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Abstract	
	

In	the	past	few	years,	 interferon-induced	transmembrane	(IFITM)	proteins	have	

been	identified	as	important	antiviral	factors.	The	current	understanding	of	IFITMs	

suggests	that	they	localise	within	distinct	cellular	compartments	from	where	they	

exert	 their	 broad	 antiviral	 role.	 For	 example,	 IFITM1	 localises	 to	 the	 plasma	

membrane	and	restricts	viruses	that	do	not	require	endocytosis	to	infect	host	cells.	

In	 contrast,	 IFITM2	 and	 IFITM3	 are	 found	 in	 the	 early	 and	 late	 endosomes,	

respectively,	 and	 are	 potent	 inhibitors	 of	 viruses	 that	 depend	 on	 endosomal	

pathways	for	infection.			

	

I	begin	this	dissertation	by	providing	some	background	on	the	biology	and	function	

of	 IFITM	proteins,	 including	details	of	 in	vitro	assays	 that	have	helped	elucidate	

IFITMs	 role	 as	 antiviral	 factors.	 I	 also	 describe	 some	 early	 candidate-gene	

association	studies	that	have	attempted	to	correlate	genetic	variation	within	these	

genes	with	variation	 in	viral	 restriction.	 I	 also	describe	how	genetic	association	

studies	have	been	used	more	broadly	to	understand	the	biology	underlying	both	

infectious	and	non-communicable	diseases.	

	

Evidence	from	in	vitro,	and	in	vivo	work	has	demonstrated	the	IFITMs	role	as	potent	

antiviral	 factors,	 however,	 no	 genome-wide	 association	 study	 has	 reported	 any	

significant	associations	to	genetic	variant	in	or	around	these	genes.	In	Chapter	2,	I	

explore	reasons	why	this	may	be	the	case	and	calculate	the	coverage	of	IFITM	genes	

by	commercially	available	genotyping	arrays.	I	show	that	IFITM2	and	IFITM3	are	

amongst	the	7%	of	all	protein	coding	genes	with	less	than	25%	common	variant	

(minor	allele	frequency	>	5%)	coverage	across	all	arrays.	Poor	coverage	of	genetic	

variation	is	therefore	one	explanation	for	the	lack	of	IFITM	associations	in	GWAS.	

	

The	 lack	 of	 coverage	 in	 the	 genotyping	 arrays	 led	me	 to	 explore	 other	 tools	 to	

capture	variation	in	the	IFITM	region.	I	employ	a	targeted	sequencing	method	using	

two	 different	 sequencing	 technologies:	 short-read	 sequencing	 (Illumina	MiSeq)	
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and	 single	 molecule,	 real-time	 sequencing	 (PacBio	 RS).	 Conventional	 pulldown	

protocols	for	targeted	sequencing	have	not	been	designed	for	single	molecule,	real-

time	 sequencing	 at	 the	 time,	 thus	 in	 Chapter	 3,	 I	 provide	 some	 details	 of	 the	

optimisation	work	required	to	adapt	the	targeted	method	for	PacBio	sequencing.	I	

then	 assess	 the	 performance	 of	 the	 method	 for	 both	 Illumina	 and	 PacBio	

sequencing.	Although	both	platforms	successfully	capture	variation	in	the	region,	

cost	constraints	and	the	capacity	for	scalability	of	short-read	sequencing	guided	

the	decision	to	use	the	standard	Illumina	short-read	sequencing	for	future	targeted	

sequencing	studies	of	the	region.		

	

In	Chapter	4,	I	apply	the	targeted	sequencing	method	described	in	Chapter	3	to	test	

genetic	 variants	 in	 and	around	 IFITM1,	 IFITM2	and	 IFITM3	 for	 association	with	

rapid	disease	progression	 in	HIV.	 I	also	explore	 the	contribution	of	 rare	genetic	

variants	 (MAF	<	1%)	 to	 this	 phenotype	by	 testing	 for	 a	 differential	 enrichment	

between	cases	and	controls	across	each	of	the	three	genes.		

	

Studies	 in	vitro	have	also	reported	 that	 IFITM	proteins	are	potent	 restrictors	of	

dengue	virus	infection.	In	Chapter	5,	I	use	genotype	data	across	a	cohort	of	2,008	

Vietnamese	children	diagnosed	with	dengue	haemorrhagic	fever	(DHF)	and	2,018	

cord	blood	controls	to	test	if	common	variants	are	associated	with	the	disease.	In	

order	 to	 boost	 the	 number	 of	 variants	 available	 for	 the	 association	 testing,	 I	

construct	 an	 IFITM	 imputation	 panel	 by	 deep-sequencing	 the	 locus	 in	 100	

Vietnamese	individuals	from	the	1000	Genomes	Consortium.	I	evaluate	the	use	of	

these	 haplotypes	 for	 imputation	 versus	 those	 from	 the	 Human	 Reference	

Consortium	(HRC)	and	the	1000	Genomes	Phase	3	(1KP).		

	

Finally,	In	Chapter	6,	I	provide	an	overview	of	the	work	from	previous	Chapters	

and	reflect	on	the	lessons	learnt	from	this	work.	I	also	discuss	some	of	the	issues	

highlighted	in	my	work	and	suggest	some	study	design	improvements	that	would	

be	most	relevant	for	testing	genetic	variants	in	IFITM	for	association	to	infectious	

diseases.		
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1.				Introduction	
	

1.1.				The	biology	of	interferon	

transmembrane	(IFITM)	genes	
	

1.1.1.				Activation	of	immune	defenses	upon	

pathogen	infection	
	

The	 interactions	 between	 pathogens	 and	 their	 hosts	 are	 under	 constant	

flux.	Whilst	it	is	the	task	of	the	immune	system	to	protect	the	host	against	invading	

pathogens	 (bacteria,	 fungi,	 parasites	 or	 helminths),	 pathogens	 have	 evolved	 to	

circumvent	 such	 attacks	 and	 exploit	 their	 host	 to	 their	 advantage.	 Conversely,	

hosts	have	evolved	to	combat	and	limit	such	infections	by	activating	‘non-specific’	

(innate)	and	‘specific’	(adaptive)	immune	responses.	Upon	infection,	immune	cells	

such	as	macrophages	and	dendritic	cells	play	an	important	role	in	the	early	phase	

of	 infection	 by	 inducing	 the	 production	 of	 cytokines	 to	 help	 eradicate	

pathogens(1).	 If	 the	 host	 fails	 to	 eliminate	 the	 pathogen,	 the	 adaptive	 immune	

response	is	activated.	Crucially,	the	adaptive	immune	response	develops	‘memory’	

and	it	is	this	‘memory’	that	enables	the	host	to	mount	a	rapid	response	via	antigen-

specific	effector	cells,	if	the	relevant	antigen	is	encountered	again.	B-cells	and	T-

cells	recognise	antigens	in	different	manners.	Antibodies	expressed	on	the	B-cell	

surface	and	later	on	secreted	by	plasma	cells,	bind	the	antigen	directly	and	help	

neutralise	the	pathogens	or	the	toxins	produced	by	such	pathogens,	before	they	

enter	the	cell.	In	contrast,	T	cells	recognise	antigens	only	if	they	are	presented	by	

MHC	molecules	on	the	surface	of	antigen-presented	cells	(APC)(2).	The	adaptive	

immune	response	is	regarded	as	antigen-specific	due	to	the	clonal	distribution	of	

antigen	receptors,	exemplified	by	the	surface	Ig	on	antibody	producing	B-cells,	and	



	
 
 
 

18	

T-cell	receptors	(TCR)	on	the	surface	of	T-lymphocytes.	On	the	other	hand,	the	role	

of	the	innate	immune	response	involves	the	activation	of	granulocytes,	dendritic	

cells	and	macrophages	and	it	is	regarded	as	relatively	unspecific(3).		

	

Responses	of	the	innate	system	to	pathogenic	challenge	rely	on	the	recognition	of	

conserved	structures	on	pathogens	which	are	commonly	referred	to	as	pathogen-

associated	 molecular	 patterns	 (PAMPs)(3).	 Four	 main	 pattern	 recognition	

receptors	 (PRR)	 families	 have	 been	 identified,	 the	 transmembrane	 toll-like	

receptors	(TLRs),	C-type	lectin	receptors	(CLRs),	nod-like	receptors	and	retinoic	

acid-inducible	gene	(RIG)-I-like	receptors	(RLRs)	(1,	4)	(See	Figure	1).	

	

Toll-like	receptor	signalling:	

TLRs	 are	 transmembrane	 glycoproteins	 located	 in	 the	 cell	 surface	 or	 the	

endosomes.	TLRs	contain	an	extracellular	domain,	a	transmembrane	domain	and	

an	 intracellular	domain	 (TIR)	domain(5).	All	TLRs	extracellular	domains	have	a	

characteristic	 horseshoe-like	 structure	 as	 a	 result	 of	 tandem	 copies	 of	 a	 motif	

known	as	Leucine-rich	repeats	(LRR)(4,	6).		

	

The	 transcriptional	 outcome	 of	 TLRs	 is	 dependent	 on	 the	 ligand	 and	 adaptor	

proteins	recruited.	For	example,	TLR4	signals	from	the	plasma	membrane	as	well	

as	the	endosomes	upon	recognition	of	a	number	of	ligands	of	which	LPS	is	the	best	

described.	 Signalling	 from	 the	 plasma	 membrane	 requires	 the	 translocation	 of	

TLR4	 to	 lipid	 rafts	 rich	 in	 TIR-containing	 adaptor	 protein	 (TIRAP).	 This	

translocation	 allows	 the	 interaction	 with	 MyD88	 and	 the	 formation	 of	 the	

myddosome	 composed	 of	MyD88,	 TIRAP	 and	 Interleukin-1	 receptor	 associated	

kinase	(IRAK)	2,	1	and	4.	These	IRAK	proteins	then	recruit	TRAF6	(E3	ubiquitin	

ligase)	that	interacts	with	TAK1-binding	protein	(TAB)	1,	2,	3,	TAK1	and	IkB	kinase	

a,	b	and	g	leading	to	the	activation	of	NF-kB(7).		

	

TLR4	translocation	to	the	endosomes	is	controlled	by	CD14	via	the	activation	of	

adaptor	proteins	ITAM,	Syk	and	PLCg2.	Once	in	the	endosome,	TLR4	interacts	with	

the	sorting	protein	TRAM	and	signalling	adaptor	TRIF	to	induce	NF-kB	activation	
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through	RIPK1,	TRADD,	and	the	caspase	8	complex.	Activation	of	type	1	interferon	

occurs	via	TRAF3	recruitment.	TRAF3	then	interacts	with	TRAF	family	member-

associated	 NF-kB	 activator	 (TANK),	 IkB	 kinase	 g,	 e	 and	 TBK1	 to	 induce	 IRF3	

induction	of	type	1	interferon(7).		

	

TLRs	 are	 also	 crucial	 for	 the	 recognition	 of	 viral	 nucleic	 acids.	 For	 example,	

endosomal	 pattern	 recognition	 receptor	 TLR3	 recognises	 double	 stranded	RNA	

which	may	be	 indicative	of	virus	replication	or	viral	genomes.	Examples	of	RNA	

viruses	that	have	been	shown	to	be	restricted	by	TLR3	include	positively	stranded	

RNA	viruses	in	the	Picornaviridae	family	such	as	coxsackie	virus	group	B	serotype	

3(8),	encephalomyocarditis	virus(9)	and	poliovirus	(PV)(10).		

	

TLR3	activation	results	in	the	production	IFN-a/β	and	cytokines	through	the	Toll-

interleukin-1	 (IL-1)	 receptor	 domain-containing	 adaptor	 molecule-1	 (TICAM-1,	

also	known	as	TRIF)(11).	Although	TLR3	is	expressed	in	several	cell	types	such	as	

fibroblasts	 and	 epithelial	 cells,	 it	 is	 highly	 expressed	 in	myeloid	 dendritic	 cells	

(DCs),	especially	 in	antigen-presenting	human	CD141+	dendritic	cells(12).	Thus,	

TLR3	 localisation	 and	 activation	 is	 tuned	 to	 detect	 intracellular	 virus-derived	

nucleic	acid	molecules.		

	

Despite	 TLR3	 antiviral	 activities,	 some	 studies	 have	 demonstrated	 that	 TLR3	

mediated	 signalling	 can	 also	 exacerbate	 infection	of	RNA	viruses	 such	 as	Punta	

Toro	virus	(PTV)	(13)	and	Influenza	virus(14).	TLR3-/-	mice	exposed	to	Influenza	

A	 virus	 had	 a	 reduced	 number	 of	 inflammatory	 mediators	 such	 as	 RANTES	

(regulated	upon	activation,	normal	T	cell	expressed	and	secreted),	interleukin-6,	

and	interleukin-12p40/p70)	compared	to	wild	type	mice(14).	More	importantly,	

infected	TLR3-/-	mice	had	a	survival	advantage	over	their	wild	type	counterparts.	

	

Other	 important	 Toll-like	 receptors	 required	 to	 limit	 virus	 replication	 include	

TLR7,	8	and	9.	TLR7	and	8	are	sensors	of	 ssRNA	species	produced	by	vesicular	

stomatitis	 viruses	 and	 influenza	 A	 virus.	 TLR9,	 on	 the	 other	 hand,	 recognises	

unmethylated	CpG	islands	in	DNA	viruses	such	as	murine	cytomegalovirus(15).	



	
 
 
 

20	

	

C-Type	lectin	receptor	signalling		

C-type	 lectin	 receptors	 are	 vital	 for	 viral	 recognition.	 CLRs	 are	 expressed	 by	

antigen	presenting	cells	such	as	dendritic	cells	and	macrophages,	thereby	eliciting	

a	rapid	innate	response	upon	virus	infection.	CLRs	can	be	classified	into	four	main	

groups:	immunoreceptor	tyrosine-based	activating	motif	(ITAM)	CLRs,	hemi-ITAM	

(hemITAM)	CLRs,	immunoreceptor	tyrosine-based	inhibitory	motif	(ITIM)-	CLRs,	

and	a	group	of	CLRs	lacking	typical	signalling	motif	such	as	DC-SIGN(16).		

	

Despite	the	C-type	lectin	role	as	antiviral	factors,	they	are	exploited	by	viruses	such	

as	HIV-1	in	order	to	gain	entry	into	host	cells	and	to	inhibit	APCs	function(17).	For	

example,	 upon	 DC-SIGN	 recognition	 of	 HIV,	 the	 virions	 are	 transported	 to	 the	

proteasome	where	lysosomal	degradation	takes	place.	Recognition	of	HIV-1	also	

triggers	Raf-1	activation	and	the	modulation	of	cytokine	responses	through	NF-kB	

activation.	HIV	binding	 and	 recruitment	 of	Raf-1	dependent	 phosphorylation	 of	

NF-kB	also	leads	to	the	recruitment	of	transcription	elongation	factor	pTEF-b	to	

nascent	 transcripts	 leading	 to	 transcription	 elongation	 and	 generation	 of	 full-

length	 viral	 transcripts(18).	 Therefore,	 although	 CLRs	 are	 important	 players	 in	

innate	immunity	they	are	also	susceptible	to	exploitation	by	viruses	such	as	HIV.		

	

Nod-like	receptors	

Nucleotide-binding	oligomerization	domain-containing	 (NOD)-like	 receptors	are	

cytosolic	 proteins	 that	 contain	 C-terminal	 Leucine	 rich	 repeats	 and	 a	 single	 N-

terminal	CARD	domain	(NOD1)	or	a	tandem	N-terminal	CARD	domain	(NOD2)(19).		

		

NOD-like	 receptor	 family,	 CARD-containing	 2	 (NLRC2)	 appears	 to	 directly	

recognise	ssRNA	species	derived	from	respiratory	syncytial	virus	(RSV),	influenza	

A	virus	(IAV)	(20).	Upon	recognition	of	viral	species,	NLRC2	associates	with	IPS-1.	

This	 initiates	 the	 IPS-1-dependent	 pathway	 to	 induce	 type	 I	 IFN	 and	

proinflammatory	cytokine	release(20).	
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Amongst	the	different	NOD-like	receptors,	NLRP3	(NOD-like	receptor	family,	pyrin	

domain-containing	3)	appears	to	act	as	an	indirect	sensor	of	viral	invasion.	NLRP3	

recognises	 adenovirus	 (dsDNA	 virus)(21),	 Sendai	 virus	 (ssRNA	 virus)(22),	 and	

Influenza	 A	 virus	 (ssRNA	 virus)(23).	 Upon	 activation,	 NLRP3	 oligomerises	 and	

recruits	ASC	and	procaspase-1	to	form	the	inflammasome	complex.	This	complex	

activates	 caspase-1	 which	 in	 turn	 leads	 the	 conversion	 of	 IL-1β	 and	 IL-18	

precursors	to	fully	functional	IL-1β	and	IL-18(19).		

	

	

RIG-1,	MDA5	and	LGP2	signalling	

Another	 family	 of	 pathogen-associated	 molecular	 patterns	 receptors	 are	 the	

retinoic	acid-inducible	gene	(RIG)-I-like	receptors	(RLRs).	These	RLRs	consist	of	

retinoic	acid-inducible	gene	1	(RIG-1),	melanoma	differentiation	gene	5	(MDA5)	

and	 laboratory	 of	 genetics	 and	 physiology	 2	 (LGP2)(24).	 They	 possess	 an	 RNA	

helicase	binding	domain	that	enables	the	recognition	of	RNA.	RIG-1	and	MDA5	also	

possess	two	CARD	domains	which	interact	with	the	adapter	protein	mitochondrial	

antiviral	signalling	(MAVS)(25).		

	

To	distinguish	between	cytosolic	endogenous	RNA	and	viral	RNA,	these	receptors	

have	evolved	to	recognise	features	specific	to	viral	genomes	such	as	5’	triphosphate	

RNA	and	long	double	stranded	RNA.	RIG-1	recognises	a	variety	of	virus	families	

such	 as	 paramyxoviruses	 and	 flaviviruses.	MDA5	 and	 LGP2,	 on	 the	 other	 hand,	

recognise	picornaviruses(26).	Viral	mRNA	may	contain	7-methyl-guanosine	cap	at	

the	5’	ends	and	a	polyadenylate	tails	at	the	3’	ends.	Many	positively	stranded	RNA	

viruses,	however,	start	with	an	uncapped	5′-triphosphate,	and	members	of	all	of	

these	viruses	are	recognised	by	RIG-I(26).	Negatively	stranded	viruses	with	a	non-

segmental	 genome	 such	 as	 paramyxoviruses,	 initiate	 both	 replication	 and	

transcription	de	novo	 leading	to	5′-triphosphate	RNA	in	the	cytosol	and	are	also	

recognised	 by	 RIG-1.	 In	 contrast,	 picornaviruses	 use	 an	 RNA-dependent	 RNA	

Polymerase	that	uses	a	protein	as	a	primer	for	positive-	and	negative-strand	RNA	

production;	 as	 a	 result,	 during	 the	 life	 cycle	 of	 picornaviruses,	 uncapped	

triphosphorylated	5′	ends	are	not	present.	These	species	are	therefore	detected	by	
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MDA5/LGP2	(27).	Regardless	of	the	pathway	of	stimulations	by	the	different	PRRs,	

one	 common	 factor	 following	 activation	 of	 these	 receptors	 is	 the	 induction	 of	

interferon	and	interferon	induced	genes	to	combat	infections(28).	

	
Figure	 1.	 Viruses	 are	 recognised	by	 Intracellular	Pattern	Recognition	Receptors	 (PRR).	 In	
their	 inactive	 state,	 RIG-1,	 MDA5	 are	 phosphorylated.	 Upon	 recognition	 of	 viral	 RNA,	 they	 are	
dephosphorylated	by	phosphoprotein	phosphatase	1	α	and	γ	(PP1α/γ).	Their	phosphorylation	and	
consequent	 activation	 results	 in	 conformational	 changes	 in	 both	 receptors.	 RIG-1	 C-terminal	
domain	 binds	 to	 5’ppp	RNA	 and	wraps	 around	RNA	molecules	 through	 non-specific	 phosphate	
sugar	interactions	in	the	RNA	backbone.	MDA5	binds	to	long	dsRNA	(>1000bp)	and	assembles	into	
filaments	with	the	RNA	molecules.	LGP2	has	similar	CTD	structure	to	RIG1	and	MDA5	and	binds	to	
the	 termini	of	dsRNA	molecules.	The	 juxtapositions	of	 these	molecules	activate	MAVS	signalling	
culminating	with	the	induction	of	interferon	genes.	Protein	kinases	Cα/β	act	as	regulators	of	RIG-1	
signalling	 by	 phosphorylation.	 On	 the	 other	 hand,	 USP21	 regulates	 RIG-I	 signalling	 by	 de-
ubiquitination.	Upon	binding	of	RNA	or	DNA	in	the	endosomal	lumen,	TLRs	dimerise	and	undergo	
conformational	changes.	These	conformational	changes	allow	protein	kinases	to	phosphorylate	two	
tyrosine	residues	in	TLRs	receptors	that	trigger	TLR	activation	and	recruitment	of	adapter	proteins.	
Similar	to	other	PRR	pathways,	recognition	of	viral	species	leads	to	the	induction	of	the	interferon	
genes.	(Figure	was	constructed	using	information	from	Mogensen,	et	al.,	2008	(3)	and	Fernstel,	et	
al.,	2015	(29).		
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1.1.2.				Activation	of	interferon	upon	infection	
	

Several	 studies	 have	 shown	 that	 interferons	 are	 crucial	 for	 the	 antiviral	

defence	 of	 the	 organism.	 One	 of	 the	 first	 reports	 of	 interferon	 activity	 was	

published	back	in	1957	by	Isaacs	and	Lindenmann	when	they	observed	that	the	

supernatant	 from	 chicken	 cells	 exposed	 to	 heat-inactivated	 influenza	 virus	

‘interfered’	with	the	infection	of	other	cells(30).	Since	their	discovery,	Type	I	

interferon	IFN-α/β	have	been	found	to	be	one	of	the	first	and	most	important	

cytokines	produced	to	fight	infections.	For	example,	wild	type	adult	129	Sv/Ev	

mice	challenged	with	Sindbis	virus	strain	TR339	show	only	mild	symptoms	due	

to	 functional	 IFN-α/β	 receptors.	 In	 contrast,	 129	 Sv/Ev	mice	 carrying	 non-

functional	IFN-α/β	receptors	genes	die	soon	after	being	infected	by	the	same	

strain(31).	There	are	many	Type	I	 interferons	in	humans	(IFN-α,β,e,k,w)	and	

they	 all	 bind	 to	 a	 common	 cell	 surface	 receptor:	 type	 I,	 interferon	 receptor	

(Figure	2).	

	

Similarly,	type	II	interferon	gamma	(IFN-g)	was	originally	discovered	due	to	its	

capacity	to	‘interfere’	with	pathogen	infections(32).	IFN-g	role	is	reflected	by	

the	susceptibility	of	C57BL/9	mice	with	defective	IFN-γ	gene	to	Mycobacterium	

bovis	 bacillus	 Calmette–Guérin	 (BCG)	 infection(33).	 Typically,	 defects	 in	 the	

IFN-γ	pathway	due	to	mutations	in	IFN-γ	receptor	1	are	characterised	by	severe	

viral	and	bacterial	infections.	In	a	case	study	by	Jouanguy	and	colleagues,	it	was	

described	how	inoculation	of	live	BCG	vaccine,	the	most	widely	used	vaccine	at	

the	 time,	 proved	 fatal	 for	 a	 two-and-a-half-month	 girl,	 homozygous	 for	 a	

mutation	in	IFN-γ	receptor.	In	normal	circumstances,	the	attenuated	strain	of	

Mycobacterium	 bovis	 (BCG)	 is	 harmless.	 In	 rare	 cases,	 such	 as	 this	 one,	

vaccination	 causes	 disseminated	 BCG	 infection,	 and	 is	 lethal(34).	 Further	

evidence	 was	 provided	 by	 studies	 of	 children	 in	 Malta	 with	 familial	

immunologic	defects	caused	by	mutations	in	IFN-γ	receptor	1	that	predisposed	

these	children	to	mycobacterial	infections,	despite	having	access	to	treatment.	
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They	observed	that	these	children	failed	to	produce	TNF-α	by	macrophages	and	

had	defective	antigen	processing	and	presentation(35).		

	

The	more	recently	discovered	type	III	interferon	lambda	family	(IFNl	family)	

is	composed	of	IFNl1	(IL29),	IFNl2	(IL28A),	IFNl3	(IL28B)	and	IFNl4	(IFNAN)	

genes(36).	Several	polymorphisms	in	the	interferon	lambda	region	have	been	

associated	with	hepatitis	C	treatment	response	and	spontaneous	clearance	of	

the	virus(37,	38).	For	example,	prior	to	the	discovery	of	IFNl4,	a	genome	wide	

association	study	found	that	the	non-coding	single	nucleotide	polymorphism	

(SNP)	 rs12979860	was	 associated	with	 response	 to	 pegylated	 interferon-α	

with	ribavirin	(pegIFN-α/RBV)	treatment	for	chronic	hepatitis	C	patients	and	

with	 spontaneous	 viral	 clearance(37).	 Ge	 and	 colleagues	 reported	 that	

patients	 of	 European	 ancestries	 who	 carried	 the	 homozygous	 alleles	 TT	 in	

rs12979860	 were	 less	 likely	 to	 respond	 favourable	 to	 pegIFN-α/RBV	

treatment.	On	the	other	hand,	carriers	of	the	CC	homozygous	reference	alleles	

(i.e.	 those	 who	 did	 not	 carry	 the	 mutation)	 had	 a	 twofold	 greater	 rate	 of	

sustained	virological	response	(SVR).	Sustained	virological	response	refers	to	

the	absence	of	detectable	virus	following	post-treatment	evaluations(37).	The	

authors	concluded	that	this	variant	accounted	for	half	the	differences	in	SVR	

not	only	within	ethnically	matched	groups	but	also	across	groups	of	different	

ethnic	backgrounds.	Notably	53%	of	African-Americans	with	CC	genotype	had	

a	favourable	response	rate	to	treatment	compared	to	only	33%	of	individuals	

of	European	descent	that	carried	the	TT	genotype.		

	

The	authors	also	tested	for	association	between	the	rs12979860	variant	and	

baseline	 viral	 load	 pre-treatment.	 Counterintuitively,	 Ge	 and	 colleagues	

reported	that	individuals	with	the	TT	alleles	and	poor	HCV	treatment	response	

had	in	fact	lower	baseline	viral	load,	whereas	the	opposite	was	true	for	patients	

carrying	 the	 CC	 genotype	 who	 had	 previously	 been	 found	 to	 have	 better	

treatment	response(37).		
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Until	recently,	the	mechanism	by	which	the	rs12979860	SNP	influenced	HCV	

treatment	 and	 spontaneous	 clearance	 remained	 unknown.	 The	 first	

breakthrough	in	the	understanding	of	this	mechanism	occurred	in	2013	when	

a	group	of	scientists	identified	IFNl4	(IFNAN)	near	IFNl3	gene.	IFN-λ4	protein	

is	 created	 by	 a	 frameshift	mutation	 rs368234815-∆G	 allele	which	 is	 in	 high	

linkage	 disequilibrium	with	 rs12979860	 SNP	 (now	 known	 to	 be	 located	 in	

intron	 1	 of	 IFNl4)	 (39).	 In	 individuals	 of	 African	 ancestry,	 the	 IFNl4	

rs368234815-∆G	allele	is	in	fact	a	better	predictor	of	poor	treatment	response	

to	pegIFN/aRBV	than	rs12979860	TT	genotype(40).	IFNl4-ΔG/TT	shows	the	

strongest	association	 to	 spontaneous	viral	 clearance	and	has	 therefore	been	

proposed	as	a	causal	variant	underlying	the	genetic	associations	reported	 in	

HVC	clearance	and	treatment	response	so	far(40).		

	

	IFNl4	protein	induces	STAT1	and	STAT2	phosphorylation,	thereby	generating	

an	antiviral	response	in	hepatoma	cells(39).	Experiments	in	vitro		have	shown	

that	IFN-λ4	binds	to	the	IFN-λ	receptor	and	activates	the	Janus	kinase	(JAK)-

signal	transducer	and	activator	of	transcription	(STAT)	signalling	pathway(41),	

inducing	 the	expression	of	 ISGs	(42).	As	expected,	 the	 levels	of	 ISGs	 in	HCV-

infected	livers	is	associated	with	IFN-λ4	expression(43).	It	is	now	known	that	

HCV-induced	IFN-λ4	expression	attenuates	the	response	to	exogenous	IFN-α	

treatment	by	increasing	the	expression	of	USP18	and	ISG15(44).	USP18	is	an	

ISG	 with	 the	 important	 role	 of	 establishing	 and	 maintaining	 long-term	

desensitisation	to	type	I	IFN	signalling.	It	is	also	reported	that	overexpression	

of	 USP18	 also	 leads	 to	 a	 decrease	 in	 the	 responsiveness	 to	 exogenous	 IFN-

α(45).	In	humans,	ISG15	ensures	the	stability	of	the	USP18	by	preventing	its	

ubiquitination	thereby	enabling	USP18-dependent	regulation	of	IFN-α/β(46).	

In	this	context,	the	data	supports	early	findings	by	Ge	and	colleagues(37)	where	

it	 was	 reported	 that	 patients	 with	 favourable	 response	 to	 treatment	

paradoxically	had	higher	viral	load	pre-treatment.	It	is	now	apparent	that	HCV	

infection	induces	the	expression	of	IFNλ4	in	patients	carrying	rs368234815-∆G	

allele	 leading	 to	 an	 increased	 in	 the	 level	 of	 ISGs	 in	 the	 liver.	 Although	 this	

induction	is	not	sufficient	for	virus	clearance,	 it	does	contribute	to	the	lower	
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levels	of	HVC	viral	 load	observed	 in	some	patients.	High	 levels	of	 ISGs	upon	

IFNλ4	 expression,	 including	 USP18	 and	 ISG15	 will	 act	 through	 a	 negative	

feedback	mechanism	to	block	endogenous	IFNα	pathway	and	will	contribute	to	

the	 desensitisation	 of	 liver	 cells	 to	 administered	 IFNα(44)	 resulting	 in	 poor	

treatment	response.	

	
Ultimately,	IFNls	together	with	IFNα	and	IFNβ	can	induce	over	100	interferon	

stimulated	genes	(ISGs)	following	virus	infection(47).		

	

i	
Figure	2.	The	 interferon	 (IFN)-signalling	cascade.	 There	are	 three	 classes	of	 Interferon	 (IFN)	
signals:	 type	 I	 IFNs	 act	 through	 IFN-α	 receptor	 1	 (IFNAR1)	 and	 IFN-b	 receptor	 2	 (IFNAR2)	
heterodimers;	 type	 II	 IFN	 act	 through	 dimers	 of	 heterodimers	 consisting	 of	 IFN-γ	 receptors	 1	
(IFNGR1)	and	2	(IFNGR2).	Finally,	type	III	IFN	act	through	interleukin-10	receptor	2	(IL-10R2)	and	
IFN-λ	receptor	1	(IFNLR1)	heterodimers.	Binding	of	both	type	I	and	type	III	IFNs	triggers	a	number	
of	signalling	pathways	that	lead	to	the	recruitment	and	phosphorylation	of	signal	transducers	and	
activators	 of	 transcription	 1	 and	 2	 (STAT1	 and	 2).	 STAT1	 and	 STAT2	 associate	 to	 form	 a	
heterodimer,	which	in	turn	recruits	the	IFN-regulatory	factor	9	(IRF9)	to	form	the	IFN-stimulated	
gene	 factor	 3	 (ISGF3).	 Binding	 of	 type	 II	 IFN	 dimers	 to	 the	 IFNGR1/2	 complex	 leads	 to	 the	
recruitment	of	STAT1.	Phosphorylated	STAT1	homodimers	form	the	IFN-γ	activation	factor	(GAF).	
Both	 ISGF3	 and	 GAF	 translocate	 to	 the	 nucleus	 to	 induce	 IFN-stimulated	 genes	 via	 response	
elements	(ISRE)	and	gamma-activated	sequence	(GAS)	promoter	elements,	respectively.		
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1.1.3.				Activation	of	interferon	inducible	genes	
	

One	classic	example	of	an	IFN-a/b	stimulated	gene	is	2’,5’-oligoadenylate	

synthetase	1	 (OAS).	Variation	within	 this	 gene	was	 established	 as	 an	 important	

virus	susceptibility	factor	as	a	result	of	mouse	experiments	in	inbred	mice.	A	study	

by	Mashimo	and	colleagues	observed	that	six	unrelated	inbred	mouse	strains	from	

wild	 type	 ancestors	 of	Mus	m.	 domesticus	 (WMP/Pas),	Mus	musculus	 (MAI/Pas,	

MBT/Pas,	 PWK/Pas),	 and	Mus	 spretus	 (SEG/Pas,	 STF/Pas)	 were	 resistant	 to	 a	

highly	virulent	strain	of	West	Nile	virus	(strain	IS-98-ST1)	that	normally	causes	

100%	mortality	rate	in	mice(48).	Further	investigations	revealed	that	these	mice	

lacked	a	point	mutation	in	the	exon	4	of	isoform1	of	2’-5’-oligo(A)synthetase	(2′-

5′-OA)	protein(48).	Further	work	on	the	possible	mechanism	of	restriction	for	this	

protein	revealed	that	OAS	becomes	activated	after	coming	into	contact	with	double	

stranded	RNA.	This	process	triggers	a	set	of	reactions	where	ATP	is	polymerised	

into	2’-5’-linked	oligoadenylates	(2′-5′-OA)	resulting	 in	 the	activation	of	RNaseL	

and	degradation	of	the	invading	pathogen’s	nucleic	acid(49).	

	

Since	 the	 antiviral	 function	 of	 OAS/RNase	 L	 system	 was	 established	 in	 mice,	

overexpression	assays	have	provided	some	insight	into	the	antiviral	function	of	a	

similar	 system	 in	 humans,	 in	 vitro.	 Human	 RNase	 L	 is	 a	 741	 amino-	 acid	

polypeptide	that	contains	nine	ankyrin	repeats,	a	kinase-like	motifs	and	an	RNase	

domain(50).	2′-5′-OA	has	been	found	to	bind	to	ankyrin	repeats	2	and	4	causing	

the	 inactivated	RNase	L	monomers	 to	 form	activated	dimers	with	strong	RNase	

activity(50).	 Using	 mammalian	 A549	 lung	 carcinoma	 cell	 lines	 that	 stably	

overexpress	wild-type	RNase	L,	Lin	and	colleagues	observed	that	these	cells	were	

resistant	 to	 DENV2	 infection.	 By	 contrast,	 transduction	 of	 A549	 cells	 with	 a	

lentivirus-based	 shRNA	 targeting	 human	 RNase	 L	 resulted	 in	 up	 to	 39-fold	

increases	 in	DENV-2	production(51).	 Similarly,	A549	 cells	 also	 transduced	with	

human	OAS1	 p42/p46	 and	OAS	 p100	 also	 triggered	 RNase	 L	 activity	 following	

DENV-2	 infection(51).	 So	 far,	 no	 significant	 genetic	 associations	 have	 been	

reported	 for	 OAS	 or	 RNase	 L	 genes	 in	 human	 genetic	 studies	 (GWAS	 Central,	
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http://www.gwascentral.org/,	 last	 accessed	 on	 February,	 2017)	 of	 infectious	

diseases.	A	candidate	gene	study	in	a	cohort	of	hospitalised	patients	infected	with	

West	Nile	virus	(WNV)	in	the	USA	reported	that	a	polymorphism	(rs3213545)	in	

OAS	was	 more	 frequently	 found	 in	 cases	 compared	 to	 controls	 (P=0.004)(52).	

However,	 the	 P-value	 was	 not	 genome-wide	 significant	 (5x10-8)	 and	 the	 low	

number	of	cases	(n=33)	and	controls	(n=60)	included	in	the	study,	suggests	that	

the	signal	would	need	to	be	tested	in	other	cohorts.		

	

Other	 examples	 of	 interferon	 inducible	 genes	 with	 important	 roles	 in	 virus	

restriction,	are	the	Interferon	transmembrane	(IFITM)	genes.	These	genes	IFITM1,	

IFITM2	and	IFITM3	were	discovered	over	a	decade	ago	but	interest	in	their	role	as	

antiviral	 factors	 re-emerged	 following	 an	 RNAi	 screen	 that	 identified	 over	 100	

genes	 involved	 in	 influenza	 A/B	 and	 dengue	 2	 (New	 Guinea	 C	 strain)	

restriction(53).	In	this	RNAi	screen	it	was	discovered	that	depletion	of	IFITM3	in	

osteosarcoma	 cells	 (U2OS	 cells)	 caused	 an	 increase	 in	 influenza	 A	 (A/Puerto	

Rico/8/34	 H1N1-PR8	 strain)	 infection	 whereas	 overexpression	 of	 all	 three	

proteins	(IFITM1,2	and	3)	resulted	in	the	restriction	of		influenza	A,	dengue	2	(New	

Guinea	C	strain)	and	West	Nile	virus	(strain	2741)	infections(53).	

	

In	 vivo	studies	have	also	established	 IFITMs	 role	as	antiviral	 restriction	 factors.	

Two	groups	set	out	to	characterise	the	susceptibility	of	ifitm3-/-	mice	to	influenza	

A	infections	using	low	pathogenicity	virus	(A/X-31)(54)	and	2009	H1N1	pandemic	

strain	(A/09	Eng/195)(55).	Everitt	and	colleagues	found	that	ifitm3-/-	mutant	mice	

exhibited	rapid	loss	of	body	weight	(>25%)	by	day	6	and	had	to	be	euthenised(54).	

By	contrast,	wild	type	mice	lost	<25%	of	their	body	weight	and	fully	recovered(54).	

Bailey	 and	 colleagues	 also	 reported	 weight	 loss	 >20%	 in	 both	 ifimt3−/−	 and	

ifitmDel−/−	 (whole	 locus	 deletion)	with	 a	 pathogenic	 H1N1	 strain	 (A/PR/8/34).	

Although,	unlike	Everitt	and	colleagues,	 they	observed	that	60%	wild	 type	mice	

exposed	to	H1N1	strain	(A/PR/8/34)	loss	around	20%	of	their	body	weight	by	day	

7-8	 whilst	 the	 rest	 recovered(55).	 Although,	 there	 is	 some	 variability	 in	 both	

studies,	this	suggests	that	IFITMs	have	important	roles	modulators	of	restriction.		
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1.1.4.				Localisation	and	expression	patterns	of	

IFITM	genes	
	

Members	 of	 the	 IFITM	 gene	 family	 in	 humans	 are	 located	 within	 30kb	

genomic	stretch	in	chromosome	11	at	position	11:298,205-327,846.	Only	IFITM1,2	

and	3	have	been	reported	as	important	restriction	factors	in	viral	infections.	The	

other	two	members	of	the	family,	IFITM5	and	IFITM10	have	no	reported	roles	as	

viral	restrictors	and	their	functions	will	not	be	addressed	in	this	work.	There	is	a	

high	 level	of	 amino	acid	homology	between	 some	of	 the	members	of	 the	 IFITM	

protein	family	in	different	species	and	high	levels	of	amino	acid	similarity	(>90%),	

between	human	IFITM2	and	IFITM3	(Figure	3).	In	mice,	the	IFITM	family	include	

IFITM1,2,3,5,6	 (fragilis	 2-6)	 on	 chromosome	 7(56).	 Other	 paralogous	 and	

orthologous	genes	have	been	reported	in	mammals	including	marsupials(57).		

	

	
Figure	 3.	Amino	 acid	 alignment	 for	 IFITM	 proteins	 in	 human	 and	mouse	 using	 CLUSTAL	
OMEGA.	Alignment	of	human	and	mouse	IFITM1,	2,	3	protein	sequences	using	Clustal	Omega.	Core	
protein	amino	acids	are	the	most	conserved	and	their	colours	reflect	the	physiochemical	properties:	
red=hydrophobic	 amino	 acids;	 green=polar	 and	 basic	 amino	 acids;	 blue=acidic	 amino	 acids,	
magenta=basic	amino	acids.	An	asterisk	(*)	represents	positions	that	have	a	single	conserved	amino	
acid.	A	colon	(:)	indicates	conservation	between	groups	of	strongly	similar	properties.	A	single	dot	
(.)	represents	conservation	between	groups	of	weakly	similar	properties.	
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IFITM1,	 2	 and	3	 also	 share	 a	 common	CD225	domain	 and	 although	 there	 is	 no	

resolved	 structure	 for	 the	 IFITM	proteins,	NMR	studies	have	proposed	a	model	

where	the	N-terminal	domain	(NTD)	is	located	in	the	cytoplasm	and	the	C-terminal	

domain	is	in	the	extracellular	space	(Figure	4).			

	
Figure	4.	IFITM3	schematic	model.	The	latest	schematic	model	of	IFITM	proteins	in	the	
membrane	showing	a	C-terminal	transmembrane	α-helix	and	two	short	intramembrane	α-
helices.	The	structure	is	derived	from	solution	NMR	analysis	by	Ling	and	colleagues(58).	

	

The	 Human	 Protein	 Atlas	 (http://www.proteinatlas.org)	 and	 GTEx	

(http://www.gtexportal.org)	have	provided	some	insights	into	IFITM	protein	

expression	in	human	tissue	(Figure	5).	IFITM1	expression	concentrates	mainly	

in	the	muscle,	whole	blood,	ovaries	and	lung.	The	expression	patterns	of	IFITM2	

and	3	proteins	are	similar,	their	expression	concentrated	in	the	fallopian	tubes,	

lung	and	whole	blood	(Figure	5).		

