with a 

different target. This is evidence that having a meta-cognitive belief of “forgetting” is 

essential for participants to perform retrieval suppression. If participants merely believe 

that they need to avoid thinking of the unwanted target and “suspend” thinking of it, this 

is not going to be sufficient for successfully dissociating the unwanted target from the 

cue.  

Unfortunately, we did not replicate the SIF effect in the Unspecified condition, possibly 

due to a number of reasons. First, the ambiguity of task instructions may have 

undermined participant’s voluntary effort to suppress memory. Specifically, as 

discussed earlier, the ambiguous instructions may lead some participants to dissociate 

and inhibit the target (like those in the Forget group in this experiment), but the others 

to simply keep the unwanted target out of awareness while making sure the target is 

retrievable at a later point (like those in the Suspend group). This diminished 

suppression-induced forgetting effect in the Unspecified group highlights the necessity 
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of developing instructions that can encourage participants to dissociate, so as to more 

validly test people’s ability to suppress unwanted memories. Second, as the Think/No-

Think phase lasted for around 60 minutes, participants may have been fatigued from the 

task. This can cause them to be less effective at inhibiting unwanted thoughts and lead 

to intrusions (Anderson & Huddleston, 2012). For example, van Schie and Anderson 

(2017) tested the effect of sustained inhibition efforts (possibly inducing fatigue), and 

used intrusion ratings to measure the success of inhibition. Specifically, they had 

Think/No-Think trials with short and long durations in the experimental phase. For each 

item, they examined whether (a) an intrusion on one trial was followed by successful 

intrusion prevention at the next trial (new successes), or (b) whether successfully 

preventing an intrusion on a trial was followed by a relapse at a later trial (relapses). 

They found that the number of successes increased in the initial repetitions but 

decreased in the final repetitions for both short and long Think/No-Think trials, showing 

that the ability to overcome intrusions may have been impaired by fatigue as the task 

progressed. In addition, the number of relapses decreased over the initial set of trials, 

but increased in the final repetitions for the long Think/No-Think trials. These results 

suggest that having to sustain efforts to inhibit unwanted memories may cause a decline 

in control after a certain period of time, possibly due to fatigue. 

Intriguingly, the Suspend condition did not yield significantly different SIF effects from 

either the Unspecified or the Forget conditions. As can be seen in Figure 4.4, the 

Suspend condition did not yield any inhibition effect on the Same Probe test, but the 

recall for No-Think items was lower than baseline for the Independent Probe test. 

Although this reduced recall in Independent Probe appears like the SIF effect, it could 

also be similar to the reverse facilitation effect. As discussed in Section 4.2.1.2.2, the 

reverse facilitation effect is usually attributed to encoding specificity, whereby retrieval 

practice strengthened the learned associations for the Think items, and hence impaired 

the flexibility of retrieving the same targets from different associations. In the Suspend 

condition, participants are instructed to keep the target out of awareness during the task, 

although they may be tested again at a later point. This may have caused them to 

implicitly retain or even strengthen the learned associations for the No-Think items, and 

reducing the accessibility of the target with an independent probe. 
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Overall, this behavioural study suggests that merely keeping the unwanted target out of 

mind is not sufficient for achieving memory inhibition, but the participants have to have 

the intention to forget and actively suppress memory retrieval. Considering the Meta-

cognitive Belief groups, both the Forget and Suspend instructions may require the basal 

ganglia to selectively “gate in” information that need to be retrieved for the Think 

condition, and to “gate out” information that need to be suppressed for the No-Think 

condition. As proposed by Scimeca and Badre (2012), the basal ganglia may be critical 

for the adaptive retrieval of declarative memory given the utility of the memories in 

certain goal contexts. In a Think/No-Think paradigm, associations from the Think items 

would have a higher utility as they are supposed to be retrieved. Associations from the 

No-Think items would have a lower utility as it is undesirable for them to be retrieved.  

To identify basal ganglia mechanisms specific to intentional forgetting, we would have 

had to conduct a between-group fMRI experiment and compare between the brain 

activity yielded by the Forget and Suspend instructions. However, we will not pursue 

this direction, since the focus of this PhD thesis is to investigate the role of the basal 

ganglia in memory and motor inhibition. Through the first behavioural study, we 

identified that the Forget instructions generated a more robust SIF effect. We will adopt 

the Forget instructions in our next step, and incorporate intrusion ratings into the 

paradigm. 

4.2.2 Think/No-Think Behavioural Study 2 

According to Study 1, the Forget instructions yielded the most reliable SIF effect. In 

this study, we incorporated the following changes and improvements. First, in order to 

examine the possible prevention and cancellation processes in memory inhibition, we 

added intrusion ratings in the design, i.e. participants would rate how often the target 

came into mind after each trial in the Think/No-Think phase. Second, we jittered inter-

trial-intervals (ITI) in anticipation of using this paradigm in the fMRI experiment. 

Having jittered ITIs allows for more sensitive detection of differences between trials 

that are close in time (e.g., less than 20 second), since the fMRI BOLD signal is 

sluggish in nature (http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency). Third, 

since adding intrusions would further prolong the experiment, we reduced the number 

of stimuli to keep the task within a reasonable time frame (around 50 minutes), as 
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fatigue can severely impact an individual’s ability to inhibit unwanted thoughts (van 

Schie & Anderson, 2017). Finally, we edited the instructions so that they further 

emphasised the importance of dissociating the unwanted target from the original cue. 

The specific methods are outlined below. 

For this second behaviour study, we expected to replicate the SIF effect, and observe 

significant reductions of intrusion frequency during the task (e.g., Gagnepain et al., 

2017; Levy & Anderson, 2012). We will use the post-experimental questionnaire to 

compare whether participants’ experience significant differed between experiments due 

to the changes we have introduced.  

4.2.2.1 Methods 

4.2.2.1.1 Participants 

We recruited 26 healthy young adults for this behavioural study. Two participants were 

excluded because they did not reach learning criteria. Data from the resulting 24 

participants were included in the analysis (Male=10; Mean Age = 23.67 years; SD Age = 

6.21 years). All participants were native English speakers with normal or normal-

corrected vision. All self-identified to have normal colour perception, to be exempt from 

ADHD and other learning, language or attentional deficits, and to be free from other 

psychological or neurological impairments. 

4.2.2.1.2 Design  

This experiment used a within-subject design, testing the level of recall for each of the 

Memory Control conditions (Think vs. No-Think vs. Baseline). The word lists assigned 

to the Memory Control conditions were counterbalanced. Memory Control was 

measured with both the Same Probe and the Independent Probe tests. 

4.2.2.1.3 Materials and Procedure 

This experiment used 64 weakly relatable word pairs constructed from the University of 

South Florida Free Association Norms (Nelson et al., 1998). For each pair, we selected 

an “independent probe” that was semantically associated with the target but not the cue 

word. 12 pairs were used for each group of the critical items (Think, No-Think, and 

Baseline) and context filler. Word lists for the critical items were counterbalanced. The 

remaining 16 were fillers to control for recency and primacy effects and block 
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randomisation in list learning. In addition, we also chose 16 substitute words for new 

learning during the Think/No-Think phase. 12 of these were for the context fillers, and 

4 were for the fillers during Think/No-Think practice. 

The procedure was exactly the same as in Study 1 with a few exceptions. First, the 

Think/No-Think practice is now comprised of 3 parts. In the first part, participants 

practiced a standard Think/No-Think phase with the Forget instructions to get the gist of 

the task. In the second part, they practiced pressing buttons for the intrusion rating using 

their right index, middle, and ring fingers. The button presses were collected from a 

customised three-button button box. In the final practice, participants integrated 

intrusion ratings into the Think/No-Think trials and rated how often the target came into 

mind immediately after each trial. The rating was collected for both Think and No-

Think trials, and participants were allowed 1.5 seconds to respond. Participants pressed 

“1” if the target never came to mind, “2” if the target came to mind briefly, and “3” if 

the target came to mind throughout the trial. They were instructed to respond quickly 

and intuitively without thinking about the response word, and that they should press the 

buttons as accurately and honestly as possible. The Think/No-Think phase was in the 

same format as the last Think/No-Think practice. There were 5 blocks in the Think/No-

Think phase, lasting in total about an hour. 

4.2.2.2 Results  

Participants reached an average of 82% accuracy learning the initial pair-associations 

according to the criterion test. Recall performance on the final tests were 

conditionalised by excluding items that were not initially learned, to ensure that 

variations in recall across conditions reflect the effects of our manipulations on 

demonstrably learned items. 

4.2.2.2.1 The Modified Paradigm Yielded a Significant Effect of SIF and Difference 

between Test Types, but not the Interaction between the Two  

In order to examine the SIF effect, we compared the percentage of correct recall 

between the No-Think and Baseline items across conditions for both the Same Probe 

and Independent Probe tests (Figure 4.6). We conducted a 2 (Memory Control: No-

Think vs. Baseline) by 2 (Test Type: Same Probe vs. Independent Probe) repeated-

measure ANOVA, taking into account the counterbalancing for word lists and test 
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orders. We observed a significant main effect of Memory Control, F(1,23)=8.16, 

p=.009, replicating the SIF effect. We also found a significant main effect of Test Type, 

F(1,23)=79.83, p<.001. We often observe a lowered overall recall from the Independent 

Probe than the Same Probe test. The Same Probe test may be easier since the 

participants were trained with the associations. The interaction between Memory 

Control and Test Type was not significant, F(1,23)=.398, p=.54. 

 

Figure 4.6: Percentage Recall for the Think, No-Think and Baseline Items in Same 

Probe and Independent Probe. 

 

4.2.2.2.2 Frequency of Intrusions Significantly Reduced Over Repetitions 

In addition to SIF, we examined the change in intrusion frequency throughout the 

Think/No-Think phase by calculating the percentage of items that participants rated as 

“having come into mind” either briefly or often during the No-Think trials. To calculate 

intrusion frequency, we binarised the intrusion ratings. We identified “intrusion” trials if 

participants reported to have thought of the unwanted target briefly (originally rated as 2 

points) or often (rated as 3 points). We identified “non-intrusion” trials if participants 

did not think of the unwanted target at all (rated as 1 point). We calculated the 

proportion of intrusion trials for each repetition as the intrusion frequency, and fitted a 

linear function that describes the reduction of intrusions over the repeated suppression 

attempts in the Think/No-Think phase (Figure 4.7a). We observed a significant 

reduction of intrusions over repeated attempts to suppress the unwanted targets, 
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comparing the amount of intrusions from the first and the last repetition, t(23)=5.14, 

p<.001. Next, we quantified the proportionalised rate of intrusion reduction by 

calculating the slope of the linear fitting function for each individual, divided by the 

initial amount of intrusions they experienced in the first repetition in the Think/No-

Think phase. This proportionalised slope takes into account individual differences in the 

initial amount of intrusions that need to be suppressed (on the first trial), which varies 

widely from participant to participant. This correction should better reflect participants’ 

abilities to suppress memories that still intrude into their minds. For example, if a 

participant had 100% intrusions to begin with, the proportion of intrusions they 

managed to suppress should be on a scale of 0-100%. However, if they had 80% 

intrusions to begin with, this scale should be 0-80%. Taking the initial amount of 

intrusions into account standardises individual differences in the rate of intrusion 

reduction into a common scale.  

4.2.2.2.3 Slope of Intrusion Reduction and SIF Marginally Correlated 

To examine the relationship between the ability to overcome intrusions and the ability 

to suppress unwanted targets, we correlated the rate of intrusion reduction with the 

magnitude of suppression-induced forgetting (SIF; the reduced recall for the No-Think 

items relative to Baseline) using the Robust Correlation Toolbox (Pernet et al., 2013). 

Although we found that the better people were at overcoming intrusions during the 

Think/No-Think phase, the more unwanted targets they were able to suppress, this 

relationship did not reach significance (r = -.30, p = .15; Figure 4.7b). Previous studies 

have found significant correlations between intrusion slope and the magnitude of SIF 

(e.g. Hellerstedt et al., 2017; Gagnepain et al., 2017; Levy & Anderson, 2012). The 

weaker trend in the current experiment may be due to the complexity of the task, as 

participants had to beware of the trial switches and learn new associations in addition to 

performing retrieval suppression. This added task-set switching may have required more 

cognitive resources that made participants less effective at suppressing unwanted targets 

while keeping intrusions out of awareness. It is also possible that there is too much 

variance due to individual differences in their ability to suppress unwanted thoughts. In 

the actual fMRI experiment, we increased the sample size to 30 to address this issue. 
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Figure 4.7: A) Reduction of Intrusions over the Think/No-Think Phase; B) Robust 

Pearson Correlation between Slope of Intrusion Reduction and SIF. The 

suppression score is calculated by subtracting No-Think recall from Baseline 

recall, combining results from the Same Probe and Independent Probe tests. 

 

4.2.2.2.4 Participants in Study 2 Experienced Less Intrusions, but Were More Likely to 

Intentionally Recall Unwanted Targets 

In addition, we wanted to examine whether the improved instructions and the addition 

of intrusion ratings in Study 2 made any difference to participants’ experience compared 

to in Study 1 (Figure 4.8). Therefore, we compared participants’ reports from the post-

experimental questionnaire, in which they rated their overall experience in the following 

aspects: 

A. Experience of intrusions during the Think/No-Think phase 

B. Effort to inhibit the unwanted targets during a No-Think trial 

C. Anticipation of a final test 

D. Intentionally recalled the unwanted targets during a No-Think Trial 

Out of these measurements, we found that participants in Study 2 reported to have 

experienced less intrusions overall, t(46)=-4.30, p<.001, suggesting that they may have 

been more successful at keeping unwanted targets out of mind. It is possible that our 
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improved instructions further motivated participants to suppress intrusions. However, 

we found that participants in Study 2 were more likely to report intentionally recalling 

the unwanted targets during a No-Think trial, although this difference was only 

marginally significant, t(46)=-1.98, p=.054. It is possible that the intrusion ratings 

prompted the participants to implicitly check if they still remembered the targets, even 

though they also reported that they always tried to keep the unwanted targets out of 

mind in the diagnostic questionnaires during the task. 

 

Figure 4.8: Comparing participants’ subjective experience during Study 1 and 2. 

The Top panel presents their overall experience and the extent of compliance. The 

bottom panel presents the strategies they used to achieve memory inhibition. 

 

4.3 Discussion and General Discussion 

In the chapter, we established the behavioural paradigm that we will use in the 

subsequent fMRI study to compare memory and motor inhibition processes. 

Specifically, we described a Combined Go/No-Go and Stop-signal task to study action 

prevention and action cancellation; we incorporated intrusion ratings into an adapted 

Think/No-Think task to examine retrieval prevention and retrieval cancellation. For the 

adapted Think/No-Think paradigm, we used two behavioural experiments to show that 

1) the intention to forget, rather than merely keeping unwanted memories out of mind, 

is essential for SIF; and 2) Adding intrusion ratings did not affect the SIF effect, and 

reduced intrusions overall. 
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Figure 4.9 further illustrates the parallel between the memory and motor inhibition tasks 

in the frame of a single trial. Both memory and motor inhibition tasks have trials 

starting with a fixation cross. In the case of memory inhibition, participants will see a 

cue word presented on the screen during the Think/No-Think phase. If the participant 

does not experience an intrusion of the unwanted target on a No-Think trial, it is 

possible that the participant has successfully engaged a proactive inhibitory control 

process that prevents the target from coming into mind, especially when considering 

pairs that are demonstrably learned. However, if the unwanted target does intrude into 

awareness at any time after stimulus onset, the participant will then need to react to the 

intrusion and cancel the ongoing retrieval process to keep the target out of mind. 

Similarly, in the case of motor inhibition, if the stop signal takes place simultaneously 

with stimulus onset as in the Go/No-Go task, participants immediately know that they 

should not respond on this trial and prevent pressing the button associated with the 

presented stimulus. However, if the stop signal takes place after stimulus onset, 

participants will have started the process of pressing the corresponding button, and 

hence will need to cancel this process to stop their motor response. 

 

Figure 4.9: Comparing the Prevention and Cancellation Processes in Memory and 

Motor Inhibition in the Current Design within the Time Frame of a Single Trial. 

All trials start with a fixation cross, followed by a cue word in the memory task, 

and a coloured circle in the motor task. Prevention mechanisms may be engaged 

during a Non-intrusion trial (when the participant successfully prevented an 

unwanted target from coming into mind) or a Concurrent stop trial. On the other 
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hand, cancellation mechanisms may be engaged if they later experienced intrusions 

or if the stop signal is delayed. 

 

After establishing the behavioural paradigms, we then used these paradigms in an MRI 

experiment to compare the brain mechanisms underlying memory and motor inhibition, 

and between prevention and cancellation processes. Especially of interest was whether 

the basal ganglia play similar roles across different domains and processes of inhibition, 

and how the basal ganglia interact with other relevant structures to achieve the 

prevention and/or cancellation of unwanted memory retrievals and motor actions. We 

also wanted to explore the anatomical pathways underlying these functional 

interactions. 

We used the following approaches to tackle those questions. First, to examine if similar 

regions in the basal ganglia were activated for different domains and processes of 

inhibition, we compared functional activations between the memory and motor 

inhibition tasks, and between the prevention and cancellation conditions. We expected 

overlapping activations between memory and motor inhibition, but possibly distinct 

patterns of activation between prevention and cancellation. From the meta-analysis 

shown in Chapter 3, although memory and motor inhibition both activated the basal 

ganglia, the prevention process in the Go/No-Go task primarily activated the left basal 

ganglia, while the cancellation process in the Stop-signal and Think/No-Think tasks 

primarily activated the right basal ganglia. 

Second, we used DCM to investigate how the basal ganglia interact with other regions 

involved in memory and motor inhibition. Specifically, we were interested in whether 

the basal ganglia are effectively involve in inhibitory processes as other putative 

supramodal regions, such as the DLPFC. If so, how the putative supramodal regions 

work with each other, and whether inhibition is achieved through down-regulating task-

specific regions, such as the hippocampus for memory, and M1 for motor. Furthermore, 

we would like to relate effective connectivity to behaviour, and find out which task 

modulated pathways are best associated with higher abilities to inhibit unwanted 

thoughts and actions. 
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Finally, we acquired diffusion-weighted imaging (DWI) to explore the possible 

anatomical connections underlying memory and motor inhibition. As we discussed in 

Chapter 2, although there is much evidence for the basal ganglia pathways involved in 

motor control, whether similar mechanisms are required in memory control remains 

unclear. We proposed some hypotheses in Sections 2.5.2 and 2.5.3. First, according to 

the intermediary hypothesis, the basal ganglia system may process control signals from 

the PFC, and then communicate with the task-specific regions via its own output 

through the thalamus. While the ventrolateral thalamic nuclei may directly connect with 

M1 for motor control, the anterior thalamic nuclei may connect with the hippocampus 

through the cingulum bundle. Second, according to the indirect hypothesis, the basal 

ganglia may interact with the task-specific regions through the PFC. For motor control, 

the DLPFC may connect with M1 through the preSMA and SMA. For memory control, 

the DLPFC may connect with the hippocampus through the ACC, either by suppressing 

input to the hippocampus from the entorhinal cortex, or by engaging the thalamic 

reuniens nucleus to achieve local inhibition in the hippocampus. Finally, according to 

the modulation hypothesis, the basal ganglia may connect with either the DLPFC or an 

intermediary between the DLPFC and the task-specific regions to achieve inhibition. 

Using DWI, we hope to identify anatomical pathways that relate to the effective 

connectivity or behavioural performances of memory and motor inhibition.  

We will present our fMRI findings in Chapter 5, and discuss our DWI approach in 

Chapter 6.  
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5 THE ROLE OF THE BASAL 

GANGLIA IN MEMORY AND 

MOTOR INHIBITION: AN 

FMRI STUDY 

As summarised in Section 2.5, this PhD thesis aims to tackle three main questions. First, 

whether the basal ganglia are consistently involved in both memory and motor 

inhibition? Second, how are the basal ganglia involved in memory and motor inhibition, 

in relation to the prefrontal control regions and the task-specific regions? Third, what 

are the anatomical pathways underlying the functional interactions? Using a meta-

analytic approach (Chapter 3), we answered the first question that the basal ganglia are 

indeed consistently involved in both memory and motor inhibition, across the Go/No-

Go, Stop-signal, and Think/No-Think tasks. Specifically, all three tasks activated the 

centromedial striatum, except that the Go/No-Go task activated the left basal ganglia, 

while the Stop-signal and Think/No-Think tasks activated the right basal ganglia. On 

one hand, this lateralisation effect may be due to the ALE algorithm being more 

sensitive to clustering activity. After all, when we examined the original input to the 

meta-analyses, there was basal ganglia activity in both hemispheres in all three tasks. 

