


Homeostasis of Metastable Proteins in 

Alzheimer’s Disease 

 
 
 

Rishika Kundra 

Centre for Misfolding Diseases 

Department of Chemistry 

University of Cambridge 
 

 

 

                                                               
 

 
 
 

A thesis submitted for the degree of 

Doctor of Philosophy 
 
 
 
 
 

 
St. John’s College              November 2017 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! i!

 
 
 
 
 
 
 
 
 
 

To my loving parents, 
And my wonderful husband 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! ii!

 
 
 
 

  



! iii!

 
 
 
 
 
 

“Employ the strategy of the Lotus Sutra before any other” 
- Nichiren Daishonin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! iv!

  



! v!

Declaration 

 
This dissertation is the result of my own work and includes nothing, which is the 

outcome of work done in collaboration except where specifically indicated in the text. 

It has not been previously submitted, in part or whole, to any university or institution 

for any degree, diploma, or other qualification.  

In accordance with the Department of Chemistry guidelines, this thesis does not 

exceed 60,000 words (approximately 39,819 words), and it contains less than 150 

figures.  

 

Rishika Kundra 

November 2017 

 

 

 

 

 

 

 

 

 

 

 

 

 



! vi!

 
 
 
 

  



! vii!

Acknowledgements 
 

The journey towards this PhD, although requiring a lot of perseverance and rigour, 

has been one of the most fulfilling experiences of my life. I have been tremendously 

lucky in being supported by amazing colleagues, friends and family, and I would like 

to take this opportunity to thank all of them for making this journey truly enjoyable.  

 

I am enormously grateful to my supervisors, Prof. Chistopher M Dobson and Prof. 

Michele Vendruscolo, for giving me the right direction at the very start of my doctoral 

studies and instilling in me the confidence needed to pursue them. They have always 

allowed me the freedom to pursue my scientific curiosities and helped shape my 

scientific acumen through countless stimulating discussions. I would like to especially 

thank Michele, for nurturing my scientific intellect through his continuous support. 

His has always encouraged me to go that extra mile and has been supportive of all my 

endeavors, all of which have played an enormous role in making this work a truly 

enjoyable and learning experience, and which I am sure, will always help me progress 

in my career. In Chris, I have found a true mentor. His scientific brilliance has always 

inspired me and each of my discussions with him has considerably broadened my 

scientific horizons. I am deeply indebted to him for being a source of incredible 

support during the toughest of times. He has played a fundamental role in shaping the 

researcher that I am today, by always providing ingenious guidance and motivation to 

pursue questions that fascinate me. I have ever been treated with genuine kindness 

and I am truly fortunate to have worked with him. I hope I am able to always 

remember the many things that I have learned from him.  

 

I would like to thank Prof. Richard I Morimoto, for being a wonderful collaborator 

and guide. This work, and indeed I, have greatly benefitted from his insightful 

observations and adept advice over the many interactions that we have had. 

 

I would also like to thank Dr. Prajwal Ciryam, whose work on supersaturation helped 

to lay the basis of the studies presented in this thesis.  

 

Karen and Echo have always been incredibly supportive and I would like to thank 

them for making my life so much easier with regards to all the administrative work.  



! viii!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! ix!

I would never have been in Cambridge without the Dr. Manmohan Singh Scholarship. 

I would like to thank them, and St. John’s College for their generous support with the 

funding, which has allowed me the freedom to pursue my research. My time in 

Cambridge has been truly enriched by being part of the graduate life at St. John’s and 

I would like to thank Masha and Molly for making my time in Cambridge truly 

enjoyable. We have progressed on our journeys towards a PhD together, and they 

have ever been a source of delight and solace.  

 

I am truly fortunate to have been surrounded by amazing friends and family, and I 

would like to thank Bhawna di, Surbhi, Harshita and Aayushi for their love and 

support throughout.  

 

My family has always been a source of constant support. Nanaji and Nanima have 

showered me with incredible love and encouragement to follow my dreams. Mamu, 

Maami and Massi have always been there for me, and their support has been 

particularly important in my life. Daddyji had always inspired me to pursue my 

dreams and his words have guided me throughout my life. I wish Daddyji and Nanaji 

were here as I pass new milestones.  

 

It has been a pleasure to watch Sarthak, my younger brother, develop into an amazing 

young man and I wish him the absolute best for pursuing his passions.  

 

Cambridge, and indeed St. John’s, has not only provided me with an outstanding 

academic experience, but also a source of lifelong love, support and fun – my dear 

husband Kedar. He is my pillar of strength and his endless patience and belief in me 

have been instrumental in making this work possible.  

 

And to my amazing parents – I would like to offer my heartfelt gratitude for their 

unconditional love and support. Without them, I wouldn’t be here in the first place. 

They were the ones absolutely convinced that I should be doing a PhD and today, I 

would like to offer them this document.  

 

 

 



! x!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! xi!

Abstract 
 

Alzheimer’s disease (AD) is the most common cause of dementia, affecting almost 40 

million people worldwide, and it is predicted that this number will rise to nearly 150 

million by 2050. It results not only in enormous distress for affected individuals and 

carers but also a substantial economic burden on society. Although more than 100 

years have passed since its discovery, no cure for AD exists, despite enormous efforts 

in basic and clinical research over the past few decades, due to limited understanding 

of its underlying mechanisms.  

 

Neurodegenerative disorders, of which AD is an example, are highly complex 

disorders characterized by extensive neuronal dysfunction associated with the 

misfolding and aggregation of a specific set of proteins, including amyloid plaques 

and neurofibrillary tangles in AD. One promising avenue for progress in the field is to 

improve our understanding of the mechanisms by which cellular dysfunction arises 

from the initial protein aggregation events.  

 

The studies described in the thesis are based on the recent finding that a large number 

of proteins are inherently supersaturated, being expressed at concentrations higher 

than their solubilities, and constituting a metastable subproteome potentially 

susceptible to aggregation. These studies illustrate the dependence of aggregation 

prone metastable proteins on the cellular degradation machineries. They also study 

the role of metastable proteins and their homeostasis complement in the vulnerability 

of various body and brain tissues to protein aggregation diseases. Using extensive 

sequencing data and network based systems biology approaches, they elucidate how 

fundamental physicochemical properties of an individual or group of proteins relate to 

their biological function or dysfunction.  
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CHAPTER 1 

1.  Metastability of proteins against 

aggregation in health and disease 

1.1  Overview 

Alzheimer’s disease (AD), is the most common cause of dementia, affecting almost 

40 million people worldwide, a number predicted to rise to nearly 150 million by 

2050 (1). This disease causes enormous distress in affected individuals and carers, 

and represents a substantial economic burden on our society. Although over 100 years 

have passed since its initial description in 1906, no cure for AD exists despite 

enormous efforts in basic and clinical research over the past few decades, due to 

limited understanding of its underlying mechanisms (1-17).  

 

Neurodegenerative diseases, of which AD is an example, are highly complex 

disorders characterised by extensive neuronal dysfunction associated with the 

misfolding and aggregation of a specific set of proteins (3-17). A feature common to 

essentially all these conditions is the presence of protein deposits, including amyloid 

plaques (formed by the Aβ peptide) and neurofibrillary tangles (formed by the protein 
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tau) in AD (3-17). AD belongs to a class of protein misfolding disorders, associated 

with the failure of proteins to correctly maintain their native states, resulting in their 

transition from the soluble form to highly organised fibrillar aggregates. This event 

can result in cellular toxicity because of aberrant interactions of the aggregates and of 

a loss of function of the proteins involved (3-17).  

 

In the majority of the cases, AD manifests itself after 65 years of age (1) (late onset 

AD), but in relatively few instances (2-10%), the symptoms can occur as early as 20-

30 years of age (early onset AD). From a genetics standpoint, early onset AD presents 

itself as a consequence of rare familial mutations, while late onset AD is believed to 

have a sporadic nature, whose origins depend on a combination of environmental 

factors and a complex genetic susceptibility (18). From a molecular point of view, the 

presence of neurofibrillary tangles and amyloid plaques is a common feature for both 

these forms of AD. With the advent of next generation sequencing technologies, there 

have been extensive efforts to identify genetic risk factors for AD. Predominantly, 

mutations in three genes have been identified to be linked to early onset AD: APP (the 

amyloid precursor protein, from which the Aβ peptide is produced), PSEN1 and 

PSEN2 (two proteins making up the proteases that cleave APP) (19-26). These 

mutations have been shown to affect the metabolism of APP, resulting in the 

formation of aggregation prone forms of Aβ. However, these mutations only account 

for early onset AD (18). The sporadic forms of AD are much more complex and 

studies to establish its genetic risk factors are ongoing (18). The strongest identified 

risk factor for late onset AD is the ε4 allele of the apolipoprotein E gene (APOE) (27, 

28). Genome wide association studies (GWAS) have also identified more than 20 

genetic loci to be associated with AD (18). Despite these advances in understanding 

the genetics of AD, clinical trials for this disease have still failed to achieve the 

desired effects. Hence, there is an ever-increasing need to understand the molecular 

origins of AD, to design better therapeutic strategies to overcome this “21st century 

plague” (13).   

 

One promising avenue for progress in the field is to improve our understanding of the 

mechanisms by which cellular dysfunction arises from the initial protein aggregation 

events. Although it was originally believed that protein misfolding and aggregation 

are typical of few peculiar proteins like Aβ and tau, increasing evidence suggests that 
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it is instead a widespread phenomenon, with hundreds of different proteins found to 

aggregate in stress, ageing or disease (11, 29-32).  

 

The studies described in this thesis are based on the recent finding that a large number 

of proteins are inherently supersaturated (33, 34), being expressed at concentrations 

exceeding their solubilities in the cellular environment, and constituting a metastable 

subproteome potentially susceptible to aggregation. These studies employ the analysis 

of extensive sequencing data and network-based systems biology approaches 

combined with various bioinformatics techniques to obtain more comprehensive 

descriptions of the complex molecular origins of the disease. They also elucidate how 

fundamental physicochemical properties of an individual or group of proteins relate to 

their biological function or dysfunction. 

1.2  Protein folding, misfolding and protein 

metastability against aggregation 

Proteins are essential molecules in all forms of life. The number of proteins in human 

beings has been estimated to be around 100,000 (14) and most of them assume a 

native state in order to function. Once in their native states, proteins orchestrate the 

numerous biochemical functions necessary to sustain a cell. But, to do all this, most 

proteins need to adopt specific three-dimensional conformations. This process of 

conversion is called protein folding and leads the extended polypeptide chain 

synthesized by the ribosome to the functional form, a complex conformation 

consisting of various secondary structures, including α-helices and β-sheets. Protein 

folding is a highly complex, multistep process which brings together functional 

groups, which otherwise could be far away in the primary sequence, into close 

proximity. The final conformations are fairly flexible to allow them to perform 

various functions (35). This process is driven by thermodynamics and arrives at a 

structure that has the lowest free energy, at least at low concentrations. Although most 

newly synthesized polypeptide chains fold in order to be functional, a range of 

proteins, including α-synuclein, tau and the islet amyloid peptide, which are 

significant from the point of view of protein misfolding disorders, are largely 
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unstructured in solution and often described as intrinsically disordered (12). They can, 

however, fold into more-defined structures upon interaction with specific binding 

partners. Proteolysis of larger, natively folded structures can also give rise to 

intrinsically disordered species, like in the case of the Aβ peptide mentioned above 

(12).   

 

Protein folding, like any other molecular reaction, is ruled by thermodynamics and 

kinetics (36). Thermodynamics drives the process towards the global free energy 

minimum. Kinetics, on the other hand, governs the timescale of the process (similar to 

biological timescales) (37). Pioneering work from Christian B. Anfinsen’s laboratory 

in the early 1960s showed that denatured ribonuclease A, under native conditions of 

pH, could reestablish its correct fold in vitro and recover the single correct 

arrangement of disulfide bonds out of all possible combinations (38, 39). These 

seminal studies not only demonstrated that proteins could fold reversibly, but also 

showed that the information required for achieving the correctly folded native state of 

a protein was encoded by its amino acid sequence. These experiments also showed 

that the native state of the protein is the most thermodynamically stable, representing 

a global free energy minimum. Furthermore, in the later years of the twentieth 

century, Cyrus Levinthal made the argument that there were too many possible 

confirmations accessible to the polypeptide for it to arrive at the native state by 

random searching. He suggested that proteins fold via specific ‘folding pathways’ 

(40). The thermodynamic and the kinetic control of protein folding were initially seen 

to be mutually exclusive; i.e., thermodynamics would drive the polypeptide chain to 

arrive at the global free energy minimum in a ‘pathway-independent’ mechanism, 

whereas, kinetics would push the folding to happen quickly in a ‘pathway-dependent’ 

mechanism (37). This problem came to be known as “Levinthal’s Paradox” and led to 

a series of studies to look for folding pathways. However, it was soon clear that the 

process of protein folding does not involve a pre-determined sequence of steps but is 

rather a stochastic process involving the polypeptide chain traversing a ‘free energy 

landscape’ to find a global minimum, such that the resulting conformation is stable 

under physiological conditions. This came to be known as the “new view” (41, 42) of 

protein folding, as opposed to the earlier classical view (36, 37, 43-45). The new view 

sees protein folding as a diffusion-like process, involving an ensemble of intermediate 

structures traversing the free energy landscape in order to find the stable confirmation 
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(36, 37, 44-46). A polypeptide can traverse the accessible conformations in varying 

amounts of time depending upon the free energy landscape. If this has the right shape, 

there are only a small number of conformations that need to be sampled for the 

polypeptide to arrive at its native conformation (36, 37, 45, 46). The free energy 

landscape of any given protein is encoded by its amino-acid sequence and, hence, has 

been carefully selected during the course of evolution to allow for rapid and efficient 

folding and for the avoidance of misfolding (46). More recent studies have unraveled 

a more complicated view of this process, suggesting the presence of metastable 

structures as the final product of protein folding. During the course of folding, the 

polypeptide can adopt conformations corresponding to local minima in the free 

energy landscape. The resulting structure is only kinetically stable but not 

thermodynamically so (47, 48), since the polypeptide chain gets trapped in a 

kinetically stable local energy minima. 

 

These results concern proteins at low concentrations, when inter-molecular 

interactions are rare. Dobson and colleagues recently showed that amyloid state might 

be the most thermodynamically stable state for many different types of proteins under 

cellular conditions, where their concentrations can be quite high (47, 49). They 

reported, for a range of different peptides and proteins, at cellular concentrations, that 

the free energy associated with the amyloid structure is lower than that of the 

respective native states. Thus, from a biological standpoint, it might be possible that 

the native states of the proteins have been carefully selected by evolutionary pressure 

to be kinetically, rather than thermodynamically, stable. Thus, these states are 

metastable to aggregation. The conversion of these native states to a more 

thermodynamically stable but less functional amyloid state might be impeded by the 

presence of a high kinetic energy barrier.  

 

Although the protein molecules and their biological environment have co-evolved to 

maintain the proteins and peptides in their soluble states, certain circumstances can 

convert them into nonfunctional and potentially toxic aggregates (Figure 1.1), giving 

rise to diseases collectively referred to as protein misfolding disorders (7, 12, 50). 

Both intrinsically disordered systems, such as α-synuclein and Aβ (51, 52) and 

globular proteins, such as β2-microglobulin and transthyretin (41, 42) have been 

linked to protein aggregation diseases. 
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Although it was well established that the conversion of soluble peptides and proteins 

to aggregated states involved nucleation and growth steps, the individual steps in the 

process were not fully understood until recently (53-55). A significant advance in the 

field was made when Knowles et al. reported the development of experimental and 

analytical techniques to study the kinetics of amyloid fibrils (53). Aggregation 

initiates with the formation of heterogeneous oligomeric species. However, these 

relatively disorganized species are capable of undergoing internal reorganization to 

give rise to rudimentary cross-β structures. Knowles et al. described the possible ways 

in which new aggregates could be formed, i.e. from monomer through primary 

nucleation, via fragmentation of existing fibrils or through a combination of 

monomers and existing aggregates through secondary nucleation. The combination of 

theoretical approaches and experimental kinetic measurements utilized by Knowles et 

al. enables the illustration of the importance of different microscopic steps during 

aggregation (7, 53). This development has transformed the landscape of development 

of therapeutics for diseases like AD by offering rational strategies based on both 

qualitative and quantitative understanding of the mechanism underlying fibril 

formation. Aggregates can also grow without any major structural reorganization to 

give rise to amorphous aggregates (12, 56).   

 

It has also become increasingly clear, over the past few years that the pathogenicity 

associated with misfolding disorders of the central nervous system arises mainly from 

the oligomeric forms generated in the process of aggregation (12, 57-60). Rather than 

being necessarily pathogenic, can cause harm by serving as a potential reservoir of 

oligomers that can be released (12, 51, 61-63) or by sequestering several proteins, like 

those of the protein homeostasis system (8, 12, 64), leading to widespread disruption. 

There is also evidence of prion like spreading of fibrils within the brain, which can 

serve to amplify all above scenarios (12, 65-68).  
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Figure 1.1 Schematic illustration of the multiplicity of conformational states that 
can be adopted by a polypeptide chain following its biosynthesis and the possible 
transitions between the different states. Boxes include intrinsically disordered 
proteins (IDPs), partially or fully folded proteins, initial oligomers, and mature 
aggregates, respectively. All of these conformational states and their interconversions 
are carefully regulated in the biological environment by means of the proteostasis 
network. Protein aggregation can result in the formation of amyloid fibrils (bottom, 
center), native-like deposits (bottom, right), or amorphous deposits (bottom, left), all 
of which are associated with pathological states when they form in an uncontrolled 
manner (12).  



!

! 8!

It is important to understand, in the wake of tremendously improved knowledge about 

the fundamentals of protein misfolding and associated pathology in various diseases, 

that there is unlikely to be a unique toxic agent or a unique cellular mechanism 

responsible for these diseases (12). It is, hence, extremely important to understand the 

details of the various interactions and cellular processes involved in the disease to 

gain an understanding of a global network, disruption in which results in the 

pathological cascade observed in these diseases.      

1.3  The regulation of protein folding and misfolding 

– Protein homeostasis, and its role in 

neurodegenerative diseases  

As described above, protein folding is a complex process involving an ensemble of 

intermediate states (36, 37, 44-46). Hence, there are ample opportunities for the 

formation of misfolded or aggregated structures leading to loss of biological 

functionality or even toxicity for the cell. In addition, the metastability of a protein 

may change during its lifecycle, starting with its synthesis at the ribosome, co-

translational or post-translational folding to its localization, with post-translational 

modifications and with interactions with various cellular partners, and ending with its 

degradation (12). Even proteins that have folded into their native state can unfold 

through stochastic events and form aggregates (12). There is a high turnover for 

proteins within the cellular environment, and the native states need to be fully or 

partially unfolded in order to be degraded, creating another possibility for misfolding 

or aggregation. Since the proteome is in a constant change of flux, the cells have 

evolved an equally dynamic, robust protein homeostasis system to control it, 

comprising of several components like molecular chaperones, cellular trafficking and 

degradation processes (Figure 1.2) (5-8, 35, 69, 70). The ultimate effect of this 

system is to maintain the solubility of the proteome, either by preventing misfolding 

of native or unfolded proteins or by degradation of existing misfolded and aggregated 

species. It maintains a steady state that evolves in accordance with the changing 

conformations of the proteins. It has been seen that the free energy landscape of the 

protein itself is dynamic, changing in response to different substrates or molecules or 
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change in temperature (71-76). Therefore, the protein homeostasis system has the 

arduous task of maintaining the folding of tens of thousands of protein in the highly 

crowded cellular environment, where the system itself is in a constant state of flux.  

 

One of the first classic examples of the workings of this system was the discovery of 

the heat shock response (77). It was seen that cultured cells or whole organisms, on 

exposure to elevated temperatures, responded by synthesis of a small number of 

proteins termed as heat shock proteins  (Hsps). This response appears to be universal, 

from simple single celled organisms like bacteria to complex multicellular species 

like mice. This response allows the cell to deal with the stress of high temperature 

induced misfolding by increasing the transcription of the Hsp70 molecular chaperone 

(77-81). Since then, numerous experiments have demonstrated that alterations in the 

in vivo concentrations of various chaperones can modulate the cell’s capacity to deal 

with different stresses (82-86). More than 300 molecular chaperones have been 

reported for humans (87) and these act at different stages of the lifecycle of a protein 

– from accompanying the nascent polypeptide chain as it emerges from the ribosome 

and its proper folding to its subsequent degradation (5, 6, 35, 64, 69, 87). Molecular 

chaperones, like Hsp70 and Hsp90 systems and the chaperonins (Hsp60), can 

transiently hide the exposed hydrophobic residues on non-native states that are 

usually buried in the native conformation, helping in the de novo folding of the 

polypeptide chain (35, 64). Although smaller proteins may fold rapidly in vitro, it is 

often an inefficient process for larger multi domain proteins. Also, larger proteins 

increase largely in number as we move from prokaryotes to eukaryotes (64). Hence, 

there is increasing need for a robust protein quality control system as we move up in 

evolution.  

 

Another major branch of the protein quality control system is the degradation 

machinery (88). The cellular proteome needs to be constantly remodeled in response 

to varied demands on the system. Proteins need to be constantly degraded after they 

have fulfilled their functionality and defective or aggregated species also need to be 

removed to avoid cellular toxicity. The ubiquitin-proteasome system (UPS) and the 

autophagic-lysosomal pathway (ALP) are the two major branches of the cellular 

degradation machinery (88-91). Both these systems intertwine at several junctures to 

give rise to a highly complex regulatory system for cellular degradation, and utilize 
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ubiquitin (Ub) as the marker for degradation (88). It was also shown that proteasome 

inhibition or overexpression induces autophagy, mainly to compensate for the reduced 

degradative capacity of the proteasome and prevents accumulation of aberrant 

aggregates (88). Not only is there crosstalk between the degradation machinery, but 

also between molecular chaperones and the components responsible for cellular 

degradation. The Hsp70/Hsp90 system can target client proteins to proteasome via the 

co-chaperone CHIP (92). Molecular chaperones can also recognize specific sequence 

motifs exposed on peptides and direct them to lysosomes, where they are eventually 

unfolded and degraded – a process termed as chaperone-mediated autophagy (88-91, 

93). Hence, the various components of the protein homeostasis system communicate 

extensively to maintain an intricate and elegant balance between protein solubility and 

degradation.  