	

In	 mice	 (C57BL/6)	 immunohistochemistry	 studies	 show	 that	 IFITM3	 is	

constitutively	 expressed	 in	 many	 respiratory	 tissues	 and	 induced	 in	 lower	

airway	epithelium	upon	influenza	infection(55).	These	tissues	act	as	physical	

barriers	between	the	host	and	the	environment;	thus,	the	expression	pattern	is	

consistent	 with	 the	 antiviral	 roles	 of	 IFITM	 proteins	 as	 a	 potent	 antiviral	

factor(54,	55).	
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Figure	5.	Snapshot	from	the	Human	Protein	Atlas.	Overview	of	the	expression	of	IFITM	
proteins	in	13	human	tissues	and	organs	analysed	by	RNA-seq	by	the	Human	Protein	Atlas	
Consortium	(HPA).	

	

In	terms	of	the	subcellular	localisation	of	IFITM	proteins,	the	general	consensus	

in	the	field	is	that	IFITM1	localises	mainly	to	the	plasma	membrane	and	IFITM2	

and	 3	 localise	 to	 intracellular	 compartments	 such	 as	 the	 lysosomes	 and	

endosomes.	For	example,	in	BEL-7404	and	Chang	liver	cells,	IFITM1	was	found	

to	 co-localised	with	 caveolin-1	 (CAV-1)	 in	 the	 plasma	membrane(59).	Other	

studies,	however,		report	localisation	of	IFITM1	to	the	endoplasmic	reticulum	

(ER)(60).	IFITM2	and	3	proteins	have	been	reported	to	localise	in	lysosomes	

and	 endosomes(61).	 This	 is	 indicated	 by	 co-localisation	with	 lysosomal	 and	

endosomal	 markers	 LAMP1(62),	 and	 Ras-related	 protein	 7	 (Rab7)	 or	

CD63(63),	respectively.			
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1.1.5.				Broad	Spectrum	antiviral	function	of	

IFITM	proteins	
	

The	differences	in	cellular	localisation	are	reflected	in	the	distinct	antiviral	

functions	reported	for	IFITM	proteins,	in	vitro.	Restriction	of	Hepatitis	C	virus	is	

greater	 in	cells	 that	overexpress	 IFITM1,	compared	 to	 IFITM2	or	 IFITM3(64-

66).	 IFITM1	protein	 is	expressed	 in	 the	plasma	membrane	where	 it	 interacts	

with	the	cell	surface	protein	CD81(67).	Previous	studies	have	established	that	

both	 IFITM1	 (previously	 known	 as	 Leu	 13)	 and	 CD81	 (previously	 known	 as	

TAPA-1)	 are	 associated	 noncovalently	 in	 the	 plasma	membrane(67).	 This	 is	

relevant	 for	 IFITM1	 HCV	 antiviral	 function	 because	 CD81	 is	 a	 cell	 surface	

tetraspanin	 that	 directly	 interacts	 with	 Hepatitis	 C	 virus	 E2	 protein	 during	

infection(65,	68).	Wilkins	and	colleagues	observed	that	IFITM1	is	 localised	in	

hepatic	 tight	 junctions	where	 they	disrupt	 the	 interactions	between	HCV	and	

cell	 plasma	 membrane	 proteins	 such	 as	 occluding	 and	 CD81(65).	 Although,	

IFITM2	and	3	have	also	been	reported	to	restrict	infection,	it	seems	that	IFITM1	

restricts	the	virus	with	greater	potency	compared	to	 its	counterparts(66).	By	

contrast,	 there	 is	no	observed	 inhibition	of	 infection	by	 IFITM1	of	other	RNA	

viruses	such	as	Sindbis	 (SINV)	or	Semliki	Forest	virus	 (SFV)(69).	At	 least	 for	

Semliki	 Forest	 virus,	 the	 lack	 of	 IFITM1	 restriction	may	 be	 explained	 by	 the	

endocytic	uptake	and	fusion	of	SFV	with	early	endosomes	which	enables	it	to	

escape	restriction(69).	

	

The	patterns	of	restriction	of	IFITM2	and	3	are	similar;	although	most	studies	

report	a	more	potent	inhibition	of	infection	by	IFITM3(53,	54,	70).	Studies	in	

vitro,	show	that	depletion	of	IFITM2/3	by	RNAi	causes	an	increase	in	Influenza	

A/B	and	dengue	infections	whilst	overexpression	of	all	three	proteins	inhibits	

viral	replication(53).	Restriction	patterns	for	IFITM2/3	have	been	more	widely	

studied	 (Table	 1)	 and	 have	 established	 that,	 unlike	 IFITM1,	 IFITM2/3	 can	

restrict	Semliki	Forest	virus	(SFV)	and	Rift	Valley	virus	(RVFV)	and	none	have	

been	observed	to	restrict	Crimean-Congo	haemorrhagic	fever	virus	(CCHFV).	
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Overall,	several	labs	have	reported	a	broad	spectrum	of	viral	restriction	for	all	

IFITM	proteins	 (Table	1).	However,	 some	of	 the	 claims	of	 IFITM	differential	

restrictions	 are	 not	 backed	 up	 by	 strong	 functional	 evidence.	 For	 example,	

Mudhasani	and	colleagues	reported	restriction	(in	Vero	cells)	of	two	Rift	Valley	

pseudotyped	 viruses	 by	 IFITM2	and	3.	Although	 the	difference	between	 the	

percentage	 of	 infected	 control	 cells	 and	 cells	 where	 IFITM	 proteins	 were	

overexpressed	 was	 approximately	 40%	 for	 RVFV-M12	 strain	 and	 20%	 for	

RVFV-ZH501,	 the	 authors	 still	 claimed	 that	 the	 proteins	 restricted	 both	

viruses(71).	In	most	infection	assays	that	demonstrate	the	restriction	role	of	

IFITM	proteins,	they	observed	50-70%	less	infectivity	in	cells	overexpressing	

IFITM2	and	around	70-80%	less	infectivity	in	cells	expressing	IFITM3(53,	72,	

73).	
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Table	1.	Table	representing	some	of	the	most	relevant	infection	assays	for	IFITM	proteins.	This	
table	has	been	adapted	from	Smith,	et	al.,	2014	to	include	the	type	of	experiment	that	was	carried	
out	(overexpression	or	depletion)	and	the	level	of	restriction	reported	by	these	assays.	

	

Family Virus
pH	

dependent
Restricts	
infectivity

Prevents	
cell–cell	
fusion

Pseudotyped	
virions	(P)	or	
live	virus	(L)

IFITM	protein Cell	Line Model Level	of	restriction Reference

Enveloped
Orthomyxoviridae Influenza	A	virus �� � � P	L M1–3 A549 Overexpression M1	-	85%

M2	-	75%	 Brass	et	al. 	2019
M3	-	80%

Flaviviridae West	Nile	virus � � P M1–3 Vero	E6 Overexpression M1	-	85%
M2	-	70%	
M3	-	90% Brass	et	al. 	2019

Yellow	Fever	virus � � P M1–3 Vero	E6 Overexpression M1	-	75%
M2	-	55%	
M3	-	80%

Hepatitis	C	virus � � P	 M1 Huh7 Overexpression M1	-	99% 	Wilkins	et	al.,	2013

Dengue	virus �� x P M3 Hela Depletion	(siRNA) No	restriction Brass	et	al. 	2019

Rhabdoviridae Vesicular	
stomatitis	virus

� � � P	L M2–3 HEK293 Overexpression M2	-	5	fold	reduction	in	VSV	
yields								

Weidner	et	al.,	2010

M3	-	15	fold	reduction	in	VSV	
yields

Filoviridae Marburg	virus Δ � P	L M1–3 A549,	
Vero	E6

Overexpression M1	-	90%

M2	-	80%	
M3	-	90%

Huang	et	al.,	2011
Ebola	virus Δ � P	L M1–3 M1	-	90%

M2	-	80%	
M3	-	90%

Coronaviridae SARS	coronavirus Δ � P	L M1–3 Vero	E6 Overexpression M1	-	90%
M2	-	80%	 Huang	et	al.,	2011
M3	-	70%

Retroviridae HIV-1	(CCR5	user) x � P M1
U87	

neuroblas
toma

Overexpression M1-	60%

Foster	et	al.,	2016

HIV-1	(CxCR4	
user) x � P M2

U87	
neuroblas
toma

Overexpression M2-	60%

HIV-1 x x	 P M3 Hela-CD4	
cells

Overexpression No	restriction Brass	et	al. 	2019

Jaagsiekte	sheep	
retrovirus

� � � P M1	 HTX Overexpression M1	-	60% Li	et	al.,	2013

Moloney	
leukaemia	virus

× × P	L No Vero	E6 Overexpression No	restriction Brass	et	al. 	2019

Arenaviridae Lassa	virus � × P No Vero	E6 Overexpression No	restriction

Machupo	virus � × P No Vero	E6 Overexpression No	restriction Brass	et	al. 	2019

Lymphocytic	
choriomeningitis	

virus
� × P No Vero	E6 Overexpression No	restriction

Alphaviridae Semliki	Forest	
virus

� � � L M2	and	M3	best A549 Overexpression M2-	60% Weston	et	al.,	2016

M3-	90%

Bunyaviridae Hantaan	virus �� � L M1-3 Vero	E6 Overexpression M1	-	30%
M2	-	30%	
M3	-	30%

Andes	virus �� � L M1-3 Vero	E6 Overexpression M1	-	30%

M2	-	30%	 Mudhasani	et	al.,	
2013

M3	-	30%

Rift	Valley	fever	
virus

�� � L-attenuated M2	and	M3 Vero	E6 Overexpression M2-	60%

M2	-	60%	

Crimean–Congo	
haemorrhagic	
fever	virus

�� × L No Vero	E6 Overexpression No	restriction

Non-enveloped Reovirus �� � L M3 Hela Overexpression M3	-	50% Anafu	et	al. ,	2013
Reoviridae

��=	fuses	at	pH	>6;							����	=	fuses	at	pH	<6;			x	=	does	not	require	fusion;			Δ	=	requires	cathespin	L	in	lysosome.	
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1.1.6.				Mechanism	of	IFITM	restriction	
	

The	 restriction	 mechanism	 of	 IFITM	 proteins	 is	 still	 under	 study.	 Early	

investigation	 of	 the	 restriction	 patterns	 of	 IFITMs	 showed	 that	 retroviruses	

pseudotyped	with	 influenza	A	haemagglutinin	 (HA)	were	 restricted	 in	a	 similar	

fashion	to	influenza	A	pseudotyped	viruses.	By	contrast,	retroviruses	pseudotyped	

with	murine	leukaemia	virus,	Lassa	virus	or	Machupo	virus	were	not	affected	by	

the	 presence	 or	 absence	 of	 IFITM	 proteins,	 indicating	 that	 HA-dependent	

mechanism	of	viral	entry	is	targeted	by	these	proteins(70).	In	vitro	studies	indicate	

that	restriction	occurs	after	the	viral	particles	have	been	endocytosed	but	before	

there	 is	membrane	 fusion	 and	 virions	 are	 released	 into	 the	 cytoplasm.	 Studies	

using	fluorescent	microscopy	in	cell	lines	that	overexpress	IFITM3	have	found	that	

labelled	 influenza	 A	 virions	 are	 internalised	 and	 trafficked	 to	 the	 endocytic	

compartments	 where	 they	 accumulate(70,	 74)	 but	 then	 fail	 to	 be	 released.	

Similarly,	 recent	 studies	 of	 Semliki	 Forest	 virus	 (SFV)	 have	 found	 that	 binding,	

internalisation	 and	 endocytosis	 of	 the	 virus	 is	 observed	 in	 cells	 that	 express	

IFITM3	proteins	as	well	as	in	non-expressing	cells.	However,	the	release	of	the	viral	

capsid	 protein	 to	 the	 cytosol	 is	 inhibited	 in	 IFITM3-expressing	 cells	 only(69)	

(Figure	6).	As	a	consequence,	two	models	of	restriction	have	been	proposed.	In	the	

first	 model,	 IFITM	 proteins	 are	 thought	 to	 make	 an	 adverse	 environment	 in	

endosomes,	so	that	the	viruses	cannot	fuse	with	the	vesicle	membrane.	It	is	thought	

this	is	accomplished	by	interfering	with	the	activity	of	V-type	proton	ATPase,	which	

is	 responsible	 for	 the	 acidification	 of	 endocytic	 compartments(75,	 76).	 Further	

evidence	that	amphotericin	B	(AmphoB)	overcomes	IFITM2,3	(not	IFITM1)	from	

inhibiting	 influenza	 A,	 also	 supports	 this	 hypothesis.	 AmphoB	 is	 a	 known	

antifungal	 drug	 that	 is	 known	 to	 interact	 with	 sterols	 present	 in	 the	 plasma	

membrane;	 thus	 compromising	 its	 physical	 properties(77).	 Clinical	 preparation	

and	dosage	of	AmBisome	(AmphoB)	in	vivo,	found	that,	similar	to	Ifitm3−/−	mice,	

wild	type	littermates	treated	with	AmBisome	developed	severe	illness	upon	low	

pathogenicity	influenza	A	infection(77).	Other	studies	have	also	shown	that	when	

amphotericin	B	 is	added	with	 increasing	doses	 to	 IFITM2	or	 IFITM3-expressing	
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TZM-bl	cells,	the	levels	of	infection	observed	are	equal	to	infection	in	control	cells	

that	do	not	express	these	proteins(78).	Others	have	suggested	that	the	restriction	

observed	 in	 IFITM3-expressing	 cells	 may	 also	 be	 due	 to	 a	 disruption	 in	 the	

interaction	 of	 vesicle	 membrane	 associated	 protein	 A	 (VAPA)	 and	 oxysterol	

binding	 protein	 (OSBP)	 in	 endosomal	 membranes(79).	 However,	 attempts	 to	

replicate	these	interactions	between	VAPA	and	IFITM3	have	failed.	For	example,	

overexpression	 of	 VAPA	 had	 a	 modest	 effect	 on	 reducing	 IFITM3-mediated	

restriction	of	influenza	A	in	A549	cells	(same	cells	used	in	the	VAPA	study).	Lin	and	

colleagues	 also	 found	 that	 modulation	 of	 cholesterol	 levels	 had	 no	 effect	 on	

IFITM3-mediated	restriction,	suggesting	 that	cholesterol	mislocalisation	 is	not	a	

contributing	 factor	 for	 VAPA’s	 antagonism	 of	 IFITM3(77).	 In	 addition,	 cells	

expressing	 either	 IFITM1,2	 or	 3	 that	 contain	 mutations	 that	 span	 the	

intermembrane	 domain	 2	 (IM2),	 the	 reported	 interaction	 domain	 of	 IFITM	

proteins	with	VAPA,	exhibited	levels	of	restriction	similar	to	cell	expressing	wild	

type	IFITM.	A	second	model	of	restriction	states	that	expression	of	IFITM	proteins	

induces	 the	 formation	 of	 large	 vacuoles	 that	 are	 thought	 to	 interfere	 with	

trafficking	and	fusion	of	the	virions(70).	However,	this	mechanism	has	been	called	

into	question	due	to	lack	of	correlation	between	the	size	of	the	vacuoles	and	the	

restriction	efficiency	observed(76).		
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Figure	6.		Mechanism	of	restriction	of	IFITM	proteins.	IFITM2	and	IFITM3	proteins	are	expressed	
in	 the	endosomes	 (vesicles	 in	purple)	 and	 restrict	 a	number	of	 viruses	entering	 the	 cell	 via	 the	
endosomal	pathway.	The	green	vesicle	=	lysosome.	

	
Importantly,	 the	 research	 into	 the	 mechanisms	 of	 restriction	 provide	 some	

indication	 of	 the	 therapeutic	 potential	 of	 IFITM	 proteins.	 These	 proteins	 act	

throughout	 the	 early	 restriction	 steps	 and	 this	 suggests	 that	 the	 escape	

mechanisms	 generally	 employed	 by	 viruses	 will	 not	 be	 as	 effective	 upon	 their	

expression.	For	instance,	viral	proteins	generated	after	viral	entry	and	replication	

such	as	HIV-1	viral	infectivity	factor	(Vif)	and	viral	protein	U	(Vpu),	allow	the	virus	

to	evade	host	responses	by	degrading	restriction	factors	such	as	Apolipoprotein	B	

MRNA	Editing	Enzyme	Catalytic	Subunit	3G	 (APOBEC3G)(80)	and	Tetherin(81),	

respectively.	 In	 contrast,	 IFITM-mediated	 restriction	 precedes	 viral	 replication,	

thus,	there	is	 little	opportunity	for	the	synthesis	of	de	novo	viral	 inhibitors.	This	

suggests	that	unless	the	virion	carries	a	mutation	that	counteracts	IFITM-mediated	

restriction,	it	will	be	challenging	for	the	virus	to	evade	restriction(76).	As	a	direct	

result	of	 these	observations,	 several	groups	have	attempted	 to	demonstrate	 the	
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endosome

IFITM proteins 
expressed in late 
endosome

Viruses entering the cell via the 
endocytic pathway
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important	 role	 of	 IFITM	proteins	 as	modulators	 of	 disease	 susceptibility	 in	 the	

context	of	infectious	diseases	and	in	the	clinic.	In	the	following	sections,	I	will	give	

an	overall	overview	of	the	genetics	of	infectious	diseases	and	will	address	some	of	

the	issues	associated	with	genetic	studies	of	IFITM3	in	particular.	
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1.2.				Infectious	diseases	have	a	genetic	

component	
	

1.2.1.				Study	of	genetic	susceptibility:	twin	

studies.	
	

Disease	 susceptibility	 to	 infection	arises	 from	 the	 intricate	 interaction	of	

environmental	and	host	factors.	One	important	host	factor	that	is	now	known	to	

contribute	to	susceptibility	and	disease	outcome	is	genetic	variation.		

	

Twin	studies	enable	the	estimation	of	the	relative	contributions	of	shared	genetic	

and	 environment	 effects	 to	 variation	 in	 a	 particular	 disease	 or	 trait.	 The	 study	

design	was	based	on	comparisons	of	the	phenotypic	concordance	for	a	particular	

trait	in	genetically	identical	monozygote	twins	to	that	in	dizygotic	twins,	who	share	

on	average	50%	of	their	genes.	Although	there	are	reservations	with	regards	to	the	

appropriate	 determination	 of	 disease	 phenotypes	 and	 zygosity	 on	 some	 of	 the	

early	twin	studies,	there	are	a	number	of	examples	that	show	there	is	substantial	

concordance	in	susceptibility	to	infectious	diseases	in	monozygotic	compared	to	

dizygotic	 twins(82),	 thus	 suggesting	 a	 significant	 genetic	 component	 in	 disease	

susceptibility.	For	example,	Hernon	and	Jenning,	1950,	chose	to	study	46	families	

of	monozygotic	(MZ)	and	dizygotic	(DZ)	twins	suffering	from	poliomyelitis.	They	

showed	 the	 poliomyelitis	 disease	 concordance	 rate	 in	 MZ	 twins	 was	 35.71%	

compared	to	6.06%	in	DZ	siblings	thereby	highlighting	the	importance	of	genetic	

predisposition	to	the	disease(83).	
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1.2.2.				Candidate	gene	studies	in	infectious	

diseases	
	

Once	we	have	established	that	genetic	effects	are	important,	it	is	crucial	to	

identify	 the	 particular	 regions	 of	 the	 genome	 responsible.	 Finding	 associated	

genetic	 variation	 and	 the	 genes	 through	which	 they	 have	 an	 effect,	 can	 give	 us	

important	insights	into	the	biology	of	the	disease.	For	this	reason,	candidate	gene	

studies	have	been	extremely	important	for	genetic	research.	In	its	simplest	form,	

genetic	 associations	 studies	 correlate	 differences	 in	 allele	 frequencies	 between	

cases	and	controls	or	within	specific	continuous	traits	such	as	antibody	responses	

to	a	virus.	One	important	assumption	of	these	types	of	analysis	is	therefore	that	

any	 observed	 differences	 in	 allele	 frequencies	 are	 not	 the	 result	 of	 unobserved	

confounding	 effects	 such	 as	 population	 stratification	 but	 the	 result	 of	 true	

differences	between	study	groups(84).	Due	to	poor	quality	controls	that	 include	

failure	to	account	for	population	admixture	and	stratification,	and	poor	choice	of	

candidate	genes,	candidate	gene	studies	have	often	been	known	to	report	a	large	

number	of	spurious	associations(85,	86).		

	

1.2.3.				Candidate	gene	studies	for	IFITM3	
	

Everitt	 and	colleagues,	were	 first	 to	 report	an	association	between	 the	C	

allele	in	the	IFITM3	non-coding,	splice	region	variant	SNP	rs12252	(T	®	C)	and	an	

increase	 in	 susceptibility	 to	 pandemic	 influenza	 (H1N1)	 infection.	 Using	 55	

hospitalised	 cases	 of	 severe	 flu	 and	 360	 European	 controls	 from	 the	 1000	

Genomes,	they	found	an	enrichment	in	the	number	of	patients	(13.2%)	that	carried	

the	 minority	 allele	 C	 for	 rs12252	 (P	 =	 0.00006,	 no	 Odds	 Ratio	 provided).	 In	

particular,	 they	discovered	 that	5.7%	of	hospitalised	cases	of	European	descent	

were	homozygous	for	rs12252	and	carried	the	CC	genotype	compared	to	only	0.3%	

of	 their	control	population	(n=360	Europeans	 from	the	1000	Genomes	Project).	

They	 hypothesised	 that	 a	 consequence	 of	 carrying	 the	 minority	 C	 allele	 is	 the	
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expression	of	a	truncated	IFITM3	protein	lacking	the	first	21	amino	acids	due	to	

the	use	of	an	alternative	start	codon(54).	

	

Other	genetic	studies	soon	followed	(Table	2)	confirming	similar	findings	in	Asian	

populations	where	the	frequency	of	rs12252	is	much	higher	(MAF	=	0.53).	These	

groups	reported	associations	to	not	only	influenza	H1N1(87,	88)	infections	(n=83,	

OR=6.4)	but	also	 for	HIV(89)	(n=178,	OR=3.8)	and	Hantaan(90)	(n=69,	OR=2.1)	

virus	 infections.	 For	 example,	 Zhang	 and	 colleagues,	 analysed	 the	 association	

between	the	rs12252	SNP	and	H1N1	influenza	in	a	Chinese	cohort	(n=35	cases	of	

severe	influenza	and	n=48	control	patients	displaying	symptoms	of	mild	flu)(88).	

This	 study	 reported	 an	 association	 between	 homozygotes	 for	 the	 C	 allele	 and	

severe	 influenza	 when	 compared	 to	 the	 mild	 control	 population	 (P=0.0002,	

OR=6.4).	Specifically,	they	found	that	69%	of	hospitalised	patients	suffering	from	

severe	 flu	 carried	 the	 CC	 alleles	 compared	 to	 25%	 of	 patients	 suffering	 mild	

symptoms.	As	a	consequence,	they	concluded	that	rs12252	associates	with	severe	

H1N1	influenza.		

	
Table	2.	Reported	associations	for	IFITM3	rs12252	

Phenotype	 Population	 rs12252	
AF	 Cases	 Controls	 P	

value	

Odd	
ratio	
(95%	
CI)	

Model	 Genotyping	
method	 Reference	

Pandemic	
or	seasonal	
H1N1/09	
influenza	

European	 0.04	 53	 360*	 6x10-5	 not	
stated	

not	
stated	 PCR	 Everitt,	et	

al.,	2012	

Pandemic	
H1N1/09	
influenza	

Asian	 0.53	 35	 48	 2x10-4	
6.4	
(2.4–
17.1)	

Recessive	 PCR	 Zhang,	et	
al.,	2013	

H1N1	
influenza	 European	 0.04	 87�	 2,623	 1x10-2	

23.4	
(5.2–
106.1)	

Recessive	 PCR	 Mills,	et	al.,	
2014	

H7N9	
influenza	 Asian	 0.53	 16	 197*	 3x10-2	 not	

stated	
not	
stated	 PCR	 Wang,	et	

al.	2014	
Pandemic	
H1N1/09	
influenza	

European	 0.04	 84	 184	 4x10-1	
0.7	
(0.3-
1.5)	

Dominant	 PCR	 Gaio,	et	al.	
2016	

Pandemic	
H1N1/09	
influenza	

European	 0.04	 118	 353	 4x10-2	
1.9	
(0.9–
3.9)	

not	
stated	 PCR	

Lopez-
Rodriguez,	
et	al.,	2016	

HIV	
progression	 Asian	 0.53	 74	 104	 4x10-3	

3.8	
(1.5–
9.7)	

Dominant	 PCR	 Zhang,	et	
al.,	2015	

Hantaan	
virus	 Asian	 0.53	 69	 197*	 8x10-3	

2.1	
(1.1–
4.2)	

not	
stated	 PCR	 Xu-yang,	

et	al.	2017	

(*)	represents	controls	for	that	same	population,	in	the	1000	Genomes	Phase	3	release	

(�)	represents	combined	cases	from	Everitt,	et	al.,	2012	and	Mills,	et	al.,	2014	
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Since	these	studies	were	published,	 there	have	been	almost	an	equal	number	of	

reports	 contradicting	 these	 findings(91-93).	Mills	 and	 colleagues	 examined	 two	

separate	cohorts	to	test	for	associations	to	viral	infections	just	focusing	on	IFITM3.	

Their	 cohorts	 included	 patients	 with	 severe	 H1N1	 influenza	 that	 required	

hospitalisation	due	to	pneumonia	(n	=	34);	patients	with	lower	respiratory	tract	

infection	 (LRTI)	 (n	=	2,730),	 and	healthy	 controls	matched	 to	 the	patients	with	

LRTI	(n	=	2,623).	Even	when	combining	data	from	severe	influenza	cases	used	in	

other	candidate	gene	studies,	they	did	not	detect	association	between	rs12252	and	

severe	 influenza(91).	 More	 recently,	 Lopez-Rodriguez	 reported	 no	 associations	

between	 rs12252	 and	 severe	 influenza(93)	 (P=0.048).	 Further	 analysis	 of	

combined	genotype	data	from	their	study	and	that	included	in	Mills,	et	al.,	resulted	

in	a	marginal	association	of	 this	SNP	with	non-severe	 influenza	 infections.	They	

therefore	 concluded	 that	 at	 least	 in	 European	 populations,	 rs12252	 is	 not	

associated	 with	 severe	 influenza(93).	 These	 findings	 are	 in	 line	 with	 another	

recent	study	which	did	not	find	association	between	rs12252	and	severe	influenza	

cases(92).		

	

Notwithstanding	all	 the	conflicting	evidence	of	association	 for	 rs12252,	 there	 is	

extensive	 functional	 data	 from	 in	 vitro	 and	 mouse	 studies	 which	 have	

demonstrated	 the	 important	 role	 of	 IFITM	 proteins	 as	 modulators	 of	 disease	

susceptibility.	This	suggests	that	better	study	designs,	with	larger	sample	sizes,	will	

be	 necessary	 in	 the	 future	 in	 order	 to	 ascertain	 if	 these	 genes	 contribute	 to	

variation	in	infectious	disease	risk.		
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1.2.4.				Other	examples	of	candidate	gene	studies	

in	infectious	diseases	
	

Despite	the	known	shortcomings	of	candidate	gene	studies,	especially	with	

regards	to	IFITM	research,	there	are	some	examples	where	candidate	gene	designs	

have	been	successfully	employed.	One	classic	example	is	the	32bp	deletion	in	CCR5	

(CCR5Δ32),	a	major	receptor	for	HIV	virus.	A	lack	of	CCR5	receptors	in	the	plasma	

membrane	 as	 a	 result	 of	 this	 deletion,	 confers	 individuals	 homozygous	 for	 the	

mutation	 almost	 complete	 protection	 from	 HIV-1	 infection(94-96).	 Even	 for	

heterozygous	 individuals,	 carrying	 the	 32	 base	 pair	 deletion	 is	 associated	with	

delayed	disease	progression	after	HIV-1	infection(94,	97).	In	a	case-control	study	

of	364	homosexual	men	(long	term	survivors	versus	rapid	progressors)	with	HIV-

1	infection	in	the	Netherlands,	it	was	found	that	although	seroconvertion	occurred	

in	 both	 groups,	 48%	 of	 long-term	 survivors	 were	 heterozygous	 for	 CCR5D32	

compared	with	9%	of	progressors	(odds	ratio,	6.9	[95%	CI,	1.9	to	24.8])(97).		

	

Other	candidate	gene	studies	have	successfully	identified	other	host	factors	that	

influence	HIV-1	progression.	One	 example	 is	 the	human	 leukocyte	 antigen	 type	

(HLA)	that	is	strongly	associated	with	HIV-1	infection.	Comparison	of	frequencies	

of	HLA	B*57	allele	between	 long	term	non-progressors	(LTNP)	and	progressors	

revealed	that	85%	of	non-progressors	(11	out	of	13	patients)	had	an	enrichment	

in	HLA	B*5701	class	 I	 allele	 compared	 to	9.5%	(19	of	200)	 in	progressors	 (P	 <	

0.001)(98).	Both	CCR5Δ32	and	HLA	B*5701	associations	have	been	replicated	in	

genome-wide	 association	 studies.	 Interestingly	 however,	 the	 association	 of	

CCR5Δ32	in	a	large	genome-wide	scan	have	only	recently	been	reported(99).	
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1.2.5.				General	principles	of	genome-wide	

association	studies		
	

Genome-wide	 association	 studies	 (GWAS)	 allow	 researchers	 to	 scan	 the	

genome	for	association	without	any	a	priori	knowledge	about	the	role	of	specific	

genes	in	disease	susceptibility.	Specific	technological	advances	in	the	production	

of	high	throughput		genome	wide	arrays(100)	coupled	with	efforts	by	the	HapMap	

Project(101)	 to	 map	 the	 correlation	 between	 common	 genetic	 variation	 in	 the	

human	genome,	contributed	towards	their	advent.		

	

The	HapMap	project	 identified	more	than	3	million	SNPs	across	269	individuals	

from	three	distinct	populations:	30	parent	and	child	trios	with	European	ancestries	

(referred	to	as	CEU	samples);	30	trios	from	the	Yoruba	population	in	Nigeria	(YRI);	

44	 unrelated	 Chinese	 individuals	 (CHB)	 and	 44	 unrelated	 Japanese	

individuals(101).	The	HapMap	project	also	established	that	the	rate	of	mutation	in	

the	human	genome	is	in	the	order	of	10-8	per	site	per	generation,	which	is	very	low	

compared	 to	 the	 number	 of	 generations	 (10-4)	 since	 our	most	 recent	 common	

ancestors(101).	For	this	reason,	when	a	mutation	occurs,	it	does	so	on	a	specific	

genetic	 background;	 thus,	 the	 newly	 generated	 allele	 remains	 associated	 with	

other	nearby	alleles	that	were	present	when	the	mutation	occurred.	This	order	of	

alleles	 across	 a	 chromosome	 is	 known	 as	 ‘haplotype’	 whereas	 linkage	

disequilibrium	(LD)	refers	to	the	correlation	of	these	alleles.	There	are	practical	

implications	to	the	strong	associations	found	between	SNPs;	typically,	with	only	a	

few	carefully	chosen	SNPs	(tag	SNPs),	it	is	possible	to	determine	a	large	percentage	

of	the	genetic	variation	genome-wide.		

	

There	are	two	main	classes	of	phenotypes	that	are	employed	in	GWAS	designs:	the	

binary	 case-control	 designs	 (e.g.	 HIV	 rapid	 progressors	 versus	 HIV	 non-

progressors);	 and	 the	 quantitative	 design	 (e.g.	 viral	 load	 of	 asymptomatic	 HIV	

individuals	or	IgG	response	following	an	HIV	infection).	Regardless	of	the	design	in	

question,	 GWAS	 studies	 look	 for	 statistically	 significant	 differences	 in	 the	
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frequency	of	a	particular	allele	between	cases	and	controls	or	across	a	quantitative	

trait	such	as	viral	load.	Typically,	genome-wide	studies	test	for	a	deviation	from	the	

null	 hypothesis	 and	 quantify	 this	 deviation	 by	 providing	 a	 P	 value.	 When	 the	

marker	reaches	a	certain	threshold	(5x10-8)	for	genome-wide	significance,	then	the	

marker	is	said	to	be	associated.	This	specific	threshold	for	the	P	value	accounts	for	

a	5%	type	I	error	rate	(5%	chance	of	a	false	positive	finding	due	to	chance)	in	1	

million	 independent	 tests.	 When	 performing	 one	 test,	 P=0.05	 is	 a	 reasonable	

number,	 however	 when	 performing	 1,000,000	 tests	 (approximate	 number	 of	

independent	 common	 (>5%)	 variable	 regions	 in	 European	 genomes),	 a	P=0.05	

would	result	in	a	large	number	of	false	positives	(1x106*0.05=50,000),	thus	a	more	

stringent	value	is	required.	Generally,	association	studies	also	report	the	odd	ratios	

(ORs)	or	beta-coefficients	(b)	to	provide	an	estimation	of	risk.		

	

	

1.2.6.				Genome-wide	association	studies	for	

infectious	diseases	
	

To	date,	no	genome-wide	significant	associations	have	been	reported	 for	

any	of	the	IFITM	genes	but	a	number	of	significant	findings	have	been	made	around	

other	 genes	 for	 infectious	 diseases	 such	 as	 HIV-1,	 tuberculosis	 and	 malaria.	

Typically,	many	GWAS	studies	of	HIV	use	the	set-point	viral	load	(spVL)	to	define	

cases	during	the	asymptomatic	phase	of	HIV	infection.	This	phase	follows	on	from	

the	 initial	 acute	 HIV	 infection	 and	 it	 is	 characterised	 by	 relatively	 stable	 viral	

replication.	This	study	design	was	successfully	employed	by	Fellay	and	colleagues	

to	confirm	the	central	role	of	genetic	variants	in	the	MHC	region	for	HIV-1	infection	

and	 progression	 using	 genome-wide	 association	 studies.	 Using	 data	 from	 486	

patients	from	the	Euro-CHAVI	(Centre	for	HIV/AIDS	Vaccine	Immunology)	cohort,	

they	 reported	 two	 genome-wide	 significant	 associations.	 One	 association	 for	

rs2395029	(P	=	9.36	×	10−12),	accounted	for	9.6%	of	the	total	variation	in	the	viral	

set	 point	 with	 patients	 heterozygous	 for	 this	 mutation	 displaying	 a	 marked	
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reduction	 in	viral	 load(102).	This	SNP	 is	 situated	near	 the	HLA	complex	5	gene	

which	 is	 in	 complete	 LD	with	 HLA-B*57,	 already	 known	 to	 be	 protective	 from	

reports	by	a	previous	candidate	gene	study(98).	Another	association	was	reported	

for	rs9264942	(P	=	3.77	×	10−9),	located	35kb	form	HLA-C	gene(102).		Replication	

studies	 in	a	 larger	number	of	 individuals	confirmed	these	findings	and	reported	

new	nominally	significant	associations	for	rs9468692	(P	=	3.6	×	10−5)	located	at	3’	

region	 of	 TRIM10	 and	 the	 non-synonymous	 SNPs	 rs8192591	 (P	 =	 5.5	 ×	 10−5)	

located	in	coding	region	of	NOTCH4	gene(103,	104).	A	recent	GWAS	on	6,315	HIV	

positive	European	individuals	also	confirmed	the	central	role	of	the	MHC	region	in	

HIV	 susceptibility	 and	 progression(99).	 In	 this	 study,	 they	 mapped	 MHC	

association	signals	to	a	peptide-binding	groove	of	HLA-B	and	HLA-A	regions(99).	

Interestingly,	 the	 authors	 also	observed	a	 strong	association	between	CCR5D32	

with	 reduced	 set-point	 viral	 load	 (P=1.6x10-16)	 and	 reported	 that	 seven	 other	

markers	 overlapping	 the	 CCR5	 region	 appear	 to	 tag	 variants	 distinct	 from	

CCR5D32,	 suggesting	 the	 presence	 of	 other	 causal	 variants	 that	 are	 yet	 to	 be	

discovered(99).	

	

Further	successes	of	GWA	studies	have	been	reported	for	other	infectious	diseases	

such	as	tuberculosis	(TB).	In	one	of	the	largest	genetic	studies	of	TB	so	far,	Curtis	

and	colleagues	genotyped	5,530	individuals	with	pulmonary	TB	and	5,607	healthy	

controls(105).	They	 found	one	association	 in	ASAP1,	a	gene	that	encodes	an	Arf	

GTPase-activating	 protein	 (Arf	 GAP).	 Meta-analysis	 using	 published	 data	 from	

Ghanaian	(971	TB	cases	and	988	controls)	and	Gambian	(1,306	TB	cases	and	1,372	

controls)	 cohorts	 validated	 these	 findings.	 Furthermore,	 functional	 analysis	 of	

dendritic	 cells	 showed	 that	when	 these	 cells	were	 infected	with	Mycobacterium	

bovis	BCG,	this	led	to	the	reduction	of	ASAP1	expression.	In	addition,	homozygotes	

of	 the	allele	A	at	 rs10956514,	which	was	associated	with	higher	TB	risk	 in	 this	

study,	 displayed	 a	 stronger	 reduction	 of	 ASAP1	 expression	 following		

Mycobacterium	 bovis	 BCG	 infection;	 whereas	 the	 opposite	 was	 observed	 for	

homozygotes	of	allele	G,	which	was	associated	with	lower	TB	risk(105).		
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Other	 genome-wide	 studies	 have	 served	 to	 validate	 previous	 associations.	 For	

example,	in	a	GWAS	of	severe	malaria	(n=1,060	cases	and	n=1,500	controls)	from	

The	 Gambia,	 Jallow	 and	 colleagues(106)	 reported	 that	 their	 strongest	 signal	 of	

association	was	near	the	haemoglobin	beta	(HBB),	the	gene	that	contains	the	sickle	

haemoglobin	 variant	 haemoglobin	 S	 (HbS)	 polymorphism	 rs334.	 This	

polymorphism	results	in	a	non-synonymous	protein	change	where	a	glutamic	acid	

in	the	β-globin	chain	is	replaced	by	the	amino	acid	valine.	Homozygotes	for	this	

mutation	experience	life-threatening	disease	due	to	sickle	cell	anaemia,	whereas	

heterozygotes	have	a	tenfold	reduced	risk	of	severe	malaria(107).		Unfortunately,	

the	 authors	 did	 not	 find	 any	 new	 loci	 that	 reached	 genome-wide	 significance,	

although	they	did	report	nominal	associations	for	rs6503319	(trend	test	OR	=	1.21,	

P	 =	 7.2	 ×	 10−7)	 close	 to	 the	 SCO1	 gene	 that	 encodes	 a	 protein	 involved	 in	

cytochrome	oxidase	function;	and	rs1451375	(dominant	model	OR	=	0.75,	P	=	6	×	

10−6;	and	rs7803788,	OR	=	0.76,	P	=	2.4	×	10−6)	intronic	to	DDC,	a	gene	that	encodes	

dopa	decarboxylase,	which	is	involved	in	dopamine	and	serotonin	synthesis(106).	

	

1.2.7.				Challenges	for	GWAS	of	infectious	

diseases	
	

Despite	 the	 successes	 of	 GWAS	 in	 infectious	 disease(99,	 102,	 105,	 108),	

especially	for	HIV/AIDS	and	TB	susceptibility,	there	are	limitations	that	can	hinder	

the	 advancement	 in	 the	 field.	 GWAS	 studies	 are	 underpowered	 to	 detect	 any	

burden	of	rare	variants	(MAF	<	0.01)	and	often	require	very	large	cohorts	to	detect	

association.		For	infectious	diseases	such	as	HIV,	even	when	the	influence	of	host	

and	viral	genetics	is	taken	into	consideration,	over	60%	of	the	variability	remains	

unaccounted	 for(99).	 Indeed,	 the	 modest	 contributions	 of	 some	 of	 the	 genetic	

variability	 and	 the	 low	 frequency	 of	 causal	 variants	 could	 explain	 this	missing	

heritability.	 Future	 work	 will	 therefore	 need	 to	 employ	 a	 more	 combinatorial	

approach	 where	 genotyping	 as	 well	 whole	 genome	 sequencing	 data	 is	 used	 to	

detect	 new	associations	with	 lower	 effect	 frequencies.	 For	 example,	 in	 a	 recent	

paper	exploring	the	genetic	architecture	of	inflammatory	disease	(IBD),	Luo	and	
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colleagues	 used	 genotyped	 data	 from	 27,176	 samples	 (cases	 and	 controls)	 to	

detect	 associations	with	 relatively	modest	OR	 (1.2	 to	2.1)(109).	Parallel	 to	 this,	

they	also	used	low-coverage	whole	genome	sequencing	across	7,932	individuals	to	

test	 for	 a	 burden	 of	 rare	 variants	 associated	 with	 IBD.	 They	 reported	 several	

associations	 including	a	 low-frequency	missense	variant	 in	ADCY7	which	affects	

the	 production	 of	 cAMP,	 a	 predisposing	 factor	 to	 IBD(110).	 Although	 the	

recruitment	 of	 such	 large	 cohorts	 of	 individuals,	 especially	 in	 low-income	

countries,	will	be	difficult,	it	is	possible	that	the	gap	in	recruitment	can	be	reduced	

through	 worldwide	 collaborations.	 Generally,	 the	 greatest	 burden	 of	 disease	

caused	by	 infectious	diseases	 is	 in	developing	 countries	 that	 lack	 the	necessary	

resources,	or	the	will	to	invest	in	such	large-scale	programmes.	Any	programmes	

that	will	further	our	understanding	of	these	diseases	and	help	reduce	their	burden	

will	be	a	start.		
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2.				Assessing	the	coverage	of	variation	

in	the	IFITM	locus	using	commercially	

available	genotype	arrays	
	

2.1.				Introduction	

	
Genetic	 studies	 of	 susceptibility	 to	 infectious	 disorders	 aim	 to	 provide	 a	

greater	 understanding	 of	 disease	 to	 reduce	mortality	 and	morbidity	 associated	

with	these	conditions(111).	Various	genome-wide	studies	have	indeed	contributed	

to	this	aim	by	reporting	new	associations	between	specific	genes	and	particular	

infectious	diseases(112,	113)	or	replicating	previous	findings(103).	For	example,		

variants	 in	 the	NOD2	 locus	 have	 been	 associated	with	 leprosy	 risk	 and	 a	 32bp	

deletion	in	CCR5	(CCR5Δ32)	has	been	shown	to	slow	the	progression	of	HIV	(99,	

112).	Despite	these	successes,	however,	our	understanding	of	the	number	of	host	

factors	 influencing	 disease	 outcome	 to	 infectious	 diseases	 is	 limited.	