On the other hand, the differences may imply that the three tasks may engage distinct 
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subprocesses of inhibition. While the Go/No-Go task may primarily require a 

prevention process, the Stop-signal and Think/No-Think tasks may primarily require a 

cancellation process.  

In this chapter, we attempt to tackle the second question, using the behavioural 

paradigms that we presented in Chapter 4. With the adapted Think/No-Think paradigm 

and the Combined Go/No-Go and Stop-signal task, we will be able to separate the 

prevention and cancellation processes in both memory and motor inhibition. In the 

Think/No-Think task, prevention and cancellation is separated by experience of 

intrusions. If the participant did not experience any intrusions on a given trial, it is likely 

that they have successfully prevented the unwanted target from coming to mind. If the 

participant did experience intrusions, it is likely that they would need to cancel the 

retrieval process to push the unwanted target out of mind. In the Combined Go/No-Go 

and Stop-signal task, prevention and cancellation are distinguished by concurrent and 

delayed stop signals. If participants successfully stopped on a trial where the stop signal 

is simultaneously presented as the stimulus, it is likely that they knew to stop early on in 

the process and were able to prevent the motor response from taking place. If 

participants successfully stopped on a trial with a delayed stop signal, it is likely that 

they were able to cancel an emerging motor response. 

The question of how the basal ganglia interact with other brain regions to achieve 

inhibition is two-fold. First, we would like to compare if the basal ganglia play similar 

roles in the prevention and cancellation subprocesses of inhibition, across the memory 

and motor domains. According to the meta-analysis, although the memory and motor 

inhibition tasks activated similar regions in the basal ganglia, there was a lateralisation 

effect possibly due to the distinct subprocesses. The Go/No-Go task is thought to 

engage prevention processes and primarily activated the left basal ganglia, while the 

Stop-signal and Think/No-Think tasks are thought to engage cancellation processes and 

primarily activated the right basal ganglia. In this study, we would like to use univariate 

analyses to examine the basal ganglia activations yielded by the prevention and 

cancellation processes across memory and motor domains. It is possible that the 

inhibitory subprocesses indeed activate distinct regions of the basal ganglia in the left 

and right hemispheres. Alternatively, as hypothesised in Section 2.5.1, the prevention 
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and cancellation processes may activate similar regions in the striatum, but engage 

distinct basal ganglia pathways to achieve inhibition (Schroll & Hamker, 2013).  

Second, we would like to use DCM to investigate how the basal ganglia interact with 

other putative supramodal regions (e.g., DLPFC) and the task-specific regions 

(hippocampus and M1) to achieve inhibition. We planned two sets of DCMs to tackle 

this question. The first set of DCM analyses will examine whether the basal ganglia is 

part of the supramodal pathway, and contribute to inhibition in similar ways as the 

DLPFC. We hypothesised that the basal ganglia should be effectively involved in 

memory and motor inhibition as the DLPFC. Specifically, they both exert top-down 

regulation of the task-specific regions to achieve inhibition. The second set of DCM 

analyses will focus on the interaction between the DLPFC and the basal ganglia during 

the inhibitory control processes across tasks. We came up with three hypotheses in 

Section 2.5.2. First, according to the intermediary hypothesis, the basal ganglia process 

prefrontal control signals and pass them on to the task-specific regions. The second is 

the indirect hypothesis, where the basal ganglia interact with the task-specific regions 

through the DLPFC. Finally, the modulation hypothesis postulated that the basal ganglia 

may modulate the connectivity between the DLPFC and the task-specific regions, since 

the basal ganglia system has intrinsic pathways that are responsible for initiating and 

inhibiting responses.  

In addition to investigating the neural pathways through which inhibition is achieved, it 

is also important to examine whether effective connectivity actually contribute to 

behaviour. To do this, we will extract DCM parameter estimates with Bayesian Model 

Averaging (BMA), and correlate these estimates with behavioural indices of memory 

and motor inhibition, such as SIF and slope of intrusion reduction for memory 

inhibition, and SSRT for motor inhibition. We would expect that the effective 

connectivity between the putative supramodal regions (DLPFC and basal ganglia) is 

associated with both memory and motor inhibition, while the effective connectivity with 

the task-specific regions is associated with the corresponding task. For example, 

parameter estimates on the pathway to the hippocampus should be associated with 

memory inhibition, and those on the pathway to M1 should be associated with motor 

inhibition. Furthermore, we would like to explore whether the prevention and 

cancellation processes contribute equally to inhibition. If they do, we may see similar 
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correlations between behaviour and the modulation parameters during prevention and 

cancellation. Otherwise we may see stronger correlation between behaviour and the 

modulation parameters during prevention than cancellation, or vice versa. 

5.1 Methods 

5.1.1 Participants 

We recruited 33 healthy young adults for the experiment. Data from three participants 

were excluded from the analyses due to mismatched task and scanner onsets (two) and 

drop-out (one). As a result, data from 30 participants were considered for analyses 

(Male=13; Mean Age = 22.77 years; SD Age = 3.49 years). All participants were native 

English speakers, right-handed with normal or normal-corrected vision. All self-

identified to have normal colour perception, to be exempt from ADHD and other 

learning, language or attentional deficits, and to be free from other psychological or 

neurological impairments.  

5.1.2 Behaviour Paradigms and Procedure 

The behavioural paradigms were exactly the same as described in Chapter 4.1 and 4.2.2 

for motor and memory inhibition respectively. We also collected RTs for the intrusion 

ratings during the Think/No-Think phase. Participants were invited to complete the 

tasks in two sessions. Participants completed the Combined Go/No-Go and Stop-signal 

task in the first session, and the Think/No-Think task in the second session. Since the 

motor task did not require a final test, we hoped that this would reduce the likelihood of 

the participants expecting a final test in the Think/No-Think task.  

In the first session, participants were trained with the Combined Go/No-Go and Stop-

signal task in a behavioural lab. They were then directed to the scanner facility for the 

main task. Finally, they completed a post-experimental questionnaire that asked about 

their experiences and strategies during the task, the Beck’s Depression Inventory II 

(BDI II) to make sure they were not experiencing stress or depression as that could 

influence their ability to inhibit, and a demographics questionnaire. In the second 

session, participants went through a similar procedure, except that they were taken back 

to the behavioural lab after the Think/No-Think phase for the final test.  
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We collected the following data from each participant from the MRI scanner. In the first 

session, we collected a structural volume of their brain, event-related fMRI data when 

they were performing the Combined Go/No-Go and Stop-signal task in the scanner, a 

functional localiser for the primary motor cortex, and diffusion-weighted imaging. The 

functional localiser consisted of 8 short blocks, with alternating blocks requiring passive 

viewing of coloured circles, and button pressing when seeing a circle. If it was the first 

time that a participant was ever scanned at our facility, we would also acquire a T2-

weighted image to make sure that the participant had a healthy brain. In the second 

session, we simply acquired a structural volume and the event-related data for the 

Think/No-Think task. The acquisition protocol is outlined below. 

5.1.3 MRI Acquisition Protocol 

Scanning was performed on a 3T Siemens Magnetom Prisma MRI system using a 32-

channel whole-head coil. Participants were positioned supine. We used foam pads to 

fixate the subject’s head within the radiofreqeuncy coil housing, as well as under their 

arms and legs to make them comfortable. We monitored their pulses throughout the 

scanning phase and provided headsets, emergency buzzer, and when necessary MRI 

compatible spectacles. We acquired magnetisation-prepared, rapid gradient echo 

(MPRAGE) structural images (256×256×192; 1 mm3 isotropic voxels; repetition time = 

2250 ms; echo time = 3.02 ms; flip angle 9°; interleaved slice acquisition). Functional 

data were acquired using a multi-band gradient-echo, echo-planar pulse sequence (EPI; 

192×192×120; 2 mm3 isotropic voxels; repetition time = 1120 ms; echo time = 30 ms; 

60 horizontal slices; interleaved slice acquisition; multi-band acceleration factor = 4). 

The first nine volumes of each session were discarded to allow for magnetic field 

stabilisation. When the participant was scanned at our facility for the first time, a turbo 

spin echo (TSE) T2-weighted structural image was also acquired (220×220×150; 4 mm3 

isotropic voxels; repetition time = 5060 ms; echo time = 102 ms; interleaved slice 

acquisition).  

5.1.4 Behavioural Analyses 

For the Think/No-Think task, we first conditionalised the data, i.e. we excluded items 

that they did not successfully encode at the learning phase, as indicated by the criterion 
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test. Second, we computed their suppression scores by subtracting their level of recall 

for the No-Think items from that for the Baseline items. We also computed their 

facilitation scores by subtracting the Baseline recall from the Think recall. We did this 

separately for the Same Probe and Independent Probe tests.  

For the Combined Go/No-Go and Stop-signal task, we estimated the stop-signal 

reaction time (SSRT) for each participant using the integration method based on the 

independent-race model (Logan & Cowan, 1984; Verbruggen & Logan, 2009). The 

independent race model describes stop-signal performance as a race between a go 

process triggered by a go stimulus, and a stop process triggered by the stop signal. 

Whether response inhibition is successful depends on the relative finishing time of the 

go and stop processes.  

Since the stop signal occurs after a variable interval, the stop-signal delay (SSD), the 

point at which the stop process finishes is estimated by integrating the response time 

(RT) distribution and finding the point at which the integral equals the probability of 

responding, p(respond|signal), for a particular SSD. SSRT is then calculated by 

subtracting SSD from the finishing time. To account for the dynamically adjusting SSD 

in our design, the integration method assumes that the finishing time of the stop process 

corresponds to the nth RT, with n equal to the number of RTs in the RT distribution 

multiplied by the overall p(respond|signal); SSRT can then be estimated by subtracting 

the mean SSD from the nth RT. We followed these calculations for each block, 

resulting in an SSRT value for each subject for each block. We then averaged the SSRT 

values across blocks to get a mean SSRT for each participant (Verbruggen, Chambers & 

Logan, 2013).  

To make sure that our data was not affected by anomalies, we conducted the generalised 

extreme studentised deviate (ESD) test (Rosner, 1983) to formally detect if there were 

outliers, and if so, how many. The ESD test was run on the suppression scores, 

facilitations scores, and the SSRT separately. For the suppression and facilitation 

scores, we tested for outliers in the Same Probe and the Independent Probe tests, and 

with the two tests combined. Finally, we identified and removed the corresponding 

participants from further relevant analyses. 
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The Think/No-Think task was a 3 (Condition: Baseline, Think, No-Think) by 2 (Test 

Type: Same Probe, Independent Probe) design. To test for the general suppression-

induced forgetting effect, we compared the level of recall between the Baseline and No-

Think items, aggregating across the Same Probe and Independent Probe tests. We also 

took into account nuisance variables that may be induced by variances amongst the 

stimuli, the participants, and the assignment of items to the Baseline/Think/No-Think 

conditions. To do this, we fitted a multi-level logistic regression model, where we 

specified recall as the dependent variable. We defined the model as binomial since 

recall is a binary variable (either the participants remembered the correct target or not). 

We further specified Condition as the independent variable, and subject variability and 

stimulus variability as random intercepts. We then fitted a similar model to test the 

facilitation effect by comparing recall between the Baseline and Think items. 

In addition to the suppression and facilitation effect, we also examined the frequency of 

intrusions throughout the Think/No-Think phase. Specifically, we calculated the slope 

of reduction in the frequency of intrusions, and divided that by the intrusion frequency 

in the first run. This is to take into account individual differences in the initial amount of 

intrusions participants had to suppress, so as to standardise the scale of intrusion 

reduction across participants (Levy & Anderson, 2008). Next, we used the Robust 

Correlation Toolbox (Pernet et al., 2013) to calculate whether reduction of intrusions is 

correlated with the magnitude of SIF. Finally, we correlated the SSRT with SIF to 

examine if better performance in stopping motor actions is associated with higher 

ability to suppress unwanted memories. 

5.1.5 MRI Analyses 

5.1.5.1 Preprocessing 

We used Statistical Parametric Mapping to determine the functional activation from the 

BOLD signal (SPM12, University College London, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Following image reconstruction, we 

applied motion correction to the time series data for each participant, including re-

alignment and co-registration. Structural and time series data from the second session 

(where participants performed the Think/No-Think task) were co-registered with those 
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from the first session (where participants performed the Combined Go/No-Go and Stop-

signal task). 

5.1.5.2 Univariate Analysis 

We submitted single subject time series data to a first-level general linear statistical 

model (GLM). Using the SPM design specification, we convolved the task-specific 

boxcar stimulus functions with the canonical hemodynamic response function (HRF). 

Each model included within-session global scaling (default), high-pass filtering using a 

cutoff frequency set at 1/128 Hz, and the AR1 method of estimating temporal 

autocorrelation. We created regressors by convolving box-car functions with a 

canonical hemodynamic response function (HRF) with trial durations set to 1000 ms for 

the Combined Go/No-Go and Stop-signal task, and 3000 ms for the Think/No-Think 

task. For the Think/No-Think task, we modelled Non-Intrusion, Intrusion and Think 

trials as separate regressors, as well as context fillers and unlearned items. For the 

Combined Go/No-Go and Stop-signal trials, we modelled correct and incorrect trials for 

the Go, Concurrent Stop, and Delayed Stop conditions as separate regressors. The six 

motion parameters produced at realignment were included in the model to account for 

linear residual motion artefacts.  

The above analyses were performed on native space images. We then transformed the 

contrast-images produced from the first-level analyses to MNI space for subsequent 

group-level analyses. The transformation was achieved using the parameters derived 

from the nonlinear normalisation of individual gray-matter T1 images to the T1 

template of the Montreal Neurological Institute (MNI, Montreal). The normalised 

contrast images were spatially smoothed using a 6-mm FWHM Gaussian kernel.   

5.1.5.3 Dynamic Causal Modelling (DCM) 

To test how the putative supramodal regions (DLPFC and basal ganglia) effectively 

interact with task specific regions (M1 for motor inhibition and hippocampus for 

memory inhibition), we modelled the effective connectivity between these four regions 

using DCM12. DCM allows for the estimation of the causal relationship between the 

pre-specified regions of interest given the specific task context and the underlying 

anatomical connections (Friston et al., 2003). It is worth noting that modelling 

interactions between regions does not necessarily suggest that the connectivity is 
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underpinned by monosynaptic connections. Rather, the resulting coupling parameters 

represent the effective connectivity between these regions, which may well be 

substantiated by a relay of connections.  

We constructed separate but identical DCM model structures for the memory and motor 

tasks, with the No-Think and Stop conditions as modulatory inputs respectively. For 

each subject, we extracted signal from the putative supramodal regions (DLPFC and 

basal ganglia) and the task specific regions (M1 and hippocampus). Details for defining 

these ROIs will be provided in the next section.  

First, we investigated whether the basal ganglia, the DLPFC or both are involved in 

memory and motor inhibition, modulating the task-preferred pathways (Figure 5.1). We 

used bilinear DCM analysis that requires three types of input for each model: (1) 

Intrinsic connections (based on hypothesized mono- and poly-synaptic connections 

between the nodes), (2) bilinear modulation of connections by experimental conditions, 

and (3) driving inputs into nodes from experimental conditions. For both the memory 

and motor DCMs, we specified bidirectional Task independent connectivity between 

each pair of the ROIs except between the hippocampus and M1. For the memory 

inhibition DCM, we specified that the Non-intrusion and Intrusion conditions could be 

modulating the connectivity between the putative supramodal regions (DLPFC, basal 

ganglia, or both) and the task-specific regions (M1, hippocampus, or both) in a top-

down fashion. For the motor inhibition DCM, we specified similar modulations but with 

the Concurrent Stop and Delayed Stop conditions. We only tested models with top-

down modulations based on previous DCM results. For example, Benoit et al. (2014) 

compared models containing bottom-up, top-down, and bidirection task modulations 

between the DLPFC and the hippocampus during memory inhibition. While the bottom-

up models won little evidence, BMS was unable to differentiate between the top-down 

and bidirectional models, suggesting that it may be the top-down modulations that are 

primarily influencing the network dynamic for achieving inhibitory control. Finally, the 

driving inputs were going into both the DLPFC and the basal ganglia for all models. 

Overall, we had a model space of nine models for the memory and motor inhibition 

DCMs separately. 
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Figure 5.1. Step 1 DCM Model Space for Memory and Motor Inhibition. 

D=DLPFC; BG=basal ganglia; H=hippocampus; M=M1. 

 

Second, we examined how the supramodal regions (DLPFC and basal ganglia) interact 

to achieve inhibition in the task-specific regions (Figure 5.2). On one hand, it could be 

that one supramodal region is influencing the other, which then modulates activity in 

the task specific regions. For example, according to our intermediary hypothesis, the 

basal ganglia may process commands from the PFC and pass them on to the 

hippocampus or M1. Alternatively, according to our indirect hypothesis, the basal 

ganglia may interact with the hippocampus and M1 through the PFC. On the other hand, 

it could be that one supramodal regions is influencing the pathway through which the 

other communicates with the task-specific regions. According to our modulation 

hypothesis, the basal ganglia may modulate the connectivity between the PFC and the 

task-specific regions to achieve inhibition. We used nonlinear DCM analysis to test the 

modulation hypothesis, for which we had to specify nonlinear modulation of 

connections in addition to those required by the bilinear DCM.  
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Figure 5.2. Step 2 DCM Model Space for Memory and Motor Inhibition. 

D=DLPFC; BG=basal ganglia; H=hippocampus; M=M1. 

 

Model fitting was achieved by adjusting the model parameters to maximise the free-

energy estimate of the model evidence. Neural activity from each node was extracted 

and Bayesian model selection (BMS) was then used to identify the family that could 

account the best for the data (Penny, 2010). A random-effects approach was taken, since 

it does not assume that the optimal model will be the best for each individual (Stephan, 

2010). Model evidence in the BMS is represented by exceedance probability, i.e., the 

probability to which a given model is more likely than any other included model to have 

generated the data from a randomly selected participant.  

Furthermore, to examine the contribution of prevention and cancellation processes in 

memory and motor inhibition, we extracted DCM coupling parameters on the task 

independent and task-modulated pathways from the relevant conditions (Non-intrusion 

and Concurrent Stop for prevention; Intrusion and Delayed Stop for cancellation). We 

first used one-sample t-tests to examine if the coupling parameters are significantly 

different from zero. We then used ANOVAs to test whether there were significant 

differences in the coupling parameters due to pathway (top-down control from the 

DLPFC or the basal ganglia) or inhibitory subprocess (prevention or cancellation) in the 

memory and motor domains. 
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5.1.5.4 Defining Regions of interest 

We defined four distinct a priori regions of interest (ROI), the right DLPFC, right basal 

ganglia, left hippocampus, and the left M1. For the DLPFC ROI, we first derived a 

binarised map of the (No-Think & Stop) > (Think & Go) contrast in Schmitz et al. (in 

preparation). We then isolated from this map the DLPFC cluster, which centred on the 

following MNI coordinates: x=33, y=41, z=21. For each participant, the DLPFC ROI 

was transformed into native space using the deformation field produced at the non-

linear warping step of their fMRI data pre-processing. For the basal ganglia ROI, we 

combined the manual segmentation of the caudate head, caudate body, and putamen 

regions from the meta-analysis with the GPe ROI from the ATAG atlas (Chapter 3.2). 

We transformed the combined ROI into native space using similar methods. For both 

the DLPFC and the basal ganglia, we extracted the 40% signal of activity from the No-

Think>Think contrast for the memory DCM, and from the Stop>Go contrast for the 

motor DCM. For the Hippocampus ROI, we used the AAL template from SPM 

(Yushkevich et al. 2006). Finally for the M1 ROI, we derived a binarised map of the 

ButtonPress>View contrast from the group analyses of our independent functional 

localiser task, isolated the left M1 cluster (centring at x=-42, y=-25, z=49), and 

transformed the cluster into native pace. For both the hippocampus and M1, we 

extracted the 40% signal of activity from the Think>No-Think contrast for the memory 

DCM, and from the Go>Stop contrast for the motor DCM. 

5.2 Results 

5.2.1 Behavioural Results 

5.2.1.1 Logistic Regression Revealed Significant Effect of SIF 

For the Think/No-Think task, according to the criterion test, participants reached on 

average 84% of accuracy in recalling the word pairs. Recall performance on the final 

tests were conditionalised by excluding items that were not initially learned, to ensure 

that variations in recall across conditions reflect the effects of our manipulations on 

demonstrably learned items. The descriptive statistics for the suppression and 

facilitations cores and the SSRTs are summarised in Table 5.1. 
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The ESD test suggested there was one outlier participant who had extraordinary 

facilitation and suppression scores in the Same Probe test (Table 5.1). Since our 

analyses used combined suppression scores where no outliers were identified, we 

included all 30 participants in our analyses (Male=13; Mean Age = 22.83 years; SD Age 

= 3.54 years).  

