
Content Selection for Timeline Generation
from Single History Articles

Sandro Mario Bauer

University of Cambridge

Computer Laboratory

St John’s College

Supervisors:
Dr Simone Teufel
Dr Stephen Clark

August 2017

This dissertation is submitted for
the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration except as declared in the Preface and specified in the text.
It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the Preface and specified
in the text. I further state that no substantial part of my dissertation has already been
submitted, or, is being concurrently submitted for any such degree, diploma or other
qualification at the University of Cambridge or any other University or similar institution
except as declared in the Preface and specified in the text.
It does not exceed 63,000 words in length.

Content Selection for Timeline Generation

from Single History Articles

Sandro Mario Bauer

Summary

This thesis investigates the problem of content selection for timeline generation from
single history articles. While the task of timeline generation has been addressed before,
most previous approaches assume the existence of a large corpus of history articles from
the same era. They exploit the fact that salient information is likely to be mentioned
multiple times in such corpora. However, large resources of this kind are only available
for historical events that happened in the most recent decades. In this thesis, I present
approaches which can be used to create history timelines for any historical period, even
for eras such as the Middle Ages, for which no large corpora of supplementary text exist.

The thesis first presents a system that selects relevant historical figures in a given
article, a task which is substantially easier than full timeline generation. I show that a
supervised approach which uses linguistic, structural and semantic features outperforms
a competitive baseline on this task. Based on the observations made in this initial study,
I then develop approaches for timeline generation. I find that an unsupervised approach
that takes into account the article’s subject area outperforms several supervised and
unsupervised baselines.

A main focus of this thesis is the development of evaluation methodologies and re-
sources, as no suitable corpora existed when work began. For the initial experiment on
important historical figures, I construct a corpus of existing timelines and textual articles,
and devise a method for evaluating algorithms based on this resource. For timeline gener-
ation, I present a comprehensive evaluation methodology which is based on the interpre-
tation of the task as a special form of single-document summarisation. This methodology
scores algorithms based on meaning units rather than surface similarity. Unlike previous
semantic-units-based evaluation methods for summarisation, my evaluation method does
not require any manual annotation of system timelines. Once an evaluation resource has
been created, which involves only annotation of the input texts, new timeline generation
algorithms can be tested at no cost. This crucial advantage should make my new eval-
uation methodology attractive for the evaluation of general single-document summaries
beyond timelines. I also present an evaluation resource which is based on this method-
ology. It was constructed using gold-standard timelines elicited from 30 human timeline
writers, and has been made publicly available.

This thesis concentrates on the content selection stage of timeline generation, and
leaves the surface realisation step for future work. However, my evaluation methodology
is designed in such a way that it can in principle also quantify the degree to which surface
realisation is successful.

Acknowledgements

This dissertation owes its existence to the invaluable support of a large number of people.
First and foremost, I would like to thank my supervisors Simone Teufel and Stephen
Clark. Without their constant support and guidance, the present dissertation would not
have come into being. I am grateful to them for teaching me how to plan, conduct and
publish my research, as well as for their support on a personal level. The self-baked loaves
of bread and the board game evenings will be remembered! I would also like to thank my
examiners Ann Copestake and Advaith Siddharthan for their highly valuable feedback
and a very enjoyable and constructive viva.

I was fortunate to meet many very good friends at St John’s College. Their presence
has made my time in Cambridge a very special one. In particular, I would like to thank
(in no particular order) my close friends Jean Maillard, Johannes Bausch and Giovanni
Varelli, who have provided invaluable personal support year in, year out. Without them,
this thesis would not exist. I would like to thank Ben Woodhams, Katarzyna Sokó l,
Panagiotis Barkas, Laura Keating, Mubeen Goolam, Natacha Crooks, Avital Rom, Tom
Fieldman, Ana Llorens, Daphne Ezer, and many others which I have failed to mention
here, for the many hours spent together. My thanks also go to all friends from other
colleges, notably Shiva Mihan and Peter Sung Kyu Kim.

I would also like to acknowledge my colleagues in the Natural Language and Informa-
tion Processing Group (and in the wider Cambridge NLP landscape) who supported me
personally and academically. It was them who read paper drafts, gave valuable pointers
to relevant literature and academic events, shared their rich experience with planning
experiments, and who were always available for a chat or a coffee. In particular, I would
like to thank Ekaterina Kochmar, Laura Rimell, Kevin Heffernan, Yiannos Stathopoulos,
Meng Zhang, Helen Yannakoudakis, Yimai Fang, Simon Baker, Kris Cao, Tamara Polaj-
nar, Adrian Scoică, Theodosia Togia, Diarmuid Ó Séaghdha, Awais Athar, Dain Kaplan
and Yan Huang.

I am very grateful to those who contributed to the work carried out in this thesis. This
includes 30 volunteers, who spent hours reading history articles and writing timelines, of-
ten despite looming paper deadlines. In particular, I would like to thank Ben Woodhams
and Ana Llorens, who simply offered to do further work when other participants dropped
out. A further significant contribution to this dissertation was made by Bamber Gas-
coigne, the well-known presenter of the TV series “University Challenge”, who shared his
database of historical events with me at no cost. I am also grateful to Microsoft Research,
the Computer Laboratory, St John’s College Cambridge and the Cambridge Philosophical
Society, who all provided financial support for my studies.

My Cambridge experience would not be complete without the amazing time I spent
at Microsoft Research in 2015, which has enriched me in so many ways. I thank Filip
Radlinski and Ryen White for their excellent and very close supervision on a daily basis.
They encouraged me to submit a paper to the World Wide Web Conference, and invested
many hours in improving the draft as well as the final version. I would also like to
acknowledge my former colleague Konstantina Christakopoulou.

A special thank you goes to Ann Copestake, who provided important advice at a
crucial time. Finally, I would like to thank my family, in particular my mother Margit
and my grandfather Ernst († 2016) for their incessant support and encouragement, which
were of paramount importance at all times.

Contents

1 Introduction 13
1.1 Properties of an ideal timeline . 14
1.2 Central problems . 16
1.3 Thesis outline . 17

2 Related work on timeline generation 19
2.1 Overview of related work . 19
2.2 Event models . 20

2.2.1 Events in linguistics . 20
2.2.2 Early event models in Natural Language Processing 22
2.2.3 TimeML . 23
2.2.4 Automatic Content Extraction . 25

2.3 Temporal information extraction . 25
2.3.1 The TempEval shared tasks . 26
2.3.2 Choice of TimeML third-party tools 28

2.4 Timeline generation based on TimeML . 29
2.4.1 Temporal dependency trees . 29
2.4.2 Cross-document event ordering . 30

2.5 Timeline generation in a multi-document summarisation setting 32
2.5.1 Identifying important topics . 32
2.5.2 Timeline generation based on a user query 33
2.5.3 Dependencies between events . 33
2.5.4 Salience of dates . 34
2.5.5 Related tasks . 35

2.6 Identifying important TimeML events . 36
2.6.1 Features . 36
2.6.2 Results and Discussion . 38

2.7 Requirements for my approach . 39
2.8 Chapter summary . 41

3 Identifying significant historical figures 43
3.1 Motivation and related work . 44
3.2 Overview of the approach . 45
3.3 Corpus construction . 46

3.3.1 Selection of articles and timelines 46
3.3.2 Matching person names in timelines and textual articles 49
3.3.3 Filtering of articles . 52
3.3.4 Training, development and test sets 55

9

3.4 My method . 55
3.4.1 Linguistic processing . 56
3.4.2 Named entity scoring . 56
3.4.3 Name set scoring . 57
3.4.4 Features . 57

3.5 Baseline and semi-oracle results . 61
3.5.1 Baseline . 61
3.5.2 Semi-oracle results . 61

3.6 Evaluation . 62
3.6.1 Evaluation metrics . 62
3.6.2 Results . 64
3.6.3 Ablation study . 65

3.7 Outlook on the rest of the thesis . 65
3.8 Chapter summary . 68

4 Related work on summarisation evaluation 69
4.1 Types of summaries . 69
4.2 Overview of summarisation evaluation methods 70

4.2.1 Extrinsic evaluation methods . 70
4.2.2 Intrinsic evaluation methods . 71
4.2.3 Deep evaluation methodologies . 73

4.3 Subjectivity of human content selection tasks 76
4.3.1 Quantifying subjectivity . 77
4.3.2 Subjectivity in summarisation tasks 78

4.4 Requirements of timeline generation evaluation 79

5 Evaluation of timelines using semantic units 81
5.1 Principles of the evaluation methodology 81

5.1.1 Event definition . 82
5.1.2 HCUs . 82
5.1.3 Overview of the evaluation methodology 83

5.2 Design of the evaluation methodology . 84
5.2.1 Timeline elicitation . 84
5.2.2 Creation of HCUs . 89
5.2.3 Creation of links between HCUs and TimeML events 91
5.2.4 Scoring system summaries . 100

5.3 Construction of an evaluation resource . 102
5.3.1 Selection of input texts . 102
5.3.2 Participants . 105
5.3.3 Materials . 105
5.3.4 Procedure . 106
5.3.5 Characteristics of gold standard . 106
5.3.6 Creation of HCUs . 106
5.3.7 Anchor weight annotation . 107

5.4 Reliability of the resource . 109
5.4.1 Suitability of pyramids . 109
5.4.2 HCU weight judgement . 111
5.4.3 Inter-annotator agreement for anchor weight annotation 111

5.5 Construction of a development resource . 112

10

5.6 Chapter summary . 113

6 Algorithms for timeline generation 117
6.1 Uninformed methods . 117

6.1.1 Section structure . 117
6.1.2 Presence of dates . 118

6.2 Informed methods . 119
6.2.1 Supervised approach by Chasin et al. 119
6.2.2 Unsupervised approaches . 120
6.2.3 Combination of the unsupervised method with the approach by

Chasin et al. 126
6.3 Example output . 127
6.4 Evaluation . 128

6.4.1 Method . 128
6.4.2 Results and Discussion . 128

6.5 Qualitative analysis . 132
6.6 Chapter summary . 133

7 Conclusion 137
7.1 Thesis overview . 137
7.2 Contributions . 139
7.3 Directions for further research . 140
7.4 Outlook . 143

Bibliography 145

11

Chapter 1

Introduction

How to best study the history of a country or a field of science is a rather personal
choice. Many would argue that textbooks, or even original sources, are the best way
for developing an informed opinion about historical facts. While textbooks have the
advantage of relating different historical events to each other, such texts are generally
lengthy and therefore take considerable time to read and digest. This makes it hard to
memorise the most important historical information contained in them.

Timelines are an alternative way of presenting history. They are, in essence, lists of
dated events which may be presented in textual form or graphically. Timelines are shorter
and easier to read than narrative texts, and can help learners to remember the key aspects
of a longer textbook text. Graphical history timelines in particular are commonly used
as learning aids in the classroom, and may be purchased from a wide range of shops (see
Figure 1.1 for an example).

The usefulness of timelines in the offline world has, in recent years, led to the creation
of an electronic counterpart. In fact, timelines have become a preferred way of presenting
history in a variety of online applications. This includes large-scale, hand-curated encyclo-
pedias such as Microsoft’s now discontinued Encarta; specialist efforts like HistoryWorld1;
rather ad-hoc community-edited timelines on Wikipedia; and new interactive web appli-
cations such as Microsoft’s ChronoZoom (see Figure 1.2 on page 15 for a screenshot).
ChronoZoom allows the user to “zoom into” a historical period and hence to explore
content at different levels of granularity.