Notwithstanding	functional	studies	reporting	IFITM1,2,3	as	important	restriction	

factors	against	a	wide	number	of	viruses,	so	far	no	genome-wide	association	(GWA)	

studies	have	reported	any	significant	genetic	association	in	or	around	these	genes.	

One	hypothesis	that	could	explain	the	lack	of	GWAS	signals	is	that	the	variation	for	

the	IFITM	region	is	poorly	captured	by	existing	genotyping	arrays(106).	I	have	set	

out	 to	 test	 this	 hypothesis	 by	 estimating	 the	 tagging	 efficiency	 of	 several	

commercially	available	chips,	including	ones	used	in	previous	GWAS	of	infectious	

diseases(38,	 103,	 113).	 Although	 earlier	 studies	 have	 highlighted	 limitations	 of	

genotyping	arrays	at	capturing	variation	at	specific	loci(114-116),	this	is	the	first	

time	a	comprehensive	analysis	of	coverage	for	the	IFITM	region	has	been	carried	

out.		
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2.1.1.				Principles	of	genome-wide	association	

studies	
	

First	envisioned	by	Risch	and	Merikangas(117)	genome-wide	association	

studies	are	a	direct	result	of	two	crucial	international	projects:	the	Human	Genome	

Project	(HGP)(85)	and	the	HapMap	project(101,	118).	Their	work,	coupled	with	

technical	 advances	 in	 the	 chemistry	 of	 probe-target	 hybridisation	 and	

amplification	techniques	in	commercial	microarray	companies(119),	made	GWAS	

possible.	 Initial	data	 from	the	draft	genome	constructed	by	 the	Human	Genome	

Project	 identified	 over	 1.4	million	 single	 nucleotide	polymorphisms	 (SNPs)	 and	

provided	the	quantification	of	the	extent	of	linkage	disequilibrium	(LD)	between	

SNPs	in	close	proximity	to	each	other(85).	In	such	cases,	LD	can	be	measured	in	

terms	of	the	squared	correlation	coefficient	(r2)	between	the	two	SNPs.	Thus,	r2	is	

1	when	two	SNPs	are	in	complete	LD	and	are	not	disrupted	by	recombination.	The	

value	becomes	less	than	1	when	correlation	between	SNPs	has	been	disrupted	by	

crossing	over(101).	

	

The	HapMap	project	was	a	natural	continuation	of	the	Human	Genome	Project.	It	

provided	 details	 of	 correlations	 between	 SNPs	 by	 studying	 variation	 in	 270	

individuals	 from	 West	 Africa	 (YRI),	 Asia	 (CHB+JPT)	 and	 Europe	 (CEU)(101).	

Crucially,	the		HapMap	data	provided	a	genome-wide	linkage	disequilibrium	map	

that	 contained	 population-specific	 haplotype	 structural	 patterns(101).	

Understanding	the	LD	structure	enabled	scientist	to	assay	genome-wide	variation	

using	only	a	fraction	of	the	total	number	of	variants.	Indeed,	one	important	finding	

from	the	HapMap	project	that	facilitated	genome-wide	scans	was	that	500K	SNPs	

could	 ‘capture’	 or	 ‘tag’	 around	 80%	 of	 common	 variation	 (MAF	 ³	 0.05)	 in	 the	

HapMap	Phase	 II	 in	CEU	and	CHB+JPT	populations,	with	r2 ≥ 0.8;	and	twice	 that	

number	(1.09	million	SNPs)	could	capture	the	same	level	of	variation	in	YRI(101).	

The	 ability	 to	 tag	 SNPs	 as	 a	 consequence	 of	 LD,	 enables	 scientist	 to	 test	 for	

association	 and	 detect	 causal	 SNPs	 even	 when	 these	 SNPs	 are	 not	 directly	

genotyped	(Figure	7).		
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Figure	7.	Principle	of	microarray	tagging.	The	schema	represents	a	genomic	region	that	contains	
7	SNPs.	The	2	SNPs	in	purple	with	double	triangles	are	genotyped	directly	and	represent	the	tag	
SNPs	on	the	chips.	The	2	SNPs	in	orange	are	captured	through	linkage	disequilibrium	(LD)	with	the	
tag	SNPs	(as	denoted	by	arrows).	The	3	SNPs	in	dark	yellow	are	neither	genotyped	nor	captured	by	
tag	SNPs.	The	orange	star	represents	a	SNP	associated	with	disease.	 It	has	2	alleles	(L1	and	L2)	
which	are	in	LD	with	a	tag	SNP	that	has	2	alleles	(T1	and	T2).	There	is	perfect	LD	between	T1-L1	
and	T2-L2	as	measured	by	the	square	of	the	correlation	coefficient	r2=1.	

	

	

The	HapMap	study	constituted	a	powerful	resource	for	the	last	15	years	not	only	

for	 the	 scientific	 community,	 but	 also	 for	 private	 companies	 interested	 in	 the	

automation	of	genome-wide	scans.	It	became	common	for	companies	to	use	this	

universal	reference	panel	to	select	marker	SNPs	for	their	microarrays.	Despite	very	

useful	 applications,	 however,	 one	 limitation	 of	 this	 dataset	 was	 that	 it	 only	

contained	approximately	3.5	million	variants	with	MAF	³	0.05	which	represented	

25-35%	of	common	variation	 in	 the	populations	surveyed(101).	Recently,	more	

comprehensive	reference	panels	have	been	constructed	that	capture	over	80%	of	

common	 genetic	 variation	 in	 the	 human	 genome.	 For	 example,	 the	 release	 of	

Phase1(120)	and	Phase3(121)	1000	Genomes	Project	 (1KGP),	UK10K(122)	and	

Haplotype	Reference	Consortium(86)	reference	panels,	mean	that	the	catalogue	of	

human	variation	has	expanded	greatly,	with	over	8	million	variants	with	MAF	³	

0.05	already	reported,	out	of	a	total	9-10	million	variants	predicted	to	exist(101).		
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The	availability	of	reference	panels	has	also	contributed	to	advances	in	statistical	

tests	such	as	genotype	imputation,	that	are	now	commonly	used	in	genome-wide	

studies(123).	 Typically,	 imputation	 algorithms	 rely	 on	 the	 identification	 of	

haplotypes	(how	SNPs	are	arranged	along	the	chromosome)	using	typed	SNPs	in	

the	 study	 individuals	 that	 can	 then	 be	 used	 to	 scan	 similar	 haplotypes	 in	

individuals	in	the	reference	panel.	Algorithms	use	this	sharing	to	predict	missing	

alleles	 in	 the	 study	 individuals	 that	 are	 not	 directly	 genotyped	 by	 the	

microarray(106)	 but	 exist	 in	 the	 reference	 panel	 within	 a	 similar	 haplotype	

context.	 These	 in	 silico	 imputed	 SNPs	 can	 boost	 the	 power	 of	 the	 GWAS	 by	

increasing	 the	number	of	SNPs	 that	 can	be	 tested	 for	association.	Therefore,	 an	

association	signal	can	result	from	directly	genotyped	or	imputed	SNPs.		

	

	

2.1.2.				Design	and	coverage	of	commercial	

genotyping	chips	
	

There	are	currently	two	companies,	Affymetrix	and	Illumina	that	dominate	

production	of	genotyping	arrays.	Typically,	commercial	companies	exploit	existing	

LD	 information	 in	 reference	 panels	 to	 develop	 their	 products,	 geared	 towards	

targeting	 specific	 populations	 or	 functional	 information	 and	 phenotypes.	 For	

instance,	 the	 Axiom®	 Genome-Wide	 PanAFR	 (Affymetrix,	 CA,	 USA)	 is	 the	 first	

array	by	Affymetrix	to	offer	genomic	coverage	(>80%)	in	admixed	populations	of	

African	ancestry.	Whilst	the	Metabochip(124)	(Illumina,	CA,	USA)	is	a	custom	array	

design	 by	 the	 Cardio-Metabochip	 Consortium	 that	 targets	 cardiovascular,	

metabolic	 and	 anthropometric	 traits.	 Similarly,	 the	 Immunochip	 consisted	 of	

variants	selected	primarily	from	the	GWAS-associated	regions	of	eleven	immune-

mediated	 phenotypes(125,	 126)	 aimed	 to	 replicate	 the	 top	 2000	 independent	

associations	 found	 from	 each	 of	 the	 autoimmune	 and	 inflammatory	 diseases	

included.	All	these	arrays	have	been	designed	to	maximise	coverage	in	populations	

or	functional	pathway	of	interest.	
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To	compare	genotyping	arrays,	it	is	common	practice	to	consider	what	proportion	

of	 SNPs	 can	be	directly	 genotyped	by	 the	 array	 and	how	many	 variants	 can	be	

‘captured’	by	markers	in	the	chip.	It	has	been	demonstrated	that	in	theory,	500K	

maximally	efficient	tag	SNPs	could	capture	nearly	80%	of	common	variation	in	CEU	

and	JPN	+	CHB	populations	and	70%	of	variation	in	YRI	population	at	a	correlation	

coefficient	(r2≥0.8)(115).	It	is	this	proportion	of	total	variants	‘captured’	or	‘tagged’	

at	a	given	correlation	threshold	(r2≥0.8)	by	SNPs	in	the	array	which	is	referred	to	

as	 global	 coverage	 of	 the	 chip	 and	 constitutes	 one	 important	 metric	 for	 chip	

selection	and	study	design.		

	

Typically,	estimations	of	coverage	set	an	arbitrary	threshold	(usually	at	r2≥0.8)	to	

find	correlations	between	markers	in	the	genotype	array	and	variants	in	a	specific	

reference	panel	(HapMap	or	1KGP)	using	the	following	formula:	

	

!"# =
%

& − ( 	(+ − () + (
+ 	

	

where	 (R)	 represents	 the	number	of	 common	SNPs	used	 in	 the	 reference	panel	

dataset,	(T)	the	number	of	SNPs	included	in	the	genotyping	chips,	(L)	the	number	

of	SNPs	not	on	the	chip	but	tagged	at	r2≥0.8	by	at	least	one	SNP	in	the	chip	and	(G)	

the	number	of	common	SNPs	estimated	to	be	present	in	the	human	genome.	Other	

groups	 have	 expanded	 this	method(116)	 to	 include	 the	 extra	 parameter	 ‘m’	 to	

represent	SNPs	in	the	chip	not	found	in	the	reference	dataset.	This	had	advantages	

for	calculations	that	used	the	HapMap	reference	dataset,	which	contained	only	a	

proportion	of	tag	SNPs(116).		Their	updated	formula	is	represented	by		R1	=	R	+	m,		

T1	=	T	+	m	and	L1	=	 ./	. ×	%	where	cov	is	defined	as:	
	

	!"# =
1

23453 	 67./ 8./
6 	

	

Although	 lack	 of	 coverage	 can	 be	 bridged	 by	 imputation	 analysis32,	 this	 is	 not	

always	possible33,34.	 	For	example,	 it	has	been	extensively	documented	that	rare	
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SNPs	 (MAF	 £	 1%)	 are	 more	 difficult	 to	 impute	 than	 SNPs	 with	 MAF	 ≥	 1%.	

Differences	 in	 the	 genetic	make-up	 of	 the	 study	 populations	 and	 the	 reference	

panel	can	also	influence	the	quality	of	the	imputation(106).	For	example,	genetic	

studies	 in	 African	 populations	 have	 been	 limited	 not	 only	 by	 the	 lack	 of	 well-

designed	genotyping	arrays	but	also	by	the	lack	of	population	specific	reference	

panels	for	accurate	imputation(106).		
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2.2.				Aims	
	

To	 achieve	 a	 full	 understanding	 of	 the	 representation	 of	 IFITM	 genes	 in	

commercially	available	arrays,	I	assessed	a	subset	of	Illumina	(San	Diego,	CA,	USA)	

and	 Affymetrix	 (Santa	 Clara,	 CA,	 USA)	 chips	 for	 coverage	 in	 the	 region.	 I	 also	

estimated	 coverage	 for	 over	 15,000	 protein	 coding	 genes	 to	 have	 a	 better	

understanding	of	how	my	estimates	of	coverage	for	the	IFITM	genes	compared	to	

those	obtained	 for	 the	rest	of	 the	genes	 in	 the	genome.	Because	 imputation	 is	a	

common	 technique	 in	 current	 GWAS	 analysis,	 I	 also	 assessed	 the	 quality	 of	

imputation	for	my	region	and	compared	it	to	the	imputation	quality	genome-wide.	
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2.3.				Materials	and	Methods	
	

2.3.1.				Choosing	genotyping	arrays	
	

I	 chose	 to	 analyse	 genotyping	 arrays	 used	 in	 previous	 genetic	 studies	 of	

infectious	 diseases	 (Table	 3)	 	 for	 HIV(127,	 128),	 	 chronic	 hepatitis	 C(38)	 and	

dengue(113),	listed	in	the	GWAS	Central	http://www.gwascentral.org/	and	GWAS	

catalogue	https://www.genome.gov/26525384	on	(December,	2015).	Because	the	

majority	of	these	arrays	have	been	retired	from	the	market,	I	also	chose	to	calculate	

coverage	of	more	recent	genotyping	chips.	Table	3	lists	all	chips	analysed	and	the	

number	of	markers	included	in	each.		

	

The	first	step	of	my	analysis	involved	making	a	list	of	chromosomal	positions	of	all	

markers	included	in	the	array	from	http://www.well.ox.ac.uk/~wrayner/strand/,	

the	 Wellcome	 Trust	 Sanger	 ‘in-house’	 repositories	 and	

http://www.affymetrix.com/catalog/prod350001/AFFY/.	 All	 annotation	 files	

were	updated	to	Version	3	NCBI	Build	37	of	the	human	genome.	

	
Table	3.	List	of	all	the	genotyping	arrays	analysed		

	
	

	

	

Column1 Column2 Column3 Column4 Column5

Number	of	SNPs Targeted	MAF Based	on
Illumina

Illumina	550 547,327 5.0% HapMap
Human670-QuadCustom_v1_A 654952 5.0% HapMap

Human660W-Quad_v1 657,366 5.0% HapMap

Human	OmniExpress-24	 713,014 5.0% HapMap

HumanHap	1M-Duo_v3 1,199,187 5.0% HapMap

Human	Omni1S 1,185,076 2.50% 1KGP*,	HapMap
Human	Omni2.5S-8 2,015,318 1.0% 1KGP

Infinitum	Human	Omni5-4	v1.1 4,284,426 1.0% HapMap,	1KGP
Affymetrix	

Affymetrix	500K	** 500,568 5.0%
Affymetrix	6.0 906,600 5.0% HapMap	and	previous	Mapping	500K	and	SNP	5.0	Arrays

Axiom®	Genome-Wide	Pan-African 2,217,402 2.0-5.0% HapMap,	1KGP,	and	Southern	African	Genomes	Projects

*	1KGP;	1000	Genome	Project
**	Tag	SNPs	on	this	microarray	are	randomly	distributed	across	the	genome.
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2.3.2.				Reference	panel	used	in	coverage	

calculations	
	

In	this	study,	I	used	Phase	1,	1000	Genomes	Project	reference	panel(85)	to	

calculate	 coverage.	 This	 dataset	 includes	 the	 low	 coverage	 whole	 genome	

sequences	of	1,092	individuals	from	14	populations	across	Europe,	Asia,	Africa	and	

the	Americas.	Specifically,	286	individuals	from	the	IBS,	GBR,	TSI,	and	CEU	1000	

Genomes	Project	formed	the	European	reference	population;	286	individuals	from	

the	 CHS,	 CHB,	 and	 JPT	 1000	 Genomes	 Project	 formed	 the	 Asian	 reference	

population	and	246	individuals	from	the	YRI,	ASW	and	LKW1000	Genomes	Project	

formed	the	African	reference	population.		

	

These	reference	panels	provide	a	haplotype	map	that	includes	38	million	SNPs	and	

captures	approximately	98%	of	SNPs	at	MAF	³	1%.		I	used	this	reference	panel	for	

two	steps:	to	obtain	the	number	of	SNPs	per	population	and	to	find	SNPs	in	LD	with	

markers	in	the	array.		

	

2.3.2.1.				Estimating	global	coverage	
	

Global	coverage	was	estimated	using	the	Barret	and	Cardon(115)	formula	

and	 the	 reference	 panel	 previously	 described.	 I	 did	 not	 include	 the	 extra	 ‘m’	

parameter	proposed	by	Li,	et	al,	2008	because	the	number	of	SNPs	in	the	chip	not	

found	in	the	reference	dataset	was	very	low	(<	1%).		

( %
& − ()(+ − () + (

+ 	
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Where:	

(	 represents	 the	 number	 of	 common	 SNPs	 (MAF	³	 1%)	 per	 population	 on	 the	
genotyping	array.	I	made	a	list	of	these	positions	from	the	information	provided	in	

the	annotation	files	for	each	chip	

	

9	denotes	the	number	of	SNPs	not	on	the	microarray	but	which	are	tagged	at	r2≥	
0.8	by	at	least	one	marker	on	the	chip	within	a	1000kb	window.	To	find	all	proxy	

SNPs,	I	used	the	LD	options	in	PLINK	(v1.9).	Output	SNPs	were	filtered	by	MAF	(³	

1%).	I	also	excluded	all	SNPs	included	in	microarrays	as	‘tag’	SNPs.		

:	represents	the	number	of	autosomal	SNPs	(MAF	³	1%)	identified	in	Version	3	
NCBI	 Build	 37	 of	 1000	 Genomes	 phase	 1	 project.	 To	 calculate	 the	 number	 of	

variants	per	population,	I	used	PLINK	(v1.9)	with	the	following	command:	plink	--

allow-no-sex	--write-snplist	--geno	0.1	–exclude	INDELS.		

G	 represents	 the	 predicted	 number	 of	 SNPs.	 The	 current	 number	 of	 single	

nucleotide	variants	 in	 the	NCBI	database	with	MAF	³	1%	 is	nineteen	million,	of	

which	approximately	eight	million	have	MAF	³	5%(121).	This	provides	an	estimate	

of	two	SNPs	on	average	per	300bp	with	MAF	³	1%	and	half	that	for	SNPs	with	MAF	

³	5%.	

	

2.3.2.2.				Coverage	calculation	methodology	for	

IFITM2	and	IFITM3	and	over	15,000	protein-coding	

genes	
	

Although	useful	for	global	coverage,	I	found	that	the	formula	by	Barret	and	

Cardon	was	not	adequate	for	my	gene	coverage	estimations	(results	not	shown)	

because	of	the	G	parameter.	The	G	parameter	represents	the	predicted	number	of	

SNPs	genome	wide.	For	small	gene	regions,	these	values	can	be	inflated	and	can	

result	in	values	of	over	100%	for	coverage	values.	For	this	reason,	I	decided	to	use	

a	simplified	version	of	formula	as	shown	below:	
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Simplified	version	of	Barret	and	Cardon	formula	used	to	calculate	gene	coverage:	

	
( + %
& 	

	

In	this	instance,	values	for	G	can	be	ignored	because	the	1000	Genomes	phase	1	

panel	 is	 thought	 to	contain	98%	of	SNPs	at	MAF	³	1%(120).	 I	obtained	a	 list	of	

transcription	 start	 and	 end	 positions	 for	 known	 protein-coding	 genes	 from	

Ensembl	 Biomart	 GRCh37.p13	

(http://grch37.ensembl.org/biomart/martview/75576048dab692fe6e30bf7925

9fe775)	(February	2015).	I	filtered	this	list	to	include	only	genes	that	carried	more	

than	five	SNPs	(MAF	³	1%)	within	their	start	and	end	region	across	all	populations.	

Previous	 studies	 had	 reported	 that	 values	 lower	 than	 five	 tended	 to	 affect	 the	

coverage	calculations(116).	I	obtained	a	total	of	15,637	protein-coding	genes	after	

filtering.	Due	to	low	number	of	SNPs	within	IFITM1	gene,	I	was	unable	to	calculate	

coverage	for	this	gene.	Although	my	interest	is	primarily	on	the	IFITM	gene	family,	

having	an	estimate	for	other	genes	enables	coverage	estimates	for	the	IFITM	locus	

to	be	compared	to	other	genes	in	the	rest	of	the	genome.	

	

2.3.3.				Imputation	quality	for	the	IFITM	region	
	

The	 imputation	 quality	 metrics	 reported	 here	 were	 extracted	 from	 ‘in-

house’	 data	 generated	 by	 the	 imputation	 software	 IMPUTE2	 for	 the	 Illumina	

HumanOmni2.5-8	 BeadChip,	 using	 Phase3	 1000	 Genomes	 Project	 (2,504	

individuals,	 85	 million	 sites)	 and	 UK10K	 reference	 panels	 (3,781,	 24	 million	

sites)(129).	We	looked	at	two	imputation	quality	metrics:	‘INFO	score’	and	‘r2’.	The	

INFO	score	is	a	quality	score	that	the	imputation	algorithm	IMPUTE2	generates	for	

each	imputed	genotype.	For	directly	genotyped	SNPs,	the	‘r2’	measurement	is	the	

correlation	between	the	directly	observed	genotype	and	an	imputed	genotype	at	

this	SNP.	Both	INFO	scores	and	r2	are	used	as	quality	control	metrics	for	genome-

wide	association	studies.	The	genotype	imputation	was	carried	out	by	Dr.	Jimmy	

Liu	at	the	Wellcome	Trust	Sanger	Institute.		



	
 
 
 

60	

2.4.				Results	
	

2.4.1.				Estimating	global	coverage	for	

genotyping	arrays	
	

My	estimates	of	global	coverage	demonstrate	that	on	average,	genotyping	

arrays	 cover	 approximately	65%	of	 the	variation	 (MAF	³	 1%)	 in	European	and	

Asian	 populations	 and	 30%	 of	 the	 variation	 in	 populations	 of	 African	 ancestry	

(Table	 2).	 The	 differences	 in	 genome	 coverage	 between	 European,	 Asian	 and	

African	populations	have	been	reported	 in	previous	coverage	studies(114-116).	

Low	values	of	coverage	observed	for	Africans	stem	for	the	greater	levels	of	ethnic	

diversity	 and	 complex	 variation	 of	 haplotype	 structures	 between	 ethnic	

groups(106)	in	the	African	population.	

	

I	also	observe	a	lower	coverage	rate	for	some	genotyping	arrays	than	the	coverage	

reported	by	manufacturers’.	For	example,	I	estimated	the	coverage	rate	for	Axiom	

Pan-African	to	be	~40%,	half	the	value	reported	by	Affymetrix.	These	differences	

may	 be	 the	 result	 of	 various	 definitions	 of	 coverage	 and	 may	 also	 occur	 as	 a	

consequence	of	using	the	HapMap	panel	 instead	of	a	more	comprehensive	1000	

Genomes	Panel	to	estimate	these	values.	Furthermore,	for	genotyping	arrays	with	

more	than	one	million	SNP	markers,	the	Illumina	Omni5.4v1.1	and	Affymetrix	Pan	

African	offer	the	greatest	coverage	for	all	populations	analysed.	

	
Table	4.	Global	coverage	estimations	for	over	15,000	protein	coding	genes	

	

	

Populations Illumina	550
Illumina		
660W-
Quad_v1

Human670-
QuadCusto
m_v1_A

Human	
OmniExpres

s-24	

HumanHap	
1M-Duo_v3

Human	
Omni1S_H

Human	
Omni2.5S-

8_B

Infinitum	
Human	
Omni5-4	
v1.1

Affymetrix	
500

Affymerix	
SNP6.0

Axiom	
PanAfrican

European 0.56 0.66 0.59 0.64 0.68 0.64 0.61 0.84 0.50 0.64 0.73
Asian 0.62 0.70 0.63 0.67 0.69 0.63 0.55 0.75 0.52 0.65 0.73
African 0.21 0.25 0.22 0.25 0.30 0.26 0.28 0.56 0.19 0.28 0.47
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2.4.2.				A	map	of	genome-wide	gene	coverage	
	

I	estimated	the	coverage	of	IFITM2	and	IFITM3	in	eight	Illumina	genotype	

arrays	 and	 three	 Affymetrix	 chips	 (Table	 5).	 In	 order	 to	 ascertain	 how	 the	

coverage	 for	 the	 IFITM	 genes	 compared	 to	 other	 genes	 genome-wide,	 I	 also	

calculated	 the	 coverage	 of	 a	 further	 15,635	 protein-coding	 genes.	 The	

motivation	 behind	 these	 calculations	 was	 to	 assess	 how	 the	 coverage	 for	

IFITM2	and	IFITM3	compared	to	other	genes	genome-wide.		

	

I	found	large	differences	in	coverage	across	populations	with	most	genotyping	

arrays	performing	poorly	 in	African	 admixed	populations.	 For	 example,	 less	

than	25%	of	common	SNPs	located	within	the	gene	regions	analysed,	can	be	

tagged	by	Affymetrix	500K	array	 (r2	³	 0.8).	These	values	 improve	 in	denser	

genotyping	arrays	such	as	the	HumanOmni	5.4	(~5	million	SNPs).	This	array	

captures	 100%	 of	 the	 variation	 identified	 by	 the	 1000	 Genomes	 Project	 in	

around	90%	of	protein-coding	genes	(Figure	8).	

	

In	 contrast,	 most	 of	 the	 variation	 in	 Asian	 and	 European	 populations	 is	

captured	by	all	genotyping	arrays.	For	the	Asian	and	European	samples,	only	

10%	of	genes	have	coverage	<25%.	As	expected,	denser	genotyping	arrays	such	

as	 the	HumanOmni	 2.5	 (2.5	million	 SNPs)	 and	HumanOmni	 5.4	 (~5	million	

SNPs)	 captured	~100%	 of	 the	 variation	 in	 80-90%	 of	 protein-coding	 genes	

(Figure	9	and	Figure	10).	

	

This	 analysis	demonstrates	 that	 IFITM2	 and	 IFITM3	 are	 in	bottom	7%	of	 all	

protein-coding	genes	analysed.	Both	Illumina	and	Affymetrix	arrays	captured	

only	 25%	of	 common	 variation	within	 these	 genes	 (Table	 5).	 Coverage	was	

particularly	 poor	 (6-12%)	 on	 the	 Illumina	 550K,	 660	 and	 670,	 as	 well	 as	

Affymetrix	500K	genotyping	arrays.	Interestingly,	all	of	these	arrays	have	been	

used	in	previous	genome-wide	association	studies	of	HIV(103),	dengue(113)	

and	Hepatitis	C(130).	Despite	 the	potential	 important	role	of	 IFITM	genes	 in	
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these	diseases,	none	of	the	genotyping	arrays	tag	more	than	50%	of	SNPs	in	

IFITM2	or	IFITM3.		

	

Coverage	 analysis	 shows	 that	 denser	 genotyping	 arrays	 such	 as	

HumanOmni2_5,	HumanOmni5_4	and	Affymetrix	Axiom	Pan	African	provide	

better	 coverage	 across	 populations.	 Close	 examination	 of	 tagging	 SNPs	

included	 in	these	arrays,	shows	that	 the	 increase	 in	coverage	 is	 the	result	of	

introducing	a	greater	number	of	 tag	SNPs	 in	 the	 IFITM	 region.	This	suggests	

that	in	order	to	capture	variation	in	the	IFITM	region,	SNPs	would	need	to	be	

genotyped	 directly;	 undoubtedly	 limiting	 the	 usefulness	 of	 using	 tagging	

strategies	for	this	locus.		

	

It	is	common	practice	as	part	of	the	GWAS	analysis	to	use	imputation	to	boost	

statistical	power.	Simulations	studies	have	shown	that	imputation	can	improve	

the	performance	of	genotyping	arrays	even	when	the	coverage	of	such	arrays	

is	low	(<50%).	Imputation	methods	such	as	IMPUTE2	provide	a	probabilistic	

prediction	at	each	imputed	genotype	given	by	the	‘INFO’	score(123)	that	allows	

researchers	 to	 filter	 out	 poorly	 imputed	 sites.	 	 Another	 imputation	 quality	

assessment	 commonly	 used,	 involves	 measuring	 the	 squared	 correlation	

between	the	best-guess	genotype	and	the	true	genotype(131)	to	give	a	single	

measure	r2.	 I	used	both	these	metrics	to	assess	the	imputation	quality	in	the	

IFITM	region	using	 ‘in-house’	 imputation	data	for	the	Omni2.5	array.	I	 found	

that	imputed	SNPs	in	the	region	are	indeed	of	lower	quality	compared	with	the	

genome	average	throughout	the	allele-frequency	spectrum	(Figure	11).	



	
 
 
 

63	

	
Figure	8.	Distribution	of	coverage	for	15,637	protein-coding	genes	for	11	genotyping	arrays	
in	246	African	individuals	from	the	YRI,	ASW	and	LKW	1000	Genomes	Project	populations.	
The	empirical	distribution	is	plotted	in	the	y-axis	and	the	coverage	(%)	is	plotted	on	the	x-axis.	The	
names	of	the	genotyping	arrays	are	shown	to	the	right	ordered	by	levels	of	coverage.	The	array	with	
the	lowest	coverage	at	the	top	and	the	array	with	the	highest	coverage	at	the	bottom.	Affymetrix	
500K	shows	the	lowest	coverage	with	50%	of	genes	having	<27%	coverage.	HumanOmni5_4	array	
shows	the	highest	coverage,	with	90%	of	genes	having	100%	coverage.		
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Figure	9.	Distribution	of	coverage	for	15,637	protein-coding	genes	for	11	genotyping	arrays	
in	286	Asian	individuals	from	the	CHS,	CHB	and	JPT	1000	Genomes	Project	populations.	The	
empirical	distribution	 is	plotted	 in	 the	y-axis	and	 the	coverage	(%)	 is	plotted	on	 the	x-axis.	The	
names	of	the	genotyping	arrays	are	shown	to	the	right	ordered	by	levels	of	coverage.	The	array	with	
the	lowest	coverage	at	the	top	and	the	array	with	the	highest	coverage	at	the	bottom.	Affymetrix	
500K	 shows	 the	 lowest	 coverage,	 although	 it	 performs	 substantially	 better	 than	 in	 African	
populations	 with	 only	 10%	 of	 genes	 having	 <27%	 coverage.	 HumanOmni5_4	 array	 shows	 the	
highest	coverage	with	90%	of	genes	having	100%	coverage.	
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Figure	10.	Distribution	of	coverage	for	15,637	protein-coding	genes	for	11	genotyping	arrays	
in	 286	 European	 individuals	 from	 the	 IBS,	 GBR,	 TSI	 and	 CEU	 1000	 Genomes	 Project	
populations.	The	empirical	distribution	is	plotted	in	the	y-axis	and	the	coverage	(%)	is	plotted	on	
the	x-axis.	The	names	of	the	genotyping	arrays	are	shown	to	the	right	ordered	by	levels	of	coverage.	
The	array	with	the	lowest	coverage	at	the	top	and	the	array	with	the	highest	coverage	at	the	bottom.	
Similar	to	African	and	Asian	populations,	Affymetrix	500K	shows	the	lowest	coverage,	although	it	
performs	substantially	better	 than	 in	African	populations	with	only	10%	of	genes	having	<27%	
coverage.	 HumanOmni5_4	 array	 shows	 the	 highest	 coverage,	 with	 95%	 of	 genes	 having	 100%	
coverage.	
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Table	5.	Coverage	calculations	for	IFITM2	and	IFITM3		

Genotype	Platform	 African	 Asian	 European	 African	 Asian	 European	
Illumina	550	 6	 12	 9	 0	 0	 5	

Illumina	660W-Quad_v1	 6	 12	 9	 2	 2	 8	
Human670-QuadCustom_v1_A	 6	 12	 9	 2	 2	 8	
Human	OmniExpress-24	 6	 12	 12	 8	 14	 27	

Human	Omni1S_H	 6	 22	 18	 10	 20	 15	
HumanHap	1M-Duo_v3	 20	 34	 26	 18	 22	 39	
Human	Omni2.5S-8_B	 16	 34	 24	 5	 6	 15	

Infinitum	Human	Omni5-4	v1.1	 16	 34	 29	 18	 24	 40	
Affymetrix	500K	 0	 0	 0	 0	 0	 0	
Affymetrix	SNP6.0	 30	 44	 32	 12	 8	 24	
Axiom_Pan_African	 8	 28	 18	 6	 20	 10	

	

	
Figure	11.	INFO	scores	and	r2	imputation	quality	metrics	for	the	IFITM	region.	(a)The	black	line	
represents	 the	 average	 INFO	 scores	 for	 different	 allele	 frequency	 bins	 in	 6,000	 European	
individuals	 genotyped	 using	 Omni2.5	 array	 from	 a	 recent	 GWAS	 of	 Primary	 Sclerosis	
Cholangitis(129).	The	 INFO	scores	 for	 these	 individuals	 is	1.5X	 less	 than	 the	predicted	genome-
wide	INFO	scores	for	SNPs	at	the	specified	allele	frequency	bins.	(b)	The	black	line	represents	the	
average	r2	scores	 for	different	allele	 frequency	bins	 in	 the	same	6000	 individuals.	Similar	 to	 the	
INFO	scores,	the	r2	is	1.5X	less	than	the	predicted	genome-wide	r2	scores	for	SNPs	at	the	specified	
allele	 frequency	 bins.	 Error	 bars	 represent	 the	 standard	 error	 of	 the	mean	 for	 the	 INFO	 and	 r2	
values.	

	

	

	

	

Imputation quality: INFO score

Minor allele frequency

IN
FO

 s
co

re

0.001 0.005 0.01 0.05 0.1 0.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Genome wide
IFITM locus

Imputation quality: r2

Minor allele frequency

Im
pu

ta
tio

n 
r2

0.001 0.005 0.01 0.05 0.1 0.5

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Genome wide
IFITM locus

(a) (b)



	
 
 
 

67	

2.5.				Discussion	
	

The	main	conclusion	from	this	study	is	that	IFITM2	and	IFITM3	genes	are	

poorly	covered	by	all	existing	genotype	arrays.	As	a	consequence,	common	variant	

associations	with	infectious	disease	phenotypes	within	these	genes	may	have	been	

missed	via	GWAS.		

	

I	 screened	 several	 commercially	 available	 genotyping	 arrays	 to	 estimate	 the	

coverage	 across	 African,	 Asian	 and	 European	 populations	 and	 found	 that	 the	

average	coverage	for	IFITM2	and	IFITM3	is	£	25%	across	all	populations,	placing	

both	these	genes	in	the	bottom	7%	of	protein-coding	genes	analysed.	This	reflects	

the	 fact	 that	a	significant	proportion	of	 tag	SNPs	do	not	have	strong	correlation	

with	other	single	nucleotide	polymorphisms	in	the	region	and	therefore	are	unable	

to	tag	most	of	the	IFITM2	and	IFITM3	common	SNPs.		

	

In	order	to	calculate	coverage,	one	makes	the	assumption	that	all	SNPs	in	the	array	

will	 pass	 the	 different	QC	 steps	 required	 for	 GWAS	 analysis(132).	 Although	QC	

thresholds	are	subjective,	markers	can	fail	QC	due	to	a	variety	of	reasons	including	

differences	in	genotype	call	rates	between	cases	and	controls	or	excessive	missing	

data	 rate(132).	A	 consequence	of	 this	 is	 that	 values	 reported	 in	 this	 study	may	

constitute	 an	 overestimation	 of	 true	 coverage.	 Most	 importantly,	 having	 good	

coverage	 does	 not	 necessarily	 mean	 that	 there	 is	 good	 power	 to	 detect	

associations.	 In	 cases	where	 causal	 SNPs	 have	 large	 effect	 sizes,	 an	 association	

signal	can	be	detected	even	when	the	correlation	r2	<	0.8(133).		

	

Although	coverage	is	boosted	in	genotyping	arrays	that	carry	increased	number	of	

tag	SNPs,	the	implication	of	this	is	that	important	genetic	signals	may	be	missed	if	

the	variant	 is	not	directly	 genotyped.	The	hemoglobin	S	 (HbS)	 locus	 is	 a	 classic	

example	 where	 a	 similar	 situation	 has	 been	 observed.	 HbS	 is	 a	 well-known	

determinant	of	risk	for	Malaria	with	protective	effects	conferred	by	the	causal	SNP	

rs344	.	This	variant	is	located	in	chr11,	in	the	coding	region	of	the	beta	globin	gene	
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(HBB).	 In	 a	 landmark	 study	 of	 Malaria	 in	 The	 Gambia,	 it	 was	 observed	 that	

association	 signals	 with	 rs344	 barely	 reached	 genome-wide	 significance	 (P	

value=3.9x10-7)	when	genotyped	with	Affymetrix	500K.	Close	examination	of	the	

region	revealed	that	 there	were	no	strong	correlations	between	tag	SNPs	 in	 the	

array	and	 the	 rs344	variant.	The	SNP	 rs344	was	not	directly	 genotyped	 in	 that	

study	 (i.e.	 not	 a	 tag	 SNP	 in	 the	 array),	 therefore	 the	 power	 to	 detect	 any	

associations	with	it	decreased	substantially	(123).	

	

Imputation	methods	are	commonly	used	in	GWA	analysis	to	boost	power	to	detect	

association(106,	 123,	 133).	 They	 rely	 on	 reference	 panels	 to	 ‘fill	 in’	 gaps	 for	

variants	not	included	in	the	genotyping	arrays.	Strict	quality	controls	are	therefore	

required	in	order	to	reduce	the	false	positive	signals	from	these	in	silico	genotypes.	

One	such	quality	measure	is	the	Info	score	that	is	automatically	generated	by	some	

imputation	softwares	(134).	By	looking	at	the	info	score	for	my	region	of	interest,	

I	found	that	the	quality	of	imputation	given	by	the	IMPUTE2	INFO	scores	is	1.5X	

lower	 for	 the	 IFITM	 locus	 compared	 to	 the	 rest	 of	 the	 genome.	 This	 trend	 is	

observed	 across	 the	 full	 spectrum	 of	 allele	 frequencies	 (0.001	 £	 MAF	 £	 0.5).	

Although	the	quality	of	the	imputation	is	dependent	on	factors	such	as	the	quality	

of	the	phasing	and	regional	haplotype	structures(123,	134),	our	results	highlight	

the	difficulties	of	 capturing	 the	 full	 extent	of	 variation	 for	 the	 region	even	after	

imputation.	

	

Lastly,	this	study	provides	proof	of	principle	that	the	lack	of	GWA	signals	can	at	

least	in	part	be	explained	by	lack	of	tagging	efficiency	of	the	genotyping	arrays.	This	

work	 also	 emphasises	 the	 importance	 of	 understanding	 local	 variation	 in	

haplotype	structures	of	regions	of	interest.	For	the	IFITM	locus,	the	low	coverage	

of	genotyping	arrays	means	that	the	full	variation	of	the	region	cannot	be	analysed,	

thus	signals	of	association	in	the	region	could	be	missed.		

	

Given	 that	 a	 significant	 proportion	 of	 variants	 have	 no	 strong	 marker	 SNPs,	

imputation	analysis	would	be	crucial	for	association	analysis.	Although	the	data	to	

assess	imputation	quality	in	this	study	is	limited	to	only	one	genotyping	array,	I	
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show	that	imputation	quality	is	lower	for	the	region.	As	a	consequence,	genotyping	

is	not	the	best	experimental	design	to	test	for	association	in	this	locus	unless	better	

imputation	panels	become	available	or	more	SNPs	are	included	in	the	genotyping	

arrays.	Other	approaches	such	as	direct	sequencing	could	possibly	overcome	the	

problems	of	this	region.			
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3.				Targeted	sequencing	of	the	IFITM	

locus	
	

3.1.				Introduction	
	

In	the	previous	chapter,	I	established	that	IFITM2	and	IFITM3	are	amongst	

7%	of	all	protein	coding	genes	with	less	than	25%	common	variant	(minor	allele	

frequency	 >	 0.05)	 coverage	 across	 all	 arrays.	 Furthermore,	 all	 attempts	 to	

characterise	 IFITM	 variation	 by	 sequencing	 have	 focused	 on	 sanger	 sequencing	

one	SNP	(rs12252),	located	at	5’	end	of	IFITM3.		

	

In	 this	 chapter,	 I	 employ	 a	 targeted	 sequencing	 method	 using	 two	 different	

sequencing	 technologies:	 Illumina	MiSeq	and	PacBio	 sequencing	 to	 characterise	

IFITM	variation.	 I	 test	this	method	on	nine	 lymphoblastoid	cell	 lines	(LCLs)	that	

had	been	previously	screened	for	IFITM3	SNP	rs12252.	In	the	following	sections,	I	

present	 some	 background	 information	 on	 two	 of	 the	 main	 target	 enrichment	

methods;	and	explain	the	technical	aspects	of	the	sequencing	platforms	used	in	this	

project.	The	ultimate	goal	of	this	study	is	to	develop	the	right	framework	for	future	

targeted	sequencing	of	the	IFITM	locus.		
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3.1.1.				Hybrid	enrichment	methods	for	targeted	

sequencing	
	

Over	 the	past	decade,	next-generation	sequencing	has	 revolutionised	 the	

field	of	genetics	and	facilitated	the	discovery	of	loci	associated	with	a	number	of	

complex	diseases(126,	129,	135).	There	are	a	number	of	sequencing	techniques	

currently	available	to	scientists	and	the	decision	to	employ	a	particular	technique	

over	another	depends	on	several	factors	such	as	the	number	of	samples,	the	length	

of	 the	 region	of	 interest	 and	 the	overall	 aims	of	 the	 study.	 For	 example,	 sanger	

sequencing	 (capillary	 electrophoresis)	 is	 commonly	 used	 for	 the	 screening	 and	

validation	of	a	small	number	variants	in	relatively	few	regions	(<20)(136,	137).	In	

contrast,	whole	exome	and	genome	sequencing	are	employed	in	larger	sequencing	

projects	when	scientists	require	a	genome-wide	understanding	of	variation(138-

141).	Although	sequencing	costs	have	substantially	fell	in	the	past	few	years,	it	is	

still	 relatively	 expensive	 to	 sequence	 and	 analyse	 whole	 genomes.	 As	 a	

consequence,	targeted	sequencing	provides	scientists	with	the	opportunity	to	scan	

particular	regions	of	the	genome	at	a	relatively	low	cost.	Most	importantly,	it	has	

the	advantage	that	it	can	provide	depths	of	1000x	and	even	higher	for	the	targeted	

regions(138,	142-145).	