 

Suppression Facilitation SSRT 

 

SP IP Combined SP IP Combined 

 Mean 1.6% 10.7% 6.1% 0.3% -9.2% -4.4% 464.87 

SD 12% 23% 13.4% 15.3% 23.3% 13.2% 41.98 

No. of Outliers 1 0 0 1 0 0 0 

Table 5.1 Descriptive Statistics of the Suppression and Facilitation Scores from the 

Think/No-Think Task, and the Stop-signal Reaction Time (SSRT) from the 

Combined Go/No-Go and Stop-Signal Tasks (N=30).   

 

According to our logistic regression analysis combining the Same Probe and 

Independent Probe tests (N=30), we found a significant effect of memory inhibition 

between the No-Think and Baseline items (Log Likelihood=- 708.3, p=.04), as well as a 

significant effect of memory facilitation between the Think and the Baseline items (Log 

Likelihood=- 688.6, p=.01). These results replicated the SIF and facilitation effects from 

the literature (e.g. Anderson & Green, 2001; Anderson et al., 2004). 

5.2.1.2 Rate of Intrusion Reduction Significantly Correlated with SIF 

In addition to the suppression and facilitation effects, we examined the change in 

intrusion frequency throughout the Think/No-Think phase by calculating the percentage 

of items that participants rated as “having come into mind” during the No-Think trials. 

We found a significant reduction of intrusions from the first to the tenth repetition 

t(29)=6.49, p<.001, and fitted a linear function that describes the reduction of intrusions 

over the Think/No-Think phase (Figure 5.3a). Next, we quantified the rate of intrusion 

reduction by calculating the slope of the linear fitting function from each individual, 

taking into account the initial amount of intrusions they experienced in the first 
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repetition in the Think/No-Think phase (Levy & Anderson, 2012). On average, 

participants experienced 5% reduction of intrusion over each repetition in the Think/No-

Think phase (SD=5%).  

Critically, a Pearson correlation revealed that the slope of intrusion reduction 

significantly correlated with SIF (as measured by the combined suppression score 

between the Same Probe and Independent Probe tests), r=-0.36, p=.05 (Figure 5.3b). 

This significant correlation indicates that higher ability to suppress unwanted thoughts 

is associated with greater reduction of intrusions (a negative value of the slope indicates 

reduction of intrusion, while a positive value indicates increment of intrusion). These 

results suggest that individuals with higher ability at thought suppression are better at 

reducing intrusions, possibly engaging the cancellation processes in the brain. 

 

Figure 5.3. A) Reduction of Intrusions over the Think/No-Think Phase; B) Pearson 

Correlation between Slope of Intrusion Reduction and SIF. 

 

5.2.1.3 RT for Intrusion Rating is Shortest for Think, Followed by Intrusion and Non-

intrusion 

In addition to testing the SIF effect and how that is associated with intrusion reduction, 

we examined whether there were differences in RT for the intrusion ratings that 

participants were required to give after each trial in the Think/No-Think phase (Figure 
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5.4). This may provide insight into how different thought control processes during the 

Think, Non-intrusion, and Intrusion conditions may influence subsequent motor 

responses. Overall, we observed a significant reduction of RT when comparing between 

the first and the tenth repetitions in all conditions (Think: t(29)=19.63, p<.001; 

Intrusion: t(29)=18.45, p<.001; Non-intrusion: t(29)=24.32, p<.001). This reduction of 

RT possibly indicates that participants are getting better at both the button pressing and 

the metacognition of their experiences during the past trial. Critically, using a repeated-

measure ANOVA, we found a significant main effect of RT across conditions, 

F(2,18)=32.42, p<.001. Specifically, the Think condition generated a significantly faster 

RT than the Intrusion condition, t(9)=3.98, p=.003, which in turn generated a 

significantly faster RT than the Non-intrusion condition,  t(9)=5.08, p=.001.  

There may be two interpretations for the differences in RT across conditions. First, the 

difference in RT may simply be a by-product from when participants decided on their 

intrusion ratings for a given trial. For instance, during a Think trial, participants may be 

able to decide whether a target had come into might very early on in the trial, and would 

be ready to press a button as soon as the intrusion rating showed up. For most Think 

trials, they would know whether they still remembered the target straight away. 

Meanwhile, during an Intrusion trial, if the intrusion popped into their mind as soon as 

they saw the cue, it would be similar to a Think trial and they would be able to respond 

to the intrusion rating very quickly. However, if the intrusion only took place later in the 

trial, they may only be able to press a button at a delay, since they possibly needed a 

similar amount of time to prepare for the button press. Finally, for a Non-intrusion trial, 

participants would have had to wait until the end of the trial to be sure that the target did 

not come into mind, and then start the motor response. Hence the RT for Non-intrusion 

trials may appear longer.  

An alternative interpretation is that the different thought processes required during the 

Think, Intrusion, and Non-intrusion trials may create different impacts on the 

subsequent motor responses. The impacts may be related to the congruency between the 

control process required during the trial and that required for the intrusion rating. For 

example, during a Think condition, participants were instructed to respond to the cue 

and recall the associated target. This is congruent with the intrusion ratings, where 

participants also had to respond by pressing a button. In contrast, during a No-Think 
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trial, participants were instructed to inhibit the associated target until trial offset. This is 

incongruent with the subsequent response. If we believe that memory and motor control 

may require similar neural mechanisms, inhibiting those mechanisms in memory may 

make it harder to subsequently initiate a motor response. A similar idea has been tested 

within the memory domain. Hulbert et al. (2016) adapted the Think/No-Think paradigm 

and occasionally inserted unrelated stimuli in between the Think and No-Think trials. 

They later tested participants on their memories of the unrelated stimuli, and found that 

they had reduced memories for the unrelated stimuli surrounded by No-Think trials than 

those surrounded by Think trials. This is evidence showing that engaging suppression 

mechanisms for specific items may create a more general effect on the memory system, 

which can impair new learning. In the current study, we observed a possibility that 

engaging suppression mechanisms in one modality may create a more general effect on 

other tasks that require similar mechanisms. Future studies could test this hypothesis in 

a supramodal context, and investigate whether inhibition in one domain can influence 

performance in a different domain.  

 

Figure 5.4. RT for Intrusion Ratings during the Think, Non-intrusion, and 

Intrusion Conditions. 
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5.2.1.4 Blocked Integration Produced Average SSRT for Each Participant 

Using the blocked integration method based on the independent race model, we 

estimated the mean SSRT for each individual (Mean = 464.87 ms; SD = 41.98 ms). Our 

SSRT seems to be much longer than previously established SSRTs in other studies, 

such as 266 ms in Aron et al. (2007), and 223 ms in Zheng et al. (2008). This longer 

SSRT may be caused by three main factors. First, our Combined Go/No-Go and Stop 

signal task has a more complicated design than most standard Stop-signal tasks. Most 

Stop-signal paradigms have simple stimulus-response mappings, where participants 

only need to interact with one button (Zheng et al., 2008) or the left/right arrow keys 

when seeing left/right arrows on the screen (Aron et al., 2007). However, our current 

design involves mapping four coloured circles on two buttons. Although participants 

were trained with the colour mapping extensively before performing the task in the 

scanner, when they saw a coloured circle on the screen, they may still need to recall 

which button the colour circle was associated with, prolonging the RT and hence the 

SSRT. In the current study, average Go RT is 737.67 ms (SD=56.62 ms). In Aron et al. 

(2007) and Zheng et al. (2008), the Go RT is 465 ms (SD=85 ms) and 369.8 ms 

(DF=75.4 ms), respectively. Second, in order to measure the effect of stopping 

compared to baseline, we jittered the duration of the inter-stimulus interval (ISI). 

Introducing a jittering ISI increased the uncertainty of stimulus onset and may make the 

participants less prepared for the upcoming trial. In consequence, participants may 

found it harder to respond to the Go trials, prolonging RT and hence the SSRT. Finally, 

it is possible that participants purposefully slowed their responses during Stop trials to 

increase their chances of correctly withholding a button press. However, this is unlikely 

as our tracking algorithm for the Stop trials successfully differentiated stopping 

accuracy for different SSDs (88% for the 250 ms SSD, 56% for the 500 ms SSD, and 

39% for the long SSD).  

In order to examine whether the ability to stop memory retrieval is associated with the 

ability to stop motor actions, we used Pearson correlation to relate the average SSRT 

from each individual to their magnitude of SIF (combined between the Same Probe and 

Independent Probe tests). Unfortunately, this correlation was not significant (r=-0.09). 

This lack of relationship between memory and motor inhibition may be due to the 
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individual variability in the behavioural performance, as previous studies have found 

significant correlations between SIF and SSRT (e.g., Schmitz et al., in preparation). 

5.2.2 FMRI Univariate Results 

5.2.2.1 Memory and Motor Inhibition Yielded Similar Activation Patterns as the Meta-

analyses 

Overall, our univariate fMRI findings resemble the activation patterns from the meta-

analyses from Chapter 3, both on the cortex and in the basal ganglia. Similar to previous 

studies, we also observed reduced activity in task-specific regions, such as the 

hippocampus for memory inhibition, and M1 for motor inhibition. We will present these 

findings in the following sections. All results were corrected to False Discovery Rate 

(FDR) p<.05. 

5.2.2.1.1 Retrieval Suppression Engaged Lateral Prefrontal Cortex and the Basal 

Ganglia, and Reduced Hippocampal Activity 

According to the meta-analysis, memory inhibition in the Think/No-Think yielded 

cortical activations in the right DLPFC, VLPFC, cingulate gyrus, precentral gyrus, and 

the supramarginal/angular gyrus. Our univariate analysis revealed similar results. We 

observed that inhibiting unwanted memories in the No-Think condition, relative to the 

Think condition, activated cortical regions including bilateral DLPFC (BA9/10/46), 

VLPFC (BA44/45/47/insula), preSMA (BA6/8), ACC (BA32), and 

supramarginal/angular gyrus in the inferior parietal lobe (Figure 5.5). These activations 

appeared to be more extensive in the right hemisphere than in the left. In addition, 

replicating previous findings from Levy and Anderson (2012) and Gagnepain et al., 

(2017), we observed reduced hippocampal activity during No-Think relative to baseline. 

According to previous DCM efforts (Benoit et al., 2014; Gagnepain et al., 2017), it is 

likely that this hippocampal downregulation originates from prefrontal control regions 

such as the DLPFC. 
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Figure 5.5. Cortical Activations from Memory Inhibition. The top row illustrates 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate activation maps from A) the meta-analysis, B) our univariate analysis. 

All activations were thresholded to FDR p<.05. 

 

On the subcortical level, the meta-analysis showed that memory inhibition activated the 

right basal ganglia, including caudate head, anterior putamen, and anterior GPe. We 

again replicated these findings, except that we observed these activations in both 

hemispheres (Figure 5.6). As we discussed in Chapter 3.4, although the original input to 

the meta-analysis had basal ganglia coordinates from both hemispheres, the output was 

only significant in the right hemisphere. It is possible that the ALE algorithm is more 

sensitive to clustering activities and may not best represent the authentic patterns of 

activation in the basal ganglia. 
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Figure 5.6. Basal Ganglia Activations from Memory Inhibition. The top row 

illustrates basal ganglia activations from the meta-analysis. The bottom row 

illustrates basal ganglia activations from the current univariate analysis. For the 

caudate structure, yellow is caudate head, blue is caudate body, and green is 

caudate tail. All activations were thresholded to FDR p<.05.  

 

5.2.2.1.2 Motor Inhibition Engaged the Lateral Prefrontal Cortex and the Basal 

Ganglia, and Reduced M1 Activity 

On the cortical level, our meta-analysis showed that stopping motor responses activated 

the DLPFC, VLPFC, and the supramarginal/angular gyrus primarily in the right 

hemisphere. Our univariate analysis replicated this pattern, and observed that the Stop 

condition, relative to the Go condition, yielded activations in the DLPFC(BA9/10/46), 

VLPFC (BA44/45/47/insula), preSMA (BA6/8), ACC (BA32), and 

supramarginal/angular gyrus (Figure 5.7). Consistent with Schmitz et al. (in 

preparation), we also observed reduced M1 activity during motor stopping relative to 

baseline. It is possible that the prefrontal cortex is exerting similar downregulation to 

M1 during motor inhibition as to the hippocampus during retrieval suppression. 
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Figure 5.7. Cortical Activations from Motor Inhibition. The top row illustrates 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate activation maps from A) the meta-analysis, B) our univariate analysis. 

All activations were thresholded to FDR p<.05. 

 

In the basal ganglia, our meta-analysis showed that motor inhibition activated small 

regions of caudate head, anteromedial putamen, and anterior GPe. However, action 

cancellation activated the right basal ganglia, while action prevention activated the left 

basal ganglia, although the input coordinates were from both hemispheres. In our 

univariate analysis, we found similar activation pattern in both hemispheres, except that 

the putamen activity was from the lateral surface (Figure 5.8). This may be due to 

functional specialisation of different striatal subregions, as lateral putamen is typically 

associated with sensorimotor processes (Voorn et al., 2004; Yin et al., 2004).  
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Figure 5.8. Basal Ganglia Activations from Motor Inhibition. The top row 

illustrates basal ganglia activations from the meta-analysis. The bottom row 

illustrates basal ganglia activations from the current univariate analysis. For the 

caudate structure, yellow is caudate head, blue is caudate body, and green is 

caudate tail. All activations were thresholded to FDR p<.05. 

 

5.2.2.1.3 Memory and Motor Inhibition Share Prefrontal and Basal Ganglia Activations 

We performed a conjunction analysis and revealed regions that were activated by both 

inhibiting thoughts and actions, including the right DLPFC (BA9/10/46), bilateral 

VLPFC (BA44/45/47/insula), SMA (BA6) and supramarginal/angular gyrus (Figure 

5.9). These activations seemed to be more extensive in the right hemisphere. In the 

basal ganglia, we observed activations in bilateral caudate head, bilateral anterior 

putamen, and right anterior GPe (Figure 5.10).  

This pattern of activation is largely consistent with our findings from the meta-analysis, 

again showing that memory and motor inhibition share neural mechanisms on both the 

cortical and basal ganglia levels. In particular, inhibiting retrieval and motor responses 

seem to engage right lateralised prefrontal activity. This agrees with previous emphasis 

on the role of the right DLPFC and VLPFC in memory and motor inhibition (e.g., Aron 

et al., 2007; 2014; Benoit et al., 2012; Schmitz et al., accepted). We also observed 

similar basal ganglia activation as in the meta-analysis. Although these activations seem 

to be slightly anterior to the meta-analysis cluster, is is still consistent with the executive 

functions region found by Haber et al. (2006). 
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Figure 5.9. Cortical Activations from the Conjunction between Memory and 

Motor Inhibition. The top row illustrates reference cortices overlaid with selected 

Brodmann areas. The bottom rows illustrate activation maps from A) the meta-

analysis, B) our univariate analysis. All activations were thresholded to FDR p<.05. 

 

Figure 5.10. Basal Ganglia Activations from the Conjunction between Memory 

and Motor Inhibition. The top row illustrates basal ganglia activations from the 

meta-analysis. The bottom row illustrates basal ganglia activations from the 

current univariate analysis. For the caudate structure, yellow is caudate head, blue 
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is caudate body, and green is caudate tail. All activations were thresholded to FDR 

p<.05. 

 

5.2.2.2 Preventing Memory Retrieval and Motor Actions Engaged Prefrontal and Basal 

Ganglia Activity Similar to the Meta-analysis 

One of the objectives of the current project is to differentiate the neural mechanisms 

underlying specific inhibitory processes such as prevention and cancellation. As 

reviewed earlier, in memory inhibition, this distinction was drawn by whether 

participants experienced an intrusion of the unwanted memory during a No-Think trial. 

If they did not experience an intrusion, it is likely that the participants engaged 

proactive prevention processes so that memory retrieval would not take place at all. If 

they did experience intrusion, it is likely that they engaged reactive cancellation 

processes to push the emerging target out of mind. Similarly in the motor task, if 

participants succeeded at stopping on a Concurrent Stop trial, it is likely that they 

engaged prevention processes so that the motor response would not take place at all. If 

they succeeded at stopping on a Delayed Stop trial, it is like that they engaged 

cancellation processes to terminate a motor response that was already initiated when 

they saw the coloured circle. To examine the effect of prevention in memory and motor 

stopping, we first examined activations related to prevention in general using the 

prevention>response contrast. Following that, we isolated activations specific to 

prevention using the prevention>cancellation contrast. We will first present the results 

in the memory and motor domains separately, and then examine the conjunction for 

supramodal activations. 

5.2.2.2.1 Preventing Memory Retrieval Generally Activated Bilateral Prefrontal 

Regions and the Basal Ganglia 

During prevention of memory retrieval (Non-intrusion>Think), we observed activations 

in in a number of cortical regions (Figure 5.11a), including the DLPFC along the middle 

frontal gyrus (MiFG; BA9/10/46), VLPFC (BA44/45/47/insula), preSMA (BA6/8), and 

ACC (BA32) in both hemispheres. Preventing memory retrieval also activated bilateral 

supramarginal/angular gyrus and the left cerebellum. In the basal ganglia, retrieval 

prevention activated bilateral caudate head and body, anterior putamen and GPe (Figure 
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5.12a). This is the first time basal ganglia activity has been characterised for preventing 

unwanted memory retrievals. 

 

Figure 5.11. Cortical Activations from Prevention. The top row figures are 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate regions activated by A) preventing memory retrieval, B) preventing 

motor responses, and C) both. All activations were thresholded to FDR p<.05. 
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Figure 5.12. Basal ganglia activations during A) preventing memory retrieval, B) 

preventing motor responses, and C) both. For the caudate structure, yellow is 

caudate head, blue is caudate body, and green is caudate tail. All activations were 

thresholded to FDR p<.05. 

 

5.2.2.2.2 Retrieval Prevention Activated Right DLPFC, Bilateral VLPFC, and Bilateral 

Basal Ganglia more than Retrieval Cancellation 

To isolate neural mechanisms specific to retrieval prevention, we examined activations 

from the retrieval prevention>retrieval cancellation contrast. We observed increased 

activity in the right DLPFC, bilateral VLPFC (BA44/45/insula), precentral gyrus 

(BA6/8) and cingulate gyrus. Retrieval prevention also activated the precuneus, 

thalamus, the visual cortex, lateral temporal cortex, fusiform gyrus, and the cerebellum 

(Figure 5.13a).  

In the basal ganglia, retrieval prevention activated bilateral caudate head and body, 

anterior putamen, and anterior GPe more than cancellation (Figure 5.14a). These 

activations coincide with the basal ganglia clusters from the meta-analysis. Since the 
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meta-analysis was investigating the basal ganglia involvement in memory inhibition in 

general, our results suggest two possibilities. First, retrieval prevention is essential for 

achieving SIF. Second, the basal ganglia involvement in memory suppression is 

predominantly preventing unwanted retrievals. We will use effective connectivity to 

tackle these questions. Critically, according to primate anatomy,, these basal ganglia 

regions receive extensive inputs from the DLPFC (Haber et al., 2006) as part of the 

executive functions division in the cortico-basal ganglia loop. Therefore, the DLPFC 

and the basal ganglia may work together to achieve memory inhibition through 

prevention. 

 

Figure 5.13. Cortical Activations Specific to Prevention. The top row figures are 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate regions activated by A) preventing>cancelling memory retrieval, B) 

preventing>cancelling motor responses, and C) preventing retrieval and motor 

responses>cancelling retrieval and motor responses. All activations were 

thresholded to FDR p<.05. 
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Figure 5.14. Basal ganglia activations specific to A) preventing memory retrieval, 

B) preventing motor responses, and C) preventing retrieval and motor 

responses>cancelling retrieval and motor responses. For the caudate structure, 

yellow is caudate head, blue is caudate body, and green is caudate tail. All 

activations were thresholded to FDR p<.05. 

 

5.2.2.2.3 Preventing Motor Responses Generally Activated Similar Frontoparietal 

Regions as in the Meta-analysis, with some Presence of the Basal Ganglia 

During prevention of motor responses (Concurrent Stop>Go), we observed similar 

increased activity in the frontoparietal regions (including the DLPFC, VLPFC, and 

supramarginal/angular gyrus), as well as the right lateral putamen, visual cortices, and 

the cerebellum (Figure 5.11b; Figure 5.12b). Although the cortical activations are 

similar to those from the meta-analysis, the basal ganglia activation is more lateral and 

bilateral, as opposed to the centromedial striatum in the left hemisphere. As discussed 

earlier, the meta-analysis may not be the most representative of basal ganglia activations 

due to limitations in the method. By activating lateral putamen, motor prevention may 
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be engaging the sensorimotor loop in the basal ganglia system. Alternatively, it is 

possible that the basal ganglia are particularly involved in preventing motor actions, in a 

similar way as to preventing memory retrievals.  