 

The importance of these systems for different neurodegenerative diseases has been 

firmly established, with studies showing the decline in protein homeostasis activity to 

be a central factor in ageing and in the pathology of multiple protein misfolding 

diseases (5-8, 35, 69, 88-91, 94-96). Also, in the model organism C. elegans there is 

evidence that decline of protein homeostasis is already a feature of early adulthood, 

with the suppression of the heat shock response at the onset of reproductive age 

occurring as a result of a genetically programmed event (97). A recent study has also 

reported a subset of molecular chaperones capable of preventing protein-associated 

toxicity in a C. elegans neurodegenerative disease model, but whose expression is 

suppressed in ageing and neurodegeneration (87). The widespread disruption of the 

protein homeostasis system in young healthy worms could represent an early 

molecular event in the ageing process that disturbs the balance between metastable 

proteins and the quality control system responsible to maintain their solubility, 

leading to the accumulation of misfolded species and the onset of neurodegenerative 

diseases (30, 69, 70).  Mutations in two enzymes of the UPS – parkin and ubiquitin C-

terminal hydrolase L1, have been shown to be directly associated with Parkinson’s 

disease (PD) (88-91, 98-100). PD is also associated with a loss of 20/26S proteasomal  
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Figure 1.2 The proteostasis network (PN).  The PN maintains protein homeostasis 
by controlling the levels of functional proteins and preventing the formation of toxic 
aggregates. This is achieved by integrating three branches of the PN: (i) protein 
synthesis, the chaperone pathways for the folding of newly synthesized proteins and 
intracellular trafficking (PN branch of biogenesis; green); (ii) the chaperone pathways 
for the remodelling of misfolded proteins and protein disaggregation (PN branch of 
conformational maintenance; blue); and (iii) the pathways of protein degradation by 
the ubiquitin–proteasome system (UPS) and autophagy (PN branch of degradation; 
red). Toxic aggregates (mainly diffusible, oligomeric states) may be converted to less 
toxic, insoluble inclusions of amorphous or fibrillar (amyloid-like) structure (6). 

 

subunits and an overall decrease in proteasomal activity in the affected regions of the 

brain (91, 100, 101). Exogenous expression of aggregating peptides was also shown 

to severely impair UPS activity in human cell lines (102). The pathology of AD too 

has been linked to a decrease in abundance or efficiency of components of the cellular 

degradation machineries. There have also been reports of region specific depletion in 

proteasomal activity in post-mortem tissues of AD patients, with highly vulnerable 

brain regions showing a decrease in the activity, but not expression, of the proteasome 

(103). However, the details of whether this decline in the quality control components 

precedes, or is a result of, protein misfolding and aggregation events remain elusive.  
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1.4  Protein misfolding disorders 

Given the delicate nature of protein folding and the many sources of conformational 

instability of the native states of proteins, one would expect a wide array of diseases 

whose pathology emerges due to protein misfolding. More than 50 human diseases 

have indeed been associated with protein misfolding and subsequent deposition of 

aberrant amyloid deposits, spanning across various tissues and organs such as liver, 

spleen, kidney and muscles among others giving rise to conditions such as type 2 

diabetes and atrial amyloidosis (11, 12, 46). Several systemic amyloidosis have also 

been reported involving the deposition of aggregates across various tissues. Perhaps 

the most prominent of all these conformational disorders are those in which the 

aggregates are deposited in the central nervous system, giving rise to 

neurodegenerative disorders like AD, HD, PD and ALS (11, 12). Their pathology is a 

result of deposition of aberrant non-functional species or toxic aggregates resulting in 

neuronal loss.  

 

Furthermore, this rapid increase in the incidence of AD mentioned above can be 

attributed in part to the increased longevity of people, as age is a major risk factor for 

conformational disorders of the brain (46). With major advances in medical science 

and the healthcare system, we are experiencing a demographic shift, which makes it 

all the more crucial that we make a breakthrough in our understanding of these highly 

debilitating neurodegenerative disorders (46).   

 

The first reports for these diseases come from the early 19th century, where clinicians 

have noted various symptomatic manifestations of these diseases, like the deposition 

of ‘lardaceous’ material in various different tissues or organs for diseases like 

systemic amyloidosis (104). Although these earliest studies include some reports 

about inclusion bodies in the brain, they do not offer any links to neurodegenerative 

diseases. James Parkinson and George Huntingdon were the first to report the 

symptoms associated with PD (105) and HD (106) respectively. These pioneer studies 

report the symptomatic manifestations of the diseases but do not document the 

presence of aggregates now known to be associated with them. It was Alois 

Alzheimer’s astute observations in 1907 that suggested a link between the presence of 
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aberrant deposits in the brain and classic symptoms of neurodegeneration, and his 

work later led to AD being named after him (107-109).  

 

Although we have not yet uncovered a cure for these complex diseases, more than a 

century (almost 2 centuries for PD and HD) of studies by some of the most ingenious 

minds across various disciplines has resulted in a huge leap in our understanding of 

their mechanisms and pathology, although, the ultimate solution still eludes us. 

Following the initial reports in the early 19th century about the deposition of 

‘lardaceous’ material in different tissues, there was enormous effort to characterize 

the exact nature of the material. Matthias Schleiden first coined the term ‘amyloid’ to 

describe amylaceous plant constituents (104). However, it was Virchow who 

popularised this term for the deposits being reported in the 19th century. It was based 

on the observation that these deposits reacted with iodine in a manner similar to starch 

or ‘amylin’ (110). However, there was much confusion about the matter as later 

studies by Carl Friedreich, August Kekule and Samuel Wilks, among others, showed 

that the deposits contained chemical substances similar to albuminoids, but not starch 

or cellulose (104). The importance of the matter is exemplified by the formation of a 

committee by the Royal Society of London  ‘on the nature of the so-called 

Lardaceous Disease and as to the name by which it should be recognized’ (111). In 

the later years of the 19th century, evidence mounted that the deposits were indeed 

albuminoid - or as we now refer to as proteinaceous. This was followed by numerous 

attempts to characterise the structure and composition of these deposits (104). The 

structure of albuminoids, and more generally proteins was not very well understood in 

the 19th century. Hence, it was almost impossible at the time to understand the 

specific protein or proteins that make up the amyloid deposits. It was not until Fred 

Sanger first sequenced the B chain of insulin (112-115), showing for the first time 

ever that protein molecules have unique amino acid sequences that elucidating the 

composition of amyloid deposits seemed achievable. However, there was still the 

difficult issue of isolating and solubilising the proteins from these deposits. As 

Virchow rightly pointed out in 1863: ‘only when we have discovered the means of 

isolating the amyloid substance, shall we be able to come to any definite conclusion 

with regard to its nature’ (104). Almost a century later, Newcombe and Cohen 

described a method to isolate, solubilise and re-precipitate amyloid fibrils (116). 

Thus, huge technical advancements, both in terms of the ability to sequence a protein 
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and the methodology for its purification, provided a strong impetus to the efforts 

towards characterizing the amyloid deposits. Two decades after Newcombe and 

Cohen reported the purification of amyloid fibrils, Glenner and colleagues, in a huge 

advancement for the field of Alzheimer’s research, identified the main constituent of 

the characteristic amyloid plaques in AD – a peptide now known as amyloid beta or 

Aβ. They reported that the main constituent of these plaques bears no sequence 

homology to any protein identified until that time and hence could be used as a 

biomarker for disease (117). That article probably marked the beginning of a large 

amount of studies that would be conducted in the later years studying the utility of Aβ 

as a biomarker and a therapeutic target for AD. Studies in the 1990s also identified α-

synuclein and huntingtin as the main constituents of the aggregates in PD (118) and 

HD (119) respectively.  

 

The identification of Aβ as the main component of amyloid plaques and the 

sequencing of its first 24 residues by Glenner and Wong paved the way for numerous 

studies into the mechanistic details about the pathogenesis. It was soon shown that 

Aβ1-42 is especially aggregation prone (120) and is associated with disease (121-123). 

This finding was followed by the identification and sequencing of the APP gene, 

whose proteolysis gives rise to the Aβ peptide in the cell (124). Although the normal 

cellular function of Aβ still remains debated to date, mutations in the APP gene (23) 

and the secretase enzymes involved in cleavage of APP gene were identified in the 

1990s to be associated with the familial form of AD (19-22, 24-26).  

 

The early studies of the 19th century, despite the crudeness of the histological methods 

available at that time, had the insight to group the amyloid deposits together (104), 

implying that they might bear similarities regardless of their tissue localisation. These 

were the earliest clues that the amyloid deposits might share structural commonalities. 

Improvements in the isolation techniques for amyloid aggregates and the development 

of microscopy and X-ray crystallography were instrumental in transforming the field 

of protein structures. Although there was direct evidence for similarity between 

amyloid deposits from different sources, the techniques lacked the resolution needed 

to dissect their structural details. In 1968, Eanes and Glenner succeeded in using X-

ray crystallography to elucidate the structure of amyloid fibrils (125). They reported 

that fibrils obtained from different sources all shared the antiparallel cross-β structure. 
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These improvements and advances in our understanding of the structure of amyloid 

fibrils laid the groundwork for studying the fundamental mechanisms of misfolding 

and aggregation of proteins. 

 

The observations that proteins can aggregate and that aggregation is a general 

phenomenon were made much before the advent of the technological and 

methodological advancements described above. However, no structural information 

existed at the time to investigate the details of the process. Seminal studies by Bernal, 

Crowfoot (126), Astbury and Lomax (127) in 1934 provided the first evidence for the 

existence of both globular and fibrous states of a protein – in their case pepsin. When 

Eanes and Glenner reported the structure of amyloid fibrils, they suggested that the 

cross-β structure observed under physiological conditions was not necessarily the 

same as the in-vitro conversion of proteins into fibrils. All these studies offered 

remarkable scientific advancements, most notably the cross-β structure of amyloids 

and their structural similarity despite heterogeneity amongst the protein giving rise to 

them. 

 

There was renewed interest, in the late 20th and the early 21st century, in the general 

capability of proteins to form amyloids. This was probably inspired by Astbury’s 

initial speculations about the general ability of proteins to fibrilise (128). Work from 

Guijarro et al. showed that fibrils could be formed from the small globular SH3 

domain (129). Later, Dobson and colleagues showed that myoglobin, a well known 

globular protein, could indeed be induced to form aggregates (130). Studying the 

effects of mutations in known amyloidogenic proteins helped to understand the 

process of amyloid formations. Studies on lysozyme, the first such example, 

illustrated that although aggregation promoting mutations rendered the protein more 

vulnerable, they did not abolish the enzymatic activity of the protein (131). It was 

observed that these mutations lowered the stability of the β domain, hence promoting 

aggregation (131). This result also suggested that aggregation could result from a 

subtle destabilization of the native states and not necessarily involving conformational 

transformation of the soluble protein, thus elucidating the importance of the 

competition between alternate conformational states of the protein. Indeed, it is now 

known that molecular chaperones help tip the balance towards properly folded native 

states, both in vitro and in vivo, minimising the possibility of amyloid formation. It is 
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now evident that a wide range of proteins, unrelated in sequence and structure, can be 

induced to form aggregates – giving rise to the view that amyloid formation is a 

generic biophysical phenomenon (12, 46). Indeed, Dobson and colleagues also 

reported that even non-disease related proteins can be cytotoxic when induced to form 

amyloids, establishing the common cross-β structural similarity of amyloids to be the 

basis of cellular toxicity (132).  

 

These findings about the generic nature of amyloids and their inherent toxicity, 

regardless of the specific proteins that form them, provided important insights into the 

importance of preventing protein aggregation in neurodegenerative diseases. In 

parallel with the mounting evidence about the failure of the protein homeostasis 

system during ageing and disease, these studies shed light on the role of the delicate 

and fragile nature of the balance between protein folding and aggregation that 

evolution has achieved, but which is highly susceptible to disruption.  

1.5  The genetics of Alzheimer’s disease 

Along with the efforts to study the structure of amyloid fibrils and to identify 

amyloidogenic proteins, the end of the 20th century also witnessed increasing interest 

in understanding the genetic basis of these neurodegenerative diseases. It was 

Gusella’s discovery of the Huntingtin gene in 1983 (133) that illustrated first the 

potential of genetic analysis for neurodegenerative diseases. For AD, one of the first 

evidence pointing to its genetic dependence was the increased incidence of disease in 

the families of affected individuals. Evidence also started emerging that AD 

segregated as autosomal dominant condition (134, 135). The increased incidence of 

Down’s syndrome in families of affected individuals and the increased incidence of 

dementia of Alzheimer’s type in individuals with Down’s syndrome over the age of 

35 suggested the possibility of a genetic association between the two (136). The 

heterogeneous nature of AD made the initial attempts at identifying the genetic locus 

a laborious task, with the earliest reports claiming that the Alzheimer’s locus was the 

same as APP (137, 138) and that there was a duplication of the chromosome 21 in AD 

(139). Although the duplication was later found to be an error (140) and the subjects 

used to study linkage of APP and the genetic locus were indeed found to be 
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chromosome 14 linked (141), it was serendipitous that they still managed to suggest 

APP as a genetic locus for AD. Subsequent genetic analysis revealed that AD was 

indeed linked to chromosome 21 (142) but also that the disease was highly 

heterogeneous (143, 144). The first mutation identified in Aβ was in relation to 

hereditary cerebral haemorrhage with amyloidosis where Aβ was found to be 

deposited in the walls of the blood vessels of affected individuals (145). This 

observation paved the way for the identification of AD specific mutation in the APP 

genes, and it was soon identified that a point mutation (Val→Ile) at position 717 was 

highly pathogenic in various AD pedigrees (146). These familial cases have a 

particular phenotype and the age of onset was approximately 50 years, associating this 

mutation with the early onset AD. The presence of Lewy bodies and tangles was also 

reported in subjects with the APP mutation. Although there was sufficient evidence 

implicating the role of APP mutations in AD, a large number of familial cases were 

still found to lack any linkage with chromosome 21. Work from St. George-Hyslop 

and colleagues succeeded in identifying presenilin1 as another important locus linked 

with early onset AD (147). Subsequent studies would also identify mutations in 

presenilin2 (148, 149).  

 

While the importance of APP in the pathology of early onset AD was well established 

by the end of 20th century, its physiological role within the cell still remained elusive. 

It was subsequently discovered that the 695-residue amyloid 14 precursor, one of the 

three splicing products of the APP gene, was an integral transmembrane protein, with 

three extracellular domains, one transmembrane domain and a 47 residue cytoplasmic 

domain (124). APP was also seen to undergo rapid metabolism in further studies 

(150). Later, Haass et al. reported that soluble Aβ is a normal product of cellular 

metabolism, both in vitro and in vivo (151). With these studies as the background, 

there was a whirl of excitement to better understand the production and metabolism of 

APP and the production of Aβ using the tools of genetic analysis. Studies of APP 

metabolism in the presence of the pathogenic mutations revealed an increase in the 

production of Aβ (20, 123, 152, 153). These observations formed the framework for 

the birth of what is now well known as the ‘amyloid hypothesis’ of AD. Presenilin  
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mutations were also shown to be involved in the cleavage of APP in cultured primary 

mice neurons, with an ultimate increase in Aβ productioni. 

 

Together with the presenilin mutations, mutations in the APP gene have been reported 

for almost all cases of autosomal dominant, early onset AD (18). However, these are 

responsible for a very small fraction of the reported AD cases (18). Majority of AD 

cases are sporadic, with a late age of onset and no apparent genetic signature. Linkage 

studies in the early 1990s from Pericak-Vance et al. and Strittmatter et al. succeeded 

in identifying APOEε4 as major locus in the etiology of late onset AD (27, 28). 

However, the mechanistic details of this association still remain incompletely 

understood.  

 

Efforts to identify more risk factors for late onset AD (LOAD) through linkage 

studies failed to fruitful, mainly because these studies relied on knowledge of pre-

conceived candidate genes for linkage analysis and thus, the design of the study itself 

excluded the possibility of identifying novel loci (154). The high cost and laborious 

nature of the technique also impeded the study of multiple markers simultaneously. 

With the rising popularity of the microarray technology in the late 1990s and the 

major implications of the sequencing of the human genome in 2001, it became 

possible to simultaneously study thousands of genes and associated polymorphisms 

and their role in various human diseases. These advances allowed for a hypothesis-

free approach to analyse the whole genome for allelic polymorphisms associated with 

a particular condition – which are now popularly known as genome wide association 

studies or GWASs (18). As seen throughout the historical perspective of AD research, 

this huge leap in technological advancement provided tremendous momentum to the 

field, with new loci being reported to date (Figure 1.3) (18). However, the problem of 

massive multiple testing warranted the development of robust statistical models to 

justify the observed effects.  

 

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i!Mutations were also identified in the three Aβ processing enzymes – β-secretase, 
responsible for the N-terminal cut of Aβ from APP (at APP 671); α-secretase, 
responsible for the alternative cleavage of the shorter fragment p3 (APP687); and γ-
secretase, responsible for releasing both Aβ and p3 from the relevant C-terminal stubs 
of APP and cleaving intramembranously around APP residues 711–713 (153).  
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Figure 1.3 Progress in risk gene identification, follow-up, and relevance in 
Alzheimer’s disease research. Identification of novel risk genes by GWAS are 
shown in green. Follow-up and relevance of the identified risk genes are shown in 
orange. The grey graph underneath the timeline arrow represents the increase in the 
sample size of the most recent GWAS in Alzheimer’s disease research (18).  

 

 
 

Reiman et al. reported the first significant AD associated GWAS locus - GRB2-

associated binding protein 2 (GAB2) (155). They observed that the effect was more 

pronounced in conjunction with APOEε4. However, the effect was not consistently 

replicated in subsequent studies, with it often showing non-significant effect sizes 

(156-158). The smaller size of the early GWASs was probably a major factor in their 

failure to identify significant loci. In the following year, Bertram et al. reported three 

novel loci: ATXN1 (ataxin 1), CD33 (siglec 3), and an as yet uncharacterized locus on 

chromosome 14 (GWA_14q31.2) (159). While the latter locus failed to show 

validation in subsequent case control studies (160), there were studies, albeit only a 

few, to merit the association of ATXN1 and CD33. ATXN1 was suggested to modulate 

the levels of Aβ in vitro (161). CD33 belongs to a family of lectins involved in cell-

cell interactions and in regulation of cells of the immune system (162, 163) – both 
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believed to be involved in the inflammatory reaction observed in AD brains. During 

this time, several other loci were suggested but failed to reach independent validation. 

In 2009, two large-scale GWASs from Lambert et al. (164) and Harold et al. (157) 

suggested three novel AD associated loci, all of which were replicated in subsequent 

studies: CLU (clusterin; a.k.a. apolipoprotein J), CR1 (complement component 

(3b/4b) receptor 1), and PICALM (phosphatidylinositol binding clathrin assembly 

protein). Clusterin is a molecular chaperone, and has been implicated in Aβ 

fibrillization, clearance and aggregation (165, 166) and also regulation of lipid 

metabolism in the brain (167). CR1 is the main receptor of the complement C3b 

protein, complement activation being suggested as a protective mechanism in AD 

(168, 169). PICALM plays a role in clathrin mediated endocytosis and synaptic 

transmission (170). Latest additions to the list are BIN1 (bridging integrator 1i; 

and EXOC3L2 (exocyst complex component 3-like 2) (171).  

 

Although GWASs have succeeded in breaking the deadlock facing linkage studies 

and transform the landscape of LOAD genetics over the past decade by suggesting 

novel genetic associations, the effect sizes of individual genes are extremely small, 

making it unlikely to explain fully the etiology of LOAD. As for rare variants 

associated with EOAD, i.e. APP, PSEN1 and PSEN2, meticulous functional 

characterization in vitro and in vivo of the GWAS genes is required to establish their 

role in AD. This aspect has proved particularly problematic because unlike the EOAD 

genes, which assert their effects via mutation in functional genes, GWAS variants are 

mostly present in genomic regions of no functional consequence. Also, 

polymorphisms in the non-coding regulatory regions of the genome can have subtle 

manifestations, such as modification of expression levels of a particular protein, 

which are particularly difficult to study over a large scale. GWASs have also 

enumerated genes associated with different physiological processes that were 

previously never associated with AD, opening up the field for broader interventions. 

However, the various loci uncovered have, as yet, failed to elucidate a comprehensive 

mechanism for LOAD. It would probably require a merger of the hypothesis-free 

GWAS line of enquiry and a rigorous understanding of the fundamental biology of 

AD to allow us to tackle this ‘twenty-first century plague’ (13).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i!Originally implicated at subgenome-wide significance by Harold et al. (157) 
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1.6  Protein aggregation as a widespread 

phenomenon 

Protein misfolding diseases have been historically associated with the aggregation and 

deposition of specific proteins in the form of amyloid plaques and neurofibrillary 

tangles, mainly formed by Aβ and tau, respectively, although the deposits may 

contain other components (172-174). As described above, for almost a century it was 

believed that the ability to form amyloid fibrils is a property of specific disease 

associated proteins, conferred by certain aberrant sequence motifs in the polypeptide 

chain, until the work by Dobson and colleagues, illustrating the generic nature of 

amyloid state (7, 11, 12, 14, 175). The observation that homopolymers such as 

polythreonine or polylysine are able to form amyloids in vitro proved that amino acid 

sequences are inherently capable of forming amyloid structures (130). Although 

specific amino acid sequences were shown to be rather inconsequential in determining 

the amyloidogenic nature of a polypeptide, they play an important role in determining 

the propensity to form amyloids, or in other terms the sequence of a polypeptide chain 

influences its aggregation propensity (175, 176). Indeed, it was shown by Chiti et al. 

that a single amino acid mutation in a 100-residue protein could cause a change of an 

order of magnitude or more in the aggregation rate of that protein (175). This change 

of aggregation rate also correlated with the predicted change in other physicochemical 

properties, such as charge and hydrophobicity (175, 176) – a correlation subsequently 

found to be validated for a large range of sequences, endorsing the generic nature of 

aggregation and amyloid formation.  

 

The native and the amyloid states can be considered to be in competition, making the 

maintenance of the balance between their populations highly significant. Indeed, 

Vendruscolo and colleagues reported a negative correlation between the expression of 

human genes and the aggregation propensity of their respective proteins (49). This 

observation was highly interesting because it suggested that proteins are expressed at 

the limits of their solubility and that their aggregation propensities have been finely 

tuned through random mutations and evolutionary selection to allow them to be 

functional at the required concentrations. However, it also means that proteins have 

co-evolved with the cellular environment to be sufficiently soluble so as to be 
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functional, but not more so. Hence, even relatively small increases in the 

concentration or aggregation propensity, such as those caused by mutations or 

regulatory process failure, can push the proteins over their solubility edge and cause 

them to aggregate (49).  

 

The role of protein homeostasis thus becomes even more paramount given an 

environment in which proteins are expressed at their solubility limits. A possible 

strategy to maintain the integrity of the proteome would be for each step of protein 

synthesis and folding to be tightly regulated, such as the formation of misfolded and 

aggregated species is implausible. Orchestrating the exquisite control of each step in 

the process, from the synthesis of the polypeptide at the ribosome, to its folding and 

modification and its subsequent degradation would be exceedingly energy intensive. 

It would also considerably impede the rate of protein synthesis, as each step would 

need to be checked meticulously. An alternative situation would be a one in which 

large amounts of proteins are synthesised and degraded continuously, such that at any 

given time, enough properly folded structures are present to maintain the functionality 

of the proteome. However, there would also be a high-energy cost associated with the 

synthesis of a large number of non-functional proteins and the subsequent 

identification and degradation of large numbers of misfolded species. Bennink and 

colleagues provided evidence favouring the latter approach, when they showed that 

almost 30% of newly synthesised proteins are rapidly degraded in the cell (177). 