	

There	are	 two	main	 target	enrichment	 technologies,	 the	 ‘array-capture’	and	 ‘in-

solution’	 based	methods.	 In	 the	 array-based	methods,	 probes	 immobilised	 on	 a	

microarray	 chip	 hybridise	 to	 a	 fragment	 library,	 non-specific	 fragments	 are	

washed	away	and	the	targeted	DNA	is	eluted.	Roche	NimblGen	first	adapted	the	

technology	 to	 work	 in	 high-throughput	 sequencing	 studies(146)	 back	 in	 2007.	

Their	 high-density	 microarrays	 carrying	 more	 than	 250,000	 oligonucleotides	

>60bp	in	length	spaced	between	1-10	bases	apart,	were	tailored	to	target	over	600	

genes	dispersed	throughout	the	human	genome.	Their	technology	was	originally	

designed	for	the	Roche	454	sequencer	but	many	groups	worked	to	adapt	it	to	other	

technologies	 such	 as	 Illumina	 sequencers(147).	 Although	 the	 method	 was	

undoubtedly	an	improvement	on	other	enrichment	protocols	at	the	time	such	as	
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PCR-based	enrichment,	there	were	disadvantages.	For	example,	in	array-capture	

experiments,	all	enriched	library	DNA	had	to	be	eluted	at	the	same	time,	limiting	

the	number	of	arrays	a	person	could	physically	carry	out	in	a	day.	Furthermore,	the	

excess	of	DNA	 libraries	over	 the	number	of	probes,	meant	 that	 in	order	 for	 the	

hybridisation	reaction	to	occur,	the	starting	material	had	to	be	in	excess	of	8µg.	

	

The	 solution-based	 method,	 on	 the	 other	 hand,	 was	 developed	 by	 Agilent	 to	

overcome	 some	 practical	 difficulties	 of	 microarray-based	 enrichment.	 For	

instance,	 Agilent	 reduced	 the	 amount	 of	 starting	material	 by	 a	 factor	 of	 16	 by	

having	an	excess	of	probes	over	the	template,	driving	the	hybridisation	reaction	to	

completion.	In	addition,	they	substantially	reduced	the	number	of	oligonucleotides	

required	for	the	enrichment,	by	designing	sets	of	probes	that	tiled	across	the	region	

of	interest.	In	their	initial	pilot	study	they	used	22,000	bait	sequences	of	170bp	in	

length	to	target	a	total	of	1,900	genes	in	the	human	genome(148)	.	This	represented	

approximately	11x	less	probe	sequences	than	the	number	used	by	NimblGen	at	the	

time.	In	addition,	performance	comparisons	between	the	array	and	solution-based	

methods	 established	 that	 the	 former	 provided	 a	 more	 uniform	 depth	 of	

coverage(143).		

	

Currently,	 there	 are	 number	 of	 solution-based	 capture	 methods	 including	 the	

Agilent	SureSelect	and	NimbleGen	SeqCap	EZ.	Although	recent	studies	show	that	

Agilent	has	the	highest	target	enrichment	efficiency	and	highest	accuracy	for	SNP	

detection(140,	149),	most	studies	have	highlighted	that	both	technologies	deliver	

similar	sensitivity	 for	single	nucleotide	polymorphism	detection(138,	142,	150).	

The	main	differences	between	both	methods	lie	on	the	type	and	length	of	probes.	

For	example,	Agilent	uses	120bp	RNA	probes	whereas	NimbleGen	uses	60-90bp	

DNA	probes.	Both	technologies	however,	rely	on	hybridisation	reactions	to	enrich	

for	a	region	of	interest	(Figure	12).	The	‘enriched’	DNA	is	then	isolated	from	the	

rest	of	the	genomic	sequences,	using	streptavidin	beads.	The	DNA	is	PCR-amplified	

and	sent	for	sequencing	
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Importantly,	 both	 array	 and	 solution-base	 captures	 have	 been	 adapted	 for	

technologies	 that	 required	PCR	amplification	 steps	 for	 their	 library	preparation	

(Illumina	 MiSeq).	 Only	 recently,	 however,	 several	 laboratories	 have	 started	 to	

adapt	 the	 targeted	 sequencing	 method	 to	 make	 it	 compatible	 with	 other	

technologies	such	as	PacBio	RS	(151,	152)	to	define	structural	variation	in	regions	

of	 the	 genome	 or	 to	 use	 for	 de	 novo	 assemblies	 of	 repetitive	 plant	 genomes.	

Typically,	 PacBio	 has	 been	 used	 successfully	 to	 characterise	 regions	 with	 high	

levels	of	 sequence	 similarity	 that	 cannot	be	 accurately	mapped	with	 short-read	

technologies	(153,	154)	

	

	

	
Figure	12.	A	schematic	 representation	of	 a	 target	 enrichment	method.	 (1)	Genomic	DNA	 is	
sheared	 to	 600-700bp	 (Illumina)	 and	 3kb	 (PacBio).	 (2)	 For	 the	 library	 preparation,	 the	 DNA	
fragments	are	end-repaired,	extended	with	‘A’	bases	to	the	3’	end	of	the	DNA	fragments,	ligated	with	
paired-end	adaptors	and	PCR	amplified.	(3)	The	adaptor-ligated	libraries	are	hybridised	to	oligo	
RNA	probes	 for	24hrs	and	enriched	by	 ‘pulling	down’	with	Streptavidin-coupled	Dynabeads	 (4)	
Libraries	 are	 PCR	 amplified	 and	 (5)	 enriched	 libraries	 are	 processed	 and	 sent	 to	 appropriate	
sequencing	platforms.	
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3.1.2.				Next	generation	sequencing	approaches:	

sequencing	by	synthesis	
	

Currently,	 technologies	 can	 be	 divided	 into	 two	main	 groups:	 those	 that	 use	 a	

sequencing	 by	 synthesis	 strategy	 (Illumina)	 and	 others	 that	 specialise	 in	 single	

molecule	sequencing	(PacBio).	Sequencing	by	synthesis	 is	a	 term	that	describes	

various	sequencing	methods	that	are	dependent	on	DNA-polymerase	activity.	First,	

fragmented	 PCR-amplified	 DNA	 molecules,	 carrying	 sequencing	 adapters,	 are	

bound	to	immobilised	primers	in	a	flowcell.	The	bound	DNA	template	contains	a	

free	end;	therefore,	it	can	interact	with	other	immobilised	primers	nearby,	forming	

a	bridge	structure.	PCR	is	then	used	to	create	a	second	strand	from	these	templates	

and	start	a	process	known	as	solid-phase	amplification	(Figure	13).	For	Illumina	

sequencing,	the	technology	relies	on	a	cyclic	reversible	termination	(CRT)	method	

that	 resembles	 the	 principles	 of	 Sanger	 sequencing(155).	 During	 each	 cycle,	 a	

single	 fluorescently	 labelled	 nucleotide	 is	 incorporated	 to	 the	 new	 strand.	

Following	 this	 incorporation,	 the	 fluorophore	 is	 imaged	 and	 then	 cleaved	 to	

prevent	other	nucleotides	from	occupying	the	same	position	(Figure	13).	It	is	this	

CRT	method	that	enables	Illumina	to	have	such	high	accuracy	rate	(>99%)(156).	

Nonetheless,	this	platform	displays	AT(136,	157)	and	GC(158,	159)	bias	and	can	

underperform	in	repetitive	regions.	For	example,	sequencing	analysis	of	the	AT-

rich	 P.	 falciparum	 genome	 revealed	 that	 Illumina	 provided	 10x	 less	 coverage	

through	AT-rich	regions	compared	to	PacBio	whilst	in	the	GC-rich	R.	sphaeroides	

genome,	Illumina	provided	54x	less	coverage	than	PacBio(160).	As	a	consequence,	

many	groups	interesting	in	sequencing	the	genomes	of	organisms	with	very	low	or	

very	 high	 GC	 content,	 tend	 to	 use	 sequencing	 platforms	 such	 as	 PacBio	 RS	 to	

overcome	these	limitations.	
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Figure	 13.	 Next-generation	 sequencing	 by	 solid	 based	 amplification	 (a)	 For	 Illumina	
sequencing	fragmented	DNA	templates	are	ligated	to	immobilised	primers	on	a	flow	cell.	The	bound	
fragments	 are	 amplified	 using	 nearby	 primers.	 (b)	 Soon	 after	 amplification,	 a	 mixture	 of	 DNA	
primers,	polymerase	and	four	fluorophores-labelled	nucleotides	(F-A,	F-T,	F-G,	F-C)	are	added	to	
the	reaction.	All	bases	contain	a	specific	cleavage	fluorophore	(F)	that	is	imaged	once	it	hybridises	
to	the	newly	form	strand.	Figure	adapted	from	Goodwin,	et	al.,	2016	(155).	

	

3.1.3.				Next	generation	sequencing	approaches:	single	

molecule	sequencing	
	

Long-read	 sequencers	 such	 as	 PacBio,	 use	 a	 single-molecule	 real-time	

(SMRT)	sequencing	approach	that	does	not	require	PCR-amplified	DNA	libraries.	

Instead,	 fragmented	DNA	 is	 capped	 by	 hairpin	 loops	 at	 either	 end,	 and	 hairpin	

adapters	are	ligated	to	these	loops	to	provide	the	binding	site	for	DNA	polymerase	

(Figure	14).	Unlike	the	 Illumina	methodology,	where	the	DNA	polymerase	travels	

along	 the	 template,	 PacBio	 polymerase	 has	 a	 fixed	 position	 at	 the	 bottom	 of	

specialised	flowcell	wells	known	as	zero-mode	waveguides	(ZMW).	The	stationary	

position	of	the	DNA	polymerase	means	that	the	system	focuses	on	a	single	molecule	

at	 a	 time	 and	 circular	 topology	 of	 the	 SMRT-bell	 template	 also	 allows	 the	

polymerase	 to	have	multiple	passes	along	 the	DNA	molecule	 (Figure	15).	These	

(a)

(b)

Template	binding

Bridge	amplification Cluster	generation

Flow	cell

Nucleotide	addition Imaging	 Cleavage



	
 
 
 

76	

multiple	passes	are	used	to	generate	high	quality	consensus	reads	of	insert	(ROI)	

with	up	to	1%	error	rate(155).	

	

	
Figure	14.	SMRTBell	template.	Hairpin	adaptors	(blue)	are	ligated	to	the	end	of	a	double-stranded	
DNA	molecule	(red	and	green).	The	DNA	polymerase	is	bound	to	the	blue	adaptors	and	anchored	
at	the	bottom	of	the	zero-mode	waveguide	(ZMW)in	the	SMRT	cell.	Figure	adapted	from	Goodwin,	
et	al.,	2016(155).	
	

	
Figure	15.	Single-molecule	real-time	(SMRT)	sequencing	from	Pacific	Biosciences	(PacBio).	
SMRTbell	 libraries	 are	 loaded	 to	 a	 SMRT	 cell	 that	 contains	 tens	 of	 thousands	 of	 zero-mode	
waveguides	(ZMW).	Each	ZMW	well	is	illuminated	from	below,	but	the	light	wavelength	is	too	large	
to	go	all	the	way	through	the	well.	Thus,	attenuated	light	penetrates	the	lower	20-30nm	of	the	well	
and	creates	a	detection	volume.		A	DNA	template-polymerase	complex	is	immobilized	at	the	bottom	
of	this	ZMW	well,	in	the	detection	volume.	A	mixture	of	labelled	nucleotides	is	added	to	the	SMRT	
cell	and	as	each	nucleotide	is	held	at	the	detection	volume	by	the	enzyme’s	active	site,	a	light	pulse	
is	 produced.	 During	 the	 nucleotide	 incorporation,	 the	 phosphate	 group	 is	 cleaved	 and	 the	
fluorophore	attached	to	the	nucleotide	diffuses	away.	This	process	occurs	in	parallel	within	each	of	
the	tens	of	thousands	of	ZMW	wells	that	make	up	the	SMRTcell.	Figure	adapted	from	Goodwin,	et	
al.,	2016(155).	

	
The	PacBio	RS	has	the	advantage	of	producing	long	sequencing	reads.	For	example,	

it	can	generate	average	polymerase	reads	of	10-15kb	in	length	which	are	ideal	for	

de	novo	assemblies	of	genomes	that	are	generally	difficult	to	assemble	with	shorter	

reads.	For	example,	PacBio	sequencing	data	of	AT-rich	genome	of	the	P.	malariae	

species,	enabled	 the	successful	assembly	of	 this	genome	using	only	63	scaffolds	

with	average	 length	of	2.3Mb.	 In	contrast,	previous	draft	genomes	for	this	same	

species	using	Illumina	short	reads	required	7,270	scaffold	with	average	length	of	

6.4kb(161).		

ZMW well

DNA polymerase

Nucleotide
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In	 addition,	 long	 PacBio	 reads	 have	 helped	 solve	 gaps	 and	 complex	 long-range	

genomic	structures	in	the	human	genome.	For	example,	using	de	novo	assembly	of	

a	 haploid	 cell	 line,	 Chaisson,	 et	 al.,	 2015	 closed	 55%	of	 sequencing	 gaps	 in	 the	

human	 GRCh37	 reference	 genome.	 The	 majority	 of	 these	 gaps	 represented	

repetitive	 elements	 in	 GC-rich	 regions	 of	 the	 genome	 that	 had	 remained	

inaccessible	 to	 short-read	 sequencing	 technologies(154).	 This	 assembly	 also	

identified	 47,238	 breakpoint	 positions	 that	 resolved	 over	 25,000	 euchromatic	

structural	 variations	 (SVs),	 including	 inversions,	 large	 deletions	 and	 repetitive	

regions(162).		

	

Despite	these	advantages,	however,	there	are	notable	limitations	of	the	PacBio	RS	

technology.	 For	 instance,	 single-pass	 PacBio	 reads	 contain	 	 approximately	 12%	

insertion	 errors,	 2%	 deletions	 errors	 and	 1%	 mismatch	 errors(163).	

Notwithstanding,	 Carneiro,	 et	 al.,	 showed	 that	 these	 errors	 were	 randomly	

distributed	within	each	read	and	that	read	length	and	base	position	did	not	have	

an	effect	on	base	quality,	demonstrating	that	with	a	high	enough	coverage	(10X),	it	

is	possible	to	overcome	such	disadvantages(163).	

	

3.1.4.				Why	use	longer	reads	to	sequence	the	IFITM	

region	
	

Over	 the	 past	 few	 years,	 several	 in	 vivo	 and	 in	 vitro	 studies	 have	

demonstrated	 the	 important	 role	 of	 the	 IFITM	 genes	 as	 restriction	 factors	 of	 a	

number	 of	 infectious	 diseases(55,	 73,	 74,	 77,	 164).	 However,	 no	 genome-wide	

association	studies	have	reported	any	significant	associations	in	or	around	these	

genes.	Close	examination	of	my	region	of	interest,	using	publicly	available	whole	

genome	dataset	(75bp	paired-end	reads),	shows	that	there	are	regions	(>130bp)	

within	 the	 IFITM	 locus	 that	have	no	depth	of	 coverage	 (Figure	16).	 In	 addition,	

using	whole	 genome	PacBio	 sequencing	data	 (Sample	 ID	NA12878),	 I	 observed	

that	PacBio	reads	were	able	to	span	those	regions.	As	a	result,	I	hypothesised	that	
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long	sequencing	reads	could	help	resolve	some	of	the	observed	sequencing	gaps	in	

the	IFITM	locus.	
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Figure	16.	Depth	of	coverage	for	the	IFITM	region.	Each	coloured	line	on	the	top	panel	represents	coverage	of	100	cancer	individuals	that	had	been	whole	genome	
sequence	at	a	coverage	of	60x.	Two	samples	(represented	by	a	blue	and	green	lines)	had	higher	genome	coverage	of	120X	and	150X,	respectively.	The	stars	highlight	
three	regions	near	the	IFITM	genes	where	coverage	is	zero.	The	middle	panel	shows	pooled	reads	from	these	samples	(green	and	blue)	showing	the	gaps	of	coverage	
near	IFITM	genes.	The	bottom	panel	shows	PacBio	reads	for	a	sample	NA12878.	Whole	genome	sequencing	of	NA12878	with	PacBio	RS	demonstrates	that	long	PacBio	
reads	can	span	regions	difficult	to	sequencing	using	Illumina	technology.		
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3.2.				Aims	
	

The	aim	of	this	pilot	study	is	to	conduct,	for	the	first	time,	a	comprehensive	

screening	of	IFITM	genetic	variation	in	nine	healthy	population	samples.	As	part	of	

this	work,	 I	will	 assess	 the	performance	of	 two	 sequencing	platforms	 and	 their	

ability	to	capture	variants	in	the	region.		

	

3.3.				Statement	of	work	
	

All	 the	work	presented	 in	 this	chapter	 is	my	own	work	unless	otherwise	

stated.	This	research	was	also	carried	out	under	the	supervision	and	guidance	of	

Dr.	Thomas	Dan	Otto	and	Dr	Paul	Coupland	at	the	Wellcome	Trust	Institute	(WTSI)	
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3.4.				Methods	
	

3.4.1.				Cell	culture	and	DNA	extraction	
	

Lymphoblastoid	cell	lines	(LCL)	from	nine	unrelated	individuals	(Table	6)	

included	in	the	1000	Genomes	Project	and	distributed	by	Coriell	Cell	Repository	

were	 selected	 for	 this	 study.	 These	 cells	 were	 maintained	 in	 RPMI	 1640	 plus	

Glutamax	 medium	 (61870-010,	 Invitrogen)	 supplemented	 with	 20%	 v/v	 Fetal	

Bovine	Serum	(FBS	Biosera)	and	incubated	at	37oC	in	5	%	CO2.	LCLs	were	passaged	

twice	a	week	(1:10	split).	Genomic	DNA	was	extracted	from	these	LCLs	using	Blood	

and	Cell	culture	kits	(Qiagen,	Germany)	following	the	manufacturer’s	instructions.	

Because	the	purified	DNA	was	subsequently	used	for	targeted	sequencing	of	the	

IFITM	 locus	with	 PacBio	RS,	 harsh	 vortexing	was	 avoided	 throughout	 the	 DNA	

extraction.	
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Table	6.	Table	representing	details	of	the	DNA	samples	used	in	this	study	

Samples	
Population	

code	
Description	

NA11994	 CEU	
Utah	 residents	 with	 Northern	 and	 Western	

European	ancestry	

NA12154	 CEU	
Utah	 residents	 with	 Northern	 and	 Western	

European	ancestry	

NA12155	 CEU	
Utah	 residents	 with	 Northern	 and	 Western	

European	ancestry	

HG00524	 CHS	 Han	Chinese	South	

HG00478	 CHS	 Han	Chinese	South	

HG00530	 CHS	 Han	Chinese	South	

HG00533	 CHS	 Han	Chinese	South	

HG00557	 CHS	 Han	Chinese	South	

HG01108	 PUR	 Puerto	Rican	in	Puerto	Rico	

	

3.4.2.				Probe	design	
	

This	study	was	carried	using	SureSelect	biotinylated	120bp	RNA	probes.	In	

the	 first	 phase,	 I	 designed	 probes	 (ELID	 0604211)	 that	 covered	 approximately	

96%	of	the	IFITM	locus	from	Chr11:280,000-380,000,	including	repetitive	regions.	

I	wanted	to	capture	most	of	the	locus	(including	repeat	regions)	and	so	I	purposely	

used	the	least	stringent	repeat	masking	in	my	designs.	To	refine	the	probe	library,	

I	 excluded	 probes	 with	 95%	 and	 greater	 sequence	 similarity	 with	 off-target	

sequences	in	the	genome.	In	this	first	study,	I	only	used	three	of	the	nine	selected	

samples	(Table	7).	

	

Unsurprisingly,	 the	 low	 pulldown	 efficiency	 shown	 in	 Table	 7	 is	 the	 result	 of	

including	probe	sequences	that	span	repetitive	regions.	Following	this	first	pilot,	I	
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established	that	100%	similarity	of	a	continuous	25bp	region	was	sufficient	for	off-

target	hybridisation	(Personal	communication	with	Agilent	representatives).		

For	the	second	phase	of	the	study,	I	used	the	same	probe	library	as	a	backbone	and	

excluded	a	number	of	probes	with	 ‘hits’	on	several	 chromosomal	 regions	of	 the	

genome.	 The	 final	 probe	 design	 for	 the	 region	 (ELID	 0695421),	 still	 contained	

probe	sequences	spanning	repetitive	regions	but	in	less	numbers.	This	left	a	total	

of	 3,198	 probe	 sequences,	 covering	 around	 81.6%	 of	 my	 region	 of	 interest	

(Chr11:280,000-380,000).	All	the	data	shown	in	this	chapter	is	the	result	of	this	

last	pulldown	pilot	experiment.	

	
Table	7.	Table	representing	the	pulldown	efficiency	of	three	initial	samples	used	in	the	study	

Samples	
Pulldown	efficiency	(%)	

Pacbio	 Illumina	MiSeq	

NA12154	 4.4	 5.3	

NA12155	 6.0	 1.3	

HG00524	 5.1	 1.7	

	

		

3.4.3.				Target	enrichment	of	the	IFITM	region	to	

sequence	with	Illumina	
	

	 Library	preparation	and	SureSelect	 targeted	sequencing	 for	 Illumina	was	

performed	 by	 Sara	 Widaa	 at	 the	 Sanger	 Institute.	 Briefly,	 genomic	 DNA	 was	

sheared	 using	 a	 Covaris	 S2	 (Covaris,	 Inc.,	Massachusetts,	 USA)	 to	 obtain	 700bp	

fragment	libraries.	Illumina	library	preparation	and	probe	hybridisation	(capture	

baits	 ELID	 number	 0695421)	 was	 carried	 out	 following	 Agilent	 SureSelect	 XT	

Target	 Enrichment	 System	 for	 Illumina	 Paired-End	 Sequencing	 Library.	

Sequencing	data	generated	from	these	runs	were	released	in	the	form	of	fastq	files	

by	the	Pathogen	Sequencing	Informatics	team	at	the	Sanger	Institute.	
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3.4.4.				Target	enrichment	of	the	IFITM	region	to	

sequence	with	PacBio	
	

The	steps	below	describe	the	method	I	developed	to	prepare	the	samples	for	

enrichment	and	subsequent	sequencing	with	PacBio	RS.	My	method	is	based	on	the	

Agilent	 SureSelectXT	 Target	 Enrichment	 System	 for	 Illumina	 Paired-End	

Sequencing	Library,	Illumina	HiSeq	and	Miseq	Multiplexed	Sequencing	Platforms.	

Protocol:	Version	1.6,	October	2013.	There	are	four	main	workflows	in	the	method:		

1. Preparing	the	genomic	DNA	for	hybridisation	

2. Hybridising	the	genomic	DNA	to	the	custom	probes	

3. Post-amplifying	the	hybridised	libraries		

4. Constructing	SMRTbell	libraries.	

	

1. Preparing	the	genomic	DNA	for	hybridisation	
	

Shearing	

I	sheared	the	genomic	DNA	using	a	Covaris	S2	(Covaris,	Inc.,	Massachusetts,	USA)	

at	a	20%	duty	cycle,	level	5	intensity	and	200	cycles	per	burst	for	600s	to	obtain	

3kb	average	fragment	lengths	(Figure	17).	

	
Figure	 17.	 Electopherogram	 of	 fragmented	 DNA.	 This	 Electopherogram	 shows	 the	 size	
distribution	of	DNA	fragments	following	shearing	with	Covaris	S2	ultrasonicator.	The	peaks	at	50bp	
and	10,000bp	represent	the	DNA	ladder.	The	wider	peak	with	sizes	ranging	from	2,000-6,000bp	
represent	the	DNA	fragment	of	interest.	
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Preparation	of	samples	for	hybridisation	

I	 purified	 and	 size	 selected	 the	 DNA	 by	 adding	 0.6X	 Agencourt	 AMPure	

beads	 (Beckman	Coulter)	 to	 120µl	 of	 sheared	 genomic	DNA.	 The	 quality	 of	 the	

sheared	libraries	was	assessed	by	running	samples	on	the	Agilent	2100	Analyser	

(Agilent	Technology,	California,	USA).	This	was	followed	by	end	repair	steps,	dA-

tailing	of	3’	ends	of	the	genomic	DNA	and	ligation	of	sequencing	adaptors	following	

the	 SureSelect	 XT	 Target	 Enrichment	 System	 instructions	 (Agilent	 Technology,	

California,	USA).		

Amplification	of	DNA	libraries	

The	 PCR	 conditions	 for	 library	 amplification	 were	 optimised	 to	 fit	 the	

fragment	 sizes	 of	 the	 genomic	 DNA	 (Table	 8)	 to	 enable	 the	 amplification	 of	

fragments	 ³	 3kb	 with	 the	 lowest	 number	 of	 cycles.	 The	 low	 number	 of	 cycles	

ensures	 the	 minimal	 number	 of	 PCR	 type	 errors	 being	 introduced.	 	 For	 the	

amplification	reaction,	 I	used	Herculase	II	Fusion	DNA	Polymerase	enzyme	with	

the	following	conditions:	

	
Table	8.	Optimised	PCR	conditions	for	PCR	amplification	of	libraries	

Steps	 Temperature	[oC]	 Time	

1	 98	 2	min	

2	 98	 30	secs	

3	 65	 30	secs	

4	 72	 3	min	+	10	secs		

(repeat	step	2-4	for	6	cycles)	5	

6	 72	 10	min	

7	 10	 Hold	
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2. Hybridisation	of	genomic	DNA	and	probe	libraries	

I	prepared	each	DNA	library	to	a	concentration	of	221ng/µl,	in	a	final	volume	

of	3.4µl.	I	then	added	5.6µl	of	SureSelect	block	mix	to	avoid	hybridisation	of	probes	

to	library	indexes.	This	was	followed	by	the	addition	of	40µl	of	hybridisation	buffer	

and	 2µl	 of	 SureSelect	 RNA	 probes	 (capture	 baits	 ELID	 number	 0695421).	 The	

hybridisation	reaction	was	left	on	a	thermal	cycler	at	65°C.	After	18hrs,	 I	added	

200µl	of	a	mixture	of	Dynabeads	MyOne	Streptavidin	T1	and	SureSelect	Binding	

Buffer	 to	 the	 hybridisation	 reaction.	 With	 my	 captured	 DNA	 retained	 on	 the	

streptavidin	 beads,	 I	 then	 proceeded	 to	 purify	 and	 concentrate	 the	 hybridised	

library	to	a	final	30µl	volume.	

3. Amplification	of	hybridised	libraries	

I	 used	 14µl	 of	 the	 Biotinylated	 RNA	 library	 hybrids	 for	 the	 amplification	

reaction	(Table	9).	This	meant	that	for	every	pulldown	experiment,	I	was	able	to	

carry	out	 four	amplification	 reactions	 if	 the	DNA	concentration	 remained	 low.	 I	

proceeded	to	amplify	the	DNA	using	Herculase	II	Fusion	DNA	Polymerase	under	

the	following	PCR	conditions:	
Table	9.	Optimised	PCR	conditions	for	the	PCR	amplification	steps	

Step	 Temperature	 Time	

Step	1	 98°C	 2	minutes	

Step	2	 98°C	 30	seconds	

Step	3	 57°C	 30	seconds	

Step	4	 72°C	 3	minutes	

Step	5	 	 Repeat	 step	 2	

through	 to	 4	 for	 16	

cycles	

Step	6	 72°C	 10	minutes	

Step	7	 10°C	 Hold	
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4. Pacbio	SMRTbell	library	preparation	

The	hybridised	libraries	were	quantified	via	fluorescence	using	Qubit.	This	was	

followed	by	end	repair	of	non-phosphorylated	5’	ends	PCR	products	and	sample	

purification.	 I	 then	 ligated	 blunt	 hairpin	 adapters	 following	 manufacturer’s	

instructions,	included	in	the	PacBio	template	kit	for	2kb	fragments.	I	carried	out	

the	SMRTbell	quality	assessment	using	Agilent	2100	Analyser	(Agilent	Technology,	

California,	USA)	and	quantified	the	library	using	Qubit.	Libraries	were	sequenced	

using	two	SMRT	cells	per	sample.		

Due	 to	 the	 number	 steps	 involved	 (>100)	 in	manually	 constructing	 libraries	 to	

sequence	 with	 PacBio	RS,	 the	 typical	 DNA	 yield	 is	 very	 low.	 For	 the	 pulldown	

hybridisation	step,	I	had	a	yield	of	approximately	8-10%	of	my	starting	material	

(Table	10).		

	
Table	10.	DNA	sample	concentration	for	different	library	preparation	steps	

	

Samples	
Total	starting	
concentration	

(µg)		

Pre-pulldown	
concentration	
amplification	

(µg)	

Post-
pulldown	

concentration	
(µg)		

Final	
concentration	
after	PacBio	
library		
	(µg)	

NA11994	 3.0	 3.8	 0.18	 0.14	

NA12154	 3.0	 4.8	 0.20	 0.14	

NA12155	 3.0	 4.2	 0.12	 0.08	

HG00524	 3.0	 3.9	 0.12	 0.08	

HG00478	 3.0	 4.6	 0.22	 0.17	

HG00530	 3.0	 4.1	 0.19	 0.13	

HG00533	 3.0	 4.0	 0.21	 0.17	

HG00557	 3.0	 3.7	 0.15	 0.11	

HG01108	 3.0	 3.8	 0.09	 0.06	
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3.4.5.				Analysis	of	PacBio	and	Illumina	

sequencing	data	
	

I	 generated	 ROI	 with	 a	 minimum	 of	 1	 pass	 along	 the	 insert	 and	 90%	

accuracy	using	the	SMRT	portal	(Table	11).	The	average	quality	for	the	ROI	>98%	

and	 the	 average	 length	 =	 1,500bp	 (Figure	 18).	Due	 to	 the	 nature	 of	 the	 library	

preparation,	 ROI	 contained	 the	 insert	 of	 interest	 as	 well	 as	 PCR	 amplification	

primers	 and	 indexes.	 The	 PCR	 primer	 sequences	 are	 not	 publicly	 available.	

However,	by	definition,	PCR	primers	and	indexes	should	be	situated	at	the	start	

and	end	of	each	ROI.	I	therefore	removed	70bp	from	each	end	of	ROI	to	guarantee	

exclusion	of	these	sequences	from	downstream	data	analysis	(Figure	19).	

	

Figure	18.	Reads	of	Insert	for	PacBio.	Reads	of	Insert	(ROI)	were	generated	using	the	SMRT	portal	
website.	Reads	are	approximately	1,500bp	in	length.	
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Table	11.	Statistic	measures	for	PacBio	Reads	of	Insert	generated	in	the	SMRT	Portal.		

	

Samples	 Length	of	insert	
(bp)	

Quality	of	insert	
(%)	 Number	of	passes	

NA11994	 1,358	 98.5	 10.0	

NA12154	 1,270	 98.8	 12.0	

NA12155	 1,383	 98.8	 12.0	

HG00524	 1,486	 97.7	 8.0	

HG00478	 1,416	 98.0	 8.0	

HG00530	 1,500	 98.7	 11.0	

HG00533	 1,465	 98.4	 9.0	

HG00557	 1,465	 98.4	 9.0	

HG01108	 1,591	 98.9	 10.0	
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Figure	19.	PacBio	Read	of	Insert	carrying	Illumina	library	adapters.	This	is	a	true	representation	of	a	Read	of	Insert	(ROI)	with	99%	accuracy.	Highlighted	in	red	
are	the	Illumina	adapters	commonly	used	during	the	library	preparation	to	amplify	the	DNA	libraries.	Highlighted	in	yellow	are	the	regions	targeted	by	sequencing	
primers	in	Illumina.	These	sequencing	primers	enable	the	insert	or	region	of	interest	to	be	sequenced	with	little	Illumina	adapters	or	primers’	contamination.	In	this	
pilot	study,	a	combination	of	Illumina	library	preparation	and	PacBio	sequencing	was	applied.	A	SMRTbell	with	the	insert	as	well	as	the	Illumina	primers	and	adapters	
was	sequenced.	As	a	result,	70bp	of	DNA	sequenced	had	to	be	trimmed	from	both	ends	of	the	Reads	of	Inserts	to	ensure	that	there	was	no	primer	contamination	in	
the	final	sequence.

A

Insert GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 5�ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5' AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

A
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

5�ACACTCTTTCCCTACACGACGCTCTTCCGATCT

5'CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

>m140525_090102_00127_c100646712550000001823121809101487_s1_p0/1579/ccs
AATGATACGGCGACCACCGAGATCTACACTCTTTCCTACACGACGCTCTTCCGATCTCGCACTACCATGC
CCAGCTAATTTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGGATGGTCTCGATCTCT
TGACCTCGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGTGAGCCACCGCGCCCGGCCT
GTCTTTGATCTTTCTGATAAGTGCGTAGAAGAAAACGCTGACGTATGCTGCCTTCCCTCTCTGTTTCGGC
TACCTATAAGGGAAGGGCCCCTGTCCTATGATCATGTGACTTGCTTGACCTTATCAATCATTTGGATGAC
TCACCCTCCTTACCCTGCCCCCTTGTTTTGTATACAATAAATATCAGTGCACCCAGCCATTCAGGGCCAC
TACCGGTCTCCGCGTCTTGGTGGTAGTAGTCCCCCCGGGCCCAGCTGTTTTTCTCTTTATCTCTTTGTCC
TGTGTCTTTATTTCGTACGATCTCTCTCTCGTCTCCACACACGGGGAGAACACCCGTCAAGCCCCGTAGG
GCGGGACCCTACATTTTCACGCCTTGTAATCCCAGCACTTTGGGAGGCCACGGCGGGTGGATCACCTGAG
GTTAGGGGTTCGAAACCAGCCTGACCAACATGGTGAAACCCTGTCTCTACTAAAAACACGAAAATTAGCT
GGGCATGGTGGCGGGTGCCTATAATCCCAGTTAGTCGGGAGGCTGAGGCAGGAGAATTGCTTGAACCTAG
GAGGCAGAGGTTGCAGTGAGCTGAGATCACGCCACTGCACTCCAGCCTGGGCAGCAGAGCAAGACTCCGT
GTCAAAAAAAAGAAAAAAAAAAAGCTGGATTATCATGTAAGATCTTCTGATCTTTCAATGTGGGCAACTA
ATTTGAAAAATTGGCTTTTAAAAAATGTTAGAGTAATGTCTGCATATGGATTAAAAAGACCAACAGTAGT
AGGACTGAAAGGCTCATAGTGAAAAACAACCCAAAGTATGTGTTAATTAAATGAATGAGCTGTGTTCCGA
ATTTTAACTTTATTTTAAACTGTAAATTGATAAACTCCAACCTCTTAGAAGATAGTTTTTGTTTTTTTGT
CTCCGAAAGCAAATAAAGGTTTTTAACCTTGGGAATATTTTTACTGTTAAATAAAAATGTTAAAATTAGA
AAGTGTAGCTAGATGTAGTTTGCTAAAAATTATCTAGATGTAAATTCTTAAAATTAGAAAGTGTATCTAG
ATGTAAAAAGTCAGGAGAGACCATGAGTTGCTCCCGTTTGTTTAAAAAGCAGGCTTTATGTAGATGGCAT
TCTCGAACTTCCATTATTTAATTTTTTAAGGATTTTAAATCACATGAACATGAATTCCTAATAACAATGT
ACATGTATGGCCTATGGCCTATGGCTTTATCTTTAAAATCAGAACTAAAATAGGCAAATAATTTTTCTGT
ATGTTTGACATTTTTCAAAATAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTAT
GCCGTCTTCTGCTTG
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I	 aligned	 the	ROI	 for	PacBio	data	and	 Illumina	paired-ends	 reads	 to	 the	Human	

Reference	Genome	hs37d5	with	bwa-mem(165).	In	order	to	increase	the	quality	of	

downstream	variant	calling,	I	 followed	the	data	processing	guidelines	set	out	by	

the	GATK	pipeline.	First,	I	marked	duplicates	and	added	read	group	information	

using	Picard	Tools	(http://picard.sourceforge.net).	Using	GATK	version	3.6,	I	re-

calibrated	each	base	in	the	bam	file	using	a	process	known	as	Base	Quality	Score	

Recalibration	(BQSR).	Variant	calling	algorithms	rely	on	the	quality	score	of	each	

base	in	the	sequencing	reads.	These	quality	scores	are	generated	by	the	sequencing	

machines	 and	 are	 therefore	 subjected	 to	 technical	 errors.	 Base	 Quality	 Score	

Recalibration	 (BQSR)	 is	 a	 pre-processing	 step	 developed	 by	 the	 GATK	 team	 in	

which	they	adjust	the	quality	scores	per	base	using	external	information	for	known	

variants	in	dbSNP	or	1000	Genomes.	Following	recalibration,	I	performed	variant	

calling	using	HaplotypeCaller(166)	with	the	following	parameters:	 -ERC	GVCF	--

allowNonUniqueKmersInRef	 to	 create	 single	 sample	 gVCFs.	 I	 then	 ran	

GenotypeGVCF	to	combine	files	into	one	VCF.	

To	QC	the	raw	variants	for	both	PacBio	and	Illumina,	I	followed	the	hardfiltering	

recommendations	stated	by	GATK	(Figure	20).	Due	to	the	low	number	of	samples,	I	

could	 not	 apply	 the	 Variant	 Quality	 Score	 Recalibrator	 (VQSR)	 which	 uses	

sophisticated	machine	learning	processes	for	the	QC	steps.(167).	The	hardfiltering	

parameters	included	were:		

	

QualByDepth	(QD)	metric	that	represents	the	quality	of	the	variant	normalised	

by	 the	 allele	 depth	 (AD).	 This	 way	 variants	 in	 high	 depth	 regions	 do	 not	 have	

artificially	 inflated	 QUAL	 scores.	 The	 generic	 recommendation	 suggests	 that	

variants	with	QD	<2	should	be	filtered	out.	

	

Fisher	 Strand	 (FS)	 which	 represents	 the	 Phred	 scale	 probability	 that	 there	 is	

strand	bias	at	that	site.	A	value	equal	to	0	means	that	there	100%	confidence	there	

is	no	strand	bias	at	that	site.		
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StrandOddsRatio	(SOR)	is	an	updated	form	of	the	Fisher	Strand	test	better	suited	

to	analyse	large	amounts	of	data	in	high	coverage	regions.	The	name	in	this	case	

does	not	represent	the	annotation	because	SOR	is	not	an	odds	ratio,	it	was	changed	

by	the	GATK	throughout	the	development	of	the	test.		

	

RMSMapping	 Quality	 (MQ)	 represents	 the	 mean	 mapping	 qualities	 plus	 the	

standard	deviation	of	the	mapping	qualities	

	

MappingQualityRankSumTest	(MQRankSum)	compares	the	mapping	qualities	

of	the	reads	supporting	the	reference	alleles	and	the	alternate	alleles.	A	negative	

value	 means	 that	 the	 mapping	 qualities	 of	 the	 reads	 supporting	 the	 reference	

alleles	are	higher	than	the	reads	supporting	the	alternative	alleles.		

	

ReadPosRankSum	test	measures	whether	a	variant	call	is	positioned	at	the	end	of	

reads	more	often	compared	to	the	reference	allele.		