5.2.2.2.4 Motor Prevention did not Activate Prefrontal or Basal Ganglia Regions more 

than Motor Cancellation 

On the cortical level, action prevention activated these regions more than action 

cancellation, including the right medial temporal lobe and postcentral gyrus, as well as 

the left parahippocampal gyrus and visual cortex (Figure 5.13b). We did not observe 

prefrontal or basal ganglia activation for this contrast (Figure 5.14b). According to the 

simple contrasts that we reported previously, motor cancellation and motor prevention 

seemed to have activated very similar regions in the DLPFC, VLPFC, and basal 

ganglia. This is the case even when we lowered the significance threshold to 

uncorrected p<.001. It is possible that cancellation and prevention processes are more 

alike in the motor domain, making it hard to differentiate the control processes. Another 

possibility is that prevention and cancellation processes may not be as distinctive as we 

assumed in the Concurrent and Delayed Stop conditions. For example, on a Concurrent 

Stop trial, participants might have been preparing for a motor response prior to trial 

onset, but instead had to cancel that response when hearing the stop signal. On a 

Delayed Stop trial, due to the relatively long RT in the current experiment, participants 

might still be deciding which button they should press when hearing the stop signal 

instead of actually making the button press. In that case, no cancellation would be 

needed. 

Specific to the basal ganglia, it is possible that the basal ganglia play similar roles in 

motor cancellation and motor prevention, since no differences were detected on a 

univariate level. However, it may be that cancellation and prevention engage different 

basal ganglia pathways, even though the overall activations seem identical. While 

cancellation is primarily associated with interactions between the direct and indirect 

pathways, prevention is more associated with the hyperdirect and indirect pathways 

(Schroll & Hamker, 2013). Finally, the similarity between motor prevention and motor 

cancellation may be due to individual differences in their ability and strategy to inhibit 

prepotent responses. Future studies could look into characterising differences between 
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“preventers” and “cancellers”, and examine how that affects their inhibitory control 

overall. 

5.2.2.2.5 Retrieval and Motor Prevention Activated Predominantly Right Frontoparietal 

and Basal Ganglia Regions 

A conjunction between memory and motor prevention revealed activations primarily in 

the right frontoparietal regions, including the DLPFC, VLPFC, preSMA, the 

supramarginal/angular gyrus, caudate head and anterior putamen. There were fewer 

activations in the left hemisphere, including only small clusters in posterior MFG 

(BA6), VLPFC (BA44/insula), and the supramarginal gyrus (Figure 5.11c; Figure 

5.12c). These results suggest that there may be supramodal mechanisms underlying 

retrieval and motor prevention. This supramodal network overlaps with the meta-

analysis, involving both cortical regions in the DLPFC, VLPFC, preSMA and the 

supramarginal gyrus, and basal ganglia regions including the caudate head and anterior 

putamen. This is evidence that prevention processes may be an integral part of 

inhibitory control.  

5.2.2.2.6 Prevention did not activate the Frontoparietal and Basal Ganglia Regions 

more than Cancellation 

Finally, we tested the main effect of prevention>cancellation across the memory and 

motor domains. We used the contrast [Non-intrusion & Concurrent Stop]>[Intrusion & 

Delayed Stop], and found that action/thought prevention activated bilateral putamen, 

parahippocampal gyrus, and visual cortices, along with regions in the temporal cortex 

and the fusiform gyrus (Figure 5.13c; Figure 5.14c). It is worth noting that the putamen 

activation was primarily from retrieval prevention rather than motor prevention. This 

lack of overlap may be due to our findings in the motor task, where prevention and 

cancellation processes seemed to recruit similar control regions. These results indicate 

that while the basal ganglia are clearly involved in both prevention and cancellation 

processes across the memory and motor domains, they may be more involved in 

retrieval prevention than motor prevention in a specific way. Alternatively, it is possible 

that motor prevention and cancellation recruit different basal ganglia pathways, which 

may not be detectable by univariate analyses. Future studies could look into 

differentiating how different basal ganglia pathways are involved in prevention and 
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cancellation processes during memory and motor inhibition, either through animal 

electrophysiology, or possibly high-field fMRI.  

5.2.2.3 Cancelling Memory Retrieval and Motor Actions Activated Frontoparietal 

Regions and the Basal Ganglia 

To examine the effect of Cancellation in memory and motor stopping, we first 

examined activations related to cancellation in general using the cancellation>response 

contrast. Following that, we isolated activations specific to cancellation using the 

cancellation>prevention contrast. We will first present the results in the memory and 

motor domains separately, and then examine the conjunction for supramodal 

activations. 

5.2.2.3.1 Retrieval Cancellation Activated Bilateral Frontoparietal Regions and 

Anterior Putamen 

During cancellation of memory retrieval (Intrusion>Think), we observed increased 

activity in DLPFC (right BA9/46; left BA9), VLPFC (BA44/45/insula), supramaginal 

gyrus, (Figure 5.15.a). These activations were found in both hemispheres. In terms of 

the basal ganglia, we only observed activations in the anterior putamen bilaterally 

(Figure 5.16a). These activations are similar to those found in retrieval prevention but 

slightly restricted spatially. Compared to the meta-analysis findings, the putamen 

activations are more lateral, which are usually conceptualised as part of the motor 

functional loop (e.g., Haber & Knutson, 2010). On one hand, the lateral putamen 

activity may be induced by the motor components in both the memory and motor 

inhibition tasks, as they both involve button-press responses. On the other hand, this 

lateral putamen activity may also contribute to cognitive control functions (Koster et al., 

2016), which may be less investigated in the literature. 
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Figure 5.15. Cortical Activations from Cancellation. The top row figures are 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate regions activated by A) cancelling memory retrieval, B) cancelling motor 

responses, and C) both. All activations were thresholded to FDR p<.05. 
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Figure 5.16. Basal ganglia activations during A) cancelling memory retrieval, B) 

cancelling motor responses, and C) both. For the caudate structure, yellow is 

caudate head, blue is caudate body, and green is caudate tail. All activations were 

thresholded to FDR p<.05. 

 

5.2.2.3.2 Retrieval Cancellation Did not Yield more Activations than Retrieval 

Prevention 

When we tried to isolate activations specific to retrieval cancellation through the 

retrieval cancellation>retrieval prevention contrast, we did not find any significant 

clusters (Figure 5.17a; Figure 5.18a). There could be a few explanations for this 

observation. First, it could be that retrieval prevention and cancellation engage similar 

neural mechanisms. This is unlikely as we have presented prevention-specific activity 

relative cancellation in section 5.2.2.2.2. Second, it may be that the Intrusion and Non-

intrusion trials did not distinctively reflect the cancellation and prevention processes, 

respectively. For example, although participants should ideally cancel an intrusion when 

an unwanted target came into mind, they might not always engage the cancellation 

process. During a Non-intrusion trial, apart from successfully preventing an unwanted 
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target from coming to mind, it is also possible that the participant has forgot the 

association and did not have to inhibit anything anymore. Finally, retrieval prevention 

and cancellation may engage specific basal ganglia pathways, which may be hard to 

detect with fMRI.  

 

Figure 5.17. Cortical Activations Specific to Cancellation. The top row figures are 

reference cortices overlaid with selected Brodmann areas. The bottom rows 

illustrate regions activated by A) cancelling>preventing memory retrieval, B) 

cancelling>preventing motor responses, and C) cancelling retrieval and motor 

responses>preventing retrieval and motor responses. All activations were 

thresholded to FDR p<.05. 
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Figure 5.18. Basal ganglia activations specific to A) cancelling memory retrieval, 

B) cancelling motor responses, and C) cancelling retrieval and motor 

responses>preventing retrieval and motor responses. For the caudate structure, 

yellow is caudate head, blue is caudate body, and green is caudate tail. All 

activations were thresholded to FDR p<.05. 

 

5.2.2.3.3 Cancelling Motor Responses Activated Frontoparietal and Basal Ganglia 

Regions Similar to the Meta-analysis 

Our meta-analysis showed that cancelling motor actions activated cortical regions 

including the right DLPFC, VLPFC, precentral gyrus, supramarginal/angular gyrus, and 

the cingulate. Our univariate analysis found a similar pattern of activations in the 

Delayed Stop>Go contrast (Figure 5.15b). These findings again suggest the importance 

of the frontoparietal network in motor inhibition. In particular, both the DLPFC and the 

VLPFC are involved, rather than just the VLPFC as usually emphasised in previous 

studies (Schmitz et al., in preparation). 
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In the basal ganglia, the meta-analysis found activations in the right caudate head/body, 

putamen, GPe, and bilateral STN. Here we observed largely identical activations in the 

caudate head, putamen, GPe, and STN, except these activations are all bilateral and the 

striatal activity seem to be more lateral (Figure 5.16b). As discussed earlier, although 

the meta-analysis only found significant activations in the right hemisphere, the input 

coordinates were from both hemispheres. The results may have been due to the ALE 

algorithm being more sensitive to clustering activity. In addition, there is a medial-

lateral gradient in the striatum, where the medial striatum is more often associated with 

learning and cognition, and the lateral striatum more often associated with sensorimotor 

functions (Haber & Knutson, 2010). We are observing lateral striatum activity in the 

univariate analysis possible due to motor cancellation engaging the sensorimotor loop of 

the basal ganglia system. 

5.2.2.3.4 Motor Cancellation Activated Little Basal Ganglia and no Prefrontal Cortex 

more than Motor Prevention 

Relative to motor prevention, motor cancellation yielded more activation in bilateral 

postcentral gyrus and some regions in the left parietal lobe (Figure 5.17.b). Activation 

of these sensorimotor regions may have arisen from the early motor processes, when 

participants were preparing for motor responses before hearing the stop signal. In the 

basal ganglia, there were limited activations in the left putamen and GPe (Figure 

5.18.b), suggesting that the indirect pathway may have been engaged for cancelling 

motor processes (Alexander et al., 1986; Kandel et al., 2012). 

5.2.2.3.5 Retrieval and Motor Cancellation Activated Frontoparietal Regions and the 

Putamen 

A conjunction analyses revealed increased activity primarily in the right DLPFC 

(BA9/46), VLPFC (BA44/45), preSMA (BA6/8), ACC (BA32) and the supramarginal 

gyrus (Figure 5.15.c). There were also small clusters of activation in the right insula and 

lateral putamen (Figure 5.16.c). These suggest that cancelling memory retrieval or 

motor responses largely engages the same network as preventing memory retrieval or 

motor responses. However, we have also shown that there are unique activations 

specific to the prevention processes (Section 5.2.2.2.6), indicating that there may be 

process-specific mechanisms in addition to the supramodal network of inhibition.  
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5.2.2.3.6 Cancellation Activated Frontal Regions more than Prevention, but not the 

Basal Ganglia 

To isolate neural mechanisms specific to cancellation, we tested the main effect of 

cancellation>prevention across the memory and motor domains through the contrast 

[Intrusion & Delayed Stop]>[Non-intrusion & Concurrent Stop]. We found that 

action/thought cancellation selectively activated bilateral precentral gyrus (BA6), left 

postcentral gyrus and medial frontal gyrus, but not in the basal ganglia (Figure 5.17.c; 

Figure 5.18.c). On one hand, these results suggest that cancellation may not engage the 

basal ganglia or the DLPFC, but rather involves more posterior frontal regions. On the 

other hand, as previously discussed, our cancellation and prevention conditions may not 

have solely invoked the corresponding cancellation and prevention processes, or they 

may engage different basal ganglia pathways that are hard to detect with fMRI. Finally, 

we did have fewer trials for cancellation than prevention in both memory and motor 

inhibition tasks. This may have caused the cancellation activities to be less robust and 

hence appear to be less extensive. 

5.2.3 DCM Results 

To investigate whether the basal ganglia regions are effectively involved in memory and 

motor inhibition, and whether cancellation and prevention processes excited different 

network dynamics, we conducted separate but parallel DCM analyses on the Combined 

Go/No-Go and Stop-signal task and the Think/No-Think task. Overall, we observed that 

both the DLPFC and the basal ganglia are effectively involved in memory and motor 

inhibition, achieving inhibition through task-specific pathways (hippocampus for 

memory inhibition, and M1 for motor inhibition). Specifically, motor inhibition is 

achieved through a basal ganglia-DLPFC-M1 pathway, while memory inhibition is 

achieved through a DLPFC-basal ganglia-hippocampus pathway. We also conducted 

BMA analyses to identify significant task modulations on particular pathways. 

5.2.3.1 BMS and BMA Results from the Step 1 DCMs 

Our Step 1 DCMs aimed to investigate whether the basal ganglia and the DLPFC are 

both required for memory and motor inhibition, and whether inhibition is achieved 

through task-specific pathways, such as to the hippocampus for memory inhibition and 

M1 for motor inhibition. Using BMA analyses, we explored the network dynamics in 
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the relevant pathways during the prevention and cancellation processes of memory and 

motor inhibition. 

5.2.3.1.1 Motor Inhibition Modulated DLPFC-M1 and Basal Ganglia-M1 Connectivity 

We used Bayesian Model Selection (BMS) to identify the winning model, i.e. model 

with the most evidence, from the model space illustrated in Figure 5.1. In BMS, the 

winning model is selected by the value of exceedance probability. The higher the 

exceedance probability a model has, the more likely that model is going to fit the data 

from a randomly selected subject. In the process of identifying the winning model, we 

first tested which of the putative supramodal regions (DLPFC, basal ganglia, or both) 

were effectively involved in stopping motor actions (Figure 5.19). BMS provided 

overwhelming evidence for the “both” family, with an exceedance probability of .9958. 

We then tested the pathway through which motor inhibition is achieved amongst the 

models that had DLPFC and basal ganglia involvement specified. We expected that the 

model involving M1 but not the hippocampus should win the most evidence. Indeed, 

BMS provided overwhelming evidence for the task modulation over the DLPFC- and 

basal ganglia-M1 pathways (exceedance probability=.9164). These results suggest that 

the DLPFC and the basal ganglia are both critical for suppressing motor responses in 

M1. Critically, the DLPFC and the basal ganglia do not modulate hippocampal activity 

during motor stopping.  
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Figure 5.19. Inhibitory Pathways of Effective Connectivity. The top panel shows 

the model spaces for the memory and motor inhibition DCMs. The bottom panel 

shows the exceedance probability from the hierarchical BMS analyses. D=DLPFC; 

BG=basal ganglia; H=hippocampus; M=M1. 

 

5.2.3.1.2 Motor Cancellation and Prevention were both Associated with Negatively 

Coupling from the DLPFC to M1, despite Significant Task-independent Connectivity 

between the Basal Ganglia and M1 

Furthermore, in order to examine the effect of prevention and cancellation processes in 

motor inhibition, we extracted DCM coupling parameters from the task independent 

(DCM.A) and modulatory (DCM.B) connections in the DLPFC-M1 and basal ganglia-

M1 pathways. We applied Bayesian model averaging (BMA) on the preferred “both” 

family, where the DLPFC and basal ganglia are both involved in inhibiting M1 during 
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motor control. From this model family, we extracted six parameters for each participant 

from the DLPFC-M1 and the basal ganglia-M1 pathways. These parameters include 1) 

the task-independent connectivity between the DLPFC and M1, and between the basal 

ganglia and M1, and 2) task modulation from the cancellation (Delayed Stop) and 

prevention (Concurrent Stop) conditions on the DLPFC-M1 and basal ganglia-M1 

pathways. The task-independent connectivity refers to how strongly two regions are 

associated at baseline level, when no task is being performed. The task modulation 

parameters represent how engaging in a certain task influences the connectivity between 

two regions. After extracting these parameters, we first tested whether the parameters 

differed significantly from zero using one-sample t-tests (Table 5.2). We found a 

significant task-independent connectivity between the basal ganglia and M1, t(29)=2.21, 

p=0.035, but not between the DLPFC and M1. In terms of task modulations, we found a 

marginally significant negative coupling from the DLPFC to M1 for motor cancellation, 

t(29)=-1.92, p=0.065), and a significant negative DLPFC to M1 coupling for motor 

prevention, t(29)=-3.23, p=0.003. Coupling parameters from the basal ganglia to M1 

were not significantly different from zero. Using a 2 (Pathway: DLPFC-M1 vs. basal 

ganglia-M1) by 2 (Inhibitory process: cancellation vs. prevention) repeated-measure 

ANOVA, we further tested if the top-down coupling parameters differed between 

pathways and inhibitory processes. We found a marginally significant main effect of 

Pathway, F(1,29)=3.13, p=0.087. The main effect of Inhibitory process or the 

interaction was also not significant. These results suggest that even though we observed 

significant task-independent connectivity between the basal ganglia and M1, there was a 

trend of greater negative coupling from the DLPFC to M1 than from the basal ganglia to 

M1 across the cancellation and prevention subprocesses of inhibitory control.  
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 DCM.A DCM.B 

 Task independent Cancellation Prevention 

DLPFC 

->M1 

-0.0939 

(0.8093) 

-0.388^ 

(1.1056) 

-0.7116** 

(1.2083) 

Basal Ganglia 

->M1 

0.2742* 

(0.6803) 

-0.0091 

(1.3818) 

-0.0645 

(1.3675) 

Table 5.2 Step 1 DCM Task independent and Modulatory Parameters for Motor 

Cancellation and Prevention. The values represent the mean with the standard 

deviation in parentheses. ^ denotes marginal significance; ** denotes p<.01. 

 

5.2.3.1.3 Memory Inhibition Modulated DLPFC-Hippocampus and Basal Ganglia-

Hippocampus Connectivity 

We followed the same steps to identify the winning model for the memory inhibition 

DCM using the hierarchical BMS analysis (Figure 5.19). We observed overwhelming 

evidence for models with both the DLPFC and basal ganglia involved (exceedance 

probability=.8870). We further tested the pathways to achieve memory inhibition, and 

found the model with DLPFC- and basal ganglia-hippocampus pathways to win the 

most evidence than models with M1. These findings suggest that the DLPFC and the 

basal ganglia are both critically involved in memory inhibition, and they modulate 

hippocampal rather than M1 activity during retrieval suppression. One concern with the 

current results is that the advantage of the “hippocampus” model (exceedance 

probability=.4725) was slim over the “M1” and “both” models. The M1 involvement 

may be due to the button pressing that is required after each Think/No-Think trial for 

the intrusion ratings. Participants may have prepared for the motor action during the 

trial, invoking M1 activity. 
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5.2.3.1.4 Retrieval Prevention was Associated with Positive Coupling from the Basal 

Ganglia to the Hippocampus, while Cancellation and Prevention were both Associated 

with Negative Coupling from the DLPFC to the Hippocampus  

Using similar methods to Section 5.2.3.1.2, we extracted DCM parameters from task-

independent connectivity (DCM.A) and task modulation (DCM.B) from the basal 

ganglia-to-hippocampus and the DLPFC-to-hippocampus pathways. We examined the 

effect of prevention and cancellation processes in memory inhibition by applying BMA 

to the “both” family, which reflects top-down modulation from both the DLPFC and the 

basal ganglia. The one-sample t-tests (Table 5.3) revealed significant task independent 

connectivity between the DLPFC and the hippocampus, t(29)=2.51, p=0.018, significant 

negative coupling from the DLPFC to the hippocampus during cancellation, t(29)=-

2.58, p=0.015, and during prevention, t(29)=-2.30, p=0.029. In addition, preventing 

memory retrieval also induced significant positive coupling between the basal ganglia 

and the hippocampus, t(29)=2.20, p=0.036. Using a 2 (Pathway: DLPFC-hippocampus 

vs. basal ganglia-hippocampus) by 2 (Inhibitory process: cancellation vs. prevention) 

repeated-measure ANOVA, we further tested if the top-down coupling parameters 

differed between pathways and inhibitory processes. We found a significant main effect 

of Pathway, F(1,29)=6.75, p=0.015, and marginally significant main effect of Inhibitory 

process, F(1,29)=3.74, p=0.063. However, the interaction was not significant. Taken 

together, these results suggest that memory inhibition is generally associated with 

negative coupling from the DLPFC to the hippocampus, but positive coupling from the 

basal ganglia to the hippocampus (particularly during a prevention condition). The 

opposite signs of the coupling parameters indicate that there may be a hierarchical 

relationship between the DLPFC and the basal ganglia to achieve retrieval prevention. 

We are going to probe this possibility with the second step DCM analyses. 
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 DCM.A DCM.B 

 Task independent Cancellation Prevention 

DLPFC 

->Hippocampus 

0.0731* 

(0.1593) 

-0.3605* 

(0.7649) 

-0.3609* 

(0.8583) 

Basal Ganglia 

->Hippocampus 

0.0286 

(0.1524) 

0.0205 

(0.7245) 

0.3534* 

(0.8816) 

Table 5.3 Step 1 DCM Task independent and Modulatory Parameters for Memory 

Cancellation and Prevention. The values represent the mean with the standard 

deviation in parentheses. * denotes p<.05; ^ denotes marginal significance. 