Certain forms of timelines have also received interest in research. This mainly applies
to a setting where a timeline must be constructed from a large number of news articles,
which no single human could read on their own. Algorithms have been proposed which
can identify the most important articles in such a collection. The events described in
these articles can then be placed along a timeline.

For topics where large numbers of history articles are not available, large-scale manual
efforts are still the solution of choice. Community efforts such as Wikipedia as well as
enthusiasts such as Bamber Gascoigne2 have compiled lists of thousands of events covering
world history from prehistorical times to recent years.

The obvious problem is that writing timelines in this way is extremely tedious and
time-consuming. This is reflected by the fact that many Wikipedia timelines are incom-
plete or extremely short; ChronoZoom only contains content for a small number of topics;

1www.historyworld.com
2Bamber Gascoigne is known for being the original presenter of the well-known British television

programme “University Challenge”.

13

14 CHAPTER 1. INTRODUCTION

Figure 1.1: History timeline used as a learning aid in classroom.

and the hand-curated event collection HistoryWorld, although of high quality, contains
a mere 10,000 events for the entire human history. Also, such timelines have to be con-
tinuously updated, as new events happen and new evidence about earlier events becomes
available. Since this is a laborious task, manually constructed timelines are often outdated
in practice. The obvious need for event timelines of this kind and the high cost of writ-
ing them manually make it worthwhile to use natural language processing techniques for
this purpose. The present thesis in particular investigates how timelines can be created
from single history articles. Given an input text such as the Wikipedia article “History
of Finland”, the aim for a system is to identify important content that a human would
include in a timeline on the history of Finland.

1.1 Properties of an ideal timeline

I will now delineate the desirable properties of history timelines created in this particular
setting. Consider the extract of a hypothetical “ideal” history timeline describing the
history of Finland (shown in Figure 1.3). What are the properties of such an ideal
timeline?

Firstly, each timeline entry expresses a single event, i.e. an indisputable fact that took
place in the real world. Each event is arguably salient in its own right. Intuitively, an
event tends to be perceived as salient if it has precipitated a major change in the history
of a concept. This may be the case if the event has ended a long-standing tradition,
or if it sets in motion a series of important changes that have an impact well beyond
the date when the event took place. A prime example of such an event is the Protestant
Reformation, which put an end to the universal role of Catholicism; resulted in cataclysmic

CHAPTER 1. INTRODUCTION 15

Figure 1.2: Screenshot of ChronoZoom.

1550 Helsinki is founded.

around 1554 The Lutheran Church is established.

1596–1597 A peasant rebellion is suppressed brutally and bloodily in the Cudgel War.

1608 The Lutheran faith is made compulsory.

1696–1699 One third of the population dies in a famine.

1700–1721 The Great Northern War devastates Finland.

1809 Finland becomes a Grand Duchy in the Russian empire.

1899 The famous symphony Finlandia by Finnish composer Jean Sibelius is first
performed.

1906 A Finnish national parliament is established.

Figure 1.3: Extract of an “ideal” timeline describing the history of Finland.

pan-European wars; and gave rise to a lasting transformation of the European political
landscape, to name but a few. A good timeline contains events of various types, giving
the reader a complete picture of history in a given time period. For instance, the ideal
timeline in Figure 1.3 spans subject areas such as politics, religion, culture and society.

In addition to naming important events, a good timeline should mention all historical
figures that play a central role in the time period in question (such as Jean Sibelius in
Figure 1.3). This is important since human interpretation of world history often hinges
on human actions, and, by extension, on key personalities and their interaction with the

16 CHAPTER 1. INTRODUCTION

world.
However, a good timeline is more than a list of individually salient events or historical

figures. It is in fact a concise, short-hand, fact-oriented representation of the course of
history, which can be used as a substitute for narrative texts describing the same historical
evolutions much more verbosely. This property suggests that a timeline can be interpreted
as a special form of a summary.

The difference to a standard summary is that timeline entries are independent of each
other both conceptually and linguistically, whereas the sentences in a standard summary
should form coherent text. Conceptual independence means that each event in the time-
line is understandable in its own right, regardless of other entries or external information.
For instance, events should not explicitly or implicitly be presented as a side aspect or
consequence of another event. Conceptual independence naturally translates into linguis-
tic independence: If a timeline entry is supposed to be interpretable on its own, it must of
course not contain pronouns referring to a person not mentioned in that entry, or similar.
Problems such as these could occur if a timeline is constructed by concatenating sentences
from a history article, which takes them out of their original context.

A good timeline should also be free of redundant entries. I assume that two entries
are redundant with regard to each other if they describe the same event or two closely
related events. Such cases should be avoided since the reader will gain little additional
information from redundant timeline entries. In contrast, a good timeline describes events
that are clearly separate from each other.

1.2 Central problems

Having outlined the properties of an ideal timeline in my setting, I now turn to describing
the problems involved in creating timelines with these properties automatically. Firstly,
it is necessary to carefully consider the definition of an event. Events have been stud-
ied in computational linguistics for a long time. Thus, a considerable body of research
is available, covering aspects such as the extraction and classification of events in raw
text; the anchoring of events in time; the identification of an event’s participants; and
many more (Filatova and Hovy, 2001; Grishman et al., 2005; Llorens et al., 2010; Bethard
et al., 2012; Kolomiyets et al., 2012). Numerous tasks in this area have also been evalu-
ated using shared evaluations and considerably-sized, publicly available labelled corpora
(Linguistic Data Consortium, 2005; Verhagen et al., 2007, 2010; UzZaman et al., 2013;
Llorens et al., 2015). Given that the problem of how to correctly define an event also
applies in the context of timeline generation, I will first review the literature on event def-
initions (Chapter 2). The event model I adopt informs both the design of my algorithms
in Chapter 6 and the corresponding evaluation methodology in Chapter 5.

Another problem is that the histories of countries, inventions, fields of science, cultural
artefacts, food items, cities etc. all have different characteristics. This makes it difficult to
design algorithms that work across subject areas. While it is possible to create methods
that specialise on a particular type of concept, my ambition in this thesis is to cover as
many subject areas as possible.

A further important aspect to consider is evaluation. Evaluation of timelines is difficult
for many of the same reasons that complicate summarisation evaluation, next to a range
of problems specific to timelines that stem from the presence of dates. Chapter 4 therefore
discusses existing summarisation evaluation techniques, before turning to the evaluation
of timelines.

CHAPTER 1. INTRODUCTION 17

Another task worth investigating is the automatic identification of important historical
figures that should occur in timelines. This idea is rather novel in this thesis, given that
previous research has favoured event-based timelines. A main observation made here
was that evaluation and algorithms alike need to operate on the level of entities rather
than on the level of individual name mentions, for reasons that will be discussed in
Chapter 3. Other practical problems that will need addressing include the presence of
different variants of the same person name, as well as the lack of suitable evaluation
resources.

Discourse effects are another aspect one should keep in mind when designing a system
that creates timelines. As discussed earlier, one of the desirable properties of a timeline is
that each entry can be read in a stand-alone fashion. My analysis of naturally occurring
timelines confirms that good timelines are indeed often written in this way. However, one
could still interpret a timeline as a special discourse object in its own right, assuming that
it is usually read from top to bottom. In that case, the timeline should correspond to
discourse conventions. For instance, one should strive to avoid cases where explanatory
side information is repeated in nearby timeline entries. A human would arguably perceive
two subsequent timeline entries starting with “Mariano Rajoy, the prime minister of
Spain,” as unnatural, since the information that Mariano Rajoy is prime minister is
superfluous in the second timeline entry. In this thesis, I do not investigate the problem
of constructing a surface representation of events that is suitable for timelines. However,
the evaluation resources I provide allow for the testing of this aspect of timeline generation
as well.

Timeline entries may also be related in different ways. For instance, a timeline which
mentions an ethnic cleansing arguably benefits from some indication of inter-ethnic ten-
sions at an earlier time. In the ideal case, a timeline might even respect certain logical
(e.g. causal) constraints between events. One way of modelling such relationships is to en-
code co-selection constraints between multiple events, which I will do using integer linear
programming.

Another central problem that I face is human subjectivity of annotation. I elicit gold-
standard timelines from human volunteers, and the problem of subjectivity comes into
play because they do not fully agree on which events should be chosen for the timeline.
This problem made it necessary to think carefully about the instructions given to human
timeline writers, agreement metrics, and other ways of ensuring that the evaluation is
sound.

1.3 Thesis outline

This thesis consists of three main parts. The first part (Chapter 2) reviews existing
literature on timeline generation. I show that very different problems tend to be conflated
under this label. This includes the exhaustive identification of links between events and
temporal expressions in a given text; creating a tree structure which encodes transitive
temporal relations between events; finding the most salient articles in a large collection of
dated news articles; creating a biography timeline for a given historical figure; and many
others. In this context, different event models used in the literature will be discussed as
well. I will use insights from this chapter to inform my own algorithms, for instance when
identifiying instances of events and temporal expressions in text.

The second part of the thesis (Chapter 3) presents a preliminary experiment in the
context of timeline generation. I develop a system which selects significant historical

18 CHAPTER 1. INTRODUCTION

figures that should be contained in timelines. After giving an overview of my approach,
I present a corpus built using existing timelines and textual articles harvested from the
Web. I then introduce a supervised method for solving this task, which can be seen as a
sub-task of timeline generation. Aside from demonstrating that my method outperforms
a competitive frequency baseline, I discuss central observations which have shaped the
remainder of my work in many ways. In particular, I describe why I will not make use of
the corpus presented here for the task of timeline generation.

The third part of the thesis (Chapters 4, 5 and 6) describes my approach to timeline
generation, i.e. the task of identifying events relevant for a timeline in a single history
article. Evaluation of timeline generation is a substantial research question in its own
right. Accordingly, it was not clear how to construct an evaluation resource of acceptable
standard in a principled and reliable manner. I therefore develop a comprehensive evalu-
ation methodology for this task, which like some summarisation evaluations uses a deep,
semantics-oriented comparison with gold-standard timelines, rather than the cheaper,
surface-based comparisons which I argue are inferior. Issues of summarisation evaluation
are discussed in detail in Chapter 4.

My evaluation methodology has a central advantage which makes it considerably more
useful than these existing methods in practical terms. Concretely, my methodology allows
for the evaluation of an unlimited number of system timelines at no additional annotation
cost once an evaluation resource has been created. This advantage enables me to test
many more methods for timeline generation deeply than would otherwise be possible.

Chapter 5 is dedicated to my new evaluation methodology. I start by defining key
concepts, in particular that of a Historical Content Unit (HCU). Next, I give a high-level
overview of the process of constructing an evaluation resource. The main steps are the
elicitation of human-written timelines; the identification of HCUs in these timelines; and
the annotation of links between HCUs and certain words in free-form text. For each
step, I present a comprehensive set of guidelines which can be used for creating further
evaluation resources of the same kind in the future. I also discuss how timelines are scored
based on this evaluation resource. My evaluation methodology will be used in Chapter 6,
where I evaluate the performance of various algorithms on the task of timeline generation.