	

Lastly,	I	also	measured	the	ratio	of	transition	to	transversion	(Ts/Tv)	to	detect	if	

there	was	any	evidence	of	a	poorly	sequenced	samples	(Table	12).		
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Figure	20.	Density	plots	of	QC	parameters	used	to	filter	out	bad	quality	SNPs	and	Indels.	On	
the	x-axis	are	the	annotation	values	used	to	assess	the	quality	of	the	dataset,	and	on	the	y-axis,	are	
the	 density	 values.	 The	 black	 line	 represents	 the	 threshold	 values	 used	 to	 hardfilter	 variants	
according	to	GATK	best	practices	(a)	Distribution	of	several	QC	parameters	on	single	nucleotide	
polymorphisms	(SNPs).	The	distribution	of	Quality	by	Depth	(QD)	values	range	from	0-30,	with	two	
peaks	representing	heterozygous	reads	(QD	=12)	and	homozygous	calls	with	approximately	double	
the	number	of	reads	(QD	=	18).	Variants	with	QD	values	<	6	represent	low	quality	calls	and	were	
excluded	from	the	dataset.	SNPs	have	Fisher	Strand	(FS)	values	close	to	zero	showing	no	strand	
bias.	The	black	lines	show	the	cut	off	value	FS	>10	used	to	exclude	variants	that	deviate	from	zero.	
SNPs	Mapping	Quality	(MQ)	values	range	from	40-60.	Any	variants	with	MQ	<40	were	excluded	
from	 the	 analysis.	 The	majority	 of	 SNPs	 had	 Strand	 Odds	 Ratio	 (SOR)	 values	 close	 to	 zero.	 To	
exclude	 variants	with	 some	 degree	 of	 strand	 bias,	 SOR	 values	 >	 3	were	 used	 as	 cut	 off	 values.	
Variants	with	MQRankSum	<	-3	(x3	more	reads	supporting	reference	alleles)	and	MQRankSum	>	
+3	 (3x	more	 reads	 supporting	 alternate	 alleles)	were	 also	 excluded	 in	 the	 analysis.	 Finally,	 the	
dataset	showed	that	the	distribution	of	the	Read	Position	Rank	Sum	(ReadPosRankSum)	is	close	to	
zero	indicating	that	there	is	little	or	no	difference	between	the	SNP	positions	within	the	reads.	(b)	
Distribution	of	several	QC	parameters	on	indels.	Similar	to	SNPs	QC	steps,	Quality	by	Depth	(QD)	
values	 range	 from	 0-30,	 with	 two	 peaks	 representing	 heterozygous	 reads	 (QD	 =12)	 and	
homozygous	calls	with	approximately	double	 the	number	of	 reads	 (QD	=	30).	Variants	with	QD	
values	<	9	represent	low	quality	indels	and	were	excluded	from	the	dataset.	Indels	that	exhibited	
any	positional	bias	(ReadPosRankSum)	because	they	were	always	at	the	start	or	end	of	reads	were	
excluded	 from	 the	 dataset.	 Likewise,	 indels	 that	 displayed	 some	 level	 of	 strand	 bias	were	 also	
excluded	(FS	and	SOR).	
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Table	12.	Statistics	showing	the	improvement	of	Ts/Tv	ratios	following	variant	filtering	

	

3.4.6.				Sanger	sequencing	validation	of	variants	
	

I	 designed	 the	 primers	 and	 set	 the	 PCR	 conditions	 to	 sequence	 a	 684bp	

region	 at	 the	 5’	 end	 of	 the	 IFITM3	 gene	 from	 chr11:320,543-321,227.	 I	 used	

primers	 listed	 in	 Table	 13	 and	 Kapa	 HiFi	 (KK2600,	 Kapa	 Biosystems,	 Roche)	

polymerase	 for	 the	 PCR	 reaction	 to	 amplify	 the	 DNA	 using	 conditions	 listed	 in	

Table	14.	

	

	

Table	13.	PCR	primers	used	to	target	a	region	at	the	5’	end	of	IFITM3	gene	

Name	 Sequence	5’-3’	 Usage	 Manufacturer	

IFITM3_F	 CATTCCCTGGGCCATACG	

target	
region	

chr11:320,54
3-321,227	

Metabion,	
Germany	

Uni-
Alexa555	

CATTCCCTGGGCCATACG-
AGAGGTGAGGGCTTTGGGG	

target	
region	

chr11:320,54
3-321,227	

Metabion,	
Germany	

	

	

	

	

Callset	
Number	of	
SNPs	
before	QC	

Ts/Tv	
before	QC	

Number	of	
SNPs	after	
QC	

Ts/Tv	
after	QC	

Number	of	
indels	
before	QC	

Number	of	
indels	
after	QC	

Illumina	 634.0	 2.5	 531.0	 2.6	 157.0	 43.0	

Illumina	 571.0	 2.6	 521.0	 2.7	 204.0	 65.0	
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Table	14.	PCR	conditions	for	the	amplification	of	DNA	prior	sanger	sequencing	

Step	 Temperature	 Time	

Step	1	 95°C	 3	minutes	

Step	2	 95°C	 20	seconds	

Step	3	 60°C	 15	seconds	

Step	4	 72°C	 2	minutes	

Step	5	 	 Repeat	 step	 2	

through	 to	 4	 for	 30	

cycles	

Step	6	 72°C	 2	minutes	

Step	7	 10°C	 Hold	

	

	

The	amplified	DNA	was	gel	extracted	using	QIAquick	Gel	Extraction	Kit	(Qiagen)	

and	 Sanger	 sequenced	 on	 an	 Applied	 Biosystems	 3730xl	 DNA	 Analyzer	 (GATC	

Biotech).	 Single-nucleotide	 polymorphisms	 were	 identified	 by	 assembly	 to	 the	

human	 reference	 (chr11:320,543-321,227)	 using	 Lasergene	 (DNAStar).	

Homozygotes	were	called	based	on	high,	single	base	peaks,	whereas	heterozygotes	

were	identified	based	on	low,	overlapping	peaks	of	two	bases.		
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3.5.				Results	
	

3.5.1.				Capture	robustness	for	two	sequencing	

platforms	
	

To	gain	a	more	thorough	understanding	of	the	variation	in	the	IFITM	locus,	

I	 evaluated	 a	 target	 enrichment	 capture	 method	 in	 two	 separate	 sequencing	

platforms:	 Illumina	 MiSeq	 and	 PacBio	 RS.	 At	 the	 time	 I	 started	 this	 project,	

conventional	pulldown	protocols	for	targeted	sequencing	had	not	been	designed	

for	single	molecule,	real-time	sequencing	technologies	such	as	PacBio.	In	order	to	

adapt	this	method,	I	carried	out	a	number	of	optimisation	steps,	some	of	which	I	

presented	in	the	Methods	section	of	this	chapter.		

	

I	first	assessed	the	performance	of	each	method	by	computing	the	fraction	of	the	

whole	IFITM	region	(Chr11:280,000-380,000)	that	was	covered	by	more	than	one	

read	 in	both	platforms.	 I	 found	that	 the	mean	coverage	 for	 Illumina	was	1,700x	

with	approximately	with	97%	of	all	bases	covered	at	100x	or	more	(Figure	21).	

This	value	was	substantially	higher	than	the	overall	coverage	 for	the	rest	of	 the	

genome	 (0.98%).	 In	 contrast,	 the	depth	 of	 coverage	 for	 the	 IFITM	 locus	 for	 the	

PacBio	data	was	40X	(versus	0.03%	coverage	for	the	rest	of	the	genome)	and	97%	

of	the	locus	had	coverage	values	equal	of	greater	than	2X	(Figure	22).	
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Figure	 21.	 Depth	 of	 coverage	 for	 the	 IFITM	 region	 by	 Illumina	 sequencing	 reads.		
Approximately	 97%	 of	 all	 bases	 are	 covered	 by	 at	 least	 100	 reads.	 Around	 20%	 of	 the	 region	
contains	coverage	in	excess	of	2000X.		
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Figure	22.	Depth	of	coverage	for	the	IFITM	region	by	PacBio	sequencing	reads.		Approximately	
97%	of	all	bases	are	covered	by	at	least	10	reads.	Around	20%	of	the	region	contains	coverage	in	
excess	of	50X.		

	
In	addition	to	the	read	coverage,	I	also	assessed	the	efficacy	of	the	pulldown	in	both	

Illumina	and	PacBio	datasets.	I	obtained	an	average	two	million	reads	per	sample	

in	the	Illumina	dataset	that	mapped	to	the	whole	human	genome.	From	these,	a	

total	 of	 ~300,000	 reads	 mapped	 to	 the	 targeted	 IFITM	 region,	 resulting	 in	 an	

efficiency	 of	 13%.	 For	 long-read	 sequencing	 data,	 efficiency	 was	 substantially	

poorer,	with	an	average	of	3,000	reads	of	1,500bp	in	 length	that	mapped	to	the	

whole	IFITM	locus,	for	a	final	efficiency	of	4%.	The	poor	efficiency	is	the	result	of	

the	inclusion	of	RNA	probes	within	repetitive	elements.	
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3.5.2.				Assessing	the	influence	of	GC	content	on	

coverage	

	

Several	 reports	 have	 highlighted	 that	 base	 composition	 can	 bias	 the	

sequencing	 efficiency(160).	 For	 example,	 regions	with	 very	 high	GC	 or	 high	AT	

content	vary	in	how	well	they	are	covered	depending	on	the	sequencing	platform.	

(152,	168).	There	are	two	main	technical	reasons	for	this	bias.	It	may	be	that	the	

efficiency	 of	 amplification	 reactions	 required	 during	 library	 preparation	 is	

substantially	 reduced	 in	 these	 regions.	 Another	 reason	 is	 that	 the	 reduced	

efficiency	 is	a	direct	 consequence	of	 the	 lower	hybridisation	efficiency	of	probe	

libraries	to	target	regions	in	the	genomic	DNA	with	either	too	high	or	too	low	AT	

regions(140).	To	compare	this	sequencing	bias	for	my	region	of	interest,	I	explored	

the	effect	of	GC	content	on	coverage,	as	described	by	Clark	and	colleagues	(169).	I	

discovered	that	the	average	GC	content	for	the	whole	locus	is	60%	and	that	none	

of	the	technologies	displayed	a	 fall	 in	coverage.	 Indeed,	 it	has	been	documented	

that	 GC	 content	 of	 this	 value	 does	 not	 have	 a	 substantial	 effect	 on	 sequencing	

reads(140,	 160).	 I	 observed	 some	 regions	 with	 GC	 content	 >70%	 which	 are	

covered	by	PacBio	only	albeit	with	low	sequencing	depth	(Figure	23).	
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Figure	23.	Distribution	of	coverage	as	a	function	of	GC	content	for	the	IFITM	locus.	For	each	
base	pair	in	the	target	region,	the	mean	coverage	of	its	bases	is	calculated	as	well	as	the	percentage	
of	Gs	and	Cs	it	contains.	The	mean	coverage	for	the	entire	region	is	plotted	in	the	y-axis	and	it	is	
represented	with	the	value=’1’.	Any	mean	coverage	values	lower	than	1	represents	coverage	values	
that	 are	below	 the	 region’s	 average.	Values	over	1,	 represents	 coverage	above	 the	average.	The	
mean	coverage	is	plotted	against	the	GC	content	(x-axis),	thus	allowing	to	measure	coverage	bias	as	
a	 result	 of	 nucleotide	 composition.	 (a)	 Distribution	 of	 coverage	 as	 a	 function	 of	 GC	 content	 for	
Illumina	data.	(b)	Distribution	of	coverage	as	a	function	of	GC	content	for	PacBio	data.	(Graph	made	
by	Javier	Diez	from	the	Wellcome	Trust	Sanger	Institute).	
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3.5.3.				Variant	analysis:	comparison	with	Phase	

3,	1000	Genomes	Project	dataset	

The	DNA	samples	used	in	this	study	are	from	individuals	that	took	part	in	

the	1000	Genomes	Project,	thus	allowing	for	comparison	between	my	sequencing	

data	and	the	1000	Genomes	Project	dataset.	In	the	first	comparison,	I	included	all	

high-quality	variants	found	in	the	IFITM	locus.	There	were	531	SNPs	and	46	indels	

in	the	Illumina	pulldown	callset,	of	which	~92%	of	SNPs	and	65%	of	indels	were	

found	in	the	1000	Genomes	dataset.	For	the	PacBio	dataset,	I	found	521	SNPs	and	

65	indels	of	which	88%	of	SNPs	and	45%	of	indels	were	found	in	1000	Genome	

callset	(Figure	24).		

Only	15	SNPs	were	reported	only	by	the	Illumina	pulldown	and	none	were	found	

to	be	novel	variants.	From	the	35	variants	reported	in	the	PacBio	dataset,	only	6	

were	novel	 (Figure	24).	 For	 variants	 reported	by	both	PacBio	 and	 Illumina	not	

found	 in	1000	Genomes	(28	SNPs	 in	 total),	only	4	were	novel	 (1	 intronic	and	3	

intergenic).	 None	 of	 the	 novel	 variants	 reported	 by	 either	 Illumina	 or	 PacBio	

resulted	in	non-synonymous	protein	coding	changes.		

	
Figure	24.	Venn	diagram	showing	site	level	evaluation	for	variants	in	the	targeted	pulldown	
study.	 (a)	 Represents	 the	 comparison	 between	 all	 SNPs	 called	 in	 the	 targeted	 pulldown	 study	
(Illumina	and	PacBio)	and	the	SNPs	reported	for	the	same	samples	in	the	1000	Genomes	dataset.	
(b)	Represents	the	comparison	between	all	Indels	called	in	the	targeted	pulldown	study	(Illumina	
and	PacBio)	and	the	Indels	reported	in	the	1000	Genomes	dataset	for	the	same	samples.	
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In	 addition	 to	 site-level	 comparisons,	 I	 also	 carried	 out	 genotype	 concordance	

evaluations	 (Table	 15)	 between	 variants	 in	 the	 pulldown	dataset	 (Illumina	 and	

PacBio	pulldown)	 and	 variants	 from	 the	1000	Genomes	dataset	 (Gold	 standard	

dataset).	 In	 addition,	 SNPs	 used	 for	 this	 initial	 comparison	 were	 included	

regardless	of	whether	they	were	located	in	repetitive	and	non-repetitive	regions.	I	

found	moderate	levels	of	sensitivity	and	precision	between	the	pulldown	dataset	

and	 1000	 Genomes	 dataset	with	 values	 ranging	 from	 86-92%	 for	 both	metrics	

(Table	16).	The	low	specificity	(34-66%)	between	variants	in	the	pulldown	dataset	

and	the	1000	Genome	project	suggests	that	the	pulldown	dataset	may	contain	a	

high	number	of	calls	which	may	be	false	positives.		

	

Table	15.	Summary	of	variant	filtration	metrics	used	to	evaluate	the	quality	of	IFITM	locus	
pulldown	data	with	1000	Genome	dataset	

Sensitivity	 !"
!" + $%	

Proportion	 of	 variants	 found	

in	 the	 truth	 set	 (1KP)	 and	 in	

my	callset.	

Precision	 !"
!" + $"	

Fraction	of	 calls	 that	are	 true	

positives	from	all	calls	made.	

Specificity	 !%
!% + $"	

Fraction	 of	 calls	 that	

represent	the	rate	at	which	we	

make	calls	that	are	not	true.	
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Table	16.	Comparison	table	between	PacBio	and	Illumina	enrichment	dataset	and	the	1000	
genomes	dataset	for	all	single	nucleotide	variants	in	the	entire	IFITM	locus,	including	repetitive	
regions.		

		 Samples	 	Precision	(%)	 Sensitivity	(%)	 	Specificity	(%)	

PacBio	

HG00478	 88.0	 91.0	 34.9	

HG00524	 91.0	 89.0	 48.6	

HG00530	 90.0	 88.0	 41.0	

HG00533	 89.0	 85.0	 43.5	

HG00557	 88.0	 91.0	 35.9	

HG01108	 85.0	 84.0	 46.3	

NA11994	 90.0	 88.0	 45.2	

NA12154	 90.0	 88.0	 52.1	

NA12155	 87.0	 83.0	 51.7	

	 Average	 88.7	 87.4	 44.4	

Illumina	

HG00478	 93.0	 92.0	 48.4	

HG00524	 93.0	 92.0	 53.8	

HG00530	 92.0	 87.0	 50.0	

HG00533	 90.0	 84.0	 53.3	

HG00557	 94.0	 87.0	 66.7	

HG01108	 91.0	 86.0	 53.7	

NA11994	 91.0	 90.0	 38.2	

NA12154	 93.0	 90.0	 52.6	

NA12155	 92.0	 91.0	 51.3	

	 Average	 92.1	 88.8	 52.0	

	

For	the	next	comparison	analysis,	I	excluded	variants	from	low-complexity	regions	

as	suggested	by	Li,	2014(170).	I	found	that	when	this	extra	filtering	was	applied,	

the	 level	 of	 concordance	 increased	 dramatically	 (Figure	 25).	 The	 average	

specificity	 also	 increased	 to	 98%	 for	 the	 Illumina	 dataset	 and	 96%	 for	 PacBio	
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(Table	 17).	 Unsurprisingly,	 this	 suggests	 that	 erroneous	 alignments	 in	 low-

complexity	regions	are	a	major	source	of	erroneous	calls(170).		

	

Figure	25.	Venn	diagram	to	show	site	level	evaluation	of	variants	in	non-repetitive	regions.		
Represents	the	comparison	between	all	SNPs	called	in	the	targeted	pulldown	study	(Illumina	and	
PacBio)	in	non-repetitive	regions	and	the	SNPs	reported	for	the	same	samples	in	the	1000	Genomes	
dataset.	
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Table	17.	Comparison	table	between	PacBio	and	Illumina	enrichment	dataset	and	the	1000	
Genomes	dataset	for	a	subset	of	variants	in	non-repetitive	target	region.		

	

	

	

	

	

	

	 Samples	 Precision	(%)	 Sensitivity	(%)	 Specificity	(%)	

PacBio	

HG00478	 96.0	 99.0	 95.0	

HG00524	 98.2	 97.0	 98.5	

HG00530	 98.1	 96.0	 97.5	

HG00533	 98.6	 95.0	 97.0	

HG00557	 97.2	 99.0	 96.0	

HG01108	 98.0	 97.0	 98.0	

NA11994	 98.0	 96.0	 97.0	

NA12154	 99.0	 98.0	 96.3	

NA12155	 98.0	 98.6	 97.0	

	 Average	 97.9	 97.3	 96.9	

Illumina	

HG00478	 98.0	 99.0	 98.0	

HG00524	 98.5	 98.0	 98.0	

HG00530	 97.4	 97.9	 98.4	

HG00533	 97.8	 98.7	 97.9	

HG00557	 99.0	 95.9	 98.0	

HG01108	 99.0	 98.0	 98.7	

NA11994	 99.3	 98.0	 97.0	

NA12154	 99.0	 98.3	 97.9	

NA12155	 98.0	 99.0	 97.8	

	 Average	 98.4	 98.1	 98.0	
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3.5.4.				Sanger	validation	of	a	subset	of	variants	

For	the	next	step	of	the	project,	I	decided	to	validate	eight	SNPs	within	the	

region:	Chr11:320,988-321,138	by	Sanger	sequencing.	This	region	is	located	at	the	

5’	end	of	the	IFITM3	gene	and	it	is	generally	poorly	represented	by	sequencing	data	

(Figure	 26).	 Figure	 27	 and	 Figure	 28	 show	 that	 all	 genotype	 calls	 from	 PacBio	

sequencing	 data	were	 successfully	 validated	 by	 sanger	 sequencing.	 In	 contrast,	

some	of	 these	 genotypes	were	 incorrectly	 called	or	 entirely	missed	by	 Illumina	

sequencing	 (25%).	 This	 suggests	 that	 long-read	 PacBio	 data	 offers	 greater	

precision	 compared	 to	 short-read	 sequencing,	 especially	 in	 regions	 that	 are	

repetitive	 or	 difficult	 to	 sequence.	 These	 results	 also	 support	 the	 exclusion	 of	

region	 embedded	within	 low-complexity	 regions	 for	 comparison,	 as	 they	 often	

result	in	mapping	artefacts	and	miscalls.	In	addition,	the	results	also	highlight	the	

advantages	of	targeted	sequencing	over	low-coverage	whole	genome	sequencing	

data	as	it	can	offer	greater	resolution	for	regions	of	the	genome	that	are	not	easily	

sequenced	with	short-read	sequencing	platforms.
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Figure	26.	IGV	view	of	Coverage	for	the	IFITM	region	at	chr11:320,988-321,138.	The	top	panel	(in	red)	represents	the	probes	used	in	the	study.	The	square	is	
highlighting	a	region	that	is	poorly	covered	in	most	sequencing	datasets.	PacBio	covers	some	percentage	of	the	region.	Paired-end	Illumina	reads	also	cover	the	
region	at	a	very	low	depth	of	coverage.	No	coverage	is	observed	for	whole	exome	1000	Genomes	data	(as	expected)	and	no	sequencing	reads	are	observed	for	
whole	genome	sequencing	from	the	same	dataset.	This	figure	shows	one	representative	example	(sample	ID	HG01108)	

 

 

HG01108 PacBio sequencing reads

HG01108 Illumina sequencing 
reads

HG01108 whole-exome sequencing 
reads from 1000 Genomes Project

HG01108 whole-genome sequencing 
reads from1000 Genomes Project
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Figure	27.	Integrative	Genomic	Viewer	(IGV)	Screenshot	of	a	region	at	the	5’	IFITM3	genes	
showing	the	complexity	of	region	in	sample	HG00478.	The	blocks	in	grey	and	white	represent	
reads	 that	 have	 either	 passed	 the	 mapping	 quality	 metric	 or	 have	 failed	 the	 mapping	 quality	
(MQ=0),	respectively.	Any	mismatches	of	bases	within	the	reads	and	the	reference	sequence	are	
highlighted	by	colour	changes,	with	green	representing	the	nucleotide	adenine	“A”;	orange,	guanine	
“G”;	 red,	 thymine	 “T”	 and	blue,	 cytosine	 “C”.	 (a)	 Low	coverage	 sequencing	 reads	 from	 the	1000	
Genomes	Project	for	HG00478	contains	low	number	of	reads,	a	number	of	which	have	also	failed	
QC	(white	blocks).	Targeted	sequencing	of	the	locus	with	Illumina	reads	displays	a	higher	number	
of	reads.	However,	some	of	these	reads	contain	a	number	of	mismatches	with	the	reference	genome,	
thus	highlighting	the	disadvantages	of	using	Illumina	sequencing	to	target	low	complexity	regions.	
PacBio	sequencing	appears	to	provide	the	best	coverage	for	the	region	given	the	reduced	number	
of	 mismatches	 found	 between	 the	 sequencing	 data	 and	 the	 reference	 genome.	 (b)Sanger	
sequencing	 of	 680bp	 region	 (chr11:320543-321227	 for	 sample	 HG00478)	 highlights	 the	
complexity	 of	 SNP	 calling	 in	 the	 region.	The	 genotypes	 for	 three	 SNPs	 rs7479267,	 rs71452596,	
rs7478728	were	incorrectly	called	as	heterozygous	in	the	1000	Genomes	Project	and	the	Illumina	
targeted	sequencing	dataset.	Sanger	sequencing	confirmed	that	these	SNPs	are	in	fact	homozygous	
at	 those	positions.	These	results	support	PacBio	data	results	 that	correctly	called	 these	SNPs	as	
homozygous.		
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Figure	28.	Panel	to	represent	the	genotype	calls	for	nine	samples	sequenced	in	the	study.	All	
the	genotypes	for	the	eight	SNPs	shown	under	rsID	were	validated	by	Sanger	sequencing.	Sanger	
sequencing	 results	were	 therefore	 used	 to	mark	 any	 given	 genotypes	 as	 “correct”	 in	 orange	 or	
“incorrect”	 in	 blue.	 Samples	 names	 are	 given	 as	 HG00478,	 HG00524,	 HG00530,	 HG00533,	
HG00557,	HG01108,	NA11994,	NA12154,	NA12155	whilst	the	rsID	represents	the	positions	that	
were	validated	by	Sanger	sequencing.	Reference	calls	are	represented	as	“0/0”;	heterozygous	calls	
are	represented	as	“0/1”	and	homozygous	calls	as	“1/1”.	The	panel	 is	 further	divided	into	three	
sections:	PacBio	 IFITM	Pulldown	shows	the	genotypes	of	 the	eight	SNPs	called	using	 the	PacBio	
dataset;	 Illumina	 IFITM	 Pulldown	 shows	 the	 genotypes	 of	 these	 same	 eight	 SNPs	 called	 in	 the	
Illumina	dataset	and	Phase	3,	1000	Genome	Project	shows	the	genotypes	of	the	same	eight	SNPs	in	
the	1000	Genome	Project.	The	PacBio	section	shows	all	the	genotypes	called	using	this	dataset	are	
validated	as	correct	by	sanger	sequencing	(all	in	orange).	Genotypes	for	six	SNPs	were	incorrectly	
called	across	samples	as	heterozygous	in	the	Illumina	dataset	(positions	in	blue).	Four	SNPs	were	
either	incorrectly	called	in	the	1000	Genome	Projects	dataset	(in	blue)	or	not	called	at	all	(shown	
in	grey).	

PacBio	IFITM 	Pulldown
rs	ID Functional	Consequence Position/Alleles HG00478 HG00524 HG00530 HG00533 HG00557 HG01108 NA11994 NA12154 NA12155
rs7479267	 Upstream	of	IFITM3 11	320988	G	A 1/1 0/1 1/1 1/1 1/1 0/0 1/1 1/1 0/1
rs71452596Upstream	of	IFITM3 11	320991	G	T 1/1 0/1 1/1 1/1 1/1 0/0 1/1 1/1 0/1
rs7478728	 Upstream	of	IFITM3 11	320994	G	A 1/1 0/1 1/1 1/1 1/1 0/0 1/1 1/1 0/1
rs6598045 Upstream	of	IFITM3 11	321001	A	G 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0
rs3888188 Upstream	of	IFITM3 11	321017	A	C 1/1 0/1 1/1 1/1 1/1 0/0 0/0 0/0 0/0
rs28602580	Upstream	of	IFITM3 11	321044	G	A 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1
rs35409983	Upstream	of	IFITM3 11	321055	G	T 0/0 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1
rs35218683Upstream	of	IFITM3 11	321138	C	T 0/1 0/0 0/0 0/0 0/0 0/0 1/1 0/1 0/1

Illumina	IFITM 	Pulldown
rs7479267	 Upstream	of	IFITM3 11	320988	G	A 0/1 0/1 0/1 0/1 0/1 0/0 1/1 1/1 0/1
rs71452596Upstream	of	IFITM3 11	320991	G	T 0/1 0/1 0/1 0/1 0/1 0/0 1/1 1/1 0/1
rs7478728	 Upstream	of	IFITM3 11	320994	G	A 0/1 0/1 0/1 0/1 0/1 0/0 1/1 1/1 0/1
rs6598045 Upstream	of	IFITM3 11	321001	A	G 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0
rs3888188 Upstream	of	IFITM3 11	321017	A	C 1/1 0/1 1/1 1/1 1/1 0/1 0/0 0/1 0/1
rs28602580	Upstream	of	IFITM3 11	321044	G	A 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/1
rs35409983	Upstream	of	IFITM3 11	321055	G	T 0/0 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/1
rs35218683Upstream	of	IFITM3 11	321138	C	T 0/1 0/0 0/0 0/1 0/0 0/0 1/1 0/1 0/1

Phase3,	1000	Genome	Project
rs7479267	 Upstream	of	IFITM3 11	320988	G	A 0/1 0/0 0/1 0/1 0/1 0/0 0/1 0/1 0/1
rs71452596Upstream	of	IFITM3 11	320991	G	T 0/1 0/0 0/1 0/1 0/1 0/0 0/1 0/1 0/1
rs7478728	 Upstream	of	IFITM3 11	320994	G	A 0/1 0/0 0/1 0/1 0/1 0/0 0/1 0/1 0/1
rs6598045 Upstream	of	IFITM3 11	321001	A	G 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
rs3888188 Upstream	of	IFITM3 11	321017	A	C
rs28602580	Upstream	of	IFITM3 11	321044	G	A
rs35409983	Upstream	of	IFITM3 11	321055	G	T
rs35218683Upstream	of	IFITM3 11	321138	C	T

Confirmed	by	sanger	sequencing
Unconfirmed	by	sanger	sequencing
Not	found	in	released	dataset	
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3.6.				Discussion	
	

Target	enrichment	by	hybridisation	has	shown	rapid	progress	over	the	past	

few	years.	The	methodology	has	become	more	widely	accessible	to	the	scientific	

community	and	constitutes	a	popular	choice	 for	many	scientists	because	of	cost	

and	its	potential	for	scalability.	

	

In	 this	 sequencing	 study,	 I	 present	 a	 comparative	 study	 of	 a	 SureSelect	 target	

enrichment	method	in	two	different	sequencing	platforms	(Illumina	and	PacBio).	I	

looked	at	four	main	parameters	for	each	technology:	the	number	of	bases	covered	

in	my	region,	 the	target	efficiency,	 the	 impact	GC	bias	on	read	coverage	and	the	

sensitivity	of	both	technologies	to	capture	variants	in	the	IFITM	region.			

	

Although	I	was	able	to	capture	over	90%	of	the	IFITM	locus	with	both	Illumina	and	

PacBio	technologies,	the	low	efficiency	of	the	pulldown	resulted	in	a	large	portion	

of	the	data	having	to	be	discarded.	I	found	that	the	amplification	of	the	off-target	

hits	 was	 most	 severe	 for	 PacBio	 than	 Illumina,	 possibly	 due	 to	 low	 PCR	

amplification	efficiency	of	 longer	 reads	 (171).	Many	 studies	have	observed	 that	

DNA	repeat	templates,	if	present	in	high	copy	numbers,	can	result	in	self-priming	

events	during	the	genome	amplification	steps.	As	a	result,	there	is	an	exponential	

increase	in	the	number	of	repeat	sequences	in	the	final	PCR	amplicons(168).	Target	

efficiency	 is	 heavily	 design-dependent	 (143,	 150),	 therefore	 having	 probe	

sequences	spanning	repeats	would	certainly	have	a	negative	effect	on	the	efficiency	

of	the	study.	

	

Another	 reason	 for	 low	efficiency	 could	be	due	 to	 the	poor	performance	 of	 the	

Agilent	 SureSelect	 capture	 method.	 However,	 efficiency	 values	 for	 pulldown	

studies	 that	 used	 the	 same	 targeted	 and	 sequencing	 methods	 rule	 out	 this	

hypothesis.	For	example,	I	applied	the	capture	method	described	in	this	Chapter	to	

enrich	for	Epstein-Barr	virus	(EBV)	from	a	BCL37	cell	line.	I	found	that	the	capture	

efficiency	in	this	experiment	was	more	in	line	with	what	it	is	generally	observed	in	
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pulldown	 studies	 (85%	 capture	 efficiency,	 Dr	 Anne	 Palser,	 personal	

communication)(143,	149,	150).	I	also	carried	out	a	pilot	pulldown	experiment	in	

chicken	lines	where	I	observed	a	similar	capture	efficiency	value	(81%,	Dr	Irene	

Bassano,	personal	communication,	Appendix	A).	This	demonstrates	that	the	poor	

efficiency	is	not	the	result	of	technical	difficulties	during	the	enrichment	studies	

but	 the	 result	 of	 the	 inclusion	 of	 repetitive	 elements	 in	 our	 design.	 As	 a	

consequence,	I	excluded	fifty	probes	sequences	from	the	original	design	to	use	in	

future	targeted	sequencing	studies.		

	

One	 key	 aspect	 of	 targeted	 sequencing	 is	 variant	 discovery.	 Based	 on	 variant	

comparison	 to	 the	1000	Genomes	dataset,	 I	 found	 that	 the	 inclusion	of	variants	

located	in	repetitive	regions	had	a	negative	effect	on	the	sensitivity	of	detection	

(170).	In	contrast,	when	I	included	variants	from	non-repetitive	regions,	I	reached	

approximately	 98%	 sensitivity	 and	 specificity	 for	 both	 technologies.	 Repetitive	

sequences	have	always	presented	computational	challenges(170)	as	 they	create	

ambiguities	 in	 alignment	 and	 in	 the	 assembly	 process	 which	 hinder	 the	

interpretation	of	results(153).		

	

Finally,	 I	 also	 validated	 eight	 variants	 in	 a	 684bp	 region	 from	 Chr11:320,543-

321,227	 by	 Sanger	 sequencing	 in	 all	 nine	 samples.	 I	 showed	 that	 PacBio	

sequencing	 provides	 the	 most	 accurate	 results	 in	 terms	 of	 genotype	 accuracy	

(100%	accuracy).	 In	contrast,	only	76%	of	Illumina	calls	 for	the	pulldown	study	

were	accurate.	This	finding	highlights	the	advantages	of	using	long	read	sequences	

for	‘difficult’	to	sequence	regions.	The	application	of	PacBio	sequencing	to	target	

high-repeat	 regions	 is	 well	 documented.	 For	 example,	 Loomis	 and	 colleagues	

successfully	 sequenced	 the	 human	 fragile	 X	mental	 retardation	 1	 (FMR1)	 gene	

which	contains	a	(CGG)n	repeat	(162,	168).	They	generated	PacBio	reads	for	the	

expanded	 CGG	 repeats	 contained	 within	 the	 gene	 and	 observed	 that	 PacBio	

sequencing	was	not	adversely	affected	by	 the	 length	of	 the	 repeats,	only	by	 the	

lifetime	of	the	polymerase(168).			
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Despite	the	clear	advantages	of	PacBio	sequencing	for	hard-to-sequence	regions,	

the	use	of	this	technology	in	combination	with	SureSelect	targeted	sequencing	is	

limited	 for	 practical	 reason.	 For	 example,	 there	 are	 over	 one	 hundred	 steps	

required	for	the	target	enrichment	and	PacBio	library	preparations;	and	most	of	

these	steps	cannot	be	automated	due	to	low	input	concentration	from	the	pulldown	

method.	This	 lack	of	 scalability	 is	 a	major	drawback	 for	 the	utility	of	 the	 target	

enrichment	for	PacBio	sequencing	at	the	moment.	

	

	In	 contrast,	 Illumina	 is	 amenable	 to	 robotic	manipulation	and	does	not	 require	

manual	 library	 preparations.	 Furthermore,	 Illumina	 methods	 are	 commonly	

available	for	indexing	DNA	libraries	prior	sequencing.	Indeed,	the	ability	to	pool	

samples	 together	 reduces	 the	 cost	 of	 sequencing	 and	 increases	 the	 number	 of	

samples	that	can	be	sequenced	with	one	probe	library	design	at	a	time.	Although	

PacBio	has	also	introduced	indexing	for	their	libraries,	attempts	to	apply	these	to	

the	 targeted	 pulldown	 were	 unsuccessful	 (Dr.	 Irene	 Bassano,	 personal	

communication).		

	

These	 results	 clearly	 show	 the	value	of	both	 technologies	 at	 capturing	genomic	

variation.	 I	 found	 that	 the	advantages	of	using	PacBio	 for	certain	 regions	of	 the	

genome	do	not	justify	the	higher	human	cost	of	performing	target	sequencing	of	

the	 IFITM	 region	using	 this	 technology.	Furthermore,	 these	results	highlight	 the	

value	of	 sequencing	a	 small	number	of	 target	 regions	 at	high	 sequencing	depth	

where	higher	depth	provides	better	resolution	and	can	help	uncover	variants	that	

had	been	previously	inaccessible	by	low-coverage	whole	genome	sequencing.		
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4.				Assessing	the	contribution	of	IFITM	

variation	to	HIV-1	disease	progression	
	

4.1.				Introduction	
	

4.1.1.				Global	burden	of	HIV	
	

It	was	not	until	1982,	following	five	years	of	reports	on	unusual	series	of	

infection	cases	 such	as	Pneumocystis	 pneumonia	 (PCP)	and	Kaposi’s	 sarcoma	 in	

young	gay	men,	that	the	Centres	for	Disease	Control	and	Prevention	(CDC)	finally	

acknowledged	 the	 USA	 was	 experiencing	 an	 epidemic.	 They	 called	 it	 ‘acquired	

immune	 deficiency	 syndrome’	 (AIDS).	 Since	 then,	 and	 despite	 global	 efforts	 of	

more	than	160	countries	to	combat	the	transmission	of	HIV,	facilitate	treatment	

and	support	current	HIV	research,	HIV	infections	and	AIDS	continue	to	be	one	of	

the	greatest	public	health	challenges	of	the	21st	century,	especially	for	low-income	

countries.	There	are	on	average	36.7	million	HIV	infected	individuals	worldwide,	

of	which	2.1	million	were	reported	as	new	infections	in	2016	(Global	Aids	Update,	

2016).	The	risk	of	infection	continues	to	be	high	among	population	groups	of	sex	

workers	and	their	clients,	men	that	have	sex	with	men	(MSM)(172),	transgender	

groups	and	injection	drug	users(173).	

	

4.1.2.				HIV	infection	
	

HIV-1	and	HIV-2	are	distinct	retroviruses	of	different	origins.	The	primate	

reservoir	of	HIV-1	is	the	chimpanzee	Pan	troglodytes	troglodytes	(Ptt)	populations	

from	the	southern	region	of	Cameroon(174)	whilst	HIV-2	originates	from	the	sooty	

mangabey	 monkeys	 (Cercocebm	 atys)(175)	 from	 West	 African	 regions.	 The	

incidence	of	HIV-2	worldwide	is	low	with	approximately	144	patients	reported	to	
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be	infected	with	HIV-2	in	the	UK	alone	in	2013	(http://www.aidsmap.com).	The	

incidence	 of	 HIV-1,	 on	 the	 other	 hand,	 remains	 high,	 with	 most	 HIV-positive	

individuals	infected	with	this	virus	type	(Global	Aids	Update,	2016).		

	

In-depth	analysis	of	historic	blood	samples	from	the	Democratic	Republic	of	Congo	

and	Republic	 of	 Congo,	 places	 the	origin	of	HIV-1	 group	M	 (responsible	 for	 the	

worldwide	pandemic)	 in	Kinshasa	(Figure	29)	and	supports	 the	hypothesis	 that	

changes	 in	 population	 movement	 and	 sexual	 behaviours	 contributed	 to	 the	

establishment	and	dissemination	of	the	pandemic	HIV-1	group	M	strain	(176)		

	

	
Figure	29.	Representation	of	the	spatial	movement	of	HIV-1	group	M	strain	in	Kinshasa.	The	
circles	represent	the	locations	where	samples	were	available.	They	are	coloured	according	to	the	
time	HIV-1	M	viruses	were	introduced.	The	rate	of	special	movement	for	the	virus	were	projected	
onto	railway	and	waterways	transportation	systems	and	coloured	according	to	time	scale	of	virus	
movement.	Figure	from	Faria	et	al.,	2014.	
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HIV-1	viruses	are	also	further	characterised	by	the	types	of	cells	they	infect	and	

can	be	divided	into	two	main	groups:	macrophage-tropic	nonsyncytium	inducing	

(NSI)	 or	 T-tropic	 syncytium-inducing	 (SI)	 isolates(96,	 177,	 178).	 NSI	 isolates	

preferentially	 target	 macrophages	 and	 constitute	 the	 most	 common	 type	 of	

transmitted	 viruses.	 SI	 T-tropic	 viruses,	 on	 the	 other	 hand,	 target	 T-cells	 and	

generally	appear	during	later	stages	of	infection.	To	infect	cells,	both	macrophage-

tropic	 and	T-tropic	must	 bind	CD4	 receptors	 in	 susceptible	 cells	 although	 their	

fusion	is	mediated	by	different	accessory	proteins	or	chemokine	co-factors	(CCR5	

or	CXCR4).	For	example,	by	expressing	CCR5	receptors	in	human	and	murine	cell	

lines	and	testing	infectivity	of	these	cells	by	HIV-1	pseudotyped	viruses,	Deng	et	al.	

1996	established	 that	macrophage-tropic	 viruses	 require	b-chemokine	 receptor	

CCR5	for	viral	entry	into	the	cell(179,	180).	Pseudotyped	viruses	are	replication	

defective	and	provide	a	safer	alternative	to	live	viruses.		

	

T-tropic	viruses	require	a-chemokine	receptor	CXCR4	to	infect	cells(178).	CXCR4	

co-factor	was	first	discovered	back	in	1996,	when	Feng,	et	al.	engineered	murine	

NIH	3T3	fibroblast	cells	(that	readily	transfect)	to	express	CXCR4	co-factor,	CD4	

receptor	or	both.	They	found	that	HIV	entry	and	infection	occurred	only	in	cells	co-

expressing	CD4	and	CXCR4,	judged	by	the	presence	of	syncytia	and	levels	of	beta-

galactosidase	b-Gal	levels	in	these	cells(178).	Once	the	Env	protein	binds	the	CD4+	

receptor	 and	 co-receptors,	 it	 triggers	 the	 structural	 changes	 in	 the	 gp41	 virus	

envelop	protein	and	enables	the	fusion	of	the	virion	to	the	host	membrane(181)	

(Figure	 30).	 Once	 the	 virion	 penetrates	 the	membrane,	 it	 starts	 the	 process	 of	

uncoating,	 followed	by	reverse	transcription	of	 its	RNA	into	cDNA.	This	cDNA	is	

then	transported	into	the	nucleus,	where	the	viral	integrase	enzyme	catalyses	the	

integration	of	viral	cDNA	in	the	host	cell	DNA	leading	to	provirus	formation(181).		
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Figure	30.	Overview	of	HIV	entry.	To	deliver	the	viral	proteins	into	cells,	HIV	Env,	comprised	of	
gp120	and	gp41	subunits	(1),	first	attaches	to	the	host	cell,	binding	CD4	(2).	This	causes	
conformational	changes	in	Env,	allowing	coreceptor	binding,	which	is	mediated	in	part	by	the	V3	
loop	of	Env	(3).	This	initiates	the	membrane	fusion	process	as	the	fusion	peptide	of	gp41	inserts	
into	the	target	membrane,	followed	by	six-helix	bundle	formation	and	complete	membrane	fusion	
(4).	Adapted	from	Wilen	et	al.,	2012.	