 

5.2.3.2 BMS and BMA Results from the Step 2 DCMs 

The foregoing DCM analyses provided evidence that both the DLPFC and basal ganglia 

are critical for memory and motor inhibition, and inhibition was achieved through task-

specific pathways (hippocampus for memory inhibition, and M1 for motor inhibition). 

In the following DCM analyses, we constructed a new model space that allowed us to 

examine how the DLPFC and basal ganglia interact to achieve inhibition in the task-

specific regions in a bilinear or nonlinear fashion. The bilinear models specified that 

either the DLPFC influences Basal Ganglia activity, or vice versa, before reaching the 

task-specific regions. The nonlinear models specified that either the DLPFC influences 

basal ganglia-hippocampal connectivity, or the basal ganglia influences the DLPFC-

hippocampal connectivity to achieve inhibition (Figure 5.2).  

5.2.3.2.1 DLPFC Serves as an Intermediary between Basal Ganglia and M1 in Motor 

Inhibition  

We first tested how the DLPFC and basal ganglia interact to achieve motor inhibition 

(Figure 5.20). Using BMS we found greater evidence for the bilinear than the nonlinear 

models (exceedance probability=.7588). We then tested whether the DLPFC was 

influencing the basal ganglia or vice versa. BMS showed greater evidence for the basal 

ganglia modulating DLPFC activity, which then inhibits M1 activity through top-down 
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modulations (exceedance probability=.7873). These findings support the indirect 

hypothesis, where motor inhibition engages a basal ganglia-DLPFC-M1 pathway in a 

stepwise fashion, suggesting a critical role of the basal ganglia in the cognitive control 

of motor actions. 

 

Figure 5.20. Bilinear vs Nonlinear Modulation of Inhibitory Control. The top panel 

shows the model spaces for the memory and motor inhibition DCMs. The bottom 

panel shows the exceedance probability from the hierarchical BMS analyses. 

D=DLPFC; BG=basal ganglia; H=hippocampus; M=M1. 

 

5.2.3.2.2 Motor Cancellation and Prevention were Associated with Significant 

Negatively Coupling from the DLPFC to M1, and Marginally Significant Negative 

Coupling from the Basal Ganglia to DLPFC 

Similar to the methods described in 5.2.3.1.2, we extracted DCM parameters from task-

independent connectivity (DCM.A) and task modulation (DCM.B) from the basal 

ganglia-to-DLPFC and the DLPFC-to-M1 pathways. We applied BMA on the “bilinear 

family”, where we specified bilinear modulation from the DLPFC to the basal ganglia 
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and vice versa. We found that for the modulatory parameters, motor stopping was 

associated with marginally significant negative coupling from the basal ganglia to 

DLPFC for cancellation, t(29)=-1.92, p=0.065, and significant DLPFC to M1 negative 

coupling for both cancellation, t(29)=-2.58, p=0.015, and prevention, t(29)=-2.35, 

p=0.026 (Table 5.4). These results again suggest that motor inhibition is achieved 

through DLPFC downregulation of M1 activity, during both cancellation and prevention 

conditions. However, as previously discussed, the cancellation and prevention processes 

may not have been as distinct as we assumed in our Concurrent and Delayed Stop 

conditions. Hence we need to take caution when interpreting these results. 

 DCM.A DCM.B 

 Task independent Cancellation Prevention 

Basal Ganglia 

->DLPFC 

0.0256 

(0.2477) 

-0.2581^ 

(0.7356) 

0.1191 

(1.1365) 

DLPFC 

->M1 

-0.0755 

(0.6941) 

-0.5363* 

(1.1365) 

-0.5963* 

(1.3923) 

Table 5.4 Step 2 DCM Task independent and Modulatory Parameters for Motor 

Cancellation and Prevention. The values represent the mean with the standard 

deviation in parentheses. ^ denotes marginal significance; * denotes p<.05. 

 

5.2.3.2.3 Basal Ganglia Served as an Intermediary between the DLPFC and the 

Hippocampal in Memory Inhibition 

Here we tested how the DLPFC and basal ganglia interact to achieve memory inhibition 

(Figure 5.20). Using BMS, we found overwhelming evidence for models with bilinear 

modulation between the DLPFC and the basal ganglia during memory inhibition 

(exceedance probability=1). Furthermore, there was overwhelming evidence that the 

DLPFC influences basal ganglia activity (exceedance probability=.9236) which then 

inhibits hippocampal activity during memory inhibition. These findings support the 

intermediary hypothesis, and suggest that memory inhibition engages a DLPFC-basal 

ganglia-hippocampus pathway in a stepwise fashion, suggesting a critical role of the 

basal ganglia in retrieval suppression. However, the DCM does not provide information 
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regarding the anatomical connections through which the functional interactions are 

achieved. We hoped to use diffusion weighted imaging to explore that question, as we 

will discuss in Chapter 6. 

5.2.3.2.4 Memory Inhibition was Associated with Marginally Significant Negative 

Coupling from the Basal Ganglia to the Hippocampus 

Using similar methods to 5.2.3.1.2, we extracted DCM parameters from task-

independent connectivity (DCM.A) and task modulation (DCM.B) from the basal 

ganglia-to-hippocampus and the DLPFC-to-hippocampus pathways. According to the 

BMA results (Table 5.5), retrieval suppression is associated with marginally significant 

negative coupling from the basal ganglia to the hippocampus for both cancellation, 

t(29)=-2.00, p=0.055, and prevention, t(29)=-1.92, p=0.065. The task independent and 

other coupling parameters were not significantly different from zero. These results 

suggest that the basal ganglia-to-hippocampus coupling may be more relevant for 

retrieval suppression than the DLPFC-to-basal ganglia coupling, although this 

difference is not significant. It is worth noting that these BMA results suggest negative 

coupling from the basal ganglia to the hippocampus, while the BMA presented in 

5.2.3.1.4 showed positive coupling. The opposite signs in the coupling parameter may 

be due to different DCM model specification. In the Step 1 DCM analysis, we 

compared models with task modulations to both the hippocampus and M1, and did not 

find an overwhelming winner. We discussed that the button pressing component for the 

intrusion rating may have contributed to the M1 involvement. Hence, in the Step 2 

DCM, we assumed that memory inhibition should only concern the hippocampus, and 

did not specify any task modulations to M1. The differences in model structures may 

have influence the BMA outcome. According to Rowe et al. (2010), DCM parameter 

estimates have lower test-retest reliability than BMS, even when the same model space 

is being tested. Here we have vastly different model structures, and hence need to be 

extra cautious when interpreting the BMA results  
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 DCM.A DCM.B 

 Task independent Cancellation Prevention 

DLPFC->Basal 

Ganglia 

-0.0035 

(0.1898) 

-0.3038 

(1.0531) 

0.01559 

(0.8815) 

Basal Ganglia 

->Hippocampus 

0.0081 

(0.1862) 

-0.2614^ 

(0.7148) 

-0.2717^ 

(0.7763) 

Table 5.5. Step 2 DCM Task independent and Modulatory Parameters for 

Memory Cancellation and Prevention. The values represent the mean with the 

standard deviation in parentheses. ^ denotes marginal significance. 

 

5.2.4 Relating Behavioural Performance to Effective Connectivity 

In order to relate behavioural performance to effective connectivity, we correlated DCM 

coupling parameters with behavioural measures. For motor inhibition, we correlated 

DCM coupling parameters with SSRT. For memory inhibition, we used SIF as an 

indicator of the overall ability to suppress unwanted memories, possibly reflecting the 

combined effort of cancellation and prevention processes. We also used the slope of 

intrusion reduction as an indicator for the ability to overcome intrusions during 

suppression practice, possibly reflecting cancellation-specific processes. Our correlation 

analyses were conducted using the Robust Correlation Toolbox (Pernet et al., 2013). 

Bivariate outliers were removed from the analyses. 

5.2.4.1 Relating Step 1 DCM Parameters to Behaviour 

In the first DCM analysis, we found that both the DLPFC and the basal ganglia are 

involved in inhibition, and they down-regulate the task-specific pathways to achieve 

inhibition in the memory and motor domains. Results from our correlation analyses are 

shown in Table 5.6. 
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Task Pathway Behavioural Correlates Cancellation Prevention 

Motor 

Inhibition 

Basal Ganglia -> 

M1 
SSRT 0.08 0.16 

DLPFC -> M1 SSRT -0.11 0.30^ 

Memory 

Inhibition 

Basal Ganglia -> 

Hippocampus 

Slope 0.02 -0.17 

SIF 0.02 0.42* 

DLPFC -> 

Hippocampus 

Slope -0.41* -0.14 

SIF 0.09 -0.07 

Table 5.6. Correlation coefficients between the coupling parameters from the Step 

1 DCM and behavioural indices from the memory and motor inhibition tasks. 

SIF=suppression-induced forgetting; Slope=slope of intrusion reduction; 

SSRT=stop signal reaction time; * denotes significant correlations; ^ denotes 

marginal significance. 

 

5.2.4.1.1 Basal Ganglia-to-hippocampus Coupling during Retrieval Prevention 

Positively Correlated with SIF 

First, we found a significant positive correlation between SIF and the positive coupling 

from the basal ganglia to the hippocampus during retrieval prevention (r=.42, p=.033). 

This shows that a stronger up-regulation from the basal ganglia to the hippocampus 

during retrieval prevention is associated with greater suppression-induced forgetting. 

These results suggest that the basal ganglia may play an active role in proactive memory 

inhibition. The positive correlation may be that if engaging the basal ganglia 

successfully prevents retrieval of unwanted targets, inhibiting hippocampal activity will 

no longer be necessary. However, the fact that we found negative coupling between the 

basal ganglia and the hippocampus during prevention in our Step 2 DCM analysis made 

the role of the basal ganglia puzzling. As discussed before, DCM parameter estimates 

have lower test-retest reliability and may be influenced by other factors such as the 

DCM model structure (Rowe et al., 2010).  
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5.2.4.1.2 DLPFC-to-hippocampus coupling during Retrieval Cancellation Negatively 

Correlated with Slope of Intrusion Reduction  

Second, we found a significant negative correlation between the negative coupling from 

the DLPFC to the hippocampus during retrieval cancellation and the slope of intrusion 

reduction (r=-.41, p=.038). This means that a steeper slope of intrusion reduction is 

associated with less negative DLPFC-to-hippocampus coupling during cancellation. 

This may seem counter-intuitive, as one may predict that there should be stronger top-

down negative coupling as participants become more successful at retrieval suppression, 

reflected by reduced amounts of intrusions (Gagnepain et al., 2017). However, it is 

possible that as participants get better at suppressing unwanted thoughts, they require 

less downregulation from the DLPFC to achieve inhibition. Therefore, the better 

participants can overcome intrusions, the less DLPFC downregulation they may need. 

For example, Roland et al. (2014) observed decreased negative coupling between the 

DLPFC and the hippocampus as the Think/No-Think phase progressed. The slope of 

this decrement also predicted intrusion regulation. These findings suggest that as 

unwanted targets become less intrusive due to repeated practice of retrieval suppression, 

they become to require less control. 

5.2.4.1.3 DLPFC-to-M1 Coupling during Motor Prevention Shows a Marginally 

Positive Correlation with SSRT 

Finally, we observed a weak trend for positive correlation between the negative 

coupling from the DLPFC to M1 during motor prevention and SSRT (r=.30, p=.11). 

This indicates that the more negative the coupling from the DLPFC to the M1, the faster 

SSRT would be, showing that the DLPFC down-regulation of M1 may be an important 

contribution to preventing unwanted motor actions. The weak correlation may be due to 

the indirect connections between the DLPFC and M1, some of which may not be 

specific to motor inhibition. Future studies could focus more on which specific 

pathways between the DLPFC and M1 are recruited to achieve motor stopping. 

It is worth noting that we did not find any significant correlation between the coupling 

parameters during motor cancellation and SSRT. It could mean that motor inhibition 

may predominantly require prevention processes than cancellation. For example, when 

participants successfully stopped on a Delayed Stop trial, it is possible that they have 

waited to hear the stop tone instead of immediately engaging motor processes. Although 
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we have explicitly instructed participants not to adopt this waiting strategy, and they 

should always respond as quickly as possible when seeing a stimulus, we are not able to 

differentiate this objectively in the current experiment. Future studies could use 

classification techniques (such as multivariate pattern analysis) to detect when 

participants are preventing or cancelling motor responses and provide more insights to 

which is more important for achieving motor inhibition. 

5.2.4.2 Relating Step 2 DCM Parameters to Behaviour 

In the second DCM, we tested the interaction between the DLPFC and the basal 

ganglia, and found that memory inhibition is achieved through a DLPFC-basal ganglia-

hippocampus pathway, while motor inhibition is achieved through a Basal ganglia-

DLPFC-M1 pathway. Results from our correlation analyses are shown in Table 5.7.  

 

Task Pathway Behavioural Correlates Cancellation Prevention 

Motor 

Inhibition 

Basal Ganglia -> 

DLPFC 
SSRT -0.08 0.32 

DLPFC -> M1 SSRT 0.27 0.48* 

Memory 

Inhibition 

Basal Ganglia -> 

Hippocampus 

Slope 0.18 0.12 

SIF -0.15 0.23 

DLPFC -> Basal 

Ganglia 

Slope 0.10 0.31^ 

SIF 0.31^ -0.02 

Table 5.7. Correlation coefficients between the coupling parameters from the Step 

2 DCM and behavioural indices from the memory and motor inhibition tasks. 

SIF=suppression-induced forgetting; Slope=slope of intrusion reduction; 

SSRT=stop signal reaction time; * denotes significant correlations; ^ denotes 

marginal significance. 
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5.2.4.2.1 Marginally Significant Positive Correlation between the DLPFC-to-basal 

ganglia Coupling during Prevention and Slope of Intrusion Reduction, and during 

Cancellation and SIF 

During retrieval prevention, we observed a marginally significant positive correlation 

between the DLPFC-to-basal ganglia coupling and the slope of intrusion reduction 

(r=.31, p=.099). This means that a steeper slope of intrusion reduction is associated with 

more positive coupling from the DLPFC to the basal ganglia, suggesting that 

suppressing intrusions may be achieved through the DLPFC engaging the basal ganglia 

system to prevent intrusions from taking place. Specifically, the basal ganglia indirect 

and hyperdirect pathways may have been recruited to downregulate hippocampal 

activity, through the negative basal ganglia-hippocampal coupling shown from the Step 

2 BMA results. However, as we have discussed previously, we need to take caution 

when interpreting these results due to the limited reliability of DCM parameter 

estimates. In addition, this DLPFC-to-basal ganglia coupling was also marginally 

correlated with SIF during retrieval cancellation (r=.31, p=.096), suggesting that 

memory inhibition is associated with less negative DLPFC regulation of basal ganglia 

activity. This may again allow the basal ganglia to engage the indirect or hyperdirect 

pathways to inhibit hippocampal activity to achieve memory inhibition. As presented in 

Section 5.2.3.2.4, there exists marginally significant negative coupling from the basal 

ganglia to the hippocampus during retrieval cancellation. These pieces of evidence 

suggest that the DLPFC-basal ganglia pathway may be critical for both retrieval 

cancellation and retrieval prevention, supporting the possibility that these supramodal 

regions are responsible for inhibition across processes in the memory domain.  

5.2.4.2.2 During Prevention, SSRT Significantly Correlated with DLPFC-to-M1 

Coupling, and Marginally Correlated with Basal Ganglia-to-DLPFC Coupling 

In terms of motor inhibition, we found a significant positive correlation between SSRT 

and the negative DLPFC-to-M1 coupling during prevention (r=.48, p=.007), showing 

that better motor stopping (as indicated by faster SSRT) is associated with more 

negative DLPFC-to-M1 downregulation. We also observed a similar relationship 

between SSRT and the positive basal ganglia-to-DLPFC coupling, although this 

correlation did not reach significance (r=.32, p=.082). This means that faster SSRT is 

associated with less positive coupling from the basal ganglia to the DLPFC during 

prevention. This finding seems counterintuitive as one may expect basal ganglia 
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upregulation of the DLPFC, which then downregulates M1 activity to achieve motor 

inhibition. It may also be the case that as participants become perfected at preventing 

motor responses, the basal ganglia become disengaged from the process as stopping 

becomes more automatic. Future studies could look into how the network dynamic 

between the DLPFC and the basal ganglia changes at different stages in the motor 

inhibition tasks. 

Our findings provide evidence for the importance of the DLPFC in motor inhibition, in 

addition to the VLPFC as usually emphasised in the literature (e.g., Schmitz et al., 

accepted). It is unclear from these results the exact role of the basal ganglia in motor 

inhibition, as we did not observe significant correlations between coupling parameters 

in the basal ganglia pathways with the behavioural index of motor stopping (SSRT). As 

discussed previously, this could be that our Concurrent and Delayed Stop conditions did 

not exclusively reflect the prevention and cancellation processes, and hence adding 

confounds to our analyses. Alternatively, it could also be due to the lack of reliability in 

DCM parameter estimates. Finally, the current basal ganglia ROI only included the 

striatum and GPe, while the prevention process may also engage the hyperdirect 

pathway through the STN. It is possible that we need to improve our DCM model 

structure to better encapsulate all pathways and processes in the basal ganglia system.  

5.3 Discussion 

The current fMRI study investigated the role of the basal ganglia in memory and motor 

inhibition, and whether there are distinct neural mechanisms underlying different 

subprocesses of inhibition, such as prevention and cancellation. To answer these 

questions, we conducted a two-session fMRI experiment. Participants performed the 

Combined Go/No-Go and Stop-signal task in the first session, and the adapted 

Think/No-Think task with intrusion rating in the second session. We first examined if 

we successfully replicated typical findings from memory and motor inhibition 

paradigms through behavioural and univariate fMRI analyses. We then conducted a 

series of conjunction and contrast analyses to reveal distinct patterns of activations from 

prevention and cancellation inhibitory processes. Finally, we used effective connectivity 

analyses to investigate the specific network dynamics underlying the inhibition of 

memory retrieval or motor actions during prevention and cancellation processes, and 
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related effective connectivity to behaviour. Our key observations and their implications 

are discussed below. 

5.3.1 Our Behavioural Findings Largely Conform with Previous Literature 

Behaviourally, we replicated previous findings from the Think/No-Think paradigm by 

observing a significant effect of suppression-induced forgetting (SIF) and retrieval-

induced facilitation. These results indicate that participants were able to initiate or 

inhibit memory retrieval using cognitive control. In addition, we found a significant 

correlation between the magnitude of SIF and the rate of intrusion reduction, showing 

that the better people can eliminate intrusions during the Think/No-Think phase, the 

more they can suppress unwanted targets overall. Finally, we found significant 

differences between the RTs of responding to intrusion rating across the Think, 

Intrusion, and Non-intrusion conditions. This could be a by-product from when people 

decide on their rating responses and start to prepare for the button press. Alternatively, 

it is possible that since memory and motor control may require similar mechanisms, 

inhibiting one may impair the response in the other.  

In the motor inhibition task, we observed a relatively prolonged SSRT as compared to 

previous studies. As discussed previously, this slowed SSRT may be due to prolonged 

Go RT from the complexity of the button-mapping paradigm, or the uncertainty of 

timing from the jittered ISI. Although memory and motor inhibition performance was 

shown to be related (Schmitz et al., in preparation), this relationship was absent in the 

current study. It is possible that the jittered ISI added variance to participants’ 

performances, and hence made the relationship less clear.  

5.3.2 Univariate Analyses Revealed Similar Activations during Memory 

and Motor Inhibition as the Meta-analysis 

Our univariate analyses successfully replicated previous findings. On one hand, we 

observed overlapping activations from memory and motor inhibition in the DLPFC, 

VLPFC, preSMA, ACC, the supramarginal/angular gyrus, and the basal ganglia more 

extensively in the right hemisphere. These activations are identical to findings from the 

meta-analysis, again providing evidence for the supramodal network of inhibition. On 

the other hand, we observed domain-specific deactivation in the task-relevant structures. 
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For example, we observed reduced activity in the hippocampus during retrieval 

suppression and in M1 during motor stopping. These results are consistent with Schmitz 

et al. (in preparation), and suggest that inhibition may be achieved locally at the task-

specific regions, which receive control signals from the putative supramodal regions 

such as the DLPFC and basal ganglia..  