I also present a novel evaluation resource which is based on my methodology. The
creation of this resource involved collecting more than 30 human-written timelines using
a carefully designed set-up. Because subjectivity is a potential problem, I analyse whether
the evaluation resource is replicable, and verify that the concept of HCU weight is mean-
ingful. I also present a separate development resource which can be used to prototype
algorithms.

Finally, in Chapter 6, the performance of different timeline generation algorithms is
evaluated. I describe both uninformed methods that exploit explicit document structure
and the presence of dates, and informed methods that rely on different forms of exter-
nal knowledge. This includes an improved version of a supervised approach from the
literature, and unsupervised methods that take into account aspects such as the arti-
cle’s subject area, syntactic connections between a date and an event, and co-selection
constraints between multiple events. The results show that a combination of three un-
supervised methods provides the numerically best result, while document structure also
proves a strong predictor of events that should figure in timelines. These results have
inspired some of the possible avenues for future work that I will discuss at the end of my
thesis (Chapter 7).

Chapter 2

Related work on timeline generation

In this chapter, I will give an overview of how timeline generation has been approached
in previous work. The term “timeline generation” has been used to describe various tasks
in a number of different research areas. These areas include multi-document summarisa-
tion, event extraction, temporal information extraction, information retrieval and event
classification. For each of these interpretations of timeline generation, I will point out the
differences and similarities to the task considered in this thesis.

Section 2.1 gives a general overview of aspects in which approaches to timeline gener-
ation differ. Section 2.2 presents different event models used in the literature. In particu-
lar, I will describe the TimeML framework, which is concerned with the identification of
events, temporal expressions and links between these objects.

TimeML will play an important role in my approach to timeline generation (Chapters 5
and 6). In particular, an existing software package to identify TimeML events in text
will be used extensively. In Section 2.3, I will therefore describe a number of shared
tasks that evaluated such tools, and will motivate my choice of third-party TimeML tool.
In Section 2.4, I will describe more complex research tasks that build on the TimeML
framework. These include a way of generating a single connected timeline of TimeML
events, and the task of identifying all events in a document collection that a particular
entity (e.g. a person) is involved in.

The common feature of all approaches based on the TimeML framework is that the
salience of events and their relevance to a user or query are irrelevant. Instead, the
objective is to identify all event instances and all relations that hold between them. This
is different for the works described in Sections 2.5 and 2.6. In Section 2.5, a large body
of works in the tradition of multi-document summarisation will be reviewed. In order to
identify important events, such approaches tend to exploit the presence of a corpus of
multiple news texts for a given time period. Section 2.6 presents an existing supervised
approach to event classification, in which TimeML events are classified as important or
non-important.

In Section 2.7, I will show that none of the existing methods is applicable to the task
investigated in this thesis, and describe the requirements for my approach.

2.1 Overview of related work

In general, works that aim to create timelines from text differ in the following ways:

19

20 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

Overall nature of the task: A key criterion when comparing existing works on time-
line generation is the overall nature of the timeline creation process. Timelines built may
include either as many entries as possible, or a limited number of entries that are im-
portant or relevant in some way. This distinction has major consequences for the system
required for constructing such timelines. All systems must first identify content that is
suitable for a timeline (e.g. events of a certain kind). Systems that aim to create a timeline
of limited length must additionally be able to distinguish more relevant from less relevant
content in the source text.

Number of input texts: Whether the task is defined in a single-document context
or a multi-document context plays a crucial role. In a text collection, important events
are likely to be mentioned more frequently than other events. This redundancy can be
exploited by algorithms that select salient events for the timeline. In a single-document
setting, such information is not available. Cues about what is or is not important have to
be identified in the single article at hand, or harvested from general background corpora.
In general, this is a much harder task.

Availability of metadata: The process of building a timeline depends on the nature
of the source text. For articles in large news corpora (as opposed to most other texts),
publication dates are often available. These dates simplify the process of arranging events
on a timeline, as well as the identification of salient events.

The topical focus of the timeline to be built: The timelines constructed may either
be generic or query-specific. Generic timelines are expected to broadly reflect the content
found in the input article, with no focus on a particular topic or query. Conversely, a
query-specific timeline should contain only content that is relevant to a given information
need such as “politics” or “church”.

The output representation to be used: Timelines may also differ with regard to
how events are presented. For instance, a timeline may consist of short noun phrases
(“Resignation of Cameron”), or full sentences (“Cameron resigned after he lost the EU
referendum”). In practice, timeline entries can be constructed either by extracting text
from the source article, or by generating entirely new sentences. A special case occurs
where a timeline summarises a corpus in which each document describes a single event.
In this case, the creation of a timeline entry involves the identification of a suitable short-
hand representation of the article, such as the title of the article or its first sentence.

2.2 Event models

Most existing works on timeline generation interpret a timeline as a list of events. How-
ever, given that there is no generally accepted definition of what constitutes an event, it
is often unclear whether a given text span represents an event or not.

2.2.1 Events in linguistics

A number of influential linguistic theories developed in the 20th century addressed the
problem of how to define an event. Davidson (1967) argued in his seminal work “The

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 21

logical form of action sentences” that the well-established representation of action verbs as
predicates with “slots” for the verb’s arguments (i.e. KILL(killer, killee) for the verb “to
kill”) should be extended with a special event slot filled by an existentially quantified event
variable e. For instance, according to Davidson the verb “to kill” should be represented
as a three-place predicate KILL(killer, killee, e). This definition allows for an elegant
treatment of non-essential adverbial modifiers describing, for instance, the time or the
place at which the event took place. In Davidsonian event semantics, these modifiers
are no longer part of the predicate, but instead related to the relevant event variable by
means of a separate, dedicated predicate, such as AT (e, 2pm) in the following example:

∃e(KILL(killer, killee) ∧ AT (e, 2pm)) (2.1)

Works in the Neo-Davidsonian tradition, such as Higginbotham (1985, 2000), Parsons
(1990, 2000) and Kratzer (1995), adapted the original proposal of Davidson in various
ways1. In particular, they no longer distinguish between essential arguments (such as
KILLER and KILLEE above) and a special event slot. Instead, the predicate repre-
senting the action verb now has the event variable e as its only argument, while all other
arguments are expressed using separate conjuncts:

∃e(KILL(e) ∧KILLER(killer, e) ∧KILLEE(killee, e) ∧ AT (e, 2pm)) (2.2)

In this way, all instances of the verb “to kill” can be represented by the same predicate
KILL(e), even in cases where arguments commonly as seen as obligatory (such as the
verb’s subject or object) are missing.

While Neo-Davidsonian semantics initially only covered action verbs (in the spirit of
Davidson’s original proposal), it was soon established that other types of verbs, notably
state verbs, should be analysed in the same way (Parsons, 2000; Chierchia, 1995). For
greater clarity, an event in the Neo-Davidsonian tradition is therefore often referred to
as an eventuality. This term was proposed by Bach (1981) and covers both events and
states.

In fact, the nature of eventualities has been studied independently of their role in
formally defining the semantics of action verbs. In particular, Vendler (1967) proposed
a number of aspectual types. These types, often referred to as aspectual classes in later
works, represent typical time schemata of concrete utterances, i.e. they indicate what
the speaker predicates of the event relative to other events in the discourse (Moens and
Steedman, 1988). The most widely used classification of aspectual classes for eventual-
ities by Moens and Steedman (1988) explicitly distinguishes events from states ; events
are again sub-divided into culminations, points, processes and culminated processes (see
Figure 2.1 for a graphical overview). The aspectual class of an event is determined by two
criteria. Culminations and culminated processes both entail a transition to a new state
(called “consequent state”) of the world, while points and processes do not. The second
criterion is whether the speaker sees the event as punctual or continuous; culminations
and points present an event as punctual, while processes and culminated processes result
in a continuous interpretation. States, i.e. happenings without defined happenings and
ends, fall outside of the aforementioned event classes. Typical verbal constructions for
each of the five classes are shown in Figure 2.1.

1See Maienborn (2005) for a more detailed description.

22 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

EVENTS
STATES

atomic extended

+conseq
CULMINATION
(recognize, spot,

win the race)

CULMINATED
PROCESS

(build a house,
eat a sandwich)

understand, love,
know, resemble

-conseq
POINT

(hiccup, tap, wink)

PROCESS
(run, swim, walk,
play the piano)

Figure 2.1: Aspectual classes and typical examples (taken from Moens and Steedman
(1988))

However, it is important to understand that, while many verbal constructions tend
to evoke a particular aspectual class, this class is not invariable, or dependent only on
the verb’s lexical semantics. Instead, the “default” aspectual class can be overridden
by modifiers in the concrete utterance in question, which can “coerce” an event into a
different aspectual class (Moens and Steedman, 1988). For instance, while a proposition
such as “I coughed” usually refers to a point, the presence of a progressive auxiliary (such
as in “I was coughing”) enforces a non-standard interpretation of the coughing as an
ongoing process. Moens and Steedman (1988) give a detailed account of when coercion
from one aspectual class to another occurs, separately for each pair of classes.

2.2.2 Early event models in Natural Language Processing

The ability to detect instances of eventualities in text automatically is useful for a wide
range of downstream tasks in Natural Language Processing, including information ex-
traction and summarisation. In what follows, I will refer to all eventualities as “events”,
following the terminology conventionally used in the community. In practice, algorithmic
approaches to event detection differ in whether they cover state descriptions in addition
to events in the strict sense.

Early work on topic detection defines an event as a unique thing that happens at
some point in time, along with all necessary preconditions and unavoidable consequences
(Allan et al., 1998; Allan, 2002). More concrete definitions were proposed at the 2001
ACL Workshop on Temporal and Spatial Reasoning, which addressed the problem of
automatically analysing events and temporal expressions in text. For instance, Filatova
and Hovy (2001) divide input sentences into “event clauses” based on a parse tree. A new
event is created whenever a node in the parse tree contains both a subject and a predicate.
This can be problematic, as this shifts the definition of an event entirely onto the syntax
of the sentence, not the semantics, such as the presence of an action or state change
in the real world. For instance, in the sentence “Catalonia was invaded and divided”,
the predicate will contain one subject but two verbs. Hence, by Filatova and Hovy’s
definition, the invasion of Catalonia and its subsequent division would be interpreted as
a single event. If the same content were described in two separate sentences (“Catalonia
was invaded. It was then divided”), two separate events would be created for the identical
semantics. This is clearly disadvantageous.

An alternative approach by Schilder and Habel (2001) assumes that events are rep-
resented by individual words (or spans of words) in text, rather than by clauses. In

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 23

particular, verbs and specific nouns can be the lexical bearer of information about the
event in question. The latter category includes nominalisations of verbs (such as “con-
struction” or “election”), but also a small number of what the authors call “event nouns”.
Schilder and Habel give a few examples of such event nouns for the stock market domain
(such as “opening of the stock exchange” or “opening bell”), but do not go into further
detail about how these event nouns are defined and how they can be identified in text.

2.2.3 TimeML

The de-facto standard formalism for annotating events and temporal expressions in text
is the mark-up language TimeML, which will play an important role in later chapters.
TimeML has become popular in the community due to several shared tasks in the Tem-
pEval series (presented in Sections 2.3 and 2.4). Figure 2.2 shows TimeML annotation for
two sentences taken from the Wikipedia article “History of East Timor” (created by the
publicly available tool TIPSem-B, which will be described in more detail in Section 2.3.2).
I will refer to this example in what follows when presenting central concepts of TimeML.