	

4.1.3.				Pathogenesis	of	infections	
	

Following	HIV	entry	and	infection,	a	typical	pattern	of	HIV	infection	in	vivo	

develops	 and	 can	 be	 classified	 into	 three	 broad	 phases:	 the	 acute	 or	 primary	

infection,	 the	 chronic	 (clinical	 latency)	 and	 the	 symptomatic	 phase	 (AIDS).	 The	

acute	infection	occurs	in	the	first	two	to	four	weeks	and	it	is	associated	with	rapid	

CD4	T-cell	depletion	and	high	viral	load,	sometimes	in	excess	of	1	million	copies	of	

virus	RNA	per	ml(182).	The	period	2-10	weeks	post	infection	marks	the	start	of	the	

chronic	phase	when	the	viral	load	drops	to	stable	levels	(viral	set	point)	possibly	

due	 to	 initial	 intracellular	 immunological	 responses	 to	 infection.	 This	 viral	 set	

point	 following	 acute	 infection	 serves	 as	 a	 good	 predictor	 of	 disease	

progression(183).	 For	 example,	 early	 studies	 evaluating	 the	 viral	 load	 in	 180	

individuals	found	that	50%	of	individuals	with	high	viral	load	(>10,900	HIV-1	RNA	

molecules/ml)	died	within	6	years	of	the	study	entry	despite	having	CD4+	T-cell	

counts	>500	cells/µl	(normal	range	of	T-cell	count).	In	contrast,	only	5%	of	subjects	

with	 similar	 CD4+	T-cell	 count	 but	 <10,900	HIV-1	 RNA	molecules/ml	 died	 in	 a	

similar	time	period(183).	This	phase	is	characterised	by	the	expansion	of	cytotoxic	

T-cells	(CD8+	T-cell)	that	specifically	target	the	viral	particles	leading	to	a	fall	in	

viral	 load	(182,	184-186).	Neutralising	antibody	activity	 targeted	to	 the	env	HIV	

gene	 also	 develops	 2-5	weeks	 after	 infection	 but	 the	 ENV	 viral	 protein	 evades	
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complete	 neutralisation(187).	 In	 typical	 progressors,	 the	 chronic	 stage	 for	 the	

disease	can	last	for	around	ten	years	until	a	rapid	depletion	of	CD4+	T-cells	emerge,	

leading	to	AIDS.	For	several	years	it	was	believed	that	this	depletion	of	CD4+	T-

cells	occurred	due	to	a	process	of	exhaustion	but	the	overall	consensus	in	the	field	

points	 to	 a	mechanism	 of	 immune	 activation(188).	 This	mechanism	 involves	 a	

subset	of	CD4+	and	CD8+	T	cells	that	rapidly	proliferate	and	die	and	are	able	to	

recruit	other	T-cells	to	this	dying	pool.	This	eventually	leads	to	a	depletion	of	naïve	

T-cells	 and	 CD4+	 and	 CD8+	 T-cell	 numbers(188).	 Concomitant	 with	 this	 cell	

depletion,	there	is	also	a	resurgence	of	high	viral	load	and	uncontrolled	replication	

due	 to	 a	 gradual	 failure	of	CD8+	T	 cells	 to	 control	 the	virus.	 Some	groups	have	

hypothesised	that	the	gradual	failure	of	CD8+	T-cells	to	control	replication	can	be	

explained	by	a	‘viral	escape’	mechanism(189).	This	‘viral	escape’	theory	supports	

the	idea	that	cells	stop	recognising	HIV’s	genetic	sequences	due	to	high	levels	of	

viral	turnover	as	a	result	of	string	of	selection	pressures	from	the	host(190).	In	one	

study,	 it	 was	 observed	 that	 CD8+	 T-cells	 from	 individuals	 in	 the	 symptomatic	

stages	of	the	disease	despite	being	able	to	recognise	and	kill	laboratory	HIV	strains,	

were	 unable	 to	 target	 their	 own	 infected	 cells(191,	 192).	 There	 is	 however,	 an	

‘evolutionary	penalty’	incurred	by	the	virus	as	a	result	of	these	escape	mutations.	

In	some	instances	these	escape	mutant	viruses	will	revert	in	the	absence	of	 	the	

host	pressures	that	initially	selected	them,	thus	remaining	useful	for	cytotoxic	T-

lymphocyte	(CTL)	vaccine	designs(190).		

	

4.1.3.1.				Extreme	HIV	phenotypes		
	

Patients	 infected	 with	 HIV	 can	 be	 classified	 into	 three	 broad	 groups	

depending	 on	 the	 speed	 of	 their	 progression	 to	 AIDS	 (Figure	 31).	 Patients	 are	

classified	 as	 ‘long	 term	non	progressors	 (LTNP)	 if	 they	maintain	 a	 stable	 CD4+	

count,	typically	over	500	cells/µl	and	remain	AIDS-free	for	at	least	ten	years(193).	

The	‘elite	controllers’	also	satisfy	some	of	the	definitions	of	LTNP	but	constitute	an	

independent	 group.	 These	 patients	 naturally	 supress	 the	 virus	 to	 undetectable	

levels	 (<50	 copies/ml)	 without	 antiretroviral	 therapy	 (ART)(193)	 and	 rarely	
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progress	 to	 developing	 AIDS.	 Chronic	 or	 typical	 progressors	 suffer	 a	 gradual	

decline	 in	 their	CD4+	T-cell	 levels	and	develop	AIDS	only	after	a	period	of	8-10	

years.	On	the	opposite	end	of	the	spectrum,	there	are	the	rapid	progressors,	who	

manifest	a	rapid	decline	in	the	levels	of	CD4+	cell	counts,	typically	<200	cells/µl	

and	progress	to	AIDS	within	2-5	years	due	to	uncontrolled	replication	(>	10,000	

HIV	 RNA	 molecules/ml)	 in	 the	 absence	 of	 ART.	 Typically,	 the	 optimal	 viral	

suppression	 measurements	 are	 defined	 as	 the	 viral	 load	 below	 the	 level	 of	

detection	(HIV	RNA	<20	to	75	copies/mL).		

	

	
Figure	31.	Classification	of	HIV	disease	based	on	clinical	and	virological	progression.	Figure	
from	Gurdasani	et	al.	2014.	

	

	

	

	



	
 
 
 

119	

4.1.3.2.				Host	genetic	determinants	of	HIV	extreme	

phenotypes:	Long	term	non-progressors	and	elite	

controllers		

	
The	natural	control	of	viral	replication	in	the	absence	of	treatment	is	rare	

and	 only	 observed	 in	 approximately	 1%	 or	 less	 of	 the	 HIV-infected	

individuals(194).	The	mechanisms	by	which	these	patients	are	able	to	control	HIV	

replication	 are	 still	 being	 elucidated	 but	 are	 likely	 to	 be	 influenced	 by	 a	

combination	of	factors,	including	the	virus	strain,	background	genetic	factors	and	

individual	immune	responses(195).	

	

4.1.3.2.1.				Viral	genetics	
	

Variations	and	mutation	in	HIV	genes	have	been	suggested	to	play	a	role.	

For	example,	Rhodes	et	al.,	1995	reported	a	case	study	where	the	individual	carried	

a	defected	virus	with	large	deletion	in	the	nef-nef	and	nef-U3	region(196).	Similarly,	

Wang	et	al.,	found	that	virus	replication	was	hampered	in	one	individual	possibly	

due	to	stop	codons	in	HIV	matrix	protein	GAG	p17	and	capsid	protein	GAG	p24	and	

in	 polymerase	 reverse	 transcriptase(197).	 However,	 studies	 of	 virus	 genomes	

isolated	 from	10	 elite	 controllers	 did	 not	 find	 evidence	 of	 large	 deletions(198).		

Furthermore,	 analysis	 of	 full-length	 plasma	 virus	 and	 provirus	 sequences	 from	

around	95	elite	controllers,	found	no	evidence	of	gross	viral	defects(199).		

	

4.1.3.2.2.				Host	genetics	
	

Several	host	factors	have	been	reported	that	appear	to	explain,	at	least	in	

part,	the	observed	virus	control	in	LTNP	and	elite	controllers.	Some	studies	have	

shown	that	protective	MHC	class	I	alleles	(HLB*B57	and	*B27)	are	enriched	in	the	

elite	 controller	 population(200,	 201).	 More	 specifically,	 HLA-B*57:01	 allele	 is	
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observed	 in	 greater	 frequency	 in	 Europeans	 and	 North	 American	 elite	 control	

cohorts	 whilst	 HLA-B*57:03	 is	 enriched	 in	 elite	 control	 populations	 of	 African	

descent(202).		

	

Previous	studies	have	proposed	that	CD4+	T	cells’	resistance	to	infection	explained	

the	control	of	viral	populations	observed	in	elite	controllers	and	LTNP.	However,	

CD4+	T-cells	from	elite	controllers	support	infection	of	both	T-tropic	and	M-tropic	

viruses	 in	 vitro	 to	 comparable	 levels	 to	 CD4+	 T-cells	 from	 HIV-free	

individuals(203),	suggesting	that	resistant	CD4+	T-cells	in	elite	controllers	may	not	

play	an	important	role	in	the	natural	control	of	these	individuals.	

	

Increased	levels	of	broadly	neutralising	antibodies	have	also	been	suggested	as	a	

possible	reason	for	disease	control	in	controllers	but	reports	of	lower	neutralising	

antibody	(NAb)	activity	amongst	the	elite	controller	groups	discard	this	hypothesis	

and	 suggest	 that	 Nab	may	 not	 play	 a	 major	 role	 in	 the	 natural	 control	 of	 HIV	

infection(187).	Other	factors	such	as	CD8+	mediated	control	due	to	secretion	of	IL-

2	 and	 IFN-g	 by	 CD8+	 T-cells	 have	 also	 been	 reported	 in	 the	 elite	 control	

groups(200).	Similarly,	a	32-base	pair	deletion	 in	the	CCR5	receptor	(CCR5D32)	

has	 been	 identified	 to	 confer	 protection	 to	 HIV-1	 viruses	 that	 require	 CCR5	

receptor	for	entry	into	the	cell	(HIV1-	R5	tropic	strains)(95,	204).	Taken	together,	

all	the	evidence	suggests	that	other	factors	are	also	at	play.	

	

4.1.3.3.				Rapid	disease	progression	
	

Some	 viruses	 require	 CCR5	 receptors	 for	 cell	 entry	 (R5	 tropic	 strains)	

whilst	other	HIV-1	strains	required	a	different	receptor	CXCR4	to	infect	the	cells	

(X4	 tropic	 strains)(205).	 It	 is	 believed	 that	 the	 presence	 of	 X4-tropic	 viruses	

increases	 the	 risk	 of	 HIV	 progression	 and	 serves	 as	 a	 predictor	 of	 poor	

immunological	response	and	death.	A	UK	study	of	289	HIV-1	positive	individuals	

during	 12	 months’	 prior	 antiretroviral	 treatment	 (ART)	 found	 that	 patients	

infected	with	X4	T-tropic	virus	or	X4	dual/mixed	viruses	(n=60)	had	significantly	
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greater	decrease	in	CD4+	T-cell	counts	and	were	more	likely	to	experience	clinical	

adverse	events,	 compared	 to	 the	R5-tropic	 infected	 individuals(206).	Follow	up	

studies	of	both	groups	also	found	that	once	patients	had	started	therapy,	the	CD4+	

cell	count	and	the	viral	suppression	was	comparable	between	both	groups(206).	

In	a	similar	study,	a	US	team	determined	that	the	presence	of	dual/mixed	R5/X4	

HIV	 viruses	 also	 increased	 disease	 progression.	 They	 found	 that	 R5/X4	 HIV	

infected	patients	 (n=30)	were	 twice	 as	 likely	 to	have	 reduced	CD4+	 cell	 counts	

(<350	cell/mm3),	be	initiated	into	antiretroviral	treatment	or	die	compared	to	R5-

tropic	 infected	 individuals	 (n=270)(207).	 Although	 follow-up	 information	 was	

missing,	it	suggests,	in	line	to	what	was	previously	reported,	that	X4-tropic	viruses	

may	speed-up	the	rate	of	HIV	progression	to	AIDS.		

	

4.1.4.				IFITM	genes	in	the	context	of	HIV-1		

	
Upon	 initial	stages	of	HIV-1	and	SIV	 infection,	systemic	 type	1	 interferon	

production	 is	 one	 of	 the	 first	 lines	 of	 defence	 elicited	 by	 the	 host	 immune	

system(208,	 209).	 In	 rhesus	 macaques,	 induction	 of	 Type	 I	 IFN-α	 reduced	 the	

number	of	 transmitter	 founder	viruses	and	 led	 to	an	 increase	 in	 the	number	of	

challenges	required	to	achieve	SIV	infection	in	these	animals(210).	Although	virus	

evolution	to	counteract	restriction	by	interferon	stimulated	genes	(ISGs)	such	as	

APOBEC3G	and	Tetherin	is	well	documented,	reports	of	other	ISGs	that	appear	to	

restrict	HIV-1	replication	suggests	that	their	role	on	the	pathogenesis	of	HIV/AIDS	

remains	to	be	elucidated(211).	For	example,	myxovirus	resistance	2	(MX2),	an	IFN-

inducible	 GTPase	 protein	 is	 a	 strong	 HIV-1	 inhibitor	 in	 interferon-treated	

cells(212).	MX2	 localises	 to	 the	 nuclear	membrane	 and	 nuclear	 pores,	 possibly	

interfering	with	the	accumulation	of	viral	cDNA	in	the	nucleus(212,	213).		

	

The	 role	of	 IFITMs	 for	virus	 transmission	and	replication	has	 remained	elusive.	

Previous	 research	 suggests	 that	 the	 incorporation	 of	 IFITMs	 into	 HIV-1	 viral	

membranes	is	associated	with	restriction	of	virus	fusion	and	spread(214).	When	

IFITM	 proteins	 are	 expressed	 in	 non-infected	 lymphocytes,	 the	 proteins	 exert	
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some	 protective	 effects	 upon	 cell-free	 virus	 infection,	 but	 the	 restriction	

disappears	during	cell-to-cell	HIV	infection.	In	contrast,	when	IFITM	is	expressed	

in	virus-producing	lymphocytes,	IFITM	proteins	are	observed	to	co-localise	with	

viral	HIV	proteins	in	nascent	virions	and	restrict	virus	spread(214).		In	addition,	

Foster	 and	 colleagues	 demonstrated	Transmitted	 Founder	 viruses	 (TF),	 viruses	

that	establish	de	novo	mutations,	are	resistant	to	IFITM	inhibition.	In	contrast,	HIV-

1	 clones	 generated	 from	 individuals	 after	 six	 months	 of	 infection	 display	 an	

increase	 in	 sensitivity	 to	 inhibition	 by	 IFITM2	 and	 IFITM3	 proteins.	 They	 also	

demonstrate	 that	 this	HIV-1	restriction	 is	dependent	on	the	strain’s	co-receptor	

usage	and	the	localisation	of	the	IFITM	proteins	within	the	cells(211).	Specifically,	

they	found	that	X4-tropic	viruses	are	more	sensitive	to	IFITM2	and	IFITM3	than	

R5-tropic	 viruses.	 	 When	 specific	 mutation	 were	 introduced	 at	 the	 N-terminal	

region	of	either	IFITM2	or	IFITM3,	R5-tropic	viruses	rather	than	X4-tropic	viruses	

displayed	greater	sensitivity(211)	(Figure	32).	

	

	
Figure	32.	IFITM	inhibition	of	HIV.	Transmitter	founder	viruses	(TF)	are	resistant	to	IFITM	
restriction.	Escape	mutations	that	allow	the	virus	to	escape	detection	from	the	host,	and	co-
receptor	tropism	for	CCR5	or	CXCR4	make	the	virus	sensitive	to	restriction	by	IFITM	proteins	in	
the	endosomal	compartments.	Figure	from	Sauter,	et	al.,	2016	
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Recently,	a	polymorphism	in	 IFITM3,	rs12252,	was	associated	with	 faster	HIV-1	

progression	in	China(89).	Zhang	and	colleagues	analysed	a	cohort	of	74	patients	

classified	as	rapid	progressors	and	104	non-progressors	from	PRIMO	cohort(215).	

By	sanger	sequencing	300bp	at	the	5’	end	of	the	IFITM3	genes	encompassing	the	

rs12252	 SNP,	 they	 reported	 a	 higher	 frequency	 that	 68	 out	 of	 74	 individuals	

carried	the	CC/CT	alleles	in	rapid	progressors	compared	to	78	out	of	a	104	non-

progressors	(P = 0.004,	OR	3.8(95%	CI	–	1.4-9.7).	The	higher	CC/CT	allele	frequency	

in	the	PRIMO	cohort	(75%	CT/CC	genotype	carriers)	compared	to	the	frequency	of	

the	 same	 alleles	 in	 the	 European	 CASCADE	 cohort	 (2–8%	 CT/CC	 genotypes	

carriers)	 probably	 facilitated	 the	 study	 of	 this	 particular	 variant	 in	 this	

population(215).		

	

The	 role	of	 IFITMs	 for	virus	 transmission	and	replication	has	 remained	elusive.	

Previous	 research	 suggests	 that	 the	 incorporation	 of	 IFITMs	 into	 HIV-1	 viral	

membranes	is	associated	with	restriction	of	virus	fusion	and	spread(214).	When	

IFITM	 proteins	 are	 expressed	 in	 non-infected	 lymphocytes,	 the	 proteins	 exert	

some	 protective	 effects	 upon	 cell-free	 virus	 infection,	 but	 the	 restriction	

disappears	during	cell-to-cell	HIV	infection.	In	contrast,	when	IFITM	is	expressed	

in	virus-producing	lymphocytes,	IFITM	proteins	are	observed	to	co-localise	with	

viral	HIV	proteins	in	nascent	virions	and	restrict	virus	spread(214).		In	addition,	

Foster	 and	 colleagues	 demonstrated	Transmitted	 Founder	 viruses	 (TF),	 viruses	

that	establish	de	novo	mutations,	are	resistant	to	IFITM	inhibition.	In	contrast,	HIV-

1	 clones	 generated	 from	 individuals	 after	 six	 months	 of	 infection	 display	 an	

increase	 in	 sensitivity	 to	 inhibition	 by	 IFITM2	 and	 IFITM3	 proteins.	 They	 also	

demonstrate	 that	 this	HIV-1	restriction	 is	dependent	on	the	strain’s	co-receptor	

usage	and	the	localisation	of	the	IFITM	proteins	within	the	cells(211).	Specifically,	

they	found	that	X4-tropic	viruses	are	more	sensitive	to	IFITM2	and	IFITM3	than	

R5-tropic	 viruses.	 	 When	 specific	 mutation	 were	 introduced	 at	 the	 N-terminal	

region	of	either	IFITM2	or	IFITM3,	R5-tropic	viruses	rather	than	X4-tropic	viruses	

displayed	greater	sensitivity(211)	(Figure	32).	Taken	together,	both	in	vitro	and	in	

vivo	assays	provide	some	evidence	on	the	role	of	IFITMs	as	modulators	of	HIV-1	

transmission.	
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4.2.				Aims	
	

The	aim	of	this	project	was	to	identify	whether	specific	mutations	in	IFITM	

genes	contribute	to	disease	progression	of	HIV-1.	In	order	to	do	this,	I	carried	out	

targeted	 sequencing	 of	 the	 IFITM	 locus	 (Chr11:280,000-380,000)	 in	 patients	

classified	as	long-term	non-progressors	and	rapid	progressors	from	HIV	Genome	

Consortium	(HGC),	UK	Register	of	HIV	Seroconverters	and	Conserted	Action	on	

SeroConversion	to	AIDS	and	Death	in	Europe	(CASCADE)	cohorts.		
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4.3.				Methods	

	

4.3.1.				Study	populations	

	
I	 sequenced	 a	 total	 of	 255	 patients	 from	 three	 main	 cohort	 studies:	 21	

patients	from	HIV	Genome	Consortium	(HGC),	52	patients	from	UK	Register	of	HIV	

Seroconverters	 and	 182	 patients	 from	 Conserted	 Action	 on	 SeroConversion	 to	

AIDS	and	Death	in	Europe	(CASCADE)	Definitions	for	eligible	participants	changed	

slightly	 across	 cohorts.	 For	 example,	 HGC	 cohort	 recruitment	 came	 first	 with	

definitions	under	 the	 title:	HGC	extreme	phenotype	definitions.	Recruitment	 for	

CASCADE	 used	 a	 more	 relaxed	 definition	 also	 listed	 under	 CASCADE	 extreme	

phenotype	definition.	The	UK	Register	of	HIV	Seroconverters	started	using	HGC	

definitions	for	participant	selection	but	widened	it	later	on	to	include	participants	

using	the	revised	definitions	set	out	by	CASCADE	(Figure	33).	
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Figure	33.	Definitions	adopted	by	the	cohorts	used	in	this	study.	On	the	left	(orange)	is	the	
definition	from	the	HIV	Genome	Consortium	(HGC).	On	the	right	in	pink	is	the	latest	definition	
adopted	by	CASCADE	and	by	HGC	

	

4.3.2.				Ethics	approval	
	

Ethics	approval	was	granted	by	the	ethics	committees	of	each	participating	

cohorts	 according	 to	 their	 local	 regulations	 with	 HDMCM	 numbers	 11/070,	

11/012	and	13/038.	This	included	written	informed	consent	from	all	participants	

taking	part	in	the	study.	Consent	was	obtained	for	blood	sampling,	DNA	sequencing	

and	 analysis	 of	 samples,	 storage	 of	 blood	 for	 future	 research,	 collection	 of	

demographics	and	anthropometric	data	and	for	access	to	clinical	records.		

	

4.3.3.				Probe	design	
	

This	 study	 employed	 Agilent	 SureSelect	 targeted	 sequencing	 method	 to	

pulldown	a	region	in	chr11:280,000-380,000	referred	to	as	‘The	IFITM	locus’.	All	

the	 sample	 processing	 and	 sequencing	 was	 performed	 at	 The	Wellcome	 Trust	

Sanger	Institute.	Briefly,	genomic	DNA	was	sheared	to	an	average	of	500bp	using	

Covaris	 E210	 (Covaris	Massachusetts,	 USA).	 Sheared	 samples	were	 used	 in	 the	

Illumina	 library	 preparation	 and	 enriched	 for	 the	 IFITM	 locus	 using	 SureSelect	

Agilent	 probes	 (Agilent	 technologies,	 Santa	 Clara,	 USA	 ELID	 number	 0798441).	
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Samples	 were	 sequenced	 using	 the	 HiSeq	 2500	 (Illumina,	 SanDiego,	 USA)	 as	

paired-end	300bp	reads.	I	sequenced	60	samples	per	lane	in	duplicates.		

	

4.3.4.				Sequencing	analysis	

	
I	performed	the	alignment	of	the	raw	sequencing	data	to	the	to	the	human	

reference	 genome	 build	 GRCh37	 using	 the	 Burrows-Wheeler	 Aligner	 (BWA-

mem)(216)	 and	 marked	 duplicates	 using	 Picard	

(http://broadinstitute.github.io/picard,	version	2.7.2).	Because	the	same	samples	

were	sequenced	in	two	different	lanes,	I	merged	bam	files	belonging	to	the	same	

samples	 using	 SAMtools(217)	 and	 followed	 the	 GATK(218)	 best	 practice	

guidelines(166,	 167)	 for	 bam	 improvement	 prior	 variant	 calling.	 The	 steps	

included	duplicate	marking	(http://broadinstitute.github.io/picard,	version	2.7.2)	

and	base	quality	score	recalibration	(GATK	3.6).	Variant	calling	was	performed	at	

the	 single	 sample	 level	 using	 the	Haplotype	 Caller	 (GATK	 3.6)	 and	 then	 jointly	

across	individuals	using	GATK	CombineVCF	and	GenotypeVCF	(GATK	3.6).		

	

For	variant	QC,	I	applied	GATK	hardfiltering	recommendations(167)	as	described	

in	the	previous	Chapter	(Figure	34).	The	hardfiltering	parameters	included	were:		

QualByDepth	 (QD),	 Fisher	 Strand	 (FS),	 StrandOddsRatio	 (SOR),	 RMSMapping	

Quality	 (MQ)	 MappingQualityRankSumTest	 (MQRankSum),	 ReadPosRankSum.	 I	

tested	 various	 filters	 by	 applying	 different	 filtering	 thresholds.	 Ultimately,	 I	

decided	to	use	the	filters	that	provided	me	with	a	ratio	of	transition	to	transversion	

(Ts/Tv)	>	2.8	in	all	samples.		
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Figure	34.	Density	plots	of	QC	parameters	used	to	filter	out	bad	quality	SNPs	and	Indels.	On	
the	x-axis	are	the	annotation	values	used	to	assess	the	quality	of	the	dataset,	and	on	the	y-axis,	are	
the	density	values.	The	black	line	represents	the	threshold	values	used	to	hardfilter	variants	(a)	
Distribution	of	several	QC	parameters	on	single	nucleotide	polymorphisms	(SNPs).	The	distribution	
of	Quality	by	Depth	(QD)	values	occur	from	0-30,	with	two	peaks	representing	heterozygous	reads	
(QD	=12)	and	homozygous	calls	with	approximately	double	the	number	of	reads	(QD	=	18).	Variants	
with	QD	values	<	9	represent	low	quality	calls	and	were	excluded	from	the	dataset.	SNPs	have	Fisher	
Strand	(FS)	values	close	to	zero	showing	no	strand	bias.	The	black	lines	show	the	cut	off	value	FS	
>1	used	to	exclude	variants	that	deviate	from	zero.	SNPs	Mapping	Quality	(MQ)	values	are	close	to	
60	 and	 of	 the	 highest	 quality.	 Any	 variants	with	MQ	<55	were	 excluded	 from	 the	 analysis.	 The	
majority	of	SNPs	had	Strand	Odds	Ratio	(SOR)	values	close	to	zero.	To	exclude	variants	with	some	
degree	of	strand	bias,	SOR	values	>	3	were	used	as	cut	off	values.	Variants	with	MQRankSum	<	-3	
(x3	more	 reads	 supporting	 reference	alleles)	 and	MQRankSum	>	+3	 (3x	more	 reads	 supporting	
alternate	 alleles)	 were	 also	 excluded	 in	 the	 analysis.	 Finally,	 the	 dataset	 showed	 that	 the	
distribution	of	the	Read	Position	Rank	Sum	(ReadPosRankSum)	is	close	to	zero	indicating	that	there	
is	little	or	no	difference	between	the	SNP	positions	within	the	reads.	(b)	Distribution	of	several	QC	
parameters	on	indels.	Similar	to	SNPs	QC	steps,	Quality	by	Depth	(QD)	values	occur	from	0-30,	with	
two	peaks	representing	heterozygous	reads	(QD	=15)	and	homozygous	calls	with	approximately	
double	the	number	of	reads	(QD	=	30).	Variants	with	QD	values	<	9	represent	low	quality	indels	and	
were	 excluded	 from	 the	 dataset.	 Indels	 that	 exhibited	 any	 positional	 bias	 (ReadPosRankSum)	
because	they	were	either	seen	always	at	the	start	or	end	of	reads	were	excluded	from	the	dataset.	
Likewise,	 indels	 that	displayed	 some	 level	of	 strand	bias	were	also	excluded	 (FS	and	SOR).	The	
inbreeding	coefficient	provides	a	measure	of	inbreeding	within	the	data	and	measures	an	excess	of	
heterozygous	sites	in	the	dataset.	Higher	than	expected	heterozygous	indels	were	excluded	from	
further	analysis.		
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4.3.5.				Sequencing	analysis	
	

Following	variant	calling	and	QC,	I	annotated	variants	using	dbSNP	v137.	

Functional	annotations	were	then	added	using	Ensembl	Variant	Effect	predictor	

(VEP,	version	84)	keeping	the	most	severe	consequences	per	gene(219).	I	followed	

Scoring	Intolerance	from	Tolerance	(SIFT)(220)	and	Polyphen-2(221)	predictions	

to	determine	whether	the	variants	were	likely	to	affect	amino	acid	sites	and	the	

Sequence	Ontology	terms	and	description	in	Ensembl	to	score	variants	 for	their	

functional	 impact.	 In	 this	 study,	 I	 found	 1,286	 variants	 with	 various	 coding	

consequences	(Figure	35).	I	also	found	331	variants	that	were	not	reported	in	the	

1000	Genomes	dataset.	In	total,	I	discovered	267	novel	variants	that	so	far	have	

not	been	reported	in	any	dataset	 including	dbSNP.	Of	these	novel	variants,	42%	

were	missense	mutations	and	the	rest	were	synonymous	mutations	(Figure	35).		

	
Figure	35.	Minor	Allele	Frequency	(MAF)	spectrum	for	variants	in	the	HIV	dataset.	Distribution	
of	variants	in	the	dataset	that	are	common	(³	5%	frequency),	medium	(1-5%	frequency)	and	rare	
(<	1%	frequency).	Within	each	group,	variants	were	coloured	yellow	if	they	had	been	previously	
reported	in	1000	Genomes	Project	and	green	if	they	had	not	been	reported	before	on	any	known	
dataset.	
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4.3.6.				Identification	of	individuals	with	elevated	

missing	rate	or	outlying	heterozygosity	
	 Before	 embarking	 in	downstream	analysis,	 I	 carried	out	 a	number	of	QC	

steps	to	assess	the	quality	of	the	sequencing	data.	These	steps	were	conducted	at	

the	individual	and	variant	levels.		

	

Individual	level	QC		

Generally,	scrutinising	the	distribution	of	missing	genotypes	for	individual	samples	

is	the	best	strategy	to	identify	an	adequate	threshold	to	filter	out	individuals	with	

excessive	 missing	 genotypes.	 Typically	 samples	 with	 more	 than	 3-7%	 missing	

genotypes	 are	 removed(132).	 For	 this	 dataset,	 a	 group	 of	 28	 samples	 (22	 elite	

controllers	and	6	rapid	progressors)	had	approximately	10%	of	missing	genotypes	

and	were	excluded	for	downstream	analysis	(Figure	36).	

	

Similarly,	the	distribution	of	mean	heterozygosity	(with	the	exception	of	the	sex	

chromosomes)	at	 the	 individual	 level	 can	 identify	 samples	with	an	excessive	or	

reduced	 number	 of	 heterozygous	 calls,	 that	 may	 indicate	 DNA	 sample	

contamination	or	inbreeding,	respectively(222).	For	this	dataset,	only	two	samples	

were	excluded	as	a	result	of	low	heterozygosity	rate	(Figure	36).	

	

Variant-level	QC		

In	case-control	genetic	studies,	it	is	important	to	exclude	variants	with	genotype	

missing	rates	>20%	between	cases	and	controls.	This	QC	step	is	essential	to	ensure	

that	differences	observed	between	Elite	controllers	and	Rapid	progressors	are	not	

due	to	technical	artefacts	as	a	result	of	poor	genotype	calls.	I	excluded	17	out	of	a	

total	1,618	variants	after	imposing	a	cut	off	threshold	of	20%	for	missing	genotype	

calls	(Figure	37).	



	
 
 
 

131	

	
Figure	36.	Representation	of	heterozygosity	and	missing	rate	 in	 the	HIV	cohort.	The	x	axis	
represents	 the	distribution	of	missing	genotypes	 for	each	 individual.	Any	 individuals	with	>	2%	
missing	genotype	calls	were	excluded	(vertical	dashed	line).	This	resulted	in	a	total	of	28	samples	
excluded	from	downstream	analysis.	The	y-axis	represents	the	distribution	of	the	heterozygosity	
rate	for	each	individual.	 Individuals	with	heterozygosity	rate	±	3.5	standard	deviations	from	the	
mean	were	also	excluded	from	downstream	analysis.	A	total	of	two	samples	were	excluded	due	to	
reduced	heterozygosity.		
	
	

	

	
Figure	37.	Histogram	of	the	number	of	variants	with	excessive	missing	data	rate.	The	missing	
data	 rate	 was	 plotted	 across	 all	 individuals	 that	 passed	 the	 per-individual	 QC.	 The	 dash	 line	
represents	the	threshold	(3%)	for	missing	data	which	was	imposed	on	the	dataset.	SNPs	with	this	
level	of	missigness	were	excluded	due	to	excess	failure	rate.		
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4.3.7.				Other	QC	metrics	on	whole	exome	data	

for	the	same	samples		

	
My	 dataset	 only	 included	 genomic	 information	 for	 a	 100kb	 region,	

Chr11:280,000-380,000,	 and	 did	 not	 allow	 for	 the	 evaluation	 of	 ethnicity,	 sex	

discordance	or	individual	relatedness.	However,	whole	exome	data	for	238	of	the	

total	 255	 individuals,	 was	 kindly	 obtained	 from	 Prof	 Paul	 McClaren	 and	 Prof.	

Kholoud	 Porter.	 This	 exome	 dataset	 allowed	 me	 to	 evaluate	 ethnicity,	 sex	

discordance	 and	 relatedness	 for	 94%	 of	 my	 samples.	 The	 remaining	 6%	 (15	

individuals)	that	were	not	included	in	the	whole	exome	sequencing	data	provided,	

were	excluded	from	all	subsequent	analysis.		

	
One	 of	 the	main	 sources	 of	 cofounding	 in	 candidate	 gene	 studies	 is	 population	

stratification;	 that	 is,	 genotyping	differences	 that	 can	be	attributed	 to	divergent	

population	origins	rather	than	differences	within	the	specified	disease	trait.	The	

most	 common	 analysis	 to	 detect	 individuals	 with	 differing	 ancestries	 is	 the	

principal	component	analysis	(PCA).	Genome-wide	data	 is	used	due	to	 the	 large	

number	of	SNPs	(markers)	needed	to	make	accurate	PCA	predictions	(>	50,000).	

PCA	 predictions	 require	 a	 set	 of	 observations	 (i.e.	 individuals)	 and	 co-related	

variables	(i.e.	the	markers).	Filtered	genome	wide	datasets	from	1000	Genomes	for	

each	population	are	commonly	used	to	detect	larger	continental	level	ancestries.	

PCA	calculations	produce	a	set	of	uncorrelated	variables	(or	principal	components)	

from	the	information	matrix	that	contains	the	observations	and	the	variables	for	

each	individual(132).		

	

I	 evaluated	 the	 ethnicity	 of	 my	 samples	 via	 Principal	 Component	 Analysis	

(PCA)(223,	224).	To	do	this	analysis,	I	included	only	autosomal	bi-allelic	variants,	

with	minor	allele	frequency	>	5%	that	did	not	deviate	significantly	from	the	Hardy-

Weinberg	equilibrium	(HWE	<	10-5)	and	with	a	call	rate	>	90%	across	all	samples.	

I	then	took	the	overlapping	variants	between	the	whole	exome	dataset	and	1000	
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Genome,	 phase	 3	 dataset	 and	 pruned	 markers	 in	 high	 linkage	 disequilibrium	

(LD)(225)	 using	 PLINK	 version	 1.9.	 The	 PCA	 calculation	was	 carried	 out	 using	

EIGENSTRAT	package(224).	Due	to	the	genetic	differences	across	populations	in	

the	1000	Genome	dataset,	only	two	principal	components	were	sufficient	to	cluster	

individuals	 in	 the	 exome	 dataset	 alongside	 individuals	 from	 1000	 Genomes	

dataset.	The	results	from	the	PCA	analysis	demonstrated	that	a	total	of	66	samples	

were	not	of	European	descent	and	should	be	excluded	from	downstream	analysis	

(Figure	38).	

	

	
Figure	38.	Principal	component	analysis	(PCA)	of	whole	exome	HIV	sequencing	data.		Principal	
component	 clustering	 was	 built	 using	 2,504	 individuals	 from	 African,	 South	 Asian,	 East	 Asian,	
American,	 Finish	 and	 European	 populations	 from	 1000	 Genomes	 phase	 3	 dataset.	 These	
populations	were	used	to	predict	the	ancestry	of	the	240	samples	(of	supposed	European	ancestry)	
from	HIV	whole	exome	dataset.	A	total	of	68	samples	clustered	away	from	the	European	samples	
and	were	excluded	from	the	study.	The	circle	surrounding	the	black	dots	represent	the	172	HIV	
whole	exome	samples	 that	 clustered	with	European	 samples	and	 thus,	 included	 in	downstream	
analysis.		

	

	

Furthermore,	I	identified	4	samples	with	identity	by	state	(IBD)	score	>	0.185,	a	

value	which	is	suggestive	of	relatedness	or	duplication	between	individuals(132).	

Any	standard	population-based	study	require	that	all	the	samples	are	unrelated.	In	
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datasets	 that	 contain	 related	 individuals,	 there	will	be	an	overrepresentation	of	

family	genotypes.	IBD	is	calculated	based	on	the	average	common	proportion	of	

alleles	shared	by	all.	Typically,	the	estimated	threshold	to	remove	samples	if	IBD	>	

0.185	which	represents	a	midway	value	of	what	it	is	expected	for	third	and	second-

degree	 relatives.	 Finally,	 IBD	 >	 0.98	 identifies	 duplicates	 or	 monozygotic	

twins(132).	 I	 did	 not	 find	 discordant	 sex	 information	 amongst	 the	 remaining	

samples.	As	a	result	of	all	QC	steps,	I	was	able	to	test	association	between	92	rapid	

progressors	and	60	elite	controllers	(152	individuals).	
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4.3.8.				Statistical	power	to	detect	association	

	
The	statistical	power	to	identify	genetic	variants	of	genome-wide	

significance	and	with	different	effect	sizes	given	the	sample	size	was	estimated	

using	QUANTO	software	(http://biostats.usc.edu/software).	These	calculations	

were	done	by	Dr.	Neneh	Sallah	and	Fernando	Riveros	Aguilera	at	the	Wellcome	

Trust	Sanger	Institute	(Figure	39	and	Figure	40).	

	

	
Figure	39.	Power	calculations	for	original	number	of	samples.	Statistical	power	(%)	to	identify	
genetic	variants	at	p<5x10-8,	given	different	allele	frequencies	(%)	and	effect	sizes	(OR)	(N=255).	
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Figure	40.	Power	calculations	after	QC.	Statistical	power	(%)	to	identify	genetic	variants	at	
p<5x10-8,	given	different	allele	frequencies	(%)	and	effect	sizes	(OR)	(N=255).	
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4.4.				Results	

	

4.4.1.				Searching	for	association	to	HIV	

progression.	

	

4.4.1.1.				Single	variant	association	tests	

	
I	 tested	 genetic	 variants	 in	 and	 around	 IFITM1,	 IFITM2	 and	 IFITM3	 for	

association	with	 the	 rapid	disease	progression	 in	HIV	using	a	 cohort	of	60	elite	

controllers	 and	 92	 rapid	 progressors.	 To	 ensure	 that	 any	 differences	 in	 the	

frequency	of	variants	between	elite	controllers	and	rapid	progressors	were	not	the	

result	 of	 different	 ethnicities,	 I	 ensured	 that	 all	 cases	 and	 controls	 were	 of	

European	 descent.	 As	 highlighted	 by	 the	 PCA	 analysis,	 I	 had	 to	 exclude	

approximately	25%	of	the	original	samples	due	to	the	inclusion	of	non-European	

individuals.	I	tested	all	variants	that	passed	the	quality	control	filter	(n	=1,617)	as	

described	 in	 my	 methods.	 In	 this	 study,	 no	 variants	 reached	 genome-wide	

significance.	The	nominally	significant	variants	are	shown	in	Table	18.	
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Table	18.	Case-control	association	tests	(Fisher	exact	test)	for	variants	in	the	IFITM	locus.	P-values	
are	not	corrected	for	multiple	testing	but	none	reached	genome-wide	significance	(5x10-8)	

	

	

4.4.1.2.				Replicating	the	association	for	IFITM3	SNP	

rs12252	

	
In	a	genetic	association	study	of	HIV-1	infection	prognosis	consisting	of	74	

rapid	 progressors	 and	 104	 elite	 controllers,	 Zhang	 and	 colleagues	 reported	 an	

association	 for	 SNP	 rs12252	 (P	 =	 0.002,	 OR	 =	 3.778	 (95CI-	 1.5–9.7)	 under	 a	

dominant	model.	They	found	that	92%	of	rapid	progressors	(68/74)	carried	the	

CC/CT	genotypes,	compared	to	75%	of	non-progressors	(78/108)(88).		

	

In	my	study,	I	was	unable	to	replicate	this	finding.	In	fact,	I	found	that	the	direction	

of	effect	for	the	C	allele	is	in	the	opposite	direction	to	what	is	reported	in	their	study	

(OR	=	0.64	(95CI	-	0.12-3.25,	additive	model)	(Table	19).	Although,	I	carried	out	

the	analysis	under	different	models:	Cochran-Armitage	trend	test,	a	1df	allelic	test,	

a	dominant	model	(for	the	minor	allele)	test	and	a	recessive	model	(for	the	minor	

Genes	 rs	ID	
AF	

cases	

AF	

controls	
P-	value	 OR	(95%	CI)	 Consequence	

AF	

(1KP)	

AF	

(ExAC)	

B4GALNT4	 rs1134699	 0.47	 0.30	 0.0029	 2.1	(1.2-3.4)	 synonymous_va
riant	 0.50	 0.45	

B4GALNT4	 rs10902142	 0.38	 0.22	 0.0037	 2.2	(1.2-3.6)	 intron_variant	 0.45	 	
B4GALNT4	 rs10794316	 0.37	 0.22	 0.0052	 2.1	(1.2-3.6)	 intron_variant	 0.37	 	
B4GALNT4	 rs10751657	 0.37	 0.22	 0.0052	 2.1	(1.2-3.6)	 intron_variant	 0.45	 	

IFITM3	 rs55671406*	 0.46	 0.30	 0.0058	 2.0	(1.2-3.3)	 upstream_gene
_variant	 -	 	

B4GALNT4	 rs12360752	 0.46	 0.30	 0.0058	 2.0	(1.2-3.2)	 intron_variant	 0.50	 	
B4GALNT4	 rs7481525	 0.47	 0.31	 0.0061	 2.0	(1.2-3.2)	 intron_variant	 0.50	 	

IFITM3	 rs56232455	 0.35	 0.20	 0.0065	 2.1	(1.2-3.7)	 upstream_gene
_variant	 0.17	 	

B4GALNT4	 rs12361394	 0.38	 0.23	 0.0078	 2.1	(1.2-3.8)	 intron_variant	 0.41	 	

ATHL1	 rs56069858	 0.32	 0.18	 0.0082	 2.1	(1.2-3.7)	 upstream_gene
_variant	 0.51	 	

B4GALNT4	 rs7483942	 0.46	 0.31	 0.0085	 1.9	(1.2-3.1)	 intron_variant	 0.50	 	

IFITM3	 rs56228238*	 0.32	 0.19	 0.0170	 2.0	(1.2-3.5)	 upstream_gene
_variant	 -	 	

B4GALNT4	 rs55794317	 0.03	 0.09	 0.0179	 0.28	(0.1-0.8)	 intron_variant	 0.02	 0.06	
B4GALNT4	 rs7120441	 0.34	 0.21	 0.0192	 1.9	(1.1-3.3)	 intron_variant	 0.34	 	
B4GALNT4	 rs7396812	 0.37	 0.24	 0.0233	 1.8	(1.1-3.0)	 intron_variant	 0.40	 0.33	

B4GALNT4	 rs7395781	 0.37	 0.24	 0.0233	 1.8	(1.1-3.0)	 intron_variant	 0.40	 0.13	

B4GALNT4	 rs35842721	 0.33	 0.21	 0.0265	 1.9	(1.1-3.2)	 intron_variant	 0.38	 	

B4GALNT4	 rs34063493	 0.33	 0.21	 0.0265	 1.9	(1.1-3.2)	 missense_varia
nt	 0.38	 	

B4GALNT4	 rs35475866	 0.33	 0.21	 0.0265	 1.9	(1.1-3.2)	 synonymous_va
riant	 0.33	 8.88x10-6	

IFITM2	 rs9704108	 0.05	 0.13	 0.0276	 0.36	(0.2-0.9)	 5_prime_UTR_v
ariant	 0.97	 	
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allele),	 I	 was	 unable	 to	 obtain	 significant	 evidence	 of	 replication	 under	 the	

dominant	or	recessive	models.	One	potential	reason	for	the	lack	of	replication	is	

the	 low	 frequency	 of	 this	 risk	 allele	 (give	 the	 frequency	 and	 the	 allele	 in	 your	

cohort)	in	the	cohort	analysed	in	this	study,	compared	to	the	PRIMO	cohort(88).	Of	

course,	another	potential	reason	for	the	lack	of	replication	could	be	that	the	initial	

association	is	a	false-positive	finding.	