5.3.3 Prevention and Cancellation Share Largely Overlapping Activations 

with some Discrepancies 

One of the major goals of this fMRI study is to compare if prevention and cancellation 

processes engage distinct neural mechanisms, especially in the basal ganglia. According 

to the meta-analysis, we hypothesised two possible alternatives. First, prevention and 

cancellation may activate different parts of the brain to achieve inhibition, since the 

meta-analysis revealed left basal ganglia activity during prevention, and right basal 

ganglia activity during cancellation. However, this lateralisation effect may be 

accounted for by constraints of the ALE algorithm. Therefore, it is also possible that the 

cancellation and prevention processes may activate similar regions in the brain. If this is 

the case, these distinct subprocesses of inhibitory control may require similar 

commands from the supramodal regions, but different downstream mechanisms. For 

example, prevention may primarily require the hyperdirect pathway, while cancellation 

may primarily require the indirect pathway (e.g., Schroll & Hamker, 2013). 

Our findings largely agree with the second possibility that cancellation and prevention 

processes share overall control mechanisms from the putative supramodal regions, but 

may require distinct process-specific mechanisms to achieve inhibition. On one hand, 

prevention and cancellation both activated regions similar to those found in the meta-

analysis, including the DLPFC, VLPFC, preSMA, and the supramarginal/angular gyrus, 

and the basal ganglia. This is evidence that prevention and cancellation share neural 

mechanisms, and that the putative supramodal network is not only engaged across tasks 

but also across inhibitory processes. On the other hand, in addition to the supramodal 

regions, prevention and cancellation also activated distinct regions in the brain, possibly 

suggesting that the two processes are achieved through different pathways or 

mechanisms. We will discuss the cortical and basal ganglia findings separately in the 

following paragraphs. 
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On the cortical level, prevention activated the parahippocampal gyrus, visual cortices 

and inferior temporal regions more than cancellation. These activations are primarily 

from the difference between memory prevention and cancellation rather than from the 

motor task (Figure 5.13). The parahippocampal gyrus includes the entorhinal cortex, 

which provides major inputs into the hippocampus. According to the entorhinal gating 

hypothesis (Anderson et al., 2016), memory inhibition may be achieved by the ACC 

modulating entorhinal activity through inhibitory neurons. Inhibiting inputs from the 

entorhinal cortex to the hippocampus may contribute to the successful prevention of 

memory retrieval. Meanwhile, cancellation activated bilateral precentral gyrus, left 

postcentral gyrus and medial frontal gyrus more than prevention. As shown in Figure 

5.17, these activations are primarily from the difference between motor cancellation and 

motor prevention rather than from the memory task. It is possible that neural 

mechanisms specific to cancellation are more pronounced in motor inhibition than 

memory inhibition on the cortical level. Alternatively, activity in the sensorimotor 

cortices during cancellation may have arisen due to the emerging motor responses 

before the stop signal was presented. Overall, our cortical findings revealed stronger 

activity from the prevention process during memory inhibition, but from the 

cancellation process during motor inhibition. These results suggest that memory and 

motor inhibition may require different subprocesses. However, this preference of 

activity may have been due to an unbalanced amount of trials for the prevention and 

cancellation conditions in each task. In the adapted Think/No-Think task, due to the 

significant reduction of intrusions during the Think/No-Think phase, prevention may 

have become predominant as the amount of Non-intrusion trials increases. In the 

Combined Go/No-Go and Stop-signal task, there are twice as many Delayed Stop trials 

than Concurrent Stop trials, possibly resulting in more robust activations for 

cancellation.  

In the basal ganglia, we observed little activity that is unique to the cancellation or 

prevention processes. Prevention activated small regions in the left caudate and bilateral 

anterior putamen, but these activations were primarily from retrieval prevention rather 

than motor prevention. Cancellation, on the other hand, did not activate the basal 

ganglia more than prevention. On one hand, this preference of activity may be due to an 

unbalanced amount of trials in each task. On the other hand, the lack of difference 
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between cancellation and prevention may be accounted for by the design of the current 

experiment. As briefly discussed in Section 5.2.4, although we have tried to distinguish 

the cancellation and prevention processes through our experimental manipulations, this 

may not have been perfectly achieved. If so, it would be hard to detect differences 

between these processes. In addition, it is also possible that our current technique is not 

sensitive enough to the activity of different basal ganglia pathways, since they involve 

intricate connections between small subcortical nuclei. For example, of the 16 

Think/No-Think, 30 Go/No-Go, and 39 Stop-signal studies that we included in the 

meta-analysis, only less than 1/3 of them reported basal ganglia activity. Future studies 

should adopt methods with higher spatial resolution to capture the involvement of these 

fine basal ganglia structures in memory and motor inhibition tasks. 

5.3.4 DLPFC and the Basal Ganglia Interact in Different Ways to Achieve 

Inhibition at the Task-specific Regions 

To investigate whether the basal ganglia regions are effectively involved in inhibitory 

control and the different network dynamics required by prevention and cancellation, we 

conducted DCM analyses and examined the coupling parameters from task 

modulations. Findings from the Step 1 DCMs were consistent with our hypothesis. We 

observed overwhelming evidence that both the DLPFC and the basal ganglia are 

effectively involved in stopping unwanted thoughts or actions. In the motor DCM, there 

was strong evidence for task modulation on the domain-specific pathways to M1. In the 

memory DCM, this evidence on the domain-specific pathways to the hippocampus was 

slim. This is slightly different from the findings from Schmitz et al. (accepted), who 

found overwhelming evidence for task modulation on the domain-specific pathways in 

both memory and motor inhibition. This inconsistency may be due to the additional 

intrusion ratings in our design. It is possible that the model evidence accumulated for 

the pathways to M1 since participants had to press buttons for the intrusion ratings after 

each trial in the Think/No-Think phase. 

In the Step 2 DCMs, we tested how the DLPFC and basal ganglia interact to achieve 

inhibition at the task-specific regions. We had three alternative hypotheses for the 

interaction:  
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1. The intermediary hypothesis – the basal ganglia are an intermediary between the 

DLPFC and the task-specific regions; 

2. The modulation hypothesis – the basal ganglia modulate the connectivity 

between the DLPFC and the task-specific regions; 

3. The indirect hypothesis – the basal ganglia interact with the task-specific regions 

indirectly through the DLPFC. 

Our results showed that the indirect hypothesis fit with motor inhibition, as there was 

overwhelming evidence for the task modulation through a basal ganglia-DLPFC-M1 

pathway. It is possible that output from the basal ganglia system projects to the DLPFC 

via the thalamus. The DLPFC may then down-regulate M1 activity through the preSMA 

and the SMA to achieve motor inhibition (Bracht et al., 2012; Rowe et al., 2010). On 

the other hand, the intermediary hypothesis fit with memory inhibition, as we found 

overwhelming evidence for the task modulation through a DLPFC-basal ganglia-

hippocampus pathway. After receiving control signals from the DLPFC through direct 

projections, the basal ganglia may commute with the hippocampus via the thalamus 

through the cingulum bundle (e.g., Aggleton, 2014). 

In addition to alluding to the possible anatomical pathways underlying memory and 

motor inhibition, these DCM results also provided strong evidence that the basal ganglia 

and the hippocampus are not independent, unlike what was suggested by Döller et al. 

(2008). Rather, the basal ganglia effectively interact with the hippocampus to keep the 

unwanted target out of mind in the context of retrieval suppression. There has been 

some evidence on how the basal ganglia may regulate hippocampal activity. As 

reviewed in Section 2.4, Sabatino and colleagues found that, in cats, stimulation of the 

caudate nucleus inhibits hippocampal spikes (La Grutta et al., 1985; Sabatino et al., 

1985), while stimulation of the pallidum induced generalised seizure activity (Sabatino 

et al., 1986). Berke et al. (2004) also found that neurons from the ventral and medial 

striatum entertain hippocampal theta in rats. 

5.3.5 Motor Inhibition is Associated with the DLPFC-to-M1 Pathway  

After identifying the most likely models in memory and motor inhibition, we examined 

how effective connectivity was related to behaviour performance. To do so, we 

extracted DCM coupling parameters from the relevant pathways, and correlated them 
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with behavioural indices. In the context of motor inhibition, from the Step 1 DCM, we 

found that although there is significant positive task-independent connectivity between 

the basal ganglia and M1, it is the DLPFC-to-M1 pathway that is significantly 

negatively modulated by motor inhibition. It is possible that the basal ganglia are 

critical for motor control in general, but inhibiting unwanted actions requires the 

DLPFC more than the basal ganglia. Indeed, when correlating DCM coupling 

parameters with motor inhibition, we found a marginally significant positive correlation 

between the negative DLPFC-to-M1 coupling during prevention and SSRT. The 

correlation between the basal ganglia-to-M1 coupling and SSRT was not significant. 

These results suggest that the DLPFC down-regulation of M1 plays a causal role in 

preventing motor responses. Although the basal ganglia are critical for motor control, 

they may not directly interact with M1 to prevent motor actions. 

We found similar results in the Step 2 DCM, where we further probed the interactions 

between the DLPFC and the basal ganglia in their relations to M1. We found that while 

the task modulation was significantly negative for the DLPFC-to-M1 pathway during 

both cancellation and prevention, this negative modulation was only marginally 

significant for the basal ganglia-to-DLPFC pathway during cancellation. In addition, the 

negative DLPFC-to-M1 coupling significantly correlated with SSRT during prevention. 

These findings again suggest that the DLPFC may be more involved in motor inhibition 

than the basal ganglia. However, the lack of involvement of the basal ganglia may have 

resulted from relatively liberal basal ganglia ROIs. For the DCM analyses, we extracted 

the top 40% most active voxels from the anatomically defined basal ganglia ROI for 

each participant. We expected that our ROIs from the memory and motor inhibition 

tasks should represent the corresponding functional zones in the basal ganglia. 

Unfortunately, the resulting ROIs appeared to have encompassed the entire structure 

(Figure 5.21). This liberal ROIs may have introduced basal ganglia functions that are 

not specific to memory and motor inhibition, adding confounds to the DCM results. In 

the future, we can revise the basal ganglia ROIs to be more stringent (e.g., extracting 

only the top 10% most active voxels), and see if the extracted ROIs from memory and 

motor inhibition will be more specific to the corresponding functional zones. If so, 

using these new ROIs for the DCM analyses may improve the interpretability of the 

results. 
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Figure 5.21. Aggregated Basal Ganglia ROIs used in the Stop-signal and 

Think/No-Think DCMs. For each participant, we extracted the top 40% most 

activated voxels in the combined basal ganglia ROI (including caudate head and 

body, putamen, and GPe) from the Stop>Go contrast for motor inhibition, and the 

No-Think>Think contrast for memory inhibition. We aggregated the individual 

basal ganglia ROIs for display in this figure 

5.3.6 Memory Inhibition is associated with both DLPFC-hippocampus and 

Basal Ganglia-hippocampus Pathways 

As for memory inhibition, from the Step 1 DCM, we found significant positive task-

independent and negative task-modulated connectivity for the DLPFC-to-hippocampus 

pathway, indicating a causal role of the DLPFC in down-regulating hippocampal 

activity to achieve memory inhibition. In addition, this negative coupling from the 

DLPFC to the hippocampus significantly negatively correlated with the slope of 

intrusion reduction during cancellation. This provides further evidence that the DLPFC 

is actively involved in suppressing unwanted intrusions by inhibiting hippocampal 

activity. For the basal ganglia-to-hippocampus pathway, there was only a significant 

positive modulation during prevention, and this positive coupling is positively 
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correlated with SIF. These findings may be counterintuitive as they suggest that 

retrieval suppression is associated with the basal ganglia up-regulating hippocampal 

activity. However, according to previous research, hippocampal activity is not different 

from baseline during Non-intrusion trials (e.g. Levy & Anderson, 2012), and that 

preventing retrievals may be achieved by inhibiting inputs to the hippocampus 

(Anderson et al., 2016). Therefore, although it may appear that the basal ganglia causes 

increased hippocampal activity during retrieval prevention, it is possible that engaging 

the basal ganglia is already sufficient for preventing unwanted retrievals, sparing the 

need to suppress hippocampal activity to achieve inhibition. Alternatively, these results 

may be similarly influenced by the relatively liberal basal ganglia ROIs (Figure 5.21). 

Constraining the ROIs may clarify the DCM results. 

In the Step 2 DCM, we only observed marginally significant positive correlations 

between the negative DLPFC-to-basal ganglia coupling during cancellation and SIF, 

and the slightly positive DLPFC-to-basal ganglia coupling during prevention and the 

slope of intrusion reduction. These show that the negativity of DLPFC-to-basal ganglia 

coupling is associated with greater retrieval suppression in general. It may be that 

reduced DLPFC down-regulation of basal ganglia activity led to increased activity in 

the indirect pathway, which in turn inhibits memory retrieval in the hippocampus 

(Scimeca & Badre, 2012). 

Overall, there was a trend that the DLPFC-basal ganglia effective connectivity is 

associated with both memory and motor inhibition, pointing to the possibility that the 

interactions between the DLPFC and the basal ganglia are critical for achieving 

supramodal inhibitory control. The association between task-specific connectivity and 

behaviour was less clear. In Step 2 DCMs, while we observed significant positive 

correlation between the DLPFC-to-M1 coupling during prevention and SSRT, the 

correlations between the basal ganglia-to-hippocampus coupling and behaviour were 

not significant. As pointed out earlier, we need to take caution when interpreting DCM 

parameter estimates, as they are not as reliable as BMS. The current results may have 

been influenced by our experimental design, the DCM model structure, or the ROI 

definition. Refinement in these respects may help clarify the BMA results. 
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5.3.7 Limitations and Future Directions 

We have briefly mentioned that there is a few things we could improve in this fMRI 

study. First of all, we could further optimise our experimental design. Although we 

aimed to investigate the role of the basal ganglia in memory and motor stopping, the 

memory and motor tasks may not perfectly isolate memory and motor stopping 

processes in our current design. On one hand, there may be a motor component in the 

memory task, since the participants have to provide intrusion ratings through a button 

press after each trial in the Think/No-Think phase. Although the button press only takes 

place after the Think/No-Think trials, it is possible that participants have already started 

preparing for the motor responses during the trials. For example, in the Step 1 memory 

DCM, although there was strong evidence for both the DLPFC and the basal ganglia 

being involved in memory inhibition, whether they are interacting with M1, 

hippocampus, or both was unclear. The DLPFC-M1 and the basal ganglia-M1 

connectivity may have arisen due to the preparation of motor responses. On the other 

hand, there may be a memory component in the motor task, as participants had to learn 

colour-button mapping between four colours and two buttons. .  

Future studies should try to make the memory and motor tasks as pure as possible. For 

example, to remove the motor component from the memory task, we could try to find a 

more objective method to distinguish Intrusion and Non-intrusion trials instead of 

asking for subjective ratings from the participants. For example, with fMRI, we could 

use a classification approach to identify the neural activity associated with each stimulus 

(e.g. Wimber et al., 2015), and detect whether unwanted targets have intruded into mind 

by monitoring the item-specific activity. To remove the memory component from the 

motor task, we could simplify the Combined Go/No-Go and Stop-signal task to involve 

only one button. Participants would always press the button when seeing the stimuli, 

unless when a stop signal is presented. To match it better with the Think/No-Think task, 

where all stimuli are visually presented, we could change the auditory stop signal in the 

motor task to a different visual stimulus. Using visual stop signals can also help rule out 

auditory neural responses from motor inhibition. For example, we could have blue and 

yellow coloured circles. Participants could be trained to respond to blue circles for the 

Go trials. However, they need to stop pressing buttons whenever they see a yellow 

circle. For the No-Go trial, the yellow circle will be presented straight away. For the 
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Stop trial, the yellow circle will replace the blue circle after a delay. Using these “purer” 

paradigms, we would hope to further clarify the DCM results in identifying task-

specific pathways. On the univariate level, we may also be at a better position to 

identify distinct basal ganglia activations between the memory and motor tasks. 

In addition, there may be alternative ways for defining the basal ganglia ROI. For 

example, we based our ROI definition on the meta-analysis, which revealed activations 

in the caudate head and body, putamen, and GPe. We therefore defined our basal 

ganglia region by combining the caudate head and body, putamen, and GPe. However, 

others may disagree with this decision: 1) although there are feedforward and 

feedbackward projections between the striatum and the GPe, the classic basal ganglia 

model posits the GPe to be downstream from the striatum. Therefore, some may prefer 

to exclude the GPe from our ROI and model it separately. And 2) the meta-analysis may 

not have revealed all activity that is related to memory and motor inhibition, due to the 

constraints of coordinate-based meta-analytic approaches that we discussed in Chapter 

3. For example, many have confirmed the importance of the STN, part of the basal 

ganglia hyperdirect pathway, in motor inhibition. However, STN activity is not always 

reported, possibly due to the small size of the structure. Therefore, our basal ganglia 

ROI may not have represented all basal ganglia mechanisms that are engaged in 

memory and motor inhibition. Moreover, as discussed earlier, our basal ganglia ROIs 

may be overly liberal by size. Constraining the ROIs may help clarify our results.  

Finally, there may be ways to improve our DCM model structure. We specified the 

current model structure, so that we could 1) test the hypothesis that the basal ganglia are 

part of the supramodal network of inhibition in that they are involved in both memory 

and motor stopping, and that they contribute to inhibition through task-specific 

pathways instead of task-irrelevant pathways; and 2) investigate how the basal ganglia 

interact with other putative supramodal regions (e.g., DLPFC) before reaching the 

downstream task-specific regions. Since we ran separate DCMs on the memory and 

motor inhibition tasks, we kept the model structures consistent (including the DLPFC, 

basal ganglia, hippocampus, and M1 nodes), but only switching the modulatory and 

driving inputs to the corresponding task. However, this may be problematic as we have 

included presumably task-irrelevant information in the model structure, which could 

skew model evidence and influence our results. For example, in the motor task, we 
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would not hypothesise hippocampal involvement; in a pure memory task, we would not 

expect M1 involvement. In addition, for some model or family comparisons, we would 

be comparing between a plausible and a theoretically unlikely model, which may not 

provide useful information for our inferences. Therefore, in addition to refining 

experimental design and ROI definition, we may also need to reconsider the most 

appropriate DCM model structure for our purposes. One option would be to reduce the 

number of nodes, and include only the DLPFC, basal ganglia, and the task-specific 

region. 

Despite the above limitations, we believe that our DCM modelling presents some 

important initial evidence that the basal ganglia play effective roles in both memory and 

motor inhibition. Future studies could explore alternative model structures to further 

investigate how specific basal ganglia nuclei interact to achieve inhibition in humans. 

One challenge for these alternative model structures is complexity. As a model space 

gets more complicated, it can take extensive computing resources to run the analyses, 

and the results may become harder to interpret as well. Finally, we need to be aware of 

the robustness of the DCM coupling parameters. We extracted DCM coupling 

parameters from the relevant task modulation pathways to correlate with the 

corresponding behavioural indices. However, previous studies have found that coupling 

parameters are not as stable as BMS. For example, Rowe et al. (2010) examined the 

reproducibility of DCM model selection and parameter estimates across two scanning 

sessions in both healthy controls and patients with Parkinson’s disease in the context of 

action selection. They repeated the same 48-model DCM analysis for both sessions and 

compared if the results are consistent in the patient group and in the healthy control 

group. They found that DCM model selection is relatively stable, and that the same 

model was identified as most likely across sessions in both healthy controls and 

medicated patients. However, the parameters for task-independent connectivity and task 

modulation were poorly correlated across sessions. Rowe et al. therefore concluded that 

BMS may be sufficient for critical inferences, but caution is required when interpreting 

the connectivity parameter estimates. 
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5.3.8 Conclusion 

This fMRI study aimed to investigate 1) how the basal ganglia interact with the 

prefrontal control regions and the task-specific regions to achieve memory and motor 

inhibition, and 2) whether the prevention and cancellation processes require distinct 

neural mechanisms. Through our univariate analysis, we replicated the meta-analysis, 

and observed overlapping activity between memory and motor inhibition in the DLPFC, 

VLPFC, supramarginal/angular gyrus and the basal ganglia. The prevention and 

cancellation processes also activated the same network, although the activity during 

prevention is mainly from memory inhibition, while the activity during cancellation is 

mainly from motor inhibition. This could be due to the prevention and cancellation 

conditions having unequal amounts of trials in the current experiment.  

Through the DCM analyses, we confirmed our hypothesis that both the DLPFC and the 

basal ganglia are effectively involved in memory and motor inhibition, and the 

inhibition is achieved through targeting task-specific regions. This provides crucial first 

evidence that not only are the basal ganglia important for motor control, but they are 

part of a larger network responsible for inhibition across the memory and motor 

domains. In terms of how the basal ganglia interact with the DLPFC and the task-

specific regions, we found that the indirect hypothesis fit the motor inhibition task, 

where the basal ganglia communicate with M1 through the DLPFC. Meanwhile, the 

intermediary hypothesis fit the memory inhibition, where the DLPFC communicates 

with the hippocampus through the basal ganglia. These provide strong evidence that the 

basal ganglia play causal roles in both memory and motor inhibition through 

interactions with the prefrontal control regions and the task-specific regions. 