Pustejovsky et al. (2003a) provide a high-level description of the TimeML language.2

As far as events are concerned, TimeML follows the intuition of Schilder and Habel (2001)
in that individual words are marked up as events, not clauses as in Filatova and Hovy
(2001). These words include verbs, nominalisations and certain event-like nouns such
as war or crowning. The exact definition of an event in the TimeML specification is
based on the work of Setzer (2001), who considers anything that is anchorable in time
to be a potential event. She states that events are usually conveyed by finite verbs or
nominalisations. However, Setzer points out that what constitutes an event in a concrete
task also depends on the application, as well as the domain and genre of the source text.
For instance, according to her definition, the fact that Berlin is the capital of Germany
would not constitute an event if it were mentioned in passing, e.g. in a recent newspaper
article. However, in the context of an article describing the evolution of Germany over the
past two centuries, the fact that Berlin has been the German capital from 1871 onwards
is likely interpreted as an event (Setzer, 2001).

The TimeML specification by Pustejovsky et al. (2003a) does not elaborate further on
this definition. Events are defined as situations that happen or occur. Predicates describ-
ing states or circumstances in which something holds true are also regarded as events.
The specification distinguishes 7 event classes, ranging from occurrences to perceptions
(e.g. see, hear), states (e.g. love) and intentions (e.g. intend, want). Most events are
of class OCCURRENCE (see the example sentences in Figure 2.2). Other examples of event
classes include PERCEPTION, which is used with events that express the physical perception
of another event, and I_ACTION, a class for intensional actions which introduce an event
argument. The intensional action allows the reader to infer something about the intro-
duced event (Pustejovsky et al., 2003a). For instance, event e470 (“pressured”) expresses
that the introduced event e471 (“take”) may not actually have taken place.

The event definition of TimeML is very general and excludes few verbal constructions.
Consequently, any off-the-shelf TimeML event identification software (for instance, the
one described by Sauŕı et al. (2005)) marks up almost all verbs as events, including
stative verbs; only modal verbs (such as “must” in “she must come”) and auxiliary verbs

2In addition to the general overview in Pustejovsky et al. (2003a), detailed annotation guidelines
(including a formal language specification) have been made available (Sauŕı et al., 2006).

24 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

The letter <EVENT class="OCCURRENCE" eid="e442">upset</EVENT> Habibie , who

<EVENT class="PERCEPTION" eid="e443">saw</EVENT> it as <EVENT

class="OCCURRENCE" eid="e444">implying</EVENT> Indonesia was a ‘‘ colonial

power ’’ and he <EVENT class="OCCURRENCE" eid="e445">decided</EVENT> in

response to <EVENT class="OCCURRENCE" eid="e446">announce</EVENT> a snap

<EVENT class="OCCURRENCE" eid="e447">referendum</EVENT> to be <EVENT

class="OCCURRENCE" eid="e448">conducted</EVENT> within <TIMEX3

type="DURATION" value="P6M" tid="t57">six months</TIMEX3> .

(...)

Activists in Portugal , Australia , the United States , and elsewhere <EVENT

class="I_ACTION" eid="e470">pressured</EVENT> their governments to <EVENT

class="OCCURRENCE" eid="e471">take</EVENT> action .

Figure 2.2: Examples of TimeML event annotations for two sentences in the Wikipedia
article “History of East Timor”.

in negations (e.g. “did” in “did not know”) are excluded.3 The main benefit of using
TimeML over simply working with all verbs is therefore TimeML’s additional coverage of
certain non-verbal constructions.

TimeML can also be used to annotate temporal expressions and relations. Here too,
the language builds on earlier work by Setzer (2001), who proposed to annotate temporal
expressions using the TIMEX tag. TimeML uses a revised version of this tag called
TIMEX3. Text spans that can be marked up using a TIMEX3 tag include absolute (such
as “13th January 2012”) and relative (such as “last Tuesday”) temporal expressions,
as well as durations (e.g. the temporal expression t57 (“six months”) in Figure 2.2)
(Pustejovsky et al., 2003a).

The TimeML language also defines a number of relations that can be annotated in
text. Temporal links (referred to as TLINK) are relationships that hold between two
events or between an event and a temporal expression. In contrast, subordination links
and aspectual links (abbreviated as SLINK and ALINK, respectively) are always defined
between two TimeML events. A subordination link (Sauŕı et al., 2006) is used where an
event word modifies the meaning of a subordinated event word. Six types of such links
exist. For instance, the presence of the event word “forgot” in the sentence “John forgot
to buy some wine” entails that John did not buy wine. In this case, one would annotate
a subordination link of type COUNTER-FACTIVE between the events “forgot” and “buy”.

Aspectual links (referred to as ALINK) are annotated between an aspectual event word
and its argument, such as “started” and “doing” in “Mary started doing her homework”
(Sauŕı et al., 2006). Aspectual links can be subdivided into subtypes, in the same way as
subordination links. However, the TimeML annotation guidelines only provide examples
of such types instead of an exhaustive list.

TimeML has been criticised for its lack of distinction between verbs that refer to a
real-world event and other verbs (Bethard et al., 2012; Minard et al., 2015). If all verbs are
annotated as events, the event definition is trivialised, as it almost becomes unnecessary to
distinguish events from non-events. Such criticisms could be due to confusion over whether
the term event in TimeML refers to events (in the strict sense), or to all eventualities, as

3Note that different exclusion criteria have subsequently been proposed for languages other than
English. For instance, the TimeML annotation guidelines for Italian state that modal verbs such as
dovere (must) should be annotated as events, in contrast to English modal verbs (Caselli et al., 2011).

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 25

described in Section 2.2.1.

A second problem of the event definition used in TimeML is that the same real-world
event may be represented by multiple TimeML events depending on the surface represen-
tation. For instance, the beginning of a war mentioned in text is typically represented by
two TimeML events, as both “war” and “started” in the sentence “The war started in
1914” will be recognised as TimeML events. Hence, there is no one-to-one correspondence
between a real-world event and a TimeML event.

There are different ways of reacting to this lack of one-to-one correspondence. Bethard
et al. (2012) use a modified version of the original TimeML annotation guidelines in the
context of their work on temporal dependency trees that I will discuss in Section 2.4.1.
In these revised guidelines, modal, hypothetical and negated verbs, as well as light verbs
and aspectual verbs, are excluded from the definition of an event. Further, it is not
allowed to annotate multiple TimeML events in phrasal constructions such as “managed
to do” or “did his best to reach them”. A second example is a recent shared task on
cross-document timeline generation (described in Section 2.4.2), in which events in the
gold standard are also annotated using a modified version of the guidelines. In particular,
the event definition used here excludes cognitive, counter-factual and other events which
cannot easily be placed on a timeline.

2.2.4 Automatic Content Extraction

An alternative event model, used for the Automatic Content Extraction (ACE) evaluation
effort, interprets an event as a complex semantic unit. Here, the event definition includes
the event’s arguments. For instance, an event of type BE-BORN has three arguments:
the person who was born, the time when the birth took place, and the place where the
birth took place. Each event is assumed to have a textual extent, in which the event’s
arguments are located. In most cases, this extent corresponds to an entire sentence. The
event’s trigger is the word which expresses the core semantic content of the event; this
will mostly be a verb or event-like noun, as in TimeML.

ACE restricts itself to the annotation of events of pre-specified types. In particular,
the ACE 2005 evaluation uses 8 event types with a total of 33 sub-types, ranging from
common life events such as “marriage”, “divorce” and “injury” to events in business and
justice (Linguistic Data Consortium, 2005). Many real-world events do not fall in one of
these categories and are therefore omitted from processing.

2.3 Temporal information extraction

Having compared various event models used in the literature, I now review existing algo-
rithms that create some form of timeline automatically.

One group of algorithms identify all events described in a given text and anchor
them in time whenever possible. Such methods do not consider the salience of an event
or temporal expression for constructing a timeline. This line of work was pioneered by
Filatova and Hovy (2001), who transform news stories that describe the development of
a situation into a corresponding timeline representation. They address the problem that
the order in which events take place in the real world is often different from the order in
which they are mentioned in a news story, a problem which might confuse algorithms that
aim to solve downstream tasks such as the identification of causal and other relationships

26 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

between events. Their aim therefore is to represent a news story as a grid of underlying
events, dated according to their timestamps.

2.3.1 The TempEval shared tasks

The performance of algorithms that fall in this group has been extensively evaluated in the
context of the TempEval shared tasks, which make use of the TimeML language. It should
be noted, however, that these shared tasks only assessed the identification of relations
between certain pairs of events as well as pairs of events and temporal expressions, i.e. it
is not compulsory for a system to produce a total ordering of events according to time.
Algorithms evaluated on these tasks are therefore not necessarily able to create a single
(i.e. connected) timeline of events for a given input text, because there will be many events
for which no temporal relation to an event earlier or later in the text has been identified.

The first of these shared tasks, TempEval, addressed the identification of relations
between events and timestamps in a setting where both events and timestamps are given
(Verhagen et al., 2007). The scope of this task was relatively limited in that events could
only be linked to temporal expressions in the same sentence or to the document creation
time (DCT) of the containing article. Events whose date could only be inferred from the
wider document context can therefore not be anchored in time using this approach. Apart
from relations between events and timestamps, the shared task covered relations between
two main events that occur in subsequent sentences, where the main event was usually
taken to be the syntactically dominant verb of a sentence (Verhagen et al., 2007). The
objective was to assign one of the relation types proposed in the TimeML standard (such
as BEFORE, OVERLAP and AFTER); in total, 13 such types exist.

TempEval-2 (Verhagen et al., 2010) included further tasks in addition to those pio-
neered by TempEval. These covered the extraction of both events and timestamps from
raw text, as well as the identification of relations between events in the same sentence.
TempEval-2 was also designed to be multilingual: Evaluation resources for five languages,
including non-European ones, were provided. In contrast, TempEval had been limited to
English texts. At the same time, the number of relation types for the task of relation iden-
tification was reduced to five. Both TempEval and TempEval-2 used a small corpus called
TimeBank for evaluation, which contains news articles manually annotated according to
the TimeML standard.

In the subsequent TempEval-3 shared task (UzZaman et al., 2013), three subtasks were
investigated: identification and normalisation of temporal expressions (task A); identifi-
cation of events (task B); and identification of temporal relations between events (task
C). The key difference to earlier tasks is that a more realistic end-to-end evaluation (task
ABC) was performed in addition to the evaluation of individual tasks. In this end-to-
end evaluation, the events and timestamps to be related to each other were no longer
given, and hence errors made in earlier stages of the pipeline (i.e., in event and temporal
expression detection) were propagated to the components which annotate temporal rela-
tions. It is expected that the end-to-end evaluation gives a more realistic picture of how
a complete temporal information processing system performing all three tasks would fare
on unseen text. Another important difference to earlier TempEval tasks is that a much
larger evaluation corpus was used in TempEval-3.

The methods evaluated on the TempEval-3 shared task included both rule-based and
machine-learning-based approaches, as well as a number of hybrid methods. I will now
summarise the main results of this competition.