	
Table	19.	Table	of	association	tests	for	SNP	rs12252.	The	top	row	“This	study”	shows	the	
association	summary	statistics	in	my	analysis.	The	values	for	Zhang	et	al,	are	shown	underneath.	
P-values	are	uncorrected	for	multiple	testing	but	do	not	reach	genome-wide	significance	(5x10-8)	

Study	 ID	 Cases	 Control	 P	 OR	(95%	CI)	 AF	
EAS	

AF	

EUR	

AF	

This	
study	 rs12252	 0.02	 0.28	 0.59	 0.64	(0.12-3.25)	 0.24	 0.53	 0.04	

Zhang	et	
al,	2015	 rs12252	 0.91	 0.75	 0.004	 3.78	(1.51–9.72)	 0.24	 0.53	 0.04	

	

4.4.1.3.				Aggregate	variant	tests	

	
To	 assess	 the	 role	 of	 low	 frequency	 variants,	 a	 way	 to	 achieve	 higher	

statistical	power	is	to	combine	those	variants	that	are	likely	to	have	an	impact	on	

gene	function	and	compare	their	distribution	in	two	phenotypic	groups(135)	using	

aggregate	variant	 tests.	Because	 there	 is	no	 set	 strategy	 for	variant	 selection	 in	

collapsing	 tests,	 scientists	 often	 select	 variants	 based	 on	 their	 minor	 allele	

frequencies	(MAF)	information	and	their	predicted	functional	consequence.		

	

To	test	different	hypotheses	regarding	the	role	of	specific	sets	of	rare	variants	on	

HIV	prognosis,	I	performed	a	series	of	different	analyses.	In	a	first	collapsing	test,	I	

included	all	missense	variants,	regardless	of	their	MAF.	I	also	grouped	all	missense	

variants	for	IFITM1,	2	and	3	genes	because	the	number	of	variants	in	individual	

genes	was	 insufficient	 to	provide	even	reasonable	statistical	power.	 In	a	second	

test,	I	only	included	missense	variants	that	had	been	reported	as	rare	by	the	1000	
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Genomes	 dataset	 (MAF	 <	 1%,	 European	 1KP	 populations)	 and	 again	 grouped	

variants	 for	 IFITM1,	2,	3.	 In	 the	 final	 test,	 I	 collapsed	all	 rare	missense	variants	

(MAF	<1%)	for	the	whole	locus	(Chr11:280,000-380,000)	that	were	predicted	to	

be	 deleterious	 by	 Polyphen-2(221)	 or	 SIFT(220)	 as	 define	 by	 VEP(219)	

annotation.	I	ran	two	statistical	tests:	Variable	threshold	(VT)(226)	and	SKAT-O.	

The	VT	test,	does	not	rely	on	fixed	MAF	thresholds;	 instead,	the	test	 is	aimed	at	

specific	scenarios	when	the	likely	allele	frequency	and	effect	sizes	of	the	variants	

in	question	are	unknown.	Another	reason	 for	using	VT	tests	 is	 that	mean-based	

tests	are	reportedly	more	powerful	than	other	alternatives	for	less	stringent	levels	

of	significance(227).	The	Sequencing	Kernel	Association	test	(SKAT)(228)	is	a	type	

of	dispersion	test	that	is	robust	against	the	presence	of	non-causal,	protective	and	

non-deleterious	 variants.	 Power	 of	 the	 SKAT	 test	 can	 be	 compromised	 if	 the	

conditions	of	 a	burden	 test	 are	met,	 for	 this	 reason	Lee	et	al.,	 (2012)	proposed	

SKAT-O(229),	a	test	that	combines	burden	and	SKAT	statistics	and	the	one	I	used	

in	 this	 study	 (Table	 20).	 As	 a	 result	 of	 these	 tests,	 I	 found	 no	 genome-wide	

significant	associations.	
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Table	20.	Case-control	aggregate	variant	tests.	P-values	are	uncorrected	for	multiple	testing	but	
none	reach	genome-wide	significance	

Gene	
Variants	

in	cases	

Variants	in	

controls	
Scenario	

SKAT-O	

P-value	

VT		

P-value	

ATHL1	 5	 3	
All	missense	

variants	
0.93	 0.83	

IFITMs	

(1,2,3)	
4	 3	

All	missense	

variants	
0.8	 1	

B4GALNT4	 7	 11	
All	missense	

variants	
0.12	 1	

	 	 	 	 	 	

ATHL1	 5	 3	

Rare	missense	

variants	

	(1KP)	

0.93	 0.83	

IFITMs	

(1,2,3)	
1	 1	

Rare	missense	

variants	

	(1KP)	

1	 1	

B4GALNT4	 7	 11	

Rare	missense	

variants	

	(1KP)	

0.12	 1	

	 	 	 	 	 	

Whole	locus		 9	 3	

All	missense	

variants	with	most	

deleterious	effects		

0.73	 1	
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4.5.				Discussion	
	

The	 patients	 that	 I	 describe	 in	 this	 study	 represent	 two	 phenotypically	

distinct	groups	of	HIV+	positive	individuals,	that	constitute	less	than	0.8%	of	the	

HIV	infected	population(128).	Their	extreme	phenotype	characteristics	had	been	

carefully	defined	according	to	stringent	clinical	definitions,	set-up	by	the	relevant	

cohorts.	 In	this	study,	HIV-elite	 individuals	are	natural	suppressors	of	HIV	(ART	

naïve)	who	are	able	to	control	viral	replication	to	undetectable	levels,	for	at	least	a	

year.	 In	 contrast,	 rapid	 progressors	 have	 very	 low	 CD4+	 cell	 counts	 (<200	

cell/mm3)	and	can	progress	within	six	months	of	seroconversion.	As	I	mentioned	

in	the	introduction,	despite	great	efforts	to	characterise	the	genetic	factors	driving	

such	 extreme	 phenotypes,	 the	 discovery	 of	 new	 important	 loci	 has	 not	 been	

successful(99).		

	

In	 this	Chapter,	 I	 explored	 the	 contributions	of	 the	 IFITM	 genes	on	HIV	disease	

progression.	The	 in-depth	 functional	data	on	 the	role	of	 IFITM2	and	3	on	HIV-1	

infection(211,	214),	coupled	with	reports	of	association	of	 IFITM3	SNP	rs12252	

with	rapid	HIV	progression(89),	motivated	us	to	consider	IFITM	genes	as	potential	

gene	candidates	for	HIV	progression.	I	used	a	similar	probe	design	from	Chapter	3	

to	 target	 a	 100Kb	 region	 of	 the	 IFITM	 locus	 (Chr11:280,000-380,000)	which	 is	

flanked	 by	 B4GALNT4	 and	 ATHL1,	 encompassing	 four	 IFITM-family	 genes	

(IFITM1,2,3,5).	To	my	knowledge,	 this	 is	 the	 first	 time	an	 IFITM	 candidate	gene	

study	 has	 been	 carried	 out	 which	 has	 looked	 at	 most	 of	 the	 variation	 in	 the	

region(88,	230).		

	

Although	 the	 study	 was	 limited	 by	 the	 sample	 size	 (due	 to	 the	 rarity	 of	 the	

phenotype),	I	controlled	for	some	of	the	power	limitations	by	sampling	from	the	

most	extreme	of	the	disease	spectrum	and	enriching	for	severity	alleles(231).	The	

initial	design	of	this	study	with	122	elite	controllers	and	133	rapid	progressors,	

using	a	genome-wide	threshold	of	P	<	5x10-8,	had	80%	power	to	detect	common	

variants	with	minor	allele	frequencies	of	at	least	30%	with	very	large	effect	sizes	
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(OR	=	3.5)	(Figure	39).	This	effect	size	and	allele	 frequency	are	similar	 to	 those	

reported	by	Zhang	and	colleagues	for	their		influenza	study.	For	lower	frequency	

variants	of	5%,	 the	study	had	 less	 than	5%	power	 to	detect	variants	with	 large	

effect	size	(OR	=	3.5).	Following	the	exclusion	of	a	 total	86	 individuals	 from	the	

study,	 a	 substantial	 drop	 in	 power	 occurred.	 Following	 quality	 control	

assessments,	I	had	a	total	of	60	elite	controllers	and	92	rapid	progressors,	and	18%	

power	 to	detect	common	variants	with	minor	allele	 frequencies	of	at	 least	30%	

with	very	large	effect	size	(OR	=	3.5)	(	

Figure	40).	The	study	had	no	power	to	detect	lower	frequency	variants	of	5%.	No	

genome-wide	significant	loci	were	discovered	although	this	is	not	surprising	given	

the	low	sample	sizes	and	power	to	detect	associations.		

	

4.5.1.			The	role	of	rare	variants	in	HIV-1	disease	

progression		
	

The	involvement	of	rare	variants	in	HIV-1	disease	progression	is	a	topic	of	

debate	 in	 the	 field(232).	 To	 identify	 the	 involvement	 of	 rare	 variants	 in	 the	

architecture	of	the	disease,	I	performed	a	number	of	aggregate	variant	tests	in	a	

case-control	 design.	 These	 approaches	 are	 advantageous	because	 they	 consider	

alleles	that	may	have	full	or	incomplete	penetrance	on	the	disease.	Although,	I	did	

not	 find	 any	 associated	 variants,	 I	 cannot	 rule	 out	 that	 given	 a	 larger	 cohort	 of	

individuals,	rare	variants	in	the	IFITM	locus	could	contribute	to	HIV	progression.	

	

There	is	good	precedent	for	exploring	the	rare	variant	hypothesis	in	HIV,	especially	

given	the	number	of	reports	that	have	demonstrated,	in	silico,	that	a	burden	of	rare	

mutation	 is	 important	 for	 several	 complex	 traits.	 For	 example,	 whole	 exome	

sequencing	of	81	unrelated	individuals	suffering	from	the	atrioventricular	septal	

defect	(AVSD)	established	that	genes	with	previously	known	biological	association	

to	AVSD	such	as	cohesion	loading	factor	(NIPBL)	and	Zinc	Finger	Protein	(ZFPM2)	

were	 enriched	 for	 rare	 and	 damaging	 non-synonymous	 variants(139).	 Using	 a	

similar	rare	burden	analysis	approach,	Grozeva,	and	colleagues,	found	that	highly	
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pathogenic	 loss	 of	 function	 and	 missense	 variants	 were	 present	 in	 ~11%	 of	

intellectual	disability	cases	from	a	cohort	of	986	individuals	(113	variants	in	107	

individuals)(145).	Using	a	much	 larger	 cohort	of	 individuals	of	4,264	 cases	 and	

9,343	 controls,	 Singh	 and	 colleagues	 detected	 an	 enrichment	 of	 rare	 loss	 of	

function	 variants	 in	 SET	 Domain	 Containing	 1A	 (SETD1A)	 gene	 that	 encodes	 a	

protein	 from	 a	 histone	 methyltransferase	 (HMT)	 complex(141).	 Although	 the	

number	 of	 samples	 in	 each	 individual	 cohort	 varied	 and	 functional	 follow-up	

studies	will	be	necessary,	it	appears	that	the	contribution	of	some	loss	of	function	

and	 missense	 rare	 variants	 to	 the	 risk	 of	 disease	 such	 as	 heart	 conditions,	

intellectual	disability	or	schizophrenia,	is	considerable.	It	is	possible	that	the	same	

approach	could	be	used	in	future	experimental	designs	to	study	HIV.	

	

The	 design	 of	 a	 comprehensive	 analysis	 of	 host	 factor	 contribution	 to	 HIV-1	

progression	 is	 still	 of	 paramount	 importance	 and	 future	 studies	 could	 also	

investigate	 other	 forms	 of	 variation	 such	 as	 copy	 number	 variation(128).	

Differences	in	copy	number	variants	have	been	shown	to	be	important	for	HIV-1	

disease	 progression	 within	 specific	 populations.	 For	 example,	 if	 an	 individual	

carries	 copy	number	of	C-C	Motif	Chemokine	3-Like	1	 (CCL3L1)	 lower	 than	 the	

average	 copy	 number	 observed	 for	 the	 general	 population	 from	 which	 that	

individual	originates,	he/she	will	be	more	susceptible	to	HIV-1	infection(128).	It	is	

believed	that	increased	doses	of	CCL3L1	could	affect	HIV-1	in	a	number	of	ways:	by	

inhibiting	the	binding	of	gp120	to	the	CCR5	co-receptor,	inducing	CCR5	co-receptor	

internalisation,	 leading	 to	 a	 decrease	 in	 the	 receptors	 on	 cell	 membranes	 or	

influencing	leukocyte	trafficking	involved	in	virus	restriction(128).	

	

4.5.2.			Future	candidate	gene	studies	for	IFITM	
	

Despite	 the	 lack	 of	 association	 signals,	 this	 study	 had	 the	 advantage	 of	

controlling	 for	 a	 number	 of	 factors	 such	 as	 ethnicity,	 sex	 and	 relatedness	 that	

would	 not	 normally	 be	 possible	 in	 standard	 candidate	 gene	 designs.	 In	 future,	

possibly	through	data	sharing	and	meta-analysis,	I	hope	the	results	presented	in	
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this	chapter	can	be	combined	with	those	from	other	sequencing	studies	to	enable	

more	powerful	tests	to	be	performed	to	more	fully	assess	the	role	of	IFITM	genetic	

variation	in	HIV	progression.		
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5.				Assessing	the	contribution	of	IFITM	

variation	to	dengue	haemorrhagic	fever	
	

5.1.				Introduction	
	

5.1.1.				Global	burden	of	dengue	fever	
	

Dengue	fever	is	a	mosquito-borne	infection,	endemic	in	approximately	100	

countries	in	the	Americas,	Southeast	Asia,	Africa,	the	Western	Pacific,	Africa,	and	

the	eastern	Mediterranean	area.	There	are	between	350	million	infections	every	

year	caused	by	four	known	serotypes	of	dengue	virus	(DENV1-4)	(WHO,	fact	sheet,	

July	2016).	In	Vietnam	alone,	as	of	31st	August	2016,	there	were	63,504	reported	

cases	of	dengue	and	20	deaths,	in	44	out	of	63	provinces	in	2016.	In	August	2016	

alone,	 there	were	16,547	cases	 reported	 including	4	 fatalities.	Compared	 to	 the	

same	 period	 in	 2015,	 the	 cumulative	 number	 of	 cases	 increased	 by	 97%.	 The	

number	 of	 cases	 in	 2016,	 also	 represents	 an	 increase	 of	 99.7%	 compare	 to	 the	

median	in	the	period	between	2011-2015	(WHO,	Dengue	situation	update	504).	

Furthermore,	 this	 number	 is	 likely	 to	 be	 a	 gross	 underestimation	 of	 dengue	

incidence	 due	 to	 lack	 of	 effective	 disease	 surveillance,	 misdiagnosis	 and	 low	

reporting	levels(233).		

	

The	 clinical	 manifestation	 for	 the	 dengue	 varies	 from	 asymptomatic	

infections	 to	 mild	 (dengue	 fever)	 and	 severe	 (dengue	 haemorrhagic	 fever	 and	

dengue	 shock	 syndrome).	 The	 WHO	 defines	 dengue	 fever	 (DF)	 as	 an	 acute	

condition	 that	 can	 cause	 fever,	 headaches,	 exanthema,	 severe	muscle	 and	 joint	

pain,	and	bleeding	of	gums.	Although	dengue	fever	is	an	incapacitating	disease,	the	

prognosis	 is	 generally	 favourable	 for	most	 patients,	who	 recover	without	 other	

clinical	complications	after	several	weeks(234).		
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Dengue	haemorrhagic	fever	(DHF)	and	dengue	shock	syndrome	(DSS)	are	the	most	

severe	 forms	 of	 the	 disease.	 DHF	 is	 usually	 correlated	 with	 secondary	 dengue	

infections(235)	 but	 may	 sometimes	 also	 occur	 at	 primary	 infections.	 DHF	 has	

similar	symptoms	to	DF	but	patients	also	suffer	from	severe	abdominal	pain	that	

may	 be	 a	 sign	 of	 abdominal	 haemorrhage(235).	 There	 are	 also	 atypical	

complications	such	as	damage	to	specific	organs	such	as	kidneys	and	liver	that	may	

cause	severe	complications	in	patients(236).	More	importantly,	 if	 left	untreated,	

DHF	 could	 progress	 to	 the	 potentially	 fatal	 dengue	 shock	 syndrome	 (DSS).	 The	

WHO	 defines	 DSS	 as	 a	 form	 of	 hypovolaemic	 shock	 resulting	 from	 continued	

vascular	 permeability	 and	 plasma	 leakage.	 This	 usually	 takes	 place	 around	

defervescence,	on	days	4−5	of	illness.	At	least	in	Vietnam,	epidemiological	studies	

of	dengue	infections	have	found	that	both	DHF	and	DSS	are	also	most	commonly	

observed	in	children(237).	For	example,	an	elegant	retrospective	study	looking	at	

dengue	patients	admitted	to	three	hospitals	in	Ho	Chi	Minh	City,	Vietnam	reported	

that	from	a	total	of	14,079	DSS	patients	diagnosed	between	1996	and	2009,	96.6%	

were	children.	The	mortality	was	also	highest	amongst	children	(<	15	years	old)	

than	 in	adult	dengue	patients	 (case	 fatality	 rate	0.20%	versus	0.11%;	P=0.002).	

However,	amongst	those	adults	with	DSS	(N=484)	the	mortality	was	higher	than	in	

paediatric	 cases	 (CFR	 5.5%	 versus	 1.4%;	 P	 <0.001)(237).	 The	 same	 study	 also	

reported	that	the	majority	of	deaths	occurred	in	patients	diagnosed	with	DSS.	The	

overall	case	fatality	rate	amongst	DSS	patients	was	1.6%	(153/9,784)	compared	

with	0.03%	(28/92,683)	among	clinically	diagnosed	dengue	patients	that	did	not	

develop	 DSS(237).	 Many	 individuals	 with	 DSS	 respond	 to	 resuscitation	 with	

isotonic	 crystalloid	 solutions,	 but	 patients	 not	 responding	 to	 treatment	 often	

require	 fluid	 resuscitation	 with	 crystalloid	 or	 colloid	 solution	 and	 blood	

transfusion.	Mortality	rates	for	DSS	vary	from	(<1%	to	>10%)	depending	on	access	

to	healthcare(237).		
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5.1.2.				Dengue	infection	and	transmission	
	

Dengue	is	transmitted	primarily	by	the	Aedes	aegypti	mosquito	but	also	by	

Aedes	 albopictus	which	 is	 the	 main	 vector	 in	 Asia.	 The	 virus	 is	 transmitted	 to	

humans	through	the	bites	of	infected	female	mosquitoes.	Meta-analysis	of	dengue	

virus	incubation	period	suggests	that	the	extrinsic	incubation	period	(EIP),	which	

represents	the	time	when	a	mosquito	takes	a	blood	meal	and	becomes	infected,	is	

between	5	and	33	days	at	25°C,	and	2	and	15	days	at	30°C.	The	intrinsic	incubation	

period	(IIP)	which	is	the	time	between	a	person	being	infected	and	the	onset	of	

symptoms	due	to	the	infection,	has	an	estimate	of	5.9	days(238).	Dengue	virus	can	

also	 be	 transmitted	 in	 utero,	 with	 one	 specific	 study	 reporting	 that	 vertical	

transmission	 occurred	 in	 18	 of	 143	 (12.3%)	 pregnant	 women	 in	 their	 case	

report(239).	One	comparative	study	also	found	evidence	of	vertical	transmission	

in	2.5%	of	cases	(n=63),	with	a	vertical	transmission	rate	of	1.6%(240)	in	pregnant	

women.	It	has	been	proposed	that	dengue-positive	individuals	who	experience	a	

subsequent	infection	with	another	serotype	are	at	higher	risk	of	developing	severe	

dengue	(DHF/DSS).	A	retrospective	study	of	1,757	children	(aged	between	4-16	

years)	 found	 that	 zero	 of	 47	 children	 with	 primary	 dengue	 infections	 were	

hospitalised,	whereas	7	of	56	children	with	secondary	infections	required	hospital	

care	(P	=	0.012).	They	concluded	that	pre-existent	dengue	immunity	to	one	strain,	

as	detected	by	conventional	serologic	techniques,	places	the	patient	at	a	significant	

risk	 (odds	 ratio	 greater	 than	 or	 equal	 to	 6.5)	 for	 development	 of	 dengue	

haemorrhagic	 fever	 when	 infected	 with	 a	 different	 DENV	 strain.	 These	

observations	support	the	hypothesis	of	antibody-dependent	enhancement	(ADE)	

in	dengue	infections.	One	of	the	first	lines	of	evidence	for	ADE	in	dengue	came	to	

light	when	it	was	reported	that	passive	transfer	of	maternal	dengue	antibodies	to	

the	 foetus	 significantly	 increase	 the	 likelihood	 of	 acquiring	 DHF/DSS	 in	

infants(241).	One	hypothesis	is	that	the	pre-existing	antibodies	use	Fc	receptors	in	

the	 target	 cells	 to	 form	 complexes	 that	 facilitate	 the	 infection	 of	 cells	 such	 as	

monocytes,	macrophages	 and	 dendritic	 cells(242).	 Several	 in	 vitro	 studies	 have	

since	reproduced	the	enhanced	infection	of	Fc-receptor	bearing	cells	to	mimic	the	
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cellular	infection	observed	in	DHF/DSS	patients(243).	Furthermore,	the	transfer	

of	DENV-specific	monoclonal	antibodies	into	juvenile	rhesus	monkeys	resulted	in	

a	notable	clinical	manifestation	and	viraemia(244).	

	

5.1.3.				The	genetics	of	dengue	infection	
	

So	 far,	 no	 single	 gene	 has	 been	 associated	 with	 susceptibility	 to	 DENV	

infections	but	several	host	factors	have	been	found	to	play	a	role	in	the	severity	of	

the	disease.		For	example,	a	study	of	the	HLA-A	and	B	genes	in	a	Thai	population	

(DF=149	and	DHF=114	and	control=140	individuals)	constituted	the	first	evidence	

of	an	association	(albeit	with	no	genome	wide	significance)	between	severe	dengue	

phenotype	predisposition	and	individual	genetic	composition,	virus	serotype,	and	

primary/secondary	virus	infection(245).	HLA-A*0203	was	associated	with	the	less	

severe	 DF	 (P=0.012,	 OR=3.09),	 regardless	 of	 the	 secondary	 infecting	 virus	

serotype.	 Conversely,	HLA-B*52	 (P=9.6x10-6,	OR=26)	was	 associated	with	 DF	 in	

patients	with	secondary	DENV-1	and	DENV-2	infections(245).		

	

In	Vietnam,	for	example,	several	studies	have	determined	that	close	to	85%	of	the	

population	is	exposed	to	dengue	virus	by	the	time	they	turn	fifteen	years	old,	but	

only	 1%	 suffer	 the	most	 severe	 symptoms.	 These	 epidemiological	 studies	 have	

served	 to	 implicate	 host	 factors	 with	 susceptibility	 to	 severe	 dengue	

infections(246).	 Two	 regions:	 major	 histocompatibility	 complex	 (MHC)	 class	 I	

polypeptide	sequence	B	(MICB,	P=4.4x10-11,	OR=1.34)	locus	and	phospholipase	C,	

epsilon	1	(PLCE,	P=3.1x10-10,	OR=0.8)	gene	confer	susceptibility	to	the	most	severe	

forms	of	dengue	infection	in	children(113).	Although	identification	of	the	causative	

loci	was	not	possible,	MICB	appears	 to	be	 the	most	 likely	 candidate	 for	disease	

severity	in	this	cohort(113)	(Table	21).	

	

	



	
 
 
 

150	

Table	21.	Table	showing	the	most	relevant	genetic	studies	of	dengue	fever	or	dengue	shock	syndrome	
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5.1.4.				IFITM	restriction	of	dengue	virus	in	vitro	
	

Interferon	transmembrane	proteins	IFITM1,2	and	3	have	been	identified	as	

antiviral	mediators	that	confer	resistance	to	a	number	of	viruses,	including	dengue	

2	viruses(53,	73).	Brass	et	al.	established	that	siRNA	depletion	of	IFITM3	protein	

led	 to	 an	 increase	 of	 replication	 of	 DENV	 serotype	 2	 virus	 (New	 Guinea	 C	

strain)(53).	These	results	were	later	replicated	in	another	study	that	also	observed	

a	 similar	 level	 of	 restriction	 (around	80%)	 to	DENV	 serotype	 2	 (New	Guinea	C	

strain)	 in	 A549	 cells	 expressing	 IFITM3	 proteins(73).	 Investigations	 on	 the	

mechanisms	of	IFITM3	antiviral	effects	have	reported	that	the	role	of	IFITM3	is	not	

limited	 to	 the	 intercellular	 space	 but	 can	 also	 be	 observed	 across	 cells(247).	

Interestingly,	 another	 study	 revealed	 that	 IFITM	 proteins	 restrict	 antibody-

dependent	 enhancement	 (ADE)	 infection	 as	 efficiently	 as	 direct	 infection(248).	

Zhu	et.	al,	 investigated	the	propagation	of	IFITM3	antiviral	activity	upon	dengue	

infection	 via	 exosomes.	 Exosomes	 are	 small	 vesicles	 (30-100nm)	 that	 are	 of	

endocytic	 origin	 which	 have	 been	 associated	 with	 cell-to-cell	 transmission	 of	

HIV(247).	This	study	demonstrated	the	presence	of	IFITM-containing	exosome	in	

the	 extracellular	 environment.	 Furthermore,	 they	 identified	 that	 exosomes	

delivered	 IFITM3	 to	 non-infected	 cells;	 thereby	 propagating	 its	 antiviral	

effect(247).	

	

Despite	the	number	of	open	questions	that	remain	regarding	the	mechanisms	of	

antiviral	 restriction	 of	 dengue	 and	 other	 virus	 infections,	 it	 appears	 that	 IFITM	

proteins	may	be	good	therapeutic	targets.	If	their	extracellular	antiviral	function	

with	 regards	 to	 dengue	 are	 replicated,	 this	 would	 provide	 great	 potential	 for	

antiviral	drug	development	in	the	future.	Given	the	incredible	burden	of	dengue	

worldwide,	 it	 is	 important	 to	 understand	 the	 role	 of	 IFITM	 proteins	 and	 host	

factors	in	the	context	of	dengue	virus	(DENV)	infections.	I	hypothesise	that	IFITM3	

is	one	of	a	number	of	dengue	restriction	factors	involved	in	the	restriction	of	these	

viruses	and	this	constitutes	the	main	motivation	for	this	chapter.		
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I	used	genotype	data	for	the	IFITM	 locus	(11:280,000-380,000)	from	the	largest	

genetic	case-control	study	on	dengue	susceptibility	 in	a	cohort	of	2008	children	

diagnosed	with	DSS	and	2018	control	individuals(113).	I	had	detailed	knowledge	

from	Chapter	2	of	 this	 thesis,	 of	 the	 coverage	of	 IFITM	 genes	 in	 Illumina	660W	

Beadchip,	the	array	used	in	the	dengue	GWAS	I	found	that	the	coverage	for	Asian	

populations	 (as	 reported	 in	 Chapter	 2)	 was	 the	 following:	 IFITM2	 =12%	 and	

IFITM3	=	2%	(IFITM1	was	not	included	due	to	low	number	of	common	SNPs	within	

the	gene	region).	In	addition,	we	had	evidence	from	Chapter	3	that	there	may	be	

regions	near	the	IFITM	locus	that	are	not	captured	or	do	not	have	correct	genotypes	

in	the	1000	Genome	Phase	3	panel.	To	bridge	the	gap	between	the	scarce	number	

of	directly	genotype	SNPs	included	in	Illumina	Illumina	660W	array	in	this	locus,	I	

proceeded	to	use	the	data	to	impute	from	a	number	of	reference	panels,	including	

a	deep-sequenced	Vietnamese	panel	that	I	constructed	from	lymphoblastoid	cell	

lines.	This	enabled	me	to	impute	and	test	for	association	using	a	greater	number	of	

SNPs	in	the	IFITM	genes.	
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5.2.				Aims	
	

The	aim	of	this	project	was	to	identify	whether	specific	mutations	in	IFITM	

genes	contribute	to	dengue	haemorrhagic	fever.	In	order	to	do	this,	I	use	genotype	

data	 across	 a	 cohort	 of	 2,008	 Vietnamese	 children	 diagnosed	 with	 dengue	

haemorrhagic	 fever	 (DHF)	 and	 2,018	 cord	 blood	 controls,	 to	 test	 if	 common	

variants	are	associated	with	the	disease.		
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5.3.				Material	and	Methods	

	
5.3.1.				GWAS	Genotype	dataset	

	
5.3.1.1.				Vietnamese	genotype	data	from	Dengue	

GWAS	by	Khor	et.	al.	2011	
	

I	accessed	a	section	of	genotype	data	(chr11:0-650,000)	 from	the	 largest	

GWAS	 study	 of	 Dengue	 Shock	 Syndrome	 carried	 out	 so	 far(113).	 This	 dataset	

contained	579	directly	genotyped	SNPs	from	2008	cases	of	Vietnamese	children	

with	dengue	shock	syndrome	and	2018	controls	cord	blood	controls.	In	the	original	

GWAS,	 randomised	 samples	 from	 cases	 and	 controls	 were	 genotyped	 using	

Illumina	660W	Quad	BeadChips.	The	QC	steps	for	these	samples	were	performed	

by	 Khor	 and	 colleagues(113).	 As	 a	 result	 of	 these	 QC	 steps,	 samples	 with	 sex	

discordant	information,	high	relatedness	IBD	scores,	per-sample	call	rates	of	less	

than	95%	were	excluded.	Markers	with	high	missing	rates	or	MAF	<	1%	were	also	

excluded	from	downstream	analysis(113).		
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5.3.1.2.				Constructing	a	Vietnamese	reference	panel	

to	impute	into	the	Vietnam	genotype	data	
	

5.3.1.2.1.				Access	to	Vietnamese	samples	DNA	from	1000	

Genomes	
	

I	selected	the	Human	variation	DNA	panel	(catalogue	number	MGP00014)	

from	 100	 unrelated	 Kinh	 individuals	 in	 Ho	 Chi	 Minh	 City,	 Vietnam	 from	 the	

National	 Institute	 of	 General	 Medical	 Sciences	 (NIGMS)	 Human	 Genetic	 Cell	

Repository	 at	 the	 Coriell	 Cell	 Repositories.	 I	 processed	 100	 DNA	 samples	

containing	2µg	of	DNA,	normalised	to	a	concentration	of	100ng/µl.	These	samples	

were	originally	used	in	the	1000	Genomes	Sequencing	Project.	

	

5.3.1.2.2.				Illumina	Hiseq	sequencing	and	variant	QC	
	

This	study	employed	the	Agilent	SureSelect	targeted	sequencing	method	to	

pulldown	a	 region	 in	 chr11:280,000-380,000,	described	as	 in	Chapter	4.	All	 the	

sample	processing	and	sequencing	was	performed	at	The	Wellcome	Trust	Sanger	

Institute.	Genomic	DNA	was	sheared	to	an	average	was	500bp	using	Covaris	E210	

(Covaris	Massachusetts,	USA).	Sheared	samples	were	used	in	the	Illumina	library	

preparation	 and	 enriched	 for	 the	 IFITM	 locus	 using	 SureSelect	 Agilent	 probes	

(Agilent	 technologies,	 Santa	 Clara,	 USA	 ELID	 number	 0798441).	 Samples	 were	

sequenced	using	the	HiSeq	2500	(Illumina,	SanDiego,	USA)	as	paired-end	300bp	

reads.	I	sequenced	50	samples	per	lane	in	duplicates.		
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5.3.1.2.3.				Sequencing	analysis	

	
Sequencing	analysis	was	carried	out	as	in	previous	Chapters.	I	performed	

the	alignment	of	the	raw	sequencing	data	to	the	to	the	human	reference	genome	

build	GRCh37	using	the	Burrows-Wheeler	Aligner	(BWA-mem)(216)	and	marked	

duplicates	 using	 Picard	 (http://broadinstitute.github.io/picard,	 version	 2.7.2).	

Because	the	same	samples	were	sequenced	in	two	different	lanes,	I	merged	bam	

files	 belonging	 to	 the	 same	 individuals	 using	 SAMtools(217)	 and	 followed	 the	

GATK(218)	 best	 practice	 guidelines(166,	 167)	 for	 bam	 improvement	 prior	 to	

variant	 calling.	 The	 steps	 included	 duplicate	 marking	

(http://broadinstitute.github.io/picard,	 version	 2.7.2)	 and	 base	 quality	 score	

recalibration	(GATK	3.6).	Variant	calling	was	performed	at	the	single	sample	level	

using	 the	 Haplotype	 Caller	 (GATK	 3.6)	 and	 then	 joint-called	 using	 GATK	

CombineVCF	and	GenotypeVCF	(GATK	3.6).	One	sample	failed	sequencing	QC	and	

a	further	two	samples	failed	the	variant	calling	step.	One	sample	was	excluded	from	

the	1000	Genomes	final	dataset	and	subsequently,	I	also	excluded	it	from	my	panel.	

This	left	a	total	of	96	samples	for	downstream	analysis.		

	

For	variant	QC,	I	applied	GATK	hardfiltering	recommendations(167)	as	in	Chapter	

3	and	4	(Figure	41).	The	hardfiltering	parameters	included	were:	QualbyDepth	(QD),	

Fisher	 Strand	 (FS),	 StrandOddsRatio	 (SOR),	 RMSMapping	 Quality	 (MQ),	

MappingQualityRankSumTest	 (MQRankSum)	 and	 ReadPosRankSum.	 After	

filtering	909	variants	were	retained.		
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Figure	41.	Density	plots	of	QC	parameters	used	to	filter	out	bad	quality	SNPs.	On	the	x-axis	are	
the	annotation	values	used	to	assess	the	quality	of	the	dataset,	and	on	the	y-axis,	are	the	density	
values.	The	black	line	represents	the	threshold	values	used	to	filter	variants	(a)The	distribution	of	
the	 dataset	 shows	 Quality	 by	 Depth	 (QD)	 values	 from	 0-30,	 with	 two	 peaks	 representing	
heterozygous	reads	(QD	=13)	and	homozygous	calls	with	double	the	number	of	reads	(QD	=28).	
Variants	with	QD	values	<	9	represent	low	quality	calls	and	were	excluded	from	the	dataset.	(b)	
Variants	have	Fisher	Strand	(FS)	values	close	to	zero	showing	no	strand	bias.	The	black	lines	show	
the	cut	off	value	FS	>1	used	to	exclude	variants	that	deviate	from	zero.	(c)	Mapping	Quality	(MQ)	
values	are	close	to	60	and	of	the	highest	quality.	Any	variants	with	MQ	<55	were	excluded	from	the	
analysis.	 (d)	 The	majority	 of	 the	 dataset	 had	 Strand	Odds	 Ratio	 (SOR)	 values	 close	 to	 zero.	 To	
exclude	variants	with	some	degree	of	strand	bias,	SOR	values	>	3	were	used	as	cut	off	values.	(e)	
Variants	with	MQRankSum	<	-3	(more	reads	supporting	reference	alleles)	and	MQRankSum	>	+3	
(more	reads	supporting	alternate	alleles)	were	also	excluded	in	the	analysis.	(f)	Finally,	the	dataset	
showed	that	the	distribution	of	the	Read	Position	Rank	Sum	(ReadPosRankSum)	is	close	to	zero	
indicating	that	there	is	little	difference	between	the	positions	of	the	reference	and	alternate	alleles	
within	the	reads.	Any	variants	deviating	from	zero	were	also	excluded	from	the	analysis.		
	

	

	

	

	

0.00

0.05

0.10

0 10 20 30
QD

de
ns
ity

0.00

0.25

0.50

0.75

0 50 100
FS

de
ns
ity

0

2

4

6

0 20 40 60
MQ

de
ns
ity

0

2

4

6

0 5 10 15
SOR

de
ns
ity

0.0

0.1

0.2

0.3

−20 0 20
MQRankSum

de
ns
ity

0.0

0.2

0.4

0.6

−30−20−10 0 10 20
ReadPosRankSum

de
ns
ity

0.00

0.05

0.10

0 10 20 30
QD

de
ns
ity

0.00

0.25

0.50

0.75

0 50 100
FS

de
ns
ity

0

2

4

6

0 20 40 60
MQ

de
ns
ity

0

2

4

6

0 5 10 15
SOR

de
ns
ity

0.0

0.1

0.2

0.3

−20 0 20
MQRankSum

de
ns
ity

0.0

0.2

0.4

0.6

−30−20−10 0 10 20
ReadPosRankSum

de
ns
ity

0.00

0.05

0.10

0 10 20 30
QD

de
ns
ity

0.00

0.25

0.50

0.75

0 50 100
FS

de
ns
ity

0

2

4

6

0 20 40 60
MQ

de
ns
ity

0

2

4

6

0 5 10 15
SOR

de
ns
ity

0.0

0.1

0.2

0.3

−20 0 20
MQRankSum

de
ns
ity

0.0

0.2

0.4

0.6

−30−20−10 0 10 20
ReadPosRankSum

de
ns
ity

0.00

0.05

0.10

0 10 20 30
QD

de
ns
ity

0.00

0.25

0.50

0.75

0 50 100
FS

de
ns
ity

0

2

4

6

0 20 40 60
MQ

de
ns
ity

0

2

4

6

0 5 10 15
SOR

de
ns
ity

0.0

0.1

0.2

0.3

−20 0 20
MQRankSum

de
ns
ity

0.0

0.2

0.4

0.6

−30−20−10 0 10 20
ReadPosRankSum

de
ns
ity

(a) (b) (c)

(e) (f)(d)



	
 
 
 

158	

5.3.1.2.4.				Variant	Annotation	

	
Following	variant	calling	and	QC,	I	annotated	variants	using	dbSNP	v137.	I	

used	 Ensembl	 Variant	 Effect	 predictor	 (Ensembl	 variation	 release	 76)	 for	

annotation	and	used	the	most	severe	predicted	consequence	for	each	gene	variant.	

I	 used	 Scoring	 Intolerance	 from	 Tolerance	 (SIFT)(220)	 and	 Polyphen-2(221)	

predictions	 to	 determine	 whether	 the	 variants	 were	 likely	 to	 affect	 protein	

function,	and	the	Sequence	Ontology	terms	and	description	 in	Ensembl	 to	score	

variants	for	their	functional	impact	on	the	function	of	the	protein	

	

5.3.1.2.5.				Identification	of	Individuals	with	elevated	missing	

genotype	rate	or	outlying	heterozygosity	
	

I	followed	the	data	quality	in	case-control	association	studies	by	Anderson,	

et	al.	2011	to	identify	individuals	with	elevated	missing	genotype	rates	(Figure	42),	

followed	by	identification	of	markers	with	excessive	missing	genotype	rate	using	

PLINK	 1.9.	 In	 the	 first	 instance,	 I	 excluded	 a	 total	 of	 five	 samples	 due	 to	 high	

heterozygosity	 rate	 (Figure	 42)	 leaving	 me	 with	 the	 final	 total	 number	 of	 91	

individuals	in	the	Vietnamese	panel.	For	the	second	step	of	the	QC,	I	excluded	28	

variants	out	of	909	total	number	of	variants	after	imposing	a	cut	off	threshold	of	

2%	on	the	dataset	(Figure	43).		
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Figure	 42.	 Identification	 of	 individuals	 with	 high	 missing	 genotype	 and	 outlying	
heterozygosity	rates.	Each	black	dot	represents	an	 individual	sample	and	 the	dashed	red	 lines	
represent	 the	 QC	 threshold	 imposed	 on	 a	 dataset.	 Individuals	 with	 more	 than	 2%	 of	 missing	
genotypes	were	excluded.	In	addition,	individuals	with	too	high	(>29%)	or	too	low	(<9.0%)	values	
of	heterozygosity	were	also	excluded	from	the	analysis.	
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Figure	43.	Histogram	of	the	number	of	variants	with	missing	genotype	data.	The	dashed	
vertical	line	represents	the	QC	threshold	(13%)	used	to	filter	out	SNPs	with	high	missing	rate.	In	
total,	28	SNPs	were	removed	out	of	909	SNPs.		
	