Ubiquitinated and misfolded species were seen to accumulate upon inhibition of the 

proteasome – shedding light on the role of proteasome in the degradation of newly 

synthesised proteins.  

 

Given the fact that proteins are expressed at their solubility limits and the existence of 

an intricate protein homeostasis system, it is probable that any kind of physiological 

stress can have major effects on proteome integrity. There is increasing evidence that 

hundreds, even thousands, of proteins unrelated and sequence and structure can 

aggregate during the course of ageing (29, 178), disease (172-174), or upon heat 

shock (179, 180) or due to expression of amyloidogenic proteins (31). It is not 

currently clear whether the widespread aggregation within the cell leads to the 

formation of amyloids or amorphous species. Independently from these possibilities, 

the importance of solubility in maintaining a functional proteome is reinforced by the 
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fact that so many different proteins can aggregate under conditions of stress. This 

widespread aggregation can also rationalise, in part, the multifaceted pathology of 

neurodegenerative diseases (33, 181, 182).  

 

As it turns out, proteins associated with neurodegenerative diseases are inherently 

highly metastable. In their analysis, Vendruscolo and colleagues reported that a large 

number of proteins, in a healthy state, are expressed at levels higher than their 

intrinsic solubilities – i.e. they are supersaturated (34). Specific proteins that co-

aggregate with plaques and tangles were seen to have elevated supersaturation levels 

and biochemical pathways associated with neurodegeneration were enriched in these 

supersaturated proteins. The presence of such a metastable subproteome would 

enhance the risk of widespread aggregation under physiological stress. This analysis 

highlighted an important link between the two branches of the study of misfolding 

diseases - the study of biophysical and biochemical phenomena governing protein 

folding and the widespread cellular disruption characteristic of disease pathology (33, 

34).      

1.7  Diagnostic and therapeutic strategies for 

Alzheimer’s disease 

The heterogeneous and multifactorial nature of AD, along with a lack of clear 

understanding of its underlying mechanisms presents an immense challenge in the 

design of diagnostic and therapeutic strategies. Differentiating between AD and other 

types of dementia has proved to be another roadblock. For the better part of the 20th 

century, definitive AD diagnosis depended upon post-mortem detection of plaques 

and tangles along with a history of dementia (183). From a clinical perspective, the 

definition of AD has evolved drastically over the last decade or so to involve patients 

with milder symptoms and the acknowledgement of a preclinical phase of the disease 

– during which, although there might be no phenotypical manifestations, the 

pathological changes have already initiated in the brain (183-185). Efforts to define 

this disease have been further complicated by the observation that many older 

individuals, considered cognitively healthy at the time of death, show AD-related 
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neuropathological changes in the brain (186-194). There have been increasing efforts 

to differentiate the clinical term ‘Alzheimer’s disease’, which is based on the 

presentation of cognitive and behavioural symptoms, from the AD associated 

neuropathological changes, which refer to histopathological changes seen in the brain 

at the time of autopsy regardless of the clinical setting (183).  

 

The current diagnostic criteria divide AD into three stages – the preclinical stage, 

mild cognitive impairment (MCI), and AD dementia (184, 185, 195). The preclinical 

stage is devoid of any symptoms and can extend over a period of years, even decades, 

before proceeding to the state of MCI. Although there have been reports that certain 

CSF biomarkers, such as increased CSF tau and cortical thinning can be detected 

during the pre-clinical stage (185), in the absence of any symptoms, diagnosing the 

disease at this initial stage still remains challenging. MCI, as the name suggests, is 

accompanied by mild reduction in cognitive function, albeit to a level that still allows 

the subject to be independent and functional (184). Despite all the advances in 

imaging and biomarkers, diagnosis of MCI still depends on cognitive and functional 

tests, the interpretation of which is often at the discretion of the physician. MCI 

cannot yet be diagnosed by a standardised laboratory test (184). Advanced cognitive 

and behavioural impairment paired with a cognitive or function test and PET scans 

are the best available means to diagnose AD dementia (195). 

 

Identification of biomarkers for AD has gained much interest due to possibility of 

early detection and also monitoring disease progression and also act as potential 

therapeutic targets. Traditional biomarkers like Aβ and tau, although have provided 

important knowledge about disease pathology, have so far failed to produce tangible 

results. Reduced Aβ levels in CSF and evidence of Aβ deposits in PET scans have 

been reported to be a feature of AD (184, 185), although alone, these are insufficient 

for a definitive AD diagnosis. Increased CSF levels of total and phosphorylated tau 

have also been seen in disease pathology. Existence of variability in biomarker 

measurements between different laboratories has also been a limiting factor in 

effective biomarker development – biomarker levels fluctuate greatly with different 

disease stages, hence it is imperative to be able to definitively identify various stages 

of disease progression (196). Rapid advances in imaging techniques, like high-

resolution MRI and molecular imaging using PET has greatly augmented the efforts 
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towards AD diagnosis. PET has completely revolutionised the in vivo detection of 

amyloid deposits, owing to its high sensitivity, which has greatly helped the clinicians 

in staging AD (196-199). Radioligands capable of binding tau have also helped in 

studying tau deposition, which has been reported to be a better predictor of cognitive 

decline than Aβ load (200-203). Overall, however, clinicians and scientists still lack a 

consensus on diagnostic strategies for AD, mostly due to the fact that the present 

strategies only work in conjunction with each other and that the interpretation can be 

highly subjective.  

 

Development of various different biomarker and imaging technologies, accompanied 

by an exponential increase in literature regarding disease pathology have so far failed 

to translate into effective therapeutics for AD. Research into the possible mechanisms 

of AD over the last 3 decades has inspired various therapeutic strategies, but they 

have so far been highly disappointing (204). The ‘amyloid hypothesis’ has been the 

basic premise for most of therapeutic efforts, with strategies involving inhibition of 

cleavage of APP resulting in lower Aβ production or direct targeting of Aβ and tau 

using small molecules, resulting in reduction of plaques and tangles (205). High-

specificity antibodies (206), especially against Aβ and tau have also been reported to 

ameliorate certain pathological features in animal models. Despite enormous effort 

into the development of these strategies and encouraging results in pre-clinical 

studies, most of these strategies have failed massively in clinical trials, resulting also 

in enormous financial losses (204, 207). A recent example is solanezumab, a 

humanised monoclonal antibody shown to preferable bind soluble Aβ and ameliorate 

its clearance in pre-clinical studies, failed to produce any significant improvement in 

phase 3 clinical trials in 2014 (207). A review of clinical trials for AD held between 

2002-2012 showed that 98% candidate drugs failed in phase 3 (204).  

 

The failure of therapeutic interventions in AD so far can be attributed to two major 

factors. The first factor is a lack of mechanistic insight into the interaction of 

therapeutic agent (such as small molecules or antibodies) with the target molecule 

(such as Aβ or tau), which leads to an almost blind dependence on the final read out, 

like reduction in amount of deposits. This lack of quantitative understanding might be 

particularly dangerous in the light of the growing knowledge of the kinetics of protein 

aggregation, the measurements of which have recently been made possible (53). 
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Without discerning the exact mechanism of action of a therapeutic candidate, it is 

impossible to determine the stage of disease at which it would be beneficial, greatly 

increasing the risk of failure of the subsequent clinical trials.  

 

The second factor is the inability to correctly and definitively diagnose AD, 

particularly the pre-clinical stage, where the neuropathological changes are just 

beginning. It is plausible that due to the advanced stage of the disease of most 

subjects recruited for clinical trials, it is almost impossible for the drug to show any 

effect as the damage may have reached a point of no return. Thus, rational design of 

therapeutics, grounded in our increasing knowledge of the physicochemical properties 

or proteins and the kinetics of the aggregation process, accompanied by development 

of biomarkers capable of early detection of AD are the need of the hour to allow for 

the management and/or a cure for this highly debilitating disease. An anticancer drug, 

bexarotene, was shown to selectively inhibit primary nucleation of Aβ and delay the 

deposition of toxic species in neuroblastoma cells by Habchi et al (208). It was also 

reported to supress Aβ deposition and associated pathology in a C. elegans model. 

Hence, the rational design of therapeutics will prove instrumental in navigating the 

current bottleneck of AD therapeutics (209, 210). Another avenue of progress could 

be the incorporation of the protein homeostasis components as therapeutic targets. 

Since disease pathology is characterised by widespread aggregation and cellular 

dysfunction, targeting singular proteins like Aβ at the advanced stages of the disease 

might be insufficient to reverse the damage caused.    

1.8  Towards an understanding of the molecular 

origins of neurodegenerative diseases 

Although the myriad pathological disruptions and varied clinical presentations of 

neurodegenerative disorders paint a daunting picture in terms of developing effective 

therapeutic strategies, the study of these disorders in terms of common fundamental 

physicochemical properties offers a fresh perspective (7, 12, 33, 47). The observation 

that a large number of proteins can aggregate in these diseases can be rationalised to a 

large extent by the generic and predictable nature of protein aggregation (7, 12, 33, 
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34). The inherent metastability against aggregation of a substantial part of the 

proteome provides novel therapeutic and diagnostic approaches that can look beyond 

the focus on specific disease-related proteins.  

 

Equally, understanding the mechanisms of regulation of the metastable proteome in 

healthy cells and organisms is also of great importance. Although different types of 

stress, environmental disturbances, polymorphisms, altered transcriptional levels can 

all alter proteome metastability and push proteins towards supersaturation, the protein 

homeostasis system is still capable of restoring the balance and maintain a functional 

proteome. Hence knowledge about the regulation of metastable proteins will offer 

opportunities for novel rational therapeutic approaches aimed at restoring the balance 

between metastable proteins and their natural quality control systems.  

 

The studies described in this thesis represent an initial attempt to achieve this goal. 

We have utilised extensive sequencing data, systems biology and bio-informatics 

approaches to study the behaviour of metastable proteins in AD and to identify a 

specific protein homeostasis complement (PHC) responsible for their regulation. We 

have also aimed to study the role of the balance between metastable proteins and their 

regulation in determining tissue vulnerability to misfolding diseases.  

 

These studies represent an early effort to gain a holistic understanding of 

multifactorial protein misfolding diseases. Such efforts have become necessary in the 

wake of failure of various therapeutic strategies. As the 20th century efforts to group 

these diseases into ‘amyloids’ created a breakthrough in their understanding, the time 

has now come to look at these diseases in terms if their shared molecular origins, 

grounded in the knowledge of the generic features of protein aggregation.
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CHAPTER 2 

2.  A transcriptional signature of 

Alzheimer’s disease is associated with 

a metastable subproteome at risk of 

aggregation 

2.1  Overview 

It is well established that widespread transcriptional changes accompany the onset and 

progression of Alzheimer’s disease. Because of the multifactorial nature of this 

neurodegenerative disorder and its complex relationship with aging, however, it 

remains unclear whether such changes are the result of non-specific dysregulation and 

multi-systems failure, or instead are part of a coordinated response to cellular 

dysfunction. To address this problem in a systematic manner we performed a meta-

analysis of about 1600 microarrays from human central nervous system tissues to 

identify transcriptional changes upon aging and as a result of Alzheimer’s disease. 

Our strategy to discover a transcriptional signature of AD revealed a set of 
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downregulated genes that encode proteins metastable to aggregation in control brainsi.  

Using this approach, we identified a small number of biochemical pathways, notably 

oxidative phosphorylation, enriched in proteins vulnerable to aggregation in control 

brains and encoded by genes downregulated in Alzheimer’s disease. These results 

suggest that the downregulation of a metastable subproteome may act to mitigate 

aberrant protein aggregation when protein homeostasis becomes compromised in 

Alzheimer’s disease (181). 

2.2  Introduction 

Alzheimer’s disease (AD) is a neurodegenerative condition responsible for the 

majority of the reported cases of dementia, (3, 4, 7, 9, 10, 12, 15-17, 101, 211) and its 

onset and progression have been associated with a multitude of factors, including 

mitochondrial dysfunction, disruption of the endoplasmic reticulum and membrane 

trafficking, disturbances in protein folding and clearance, and the activation of the 

inflammatory response (3, 4, 7, 9, 10, 12, 15-17, 101, 211). As discussed in Chapter 1, 

it is clear that AD belongs to a class of protein conformational disorders whose 

characteristic feature is that specific peptides and proteins misfold and aggregate to 

form amyloid assemblies (7, 16, 17). The presence of such aberrant aggregate species 

generates a cascade of pathological events, leading to the loss of the ability of protein 

homeostasis mechanisms to preserve normal biological function and to avoid the 

formation of toxic species (7, 16, 17). 

 

The appearance of protein aggregates in living systems is increasingly recognized as 

being common, as described in Section 1.6. Growing evidence indicates that proteins 

are only marginally stable against aggregation in their native states (7, 49) and that the 

molecular processes that prevent protein aggregation decline with aging (32, 70, 97, 

212). Thus, protein aggregation is emerging as a widespread biological phenomenon, 

in which hundreds of different proteins can aggregate in aging, stress or disease (29-

32, 172-174, 178, 179, 213-215). To understand why some proteins aggregate while 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i  This chapter is based on a published manuscript (181).  The findings were obtained 
in collaboration with Dr. Prajwal Ciryam.  
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others remain soluble, we recently observed that many proteins in the proteome are 

insufficiently soluble relative to their expression levels (34). Such proteins are 

metastable to aggregation as their concentrations exceed their solubilities, i.e. they are 

supersaturated (33, 34, 216, 217). Upon formation of aggregate seeds by nucleation 

events, a supersaturated protein will form insoluble deposits until the concentration of 

its soluble fraction is reduced to match its solubility (33, 34, 216-218). We found that 

the proteins that co-aggregate with inclusion bodies, those that aggregate in aging, and 

those in the major biochemical pathways associated with neurodegenerative diseases 

tend to be supersaturated (34). The observation that these metastable proteins appear 

to be a common feature in aging, stress and disease prompts the question of whether 

or not their supersaturation levels are altered in AD. These levels are particularly 

crucial, as supersaturation represents a major driving force for aggregation (33). The 

downregulation of supersaturated proteins can thus limit their aggregation in response 

to compromised protein homeostasis. 

 

In the present study, we examined the experimental information acquired in the last 

decade about transcriptional changes in AD (219-233). We aimed to determine the 

relationship between protein supersaturation and the transcriptional changes that 

occur during normal aging and in AD. We found that distinct but partially overlapping 

transcriptional changes take place in aging and AD. Moreover, downregulated genes 

generally correspond to metastable proteins at risk of aggregation, as they are 

supersaturated and encoded by highly expressed genes. Accordingly, the biochemical 

pathways downregulated in AD are nearly identical to those previously identified as 

highly enriched in supersaturated proteins (34, 234). These changes are also 

accompanied by a transcriptional downregulation of certain components of the protein 

homeostasis network. The downregulation of genes corresponding to supersaturated 

proteins may thus represent a specific mechanism to limit widespread aggregation by 

regulating cellular concentrations in a compromised protein-folding environment.  
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2.3  Results 

2.3.1  Analysis of the transcriptional changes in aging and in 

AD 

A long-standing question is whether AD represents an acceleration of the normal 

aging process or a qualitatively distinct phenomenon (234). Determining changes in 

gene expression can offer important insights into this problem. The complications 

associated with obtaining human tissue samples, however, constrain the extent to 

which confounding variables such as age, gender and tissue type can be controlled in 

a transcriptional analysis of AD. In the present work, the control samples (mean 70.8 

± 16.4 years) are younger than the disease samples (mean 81.1 ± 9.5 years), 

necessitating the use of techniques to account for these disparities (Table A.1 and 

Section 2.6).  

 

For the human genes examined in our analysis, we constructed a linear model of 

expression differences across a range of factors (Section 2.6). We thus obtained the 

overall median magnitude and statistical significance of expression changes by 

combining these individual values across different studies. In this analysis, microarray 

probes were mapped onto UniProt IDs to determine the corresponding protein 

(Section 2.6). Using this procedure, we determined the transcriptional changes 

associated with 19,254 genes. An important aspect of this approach is that the effects 

on gene expression of different factors are considered as additive. Because the 

occurrence of AD increases with age, Alzheimer’s subjects exhibit specific disease-

related transcriptional changes in addition to those associated with natural aging. We 

considered a gene to be differentially expressed if it undergoes a change in expression 

of at least 10% with a Benjamini-Hochberg-corrected p-value ≤ 0.01. We then tested 

over 18,000 other combinations of thresholds and found our results to be robust to 

changes in these thresholds (Figures A.1 and A.2). In the used model here, the aging 

component is a linear variable, and therefore estimating the magnitude of change 

requires specifying a range of ages. As the assumption of linearity is expected to hold 
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best near the average age, we used the change in expression for an age range of 

approximately two standard deviations, i.e. 25 years.  

2.3.2  Proteins that aggregate in AD correspond to 

transcriptionally downregulated genes 

We next asked how the transcriptional changes identified in aging and AD might be 

associated with protein aggregation. First we considered the set of disease-related 

amyloid proteins, i.e. those annotated as ‘amyloid’ in UniProt, which include those 

associated with neurodegenerative diseases (34). On average, we could not detect an 

overall connection between amyloid proteins and proteins corresponding to 

differentially expressed genes (Figure 2.1 A,B). We also note, however, that this 

analysis does not imply that individual genes in the amyloid class may not have 

important roles in AD. As an example, the downregulation of the APP gene (in our 

analysis by 9.5%, with p=0.011) has been reported in neurons containing 

neurofibrillary tangles (235).  

 

We identified, however, a clear signal for another set of proteins associated with AD, 

namely those that co-aggregate with amyloid plaques (172) and neurofibrillary tangles 

(173) in human autopsy samples as identified by mass spectrometry. Among the 

proteins that co-aggregate with plaques (35%, p = 4.7·10-3) and tangles (41%, p = 

1.7·10-13), a disproportionate number correspond to downregulated genes in AD 

(Figure 2.1A) in addition to those that are downregulated during natural aging 

(Figure 2.1C). Proteins corresponding to genes downregulated in aging are 

overrepresented among tangle co-aggregators (10%, p = 2.5·10-3) but not plaque co-

aggregators (4%, p = 1.0) (Figure 2.1C). By contrast, only an insignificant number of 

genes encoding proteins aggregating in plaques and tangles was observed to be 

upregulated in AD (Figure 2.1B) or aging (Figure 2.1D). 
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Figure 2.1 Proteins that aggregate in AD correspond to transcriptionally 
downregulated genes. (A, B) Fraction of proteins corresponding to transcriptionally 
downregulated (A) or upregulated (B) genes in AD in the whole proteome (Prt, 
downregulated fraction 1907/19254, upregulated fraction 1509/19254), and for 
amyloid deposits (A, 1/23, 2/23), plaques (P, 9/26, 3/26) and tangles (T, 36/88, 9/88). 
(C, D) Fraction of proteins corresponding to transcriptionally downregulated (C) or 
upregulated (D) genes in aging in the whole proteome (Prt, 432/17833, 534/17833), 
and for amyloid deposits (A, 1/23, 0/23), plaques (P, 1/26, 0/26) and tangles (T, 9/88, 
3/88). The statistical significance of the difference with the proteome (first column) 
was assessed with a Fisher’s exact test with Holm-Bonferroni corrections (***p < 
0.001, ****p < 0.0001). 

 

2.3.3  Metastable proteins correspond to transcriptionally 

downregulated genes in aging and in AD 

We next investigated if the fact that so many proteins that co-aggregate with plaques 

and tangles correspond to genes downregulated in AD could be a consequence of their 

metastability to aggregation. We previously observed that these metastable proteins 

tend to be supersaturated, having concentrations exceeding their solubility limits (34). 

Here, we calculated the metastability of proteins to aggregation in terms of 

supersaturation scores (σu), which represent the risk of proteins aggregating from their 

unfolded states (34). We assessed proteins corresponding to genes downregulated in 

AD to be about 8.8-fold (8.8X, p < 2.2·10-16) more metastable than those for which 

the expression levels of the corresponding genes do not change significantly in 

disease (Figure 2.2A). Similarly, we found proteins encoded by genes downregulated 
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in aging to be more metastable (7.4X, p < 2.2·10-16) than those whose expression does 

not change (Figure 2.2B).  

 

We also found that proteins corresponding to genes upregulated in AD (1.3X, p = 

9.7·10-13) (Figure 2.2A) and in aging (1.5X, p < 8.8·10-7) (Figure 2.2B) are 

modestly, but significantly, more metastable than those with unchanged expression in 

AD. These upregulated genes are almost exclusively associated with an inflammatory 

response. For example, of those genes that encode metastable proteins, the most 

highly upregulated gene (123% increase in expression) in AD is alpha-1 

antichymotrypsin, which inhibits serine proteases, particularly those active in 

inflammation (236).  

 

Despite the fact that only 16% of downregulated genes are common to aging and AD 

(Figure 2.2D), in both cases the transcriptional response appears to be associated with 

metastability to aggregation (Figure 2.2A-C). Indeed, we observed a significant 

overlap (p < 2.2•10-16) between the most metastable proteins (≥95th percentile), 

proteins corresponding to genes downregulated in AD, and in aging, as well as 

between any two of these categories (Figure 2.2D). At the intersection of these three 

groups there is a set of transcriptionally downregulated genes encoding a group of 

proteins making up a metastable subproteome specific to AD, which is here referred 

to as the ‘metastable subproteome’. By contrast, the most transcriptionally 

upregulated genes in AD and in aging overlap significantly with each other, but 

neither group is significantly enriched in genes encoding metastable proteins (Figure 

2.2E). As a control, we divided the downregulated and upregulated genes into low, 

medium, and high levels and calculated the supersaturation scores at each of these 

levels (Figure 2.3A-D). Our results indicated a trend towards increasing levels of 

supersaturation with increasing levels of downregulation in AD (Figure 2.3A). This 

correlation is weaker in aging (Figure 2.3C), and weaker still among upregulated 

genes (Figure 2.3B,D). The negative correlation between protein supersaturation and 

gene downregulation also persists at the individual level for AD, but much less so for 

aging (Figure A.3). 
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Figure 2.2 Transcriptionally regulated genes in aging and AD correspond to 
proteins metastable against aggregation. (A-C) Assessment of the metastability to 
aggregation of the proteins associated with differentially expressed genes in (A) AD, 
(B) aging and (C) the overlap between the two groups. The median fold difference in 
supersaturation (or measure of metastability to aggregation) is indicated by ‘Fold Δ’. 
‘NC’, ‘Down’ and ‘Up’ indicate, respectively, no change in expression, 
downregulation and upregulation. (D-E) Overlap between the 5% most supersaturated 
proteins and the corresponding genes either (D) downregulated or (E) upregulated in 
aging and AD. The number of proteins in each subset is indicated. (F) Fraction of 
genes downregulated (blue) and upregulated (orange) in the whole proteome (Prt, 
downregulated fraction 1907/19254, upregulated fraction 1509/19254) and the protein 
homeostasis network (PN, 1,509/19254, 148/2041). For A-C, ****p ≤ 0.0001, one-
sided Wilcoxon/Mann-Whitney test with Holm-Bonferroni correction. For D-E, *p ≤ 
0.05, **** p ≤ 0.0001, one-sided Fisher’s exact test with Holm-Bonferroni 
correction). 
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Elevated supersaturation scores of differentially expressed genes may result from an 

easier detection of the differences in highly expressed genes than in genes of low 

expression. To control for this possibility, however, we excluded high expression 

genes from our analysis, finding the median supersaturation of proteins corresponding 

to differentially expressed genes to be elevated even after this procedure (Figure 

A.4). We also tested the robustness of our results against changes in the details of our 

analysis. We found that our results on the metastability of the proteins corresponding 

to differentially expressed genes are stable across a wide range of thresholds for the 

defining the groups of upregulated and downregulated genes (Figures A.1 and A.2), 

and also against the introduction of Gaussian noise into the supersaturation score 

(Figures A.5 and A.6). 