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 27

Rule-based methods performing task A (identification and normalisation of temporal
expressions), such as HeidelTime (Strötgen and Gertz, 2010), typically combine regular
expression patterns, which are applied to the tokens in a sentence, with further constraints
(e.g. on part-of-speech tags). In HeidelTime, a rule covers both the extraction and the
normalisation of a time expression, a property which allows the algorithm to perform
these two steps concurrently. A post-processing step is however necessary for underspeci-
fied, relative time expressions such as “last September”, which can only be disambiguated
once all absolute time expressions have been recognised. One example of a machine-
learning-based method is the algorithm proposed by Filannino et al. (2013), which uses
a conditional random field (CRF) to combine morphological information with other fea-
tures, such as a shallow parse of the sentence, a number of gazetteers covering various
types of named entities, and information from WordNet. The evaluation showed that the
best rule- and machine-learning-based systems performed comparably on the sub-task of
temporal expression identification. For normalising temporal expressions, however, rule-
based systems such as HeidelTime outperformed machine learning approaches by a large
margin. However, this picture might change in the future, given that more sophisticated
machine learning approaches for these tasks could be developed, particularly if a greater
amount of training data became available.

For event identification (task B), machine-learning-based systems typically exploit
three classes of features: morphosyntactic information, lexical semantic information (e.g.
WordNet), and sentence-level semantic information (e.g. semantic role labeling) (UzZa-
man et al., 2013). The only rule-based system submitted for this task (Zavarella and
Tanev, 2013) is an adapted version of an event recogniser for domain-specific events,
which uses finite-state machines. In the evaluation, the machine-learning-based systems
outperformed the rule-based system. It is hard to judge, however, whether machine
learning approaches are inherently better than rule-based methods, given that no further
rule-based approaches were evaluated.

Task C (relation identification) can be subdivided into two subtasks: identifying re-
lations in raw text, and classifying them into one of several types. For the subtask
of identifying relations, a number of machine-learning-based approaches were proposed
which use support vector machines and maximum-entropy models (Bethard, 2013). A
second group includes hybrid models such as Laokulrat et al. (2013), which combine sim-
ple rule-based processing with support vector machines trained on morphosyntactic and
lexical information. On this subtask, a machine learning approach that uses an additional
set of gold-standard temporal relations for training (Bethard et al., 2007) performed best.

Only machine-learning-based systems were proposed for the subtask of relation classi-
fication, e.g. approaches based on maximum-entropy models and support vector machines
(Laokulrat et al., 2013). Again, an SVM model achieved the highest score.

For the new end-to-end evaluation (task ABC), various pipelines combining the afore-
mentioned approaches were proposed. Once more, a system which uses SVM models for
all three tasks outperformed models with rule-based or hybrid components.

A further TempEval shared task called QA TempEval took place recently (Llorens
et al., 2015). The subtasks in QA TempEval are identical to those investigated in
TempEval-3, but systems are scored using an extrinsic evaluation methodology. Extrinsic
evaluation methodologies verify whether a system’s output is useful for a downstream
task. In this particular case, systems are evaluated based on how useful the annotation
they produce is for the task of question answering.

A corpus of human-written queries with accompanying answers is used as the gold stan-

28 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

dard. Systems create the TimeML annotation before any human annotation takes place.
Based on this annotation, human annotators are then asked to write yes/no questions
about the relative ordering of two events, for instance “Was he wounded after becoming
general?”. Each judge selects a small number of relations that appear relevant to them.
For each query, a formalised version in the format “Is A R B?” must be provided, where
A and B are TimeML events identified in the text and R is a pre-specified relation type.
For the query above, this would result in a query such as “IS e123 AFTER e128 ”, where
e123 refers to the wounding event and e128 denotes the event of becoming a general.4 In
addition, the annotator must give the answer (yes or no) to the question. Human judges
may ask questions involving any two events from the source article. As opposed to the
earlier TempEval tasks, they are no longer restricted to choosing relations involving two
events in the same sentence. An algorithm is awarded a point if the annotation it has
produced is consistent with the human-written answer.

While earlier TempEval tasks only addressed news articles, the evaluation corpus used
here includes blogs and history articles as well as news articles.

2.3.2 Choice of TimeML third-party tools

Event mentions in free-form text are an important building block of my evaluation of
timeline generation (cf. Chapter 5). Similarly, temporal expressions will play an impor-
tant role in Chapter 6, where algorithmic approaches to timeline generation are discussed.
For identifying such events and temporal expressions in raw text, I use publicly available
third-party tools based on the TimeML framework. An advantage of doing so is that
these tools have been rigorously evaluated in the context of the TempEval shared tasks.
I expect that using such tools results in reliable and reproducible preprocessing of input
texts. Another advantage is that TimeML event detectors extract nominalised verbs and
lexicalised event nouns in addition to event verbs.

Owing to the nature of my task, I am mainly interested in systems that perform
tasks A (temporal expression detection and normalisation) and B (event detection) from
the TempEval-3 shared task. The task of identifying and classifying temporal relations
(task C) is less relevant in my setting, as systems based on TimeML only create a link
between an event and a timestamp if the two are in the same sentence. For my exper-
iments, however, I will require each and every candidate event to be linked to its date
of occurrence. For linking events to timestamps, I therefore devise my own heuristic (cf.
Chapter 6) instead of using a third-party tool.

A large number of systems have been evaluated in the context of the TempEval shared
tasks. The one(s) used for pre-processing text in my task should support at least tasks
A and B defined in the TempEval-3 shared task; score highly for the English language;
be publicly available as a toolkit; and be free to use for academic purposes. Taking
into account these criteria, I decided to use different systems for temporal expression
detection and event detection, respectively. For detecting temporal expressions, I opted
for the state-of-the-art rule-based toolkit HeidelTime (Strötgen and Gertz, 2010) in its
most recent version. In the TempEval-3 shared task, HeidelTime was the highest-scoring
system for this subtask, achieving an F-score of 0.78.

For event detection, to the best of my knowledge, TipSem-B (Llorens et al., 2010) is
the only publicly available system which was evaluated on the TempEval-3 shared task.

4Different event IDs assigned to the same events by different systems are normalised before human
annotation takes place.

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 29

invented

published

made

came

received growth

war

before

before

includes

before before

before

before

Figure 2.3: Example of the dependency tree annotation used by Bethard et al. (2012).

It is a slightly simplified version of the system TipSem, which won the TempEval-2 shared
task. On the subtask of event identification (Task B) in TempEval-2, TipSem achieves
an F-score of 0.83, while TipSem-B achieves an F-score of 0.82. The creators of the
TempEval-3 dataset used TipSem for pre-processing their data because of its superior
performance in TempEval-2. For this reason, TipSem was not formally allowed to take
part in the TempEval-3 evaluation, but its performance on the new dataset was reported
nonetheless in order to facilitate a full comparison of all existing approaches. TipSem
achieved the highest score in TempEval-3 as well, but how much of this is due to its use
for pre-labelling data is unknown.

Given that TipSem and its variant TipSem-B performed well in the shared tasks
mentioned above, the publicly available version TipSem-B was used as a pre-processing
tool for the corpus annotation in Chapter 5, as well as for my experiments in Chapter 6.

2.4 Timeline generation based on TimeML

In the years since the first three TempEval shared tasks (which, despite their differences,
were all relatively similar in nature and scope), some approaches were proposed which use
the terminology and general intuition of TimeML, but address more complex tasks.

2.4.1 Temporal dependency trees

The work of Bethard et al. (2012) aims to remove a central restriction of the approaches
evaluated in the TempEval shared tasks, namely the fact that temporal relations between
events are annotated independently of each other. A set of independent local relations
cannot easily be transformed into a single timeline, if at all.

Bethard et al. instead define a timeline as a temporal dependency tree that encodes
partial ordering relations between events. Figure 2.3 shows an example of such a tree.
Boxes correspond to TimeML events, and arrows represent relations between two events.
Relations represented by solid lines are explicitly signalled in the text by linguistic cues.
Dashed edges represent additional relations which could be identified using world knowl-
edge although there is no linguistic cue. Note that only the solid lines form a tree, while
the entire graph of events shown can have cycles.5

5The graph in Figure 2.3 has an (undirected) cycle because the event received has more than one
parent.

30 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

Temporal dependency trees can be used to make inferences about temporal relations.
For instance, one can derive from the example tree in Figure 2.3 that the event “made”
took place after the event “invented”, although this relation has not been explicitly an-
notated. It is sufficient to know that there exists an event “published” which took place
after the event “invented” and before the event “made”.

Bethard et al. (2012) elicit a set of gold-standard temporal dependency trees from
human annotators. The trees should express only relations explicitly signalled in the text
(represented by solid lines in Figure 2.3). In practice, annotators, instead of drawing
up a tree directly, identify local relations between two events one at a time. However,
since it is only allowed to annotate a new relation between two events if one of them
(called a connection point) is part of a relation annotated previously, the set of relations
elicited can be automatically transformed into a temporal dependency tree. If there are
multiple suitable connection points for a newly annotated event, the temporal relation
that is easiest to infer from the text should be chosen (Bethard et al., 2012).

Kolomiyets et al. (2012) argue that temporal dependency trees are to be preferred
over a total ordering of all events in the text, given that many texts do not specify –
even implicitly – a temporal relation between each and every pair of events. But even
temporal dependency trees can arguably only be elicited straightforwardly for texts from
less complex genres. Bethard et al. (2012) in particular annotate children’s stories, which
typically progress linearly and exhibit direct cues such as “after” or “before” between
neighbouring events. This property makes it easy for human annotators to identify event
orderings. In more complex genres such as novels, blogs or news articles, the ordering
of events may be underspecified, unknown or not relevant. It is also possible that the
text intentionally jumps back and forth in time, or that an event refers back to an event
mentioned several paragraphs earlier. In order to annotate event orderings for such texts,
the annotator would be required to screen the entire previously read text for possible
connection points. This is likely to make the task too complex and arbitrary. Here,
restrictions such as the ones imposed by the TempEval shared tasks (where relations may
only involve events and temporal expressions from the same or nearby sentences) can be
used to keep the annotation effort manageable.

Kolomiyets et al. (2012) were the first to develop a method that transforms an input
text into the temporal dependency tree notation proposed in Bethard et al. (2012). They
apply two parsing models well-known from the dependency parsing literature, showing
that a shift-reduce parser (Nivre, 2008) outperforms a graph-based parser (McDonald
et al., 2005). For evaluation, a new corpus of children’s stories is annotated using the set
of guidelines provided by Bethard et al.

The creation of temporal dependency trees of events is a step towards a more global
processing of documents for creating timelines. As with all approaches that build on the
TimeML framework, the importance of an event is not a criterion in this work. This is
different in the task I approach, where a timeline consists of a limited number of salient
events which together cover the entire time period described by the source text.

2.4.2 Cross-document event ordering

The TimeLine shared task in the SemEval series is another example of a more complex
form of timeline generation that was approached using the TimeML framework. Here,
timeline generation is performed in a special multi-document setting called cross-document
event ordering (Minard et al., 2015). The aim is to extract, from a corpus of documents,

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 31

Date Event

1932 born

1953 graduated

1977 won

1978 attacked

1988 ran

1995 elected

2002 won

2005 suffered

2007 resigned

2008 founded

2011 convicted

Figure 2.4: Extract of an example timeline of events for the entity “Jacques Chirac”.

all events that a given target entity (such as a person) is involved in. These events must
then be linked to their time of occurrence and arranged on a single timeline, such as
the one shown in Figure 2.4. As the events in the timeline are not taken from the same
document, local relations between events need not be identified.