	
	

5.3.1.2.6.				Phasing	the	Vietnamese	sequencing	data	using	

SHAPEIT2	
	

In	order	to	construct	the	reference	panel,	I	proceeded	to	phase	the	QC’ed	

sequencing	data	using	SHAPEIT2(249),(250).	There	are	three	phasing	strategies	

currently	 listed	by	 SHAPEIT2.	Because,	 it	was	unknown	which	 specific	 strategy	

would	work	best	on	my	data,	I	phased	with	all	the	three	methods	and	evaluated	

according	to	switch	errors	and	Info	metrics.	In	the	following	section,	I	give	more	

details	on	the	different	phasing	strategies	that	I	employed:		

phasing	with	 a	 reference	 panel	 scaffold,	 phasing	without	 a	 reference	 and	 Read	

Aware	 Phasing	 (PIRS).	 I	 then	 proceeded	 to	 evaluate	 the	 phasing	 output	 by	

comparing	the	switch	error	rate	and	the	flip	errors	between	outputs.		

1. Phasing	the	Vietnamese	samples	using	1000	Genomes	Phase	3	Reference	

Panel	as	scaffold	

I	 first	 downloaded	 1000	 Genomes	 Reference	 panel	 from	

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html	 and	

proceeded	 to	 compare	variants	 called	 in	my	dataset	with	variants	 in	 the	
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1000	Genome	dataset.	I	excluded	all	sites	that	were	highlighted	as	different	

or	missing	from	the	1000	Genomes	Phase	3	Reference	panel.	The	excluded	

sites	were	comprised	of	126	sites	missing	 in	 the	1000	Genomes	Phase	3	

reference	panel	and	a	further	36	misaligned	sites	within	the	panels.	Once	

the	data	was	pruned,	I	then	phased	with	SHAPEIT2	using	standard	phasing	

options	as	described	 in	 the	SHAPEIT2	best	practices.	 I	had	a	 total	of	736	

sites	after	phasing	with	1	Genome	dataset.	

2. Phasing	without	a	scaffold	

It	has	been	documented	that	phasing	without	a	scaffold	gives	less	accurate	

results.	However,	I	also	employed	this	strategy	to	use	as	comparison	tool	

for	imputation	accuracy.	I	had	a	total	of	881	sites	after	phasing.		

	

3. Phasing	using	“Phase	Informative	Reads	(PIRS)”(251)	

Next-generation	sequencing	data	produces	reads	 that	may	contain	phase	

information	 when	 spanning	 two	 or	 more	 heterozygous	 sites.	 Pirs	

constitutes	 an	 extension	 of	 SHAPEIT2	 method	 to	 infer	 haplotypes	 from	

genotype	data.	In	this	method,	Delaneau	and	colleagues	make	used	of	base	

quality	scores	within	reads	to	feed	into	a	probabilistic	model	of	haplotype	

estimation(251).	 Because	 the	 method	 was	 originally	 designed	 for	 high	

coverage	dataset,	I	reasoned	that	it	would	be	suitable	for	the	Vietnamese	

dataset.		Furthermore,	phasing	with	1000	Genomes	Phase	3	reference	panel	

(see	 explanation	 above)	 resulted	 in	 over	 100	 sites	 excluded	 for	 further	

analysis.	 Using	 the	 read-aware	 strategy	 avoids	 the	 exclusion	 of	 some	 of	

these	sites	because	as	long	as	the	base	quality	for	a	particular	site	is	high	

(>30)	 in	 the	bam	files,	 the	sites	would	be	 included	 in	 the	 final	haplotype	

estimation	output.	This	left	me	with	a	total	of	891	sites.		

	

The	 initial	 metrics	 I	 used	 to	 assess	 the	 phasing	 accuracy	 of	 the	 three	 phasing	

strategies	 were	 switch	 error	 and	 imputation	 quality(252).	 I	 used	 an	 ‘in-house’	

script’	written	by	Tommy	Carstensen,	staff	scientists	at	the	Wellcome	Trust	Sanger	

Institute.	 The	 switch	 error	 strategy	 generally	 requires	 a	 gold	 standard	 phased	

dataset.	Because	I	did	not	have	a	gold	standard	phased	dataset	for	the	Vietnamese	
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samples,	 I	 carried	 out	 several	 combinations	 of	 comparisons	 between	 phased	

haplotypes	 from	 all	 three	 phased	 panels.	 I	 found	 that	 phasing	 with	 the	 1000	

Genomes	as	a	scaffold	resulted	in	1,127	error	rates;	without	a	scaffold,	1,066	and	

with	PIRs,	575.	The	results	were	similar	but	suggested	that	PIRS	contained	the	least	

number	of	switch	error	rates.	This	is	consistent	with	previous	findings	that	found	

using	PIRS	in	real	data	from	1000	Genomes	dataset	would	reduce	the	switch	error	

rate	substantially(251)	

	

5.3.1.2.7.				Imputation	using	IMPUTE2	

	
To	 impute	 untyped	 SNPs	 from	 reference	 panels	 I	 used	 the	 default	

imputation	 commands.	 As	 suggested	 in	 the	 IMPUTE2	 guidelines,	 I	 excluded	

variants	with	MAF	<	0.01	as	these	SNPs	are	expected	to	provide	the	least	power	for	

association	studies	and	increase	the	error	rate,	they	are	often	also	harder	to	impute	

and	may	affect	imputation	quality	for	the	rest	of	the	sites.		

	

To	impute	using	the	Sanger	Imputation	server,	I	 followed	the	set	of	 instructions	

provided	in	the	Sanger	imputation	website.	The	first	step	was	to	ensure	that	the	

data	was	in	the	correct	format.	I	used	BCFtools	(1.3.1-htslib-1.3.2)	to	convert	the	

genotype	gen	file	to	vcf	files.		I	then	annotated	the	chromosomes	to	match	Ensembl-

style	 chromosome	 names	 also	 with	 BCFtools	 and	 I	 ensured	 that	 sites	 in	 the	

genotype	data	matched	the	sites	in	GRCh37	reference	fasta.	Finally,	I	converted	the	

data	 from	 Illumina	 TOP	 convention	 to	 forward	 reference	 strand	with	 BCFtools	

fixref	plugin	and	validated	my	vcf	using	vcf-validator	using	VCFtools	(v	1.3.1-htslib-

1.3.2).	
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5.4.				Results	
	

5.4.1.	Imputation	of	GWAS	genotype	data	using	

Vietnamese	sequencing	panel		
	

	

Before	association	analysis,	 I	 imputed	 the	GWAS	data(113)	with	each	of	 the	

three	phased	Vietnamese	panels	that	I	constructed	from	the	previous	step.	I	then	

assessed	 the	 imputation	 accuracy	 for	 each	 panel.	 The	 output	 of	 the	 imputation	

resulted	in:	

a) 718	SNPs	were	imputed	from	the	panel	phased	with	scaffold.		

b) 873	SNPs	were	imputed	from	the	panel	phased	without	scaffold.			

c) 833	SNPs	were	imputed	SNPs	from	the	panel	phased	with	reads	from	bam	

files	–	Pirs	

	

In	a	second	step,	I	also	decided	to	impute	the	GWAS	Genotype	dataset	using	the	

HRC	 reference	 panels	 available	 from	 the	 Sanger	 Imputation	 Website(86).	 The	

output	of	this	imputation	resulted	in	1,835	imputed	sites	and	18	sites	from	directly	

genotyped	SNPs	(Figure	44).		

	

To	determine	 the	 imputation	 accuracy,	 I	 used	 the	 INFO	 score	 calculated	by	 the	

imputation	 software.	 The	 INFO	 score	 used	 the	 input	 dataset	 to	 quantify	 the	

relevant	statistical	 information	about	 the	variant’s	MAF	 in	 the	 input	dataset.	An	

INFO	score	=	0.9	represents	highly	accurate	genotype	data	(Figure	45).		
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Figure	44.	Summary	of	the	GWAS	analysis	using	imputation.	I	constructed	a	reference	panels	of	
96	Vietnamese	individuals.	The	same	reference	panel	was	phased	in	three	different	ways	and	used	
to	imputed	the	GWAS	dataset.	In	parallel,	I	used	the	HRC	panel	to	also	impute.	After	the	comparison,	
The	HRC	panel	came	out	on	top	with	the	highest	INFO	scores	and	number	of	imputed	variants.		

	

	
Figure	45.	The	INFO	quality	for	imputed	variants	in	dengue	cohort.	Variants	obtained	from	each	
imputation	analysis	show	that	the	INFO	score	for	variants	imputed	with	the	HRC	panels	(red	line)	
have	substantially	higher	INFO	scores	than	variants	imputed	with	the	Vietnamese	panel	alone.	
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5.4.3.				Power	to	detect	associations	

	
Following	QC	 of	 SNPs	 in	 the	 severe	 dengue	 dataset,	 18	 directly	 genotyped	 and	

1,817	imputed	SNPs	of	MAF	³1%	were	available	for	GWAS	across	the	IFITM	region	

(chr11:280,000-380,000).	With	2,008	cases	of	Vietnamese	children	with	dengue	

shock	syndrome	and	2,018	controls	cord	blood	controls	and	using	a	genome-wide	

significance	threshold	of	P	values	<5x10-8,	 this	study	had	>90%	power	to	detect	

common	variants	with	allele	 frequencies	of	at	 least	5%	and	moderate	and	 large	

effect	sizes	(OR³2.0)	(Figure	46).	For	low-frequency	variants	of	1%,	80%	power	

was	only	achieved	for	large	effect	sizes	(OR³3)	(Figure	46).		

	

	
Figure	46.	Statistical	power.	 The	 statistical	 power	 to	 identify	 genetic	 variants	 of	 genome-wide	
significance	 and	with	 different	 effect	 sizes	 given	 the	 sample	 size	was	 estimated	 using	QUANTO	
software	(http://biostats.usc.edu/software).	These	calculations	were	done	by	Dr.	Neneh	Sallah	and	
Fernando	Riveros	Aguilera	at	the	Wellcome	Trust	Sanger	Institute.	
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5.4.2.				Single	variant	association	test	

	
For	genetic	association,	I	used	data	imputed	with	the	HRC	panels.	2,008	individuals	

with	dengue	and	2018	controls	were	available	for	analysis	and	1,836	sites	were	

available	 for	 association	 testing.	 I	 tested	 for	 association	 using	 SNPTEST	 v2.5,	

performing	an	additive	frequentist	association	on	variants	with	INFO³0.4.	I	tested	

1836	 sites	 for	 association	 of	 which	 20	 variants	 showed	 nominal	 evidence	 of	

significance	 (P	 <	 0.05)	 and	 none	 showed	 significant	 evidence	 of	 genome-wide	

association	(5x10-8)	(Table	22).	
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Table	22.	Case-control	association	tests	(SNPTEST)	for	variants	in	the	IFITM	locus.	P-values	are	not	corrected	for	multiple	testing	but	none	reached	genome-wide	
significance	(5x10-8).	

	
	

alternate_ids rsidchromosome position alleleA alleleB all	maf cases	maf controls	maf OR OR	lower OR_upper P	value
11 rs760060 11 288883 A G 0.13 0.11 0.14 0.81 0.71 0.93 0.0025
11 rs10902119 11 288115 T C 0.12 0.11 0.13 0.82 0.72 0.94 0.0043
11 rs61876261 11 356080 T C 0.14 0.16 0.13 1.20 1.06 1.36 0.0043
11 rs186373656 11 302039 C T 0.20 0.21 0.19 1.18 1.05 1.31 0.0048
11 rs11246052 11 286134 G A 0.10 0.09 0.11 0.82 0.71 0.94 0.0057
11 rs11246117 11 353630 G A 0.26 0.24 0.27 0.87 0.79 0.96 0.0065
11 rs11600194 11 287959 G A 0.10 0.10 0.11 0.82 0.71 0.95 0.0073
11 rs78642272 11 351271 G A 0.17 0.16 0.18 0.86 0.76 0.97 0.0090
11 rs183397121 11 334170 C G 0.12 0.13 0.12 1.20 1.05 1.36 0.0094
11 rs3932433 11 289553 G C 0.10 0.09 0.11 0.83 0.72 0.96 0.0107
11 rs3809112 11 307036 T C 0.31 0.30 0.33 1.13 1.03 1.24 0.0109
11 rs10902121 11 306791 T C 0.31 0.30 0.33 1.13 1.03 1.24 0.0126
11 rs117779161 11 343820 G A 0.14 0.13 0.14 0.85 0.75 0.97 0.0129
11 rs11246099 11 347878 T A 0.17 0.16 0.18 1.16 1.03 1.30 0.0139
11 rs11246059 11 305961 A C 0.49 0.50 0.47 1.12 1.02 1.22 0.0145
11 rs7948108 11 323507 G A 0.31 0.30 0.33 0.89 0.81 0.98 0.0147
11 rs11246062 11 313755 C G 0.45 0.43 0.46 1.12 1.02 1.22 0.0157
11 11:308178 11 308178 T C 0.37 0.36 0.38 1.12 1.02 1.22 0.0171
11 rs10398 11 308180 A G 0.39 0.38 0.40 1.11 1.02 1.22 0.0188
11 11:344626 11 344626 T C 0.02 0.03 0.02 1.42 1.06 1.91 0.0196



	
 
 
 

168	

5.5.				Discussion	

	
Recent	reports	suggest	that	IFITM	proteins	restrict	dengue	infection	with	

several	studies	observing	70-80%	restriction	in	cells	that	overexpress	IFITM3(53,	

73).	As	a	consequence,	I	investigated	the	host	genetic	contribution	of	IFITM	genes	

to	dengue	shock	syndrome	in	a	Vietnamese	cohort	comprised	of	4,026	individuals.		

	

The design of this study with 2,008 cases and 2,018 controls, using a genome-wide 

threshold of P < 5x10-8, had 100% power to detect common variants with minor allele 

frequencies of at least 30% with effect sizes (OR > 2.0) (Figure 46). However, despite 

having the power, I	 do	 not	 find	 any	 genome-wide	 significant	 associations.	 This	

means	 that	 at	 least	 in	 this	 cohort,	 common	 variants	 of	 IFITM	 genes	 do	 not	

contribute	to	the	genetics	of	severe	dengue	haemorrhagic	fever.	We	had	very	little	

power	(<10%)	to	detect	associations	of	alleles	with	modest	Odds	ratio	and	MAF	

(2%).	 Thus,	 I	 cannot	 rule	 out	 that	 multiple	 common	 variants	 of	 small	 effect,	

population-specific	variants	or	rare	variants	exist	that	influence	dengue	severity.		

	

Another	 possibility	 that	 could	 impact	 the	 findings	 is	 the	 study	 design.	 As	 I	

mentioned	in	the	introduction,	it	is	well	documented	that	in	order	to	avoid	severe	

symptoms	 of	 dengue,	 a	 crucial	 step	 is	 the	 early	 recognition	 of	 signs	 of	 dengue	

haemorrhagic	fever.	Thus,	dengue	infected	individuals	that	develop	DHS	respond	

well	to	fluid	replacement	therapies	and	recover	if	medical	attention	is	sought	on	

time.	 Although	 there	 are	 few	 detailed	 epidemiological	 data	 in	 publication	with	

regards	to	dengue	management	of	infections	in	Vietnam	in	recent	years,	there	have	

been	some	reports	that	highlight	the	poor	control	of	dengue	infection	by	healthcare	

workers	in	the	country.	For	example,	healthcare	provisions	were	assessed	between	

April	2001	 to	March	2002	 in	a	 cohort	of	 two	 thousand	ninety-six	patients.	This	

study	found	that	 the	diagnostic	and	therapeutic	response	of	healthcare	workers	

was	‘unspecific’	and	reflected	lack	of	understanding	of	the	disease(253).	In	rural	

areas	of	Vietnam,	where	healthcare	provisions	are	not	adequate,	there	is	generally	
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a	 reliance	 on	 simple	 tourniquet	 tests	 (approved	 by	 the	 WHO	 to	 test	 capillary	

fragility)	for	diagnosis	of	dengue	haemorrhagic	fever.	It	has	been	reported	that	this	

test	differentiates	badly	between	dengue	haemorrhagic	fever	(45%	positive)	and	

dengue	 fever	 (38%	positive)(254).	 Probably	 the	 best	 study	 yet	 to	 highlight	 the	

challenges	of	good	study	design	for	dengue	disease	was	undertaken	Anders	KL,	et.	

al.,	in	2011.	This	study	highlighted	the	burden	of	dengue	infection	in	Vietnam	by	

analysing	admissions	data	from	over	100,000	patients	to	three	large	hospitals	in	

Ho	Chi	Minh	City,	Vietnam,	for	the	period	of	1996-2009.	One	key	finding	was	that	

girls	had	a	 significant	higher	 risk	 to	 suffer	a	 fatal	outcome	 from	DSS	 than	boys.	

Unsurprisingly,	a	greater	proportion	of	girls	also	developed	DSS	(a	complication	of	

DHF).	 It	 is	 interesting	 to	 note	 that	 girls	 did	 not	 account	 for	 the	 majority	 of	

admissions	for	dengue	fever	(the	mild	form	of	dengue)	for	the	same	period.	The	

report	 goes	 on	 to	 highlight	 a	 substantial	 bias	 to	 male	 admissions	 to	 hospital	

amongst	dengue	cases	which	cannot	be	explained	by	 local	demographics	 (male:	

female	 ratio	 in	 children	 is	 around	 108:100)	 at	 the	 time.	 The	 authors	 therefore	

attributed	 the	 differences	 to	 as	 yet	 unexplained	 healthcare-seeking	 behaviour,	

which	saw	almost	twice	as	many	boys	as	girls	admitted	to	hospitals	during	that	

period	 for	 dengue	 fever	 symptoms.	 Although	 the	 authors	 attribute	 the	 higher	

mortality	 rate	 observed	 in	 females	 suffering	 with	 DSS	 to	 biological	 differences	

between	sexes;	they	also	point	out	that	behavioural	factors	such	as	the	differences	

of	care	provided	to	girls	and	boys	could	also	influence	the	disease	outcome(237).	

The	 proportion	 of	 females	 in	 this	 study	 is	 48.5%	 between	 the	 age	 of	 6-11.	

Therefore,	problems	with	early	diagnosis	of	dengue	haemorrhagic	fever	and	the	

health-seeking	behaviour	displayed	by	the	Vietnamese	population	could	affect	the	

severity	 of	 the	 disease.	 It	 is	 an	 open	 question	 whether	 the	 same	 bias	 of	 male	

admissions	compared	to	females	impacted	the	results	of	this	study.	

	

Finally,	 it	has	been	demonstrated	 that	GWAS	continues	 to	have	 the	potential	 to	

uncover	association	of	novel	loci	with	modest	effect	sizes	(1.07-1.20)	as	evident	by	

a	recent	GWAS	of	the	well-studied	inflammatory	bowel	disease	(IBD)	(109).	In	this	

study,	the	authors	used	genotyping	to	scan	the	variation	of	12,160	IBD	cases	and	

13,145	population	controls	of	European	ancestry	and	test	for	association.	In	order	
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to	achieve	a	similar	level	of	success	in	terms	of	the	number	of	identified	loci	with	

genome-wide	 levels	 of	 significance	 in	 dengue,	 a	 similar	 number	 of	 cases	 and	

controls	would	be	necessary.	Due	to	the	rising	number	of	dengue	cases	worldwide	

surpassing	300	million,	a	similar	number	of	cases	and	controls	can	be	achieved.		
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6.				General	Discussion	
	

6.1.				Summary	of	my	research	
	

In	this	dissertation,	I	described	four	projects,	all	with	the	common	purpose	

of	understanding	the	genetic	and	phenotypic	characteristics	of	the	IFITM	locus.	In	

Chapter	 1,	 I	 gave	 an	 overview	 of	 the	 biology	 and	 function	 of	 IFITM	 proteins,	

highlighting	the	role	of	IFITMs	as	potent	antiviral	factors.	I	also	provided	details	of	

several	 candidate	 gene	 association	 studies	 that	 have	 reported	 correlations	

between	 genetic	 variation	 in	 IFITM	 genes	 and	 virus	 susceptibility	 and	 disease	

progression.		

	

Despite	 all	 the	 evidence	 from	 in	 vitro	 and	 in	 vivo	 studies	 demonstrating	 the	

important	role	of	IFITMs	as	modulators	of	restriction,	no	genome-wide	association	

studies	have	reported	any	significant	associations	to	genetic	variants	in	or	around	

these	genes.	I	addressed	why	this	may	be	the	case	in	Chapter	2,	by	calculating	the	

coverage	 of	 these	 genes	 by	 several	 commercially	 available	 genotyping	 arrays.	 I	

found	that	less	than	25%	of	the	common	variation	(minor	allele	frequency	>	1%)	

in	IFITM2	and	IFITM3	is	covered	on	these	arrays.	Both	genes	are	therefore	in	the	

bottom	7%	of	genes	across	the	genome	in	terms	of	coverage,	and	suggests	that	poor	

coverage	 could	 explain	 the	 lack	 of	 genome-wide	 significant	 associations	 in	 the	

region.	I	concluded	that	other	methods	such	as	next	generation	sequencing	would	

be	required	to	ascertain	the	full	degree	of	variation	in	the	region.		

	

In	Chapter	3,	I	explored	the	utility	of	a	conventional	targeted	sequencing	method	

to	detect	variation	in	the	IFITM	locus.	As	part	of	this	work,	I	also	worked	to	adapt	

this	method	for	PacBio	library	preparations.	Conventional	pulldown	protocols	for	

targeted	 sequencing	 have	 not	 been	 designed	 for	 single	 molecule,	 real-time	

sequencing	platforms	such	as	PacBio	RS.	Although	I	used	a	similar	approach	as	that	

used	in	a	recent	publication(151),	I	developed	the	technique	independently,	before	
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this	report	was	published.	I	found	that	both	methods	captured	most	of	the	variation	

in	 the	 target	 region.	 Although	 PacBio	 sequencing	 marginally	 outperformed	

Illumina	sequencing	in	‘difficult’	regions	near	the	IFITM3,	the	high	cost	of	reagents	

and	manual	 effort	 involved	 in	 adapting	 the	 technology	 to	work	with	PacBio	RS,	

guided	 the	 decision	 to	 employ	 Illumina	 in	 future	 IFITM	 targeted	 sequencing	

studies.		

	

In	Chapter	4,	I	applied	the	conventional	targeted	sequencing	method	described	in	

Chapter	3	to	test	genetic	variants	 in	and	around	 IFITM1,	 IFITM2	and	 IFITM3	 for	

association	with	the	rapid	disease	progression	in	HIV.	I	also	explored	the	burden	

of	 low-frequency	 and	 rare	 genetic	 variants	 (MAF	 <	 5%)	 to	 this	 phenotype	 by	

testing	 for	 a	 differential	 enrichment	 between	 HIV	 elite	 controllers	 and	 rapid	

progressors	across	each	of	the	three	genes.	Because	of	the	limited	sample	size	in	

this	study,	I	also	decided	to	analyse	other	larger	cohorts	of	infectious	disease	cases	

and	controls	to	test	for	significant	associations	to	the	IFITM	genes.	In	Chapter	5,	I	

described	 the	 association	 analysis	 in	 a	 cohort	 of	 2,008	 Vietnamese	 children	

diagnosed	with	dengue	haemorrhagic	fever	(DHF)	and	2,018	cord	blood	controls.	

To	 increase	 the	number	of	variants	 to	 test	 for	association,	 I	also	constructed	an	

IFITM	 imputation	 panel	 by	 deep-sequencing	 the	 locus	 in	 100	 Vietnamese	

individuals	 from	 the	 1000	 Genomes	 Consortium.	 I	 evaluated	 the	 use	 of	 these	

haplotypes	with	other	currently	accessible	imputation	panels	such	as	the	Human	

Reference	Consortium	(HRC)	and	the	1000	Genomes	Phase	3	panels.	I	found	that	

the	HRC	panel	outperformed	all	other	panels	tested.	

	

In	the	following	pages,	I	will	discuss	general	lessons	learnt	during	my	PhD	research	

and	what	solutions	can	be	adopted	to	address	some	of	the	limitations	presented	by	

studying	complex	infectious	diseases.		
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6.2.				Candidate	gene	studies	and	population	

stratification	
	

As	I	mentioned	in	the	introduction,	most	candidate	gene	studies	for	IFITM	

genes	have	concentrated	on	one	SNP	rs12252	situated	at	the	5’	of	the	IFITM3	gene.	

The	 evidence	 of	 association	 between	 this	 SNP	 and	 diseases	 such	 as	 HIV	 and	

influenza	have	often	been	conflicting(54,	91,	93,	255).	Crucially,	to	my	knowledge,	

none	of	these	studies	have	accounted	for	population	stratification.	With	a	variant	

such	as	the	rs12252	SNP,	with	MAF	=	0.5	in	Asian	populations	and	MAF	=	0.02	in	

European	 populations,	 accounting	 for	 population	 stratification	 will	 be	 crucial.	

Indeed,	 the	 study	 reported	 in	 Chapter	 3	 highlights	 the	 potential	 for	 population	

stratification	 to	 be	 a	major	 source	 of	 false-positives	 associations	when	 using	 a	

candidate	gene	approach.	The	project	started	with	126	rapid	progressors	and	99	

elite	controllers,	all	of	alleged	European	descent.	Because	approximately	94%	of	

these	samples	had	been	whole-exome	sequenced	in	previous	studies,	I	was	able	to	

test	for	population	stratification	using	these	data.	As	detailed	previously,	a	large	

number	of	samples	had	to	be	excluded	(n=66)	 for	 further	analysis,	 the	result	of	

which	 was	 a	 significant	 reduction	 in	 power	 to	 detect	 true	 associations	 but	 a	

decreased	false-positive	rate	due	to	population	stratification.		

	

Confounding	factors	such	as	population	admixture	and	population	stratification,	

are	thought	to	be	major	factors	contributing	to	the	lack	of	replication	of	candidate	

gene	studies(84).	Indeed,	there	are	two	classic	examples	where	genetic	admixture	

and	population	stratification	have	led	to	reports	of	false	associations.	One	of	the	

most	widely	 known	 examples	 comes	 from	 a	 study	 that	 reported	 as	 association	

between	the	HLA	haplotype	and	diabetes	mellitus	in	individuals	on	a	Pima	Indian	

reservation.	Once	this	analysis	was	restricted	to	full-heritage	Pima-Papago	Indians,	

the	 association	 disappeared(84).	 Similarly,	 a	metanalysis	 of	 association	 studies	

between	 alcoholism	 and	 dopamine	 D2	 receptor	 established	 that	most	 likely	 all	

previously	reported	associations	were	the	result	of	population	stratification	due	to	
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the	 reliance	 on	 self-reported	 ancestries	 for	 most	 studies(256).	 Although	 I	 am	

aware	 that	 targeted	 sequencing	 studies	 are	 the	most	 feasible	 and	 cost-effective	

strategies	 to	many	scientists	who	want	 to	 capture	all	 genetic	variation	within	a	

locus,	 I	 believe	 that	 such	 studies	 should	 be	 complemented	with	 other	 similarly	

affordable	 technologies	 such	 as	 genome-wide	 genotyping,	 which	 would	 ensure	

that	appropriate	quality	control	steps	can	be	adopted.			

	

6.3.				Genome-wide	association	studies	in	

current	times	
	

Genome-wide	 association	 studies	 continue	 to	 provide	 the	 scientific	

community	 with	 invaluable	 information	 regarding	 the	 genetic	 architecture	 of	

complex	diseases	and	 their	underlying	biology.	One	example	 that	highlights	 the	

important	 role	 of	 genome-wide	 studies	 is	 the	UK	Biobank’s	 initiative	 to	whole-

exome	 sequence	 and	 genotype	 approximately	 500,000	 UK	 individuals	 using	 a	

custom	design	array	carrying	820,967	markers.	 Importantly,	over	10%	of	 these	

markers	 had	 been	 chosen	 because	 of	 previous	 known	 genetic	 associations	 or	

possible	 roles	 in	 phenotypic	 variation	 for	 a	 number	 of	 diseases,	 such	 as	

neurological	 diseases,	 cancer	 and	 inflammatory	 or	 autoimmune	 disorders.	

Crucially,	 the	 UK	 Biobank	 is	 making	 a	 considerable	 effort	 to	 link	 participants’	

health-records	from	General	Practice	(GP)	centres	to	their	genotype	information,	

thus	 providing	 scientists	 with	 relevant	 epidemiological	 information	 that	 would	

prove	invaluable	to	the	understanding	of	disease.		

	

Despite	 the	 relevance	 of	 genome-wide	 scans	 in	 large	 initiatives	 such	 as	 UK	

Biobank,	as	I	demonstrated	for	IFITM	genes	in	Chapter	2,	there	are	regions	of	the	

genome	 that	 are	 still	 not	 represented	 in	 genotype	 arrays.	 Furthermore,	 the	

substantial	 population	 sampling	 bias	 in	 genome-wide	 association	 studies,	

exemplified	by	the	dire	statistics	showing	that	only	4%	of	GWAS	up	to	2011	were	

carried	in	non-European	populations(257),	means	that	there	is	generally	a	lack	of	
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coverage	 of	 variants	 present	 in	 these	 non-European	 populations	 in	 most	

genotyping	chips.	This	historical	population	bias	in	genotyping	arrays	is	changing	

and	 there	 are	 currently	 several	 genotyping	 arrays	 available	 to	 the	 scientific	

community	that	capture	variation	in	non-European	populations	(258).		

	

The	coverage	is	further	reduced	following	typical	quality	control	steps	in	genome-

wide	association	studies.	For	example,	in	a	study	of	Primary	Sclerosing	Cholangitis	

(PSC)	in	2014,	Liu	and	colleagues	genotyped	3,789	PSC	cases	of	European	ancestry	

and	25,079	population	controls	using	the	Immunochip.	Close	examination	of	their	

quality	 control	 steps	 revealed	 that	 approximately	 61,000	 variants	 (out	 of	

~196,000)	 included	 in	 the	 array,	 did	 not	 pass	 the	 quality	 control	 assessments	

generally	 employed	 in	 these	 studies.	 Similarly,	 Kumar	 and	 colleagues,	 obtained	

only	118,989	(out	of	~196,000)	SNPs	from	the	217	candidaemia	cases	and	11,920	

healthy	controls	after	applying	standard	quality	parameters(259).	There	will	be	a	

number	of	 factors	 that	will	 contribute	 to	 the	 failure	of	 a	particular	 SNP	 to	pass	

quality	controls.	 It	 is	 certainly	 the	case	 that	although	quality	control	 steps	have	

been	standardised	for	genome	wide	association	studies,	each	centre	will	employ	

specific	threshold	that	are	more	appropriate	for	their	data.	Importantly,	many	of	

the	variants	included	in	arrays	are	selected	from	publicly	available	datasets	such	

as	the	1000	Genomes.	In	Chapter	3,	I	provided	a	snapshot	of	the	problem	when	I	

showed	that	for	a	600bp	region	at	the	5’	end	of	the	IFITM3,	all	non-reference	calls	

for	 8	 sampled	 SNPs	 were	 incorrectly	 called	 in	 that	 dataset.	 Although	 similar	

situations	 in	 the	 rest	 of	 the	 genome	 may	 be	 rare,	 when	 they	 happen,	 it	 could	

negatively	impact	the	discovery	of	new	associations.		

	

6.4.				Samples	size	in	infectious	diseases.		
	

Sample	 size	 is	 a	 critical	 parameter	 in	 any	 scientific	 experiment	where	 a	

hypothesis	 is	being	 tested.	 In	 this	dissertation,	 low	sample	 sizes	had	a	negative	

influence	on	the	results	reported	in	Chapter	3.	Albeit	one	study,	all	of	the	reported	

candidate	studies	of	IFITM	so	far	have	been	carried	out	with	very	low	samples	sizes	
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(88,	 260).	 To	 ascertain	 the	 role	 of	 genetic	 variation	 IFITM	 locus	 in	 virus	

susceptibility	and	prognosis,	greater	emphasis	must	be	placed	on	the	recruitment	

of	larger	cohorts	of	individuals.	Although	there	are	several	examples	of	excellent	

genetic	 studies	 in	 infectious	 diseases,	 especially	 in	 HIV(99,	 102,	 202),	 and	

tuberculosis(105),	 there	 is	 a	 generally	 a	 lack	of	well-powered	 (with	 adequately	

large	samples	sizes)	studies	being	reported	in	the	field.	By	definition,	cases	of	rare	

phenotypes	such	HIV	rapid	progressors	and	elite	controllers,	are	very	difficult	to	

obtain(99).	As	a	consequence,	many	scientists	have	called	for	greater	worldwide	

collaborations	 that	 could	 help	 provide	 access	 to	 larger	 study	 cohorts(99).	

HIV/AIDS	 is	 responsible	 for	 approximately	 65	 deaths	 for	 every	 100,000	

individuals	 in	 low-income	 countries(261).	 As	 a	 result,	 future	 collaborations	 in	

those	 countries	will	 be	 key	 to	 the	understanding	 of	 the	 architecture	 of	 disease.		

Indeed,	 there	 are	 important	 initiatives	 set	 up	 by	 the	Wellcome	 Trust	 to	 try	 to	

facilitate	partnerships	between	the	United	Kingdom	and	several	countries	in	the	

African	continent.	For	example,	the	KEMRI-Wellcome	Trust	Research	Programme	

(KWTRP)	in	Kenya,	has	been,	for	the	past	25	years,	focusing	their	research	in	areas	

such	 as	 malnutrition,	 HIV/AIDS	 and	 respiratory	 diseases.	 Another	 important	

example	 is	 the	 Wellcome	 Trust	 MRC	 Unit	 in	 the	 Gambia	 that	 also	 focuses	 in	

eradicating	diseases	such	as	tuberculosis	and	HIV	in	the	country.	More	recently,	

other	 collaborations	 have	 been	 formed	 to	 facilitate	 the	 data	 analysis	 of	 African	

populations.	 The	 African	 Genome	 Project	 has	 provided	 dense	 genotypes	 from	

1,481	individuals	and	whole-genome	sequencing	data	for	a	further	320	individuals	

across	sub-Sahara	Africa(262),	thus	becoming	an	invaluable	resource	for	scientists	

who	are	interested	in	studying	genetics	in	these	populations(262).	Ultimately,	the	

hope	is	that	initiatives	such	as	these	would	not	only	increase	our	understanding	of	

disease,	but	it	would	help	build	the	infrastructure	of	those	countries	and	contribute	

towards	the	formation	of	future	scientists	in	the	region.		

	

Generally,	significantly	increasing	the	sample	size	has	led	to	a	greater	number	of	

novel	 association	 being	 discovered,	 although	 this	 is	 not	 always	 the	 case.	 For	

example,	 a	major	 study	 of	 schizophrenia	 in	 36,989	 cases	 and	 113,075	 controls	

identified	128	independent	associations,	83	of	which	were	novel(263).	In	contrast,	
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a	study	of	major	depressive	disorder	(MDD)	in	22,158	cases	and	133,749	controls	

identified	only	one	significant	association:	rs7647854	(p	=	5.2	×	10-11)(264).	The	

study	of	MDD	has	been	challenging	due	to	a	moderate	heritability	(20%)	and	the	

heterogeneity	 of	 the	 genetic	 factors	 that	 contribute	 to	 the	 condition(265).	

Although	we	hope	that	infectious	diseases	will	not	be	as	challenging	for	GWAS	as	

MDD	 is,	 what	 these	 studies	 suggest	 is	 that	 other	 approaches	 will	 be	 needed	

alongside	genome-wide	studies	to	understand	the	genetic	architecture	of	disease.	

	

	

6.5.				Future	study	designs	for	complex	

infectious	diseases	
6.5.1.				Host	and	pathogen	interactions		
	

Most	genetic	studies	of	infectious	diseases	to	date	are	limited	to	either	the	

study	of	the	pathogen	or	the	host.	However,	extrapolating	from	a	recent	study	by	

Bartha	and	colleagues,	it	is	apparent	that	the	advantages	of	studying	the	genome	

of	the	pathogen	alongside	the	genome	of	the	infected	individual	will	result	in	an	

increase	in	the	power	to	detect	significant	associations.	For	example,	Bartha	and	

colleagues,	with	only	1,071	 individuals	 infected	with	HIV	were	 able	 to	 report	 a	

number	of	significant	associations	between	human	single	nucleotide	variants	and	

viral	 amino	 acid	 sites.	 Their	 most	 significant	 association	 was	 between	 human	

rs72845950	and	virus	Nef	position	135	(p	=	2.7	×	10−66).	Interestingly,	the	authors	

also	discovered	an	association	between	the	SNP	rs2395029	which	acts	as	a	proxy	

for	HLA-B*57:01	and	amino	acid	in	Gag	at	position	242	(an	escape	position	from	

HLA-B*57:01).	 Previous	 association	 studies	 of	HIV	 control	 using	 viral	 load	 also	

detected	the	same	SNP	but	with	a	weaker	association	(1.21	×	10−6).	Ultimately,	this	

study	has	great	implications	for	the	development	of	treatments	and	vaccines	and	

most	importantly,	it	is	an	approach	that	can	be	employed	in	the	future	to	determine	

the	co-evolution	of	other	viruses	that	are	also	under	great	pressure	from	the	host,	

such	as	influenza	virus.		



	
 
 
 

178	

6.5.2.				The	relevance	of	co-infections	
	

Despite	some	evidence	on	the	effect	of	co-infections	on	disease	severity	and	

progression,	there	are	relatively	few	examples	of	studies	that	have	explored	these	

complex	pathogens’	interactions	in	the	host.	A	study	in	Malawi	several	years	ago	

established	 that	 the	 viral	 load	 in	 HIV	 positive	 individuals	 increased	 with	 the	

severity	of	malaria,	potentially	increasing	the	likelihood	of	HIV	transmission(266).	

Furthermore,	mathematical	modelling	trying	to	estimate	the	effect	of	malaria	on	

HIV	transmission	established	that	interactions	between	both	diseases	resulted	in	

approximately	8,500	HIV	infections	and	980,000	malaria	infections	in	the	region	

since	 1980(267).	 Although	 challenging,	 future	 genetic	 studies	 on	 co-infection	

would	provide	greater	understanding	of	disease	 and	how	concurrent	 infections	

may	affect	treatment	response	and	disease	susceptibility	to	other	infections.		

	

6.5.3.				The	future	of	next-generation	targeted	

enrichment	strategies	
	

Finally,	 in	 the	past	 few	years,	 the	 rapid	decline	 in	 the	 cost	 of	 large	 scale	

sequencing	has	resulted	in	tremendous	advancement	in	the	field	of	human	genetics	

and	clinical	research.	Targeted	sequencing	continues	to	provide	an	affordable	and	

effective	 strategy	 to	 target	 specific	 regions	 of	 the	 genome,	 however,	 they	 often	

require	 several	 days	 for	 completion	 due	 to	 the	 number	 of	 laboratory	 steps	

involved.	 Currently,	 next	 generation	 targeted	 sequencing	 methods	 rely	 on	 a	

separate	step	for	hybridisation	where	biotinylated	DNA	or	RNA	capture	probes	are	

hybridised	with	 the	 target	DNA.	Recently,	 an	 amplification-free	 Single	Molecule	

Targeted	 Sequencing	 (SMTS)	method	 has	 been	 proposed	 to	 directly	 target	 and	

sequence	 sample	 molecules	 without	 the	 need	 for	 PCR	 amplification(268).	 If	

successful,	 this	 technique	would	 result	 in	 reduced	 library	preparation	 time	and	

greater	sensitivity	for	capturing	mutations(268).		This	would	be	particularly	useful	
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for	 clinicians	 and	 diagnostic	 companies	 that	 aim	 to	 provide	 accurate	 and	 fast	

sequencing	results.		

	

6.6.				Concluding	remarks	
	

The	 Human	 Genome	 Project	 demonstrated	 the	 power	 of	 collaborative	

processes	and	data	sharing	and	this	dogma	still	stands	today.	I	believe	that	better	

collaborations	especially	with	countries	with	the	greatest	burden	of	disease	could	

provide	the	scientific	community	with	invaluable	insights	into	the	architecture	of	

infectious	diseases	in	future.	Furthermore,	initiatives	such	as	GSK’s	Open	Targets	

in	 collaboration	 with	 Biogen,	 the	 European	 Bioinformatics	 Institute	 and	 the	

Wellcome	Trust	Sanger	Institute	provide	an	invaluable	resource	of	freely	available	

genetic	and	biological	data	for	scientists	across	the	globe.	It	is	certainly	the	case	

that	we	 are	 currently	 experiencing	 a	 revolution	 in	 science	 and	 I	 believe	 it	 is	 a	

privilege	to	be	a	part	of	it.		

	

	

	

	

	

	

	
	



	
 
 
 

180	

Appendix	A	
	

In	Chapter3,	I	mentioned	that	the	method	I	developed	to	sequence	with	

PacBio	RS	has	been	used	to	sequence	chicken	cell	lines.	The	picture	below	

illustrates	the	coverage	for	the	PacBio	method,	compared	to	the	Illumina	method	

	

	
Figure	47.	Artemis	 coverage	and	 stack	view	of	 the	 IFITM	 locus	 in	DF1	 cells	 following	pull	
down	of	 the	 IFITM	 locus	 using	 SureSelect	 probes	 and	 sequencing	with	 PacBio.	 The	 figure	
shows	an	intact	 locus	and	successful	mapping	of	the	IFITM	locus.	B.	Artemis	coverage	and	stack	
view	 of	 the	 IFITM	 locus	 in	 turkey	 breast	 tissue	 following	 pull	 down	 of	 the	 IFITM	 locus	 using	
SureSelect	probes	and	sequencing	with	 Illumina	MiSeq.	The	graph	shows	successful	mapping	of	
MiSeq	reads	despite	using	chicken	probes	to	pull	down	the	locus	in	turkey	tissue.	The	white	bars	
represent	actual	gaps	in	the	turkey	reference	as	published	on	both	Ensemble	and	NCBI	and	to	which	
the	probes	will	not	eventually	map	as	gaps	are	shown	in	the	reference	as	“NNN”.	From	Dr.	Irene	
Bassano,	personal	communication.		
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