In addition, we identified mechanisms specific to the cancellation and prevention 

subprocesses of inhibitory control. In the motor domain, while the basal ganglia are 

critical for motor control in general, the DLPFC seems to be more actively involved in 

stopping, especially during prevention. In the memory domain, both the DLPFC and the 

basal ganglia causally interact with the hippocampus to achieve inhibition. However, 

due to the current constraints, we still need to work towards a better understanding of 

the anatomical connections between the basal ganglia and the relevant regions of 

interest, a purer design to compare inhibitory control in different domains, and more 
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robust modelling approaches that we can reliably use to better understand the 

relationship between effective connectivity and behaviour. 

After investigating the functional interactions between the basal ganglia and the relevant 

regions to achieve inhibition across domains and processes, our next step is to explore 

the underlying anatomical connections. As an initial attempt, we acquired diffusion-

weighted imaging (DWI) that allows us to study white matter connections and 

microstructure in vivo. The next chapter will present a brief overview of DWI, the 

methods we used, and our findings and concerns. 
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6 DIFFUSION-WEIGHTED 

IMAGING TO EXPLORE 

INHIBITION PATHWAYS  

Previous chapters established the functional role of the basal ganglia in memory and 

motor inhibition, and specifically in the prevention and cancellation inhibitory 

processes. In this chapter, we discuss our approach with diffusion-weighted imaging 

(DWI) to investigate the relationship between anatomical connections and functional 

and behavioural indices. We planned to 1) explore which portions of the white matter 

connections throughout the whole brain are significantly associated with DCM coupling 

parameters and behavioural performance across the prevention and cancellation 

conditions in the memory and motor tasks, and 2) use diffusion tractography to defined 

the task- or process-specific tracts, from which we would extract diffusion parameters 

for individual differences analyses. Unfortunately, our attempts did not turn out as we 

expected. First, we were unable to identify any white matter differences in association 

with effective connectivity or behaviour. Second, we had to hold off the tractography 

because our ROIs were across the left and right hemispheres. We are not aware of any 

studies tracing inter-hemispheric white matter connections using diffusion tractography, 

and the tracing may require more anatomical knowledge than we currently have. We 

discuss our concerns and future directions in this chapter. 
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6.1 A Brief Overview of Diffusion-weighted Imaging 

Diffusion-weighted imaging (DWI) is a relatively recent technique that allows 

researchers to measure microstructures in the brain in vivo, and examine the white 

matter tracts that connect different brain regions anatomically and non-intrusively. DWI 

estimates neural bundles by measuring the diffusivity of water molecules in different 

body tissues. For example, in the corticospinal fluid (CSF), the movement of water is 

almost completely free (isotropic) as compared to in the grey matter and then in the 

white matter. Compared to grey matter and CSF, water diffusion is much faster in the 

white matter as it is constrained to only follow the direction of the neural bundles 

(anisotropic; Figure 6.1). Therefore, by applying diffusion-weighted gradients at 

different orientations, the diffusivity of the water molecules can be used to estimate 

tissue type and reconstruct white matter tracts.  

 

Figure 6.1. Isotropic and Anisotropic Water Diffusion in the Diffusion Tensor 

Model. λ1, λ2, and λ3 denote the degree of diffusion along the three principles. 

 

A simple model of the diffusion process is Diffusion Tensor Imaging (DTI), which 

assumes a single ellipsoid in each voxel, estimating the extent of axial and radial 

diffusivity, as if the axons travelling through a voxel travel in the same direction. 

However, in reality, depending on the size and location of the voxel, there can be 

crossing fibres following different directions in one single voxel. One voxel may also 

contain multiple tissue types, inducing the Partial Volume Effect (PVE). Hence more 

advanced diffusion models are developed to address these issues. 
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One of the more advanced diffusion models is spherical deconvolution (Tournier et al., 

2004). To improve resolving crossing fibres, spherical deconvolution requires data from 

High Angular Resolution Diffusion Imaging (HARDI), where stronger diffusion 

weightings (b-value) are applied for higher angular resolution and hence sensitivity to 

fibre orientation (Tuch et al., 2002). Spherical deconvolution then estimates the fibre 

orientation density function (fODF) to find the most plausible white matter tracts from 

the data, regardless of the number of underlying fibre orientations. To resolve the PVE, 

spherical deconvolution assumes that all white matter fibre bundles share identical 

diffusion characteristics. Therefore, any tissue that has different diffusion characteristics 

will be implicitly assigned to PVE. Indeed, Farquharson et al. (2013) compared 

deterministic and probabilistic DTI tract reconstruction with probabilistic constrained 

spherical deconvolution, and observed more realistic results from the latter. 

The problem with having a stronger diffusion weighting is its trade-off with the signal-

to-noise ratio (SNR). To compensate for this trade-off, multi-shell diffusion imaging has 

been developed, where data are acquired with multiple b-values. While data from the 

higher b-value acquisition are more optimal for fibre reconstruction, data from the lower 

b-value acquisition could be used to recover the SNR. 

DWI is advantageous for two reasons. First, it allows for the estimation of multiple 

diffusion properties that indicates the microstructure underlying a specified region, such 

as diffusivity and anisotropy. Regarding measures of diffusivity, in DTI, the extent of 

diffusion is usually denoted with mean diffusivity (MD), which is calculated by 

averaging the eigenvalues that represent the length, width, and depth of the ellipsoid in 

a voxel. More advanced techniques, such as spherical deconvolution, use the fODF. The 

fODF does not assume the number of fibres going through a voxel or the diffusivity, but 

simply fits the diffusion signal to expected fibre responses with appropriate constraints 

to construct a distribution of fibre orientations. In terms of measures of the degree of 

anisotropy in a voxel, a popular one is fractional anisotropy (FA). FA is calculated by 

square rooting the sum of squares of the diffusivity differences, divided by the sum of 

squares of the diffusivities. 

Second, the processed DWI data can be used for tract re-construction to illustrate the 

neural bundles connecting specified structures in the brain. This technique is often 
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referred to as diffusion tractography. Diffusion tractography is advantageous in that it is 

a non-intrusive technique to illustrate the neural bundles connecting brain regions based 

on the estimated diffusion parameters. However, the reliability of diffusion tractography 

is limited by a number of factors. First, the currently available algorithms may not be 

able to accurately resolve crossing fibres. In the final illustration, there may be single 

neural bundles that consist of multiple smaller ones heading different directions, or 

there may be seemingly independent fibres that should have crossed over. Second, the 

resolution of diffusion-weighted imaging is typically 2 mm isotropic. At this resolution, 

diffusion tractography can easily detect major well-known fibres in the brain, but is 

much less sensitive to smaller fibres. Finally, although diffusion tractography can 

illustrate the general shape of the neural bundles, it does not infer directionality, i.e., it 

is unclear whether a neural bundle between two brain structures contains projections 

from A to B, or B to A, or both. 

In summary, DWI provides a useful tool to examine white matter connections in the 

brain in vivo. However, due to the constraints in the current technology, one needs to 

take caution in both processing the data and interpreting the results. In this study, we 

acquired multi-shell diffusion-weighted imaging data to best account for concerns over 

crossing fibres, PVE, and the trade-off between the strength of diffusion gradient and 

the SNR.  

6.2 Diffusion Tractography and the Basal Ganglia 

Despite the extensive effort illustrating basal ganglia anatomy and connectivity in the 

animal literature, there remains limited evidence on whether those findings also apply to 

humans. Kotz et al. (2013) used diffusion imaging to identify anatomical connectivity 

between the caudate nucleus and cortical structures. According to their results, caudate 

body mainly connects with the motor cortices, caudate head with the PFC, and ventral 

striatum with the frontopolar regions. Caudate tail was not included in the analyses. 

These findings are mostly consistent with the basal ganglia functional loops summarised 

in Seger (2013). In addition, Draganski et al. (2008) were able to create voxel-based 

connectivity profile and identify basal ganglia connectivity patterns that are similar to 

the topographical and integrative networks described in Haber and Knutson (2010) and 

Choi et al. (2016). 
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In addition to using DWI measures to study anatomical connections in a brain, some 

studies also explored using similar techniques to identify possible neurological 

mechanisms underlying different diseases. For example, Marrakchi-Kacem et al. (2014) 

compared the proportion of functional subregions in the basal ganglia that are identified 

through their connectivity profiles between healthy individuals and patients with 

Huntington’s disease. They observed that Huntington’s patients exhibit a change of 

distribution in the functional subregions in the striatum when compared with healthy 

subjects, suggesting selective neurodegeneration in particular regions. For example, 

they observed reduced proportion of the associative territories (central striatum), which 

may account for the cognitive dysfunctions in Huntington’s patients (e.g., executive 

functions, motor and psychomotor speed) and the altered microstructure as described in 

preclinical Huntington disease. In addition, Sweet et al. (2014) identified that the 

subthalamopontocerebellar tract and the dentatothalamic tract may be related to 

symptoms expression in Parkinson’s disease and that using diffusion imaging to localise 

these tracts may assist targeting for deep brain stimulation. Last but not the least, Jung 

et al. (2015) also found significant correlations between the integrity of several white 

matter tracts and a range of verbal and non-verbal cognitive functions in patients with 

basal ganglia stroke, including the superior longitudinal fasciculus, the right inferior 

longitudinal fasciculus, and the frontostriatal fibres.  

Specific to our purpose, we aimed to investigate which white matter connections 

involving the basal ganglia may contribute to the prevention and cancellation stopping 

processes in memory and motor inhibition. According to the DCM results from Section 

5.2.3, memory inhibition is achieved through a DLPFC-basal ganglia-hippocampus 

pathway, while motor inhibition is achieved through a basal ganglia-DLPFC-M1 

pathway. Not all of these pathways are well illustrated, especially in relation to stopping 

memory retrieval and motor actions. In the following paragraphs, we are going to 

develop hypotheses for the connections that are less understood based on current 

knowledge of the anatomical connections along these routes. 

For the DLPFC-basal ganglia-hippocampus pathway for memory inhibition, we have 

reviewed in Section 2.3 that there are projections from the DLPFC to the centromedial 

striatum (e.g. Haber et al., 2006). However, how the basal ganglia connect to the 

hippocampus is less clear. On one hand, it is possible that the basal ganglia process the 
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DLPFC projection through the intrinsic pathways to the output nuclei (i.e., GPi and 

SNr), which pass on the processed information to the thalamus. It has been shown that 

the anterior thalamic projects to the hippocampus through the cingulum bundle, a 

pathway critical for episodic memory (see Aggleton (2014) for review). As summarised 

by Kita (2010), the topographical organisation of the corticostriatal projections is 

maintained in the basal ganglia nuclei and the thalamus. It is therefore likely that the 

DLPFC-basal ganglia connections will follow through to the associative regions of the 

thalamus, such as the anterior thalamic nuclei, and then communicate with the 

hippocampus. 

Regarding the basal ganglia-DLPFC-M1 pathway for motor inhibition, although there is 

an extensive literature on the corticostriatal projections, evidence is sparse for the 

reverse. It is likely that this connection is indirect, such as through the basal ganglia 

output nuclei and the thalamus. In terms of the DLPFC-to-M1 projection, this may also 

be indirect through the preSMA. For example, Bracht et al. (2012) used diffusion 

tractography to investigate the relationship between motor pathways and psychomotor 

retardation in major depressive disorder. Psychomotor retardation involves speech, 

facial expression, posture, as well as pace and extent of movements. Bracht et al. 

identified the association between reduced motor activity and altered structural 

connectivity in the preSMA-SMA proper, and SMA proper-M1 pathways. Specific to 

motor control, they found altered involvement in the DLPFC-preSMA and the ACC-

preSMA pathways. These findings point to the role of the DLPFC in motor control, 

possibly through a DLPFC-preSMA-SMA-M1 pathway. 

6.3 Our Approach and Concerns 

To identify the white matter connections underlying the functional interactions between 

the putative supramodal regions (DLPFC and basal ganglia) and the task specific 

regions (hippocampus and M1), we took a two-step approach. First, we used an 

exploratory analysis to isolate portions of the white matter tracts that are associated with 

the cancellation and prevention processes in memory and motor inhibition. Second, we 

planned to reconstruct the relevant tracts so that we can extract diffusion parameters for 

individual differences analyses.  
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For the first step exploratory analysis, we used tract-based skeletal statistics (TBSS). 

TBSS is part of the FSL distribution (Smith et al., 2006) and is a recently developed 

automated method for detecting voxel-wise changes in the whole brain. One of the 

challenges for conducting group analyses with DWI is registering individual subject’s 

images to a common space, due to its highly directional and topographical nature. TBSS 

aims to solve these issues by 1) carefully tuned nonlinear registration, and then 2) 

projection onto an alignment-invariant tract representation, in the hope to improve the 

sensitivity, objectivity, and interpretability of analysis of multi-subject diffusion 

imaging studies. 

For the second step tractography analysis, we used spherical deconvolution for tract 

reconstruction. However, we did not proceed with tract tracing mainly for two reasons. 

First, our TBSS analysis did not reveal any significant individual differences in white 

matter connections that are associated with the prevention and cancellation processes in 

the memory and motor inhibition tasks. This did not help us isolate potential pathways 

that we could focus on for the tractography. Second, and more importantly, our regions 

of interest located across the left and right hemispheres. Specifically, our DLPFC and 

basal ganglia ROIs were in the right hemisphere, and our M1 and hippocampus ROIs 

were in the left hemisphere. Understanding how the anatomical pathways support 

functional interactions would require tracing white matter connections across 

hemispheres. This is challenging because the specific pathways through which our ROIs 

communicate across hemispheres remains unclear. Due to the time constraints of this 

PhD, we had to leave the tractography analysis for later. We will outline the methods 

that we have used for both TBSS and tractography, and discuss our null finding at the 

end. 

6.4 Methods 

6.4.1 DWI Acquisition 

As mentioned in Chapter 5, diffusion-weighted imaging was acquired at the end of the 

first session, in which participants performed the Combined Go/No-Go and Stop-signal 

task. The MRI setup was identical to those described in Section 5.1.3. Diffusion-

weighted imaging was acquired using a multi-band diffusion-weighted sequence 
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(192×192×136; 2 mm3 isotropic voxels; repetition time = 2320 ms; echo time = 89 ms; 

interleaved slice acquisition; multi-band acceleration factor = 4) with the following b-

values and diffusion gradient directions: b-value = 0 s/mm (0 directions), b-value = 300 

s/mm (8 directions), b-value = 1000 s/mm (30 directions) and b-value = 2000 s/mm (60 

directions). We acquired two repetitions for the diffusion data, one with anterior to 

posterior phase encoding direction, and the other with posterior to anterior phase 

encoding direction. This is to better account for eddy current correction. 

6.4.2 DWI Pre-processing and Analyses 

6.4.2.1 Preprocessing 

We used the following steps to preprocess our diffusion data. First, we denoised the 

diffusion images using the random matrix field theory (Veraart et al., 2016). This 

method allows for the estimation of noise level in a local neighborhood based on the 

singular value decomposition of a matrix combining neighborhood voxels and diffusion 

directions. Second, we used Fourier’s transform sub-voxel shifts to remove Gibbs-

Ringing artifacts, which are spurious oscillations in the vicinity of sharp image 

transients such as at tissue boundaries (Kellner et al., 2015). Finally, we corrected 

motion and susceptibility-induced distortions using FSL’s topup function, where we 

combined the images acquired with opposite phase-encoding directions to achieve 

maximal geometric fidelity in the resulting diffusion images (Andersson et al., 2003). 

6.4.2.2 TBSS 

We conducted TBSS following the procedures detailed in the FSL user manual. First we 

aligned all subjects’ FA maps into a common space using the nonlinear registration tool 

FNIRT (Andersson, 2007a; 2007b), which uses a b-spline representation of the 

registration warp field (Rueckert, 1999). Next, we created a mean FA image, and 

thinned the mean FA image to create a mean FA skeleton that represents the centres of 

all tracts common to the group. We then projected each subject’s aligned FA data onto 

this skeleton and fed the resulting data into computing the voxel-wise cross-subject 

statistics. We computed separate TBSS analyses for each of the effective connectivity or 

behavioural parameters that we wanted to investigate, including the coupling parameters 

from the DCM winning models, SSRT, SIF, and the slope of intrusion induction. Since 
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we only collected one DWI measure for each participant, we conducted 1-sample t-tests 

and examined the effect of each covariate on white matter changes. 

6.4.2.3 Tractography 

In anticipation to performing diffusion tractography, we reconstructed white matter 

tracts following these two steps. First, we estimated fibre orientation distribution using 

the damped Richardson-Lucy algorithm (Dell’Acqua et al., 2010). This is a variant of 

the spherical deconvolution algorithm based on an adaptive regularisation that is better 

at reducing isotropic partial volume effects. Second, we performed tractography 

following the methods described in Henriques et al. (2015a), where they used an 

adapted version of a DTI streamline brute force algorithm. This algorithm allows the 

reconstruction of tracts from multiple fibre directions estimated per voxel. DTI was 

processed using the united diffusion kurtosis imaging (UDKI) toolbox (Henriques et al., 

2015b). 

6.5 Results and Discussion 

We aimed to use DWI to 1) identify portions of white matter tracts that are associated 

with either effective connectivity or behavioural indices of the prevention or 

cancellation processes during memory and motor inhibition, and 2) extract diffusion 

parameters from the relevant tracts for individual differences analyses. Unfortunately, 

using TBSS, we were unable to detect any inter-individual differences in white matter 

that is related to memory or motor inhibition. This was the case both when we used the 

recommended threshold (p<.05) or with relaxed thresholds. 

This lack of findings may have resulted from multiple factors. First, it is possible that 

TBSS is not optimised for our type of analyses. Most of the studies using TBSS 

compared white matter differences between groups, such as between patients and 

healthy controls (e.g. Rae et al., 2016; Ye et al., 2015) or between genders (e.g. Kanaan 

et al., 2014). In our analysis, we are only examining the effect of covariates in one 

single group. Second, we may lack statistical power. It may be that our sample size 

(N=30) is still too small to be sensitive to individual differences in white matter in 

relation to effective connectivity or behavioural performances, or there is too much 

variance in the functional or behavioural measures to easily detect meaningful 
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individual variability in the associated white matter tracts. Finally, it is also possible that 

functional or behavioural changes are not related to white matter variability, but rather 

grey matter changes local to the region of interest. If this is true, individual differences 

in functional performance and connectivity may be manifested in grey matter volume or 

integrity in the regions of interest, instead of white matter tracts through which different 

regions communicate. However, this is unlikely, as there have been previous studies 

relating white matter microstructure with effective connectivity during motor inhibition. 

For example, Rae et al. (2015) conducted a DCM analysis to investigate the network 

dynamics between the IFG, preSMA, STN, and M1 during motor inhibition. After 

identifying the winning model, they extracted mean diffusivity from the tracts 

connecting preSMA and STN, and IFG and STN. They found that mean diffusivity in 

these tracts predicted individual differences in stopping efficiency, and correlated with 

effective connectivity in the same pathway during successful motor inhibition. To 

improve our TBSS results, we will need to 1) increase our sample size, and 2) optimise 

our experimental design so that we can better differentiate between the prevention and 

cancellation processes, and between the memory and motor tasks (see Section 5.3 for a 

more detailed discussion). 

Based on current findings and concerns, there is a number of directions for future 

research First, to improve our confidence in tractography, we need to first understand 

the anatomical pathway between our regions of interest, especially how they 

communicate across hemispheres. For example, how the right DLPFC controls left M1 

activity, and how the right basal ganglia influences left hippocampal activity. To do 

this, we will need to either collaborate with animal researchers to trace these 

connections in the primate brain, or to work with histology to find out how these 

connections are formed in the human brain. Second, we could examine whether grey 

matter indices in the regions of interest are related to effective connectivity or 

behaviour. For example, we could use voxel-based morphometry (VBM) to investigate 

whether grey matter volume is correlated with the ability to inhibit unwanted memories 

or actions. We could also extract diffusion parameters from grey matter structures to see 

if they are significantly associated with effective connectivity or behaviour.  

Once we have a better understanding of the anatomical pathways between our ROIs, we 

can use tractography to define those connections, extract diffusion parameters, and 
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investigate their relationship with functional interactions (as indexed by effective 

connectivity) and behaviour. Since we have already processed whole-brain tract 

reconstruction, we will be able to isolate the relevant tracts by defining regions of 

inclusion and regions of exclusion. We will be specifically interested in the following 

pathways. For memory inhibition, we will first illustrate the connection between the 

DLPFC and the striatum. For the basal ganglia-hippocampal pathway, if we assume it 

goes through the basal ganglia intrinsic nuclei to output to the thalamus, we can try to 

illustrate the thalamic connection with the hippocampus through the cingulum bundle. 