The shared task involved four sub-tasks. Two of these (Track A and Sub-Track A)
required systems to identify event mentions automatically, while for the other two sub-
tasks (Track B and Sub-Track B), the gold-standard event mentions were provided. The
sub-tracks also differed according to whether explicit time anchors (such as the dates
in Figure 2.4) had to be annotated (Track A and Track B) or not (Sub-Track A and
Sub-Track B).

Evaluation was performed using a semi-automatically created corpus consisting of
37 gold-standard timelines for a total of 90 documents covering three topics (“Airbus
and Boeing”, “General Motors, Chrysler and Ford“ and “Stock Market”). The gold-
standard timelines were constructed using a four-step process: First, all occurrences of
a target entity (such as “Steve Jobs”) in all input documents were annotated manually.
These occurrences were used in the second step, the annotation of events in which the
target entities participate (including their dates). Using this information, it is possible
to automatically create a draft timeline. Human annotators then completed the draft
timelines using further information from the text.

Four systems participated in all sub-tasks, while results for Sub-Track A and Sub-Track
B were submitted by three of the four systems. All proposed algorithms created timelines
using a pipeline architecture combining multiple existing language processing components,
such as Stanford CoreNLP (Manning et al., 2014). For two of the four subtasks (Track B
and Sub-Track B), a system which uses an existing semantic role labeler as well as a topic
modelling approach (Navarro and Saquete, 2015) obtained the highest score. For Track
A, a rule-based approach was shown to perform best6. For Sub-Track A, a system that
creates separate timelines for each input document and then merges them (Caselli et al.,
2015) gave the best results.

6There is no citation available describing this approach, because participants in this shared task were
not obliged to also submit a paper explaining the method used.

32 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

2.5 Timeline generation in a multi-document sum-

marisation setting

A further strand of work, which is very different in nature from the approaches described
previously, casts timeline generation as a multi-document summarisation task. Here,
the aim is to create a timeline of limited length which only contains the most salient
information, based on a large corpus of documents. Such a timeline can be used as a
browsing interface to the original document collection.

The difficulty of summarisation, and in particular multi-document summarisation,
lies in the need to identify salient information that should be part of the summary while
avoiding the inclusion of redundant information. It should be noted that the presence
of redundant information in the source text is not problematic in itself. In fact, such
redundancy is commonly used to identify salient content in the first place, both for single-
document (Luhn, 1958; Edmundson, 1969; Paice, 1990; Hovy and Lin, 1999) and multi-
document summarisation (Goldstein et al., 2000), as important information is more likely
to be mentioned multiple times.

In order to construct a summary that is both relevant and non-redundant with re-
gard to previously added content, early work on multi-document summarisation applied
the principle of maximum marginal relevance (MMR). The algorithm of Carbonell and
Goldstein (1998) greedily adds sentences to the summary that are both relevant and
non-redundant with regard to the sentences already added, until the desired summary
length has been reached. Ways of calculating relevance and redundancy are discussed in
Goldstein et al. (2000).

2.5.1 Identifying important topics

I now turn to describing algorithms which interpret the particular problem of timeline
generation as an instance of multi-document summarisation. Swan and Allan (2000) are
arguably the first to approach timeline generation as a multi-document summarisation
task. The objective of their algorithm is to detect salient topics in a large corpus of
news articles, and the time periods during which each topic was most prominent in the
news. Examples of topics include a school shooting or the death of an important historical
figure. The association metric χ2 is used in a first step to identify named entities and noun
phrases which are overrepresented in a given time frame. In order for this to work, each
article must have an annotated publication date. In a second step, the named entities
and noun phrases are grouped into topics using an agglomerative clustering approach.

Swan and Allan identified three criteria that a good set of clusters should satisfy:
The clusters should correspond to what humans intuitively perceive as a news topic; the
named entities and noun phrases in the corpus should make it easy to automatically assign
a label7 to each cluster; and the clusters created should be similar to manually created
clusters.

To test whether the method described above is able to produce such clusters, a human
evaluation based on the TDT-2 corpus (Cieri et al., 1999) was performed. This corpus was
created in the context of Topic Detection and Tracking (TDT), the task of detecting the
appearance and evolution of topics in a stream of broadcast news stories (Allan, 2002).

7A label is a kind of headline for the cluster and allows a reader to quickly understand what the cluster
is about.

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 33

Examples of such topics include elections and accidents. Each topic in the corpus groups
together a number of directly related events.

Experiments revealed that while annotators perceived that a large number of automat-
ically created clusters corresponded to a single news topic, agreement between annotators
on individual cases was very low. This suggests that humans have different intuitions on
what constitutes a news topic. For the task of deciding whether automatically created
cluster labels were indicative of the topic discussed by the cluster, agreement between
annotators was stronger. However, the generally-held view was that the created labels
tended to be poor. In contrast, humans found it easy to link a given cluster to a gold-
standard topic in the TDT-2 corpus. This suggests that the algorithm of Swan and Allan
creates a set of clusters that is similar to what humans would produce when asked to
create clusters manually.

2.5.2 Timeline generation based on a user query

Chieu and Lee (2004) investigate the creation of a timeline of events that are relevant
to a user query from a large corpus of news articles. Their definition of an event differs
from commonly used event models (cf. Section 2.2) in that an event is assumed to
be represented by an entire sentence. Chieu and Lee follow Swan and Allan in using
association metrics to identify events that were frequently discussed in a given time period.
However, instead of using document creation times directly, they extract timestamps for
each event from the surrounding article text. To this end, they compare a number of
ways of linking an event to its time of occurrence using document creation times. For
instance, the date expression “three days ago” is assumed to mean three days before the
news article was written.

It is also assumed that the same real-world event can be expressed by multiple sen-
tences. For this reason, the algorithm involves the detection of paraphrases that refer to
the same event. The particular approach used here assumes that two sentences are less
likely to be paraphrases if the events they describe took place on different dates.

Evaluation was performed using a corpus of gold-standard timelines. In a first step,
human experts were asked to construct timelines for a number of queries. Due to the size
of the document corpus, it was not possible for them to exhaustively scan all documents
for relevant events. They were therefore allowed to use external information sources such
as the Web for this task. In a second phase, human annotators were simultaneously
provided with gold-standard timelines and a number of system-generated timelines for a
given query. Their task was to rank these timelines by quality. In addition, annotators
were asked to assess several quality criteria, such as comprehensibility, conciseness and
representativeness, for each timeline. The evaluation showed that the system-generated
timelines were comprehensible, concise and representative of media coverage. However,
agreement between different human annotators was found to be low.

2.5.3 Dependencies between events

Yan et al. (2011b) introduce the concept of “news evolution”, which refers to existing de-
pendencies between the events in a timeline. In their approach, timelines are constructed
such that they describe groups of interdependent events in the context of a given news
topic. For instance, a good timeline describing the outbreak of influenza in a particular
year should, in their view, cover both the development of a vaccine and the first use of

34 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

that vaccine. Special attention is given to semantic relations between events, such as
cause/effect relations, or cases where one event is a further elaboration of another. Yan
et al. argue that the presence of timeline entries that stand in such a relation makes it
easier to understand the evolution of the underlying news topic.

Timelines are created by composing smaller “component summaries”, which group
together events that depend on each other. To this end, the algorithm calculates a utility
score for each candidate component summary. As the scores of different component
summaries depend on each other, an iterative optimisation method is used to calculate a
globally optimal solution. A more efficient algorithm for the problem, which optimises an
objective function using gradient descent, is proposed in Yan et al. (2011a). Tran et al.
(2013) present an alternative approach based on this idea which uses a linear regression
model.

Evaluation of the aforementioned works is commonly performed by comparing system-
generated timelines to gold-standard timelines. For instance, Tran et al. (2013) perform
a web search to acquire gold-standard timelines written by professional journalists. For
each topic, multiple timelines are collected in order to reduce bias. Overlap between a
system timeline and gold-standard timelines is calculated using surface-oriented overlap
metrics such as ROUGE8 (Lin, 2004). Tran et al. (2013) report a small improvement over
the results obtained by Yan et al. (2011b) and over previous approaches such as that of
Chieu and Lee (2004) described above.

2.5.4 Salience of dates

The method of Nguyen et al. (2014) assumes that the date when an event took place also
plays a role in determining the event’s salience. In particular, they assume that salient
events tend to happen on salient dates, i.e. on dates with a high number of events, because
a salient event is often mentioned together with related side events.

Their algorithm scores each event based on the salience of its textual description, the
salience of its annotated date, and the relevance to a user-specified query of both the event
and the date. The problem of redundancy is addressed using a simple re-ranking algorithm
which considers term overlap between candidate sentences, such that only the highest-
ranking sentence for a particular date is included in the final timeline. The approach is
evaluated against a gold-standard corpus of newswire texts written by AFP journalists,
using ROUGE metrics. As opposed to the dataset used by Tran et al. (2013), this corpus
however only contains a single gold-standard timeline for each topic. Given that no direct
comparison to previously published methods is performed, it is difficult to establish, for
instance, whether their method outperforms the approach by Tran et al. (2013).

The sub-problem of identifying salient dates in a time-tagged corpus of documents has
been investigated separately also. Earlier approaches (Kessler et al., 2012) score each date
individually, taking into account features such as the overall frequency of a date in a large
corpus, as well as the presence of back-references to a date in articles published years later.
Events for which back-references exist often have a high impact on subsequent history.
For dates that are relative to the document creation time (DCT) of the containing article,
such as “ten years ago”, the difference between the date of the event to be scored and
the DCT is used as a feature, based on the same intuition. Kessler et al. also investigate
a variant of the task in which the timeline is constructed in response to a user query.

8Surface-oriented evaluation metrics will be discussed in Chapter 4.

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 35

Here, the relevance of a document containing a candidate date to that query is another
important feature.

Kessler et al. (2012) experiment with several alternative approaches to ranking dates,
such as a boosting algorithm and various information retrieval methods. Evaluation is
performed by ranking all dates according to their scores and calculating Mean Average
Precision (MAP). The same corpus of timelines written by journalists as in Nguyen et al.
(2014) is used as the gold standard. The boosting algorithm is shown to outperform all
IR models as well as a range of baselines.

The sub-task of date selection is also investigated independently by Tran et al. in the
context of their work on timeline generation mentioned earlier (Tran et al., 2013). They
use a linear regression model and report an improvement over a baseline that ranks dates
by the number of articles published on them.

Tran et al. (2015) extend this work by removing the assumption that the importance
of each date can be judged independently. They use a random-walk model to encode
the intuition that a back-reference to a date is more significant if it occurs in an article
published on another important date. This idea is based on the observation that timelines
often contain “substories” of events that are causally linked to each other. An important
event such as the resignation of the Egyptian president Mubarak may result in related
events being considered important also (e.g. the developments preceding Mubarak’s res-
ignation). Evaluation is performed using the corpus of gold-standard timelines used by
Tran et al. (2013). Methods that take into account dependencies between dates are shown
to outperform approaches that judge each date independently.