2.3.4  Specific protein homeostasis components correspond 

to genes downregulated in AD 

As we have discussed above, widespread downregulation of genes corresponding to 

metastable proteins may represent a general mechanism to maintain protein 

homeostasis upon aging and AD. An additional transcriptional response, however, 

may also involve specific components of the protein homeostasis network (212). 

Following a recent study that showed an enrichment in genes downregulated in aging 

in this network (212), we examined whether or not particular subnetworks in the 

overall protein homeostasis network correspond to genes particularly downregulated 

in aging and AD (Figure 2.2F). We found a significant number of protein 

homeostasis network genes in the ‘trafficking’ subnetwork to be downregulated in 

AD (14%, p=1.1·10-2). 
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Figure 2.3 The metastability of proteins to aggregation is correlated with the 
downregulation of the corresponding genes in AD.  Metastability levels, assessed 
by supersaturation scores, for proteins associated with differentially expressed genes: 
(A) downregulated in AD, (B) upregulated in AD, (C) downregulated in aging, and 
(D) upregulated in aging. Differentially expressed genes are divided into thirds (Low 
‘L,’ Medium ‘M,’ High ‘H’) based on the fold change of expression. The median fold 
difference in supersaturation is indicated by ‘Fold Δ’. ‘NC’ indicates no change in 
expression. ****p ≤ 0.0001, one-sided Wilcoxon/Mann-Whitney test with Holm-
Bonferroni correction. 
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particular transcription factor or histone modifier if the regulator has a binding site at 

least half of which is within 1000 base pairs of the start codon of the gene itself. We 

identified 23 transcription factors and histone modifiers associated with a significant 

number of genes downregulated in AD, including EGR1 (238), NRF1 (239), and 

REST (240). By contrast, we found only one regulator associated with a significant 

number of genes downregulated in aging, the histone modifier EZH2. In addition, 

four regulators were found to be associated with a significant number of genes 

upregulated in AD and none was found to be associated with a significant number of 

genes upregulated in aging. 

2.3.5  Biochemical pathways enriched in metastable proteins 

are also enriched in proteins corresponding to genes 

downregulated in AD 

To determine the functional implications of the transcriptional regulation of 

metastable proteins in AD, we conducted an unbiased search of the entire set of 284 

pathways in the KEGG database (241), a repository of biochemical pathways and 

protein networks. We found a close correspondence between the pathways 

downregulated in AD and pathways that we previously found to be supersaturated 

based on independent data (33, 34) (Figure 2.4). Remarkably, most of these KEGG 

pathways fall along a band in which increasing metastability levels correspond to 

increasing downregulation (Figure 2.4, purple circles). The overlap between 

metastable and downregulated pathways is highly significant (p=8.7·10-11). Among 

the simultaneously metastable and downregulated KEGG pathways, we found 

oxidative phosphorylation (OP), Parkinson’s disease (PD), Huntington’s disease 

(HD), Alzheimer’s disease (AD), non-alcoholic fatty liver disease (NAFLD), cardiac 

muscle contraction (CMC), nicotine addiction (NA), GABAergic synapse (GABA) 

and pathogenic E. coli infection (PEcI). These results identify pathological (AD, PD, 

HD and NAFLD) and functional (OP, CMC, PEcI) networks and pathways enriched 

in physiological complexes, as well as pathways involved in neuronal signalling (NA, 

GABA). In particular, our analysis identified certain proteins in the oxidative 

phosphorylation pathway as being particularly metastable, including all the 

components of the mitochondrial ATP synthase complex for which we have data, 
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consistent with the reported involvement of this complex in AD (242). In addition, 

43% of the genes in our analysis that encode for mitochondrial ATP synthase 

complex are transcriptionally repressed. The most repressed is the alpha subunit of the 

F1 catalytic core (whose expression is reduced by 26% in AD), which has been 

observed to accumulate in degenerating neurons in AD and to be associated with 

neurofibrillary tangles (243). We also verified that, although oxidative 

phosphorylation is central to the pathways downregulated in AD, the signal for 

metastability in AD and aging is robust against the exclusion of proteins in this 

pathway from our analysis (Figure A.7). 

 

In this comprehensive analysis of KEGG pathways, we also found other pathways 

that are significantly enriched in either metastable proteins (Figure 2.4, red circles) or 

in proteins corresponding to downregulated genes (Figure 2.4, blue circles), but not 

both. However, the large majority of these pathways have significance values that are 

lower than the average jointly metastable and downregulated pathway (Figure 2.4, 

purple circles), the exceptions being the ‘ribosome,’ which is highly metastable but 

not downregulated, and the ‘synaptic vesicle cycle’, ‘proteasome’ and ‘retrograde 

endocannabinoid signalling’, which are downregulated but not metastable. A similar 

analysis for upregulated pathways in AD did not provide particularly significant 

results, although one may expect genes associated with the immune response to be 

upregulated, as for example complement C1q subcomponent subunit C and plasma 

protease C1 inhibitor in the ‘complement and coagulation cascade’ pathway. 

 

Thus, the observation that in AD there is a highly specific downregulation of 

metastable biochemical pathways and networks suggests the presence of a robust 

transcriptional response to protein aggregation in AD.  
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Figure 2.4 Comparison between downregulated and metastable biochemical 
pathways and networks.  We found that the biochemical pathways and networks 
downregulated in AD correspond closely to those enriched in supersaturated proteins 
(purple circles). Using the KEGG classification, these biochemical pathways and 
networks are: ‘oxidative phosphorylation’ (OP), ‘Parkinson’s disease’ (PD), 
‘Huntington’s disease’ (HD), ‘Alzheimer’s disease’ (AD), ‘non-alcoholic fatty liver 
disease’ (NAFLD), ‘cardiac muscle contraction’ (CMC), ‘nicotine addiction’ (NA), 
‘GABAergic synapse’ (GABA) and ‘pathogenic E. coli infection’ (PEcI). 

 

2.3.6 Widespread downregulation of the metastable 

subproteome is not a general feature of disease 

Because the genes corresponding to the metastable subproteome are, on average, 

highly expressed, we considered the possibility that their widespread downregulation 

could be a general feature of cellular dysfunction in disease. It this were the case, any 

process that disrupts normal cellular function could impair transcription, preferentially 

affecting those genes that are highly expressed. To investigate this possibility, we 
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performed a meta-analysis of expression changes in another cognitive disorder, 

clinical depression. We considered 470 microarrays, including 239 from control 

patients and 231 from those with clinical depression (Table A.1). As with our 

analysis of AD, we restricted our analysis to brain samples from cases in which the 

gender and age (for which we controlled) were known, and GEO database series that 

included at least 10 total cases. Among the 19,190 genes for which we evaluated 

changes in expression, we found 7 genes downregulated and 11 genes upregulated in 

clinical depression at the thresholds of 10% change in expression and p≤0.01. Overall, 

we did not observe the same widespread transcriptional repression of the metastable 

subproteome found in AD, and we found no KEGG pathways significantly enriched 

in proteins corresponding to those genes differentially expressed in AD. 

 

We then considered the possibility that we had only identified a small number of 

genes as being differentially expressed in clinical depression because of low statistical 

power. Although our meta-analysis of clinical depression included only 22% as many 

arrays as that of AD, this is unlikely to explain the fact that only 0.6% as many genes 

are differentially regulated in clinical depression. In addition, our separate analysis for 

aging provided a control to assess the statistical power of the clinical depression 

dataset relative to that for AD. At the thresholds of 10% change in expression and 

p≤0.01, we found 196 genes downregulated and 122 genes upregulated in aging in the 

clinical depression dataset. This is 23% as many genes as we found differentially 

regulated in aging based on the AD dataset, consistent with the smaller number of 

microarrays in the clinical depression analysis. As further control, we reanalysed 

these data after relaxing the significance threshold for differential expression to 

p≤0.05. At this threshold, we found 24 genes downregulated and 17 genes 

upregulated in clinical depression, and 569 genes downregulated and 291 genes 

upregulated in aging. At the relaxed threshold, the KEGG pathway for ‘olfactory 

transduction’ was enriched in proteins corresponding both to genes downregulated 

(p=4.5•10-3) and genes upregulated (p=4.9•10-2) in clinical depression. Only ‘mineral 

absorption’ was enriched in proteins corresponding to genes upregulated in aging in 

the clinical depression dataset. We also assessed the overall relationship between 

metastability and transcriptional regulation, and found little correlation between the 

two. 
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2.4  Discussion 

A major area of investigation into the molecular origins of AD concerns the chemical 

and physical instability of the proteins associated with pathology, and the mechanisms 

by which the cell responds to such a situation. A number of studies have reported 

biophysical features, environmental conditions, and molecular partners that promote 

or repress the initial aggregation of specific proteins (7, 16, 49, 172-174). More 

recently, it has been recognised that the regulation of many other proteins is disrupted 

as a consequence of these initial aggregation events (29-31, 33, 34, 178, 179, 212-

215). In a complementary approach, the origins of AD have been studied by analysing 

the transcriptional response associated with its onset and progression (219-233). 

These studies have revealed that this transcriptional response involves genes 

corresponding to proteins that cause the disease and those associated with the cellular 

processes engaged in combating it (219-233). 

 

In the present study we have brought together these two approaches, finding that the 

transcriptional changes that occur in AD can be rationalized, at least in part, on the 

basis of the presence of an AD-specific ‘metastable subproteome’ at risk of 

aggregation (Figure 2.2). This metastable subproteome is defined as the overlap 

between the proteins that are most supersaturated and that correspond to highly 

expressed genes, and those encoded by genes most transcriptionally downregulated in 

aging and in AD (Figure 2.2D). These proteins are intrinsically at risk of aggregation 

and, as we found here, tend to be the target of the transcriptional response in aging 

and AD. These results are consistent with previous observations that the expression of 

oxidative phosphorylation genes is suppressed in AD (244, 245), but suggest in 

addition that that such suppression may be part of a broader response to the disease. 

 

Having previously shown that the proteins associated with AD tend to be metastable 

to aggregation because they are supersaturated (33, 34), we have now reported a 

response to this intrinsic metastability of the proteome in the face of disruptions to 

protein homeostasis through the transcriptional downregulation of their respective 

genes. The close correspondence of the biochemical pathways associated with 

metastability and those downregulated in AD (Figure 2.4) supports this conclusion, 
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as do the tendency for plaque and tangle co-aggregators to correspond to 

downregulated genes (Figure 2.1) and the high overall metastability level of proteins 

encoded by downregulated genes (Figure 2.2). We found these results to be stable 

against a range of potentially confounding factors, including the choice of thresholds 

for differential expression (Figures A.1 and A.2), noise in the supersaturation score 

(Figures A.5 and A.6), and the large contribution of oxidative phosphorylation 

(Figure A.7).  

 

Analysis of the transcriptional response to the collapse of protein homeostasis in 

terms of a metastable subproteome at risk of aggregation has also enabled us to 

address another central question about the progression of AD, namely the way in 

which changes occurring in this disease are related to the natural process of aging. 

These results indicate that aging and AD are very different at the transcriptional level, 

as over three quarters of the transcriptional changes that occur in AD do not occur in 

aging (Figure 2.2D,E). In addition, many cellular processes downregulated in AD are 

not significantly downregulated in aging (Figure A.2). While the differences between 

regulation in aging and AD are profound, there are important commonalities, as 

shown by the significant overlap in the specific transcriptional changes that occur in 

AD and in aging (Figure 2.3). AD therefore appear to involve an acceleration in the 

decline of protein homeostasis associated with aging, and also an extension of its 

scope and significance. Overall, such acceleration makes the metastable subproteome 

that we have identified in this work more susceptible to aggregation. This conclusion 

offers an explanation of why a transcriptional downregulation of genes corresponding 

to metastable proteins is observed in both aging and AD. 

 

We also observe that these phenomena are unlikely to be a general feature of cellular 

dysfunction. Our results indicate that a different transcriptional response is present in 

the case of clinical depression, consistent also with results for epilepsy derived 

considering the differentially expressed genes in hippocampal samples from five 

patients with mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) 

(246). In that study, 518 genes were found to be differentially expressed between the 

subjects. Functional enrichment using DAVID showed enrichment for KEGG 

pathways associated with neuroactive ligand receptor interaction, drug metabolism 

and cytokine interaction, among others. The KEGG pathways of oxidative 
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phosphorylation, and of Alzheimer’s, Parkinson’s and Huntington’s diseases were 

not, however, seen in epilepsy. 

 

The findings that we have reported here, therefore, suggest that the widespread 

downregulation of genes corresponding to metastable proteins at risk of aggregation 

may represent a step in the strategy for cellular regulation in the face of disruptions in 

protein homeostasis. More generally, understanding the physicochemical implications 

of transcriptional regulation in aging, AD and other protein misfolding disorders has 

important implications both for a fundamental biological understanding of the origins 

of the disease and for clinical practice. Since the maintenance of protein homeostasis 

is an essential function in the cell, determining how the overall proteome composition 

is managed and modulated is a central question in biology. At the same time, 

understanding endogenous strategies for handling supersaturated, metastable and 

potentially misfolding proteins may provide an avenue for improved therapies. If 

widespread aggregation is associated with AD, then determining how to regulate this 

phenomenon is of great value and practical importance. 

2.5  Conclusions 

We have shown that AD is associated with the transcriptional regulation of a 

metastable subproteome at risk of aggregation. The presence of these poorly soluble 

proteins in the cellular environment is inherently dangerous, in particular because 

these proteins tend to cluster into specific biochemical pathways, and that only limited 

molecular chaperones and other protective resources are available at any given time to 

prevent their misfolding and aggregation. In conjunction with new insights into the 

molecular chaperone functions and the regulation of protein translation and 

degradation, our results indicate that the study of protein metastability may clarify 

how failures in maintaining proteins in their normal functional states could result in 

protein aggregation and in multifactorial disorders such as AD.  

 

Despite the great complexity of aging processes and neurodegenerative disorders, 

protein solubility may underlie many aspects of their resultant cellular dysfunction. In 
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this work we have adopted this idea to investigate how the levels of poorly soluble 

proteins are regulated, finding that the overall transcriptional response to AD is 

associated with a global downregulation of the expression of the genes encoding 

proteins that are metastable to aggregation. We anticipate that interventions that target 

the metastable subproteome at risk of aggregation that we have identified in this work 

may provide novel opportunities for the early diagnosis and treatment of AD. 

2.6  Materials and Methods 

2.6.1  Array normalization 

We performed array normalization using the limma, affy, gcrma, and text itxps 

packages for the statistical programming language R. Affymetrix gene arrays read 

using the ReadAffy function in affy were normalized using the GC Robust Multi-

array Average (GCRMA) using the gcrma function, which uses estimates of cross-

hybridization based on the GC content of mismatch (MM) probes. It is a modification 

of the robust multi-array average (RMA) algorithm using the rma function in xps, 

which was used here to normalize Affymetrix exon arrays. GCRMA cannot be used 

on these arrays because they do not have the MM probes needed to estimate cross-

hybridization. We read Illumina arrays using the read.ilmn function in LIMMA and 

background corrected with the neqc function in LIMMA. Pre-processed arrays, if they 

have accompanying significance values, were filtered to remove those with a 

significance score <0.95 (where significance scores were available), and expression 

values scaled to log10. We treated each two-colour array that we encountered in the 

clinical depression dataset as two separate arrays, analysing them using the 

backgroundCorrect, normalizeWithinArrays, and normalizeBetweenArrays (by the 

Aquantile method) functions. One other significant difference between our analysis of 

two-colour arrays and one-color arrays is that when performing backgroundCorrect, 

we used the ‘minimum’ method for two-colour arrays while we used the ‘normexp’ 

method for one-color arrays. The reason for the use of the ‘minimum’ method here is 

to eliminate negative values, which are not compatible with the normalization we 

perform to correct for the fact that each channel in a given two-colour array is on a 



!

! 47!

single chip exposed to the same sample. For the clinical depression meta-analysis, we 

grouped certain series together. 

2.6.2  Construction of the linear model 

We fitted a linear model to the expression of each gene that included the co-factors of 

tissue type, gender, age, and disease status in all cases, and subject ID and technical 

replication when these were relevant. If there was technical replication, we used the 

function duplicateCorrelation in limma to account for this replication. From LIMMA, 

we then used the function lmFit to generate the fit, and the function eBayes to 

generate statistical significance values. 

 

2.6.3  Determination of significance and magnitude values 

We obtained adjusted p-values (i.e., q-values) using the Benjamini-Hochberg method 

(247). In addition, we obtained the coefficients for the disease status and age co-

factors to estimate the magnitude of the contribution of these parameters to gene 

expression. We converted Probe IDs to human reviewed UniProt IDs, based on a 

mapping of those probes that unambiguously mapped to a single UniProt ID. If 

multiple probes mapped to a single UniProt ID, we used the median parameter p-

value and coefficient. Because aging is a continuous variable, the magnitude of the 

expression change attributable to aging is the product of the aging cofactor coefficient 

and some age range. In this study, we used an age range of 25 years for two reasons. 

First, this equals approximately two standard deviations of the age distribution, which 

is a reasonable range over which to assume linearity. Second, this value reflects an 

age range from about 63 years to about 88 years, a period over which the prevalence 

of AD increases dramatically.  

 

For the clinical depression meta-analysis, the ages of the control samples were mean 

50.3 ± 12.8 years and those of the disease samples were mean 49.4 ± 15.6 years. We 

used an age range of 25 years for these samples, as well, for consistency and because 

this was also approximately two standard deviations of the age distribution in the 
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clinical depression meta-analysis. As described below, varying the magnitude 

threshold significance of aging has the same effect as changing the age range used for 

our analysis, and the results are robust against such changes. 

 

2.6.4  Combination of significance and magnitude 

There are several methods to combine significances across a series of studies. Here, 

the question was whether or not the change in expression of a gene corresponding to a 

given protein is statistically significant. In general, we had 10 p-values because we 

analysed 10 microarray studies separately, although in some cases there were fewer 

than 10 p-values because some genes are represented in some arrays but not others. 

The goal was to estimate the probability of obtaining a set of co-factor coefficients in 

each of the studies that are at least as extreme as those observed, assuming the null 

hypothesis that there is no change in gene expression is valid.  One way to address 

this issue is to combine p-values from various studies. Perhaps the most popular 

method to combine p-values is Fisher’s method, which in essence yields a significant 

result if at least one of the studies can reject the null hypothesis (248). By contrast, 

Pearson’s method can be interpreted as assessing a result as insignificant if at least 

one of the studies fails to reject the null hypothesis (249). Stouffer’s method is 

attractive because it is somewhat less sensitive to extreme values (250). In this 

method, p-values are first converted to Z-scores, which are standard normal variables. 

These Z-scores can be combined to give a composite Z-score, based on the property 

that the sum of k standard normal variables has mean 0 and variance p(k). This sum 

can then be converted unambiguously back into a p-value. A common variant of this 

method was proposed by Liptak and involves weighting each individual Z-score by 

the sample size of the study, an approach that has been shown to be superior by 

simulation. In the current analysis, we used Liptak’s method (241). This method 

requires that the p-values be one-tailed, and although the p-values obtained from the 

LIMMA functions lmFit and eBayes are two-tailed, they can be converted into one-

tailed p-values. To obtain a combined magnitude, we used the median of magnitudes 

per co-factor per gene. 
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2.6.5  Calculation of basal expression levels for 

supersaturation scores  

We estimate metastability using our previously defined supersaturation scores, and 

estimated basal mRNA expression in control subjects.  Because of normalization 

differences, it is challenging to obtain values for basal expressions by combining data 

from different studies, and so we selected a single study to obtain these levels. For 

AD, the study GSE44772 (Table A.1) included the most control samples (299), but 

employed the Rosetta/Merck Human 44k 1.1 microarray (232), in which expression 

values reported for each array are relative to the expression of a pooled background 

array, thus making between-gene comparisons impossible. The study GSE1297 

(Table A.1) used the Affymetrix Human Genome U133 array (220), which reports 

raw array expression values that we are then able to renormalize. This Affymetrix 

array is also the most commonly used array in the GEO database among those arrays 

represented in this analysis. The study GSE1297 also has a relatively large number of 

control samples (74), although this number is smaller than that available in the study 

GSE44772. However, given that the Affymetrix platform is more common, better 

characterized, and amenable to re-normalization within this analysis, we estimated 

basal expression levels from the control expression values in GSE1297. These values 

are the log2-average of all the samples, as obtained from the LIMMA function lmFit. 

For clinical depression, the GSE54562/GSE54563/GSE54564 set of series included 

the most control samples (56,63), but GSE53987 had the advantage of deriving all 55 

of its samples from the same series. It also used a similar platform to that for basal 

expression AD, Affymetrix Human Genome U133 Plus 2.0 Array (251). 

 

We also note that the use of proteome-level mass spectrometry (32), when applied to 

brain tissues, could provide a quantitative way to measure supersaturation levels 

directly as the ratio between the actual soluble and total amounts of individual 

proteins observed in vivo   
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2.6.6  Multiple hypothesis correction 

In addition to the multiple hypothesis correction described above, the following 

families of tests were corrected using the Holm-Bonferroni method (252): 1) Overlap 

of aging and disease downregulation with most supersaturated proteins, 2) Overlap of 

aging and disease upregulation with most supersaturated proteins, 3) Enrichment of 

disease-related upregulated and downregulated proteins in disease-related amyloid 

proteins, plaque co-aggregators, tangle co-aggregators, the most supersaturated 

proteins (included in this family and family 1 above) and the proteostasis network, 4) 

Enrichment of age-related upregulated and downregulated proteins in disease-related 

amyloid proteins, plaque co-aggregators, tangle co-aggregators, the most 

supersaturated proteins and the proteostasis network, 5) Supersaturation scores of 

proteins upregulated and downregulated in disease, 6) Supersaturation scores of 

proteins upregulated and downregulated in aging, 7) Supersaturation scores of 

proteins upregulated and downregulated in disease divided into low, medium and high 

categories, 8) Supersaturation scores of proteins upregulate and downregulated in 

aging divided into low, medium and high categories, 9) Disease-related 

downregulation of subcategories of the protein homeostasis network, and 10) Overlap 

of KEGG pathways for upregulation and downregulation in aging and disease. KEGG 

pathway enrichment was corrected using the Holm-Bonferroni method (252), 

considering aging upregulation, aging downregulation, disease upregulation and 

disease downregulation each as a separate family. Transcription factor target 

enrichment was corrected using the Benjamini-Hochberg method, considering aging 

upregulation, aging downregulation, disease upregulation and disease downregulation 

each as a separate family. Analyses that excluded oxidative phosphorylation genes 

were considered as separate families. Analyses of clinical depression and AD were 

included in separate families. 