Although this cingulum pathway is only part of the basal ganglia-hippocampus 

connection, it should reflect the basal ganglia influence to regulating hippocampal 

activity as it is efferent to the basal ganglia system. For motor inhibition, we will first 

try to illustrate the basal ganglia-DLPFC connection, possibly by isolating connections 

between the thalamus and the DLPFC. We will then isolate pathways between the 

DLPFC and M1 by defining the intermediaries (i.e. preSMA and SMA). 

After we have extracted diffusion parameters, such as mean diffusivity and fractional 

anisotropy, from these pathways, we can correlate them with effective connectivity and 

behavioural indices. It would be specifically of interest to see whether the white matter 

structure between the putative supramodal regions will be associated with both 

prevention and cancellation during memory and motor inhibition. In addition, we would 

like to investigate if the white matter structure in the task-specific tracts is only 

associated with the corresponding task context. We would expect that the basal ganglia-

hippocampus pathway is only associated with memory inhibition but not motor 

inhibition, while the DLPFC-M1 pathway is only associated with motor inhibition but 

not memory inhibition.  
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7 CONCLUSIONS AND FUTURE 

DIRECTIONS 

This PhD thesis aimed to investigate the role of the basal ganglia in memory and motor 

inhibition. The basal ganglia have had an established role in motor control, including 

motor initiation and motor inhibition. However, recent evidence suggests that these 

structures may also be involved in cognitive control, such as the voluntary suppression 

of unwanted memories. It has been proposed that there may be a supramodal network of 

inhibition involving cortical regions such as the DLPFC and the VLPFC. Here we 

investigated whether the supramodal network also includes subcortical structures such 

as the basal ganglia. If so, how are the basal ganglia interacting with the other 

supramodal regions and the task-specific regions to achieve inhibition. Finally, what are 

the anatomical pathways underlying the inhibition of prepotent responses.  

7.1 Summary of Findings and Implications 

To tackle these questions, we first used a series of meta-analyses to confirm that the 

basal ganglia are consistently activated across studies using memory and motor 

inhibition tasks (Chapter 3). Specifically, we observed left centromedial striatum 

activity in the Go/No-Go task, but right centromedial striatum activity in the Stop-signal 

and Think/No-Think tasks. On one hand, this striatal cluster is consistent with the 

associative functional zone that receives direct projections from the DLPFC (Haber, 
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2003; Haber et al., 2006), suggesting that a DLPFC-basal ganglia interaction may be 

critical for inhibitory control. On the other hand, the lateralisation effect indicates that 

there may be distinct subprocesses of inhibition that are supported by different neural 

mechanisms (Dalley et al., 2011; Schachar et al., 2007; Verbruggen & Logan, 2008). 

While the Go/No-Go task may primarily engage a prevention process, the Stop-signal 

and the Think/No-Think tasks may primarily engage a cancellation process. 

In Chapter 4, we presented behavioural paradigms to differentiate prevention and 

cancellation processes in memory and motor inhibition tasks. For memory inhibition, 

we developed an adapted Think/No-Think paradigm, where we 1) adjusted the 

experimental design and instructions so that participants are more motivated to suppress 

the unwanted associations, and 2) asked participants whether the unwanted targets came 

to mind after each trial as an indicator of whether they successfully prevented the 

retrieval of unwanted memories, or whether they had to cancel a retrieval process due to 

intrusions. For motor inhibition, we adopted a Combined Go/No-Go and Stop-signal 

paradigm designed by Weaver and Anderson (unpublished). There were two types of 

stop signals in this paradigm. One is a Concurrent Stop signal that is presented 

simultaneously with the stimulus. This is similar to the Go/No-Go task and may require 

a prevention process. The other is a delayed stop signal that is presented after stimulus 

onset. This is the typical Stop-signal task and may require a cancellation process. 

We then conducted an empirical fMRI study (Chapter 5) using these behavioural 

paradigms, and found that both the basal ganglia and the DLPFC play causal roles to 

achieve inhibition through task-specific pathways. This is largely consistent with 

findings from Schmitz et al. (in preparation), as they also observed top-down regulation 

from the supramodal regions (DLPFC and VLPFC in their case) through the task-

specific pathways to the hippocampus for memory inhibition, and to M1 for motor 

inhibition. Furthermore, we found that the DLPFC and the basal ganglia interact in 

different ways to achieve inhibition in different task domains. On one hand, memory 

inhibition requires a DLPFC-basal ganglia-hippocampus pathway, consistent with the 

intermediary hypothesis. It is possible that the basal ganglia process control signals 

from the DLPFC, and then communicate with the hippocampus via the thalamus 

through the cingulum bundle (Aggleton, 2014). On the other hand, motor inhibition 

requires a basal ganglia-DLPFC-M1 pathway. This is consistent with the indirect 



The Role of the Basal Ganglia in Memory and Motor Inhibition 

 

188  Yuhua Guo - October 2017 

 

hypothesis, where the basal ganglia communicate with M1 via the prefrontal cortex, 

possibly through the preSMA and SMA (Bracht et al., 2012; Rowe et al., 2010). 

However, since effective connectivity from DCM does not imply the underlying 

anatomical pathways, it is possible that there are other intermediaries between the nodes 

that we have specified in the model. For example, in memory inhibition, the basal 

ganglia outputs may instead engage the limbic cortex, such as the ACC, which then 

regulate hippocampal activity either through the entorhinal cortex, or through the 

thalamic reuniens nuclei (Anderson et al., 2016). In motor inhibition, the DLPFC may 

regulate M1 activity through the basal ganglia again, instead of through the preSMA 

and SMA, given the critical role of the basal ganglia in motor control (Alexander et al., 

1986; Kandel et al., 2012). 

When comparing cancellation and prevention, although these inhibitory subprocesses 

activated common regions in the frontoparietal and basal ganglia, they also yielded 

unique activations. The univariate analysis showed that prevention activated bilateral 

putamen, parahippocampal gyrus, and other temporal and occipital regions more than 

cancellation. Cancellation, on the other hand, activated bilateral preSMA, left 

postcentral gyrus, and medial frontal gyrus. These suggest that the cancellation and 

prevention processes may require distinct neural processes and should not be treated 

equivalently. We then correlated DCM coupling parameters from prevention and 

cancellation modulations with behavioural indices. For motor inhibition, we found 

significant correlations between the DLPFC-to-M1 coupling during prevention and 

SSRT for Step 1 and Step 2 DCMs. For memory inhibition, in Step 1 DCM, we found 

significant correlations between the basal ganglia-hippocampus coupling during 

prevention and SIF, and between the DLPFC-to-hippocampus coupling during 

cancellation and the slope of intrusion reduction. In Step 2 DCM, we found marginally 

significant correlations between the DLPFC-basal ganglia coupling during prevention 

and the slope of intrusion reduction, and during cancellation and SIF. It seems that the 

DLPFC-basal ganglia effective connectivity is associated with both memory and motor 

inhibition, during prevention and cancellation processes. Connectivity in the task-

specific pathways appears to be associated with the corresponding task performance. 

However, we do need to take caution interpreting these results, both for the constraints 

in the current design, and the reliability of DCM parameter estimates in general. 
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Finally, we tried to identify anatomical pathways that are associated with these 

functional interactions during memory and motor inhibition (Chapter 6), but 

unfortunately did not find any significant result. As discussed in Section 6.5, this lack of 

finding may be due to the TBSS analysis not being optimal for detecting individual 

differences in a single group, or a lack of statistic power in our sample size.   

7.2 Future Directions 

This PhD thesis resolved two questions. First, we confirmed that the basal ganglia are 

consistently involved in memory and motor inhibition. Second, we found that the basal 

ganglia causally interact with the DLPFC to achieve memory and motor inhibition. 

However, the anatomical connections underlying the functional and effective 

interactions still remain unclear.  

To understand how the basal ganglia interact with task-specific regions during memory 

and motor inhibition, we need to find out the efferent pathways from the basal ganglia 

to the hippocampus and M1. To do this, we can collaborate with anatomists and trace 

projections from specific brain structures to their target regions. For example, Haber et 

al. (2006) used macaque monkeys and injected tracers in a number of prefrontal regions. 

They observed that the DLPFC project to the centromedial striatum, a functional 

division associated with cognitive control. If we believe that this is also the region 

involved in inhibition, we could use the same method to trace its downstream targets. 

Since the topography in the corticostriatal projections is maintained throughout the 

basal ganglia system (Haber & Knutson, 2010), the tracers may lead up to the 

associative or control region of the thalamus. Using similar logic, we could follow 

through projections from the thalamus to the hippocampus and M1. We may be able to 

identify multiple candidate pathways using this method. 

Once we have identified possible anatomical pathways between the basal ganglia and 

the task-specific regions, we can use neuroimaging methods to test whether those 

pathways are engaged during memory and motor inhibition. There could be a number of 

possible directions. First, with animal studies, we could use single-neuron recording to 

measure neural activity in the brain structures along the pathways, and analyse whether 

the activity changes with task. We could also use electrical stimulation to modulate 

activity in particular structures and examine whether the stimulation influences task 
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performance. Second, with human fMRI, we could use effective connectivity analyses 

to test whether the memory or inhibition tasks effectively modulate certain pathways. 

However, this may create an overly complicated model structure, which will be 

computationally consuming, and make the results hard to interpret (Stephan et al., 

2010). Finally, with diffusion imaging, we can define the candidate pathways through 

tractography, and extract diffusion parameters from the pathways. We can then correlate 

the diffusion parameters with behavioural indices to test whether these pathways are 

associated with inhibiting retrieval or motor actions. 

In addition to understanding the anatomical pathways, another question of interest is the 

scope of influence of the putative supramodal network. Here we have observed common 

activation in the PFC and the basal ganglia between memory and motor inhibition. 

However, the basal ganglia are also involved in other functions, such as reward 

processing, probabilistic learning, social and language functions, and visual processes, 

etc. (e.g. Pauli et al., 2016; Seger, 2013; Shohamy, 2011; Shohamy et al., 2009). As 

reviewed in the introduction, Depue et al. (2015) observed common mechanisms of 

inhibition in the PFC across cognitive, emotional, and motor processes. It would be 

curious to investigate whether these common mechanisms also involve the basal 

ganglia. 

On the other hand, it would be important to differentiate whether the common 

mechanisms are truly due to inhibitory control processes, rather than other features that 

the tasks may have in common, such as difficulty between conditions, attention to 

different types of stimulus, or task-set shifting, as response and inhibition present 

opposite task goals, etc. For example, although the Stop-signal task is typically used to 

measure inhibitory control, some have argued that it may instead be attention to 

infrequent stimuli. Erika-Florence et al. (2014) used four different versions of the Stop-

signal task and found that the inferior frontal cortex, usually associated with inhibition, 

is more active when processing infrequent and novel stimuli, regardless of behavioural 

inhibitory demands. Similarly, in the Think/No-Think task, although the DLPFC is 

repeated activated during retrieval suppression, and is hence associated with memory 

inhibition, it is also involved in other functions such as salience detection in the dorsal 

attention system. For instance, Shulman et al. (2001) presented participants with brief 

intervals of coherent motion embedded in dynamic noise, and asked them to determine 
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the direction of the motion. They found that although there were overlaps in brain 

activity between detecting stimulus onset and searching for motion, some regions, 

including the DLPFC, were unique to stimulus detection. It is possible that the DLPFC 

activations in the Think/No-Think task is a consequence of participants having the 

recognise the Think and No-Think stimuli rather than inhibition per se. Overall, future 

studies should consider including control tasks that tap into other functions that may be 

common to memory and motor inhibition tasks, so that we can more confidently isolate 

neural mechanisms that are unique to inhibition 

Finally, the current research may gain insight into the relationships between the 

cognitive and motor deficits from patients with basal ganglia impairments, including 

neurological diseases such as Parkinson’s disease (PD) and psychiatric disorders such as 

attention deficit hyperactivity disorder (ADHD). As reviewed in Davie (2008), the 

hallmark of PD is cell loss in the substantia nigra. The substantia nigra sends 

dopaminergic modulation to the striatum, which then engages the direct and indirect 

pathways to initiate or terminate responses, respectively. Impairment in the substantia 

nigra can hence lead to imbalanced control of the basal ganglia on motor functions. PD 

patients are often treated with dopamine to help restore the control mechanism. 

However, some have observed that dopamine treatment can induce intrusive behaviour, 

such as impulsivity and compulsion, since the treatment is of rewarding nature (Evans 

et al., 2009; Robbins & Cools, 2014). For our purpose, it would be of interest to see if 

the same intrusiveness applies in memory control. For example, in PD patients, will 

they struggle with retrieving memories in similar ways as initiating actions when they 

are off-medication? In contrast, will they have trouble inhibiting memories as 

controlling impulsive or inappropriate behaviour when they are medicated? Future 

studies could compare patients’ behaviour when they are on- or off-medication, so as to 

establish the relationship between dopaminergic modulation in the basal ganglia and 

memory and motor control.  

Similarly, ADHD is characterised by persistent and developmentally-inappropriate 

levels of overactivity, inattention and impulsivity (American Psychiatric Association, 

1994). Thapar et al. (2013) reviewed that the causes to ADHD are manifold, including 

genetics and the environment. However, there is evidence that symptoms in ADHD may 

be associated with impaired reinforcement learning, particularly the involvement of 
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dopamine in the frontostriatal system (Tripp & Wickens, 2009). For example, Booth et 

al. (2005) showed that compared to healthy children, ADHD performed less well on 

motor responses inhibition, as they made more errors and had slower reaction time. 

ADHD children also showed less activity in the frontostriatal network compared to 

control. Durston et al. (2003) also showed that ADHD children are more susceptible to 

interference than healthy children during motor response inhibition, which may be 

associated delayed maturation of the frontostriatal system in ADHD. It would be of our 

interest to investigate whether ADHD children or adults would be similarly impaired at 

memory inhibition compared to healthy control, and whether they would also show 

hypoactivity in the frontostriatal network during the task. If so, this would be additional 

evidence that the frontostriatal network is associated with both memory and motor 

inhibition, and may be supramodal in nature. 

Despite the exciting possibilities of using patient studies to further our understanding of 

how the basal ganglia are involved in memory and behavioural inhibition, challenges do 

apply. First, neurological and psychiatric disorders are often associated with complex 

causes, mechanisms, and symptoms. For example, PD is not only affected by dopamine, 

but also other neurotransmitters such as serotonin, noradrenaline, and acetylcholine 

(Robbins & Cools, 20124). The frontostriatal network is not unique to inhibition, but 

other higher level functions such as attention and planning. Therefore, we need to be 

cautious when developing future studies in a way that isolate the basal ganglia 

contribution to memory and motor inhibition. Second, the current experimental 

procedure may not be the most practical for patients, as the tasks typically last more 

than two and a half hours, which could be mentally and physically consuming. Future 

studies should adapt the current procedures to be more appropriate for patient studies, 

either by simplifying the tasks, or possibly by allowing more breaks during the 

experiment. We believe that patient studies can 1) help establish causal roles of the 

basal ganglia in supramodal inhibition, and 2) facilitate a better understanding of the 

basal ganglia functions across modalities, and hence improve the intervention on 

symptoms and impairments that are associated with basal ganglia malfunctions. 
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7.3 Concluding Remarks 

Overall, this PhD thesis provides a crucial initial examination of the role of the basal 

ganglia in stopping memory retrievals, in addition to stopping motor action. We 

observed encouraging evidence of the causal involvement of the basal ganglia in 

memory and motor inhibition. To further investigate how the basal ganglia interact with 

the relevant regions to achieve inhibition, we need to have a better understanding over 

the underlying anatomical connections, improve our experimental design, and develop 

more robust modelling approaches so that we can more reliably relate function, anatomy 

and behaviour. Future research could also look into whether the basal ganglia control 

mechanisms are generalizable to domains other than memory and motion, and establish 

causal relationships through patient studies. 
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9 APPENDIX 



 

 

LIST OF STUDIES INCLUDED IN THE META-ANALYSES 

Think/No-Think Task 

First Author Year N Journal 

Anderson 2004 24 Science 

Benoit 2012 18a Neuron 

Benoit 2012 18b Neuron 

Benoit 2015 16 Journal of Cognitive Neuroscience 

Butler 2010 14 Cognitive, Affective, & Behavioral Neuroscience 

Depue 2007 16 Science 

Depue 2015 21 Cerebral Cortex 

Gagnepain 2014 24 Proceedings of the National Academy of Sciences 

Levy 2012 18 Journal of Neuroscience 

Paz-Alonso 2013 33 Journal of Neuroscience 

Gagnepain 2017 24 Journal of Neuroscience 

Schmitz 2017 24 Nature Communications 

Fawcett In prep 30 

 Levy In prep 18 

 Sacchet 2016 16 Cognitive, Affective, & Behavioral Neuroscience 

Liu 2016 18 Nature Communications 

 

Stop-Signal Task 

First Author Year N Journal 

Aron 2006 13 Journal of Neuroscience 

Aron 2007 10 Journal of Neuroscience 

Berkman 2014 60 Journal of Neuroscience 

Boecker 2011 15 Human Brain Mapping 



 

 

Boehler 2010 15 NeuroImage 

Cai 2009 12 Brain Research 

Cai 2011 23 PLos One 

Cai 2014 19 Human Brain Mapping 

Chamberlain 2009 20 Biological Psychiatry 

Chevrier 2007 14 Human Brain Mapping 

Chikazoe 2009 22 Journal of Neuroscience 

Cohen 2010 9 Frontiers in Human Neuroscience 

Congdon 2014 62 Psychiatry Research: Neuroimaging 

Cumins 2011 50 Molecular Psychiatry 

De Wit 2012 37 American Journal of Psychiatry 

Depue 2015 21 Cerebral Cortex 

Ghahremani 2012 18 Journal of Neuroscience 

Hendrick 2010 60 PLos One 

Mendrick 2012 18 Behaviour and Psychology 

Hughes 2013 15 Behavioural Brain Research 

Jahfari 2011 20 Journal of Neuroscience 

Lenartowicz 2011 23 Journal of Cognitive Neuroscience 

Leung 2007 12 Journal of Neuroscience 

Marco-Pallares 2008 10 Journal of Cognitive Neuroscience 

McNab 2008 11 Neuropsychologia 

Montojo 2013 30 Cerebral Cortex 

Passarotti 2010 15 Neuropsychologia 

Ramautar 2006 16 Brain Research 

Rubia 2001 15 NeuroImage 

Sagaspe 2011 14 NeuroImage 



 

 

Schel 2014 14 Frontiers in Human Neuroscience 

Sebastian 2012 24 Psychiatry Research: Neuroimaging 

Sebastian 2013 49 Neurobiology of Ageing 

Sebastian 2013 24 NeuroImage 

Sharp 2010 26 Proceedings of the National Academy of Sciences 

Tabu 2012 13 NeuroImage 

Van der Meer 2011 19 NeuroImage 

Xue 2008 15 Cerebral Cortex 

Zheng 2008 20 Journal of Cognitive Neuroscience 

 

Go/No-Go Task 

First Author Year N Journal 

Altshuler 2005 13 Biological Psychiatry 

Asahi 2004 17 
European Archives of Psychiatry and Clinical 

Neuroscience 

Braver 2001 14 Cerebral Cortex 

Falconer 2008 23 Journal of Psychiatry & Neuroscience 

Fassbener 2004 18 Cognitive Brain Research 

Garavan 1999 14 Proceedings of the National Academy of Sciences 

Garavan 2002 14 NeuroImage 

Garavan 2003 16 NeuroImage 

Hester 2004 15 Journal of Cognitive Neuroscience 

Horn 2003 19 Neuropsychologia 

Kaladjian 2007 21 Schizophrenia Research 

Kaladjian 2009 10 Bipolar Disorder 

Kaladjian 2009 20 Psychiatry Research: NeuroImage 

Kelly 2004 15 European Journal of Neuroscience 



 

 

Kiehl 2000 14 Psychophysiology 

Konishi 1998 5 European Journal of Neuroscience 

Langenecker 2007 22 Biological Psychiatry 

Liddle 2001 16 Human Brain Mapping 

Maltby 2005 14 NeuroImage 

Mazzola-Pomietto 2009 16 Journal of Psychiatric Research 

McNab 2008 11 Neuropsychologia 

Mostofsky 2003 48 Cognitive Brain Research 

Mostofsky 2003 28 Cognitive Brain Research 

Roth 2007 14 Biological Psychiatry 

Rubia 2001 15 NeuroImage 

Rubia 2006 23 Human Brain Mapping 

Sebastian 2012 24 Psychiatry Research: NeuroImage 

Simoes-Franklin 2010 16 Human Brain Mapping 

Watanabe 2012 11 NeuroImage 

Zheng 2008 20 Journal of Cognitive Neuroscience 
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