2.5.5 Related tasks

There exist a number of tasks that are similar to timeline generation from multiple doc-
uments. For instance, Allan et al. (2001) formulate the problem of creating a temporal
summary for a given news topic based on a stream of news stories. Each sentence in such
a summary should describe a new event relevant to the given news topic. Summaries are
created in an online setting, i.e. gradually as further news items arrive. This property
allows a human to monitor gradual shifts in news coverage of a given topic. The algorithm
of Allan et al. uses language models to select sentences that are both useful, i.e. related to
the news topic, and novel, i.e. not describing an event already covered by earlier sentences.
Sentences that do not express any event also have to be removed.

Evaluation is performed based on a manually created list of events for 11 news topics
in the TDT-2 corpus described above. The results suggest that as far as usefulness of
the selected sentences is concerned, language models cannot beat a simple round-robin
baseline, which selects sentences from the beginning of each article. In contrast, they are
successful at reducing redundancy between selected event sentences.

A further related task is proposed by Smith (2002), who create a history browser
application for a historical period such as the American Civil War. Their approach relies
on the availability of rich resources (such as books) for a time period in question, which
may not be assumed to exist for less popular topics. They use association metrics to
identify interesting combinations of dates and places in a corpus of documents describing
the historical period in question. Next, phrases corresponding to these date-place pairs
are identified. Out of the annotation metrics used, mutual information is found to result
in a bias towards events rarely mentioned in the corpus, while log-likelihood and χ2 lead
to a balanced selection of less and more frequently mentioned events. These insights

36 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

Structural

Digit presence in the sentence
Position of the sentence in the article normalized by the number of sentences
in the article
Maximum length of any event word in the sentence
Number of events in the sentence
Number of “to be” verbs in the sentence

Linguistic

Presence of an event in the perfective aspect in the sentence
Percentage of events in the sentence that have been assigned class “occur-
rence”
Negation presence in the sentence
Percent of events in the sentence that are verbs
Percent of events in the sentence that are in some past tense

Named entities Sum of the named entity weights in the sentence

Semantic
Maximum similarity of any event word in the sentence to the first two nouns
in the article

TextRank
TextRank rank of the sentence in the article, divided by the number of
sentences in the article

Figure 2.5: Sentential features used in the original method by Chasin et al. (2014).

are based on manual inspection of the produced date-place combinations. While this
approach assists users in browsing a corpus, it does not produce a summary of the most
salient events, nor does it focus on events specifically. In fact, the phrases include events
(“Fire of London”) as well as place names (“College Oxford”) and person names (“Charles
II”).

2.6 Identifying important TimeML events

As opposed to the approaches discussed in previous sections, Chasin et al. (2014) focus
on the selection of events from a single input article. In the context of a study on
the visualisation of historical events in text, they propose an approach which classifies
TimeML events into important and unimportant ones.

TimeML events in a source article are identified using the event recogniser Evita (Sauŕı
et al., 2005). For each TimeML event, a number of generic features (given in Figure 2.5)
are computed. In practice, given that all these features are defined on the sentence rather
than on the event level, all events in the same sentence are assigned the same feature
vector. Based on these features, an SVM model is then trained using a small annotated
corpus of history articles.

2.6.1 Features

The features used can be subdivided into five groups: structural features, linguistic fea-
tures, semantic features, a named entity feature, and a feature based on TextRank.

Five structural features are used. The first feature considers whether the sentence
in which the event occurs contains a digit. Digit presence is an easy way of capturing
sentences that contain a date. A further feature captures the position of the containing
sentence in the article. In articles discussing a single war or battle (which are used in their
evaluation), the key events are mentioned in the first few sentences of the article. The
maximum length of any event word in the same sentence, the number of events found in

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 37

the containing sentence and the number of instances of the verb “to be” in that sentence
are also used as features.

Linguistic features consider certain linguistic properties of event verbs, such as aspect.
Verbs with progressive aspect are unlikely to be good candidates for a timeline, given
that timelines contain accomplished events leading to a new result state rather than
ongoing events. Another feature captures the class attribute of the TimeML events in
the sentence (cf. Section 2.2) as detected by the event recogniser. TimeML events of
class “PERCEPTION”, “REPORTING”, “STATE” or “ASPECTUAL” do not represent
real-world actions or state changes and are therefore unlikely to be good candidates for a
timeline. Similarly, a feature is constructed if there is a negated event, given that negated
events are also highly unlikely to be included in a timeline. A further feature considers
whether any event verb is used in any past tense. Verbs in the present tense often point to
opinions of historians rather than to events that happened in the past, and are therefore
less suitable for a timeline.

The named entity feature exploits the fact that events co-occurring with important
named entities are likely to be salient. Named entities which occur multiple times in an
input article are assumed to be more important than less frequently mentioned entities.
In particular, the weight of a named entity is defined as the number of times this named
entity is mentioned in the article divided by the total number of named entities in the
article.

The semantic feature captures the semantic similarity between an event word and
certain keywords which are supposed to represent the general topic of the article. The
metric used is the “vector pairs” semantic similarity measure in the WordNet module
WordNet::Similarity (Pedersen et al., 2004). In this setting, if the word “war” occurs
in the first sentence of a Wikipedia article, event words such as “fought” receive a high
semantic similarity score. A disadvantage of this approach is that keywords can also
include proper nouns such as “Würzburg” occurring in the article title, for which an
entry in WordNet is not available.

The final feature is calculated using the TextRank algorithm (Mihalcea and Tarau,
2004), which was proposed as an approach to general single-document summarisation.
TextRank is based on the PageRank algorithm (Brin and Page, 1998), which simulates a
random walk between web pages. PageRank assumes that a user browsing the web has
two options: following one of the links on the current page, or “jumping” to a completely
new web page, e.g. by entering a URL directly into the web browser. The model is
implemented as a directed graph G = (V,E), where the nodes V represent pages and the
edges E represent directed links between pages. The importance of a page is represented
by the PageRank score of a corresponding node Vi. This score is calculated iteratively
based on the scores of all adjacent nodes (i.e. pages linked to this page). The original
version of PageRank in (Brin and Page, 1998) defines the importance of a page as follows:

S(Vi) = (1− d) + d ·
∑

j∈In(Vi)

1

|Out(Vj)|
S(Vj) (2.3)

where d is a free parameter which represents how likely a user is to follow one of the links
on the current page (as opposed to jumping to a completely new page). In Brin and Page
(1998), this parameter was set to 0.8. In what follows, I describe this initial version of
PageRank.

The first summand, (1−d), is the likelihood that the user jumps to the page represented
by node Vi from any other page. This value is assumed to be the same for all pages. The

38 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

sum in the second summand represents the votes given by other pages linking to the page
represented by node Vi. Intuitively, if such a page has itself a high score, it is likely that
the page represented by node Vi is also important. The other page’s score is therefore
used as the vote. Each vote is normalised by the total number of links on that page: If
a linking page contains a high number of outgoing links (e.g. a long list of links), these
links are considered to be less indicative of the linked pages’ importance.

Since the formula for calculating a node’s weight requires the node weights of other,
neighbouring nodes, PageRank is a recursive algorithm. The node weights are first ini-
tialised to random values, and after a sufficiently high number of iterations the distribution
converges, i.e. the node weights are stable in subsequent iterations.

TextRank applies this basic intuition to text summarisation. Two fragments of a text
can arguably be related to each other just as pages are connected via hyperlinks. This
is the case if the two text fragments express the same or similar information. Intuitively,
fragments which contain information that other sentences also contain are more important,
and should therefore be part of the summary. However, it is not straightforward to decide
when there should be a link between two text fragments. Mihalcea and Tarau argue
that, as opposed to PageRank, where the link matrix is binary (since links between pages
exist or not), links between text fragments vary in strength. A link between two almost
identical sentences should be stronger than the link between two sentences that merely
share a person name, for instance.

The score of a sentence in TextRank therefore takes into account edge weights between
text fragments as well:

S(Vi) = (1− d) + d ·
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)wjk

S(Vj) (2.4)

where wji and wjk each represent weights between two sentences.
Each node Vi corresponds to a sentence, and the edge weight between two sentence

nodes Si and Sj is calculated using a similarity function, such as the number of common
tokens in the two sentences divided by the logarithmic lengths of the two sentences:

Similarity(Si, Sj) =
|{tk|tk ∈ Si ∧ tk ∈ Sj}|
log(|Si|) + log(|Sj|)

(2.5)

where tk refers to a token. While node weights are updated as part of the iterative
algorithm, edge weights are set upfront and remain constant.

Chasin et al. (2014) assign each event the TextRank score of the containing sentence.
The similarity function used slightly differs from the one in the original TextRank algo-
rithm, as pairs of sentences in which one of the sentences is short (less than 10 tokens in
length) are given a weight of zero. For all other sentence pairs, similarity is calculated
based on word overlap, but lemmas are used rather than original tokens.

2.6.2 Results and Discussion

Chasin et al. (2014) tested their approach on a set of 13 history articles which were all
taken from a single domain (wars and battles). More importantly, each article considered
discusses only a single war or battle.

For all TimeML events in these articles, gold-standard labels (important vs. non-
important) were first elicited separately from human annotators. During evaluation,
however, the presence of a single event with a positive gold-standard label in a sentence

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 39

results in all events in that sentence being interpreted as positive examples.9 The F-score
obtained using this set-up was 51.0%.

According to the authors, the reliability of this result is in doubt because agreement
between annotators is low. If one annotator’s annotations for individual events are treated
as ground truth and each of the remaining annotator’s annotations are compared to that
ground truth, the average inter-annotator F1 score is only 42.6%. The authors state that
the creation of the gold standard was complicated by the fact that a single historical
event (the beginning of a war) is often represented by multiple TimeML events (such as
“war” and “began” in “The war began”), a problem which was discussed in Section 2.2
(cf. page 24). Also, some TimeML events do not correspond to real-world events at all
(cf. Section 2.3 on page 25). In such cases, it is difficult or even impossible for human
annotators to establish whether a particular TimeML event is important or not.

Another aspect to keep in mind is that in sets of monothematic articles (such as the
one on wars and battles used for evaluation), there exist a set of verbs, such as “beat” or
“win”, which can be assumed to cover all articles’ key events. In contrast, general history
articles such as the ones I investigate in this thesis discuss many different types of events.
Approaches like the one of Chasin et al. (2014) may therefore be less suitable for my task.
I will test this hypothesis in Chapter 6.

The results obtained may also be influenced by the quality of the event detector Evita
(Sauŕı et al., 2005), which was used to detect events and their properties (such as polarity
and aspect). Evaluation of this tool took place on the TimeBank corpus (Pustejovsky
et al., 2003b). While accuracy for polarity and aspect was found to be close to 100%,
performance for determing the event class is lower (about 80%). Since the overwhelming
majority of events belong to class “OCCURRENCE”, this number says little about the
performance of the system on the less frequent classes, however.

The TempEval shared tasks, which were proposed several years after the publication of
Evita, specifically tested the ability of TimeML event recognisers to determine the correct
event class, among other subtasks. In the context of these evaluations, it was shown that
the performance of Evita on this subtask is much below that of modern event detectors
(UzZaman and Allen, 2010).

2.7 Requirements for my approach

Let us now turn to the task investigated in this thesis: the creation of a timeline from a
single, general history article.