2.6.7  KEGG analysis 

KEGG analysis was performed by first assembling a database of the components of 

each KEGG pathway (241) from publicly available data. The KEGG gene identifiers 

were then converted to UniProt ID to make it possible to compare them to the rest of 
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our data. Enrichment was calculated using a one-sided Fisher’s exact test (248) and 

corrected using the Holm-Bonferroni method (252). Results for the most metastable 

proteins made use of previously published supersaturation scores, but two aspects of 

the current analysis of that data differed. First, the new method of deriving KEGG 

pathways resulted in the analysis of 85 KEGG pathways not analysed in the previous 

study. Second, the new method used a one-sided Fisher’s exact test instead of the 

modified EASE score to calculate significance. This resulted in some differences in 

the pathways identified as being enriched in metastable proteins. 

2.6.8  Overlap analysis 

The significance of the overlaps between aging, AD, and metastability were 

calculated using a one-sided Fisher’s Exact Test, corrected using the Holm-

Bonferroni method. For the significance of the triple intersection, the p-value was 

estimated as being less than or equal to the minimum p-value of any double overlap. 

 

2.6.9  Transcription factor analysis 

We used transcription factor binding site data from the ENCODE database (237) to 

identify transcription factors whose targets are enriched in the genes that we identified 

as being differentially expressed in aging and AD. ENCODE provides the genome 

address for binding sites for each transcription factor (237). We defined a gene as 

being regulated by a transcription factor if its binding site was less than 1000 

nucleotides upstream of its start codon. Using this method, we generated a map of 

transcription factors and their targets. We converted the identifiers for the target genes 

to human-reviewed UniProt ACs and did the same for the UniProt IDs in our 

expression analysis. We then used a one-sided Fisher’s exact test to determine the 

significance of enrichment, correcting this p-value using the Benjamini-Hochberg 

method (247). 
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2.6.10  Threshold sensitivity analysis 

To test the sensitivity of our results for aging and AD to variations in the threshold for 

differential expression, we varied the expression change threshold between 0.5% and 

50% and the significance threshold between p=10-20 and p=1, for a total of 18,100 

combinations of thresholds. At these thresholds, we determined which genes were 

upregulated, downregulated, or unchanged in expression. For those threshold levels at 

which there were at least 5 genes in each category, we then recalculated the median 

fold difference in supersaturation between the proteins encoded by 

upregulated/downregulated genes and those encoded by genes unchanged in 

expression, as well as the corresponding statistical significance. Because the aging 

results scale linearly with the age range selected, changing the magnitude threshold 

for aging has the same effect as varying the width of the age range used to calculate 

expression changes in aging. 

 

2.6.11  Sensitivity to Gaussian noise in the 

supersaturation score 

In a method similar to that we previously described (34), we introduced random error 

into the supersaturation scores we calculated, drawn from 34 increasingly wide 

Gaussian distributions with standard deviation ranging from 1.1X error to 100X error. 

At each level, we performed 100 independent trials. At each level, we calculated the 

median fold difference in supersaturation and the corresponding significance, and 

then performed a one-sided Wilcoxon/Mann-Whitney test on these sets of median 

fold differences and p-values to assess whether they were significantly greater than 1 

or less than 0.05, respectively. 
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CHAPTER 3 

3.  Protein homeostasis of a metastable 

subproteome associated with 

Alzheimer’s disease 

3.1  Overview 

As described in Chapters 1 and 2, Alzheimer's disease is a neurodegenerative disorder 

associated with protein aggregation, whose origins have been linked to the 

dysregulation of a set of highly expressed and aggregation prone proteins that make 

up a metastable subproteome. Under normal conditions, the protein homeostasis 

system prevents effectively protein aggregation by controlling these metastable 

proteins (Section 1.3). Although it is well established that such regulatory 

mechanisms become progressively impaired with ageing, resulting in an accumulation 

of protein deposits, the specific nature of such impairment remains to be fully defined. 

Through a gene coexpression analysis, here we identify the endosomal-lysosomal and 

ubiquitin-proteasome systems, and more generally the protein trafficking and 
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clearance mechanisms, as key components of the protein homeostasis system that 

maintains the metastable proteins in their functional states (182)i.  

3.2  Introduction 

Neurodegenerative diseases are highly complex disorders characterised by extensive 

neuronal dysfunction associated with protein misfolding and aggregation (3-12, 15-

17). A feature common to essentially all of these conditions is the presence of 

abnormal protein deposits, including amyloid plaques and neurofibrillary tangles in 

Alzheimer’s disease, and Lewy bodies in Parkinson’s disease (3-12, 15-17). It is 

increasingly recognized that the formation of such deposits, rather than being an 

unusual process involving only a small number of proteins, may represent a 

widespread phenomenon (11, 12), with hundreds of different proteins found to 

aggregate under stress conditions, in ageing or in disease (7, 29-32, 179, 213) (Section 

1.6). 

 

To rationalize these observation, it has been recently shown that a large number of 

proteins are inherently supersaturated in the cellular environment (33, 34), as they are 

expressed at concentrations higher than their solubilities (47, 49), and therefore 

constitute a metastable subproteome potentially susceptible to aggregation (31-34). It 

has also been observed that proteins that have been reported to co-aggregate with 

plaques, tangles and Lewy bodies, tend to be supersaturated (33, 34). Therefore, 

despite their heterogeneous and multifactorial nature, neurodegenerative conditions, 

including Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic 

lateral sclerosis (ALS), share the important common attribute of protein 

supersaturation (33, 34, 253). 

 

Given the intrinsic propensity of proteins to aggregate, it is not surprising that we are 

endowed with a powerful array of defense mechanisms whose role is to preserve 

protein homeostasis by helping to maintain proteins in their soluble states and to 

promote the degradation of those that misfold and aggregate (5-8, 35, 69, 70, 212, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i!!The findings reported in this chapter are based on a published manuscript (182). !
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254). The progressive decline of the efficacy of these regulatory processes upon 

ageing is likely to contribute to the increased susceptibility of the elderly population 

to age-associated neurodegenerative disorders (5-8, 35, 69, 70, 95, 96, 212, 254, 255) 

(Section 1.3).  

 

As discussed in Chapter 2, the proteins within the metastable subproteome that are 

also transcriptionally downregulated in Alzheimer’s disease may be particularly 

significant for the pathology of this disorder (181), it is important to determine the 

detailed mechanisms of their regulation by the protein homeostasis system. Our goal 

here, therefore, is to identify the specific components of the protein homeostasis 

system that regulate a recently identified metastable subproteome associated with 

Alzheimer’s disease (181). To achieve this goal we adopted the strategy of 

determining the association between groups of genes by probing their genetic 

interactions, an approach that is based on the observation that many functionally 

related genes are coexpressed (256, 257). For example, genes encoding for the various 

different components of a protein complex tend to have similar expression patterns 

30, (256, 258), and, if groups of genes are regulated by common mechanisms, then 

they may be expected to be coexpressed (258).  

 

We have therefore constructed a weighted gene correlation network (259, 260) of this 

metastable subproteome and of the overall protein homeostasis system (212) to gain a 

systems-level understanding of the transcriptional relationship between these two sets 

of proteins. By following this approach, we have identified the protein homeostasis 

components corresponding to the metastable subproteome specifically associated with 

Alzheimer’s disease (181). Our results show that the genes corresponding to this 

metastable subproteome are tightly coexpressed with specific components of the 

ubiquitin-proteasome and the endosomal-lysosomal pathways, thereby suggesting that 

metastable proteins with a high risk of aggregation tend to be closely regulated by the 

trafficking and degradation machineries.  
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3.3  Results 

3.3.1 Protein homeostasis of a metastable subproteome 

associated with Alzheimer’s disease.  

Alzheimer’s disease is associated with widespread transcriptional changes (95, 96, 

220, 231, 261, 262), which can be rationalized in part by the presence of a set of 

aggregation-prone proteins in the proteome (181). Many of the proteins involved in 

this metastable subproteome are components of the mitochondrial respiratory chain, 

an observation consistent with the well-characterized mitochondrial disruption 

associated with neurodegenerative disorders and specifically with Alzheimer’s 

disease (263). We refer to the proteins expressed by this subset of genes as the ‘AD 

metastable subproteome’. The primary aim of the present study is to understand the 

different ways in which these metastable proteins are controlled, as illustrated 

schematically in Figure 3.1. Our goal is thus to identify the specific components of 

the protein homeostasis system that are most closely involved in the regulation of the 

AD metastable subproteome. 

 

 
Figure 3.1 Protein homeostasis of a metastable subproteome associated with 
Alzheimer’s disease. In the healthy state the metastable subproteome associated with 
Alzheimer’s disease (denoted ‘AD metastable subproteome’) is effectively regulated 
by a series of protein homeostasis mechanisms (denoted ‘Associated protein 
homeostasis components’). In a disease state, this balance is compromised and protein 
misfolding and aggregation results in the widespread formation of aberrant deposits. 
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3.3.2  Coexpression analysis of the AD metastable 

subproteome and its associated protein homeostasis 

components.  

Since the proteins in the AD metastable subproteome are intrinsically aggregation-

prone, we searched for the specific protein homeostasis components that maintain the 

solubility and folding of these proteins. We therefore set out to identify an ‘AD 

metastable network’ as a network of genes that encode for: (1) the AD metastable 

subproteome, and (2) its associated protein homeostasis components (Figure 3.1).  

 

In order to identify the AD metastable network, we carried out a weighted gene 

correlation network analysis (WGCNA) (259, 260) of the set of metastable proteins 

that we previously identified (181) and of the known components of the overall 

protein homeostasis system (212) (Section 3.6). WGCNA is a robust method of 

performing gene coexpression analysis that has been shown to be particularly 

effective when large microarray datasets are available (259). As our aim was to study 

how metastable proteins are regulated across health and disease, we pooled together 

extensive microarray data obtained from post mortem brain tissues of patients 

diagnosed with late-onset Alzheimer’s disease and of matched controls (232) (Table 

B.1 and Section 3.6). WGCNA uses the Pearson’s coefficient of correlation between 

each pair of genes and their ‘topological overlap’, which is a measure of their 

connectivity based on their shared neighbors, to identify biologically meaningful 

groups of coexpressed genes; these groups are called ‘modules’ and labeled by 

different colors (260) (Table B.2, and Section 3.6).  

 

As WGCNA captures the underlying network structure in large-scale gene expression 

studies, it has been used to study the global changes associated with a range of disease 

states, with the preservation of groups of coexpressed genes across species, 
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Figure 3.2 Identification of the AD metastable network by a coexpression 
analysis of the AD metastable subproteome and its associated protein 
homeostasis components. (a) By using a weighted gene correlation network analysis 
(WGCNA) we carried out a hierarchical clustering of genes on the basis of their 
topological overlap. Modules of coexpressed genes are labeled by numbers and 
shown in different colors, with the size of the circles corresponding to the number of 
genes in the module. The number of genes encoding for the metastable subproteome 
is highlighted in pink within each module (Table B.2). The vast majority of 
metastable proteins are found in three specific ‘modules enriched in metastable 
proteins’ (MEMPs), which are referred to as MEMP-1 (Blue, 220 metastable 
proteins), MEMP-2 (Turquoise, 91 metastable proteins), MEMP-3 (GreenYellow, 10 
metastable proteins) and MEMP-4 (Black, 10 metastable proteins); each of the other 
modules had between 0 and 4 metastable proteins. (b) Analysis of module eigengenes. 
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Each module is represented by a circle, which is labelled by number and shown in 
colour, as in panel (a). The x-axis is the percentage of metastable genes in each 
module and the y-axis the negative log10 of the p-values for the correlation of each 
module with the disease status (Section 3.6). The horizontal dashed line marks a p-
value of 0.05 and the vertical dashed line marks the 10% value. Hence we identify the 
three modules shown also in panel (a), MEMP1, MEMP2 and MEMP3, as the only 
modules that have a high percentage of metastable proteins and significant correlation 
to disease status.  

 
and with the identification of hub genes associated with particular traits (95, 262, 264-

267). We observed that the genes encoding for metastable proteins and protein 

homeostasis components are organized into well-defined modules (Figure 3.2a, with 

the genes encoding for proteins in the metastable subproteome shown in pink in each 

module), where each module consists of tightly coexpressed genes. We found that the 

majority of metastable proteins belong to four specific modules, and we refer to them 

as ‘modules enriched in metastable proteins’ (MEMPs) - MEMP-1 (Blue), MEMP-2 

(Turquoise), MEMP-3 (GreenYellow) and MEMP-4 (Black) (Figure 3.2a), which 

consisted of 659, 688, 35 and 74 genes, with 220, 91, 10 and 10 genes corresponding 

to metastable proteins, respectively (Table B.2). We also found several clusters 

containing no or very few metastable proteins (4 at most); such clusters consisted of 

tightly coexpressed groups of protein homeostasis genes whose expression levels do 

not correlate well with the metastable proteins. 

3.3.3  Identification of an AD metastable network.  

As the coexpression analysis described above revealed the existence of several 

distinct modules, we asked how the modules are related to each other, as it is likely 

that closely related modules are functionally related. To this end, we performed an 

analysis to identify a module eigengene (ME) for each module, which is the first 

principal component (PC) of the expression values across genes in each module 

(Section 3.6). The ME therefore provides a representative value for the expression of 

a group of genes in a particular module (260). This approach offers a significant 

advantage in correlating two modules, as it eliminates the problem of multiple testing 

and noise by reducing the number of comparisons to just one instead of several 
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hundreds. The higher the value of the Pearson’s coefficient of correlation between 

two MEs, the more closely the two modules are related (Section 3.6).  

 

We therefore identified which of these modules showed the most significant 

relationship to the disease status by looking at the correlation between the MEs and 

disease status (Section 3.6). We thus found six modules (Figure 3.2b) to be 

significantly correlated with disease status, of which three modules (Magenta, Pink 

and Red) had very few metastable genes (4, 1 and 1, respectively). We excluded these 

modules from further analysis since they mostly contained components of the protein 

homeostasis machinery whose expression levels do not correlate well with the 

metastable genes. The other three modules (MEMP-1, MEMP-2 and MEMP-3), 

perhaps not surprisingly, were those most enriched for metastable genes that we 

described in the previous (Figure3.2b).  

 

As these three MEMPs were the only modules both significantly correlated with 

disease status and significantly enriched for genes encoding for metastable proteins 

(Figure 3.2b), we chose them for further analysis. They are also, in fact, closely 

related to each other based on the correlation of their MEs with a Pearson’s 

correlation coefficient of 0.78 between MEMP-1 and MEMP-2 and 0.68 between 

MEMP-2 and MEMP-3 (Table B.3). In order to control for possible biases of the 

modules because of the use of a particular dataset, we cross-validated the results of 

module detection with a hippocampal gene expression dataset as the hippocampus is 

among the regions typically affected in Alzheimer’s disease (220). We observed that 

the MEMPs, along with most of the other modules, were well preserved between the 

two datasets (Figure B.1).  

 

We then performed a gene ontology enrichment analysis to characterize these 

modules, finding that protein ubiquitination was the most enriched GO term for 

MEMP1, MEMP2 and MEMP3 (Figure B.2). We also asked if the genes contained in 

these modules are overrepresented in any biochemical pathway. To this end, by 

analyzing the KEGG biochemical pathways (268), we found that they are strongly 

overrepresented in the pathways associated with the AD metastable subproteome and 

the ubiquitin-proteasome and endosomal-lysosomal systems (Figure B.3).   
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Based on these results, we identified the ‘AD metastable network’ as the set of genes 

in MEMP1, MEMP2 and MEMP3. 

3.3.4  Identification of the hub genes and of their roles in the 

AD metastable network.  

Since any given module is comprised of a large number of genes, it is important to 

identify the most highly connected genes within a particular module, as these central 

or ‘hub’ genes are more likely to be functionally related compared to genes that are 

less connected. To achieve this goal, we defined the ‘module membership’ score 

(MM), by using the intramodular connectivity (kME, Section 3.6), which is a 

measure of how strongly connected, i.e. coexpressed, a given gene is to all the other 

genes in a module (260). Hub genes were defined as those genes having an absolute 

kME value greater than 0.8.   

 

The hub genes in the AD metastable network were found to be highly enriched in the 

KEGG biochemical pathways of cellular degradation (proteasome and ubiquitin-

mediated proteolysis) and trafficking in addition to those previously associated with 

metastable proteins such as oxidative phosphorylation, Alzheimer’s disease, 

Parkinson’s disease, and Huntington’s disease (Figure 3.3a). These results are fully 

consistent with those reported above for the full list of genes in the AD metastable 

network (Figure B.3). In any given module, a high mean MM value indicates how 

tightly coexpressed the genes are within that module. We observed that the genes 

encoding for the AD metastable subproteome in the AD metastable network have a 

significantly high mean MM value that is significantly greater than that of other genes 

in that module (Figure 3.3b). In addition, more than two-thirds of the genes encoding 

for metastable proteins in these modules were hub genes, indicating their central 

importance in their respective modules. 
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3.3.5 Test of module generality using a consensus network 

analysis with a visual cortex dataset.  

We next sought to determine whether the modules that we identified are general or 

instead specific to the dataset or brain region that we analyzed. To check the 

robustness of the modules identified in this study, we constructed a consensus 

network (Section 3.6) using WGCNA on another dataset from the visual cortex of 

Alzheimer’s disease patients and healthy controls (232), along with the dataset for the 

dorsolateral prefrontal cortex used previously (Section 3.6), to examine whether or 

not our network  is preserved. To assess the level of preservation, we used the 

‘consensus network’ construction, which identifies groups of genes that are tightly 

coexpressed across multiple studies (269). The consensus module eigengenes 

(consMEs) represent modules in each of the two sets (269) (Section 3.6). Each gene 

is assigned to a single consensus module but there are two sets of consMEs for each 

module as a given module can have a different expression profile in the two datasets. 

We found that all of the modules identified in our study have a consensus counterpart 

in the visual cortex dataset, indicating that the module structure in the two datasets is 

similar (Figure B.4).  

 

We then constructed the two sets of eigengene dendrograms and eigengene heatmaps 

based on the consMEs (one for each study) and the results indicate that the overall 

modular structure in the two sets is quite similar. The preservation heatmap shows the 

preservation network, defined as one minus the absolute difference of the eigengene 

networks in the two data sets (Figure B.5a). The overall degree of preservation 

between the two networks is 0.87 and the mean preservation of relationships for each 

eigengene is consistently high for all the modules except the ‘Red’ one, as shown by 

the preservation heatmap and bar plot (Figure B.5b), thus indicating that the modules 

identified in the analysis detailed in the study are highly robust. 
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Figure 3.3 Identification of KEGG biochemical pathways enriched in hub genes 
in the AD metastable network. (a) KEGG biochemical pathways (268) enriched in 
hub genes (|kME| >0.8) in the AD metastable network; the dotted line indicates 
p=0.05 (Pr: proteasome, UMP: ubiquitin mediated proteolysis, OP: oxidative 
phosphorylation, PD: Parkinson's disease; AD: Alzheimer's disease, HD: Huntington's 
disease; Endo: endocytosis). (b) A comparison of the mean module membership 
(MM) values of the metastable proteome (MS, blue) and of all genes (orange) shows 
that genes corresponding to metastable proteins are highly coexpressed. 
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These results suggest that the difference between a healthy state and a disease state 

does not involve a reorganisation of the modules, but rather a variation in the 

expression levels of specific genes within the modules. In the following we therefore 

carried out further investigations to identify such genes.  

3.3.6 Identification of a protein homeostasis complement of 

the AD metastable subproteome.  

We next asked the central question of this work—How is the AD metastable 

subproteome regulated? To answer this question, we analysed which components of 

the protein homeostasis system are coexpressed with the AD metastable subproteome 

in the AD metastable network, as we expect that the knowledge of such components 

could offer insight into the regulation of these metastable proteins (Figures 3.4 and 

B.6). To this end, we identified the most important hub genes by visualizing the 

modules; we used the Cytoscape software for this purpose (270). The top 10% of all 

hub gene interactions based on their topological overlap were visualized, with those 

involved in at least 50 of these interactions shown in the centre (Figure 3.4a). We 

observed ten genes related to trafficking and five genes related to the ubiquitin-

proteasome pathway as the most connected hub genes (Figure 3.4a). These results are 

consistent with the observation that protein trafficking and degradation are essential in 

the regulation of protein homeostasis of Alzheimer’s disease (89-91, 271-274). Our 

analysis also identifies other components (autophagy, metabolism, signaling, and 

protein synthesis; Figure. 3.4b), although more extensive data will be needed to 

clarify their association with the metastable subproteome in greater detail.  

3.3.6.1  Endosomal-lysosomal system  

Although the present analysis of  the hub genes is aimed primarily at identifying the 

main processes within the AD metastable network, it may also be informative to 

consider their possible specific roles in AD. Among  the hub genes associated with 

trafficking, we found RAB6A, a  small GTPase that helps mediate retrograde 

transport from the  Golgi apparatus to the endoplasmic reticulum (ER), which has  an 

increased expression level in AD brains (275). To explain this  finding, it has been 
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suggested that this protein is involved in a  regulatory mechanism that responds to 

increased protein accumulation (275). In addition, overexpression of RAB1, another 

small GTPase closely related to RAB6A, was shown to alleviate ER stress in yeast 

models of PD (276). Hence, RAB6A, which is a central gene in the AD metastable 

network described in this work, could play an important role in the regulation of the 

metastable proteins by directing them toward the endosomal–lysosomal degradation 

machinery, thereby preventing their accumulation in the cytoplasm. Another two 

genes in the group that we found are ATP6V1H, which encodes a protein subunit of a 

vacuolar ATPase involved in clathrin-mediated endocytosis (277, 278) and whose 

role in regulating lysosomal pH has been recently been linked to neurodegeneration 

(279), and ATL1, which is involved in ER trafficking (280, 281). In fact, all 10 genes 

that we found to be related to trafficking are part of the endosomal–lysosomal system. 

Specifically, SH3GL2, SLC9A6, and CLTA are localized in the endocytic vesicle 

membrane (282, 283), and NSF is involved in vesicle-mediated transport and acts as a 

fusion protein through the SNARE proteins (284). Our results, therefore, indicate the 

importance of the endosomal–lysosomal system in controlling the metastable 

subproteome. These findings extend the well-known role of this system in the 

processing of Aβ (285) to the regulation of a broader range of aggregation-prone 

proteins.  
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Figure 3.4 Identification of the major components of the protein homeostasis 
system associated with the AD metastable subproteome. (a) Network 
representation of the AD metastable network showing the hub genes of the protein 
homeostasis system (green, red, and dark red circles, middle ring; Table 3.1) and the 
hub genes of the AD metastable subproteome (blue circles, inner ring). This analysis 
reveals in particular the importance of the ubiquitin–proteasome 577 (red) and 
trafficking (green) systems in the regulation of aggregation-prone proteins in AD. We 
visualized the top 10% of the hub gene interactions, with 578 those genes involved in 
at least 50 interactions shown in the inner and middle rings (see also Fig. S6). The 
sizes of the nodes correspond to their degrees of connectivity. (b) Protein homeostasis 
components within the hub genes of the AD metastable network. The major 
components in A are shown in the same color code; additional components 
(autophagy, metabolism, signaling, and protein synthesis) are also shown.  
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Hub 
Genes 

Protein Known Function 

ATP6V1H V-type proton ATPase 
subunit H 

Clathrin coated endocytosis, formation of 
endosomes 

SH3GL2 Endophilin-A1 Synaptic vesicle endocytosis 
SLC9A6 Sodium/hydrogen exchanger 

6 
Exchange of protons across early and 
recycling endosome membrane 

RAB6A Ras-related protein Rab-6A Retrograde transport from golgi to ER, 
transport from endosome to plasma 
membrane 

CDH13 Cadherin-13 Regulation of endosytosis 
RBFOX1 RNA binding protein fox-1 

homolog 1 
RNA binding protein, regulated 
alternative splicing events 

CLTA Clathrin light chain A Major protein of the polyhedral coat of 
coated pits and vesicles 

NSF Vesicle-fusing ATPase SNARE binding, regulation of exocytisis 
CNK2 Connector enhancer of kinase 

suppressor of ras 2 
Adaptor protein, regulation of signal 
transduction 

ATL1 Atlastin-1  ER to golgi vesicle transfer 
      
ENC1 Ectoderm-neural cortex 

protein 1 
Proteasomal ubiquitin-independent 
protein catabolic process 

MYCBP2 E3 ubiquitin-protein ligase 
MYCBP2 

Ubiquitin ligase, Protein ubiquitination 

FBXL2 F-box/LRR-repeat protein 2 Ubiquitin ligase, Protein ubiquitination 
RFPL1 Ret finger protein-like 1 Zinc ion binding 
RNF128 E3 ubiquitin-protein ligase 

RNF128 
Ubiquitin ligase, ubiquitin-dependent 
protein catabolic process 

TUSC3 Tumor suppressor candidate 3 Magnesium transporter 
      
 

Table 3.1 List of hub genes used to identify the components of the protein 
homeostasis system associated with the AD metastable subproteome. These hub 
genes are shown in Figure 3.4 and are reported here together with their corresponding 
proteins and their known functions. The list of hub genes corresponding to the AD 
metastable subproteome is reported in Table B.5.  

 

 

3.3.6.2 Ubiquitin-proteasome system 

Among the genes associated with the ubiquitin–proteasome system, we found ENC1, 

which is an actin binding protein that has been reported to modulate the aggregation 

of mutant huntingtin under ER stress (286). MYCBP2, FBXL2, and RNF128 are E3 

ubiquitin ligases and are essential components of the ubiquitin-dependent degradation 
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of proteins (287-289). These results indicate that the metastable proteins are likely to 

be regulated upstream of the proteasomes at the ubiquitin ligase stage.  

 

Molecular chaperones. We also found a number of components of molecular 

chaperone networks coexpressed with the AD metastable subproteome (Table B.4). 

Such components include co-Hsp70/Hsp90 species, which are known to assist the 

Hsp70/Hsp90 system to degrade protein aggregates (230, 290). Among such 

molecular chaperones, we found DNAJC6, a J-domain cochaperone with a role in 

HSC70-mediated uncoating of the clathrin-coated vesicles in neurons by recruiting 

HSC70. Also seen as hub genes were TOR1A, with chaperone activity and a member 

of the AAA family of ATPases, and ERLEC1, which has a role in ER quality control 

(291, 292).  

 

Taken together, these results indicate that the components of the AD metastable 

subproteome, which consists of proteins inherently at risk for aggregation, tend to be 

highly coexpressed with multiple components of the protein homeostasis system. 

These results illustrate how during the course of AD, when a dysregulation and 

collapse of these systems is increasingly likely to occur, these metastable proteins are 

likely to represent an enhanced risk due to the dysfunction of the regulatory 

mechanisms associated with their folding, transport, and degradation.  

 

3.3.7  Relationship with genome wide association studies 

(GWAS)  

To further assess the significance of our analysis, we compared our results with 

genetic loci identified by GWAS. These studies have reported that several loci 

associated with the trafficking and degradation systems are closely associated with 

AD (18, 293). In particular, seven GWAS genes (PICALM, SORL1, CD33, BIN1, 

CD2AP, ABCA7, and RIN3) are associated with the endosomal– lysosomal system, 

and two GWAS genes (CLU and PTK2B) are associated with the ubiquitin–

proteasome pathway (18, 293).  
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Figure 3.5 The majority of GWAS genes are found in the AD metastable 
network. Number of genes identified by GWAS (18, 293) that are present in the AD 
metastable network or in the other modules described in this work. 17 out of 28 genes 
identified by GWAS are present in the AD metastable network. The names of genes 
are shown in their respective modules. The genes shown in red belong to the 
ubiquitin-proteasome system and those in green belong to the trafficking system. 

 

These results are highly consistent with the conclusions of the present study, as 17 

GWAS genes (among the 28 that we considered) are present in the AD metastable 

network identified in this work (Figure. 3.5). This consistency is remarkable, as the 

GWAS strategy, where genes are typically associated with disease on the basis of 

single nucleotide polymorphism (SNP) statistics, is independent from the one that we 

have used here to associate genes with disease through the combination of their 

coexpression and the metastability for aggregation of their products. These two 

approaches are therefore complementary, as a coexpression analysis can identify a 

large number of genes and therefore reveal the biochemical pathways involved in the 

disease and help rationalize the specific roles of the GWAS genes but may not capture 
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important relationships, such as in the present case the role of ADAM10, PSEN1, and 

PSEN2 in the processing and regulation of APP (Figure 3.5).  

3.3.8  Consensus network analysis of Alzheimer’s, 

Parkinson’s and Huntington’s diseases  

As noted above, the phenomenon of protein misfolding and aggregation is a common 

feature of many neurodegenerative disorders, including Alzheimer’s, Parkinson’s and 

Huntington’s diseases, and ALS. Although these diseases are characterised by a 

variety of different clinical manifestations and features, there is increasing interest in 

understanding the extent to which they share common molecular origins (3-12, 15-

17). To address this question in the present context, we investigated whether or not 

the regulation of the metastable proteins, in terms of their coexpression with specific 

protein homeostasis components, is similar across Alzheimer’s, Parkinson’s and 

Huntington’s diseases.  

 

Since oxidative phosphorylation is the most significantly enriched pathway among the 

metastable genes, we analysed the coexpression of genes involved in this specific 

pathway and in the protein homeostasis components. We built a consensus network 

for gene expression data from hippocampal tissue (220), substantia niagra (294) and 

prefrontal cortex (292) (Table B.1), obtained post mortem from patients diagnosed 

with Alzheimer’s, Parkinson’s and Huntington’s diseases, respectively, and age 

matched controls. The network heatmaps indicate the correlation of various 

eigengenes within the Alzheimer’s, Parkinson’s and Huntington’s networks (Figure 

B.7), and the preservation heatmaps (Figure 3.6) reveal that the overall preservation 

of the three networks is highly significant (shown in red). The mean preservation of 

the three networks exceeds 0.7 in all three cases (Figure B.7), indicating that the 

global structures of the coexpression networks are similar for the three diseases. 

These results thus suggest that the differences between these diseases may be found in 

the dysregulation of specific genes within the consensus network (Figures 3.6 and 

B.7). 
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Figure 3.6 Network preservation heatmaps for AD-PD (a), AD-HD (b) and HD-
PD (c). The rows and columns represent the module eigengene for different modules 
in each network. Preservation is defined as one minus the absolute difference of the 
eigengene networks in the two data sets.  Red denotes high preservation and white 
denotes low preservation. 

3.4  Discussion 

3.4.1  Specific components of the protein homeostasis system 

that regulate protein aggregation 

In this work, we have taken the view that a major hallmark of ageing and 

neurodegenerative diseases is the progressive impairment of the balance between 

protein aggregation and its control by the protein homeostasis system, which leads to 

the characteristic accumulation of aberrant protein aggregates (3-12, 15-17, 29-35, 69, 

70, 95, 96, 179, 181, 212, 213, 254, 255) (Figure 3.1). In this context, we have 

previously reported that large numbers of proteins are inherently metastable to 

aggregation because of their elevated expression levels relative to their solubilities 

(33, 34). We have also observed a specific transcriptional downregulation of genes 

encoding these proteins in AD (181), as well as a tissue-specific vulnerability to 

Alzheimer’s disease caused by an imbalance between aggregation-prone proteins and 

their protein homeostasis regulators (254).  

 

To identify the components of the protein homeostasis mechanism that controls a set 

of metastable proteins associated with Alzheimer’s disease, in this study we have 

AD-PD AD-HD PD-HD(a) (b) (c)
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analysed together a set of proteins that are inherently metastable to aggregation (181) 

and a set of proteins that make up the overall protein homeostasis system (212). Our 

analysis started from a metastable subproteome corresponding to the overlap between 

genes encoding for proteins that are supersaturated and transcriptionally 

downregulated in Alzheimer’s disease but not in ageing (181). We then constructed 

an ‘AD metastable network’ composed of genes encoding this set of metastable 

proteins together with the corresponding components of the protein homeostasis 

system. We have found that this specific AD metastable network consists of well-

defined modules of coexpressed genes (Figure 3.2), enabling us to identify key 

players of the ubiquitin-proteasome and endosomal-lysosomal systems, along with 

some specific molecular chaperones (Figure 3.4).  

 

The systems level approach that we have adopted in this work provides an 

understanding of the regulation of the AD metastable subproteome as a whole, as 

opposed to the regulation of individual proteins by specific components of the protein 

homeostasis system. Our results show that, from the list of about 2000 components of 

the protein homeostasis system (212), just a relatively small number of specific 

proteins in the degradation and trafficking machinery along with specific molecular 

chaperones are primarily responsible for handling the metastable proteins with a high 

propensity to misfold (Figure 3.7).  

 



!

! 75!

Figure 3.7 Schematic representation of the main pathways involved in the 
protein homeostasis of the proteins metastable to aggregation in Alzheimer’s 
disease. (a) Healthy state. (b) Disease state. Our results identify the protein 
degradation network, in particular the ubiquitin-proteasome system and trafficking, as 
key control mechanisms in the homeostasis of proteins metastable to aggregation in 
Alzheimer’s disease. 
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3.4.1.1  Endosomal-lysosomal and ubiquitin-proteasome regulation 

of the proteins involved in oxidative phosphorylation 

The expression levels of most of the components of the protein homeostasis 

complement identified in this study have been previously seen to be decreased with 

ageing (181). Hence, during ageing and disease, with the suppression of the protein 

homeostasis system, these proteins could become particularly vulnerable to 

aggregation because of their inherent metastability. Since these proteins perform 

fundamental functions, including in particular energy metabolism through oxidative 

phosphorylation (181), their aggregation could result in triggering a cascade of events 

contributing to disease pathology and ultimately to neuronal death. In addition, such 

dysregulation poses a pronounced threat to the neurons due to their post-mitotic state 

and increased dependence on mitochondria for energy production. Indeed, there is a 

substantial overlap in the genes involved in the pathways associated with oxidative 

phosphorylation and Alzheimer’s, Huntington’s and Parkinson’s diseases, indicating 

again that the proteins encoded by these genes are highly metastable and hence are 

significant in the context of disease pathology. Mitochondria play a central role in 

ageing and in regulating cell death (263, 295), as well as in the overall maintenance of 

cellular health. Whether mitochondrial dysfunction is the cause or effect of the 

disease pathology is still, however, unclear. Mitochondria have been shown to interact 

with aggregation-prone proteins, including α-synuclein and Aβ. More specifically, 

Aβ was shown to be localized on the mitochondrial membrane in a transmembrane 

arrested form, possibly disrupting protein import into the mitochondria (296, 297). 

 

Our results also point to a possible dependence of the proteins in the respiratory chain 

complex on the endosomal-lysosomal system, in particular RAB6A, ATP6V1H, 

ATL1, SH3GL2, SLC9A6 and CLTA, and on the ubiquitin-proteasome system, 

especially the E3 ubiquitin ligases MYCBP2, FBXL2 and RNF128 (Figure 3.4). 

These indications are consistent with the observation in yeast that accumulation of 

mitochondrial proteins in the cytoplasm leads to activation of an unfolded protein 

response (298). Furthermore, recent studies have reported the presence of 

polyubiquitinated mitochondrial proteins suggesting that they are substrates of the 

ubiquitin proteasome system (299, 300), and that in yeast the expression of the 

proteasome is upregulated upon cytoplasmic accumulation of mitochondrial proteins 
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(298, 301). If mitochondrial import is disrupted and these metastable proteins 

therefore accumulate in the cytoplasm, the cell responds by clearing them through 

degradation. If, however, this happens in an environment where protein homeostasis 

is compromised, these proteins would be particularly at danger of aggregation. We 

observed, in addition, a similar pattern of co-expression of genes encoding for 

mitochondrial membrane proteins across Alzheimer’s, Huntington’s and Parkinson’s 

diseases, indicating that even though the initial cause of dysregulation might be 

different, these diseases are likely to share common molecular mechanisms at a later 

stage of progression, with regulation of mitochondrial membrane proteins playing an 

important role.  

 

The finding that a metastable subproteome that is specifically associated with 

Alzheimer’s disease is primarily regulated by the protein trafficking and degradation 

systems provides important insights into the control of protein misfolding in this 

disease. These results suggest that in a setting of compromised protein folding the 

maintenance of proteins in their soluble states may move away from regulating 

conformations and towards regulating concentrations. 

3.5  Conclusions 

We have described specific components of the protein homeostasis system that 

regulates a metastable subproteome associated with Alzheimer’s disease. This 

analysis has revealed the central roles of the ubiquitin-proteasome and endosomal-

lysosomal degradation pathways, whose relevance to AD is well known (89-91, 271-

274), in the maintenance of a pool of proteins prone to aggregation. By identifying a 

series of regulatory pathways associated with Alzheimer’s disease, these findings also 

help rationalize the roles in the disease of the individual genes resulting from genome-

wide association studies (GWAS). We anticipate that an increasingly detailed 

understanding of the mechanisms of regulation of metastable proteins will contribute 

significantly to the development of therapeutic strategies aimed at promoting the 

maintenance of aggregation-prone proteins in their soluble states.  
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3.6  Materials and Methods 

3.6.1  Dataset acquisition 

Microarray data for brain tissues from post mortem Alzheimer’s disease patients and 

healthy controls were downloaded from the Gene Expression Omnibus (GEO) 

database (302). The following datasets were used for analysis (Table B.1): 

GSE44770, containing tissues derived through autopsy from the dorsolateral 

prefrontal cortex (PFC) region obtained late-onset Alzheimer’s disease (LOAD) 

patients and from healthy controls; GSE44771, containing tissues derived through 

autopsy from the visual cortex (VC) region obtained from LOAD patients and from 

healthy controls; GSE1297, containing hippocampal gene expression data from 

LOAD patients and from healthy controls; GSE33000, containing dorsolateral pre-

frontal cortex tissue from Huntington’s disease patients and from healthy controls 

obtained from the Harvard Brain Tissue Resource Center (HBTRC); GSE20292, 

containing post-mortem brain tissue from the substantia niagra of Parkinson’s disease 

patients and from healthy controls. Using the GEOquery package, data were 

downloaded into R, and checked for missing values (259).   

3.6.2  Sample clustering 

Samples in each dataset were hierarchically clustered within GEOquery to detect 

outliers. One sample from GSE44771 (GSM1090949) and one sample from 

GSE20292 (GSM508732) were found to be outliers and hence removed from further 

analysis.     

3.6.3  Generation of a ‘Weighted Gene Correlation Network’ 

A distance measure commonly used for coexpression analysis is based on the 

Pearson’s coefficient of correlation; in this approach, gene pairs with a coefficient of 

correlation below a given cut-off value (e.g. 0.8) are considered as not correlated. 

However, this kind of ‘hard thresholding’ may be insensitive to subtle and yet 
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important expression patterns (303). We therefore employed the ‘Weighted Gene 

Correlation Network Analysis’ (WGCNA) method (259, 260), which uses a ‘soft 

thresholding’ and the concept of topological overlap or shared neighbours to identify 

clusters of coexpressed genes. The soft thresholding method assigns a weight to each 

pair of interacting genes and uses such weights, along with the topological overlap to 

identify modules of coexpressed genes in the expression data (259, 260). 

 

The construction of a ‘Weighted Gene Correlation Network’ was performed using the 

R package for WGCNA (259). Absolute values of Pearson’s coefficient of correlation 

were calculated for the expression values of each gene pair across all microarray 

samples. WGCNA uses a power function to transform the coexpression similarities 

(given by a similarity matrix S = [!ij]) into connection strengths (given by an 

adjacency matrix A = [!ij]) 

 

aij = |sij|β                                                (1)                                                                                                                                                                                  

 

where β is the soft thresholding power. In unweighted networks, the entries !ij of the 

adjacency matrix are either 1 or 0, indicating whether or not a pair of nodes is 

connected. In weighted networks, the values are real numbers ranging from 0 to 1. 

Due to the noise in microarray data and the limited number of samples, we weighted 

the Pearson’s coefficients of correlation by taking their absolute values and raising 

them to the power β. To chose the value of β we observed that many biological 

networks, especially gene expression networks have been found to exhibit 

approximate scale free topology (304) i.e. the connectivity distribution p(k) for each 

node k follows a power law, p(k) = k-γ, with exponent γ. This ‘scale-free’ relationship 

indicates that there are a few nodes that are highly connected while others have much 

fewer connections. Through these considerations we chose β=6 (260). This procedure 

results in a weighted network in which the continuous nature of the gene expression 

values is preserved (as opposed to unweighted networks); the results are robust with 

respect to the choice of β, as opposed to the high sensitivity to the cutoff value of 

unweighted networks.  
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3.6.3.1  Identification of modules in the Weighted Gene Correlation 

Network  

Modules were defined as groups of genes having high correlation and high 

topological overlap (260). The topological overlap of two nodes refers to their 

interconnectedness, which is measured as the number of shared neighbors between 

two nodes. It provides a similarity measure that has been shown to be very useful in 

biological networks (305), and was used here as the basis for average linking 

hierarchical clustering to identify modules of coexpressed genes.  

3.6.3.2  Module eigengenes  

The module eigengene (ME), which is defined as the first principal component of a 

given module, can be considered as a representative of the gene expression profiles in 

a module (259). The connectivity of a gene i with a module k (MMk(i)) is defined as 

the Pearson’s coefficient of correlation of the expression value of that gene with the 

ME of the module. It is a measure of module membership (MM) for a particular gene. 

Specifically, 

 

MMk(i) = cor(e(i), Ek)                                        (2)                                                                                                         

 

where MMk(i) is a measure of MM for gene i with respect to module k,  e(i) is the 

expression profile of gene i and Ek is the eigengene of module k. The intramodular 

connectivity (kME) is defined as the connectivity of a gene within its own module. 

The ME is also used to calculate the Pearson’s coefficient of correlation and the 

associated student p-value of each module with disease status; the disease status is 

encoded as binary information for disease or healthy. 

 

 

3.6.3.3  Module preservation and consensus analysis 

WGCNA provides various measures of module preservation statistics, which assess 

whether or not the interconnections among the genes within a module, and 

connectivity patterns of individual modules (for example, intramodular hub gene 
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status) are preserved between two datasets. To assess the preservation of our disease 

associated modules found in the PFC dataset (the network that we analyzed) and in a 

hippocampal gene expression dataset (test network), we used the modulePreservation 

function in the WGCNA R package (269). In brief, this function provides an average 

measure of several preservation statistics generated through many permutations of the 

data, the Zsummary value.  In general, modules with Zsummary scores#>10 are interpreted 

as strongly preservation (that is, densely connected, distinct, and reproducible 

modules), Zsummary scores between 2#and 10#are weak to moderately preserved, and 

Zsummary scores <2 are not preserved (269). Another way to look at module 

preservation is to rank the modules by their overall preservation in the test set which 

gives a relative measure of module preservation. Median rank is a measure which 

relies on observed preservation statistics rather than the permutation Z-statistics (269). 

It is calculated as described previously (269). 

  

Consensus analysis is a way to identify modules present in several independent 

datasets. Consensus modules group together genes densely connected in all conditions 

and are defined from the clustering of consensus similarity 

 

Modulesconsensus = min(Network 1, Network 2)                                (3)                                                                              

 

Consensus modules are by construction present (i.e. preserved) in all input datasets. If 

a module identified in a reference dataset is strongly preserved in test datasets, it 

would also be a consensus module among the reference and test datasets. Each 

consensus module has one eigengene per dataset. Eigengene correlation helps to 

visualize the overall network structure and also to compare a given network between 

different datasets. An eigengene network (Aij) is defined as a signed network with a 

soft thresholding power of 1. A preservation network (Presij) measures the correlation 

of eigengene correlation amongst different networks (306): 

 

!"#$!"(!,!… ) = 1− [max !!"! ,!!"! ,… −min !!"! ,!!"! ,… ]                 (4) 

 

 

where !"#$!"(!,!… ) is the preservation network for any networks 1 and 2. The overall 
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mean preservation of eigengene networks is given by (306) 

 

!(!,!… ) = !"#$!!!!!,!(!,!… )!!                                  (5)                                                                                             
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CHAPTER 4 

4.  A Map of Protein Aggregation 

Homeostasis Identifies the 

Vulnerability of Cells sand Tissues to 

Alzheimer’s Disease 

4.1  Overview 

As described earlier in this thesis, Alzheimer’s disease is associated with a set of 

metastable aggregation prone proteins (Chapter 2) (33, 34, 181), which are regulated 

by components of the cellular trafficking and degradation systems (Chapter 3) (182). 

Here, to understand why disease-associated protein deposits form in certain tissues 

but not in others, we analyzed the ability of different cell and tissue types to respond 

to the presence of these aggregation-prone proteins by studying the balance between 

the expression of genes encoding metastable proteins and their protein homeostasis 

complement. We thus found that protein aggregation homeostasis is weaker in 
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neurons than in other cell types, and also weaker in brain tissues than in other body 

tissues. These results provide quantitative evidence that the defective regulation of 

protein aggregation is part of the molecular origins of Alzheimer’s disease. 

4.2  Introduction 

As we have discussed, a large fraction of the proteome is inherently metastable within 

the cellular environment (33, 34, 181, 253), as the concentrations of these proteins 

exceed their intrinsic solubilities (49). Proteins that co-aggregate with plaques and 

tangles, and Lewy bodies were also found to be metastable. Biochemical pathways 

associated with neurodegenerative diseases were found to be enriched in these 

metastable proteins, indicating an important common feature of widespread protein 

metastability for these multifactorial neurodegenerative diseases. A fraction of these 

metastable proteins were reported to be specifically transcriptionally downregulated 

in AD, constituting an AD specific metastable subproteome (181), as discussed in 

Chapter 2. These proteins have been reported to be associated with specific 

components of the protein trafficking and clearance mechanisms, specifically the 

endosomal-lysosomal and the ubiquitin-proteasome systems, detailed in Chapter 3 

(307). Thus, these components are crucial for the maintenance of the cellular 

homeostasis of a set of metastable proteins prone to aggregation in AD.  

 

The protein quality control mechanisms have been shown to be progressively 

impaired upon ageing and neurodegenerative diseases, with the simultaneous increase 

in accumulation of aggregated species. Hence, it is crucial to maintain the balance 

between aggregation-prone proteins and their associated protein homeostasis 

components in order to maintain overall cellular health. Although ageing affects 

neurons as much as cells in other tissues, most of the diseases associated with protein 

aggregation concern the central nervous system. While there have been several studies 

about the selective regional vulnerability within brain tissues, it is not clear whether 

the brain itself is more vulnerable to aggregation diseases compared to other body 

tissues.  
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The aim of the study is to investigate whether the brain tissues, in a healthy state, are 

more susceptible to protein aggregation diseases compared to other body tissues, 

based on the balance between the expression of aggregation prone proteins and their 

regulatory systems. To achieve this goal, we determined the expression levels of 

metastable proteins associated with AD and the associated protein homeostasis 

components across 77 different healthy human tissues, including several brain tissues. 

We show that the brain tissues have a higher expression of the metastable proteins but 

lower expression of the associated homeostasis components compared to other 

tissues. Thus, due to the inherent lower expression of the homeostasis components 

associated with metastable proteins, the brain, as an organ, is ill-equipped to deal with 

these highly aggregation-prone metastable proteins, providing an explanation for the 

vulnerability of neurons to protein aggregation diseases. 

4.3  Results 

4.3.1  The protein homeostasis response is proportional to 

the risk of aggregation 

Since aggregation-prone proteins are intrinsically metastable even in the absence of 

disease, we studied healthy brain tissues (265) to identify their associated protein 

homeostasis components using an approach based on coexpression network analysis 

(259). We used the subset of metastable proteins that are specifically associated with 

AD (MS), as described in Chapter 2 (181, 307) as our aim was to study the 

vulnerability of different tissues to AD. Using this weighted coexpression approach, 

we identified the protein homeostasis components (PHC) associated with these 

metastable proteins (Section 3.6 and 4.6). We used extensive microarray data across 

77 different healthy human tissues (308) to study the vulnerability of various tissues 

based on the relative expression of these genes. We measured the relative expression 

of the MS and associated PHC in each tissue (Figure 4.1 and C.1) and found a 

correlation between the average expression of the MS and the average expression of 

its PHC. We also defined a “protection factor”, s, as the slope of the best-fit line for 
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the relative expression of the MS and its PHC (Section 4.6). The s score for MS and 

PHC across different tissues is 1.02, indicating a close overall proportionality between 

the protein aggregation risk and its mechanism of control  (Figure C.1). Thus, these 

results reveal the presence of a robust response to the presence of aggregation-prone 

proteins.  

4.3.2 Brain tissues have a weaker protein aggregation 

homeostasis than other tissues 

To understand the origin of the scatter around the overall correlation between PHC 

and MS levels shown in Figure C.1, we looked in more detail to the tissue-specific 

response. We thus found that the brain tissues and the body tissues separate into two 

distinct clusters (Figure 4.1). Brain tissues have an elevated expression of metastable 

genes, but not of their protein homeostasis counterpart. In body tissues, the PHC 

expression grows more rapidly than the MS expression (s = 1.33). In brain tissues, the 

opposite is true (s = 0.88). 

 

These results indicate that brain tissues, overall, have a weaker response to the 

presence of aggregation-prone proteins. There have been several studies to analyse the 

differential vulnerability of specific brain regions to different types of stress (309-

313), however, there are no reports about the vulnerability of the brain as an organ. 

Our results show that the brain tissues are less capable of regulating the aggregation-

prone proteins due to a weaker protein aggregation homeostasis compared to rest of 

the body tissues.  
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Figure 4.1. Brain tissues have a weaker protein aggregation homeostasis than 
other tissues. Scatter plot showing the average expression of metastable genes (MS) 
and the average expression of the associated protein homeostasis components (PHC) 
in different tissues. The brain tissues (orange) have a smaller slope than the body 
tissues (blue), indicating that the brain tissues have a lower protection against protein 
aggregation relative to other tissues. 

 

4.3.3  Vulnerable brain tissues have a weaker protein 

aggregation homeostasis than non-vulnerable brain 

tissues 

The greater vulnerability of brain tissues to protein aggregation suggests the presence 

of a link between protein aggregation homeostasis and neurodegenerative diseases, 

including in particular Alzheimer’s disease. In order to investigate this relationship in 

more detail, we differentiated between tissues that are vulnerable and those that are 

resistant to Alzheimer’s disease, as assessed by the Braak staging (314). We mapped 

various brain tissues to the respective Braak stages as reported previously (254). 

Amongst these, there were 7 brain tissues corresponding to different Braak stages 
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present in the microarray dataset used in the current study. We analysed the 

expression of the MS and the associated PHC in these tissues and compared them to 

the non-Braak tissues. We found that brain tissues corresponding to Braak regions 

have a lower slope than non-Braak regions (Figure 4.2).  

 

These results link closely protein aggregation homeostasis with tissue vulnerability to 

Alzheimer’s disease. 

 

 

 
 

Figure 4.2. Vulnerable brain tissues have a weaker protein aggregation 
homeostasis than non-vulnerable brain tissues. (a) Brain tissues corresponding to 
different Braak regions have a lower slope than non-Braak regions. (b) Bar plot 
depicting the slopes in different tissues. 

 

4.3.4  Neurons have a weaker protein aggregation 

homeostasis than non-neuronal brain cell types 

The results presented above about the role of protein aggregation homeostasis in 

tissue vulnerability to Alzheimer’s disease suggest a possible origin for the increased 

vulnerability of neurons to this disease with respect to other non-neuronal brain cell 

types. In order to verify whether or not neurons are less able than other brain cell 

types to regulate protein aggregation, we compared the expression of metastable 

genes (MS) and their associated protein homeostasis components (PHC) in neurons, 
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astrocytes, microglia and oligodendrocytes, using extensive single cell RNA 

sequencing data(315). We found that neurons have the lowest slope among these cell 

types (Figure 4.3). 

 

These results indicate that neurons are the cells most vulnerable to protein aggregation 

in the brain. 

4.3.5  Proteins in the oxidative phosphorylation pathway 

have a weaker protein aggregation homeostasis in the 

brain than in other tissues 

 
In order to better understand the molecular origins of the increased vulnerability of 

certain brain tissues to Alzheimer’s disease we considered the homeostasis of 

oxidative phosphorylation, since this is a specific process associated with metastable 

proteins (34, 181, 307). Oxidative phosphorylation has also been extensively linked 

with neurodegenerative diseases, although the exact nature of disruption is still 

unknown. We divided the genes associated with the Oxidative Phosphorylation 

pathway in the KEGG database (268) into two parts: those that are metastable and 

those that are not. We then calculated the protection factor (s) for the oxidative 

phosphorylation genes and their associated PHC for both groups across all tissues. 

The difference in s values between the body and brain tissues (Δs) is much higher in 

the group of oxidative phosphorylation genes that are also metastable, whereas there 

is almost no difference in the slopes for non-metastable oxidative phosphorylation 

genes. These results suggest that, even from within the oxidative phosphorylation 

pathway, those genes that are also metastable pose a higher risk for the brain tissues 

as these are less well prepared to face the challenge posed by the presence of these 

aggregation-prone proteins (Figure 4.4). 

 

These results confirm previous observations about the close association between 

oxidative phosphorylation, protein aggregation, and neurodegenerative processes. 
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4.4  Discussion 

In this chapter, we have shown that the balance between protein aggregation and its 

regulation through the protein homeostasis system is crucial in determining the 

vulnerability of cells or tissues to protein aggregation diseases. We have previously 

reported the presence of inherently aggregation prone proteins even in a healthy state 

(33, 34). We also observed that a subset of these aggregation prone proteins that is 

associated with AD is regulated closely by components of the endo-lysosomal system 

and the ubiquitin-proteasome pathway, identifying a protein homeostasis complement 

for these aggregation prone metastable proteins (181, 307). There is evidence that the 

protein homeostasis system gets progressively impaired with ageing and 

neurodegenerative diseases and this disrupts the balance between protein folding and 

aggregation within the cellular environment, leading to accumulation of aberrant 

aggregates.  

 

Our results show that, already in a healthy state, the protein aggregation response is 

proportional to the risk of aggregation (Figure 4.1 and C.1). We have taken a view 

that the strength of this correlation is an important factor in predicting the capability 

of different tissues or cells to handle the threat posed by the presence of aggregation 

prone proteins. We used data from healthy brain tissues to identify the protein 

homeostasis components of the MS based on coexpression network construction. We 

then defined the protection factor (s) as the slope between the MS and the associated 

PHC for different tissues and cells. We observed that body tissues have an s value 

higher than 1, suggesting that these tissues are well equipped to regulate these 

aggregation prone proteins. The brain tissues, however, have an s value of less than 1. 

Also, from among the brain tissues, those that correspond to Braak regions have an 

even lower s value. These results show that brain, as an organ, is less capable 

compared to other body tissues in terms of dealing with threat of protein aggregation. 

The protection factor s serves as a good measure of predicting the vulnerability to 

protein aggregation as it decreases when we move from body tissues to resistant brain 

tissues to highly vulnerable brain tissues. It also provides probable insights into the 

molecular origins of Alzheimer’s disease as neurons have the least s score compared 

to other types of cells found in the CNS.  
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Figure 4.3. Neurons have a weaker protein aggregation homeostasis than non-
neuronal brain cell types. Scatter plots depicting the expression of metastable genes 
(MS) and their associated protein homeostasis components (PHC) in (a) neurons, (b) 
astrocytes, (c) microglia and (d) oligodendrocytes. Each dot represents a single cell. 
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Figure 4.4. The oxidative phosphorylation pathway has a weaker protein 
aggregation homeostasis than other pathways. (a) Average expression of 
metastable genes within the KEGG Oxidative Phosphorylation pathway and their 
associated PHC. (b) Average expression of all non-metastable genes within the 
Oxidative Phosphorylation pathway and their associated PHC. The slope for these 
critical genes is lower (<1) throughout the body, not just in the brain and the 
difference in slopes between the body brain tissues is much more pronounced in the 
metastable Oxidative Phosphorylation genes.  

 

 

Our results show that the brain, as an organ is vulnerable to protein aggregation even 

in the absence of disease. It has been reported that the human brain went through an 

accelerated cortical reorganization compared to other primates during the course of 

evolution (316). There is a possibility that this accelerated evolution of the brain 

placed increased pressure on critical genes in the brain to evolve their expression 

accordingly, not providing enough time for the simultaneous evolution of the 

regulatory components of the protein homeostasis system. Thus, when faced with the 

challenges of stress or aggregation prone proteins, brain tissues are more likely to 

suffer from protein aggregation diseases. Our results also show that neurons are the 

most vulnerable cells within the brain. Taken together, our results provide important 

insights into the molecular origins of AD and the vulnerability of brain, more 

specifically different regions and cells of the brain, to the threat posed by protein 

aggregation.  
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4.5  Conclusions 

We have shown that brain tissues are particularly vulnerable to Alzheimer’s disease 

because of their relatively poor ability to regulate protein aggregation. Furthermore, 

we have also shown that this ability is particularly lacking in neurons with respect to 

other brain cells, thus providing insight into the molecular origins of this 

neurodegenerative disease. 

4.6  Materials and Methods 

4.6.1  Dataset Acquisition 

4.6.1.1  Healthy Brain Tissues 

Microarray data for healthy brain tissues was acquired from the Allen Brain Atlas 

(265). Gene expression data for 6 healthy human brains was available, across 900 

different tissues. Data was scaled and normalised using the ‘scale’ function in R. As 

Allan Brain Atlas uses multiple probes for each genes, the ‘collapseRows’ (317) 

function of the WGCNA package in R was used to get a single expression value for 

each gene across all samples. The expression values for each gene was then averaged 

across all six brains to arrive at the final expression value associated with each gene. 

 

4.6.1.2  Tissue Specific Data 

We obtained tissue specific data across various human tissues from a previously 

published dataset (308). Certain cancerous tissues and cell lines were removed from 

the analysis as our aim was to study the expression levels in a healthy state, leaving 

77 tissues for the study. From these, 27 were characterised as neural tissues and 50 

body tissues (Table C.1).  
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For the Braak and Non Braak analysis, brain regions (from the 27 brain tissues) were 

assigned to either Braak or Non-Braak as described previously (254). Briefly, brain 

regions in the Allen Brain Atlas were matched with the closest regions mentioned in 

the original paper (314). 7 tissues were found to correspond to different Braak stages 

(Table C.1) 

 

4.6.1.3  Cell type specific data 

Single cell RNAseq data for 8 different cell types found in the brain was obtained 

from a published dataset (315). Data was scaled and normalised in R.   

4.6.2  Coexpression network construction 

We used the data obtained from the Allen Brain Atlas to construct a coexpression 

network for the metastable genes associated with Alzheimer’s disease (MS) (182)and 

the genes associated with the protein homeostasis system to get the protein 

homeostasis complement (PHC) of the MS. WGCNA (259, 260) was used to 

construct the coexpression network as described previously (307). Briefly, WGCNA 

is a clustering algorithm based on hierarchical clustering but which uses ‘soft 

thresholding’ and the concept of topological overlap or shared neighbours to identify 

clusters of coexpressed genes. The soft thresholding method assigns a weight to each 

pair of interacting genes and uses such weight along with the topological overlap to 

identify modules of coexpressed genes in the expression data. The construction of a 

‘Weighted Gene Correlation Network’ was performed using the R package for 

WGCNA. The names of MS and associated PHC are given in Table S2.  

4.6.3  Calculation of ‘Protection Factor (s)’  

Our aim was to study the balance between the expression level of aggregation prone 

proteins and components associated with their regulation. Thus, we defined a 

“protection factor, s” as the slope of the best-fit line for the relative expression of the 

MS and its PHC across different tissue or cell types. A line was fitted based on linear 
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regression between the expression of MS and the PHC. The protection factor is a 

measure of the strength of the balance between the MS and its PHC.  

4.6.4  Statistical testing 

To evaluate the significance of our results, we used random sets of genes 

corresponding in number to the MS and PHC and calculated the s for them. We then 

calculated the difference in s between the body and brain tissues (Δs). We repeated 

these 1000 times to have a frequency distribution of Δs values for random sets of 

genes. The Δs for our genes of interest is 0.25, which is more than two SD away from 

the random sets of genes (Figure C.2). Thus, our s values are highly robust and 

significant. The statistical testing was performed using the Scipy module in Python.  
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CHAPTER 5 

5.  Perspectives and future directions 

5.1  Overview 

The phenomenon of protein folding is fundamental to living systems and its failure is 

implicated in many human diseases (4, 6, 7, 9-12, 14, 15). Misfolding and aggregation 

can cause not just a loss of protein functionality, but also toxic, gain of function 

effects. The generic nature of amyloid formation suggests a general vulnerability of 

proteins to these conformational disorders (7, 11, 12). While the characteristic 

proteins in misfolding diseases, like Aβ, tau or α-synuclein might play a key role in 

initiating disease pathology, recent studies have started to identify the role of 

widespread protein aggregation in the pathology and progression of disease (31, 32, 

34, 47). However, previously, these studies had not been able to elucidate the reasons 

behind he widespread aggregation observed in misfolding diseases like AD, PD, HD 

and ALS amongst others. Recently, it has been reported that a large set of proteins is 

inherently metastable to aggregation, even in a healthy state (34). These proteins, 

termed supersaturated because they are expressed a levels exceeding their intrinsic 

solubilities, are particularly aggregation prone due to their fundamental physico-
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chemical properties. Intriguingly, these metastable proteins were also found to be 

enriched in biochemical pathways associated with neurodegeneration (33, 34).  

 

The studies presented in this thesis build upon these observations by further analysing 

the role of these metastable proteins in AD and their regulation by the natural 

defences of the cell. These studies show that there is a specific overall transcriptional 

downregulation of metastable genes in AD, suggesting a potential cellular response to 

attenuate widespread aggregation in the face of compromised protein folding 

environment (181). The protein homeostasis system acts as a natural buffer to 

maintain the solubility of the proteome and also to clear any aggregated or misfolded 

species. It is a dynamic system capable of responding to cellular stresses, as 

exemplified by the heat shock response, and orchestrates a highly co-ordinated 

response between different components to maintain a healthy proteome within the cell 

(6, 8, 35, 88). However, these protective responses might be subject to disruption, as 

observed in ageing or misfolding diseases. The deficiency of protein homeostasis 

response could be causal to the disease or a result of overwhelming protein misfolding 

and aggregation. Either way, it is absolutely essential to understand the relationship 

between aggregation-prone proteins and their regulation in a healthy environment in 

order to restore this delicate balance in the face of misfolding diseases like AD. The 

results presented in this thesis identify the importance of cellular degradation and 

trafficking mechanisms in the regulation of AD associated metastable proteins (182), 

most of which are mitochondrial membrane proteins. Although mitochondrial damage 

and disruption has long since been associated with neurodegenerative diseases, the 

details of the process remain elusive. Studying the metastability of mitochondrial 

proteins is extremely important, as it can have major implications in understanding 

the details of mitochondrial disruption in neurodegenerative diseases like AD. 

 

Thus the study of protein metastability could help to rationalise the widespread 

cellular disruption associated with disease pathology and also offer novel avenues for 

therapeutic interventions. The studies presented in this thesis also suggest that it is not 

just individual aggregating proteins, but the balance between protein aggregation and 

its regulation that is critical to maintain a healthy functional proteome. If the human 

brain, as an organ, is particularly vulnerable to protein misfolding diseases by virtue 

of possessing a weak inherent response to metastable protein aggregation, it is all the 
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more crucial that we understand the mechanisms of regulation of these metastable 

proteins to be able to intervene and rescue the neurons and potentially reverse or stall 

disease progression.  

5.2  Further enquiries into the regulation of 

metastable proteins 

5.2.1  Characterizing the mechanism of aggregation of 

metastable mitochondrial membrane proteins 

As compared to cytosolic proteins, the misfolding and aggregation of membrane 

proteins has been poorly understood. This is particularly striking, as it is known that 

the hydrophobic nature of membrane proteins makes them particularly vulnerable to 

aggregation (318). It has been observed that hundreds of membrane proteins 

aggregate upon ageing in C. elegans (32). Indeed, a recent study reported that an α-

helical protein, Escherichia coli lactose permease, is capable of forming amyloid like 

fibrils under destabilizing conditions (319). However, difficulty in purification and 

recombinant production are probably the major reasons behind the lack of detailed 

understanding of aggregation of these proteins (319). Mitochondrial membrane 

proteins are especially interesting due to the well acknowledged role of mitochondrial 

dysfunction in neurodegenerative diseases (263) and also because most of these are 

metastable to aggregation. One starting point to study these proteins would be to see if 

they aggregate upon overexpression in model organisms. This observation would 

provide a rationale to further isolate and characterize the aggregates and also to study 

the mechanistic details of their aggregation. Another interesting avenue would be to 

look for metastable mitochondrial membrane protein aggregation in disease models, 

as this could help explain the nature of mitochondrial disruption in neurodegenerative 

diseases.  
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5.2.2  Experimental validation of the protein homeostasis 

complement of metastable proteins 

Our cells are equipped with a robust and highly dynamic protein homeostasis system 

to deal with protein misfolding and aggregation and the system is highly responsive to 

changes in cellular environment due to a variety of stresses. Disruption of the protein 

homeostasis system is, however, a hallmark of neurodegenerative diseases (6, 8). It is, 

hence, imperative to understand the regulation of metastable proteins by components 

of the protein homeostasis system in order to gain insight into their natural regulation 

within the cellular environment and use the knowledge to develop new therapeutic 

strategies aimed at enhancing the natural defence systems of the body. The work 

presented in this thesis is an initial attempt to identify these components. 

Experimental validation of these regulators in models of neurodegenerative diseases 

would pave the way for better understanding of the process.   

5.2.3  Biomarker development and diagnostics 

As discussed in Section 1.7, there is an immediate need to develop robust biomarkers 

capable of detecting not only disease progression in AD, but also the early pre-

symptomatic phase of the disease. Currently available biomarkers do not necessarily 

give a definitive diagnosis and mostly work in conjunction with imaging techniques. 

The measurement of CSF Aβ and tau is also a fairly invasive technique, which makes 

it unsuitable as a routine screening measure. Since metastable proteins were seen to 

be transcriptionally downregulated in AD, they could offer another way of monitoring 

diseases progression. It would also be interesting to see the exact ages where this 

transcriptional downregulation is observed in animal models of disease. If it is seen in 

young animal models of disease, it could also offer an opportunity to detect the pre-

symptomatic disease stages, providing a larger window to test drug efficacy.  

5.2.4  Tissue vulnerability over the course of evolution 

The presence of a large number of highly aggregation prone metastable proteins in 

our bodies prompts an important question – why have these proteins been allowed to 
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exist, given that they clearly pose a threat to the health of the proteome? It could be 

that it is the result of random mutations over the course of evolution or it could be a 

result of a necessary feature required by the protein sequences to be optimally 

functional. Indeed, as discussed in section 1.6, Vendruscolo and colleagues reported 

that the expression levels of human genes and the aggregation propensity of the 

respective polypeptide chains encoded by them are inversely correlated (49). This 

result suggests that protein sequences have carefully evolved over the years through 

random mutations and natural selection to be just soluble enough to be functional, but 

not more so. Hence, any disturbance in the cellular environment can cause be 

dangerous. The protein homeostasis system plays an important role in maintaining the 

solubility of proteins. The results discussed in Chapter 4 highlights the importance of 

the balance between the expression of these metastable proteins and the associated 

protein homeostasis components in determining the vulnerability of different cells and 

tissues to protein misfolding disorders, suggesting that brain, as on organ is 

particularly vulnerable. Building upon these observations it would be highly 

interesting to see how this balance has been maintained or evolved over the course of 

evolution and it might help to rationalise why humans specifically suffer from these 

highly debilitating neurodegenerative diseases. 

5.3  Towards a gene list for Alzheimer’s Disease 

Our results so far have provided important insights into the mechanisms of regulation 

of protein misfolding in Alzheimer’s disease, suggesting that protein aggregation can 

be reduced either by altering the conformations or the concentrations of metastable 

proteins. These findings suggest that in a setting of compromised protein folding the 

balance of these processes may move away from regulating conformations and 

towards regulating concentrations, by reducing expression and enhancing 

degradation. These concepts are very exciting, as they provide a clear strategy for 

identifying the key components of comprehensive list of genes associated with AD - 

the “AD gene list”. This list will have a huge potential to revolutionize the field of 

AD, as it will help integrate different aspects of the disease, specifically:  
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a. It will facilitate the rational design of therapeutic strategies aimed at restoring 

the balance between aggregation-prone proteins and their corresponding 

natural quality control mechanisms.   

b. It will help develop much-needed innovative diagnostic tests for AD. 

Preliminary findings suggest that we can distinguish disease mice from 

healthy controls prior to any detectable symptoms, potentially opening the 

way for an early diagnostic test for ADi.   

c. It will help create better disease models of AD. The AD models currently 

available do not allow us to gain a comprehensive understanding of complex 

multifactorial diseases like AD as almost all of them are based on genetic 

mutations of a very small number of genes, and hence fail to capture the 

cascade of molecular events associated with the disease. We expect that our 

gene list will  enable better design of model systems to study the various 

pathological events associated with diseases like AD.  

 

This approach, based on the biophysical properties of the proteins they encode and the 

protein homeostasis mechanisms responsible for their regulation, is an exciting 

endeavor, as it will allow a non-reductionist understanding of this multifactorial 

disease.  

 

 
 
 
 
 
 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
i!!This refers to preliminary unpublished studies done in collaboration with Dr. Darren 
Logan and Dr. Gabriela Sanchez-Andrade from The Wellcome Trust Sanger Institute, 
Hinxton, UK. 
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Appendix A 

A. Additional figures on transcriptional 

regulation of metastable subproteome 
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Figure A.1 Differences in metastability between transcriptionally regulated 
proteins in aging are robust against changes in differential expression 
thresholds. A range of values for thresholds of minimum percentage change (0.5–
50%) and P value (10−20 to 1) was used to determine which genes are increased, 
decreased, or unchanged in expression upon aging. A total of 18,100 combinations 
were considered. Supersaturation scores were then calculated for the proteins 
corresponding to differentially expressed genes. The corresponding protein 
supersaturation was assessed in terms of (A and C) P value and (Band D) median fold 
difference. This analysis was performed for down-regulated (A and B) and up-
regulated (C and D) genes. 
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Figure A.2 Differences in metastability between transcriptionally regulated 
proteins in AD are robust against changes in differential expression thresholds. 
A range of values for thresholds of minimum percentage change (0.5–50%) 
and P value (10−20 to 1) was used to determine which genes are increased, decreased, 
or unchanged in expression in AD. A total of 18,100 combinations were considered. 
Supersaturation scores were then calculated for the proteins corresponding to 
differentially expressed genes. The corresponding protein supersaturation was 
assessed in terms of (A and C) P value and (Band D) median fold difference. This 
analysis was performed for down-regulated (A and B) and up-regulated (C and D) 
genes. 
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Figure A.3 Metastability levels are correlated with average expression levels for 
genes down-regulated in AD. (Left) Plot of protein supersaturation scores against 
the fold change in expression for the corresponding genes in AD (AD, Upper Left), 
aging based on the AD studies [Age (AD), Upper Right], clinical depression 
(CD, Lower Left), and aging based on the clinical depression studies [Age 
(CD), Lower Right]. (Right) Pearson’s correlation coefficient (r2) for the categories 
plotted (Left). 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Metastability levels are correlated with average expression levels for genes down-regulated in 
AD. (Left) Plot of protein supersaturation scores against the fold change in expression for the 

corresponding genes in AD (AD, Upper Left), aging based on the AD ... 

Prajwal Ciryam et al. PNAS 2016;113:4753-4758 

©2016 by National Academy of Sciences 
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Figure A.4 Metastability of proteins encoded by differentially expressed genes is 
elevated in AD for a range of expression values. Supersaturation of proteins 
associated with AD (A and B) and ageing (C and D) was determined after restricting 
the genes of interest to those above a range of expression levels plotted by expression 
percentile rank. (A and C) Fold Δ and (B and D) P value are plotted. Blue points 
represent values for down-regulated genes; orange points represent values for up-
regulated genes. The median fold difference in supersaturation is indicated by Fold 
Δ. P values are calculated using the one-sided Wilcoxon/Mann–Whitney test with 
Holm–Bonferroni correction. 

 

 

 

A B

0

2

4

6

8

0 20 40 60 80 100
Expression percentile

Fo
ld

 Δ

10−300

10−200

10−100

1

0 20 40 60 80 100
Expression percentile

p-
va
lu
e

C D

0

2

4

6

8

0 20 40 60 80 100
Expression percentile

Fo
ld

 Δ

10100

1075

1050

1025

1

0 20 40 60 80 100
Expression percentile

p-
va
lu
e



!

! 112!

 
 
Figure A.5 Differences in metastability between transcriptionally regulated 
proteins in AD are robust against Gaussian noise in the supersaturation score. 
Test of the robustness of the significance of the (A and C) median fold difference and 
(B and D) P value of supersaturation for proteins transcriptionally (A and B) down-
regulated or (C and D) up-regulated in AD. Gaussian noise was introduced 100 
independent times into the proteome scores at levels ranging from 1.1× to 100× 
(where 1× signifies no noise). Tests were performed at each noise level to determine 
whether the 100 median fold differences obtained were significantly greater than 1 
and the 100 P values obtained were significantly below 0.05. For down-regulated 
genes, supersaturation (A) median fold difference is robust up to 100× and 
(B) P value is robust up to 7×. For up-regulated genes, supersaturation (C) median 
fold difference is robust up to 100× and (D) P value is robust up to 2.25×. Error bars 
indicate interquartile ranges; green points indicate P ≤ 0.05 by the one-sided 
Wilcoxon/Mann–Whitney test. 
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Figure A.6 Differences in metastability between transcriptionally regulated 
proteins in aging are robust against Gaussian noise in the supersaturation score. 
Test of the robustness of the significance of the (A and C) median fold difference and 
(B and D) P value of supersaturation for proteins transcriptionally (A and B) down-
regulated or (C and D) up-regulated in aging (AD dataset). Gaussian noise was 
introduced 100 independent times into the proteome scores at levels ranging from 
1.1× to 100× (where 1× signifies no noise). Tests were performed at each noise level 
to determine whether the 100 median fold differences obtained were significantly 
greater than 1 and the 100 P values obtained were significantly below 0.05. For down-
regulated genes, supersaturation (A) median fold difference is robust up to 3.75× and 
(B) Pvalue is robust up to 2.25×. For up-regulated genes, supersaturation (C) median 
fold difference is robust up to 100× and (D) P value is robust up to 1.1×. Error bars 
indicate interquartile ranges; green points indicate P ≤ 0.05 by the one-sided 
Wilcoxon/Mann–Whitney test. 
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Figure A.7 Elevated metastability of proteins encoded by differentially expressed 
genes in AD and aging is not dependent on oxidative phosphorylation proteins. 
Supersaturation of proteins associated with differentially expressed genes in (A) AD, 
(B) aging, and (C) the overlap between the two, but with those proteins found in the 
KEGG pathway for oxidative phosphorylation excluded. The median fold difference 
in supersaturation is indicated by Fold Δ. NC indicates genes that do not change 
significantly in expression. ****P ≤ 0.0001, one-sided Wilcoxon/Mann–Whitney test 
with Holm–Bonferroni correction. Whiskers range from the lowest to highest value 
data points within 150% of the interquartile ranges. 
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Series Platform Refs. Control 

Samples 

Disease 

Samples 

Disease 

Set 

GSE1297 GPL96 (220) 74 87 AD 

GSE5281 GPL96 (222, 223) 9 22 AD 

GSE15222 GPL2700 (224) 187 174 AD 

GSE26927 GPL6255 (228) 7 11 AD 

GSE29378 GPL6947 (231) 32 31 AD 

GSE29652 GPL570 (226) 6 12 AD 

GSE36980 GPL6244 (230) 47 32 AD 

GSE37263 GPL5175 (225) 8 8 AD 

GSE44772 GPL4272 (320) 299 388 AD 

GSE12654 GPL8300 (Iwamoto, Mol 

Psychiatry 2004) 

15 11 CD 

GSE53987 GPL570 (Lanz, PLoS One, 

2015) 

55 50 CD 

GSE54562,  

GSE54563,  

GSE54564 

GPL6947 (Chang et al, PLoS 

One, 2014) 

56 56 CD 

GSE54565,  

GSE54566 

GPL570 (Chang et al, PLoS 

One, 2014) 

29 30 CD 

GSE54567,  

GSE54568,  

GSE54571,  

GSE54572 

GPL570 (Chang et al, PLoS 

One, 2014) 

54 54 CD 

GSE24095 GPL10907 (Duric et al, Nat 

Med, 2010) 

30 30 CD 

 

Table A.1 List of the studies used for the microarray meta-analyses carried out 
in this work for Alzheimer’s disease and clinical depression  
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Appendix B 

B. Additional figures on protein 

homeostasis of a metastable 

subproteome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



!

! 118!

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure B.1 Module preservation of MEMPs across different datasets. (a) 
Preservation median rank, and (b) preservation Zsummary scores of various modules.  
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Figure B.2 GO enrichment analysis for the genes in the three main MEMPs 
(MEMP1, MEMP2 and MEMP3), which identifies specific components of the 
ubiquitin-proteasome and endosomal-lysosomal systems in the regulation of the 
metastable subproteome.  
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Figure B.3 KEGG pathways enriched in the MEMP-1, MEMP-2 and MEMP3 
modules. UMP: ubiquitin mediated proteolysis, Pr: proteasome, Rb: ribosome, PD: 
Parkinson’s disease, AD: Alzheimer’s disease, HD: Huntington’s disease, Endo: 
endocytosis, Adipo Sg: adipocytokine signaling pathway. 
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Figure B.4 Correspondence between the modules of the visual cortex dataset 
(GSE44771) and the consensus modules. Each row of the table corresponds to one 
of the modules of the visual cortex dataset (labelled by colour as well as text), and 
each column corresponds to one consensus module. Numbers in the table indicate the 
gene counts in the intersections of the corresponding modules. Colouring of the table 
encodes −log(p), with p being the Fisher’s exact test p-value for the overlap of the 
two modules. The table indicates that most of the modules of the visual cortex dataset 
have a consensus counterpart.  
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Figure B.5 Consensus eigengene networks for the dorsolateral prefrontal cortex 
and the visual cortex. (a) Heatmap of the preservation network, defined as one minus 
the absolute difference of the eigengene networks in the two data sets. (b) Mean 
preservation of adjacency for each of the eigengenes to all other eigengenes. D 
denotes the mean preservation of eigengene networks among the datasets. !(!,!… ) =
!"#$!!!!!,!(!,!… ). 
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Figure B.6 Network representation of the MEMPs showing the hub genes and 
the main components of the protein homeostasis system linked with the AD 
metastable subproteome. This analysis reveals in particular the importance of the 
ubiquitin-proteasome (red) and trafficking (green) systems in the regulation of 
aggregation-prone proteins in Alzheimer’s disease. The top 10% of the hub gene 
interactions were visualized, with those genes involved in at least 50 interactions 
shown in the centre. The sizes of the nodes correspond to their degrees of 
connectivity. The metastable genes are shown in blue. Table B.5 reports the names of 
the metastable genes according to the numerical labels shown here. 

 

 
 

ATL1%

CNK2%

NSF%

CLTA%

CDH13%

RAB6A%

ENC1%

MYCBP2%

TUSC3%
RBFOX1%

SLC9A6%

SH3GL2%

ATP6V1H%

FBXL2%

RFPL1%

RNF12
8%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%
11%12%

13%

14%

15%

16%

17%

18%

19%

20%

21%

22%

23%

24%

25%
26%

27%
28%

29% 30% 31% 32% 33% 34%
35%



!

! 124!

 

Figure B.7 Consensus eigengene networks and their differential analysis. (a-c) 
Dendrograms (clustering trees) of the consensus module eigengenes in the three 
datasets. (d, h, l) Eigengene network heatmaps - red denotes high adjacency (positive 
correlation) and blue denotes low adjacency. (g, j, k) Heatmaps of the preservation 
network, defined as one minus the absolute difference of the eigengene networks in 
the two data sets. (e, f, i) Mean preservation of adjacency for each of the eigengenes 
to all other eigengenes. 
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Disease Dataset Tissue Number of 

Disease Samples 
Number 
of 
Controls 

Alzheimer's 
Disease 

GSE44770 Pre-Frontal Cortex 118 73 

Alzheimer's 
Disease 

GSE44771 Visual Cortex 124 69 

Alzheimer's 
Disease 

GSE1297 Hippocamplus 22 9 

Huntington's 
Disease 

GSE33000 Dorsolateral Pre-
Frontal Cortex 

157 157 

Parkinson's 
Disease 

GSE20292 Substantia Niagra 11 18 

 
Table B-1 List of datasets used for the analysis described in Chapter 3 

 
 
Module Genes encoding for metastable proteins Total genes 
black 10 74 
blue 220 659 
brown 0 176 
green 0 98 
greenyellow 10 35 
grey 2 195 
magenta 4 49 
pink 1 60 
purple 1 46 
red 1 80 
tan 0 29 
turquoise 91 688 
yellow 3 137 
 
Table B-2 Total number of genes and number of genes encoding for metastable 
proteins in different modules 
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  ME 
black 

ME 
blue 

ME 
brown 

ME 
green 

ME 
greenyellow 

ME 
grey 

ME 
magenta 

ME 
pink 

ME 
purple 

ME 
red 

ME 
tan 

ME 
turquoise 

ME 
yellow 

ME black 1 0.72 -0.56 0.51 0.11 0.053 -0.14 -0.11 0.36 0.3 -0.03 0.87 -0.85 
ME blue 0.72 1 0.0078 0.015 0.68 0.12 -0.76 -0.45 -0.0076 -0.41 -0.45 0.78 -0.42 
ME brown -0.56 0.0078 1 -0.5 0.66 0.29 -0.42 0.031 -0.59 -0.69 -0.28 -0.56 0.64 
ME green 0.51 0.015 -0.5 1 -0.27 0.0047 0.47 0.64 0.16 0.65 0.22 0.28 -0.49 
ME 
greenyellow 

0.11 0.68 0.66 -0.27 1 0.055 -0.79 -0.36 -0.32 -0.7 -0.48 0.23 0.092 

ME grey 0.053 0.12 0.29 0.0047 0.055 1 -0.17 0.43 -0.25 -0.16 0.064 -0.26 0.061 
ME magenta -0.14 -0.76 -0.42 0.47 -0.79 -0.17 1 0.59 0.22 0.83 0.54 -0.36 -0.16 
ME pink -0.11 -0.45 0.031 0.64 -0.36 0.43 0.59 1 -0.25 0.44 0.3 -0.48 0.092 
ME purple 0.36 -

0.0076 
-0.59 0.16 -0.32 -0.25 0.22 -0.25 1 0.61 0.75 0.42 -0.64 

ME red 0.3 -0.41 -0.69 0.65 -0.7 -0.16 0.83 0.44 0.61 1 0.71 0.086 -0.59 
ME tan -0.03 -0.45 -0.28 0.22 -0.48 0.064 0.54 0.3 0.75 0.71 1 -0.17 -0.33 
ME 
turquoise 

0.87 0.78 -0.56 0.28 0.23 -0.26 -0.36 -0.48 0.42 0.086 -0.17 1 -0.72 

ME yellow -0.85 -0.42 0.64 -0.49 0.092 0.061 -0.16 0.092 -0.64 -0.59 -0.33 -0.72 1 

 
 
Table B-3 Pearson's correlation coefficients between various module eigengenes 
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Molecular chaperone Module 
FKB1B_HUMAN  blue 
TUSC3_HUMAN  blue 
FAXC_HUMAN  blue 
AUXI_HUMAN  blue 
TTC9A_HUMAN  blue 
ERLEC_HUMAN  blue 
DNJC5_HUMAN  blue 
AFG32_HUMAN  blue 
DJC18_HUMAN  blue 
MKKS_HUMAN  blue 
HSPB3_HUMAN  blue 
OPA1_HUMAN  blue 
TOR1A_HUMAN  blue 
SRP68_HUMAN  blue 
DJC12_HUMAN  blue 
TOM34_HUMAN  blue 
DJC27_HUMAN  blue 
PFD4_HUMAN  blue 
PSMG1_HUMAN  blue 
TTC36_HUMAN  blue 
TOM70_HUMAN turquoise 
FKBP3_HUMAN turquoise 
TMX3_HUMAN turquoise 
TIM14_HUMAN turquoise 
TTC33_HUMAN turquoise 
PFD3_HUMAN turquoise 
TTC3_HUMAN turquoise 
CDC27_HUMAN turquoise 
CD37L_HUMAN turquoise 
AN13C_HUMAN turquoise 
SACS_HUMAN turquoise 
THIO_HUMAN turquoise 
TCPZ_HUMAN turquoise 
ERO1B_HUMAN turquoise 
KLC1_HUMAN turquoise 
CLGN_HUMAN turquoise 
RPAP3_HUMAN turquoise 
DNJA3_HUMAN turquoise 
PFD1_HUMAN turquoise 
GRP75_HUMAN turquoise 
TTC13_HUMAN turquoise 
FKB10_HUMAN turquoise 
CABIN_HUMAN turquoise 
TBCE_HUMAN turquoise 
 
Table B-4 List of molecular chaperones in the MEMPs 
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Number Uniprot ID 

1 SV2B_HUMAN 
2 NEUS_HUMAN 
3 MOAP1_HUMAN 
4 NFL_HUMAN 
5 GLRB_HUMAN 
6 NPTN_HUMAN 
7 AP180_HUMAN 
8 GP158_HUMAN 
9 SCG1_HUMAN 

10 NP1L5_HUMAN 
11 CRYM_HUMAN 
12 GASP1_HUMAN 
13 7B2_HUMAN 
14 RTN1_HUMAN 
15 MAGE1_HUMAN 
16 GASP2_HUMAN 
17 AF1Q_HUMAN 
18 DCLK1_HUMAN 
19 NBEA_HUMAN 
20 KCRU_HUMAN 
21 BEX5_HUMAN 
22 ENOG_HUMAN 
23 AT2B1_HUMAN 
24 AMPH_HUMAN 
25 SYT13_HUMAN 
26 TSN13_HUMAN 
27 SNP25_HUMAN 
28 NP1L2_HUMAN 
29 XK_HUMAN 
30 OPCM_HUMAN 
31 ELOV4_HUMAN 
32 LDB2_HUMAN 
33 SCN2A_HUMAN 
34 RIFK_HUMAN 
35 PLK2_HUMAN 

 
Table B-5 Names of the metastable genes according to the numerical labels. 
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Appendix C 

C. Additional figures on a map of 

protein aggregation homeostasis 
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Figure C.1 The protein homeostasis response is proportional to the risk of 
aggregation. Scatter plot showing the average expression of metastable genes (MS) 
and the average expression of the associated protein homeostasis components (PHC) 
in different tissues. The correlation between the average expression of the MS and the 
average expression of the its PHC reveals the presence of a robust response to the 
presence of aggregation-prone proteins.  

 

 
 
 
 
 
 
 
 
 

s = 1.02

Figure 1. The protein homeostasis response is proportional to the risk of aggregation. Scatter plot showing the average 
expression of metastable genes (MS) and the average expression of the associated protein homeostasis components (PHC)
in different tissues. The correlation between the average expression of the MS and the average expression of the its PHC 
reveals the presence of a robust response to the presence of aggregation-prone proteins. 
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Figure C.2 Histogram showing Δs (difference in slope for body tissues and brain 
tissues) for 1000 random sets of genes. The delta slope for our genes of interest 
(genes that are supersaturated and downregulated only in AD, and the associated 
PHC) is 0.25 (shown by red arrow). 
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Tissue Classification 
(1) 

Classification 
(2) 

Adipocyte Body - 
AdrenalCortex Body - 
Adrenalgland Body - 
Appendix Body - 
AtrioventricularNode Body - 
BDCA4+_DentriticCells Body - 
Bonemarrow Body - 
BronchialEpithelialCells Body - 
CD105+_Endothelial Body - 
CD14+_Monocytes Body - 
CD19+_BCells(neg._sel.) Body - 
CD33+_Myeloid Body - 
CD34+ Body - 
CD4+_Tcells Body - 
CD56+_NKCells Body - 
CD71+_EarlyErythroid Body - 
CD8+_Tcells Body - 
CardiacMyocytes Body - 
FetalThyroid Body - 
Fetalliver Body - 
Fetallung Body - 
Heart Body - 
Kidney Body - 
Liver Body - 
Lung Body - 
Lymphnode Body - 
Ovary Body - 
Pancreas Body - 
PancreaticIslet Body - 
Placenta Body - 
Prostate Body - 
Salivarygland Body - 
SkeletalMuscle Body - 
Skin Body - 
SmoothMuscle Body - 
Testis Body - 
TestisGermCell Body - 
TestisIntersitial Body - 
TestisLeydigCell Body - 
TestisSeminiferousTubule Body - 
Thymus Body - 
Thyroid Body - 
Tongue Body - 
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Tonsil Body - 
Trachea Body - 
Uterus Body - 
UterusCorpus Body - 
WholeBlood Body - 
colon Body - 
small_intestine Body - 
Amygdala Brain Braak 
Caudatenucleus Brain Non Braak 
Cerebellum Brain Non Braak 
CerebellumPeduncles Brain Non Braak 
CiliaryGanglion Brain Non Braak 
CingulateCortex Brain Braak 
DorsalRootGanglion Brain Non Braak 
Fetalbrain Brain Non Braak 
GlobusPallidus Brain Non Braak 
Hypothalamus Brain Braak 
MedullaOblongata Brain Non Braak 
OccipitalLobe Brain Braak 
OlfactoryBulb Brain Non Braak 
ParietalLobe Brain Non Braak 
Pons Brain Non Braak 
PrefrontalCortex Brain Braak 
Spinalcord Brain Non Braak 
SubthalamicNucleus Brain Non Braak 
SuperiorCervicalGanglion Brain Non Braak 
TemporalLobe Brain Braak 
Thalamus Brain Braak 
TrigeminalGanglion Brain Non Braak 
Wholebrain Brain Non Braak 
pineal_day Brain Non Braak 
pineal_night Brain Non Braak 
Pituitary Brain Non Braak 
retina Brain Non Braak 
 
 
Table C.1 List of different tissues used in the analysis alongwith their 
classification 
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