The existing methods presented in this chapter are not directly applicable to this task,
although some of the underlying ideas (such as the presence of important dates mentioned
more than once which must be covered in the timeline) could potentially be useful in my
setting also.

The works reviewed in Section 2.5 presuppose the existence of a large corpus of history
articles, in which important information is expected to be mentioned multiple times.
However, an electronic version of such a resource is currently only available for events
that happened in the most recent decades, when news articles began to be collected in
electronic archives. It is for this reason that algorithms of this type have so far only been
evaluated on recent events.

9This treatment is necessary since all events in the same sentence are assigned the same feature vector
in the SVM model, and all training examples with the same feature vector should have the same label in
order to allow the SVM model to converge.

40 CHAPTER 2. RELATED WORK ON TIMELINE GENERATION

As this thesis focuses on the creation of timelines from single history articles, judg-
ments about which entities or events are added to the timeline should be based mostly
on the input article at hand (possibly with some general background information to be
gleaned beforehand, but not dependent on the existence of massive parallel corpora of
event descriptions such as news articles). In some situations, it may not even be desirable
to use parallel corpora, as the input article could focus on different events than the ones
that are most salient according to the corpus. Consequently, the approaches described in
Section 2.5 are not adequate for the task approached in this thesis.

The TimeML-based approaches described in Sections 2.3 and 2.4 extract all events
and temporal expressions contained in an input text, whereas the objective in my task is
to extract only salient content. A problem of TimeML-based methods is that the event
definition used does not ensure a one-to-one correspondence between TimeML events and
actions or state changes in the real world. In particular, many TimeML event words,
such as stative verbs, do not express real-world events at all, and often a single real-world
event can be represented by multiple TimeML events in the text.

The limitations of TimeML also apply to the supervised approach by Chasin et al.
(2014), which does focus on the identification of important events and which works on a
single document, such as my intended approach. Consequently, annotators often find it
hard to estimate whether a given event is important or not. There are other important
differences between the work of Chasin et al. (2014) and my intended work. Most impor-
tantly, the algorithm by Chasin et al. has been designed to work with texts discussing
only one type of physical event (such as a war or battle) as opposed to general history
topics (such as the history of France). The individual events described in such an article
are closely related to each other and often happen within a short time span, since they are
all relevant in the context of the single main event. Chasin et al.’s approach is therefore
unlikely to generalise across domains. In contrast, the more general history articles that I
consider (such as “History of Austria”) contain a large number of events unrelated to each
other. They often span long time periods (up to thousands of years), include abstract
events as well as different types of concrete events, and provide an overview of the entire
history of, for instance, a country or a field of science. The topical focus of such articles
can also change as the narrative moves ahead in time.

The approaches I will discuss in this thesis are different from the aforementioned lines
of work in various ways. In my setting, a timeline is created by selecting a limited amount
of content from a single history article which spans the entire history of a concept.

I start by describing an initial experiment (Chapter 3) that is inspired by this type
of timeline generation, although only a sub-task of full timeline generation is addressed
here. In particular, the experiment is aimed at selecting significant historical figures that
should be part of a timeline on a given topic. I use a supervised approach based on
support vector machines to solve this task. As no suitable training data was available, I
construct a corpus of timelines and textual articles from existing data on the web. Using
this resource, a classifier is learned which identifies historical figures of importance. Due
to the size of my corpus, the classifier can make use of lexicalised features.

The remainder of the thesis discusses the full task of content selection for timeline
generation, i.e. the selection of a limited number of events in an input article. Algorithms
that perform this task will be presented in Chapter 6. However, since the evaluation of
full timeline generation is more problematic than assessing a ranking of historical figures,
I will first present a comprehensive evaluation methodology for timeline generation in
Chapter 5. The main advantage of this evaluation methodology is that the necessary

CHAPTER 2. RELATED WORK ON TIMELINE GENERATION 41

annotation of human-written timelines is a one-time effort. Therefore, the evaluation of
new timeline generation algorithms comes at no further cost. Chapter 6 then presents
two types of timeline generation algorithms. Uninformed methods exploit information
about section structure as well as the presence of dates. Informed methods either rely on
unsupervised features (such as the article’s subject area, syntactic links between events
and dates and co-occurrence constraints between events) or use an annotated training
corpus.

2.8 Chapter summary

In this chapter, I described existing work on timeline generation. We saw that radi-
cally different approaches are conflated under the label “timeline generation”. I gave an
overview of the most salient approaches in each tradition and described why none of these
existing families of approaches are applicable to the task investigated in this thesis. I also
outlined the remit of the individual chapters in the remainder of the dissertation.

Chapter 3

Identifying significant historical
figures

This chapter describes an initial experiment which I conducted in order to investigate
whether a supervised machine learning approach could potentially be used to address the
task of timeline generation.1 Concretely, I use an SVM classifier to identify significant
historical figures that should be mentioned in a timeline on a given topic. While this
task looks straightforward to solve for well-known figures such as Winston Churchill or
Barack Obama, which are mentioned millions of times on the Web, it is not an easy task
for historical periods that lie further in the past (e.g., Antiquity or the Middle Ages), as
well as for articles about less well-known topics.

Knowing which people to include in the timeline promises to be a good starting point
for constructing a full event timeline, as people play a central role in most historical
events. The aim of the method described in this chapter is to assign a score to each
historical figure in a history article. This score reflects the importance of that person
for a timeline representing the input article. A downstream system (not discussed here)
could then create timeline entries for events in which the most salient historical figures
are involved. The produced ranking of historical figures could hence potentially be used
as a content selection component of a timeline-specific single-document summariser.

The chapter is structured as follows: Section 3.1 discusses relevant literature on named
entities in the context of summarisation. Section 3.2 gives a high-level overview of the
experiment described in this chapter. In Section 3.3, I describe a novel corpus which
links history articles on Wikipedia to corresponding timelines downloaded from the Web.
This corpus will be used to test algorithms on the task of identifying significant historical
figures. In Section 3.4, a supervised approach for identifying important historical figures is
presented, including the features used. In Section 3.5, a competitive baseline is introduced,
which uses the frequency of mentions of historical figures in text. In Section 3.6, I evaluate
my approach using the corpus presented in Section 3.3. I first describe the evaluation
metrics used, and then show that the proposed method significantly outperforms the
baseline. Section 3.7 reports some observations with regard to the experiment which are
relevant for the work in the remainder of the thesis. In particular, constructing a corpus by
matching data from different sources poses a potential problem for data quality, and the

1The work presented in this chapter has been published previously (Bauer et al., 2014). The third
author of the publication, Thore Graepel, provided valuable advice in the early stages of the project, but
was not directly involved in the research reported in the present chapter.
The evaluation resource described in this chapter is available from the author upon request.

43

44 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

necessary cleaning steps may be as costly as obtaining training data using human timeline
writers, a solution that at first glance may look more time-consuming. I conclude that the
approach to timeline generation presented in this thesis (cf. Chapters 5 and Chapters 6)
should not be based solely on the corpus presented in Section 3.3.

3.1 Motivation and related work

The decision to focus on the identification of important historical figures initially, before
turning to timeline generation in Chapters 4 to 6, is motivated by the interpretation of
timeline generation as a summarisation task. A range of existing approaches to single-
and multi-document summarisation have investigated the importance of named entities
for both summarisation and generation (Paice, 1990; Otterbacher et al., 2002; Siddharthan
et al., 2011). Such studies rest on the insight that named entities in text differ in their
information status. Prince (1992) proposed a classification of named entities according
to their information status (often called givenness hierarchy) that is widely used in Com-
putational Linguistics. Although other classifications exist (Gundel et al., 1993; Grosz
et al., 1995), I will only present the hierarchy introduced by Prince.

The first distinction considers the hearer’s (or reader’s) assumed familiarity with a
named entity in question. Entities that the hearer is expected to be familiar with at the
time of reading are called hearer-old, while other entities are said to be hearer-new. A
second classification assesses the status of a named entity with respect to the discourse
model of the preceding text. Discourse-old entities have already been evoked in the prior
discourse stretch, while discourse-new entities have not. A number of named entities
fall outside this binary distinction in that their existence is inferrable from the context,
i.e. the preceding text is assumed to have introduced these entities implicitly, relying on
the reader’s world knowledge. For instance, the existence of an oven can be inferred in
a statement such as “Linda was baking a cake.” It is thought that the reference to the
action of baking taking place implicitly introduces the oven used for this action into the
discourse stretch.

The information status of named entities in text is of particular interest for the task
of creating a summary. This is because the surface form used to refer to an entity in text
(commonly called referring expression) is often influenced by the entity’s information
status. Intuitively, entities that are known to the reader at a given location in the text
require a less verbose explanation, while references to discourse-new and hearer-new en-
tities often contain additional information needed to uniquely disambiguate the intended
referent (Dale, 1992), such as appositions or (in the case of persons) a job description or
profession.

These differences in wording pose considerable problems in text summarisation. Given
that a summary is typically created by concatenating short text snippets from one or mul-
tiple source texts, the information status of a named entity in the resulting summary is
often different from that in the source. If the original referring expression is not com-
patible with the information status in the summary context, the created text may be
unintelligible (if essential information is missing) or needlessly repetitive. In the latter
case, the summary is also likely to be less informative than it could be, since other salient
information has to be omitted due to the word limit imposed. Summarisation algorithms
designed to rectify such phenomena must therefore be able to manipulate the extracted
text fragments such that any referring expressions are in line with the corresponding
entity’s information status in the summary (rather than in the source text).

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 45

Siddharthan et al. (2011) conducted a corpus study to identify typical properties of
referring expressions for discourse-new and discourse-old entities, respectively. The focus
of this data analysis was on references to people in news stories. This is in contrast to
comparable exercises that focus, for instance, on the main characters of certain Wikipedia
articles (Belz et al., 2009). Based on this analysis, they proposed an algorithm for the
task of creating discourse-new and discourse-old entities in the context of multi-document
summarisation. Using a small amount of labelled data, they also learned classifiers which
distinguish hearer-new from hearer-old entities, and major from minor characters. The
three aforementioned distinctions were then used in a comprehensive algorithm for creat-
ing referring expressions automatically.

Similar studies have been conducted for other genres. For instance, Nissim et al.
annotated a corpus of English conversations and showed that a decision tree classifier
outperforms a rule-based approach on the task of assigning one of three information status
categories to the named entities evoked in the discourse (Nissim et al., 2004; Nissim, 2006).
Rahman and Ng (2011) later extended this approach with lexical and syntactic features.

Markert et al. (2012) went beyond the aforementioned corpus studies in that a collec-
tive classification algorithm was used to infer the information status jointly for multiple
named entities. This approach was shown to outperform approaches based on local classi-
fiers alone, such as the one by Nissim (2006). Secondly, they proposed a more fine-grained
annotation scheme for the information status of entities in news articles. Such a detailed
classification provides important cues for downstream tasks, notably the identification of
bridging anaphora (Hou et al., 2013, 2014). Knowledge about these anaphora can in turn
inform models of local coherence, in particular the entity grid (Barzilay and Lapata, 2008),
which has been used to assess summary quality. Also following the intuition of Markert
et al. (2012), Rösiger and Teufel (2014) proposed a fine-grained annotation scheme for
scientific articles and assessed the performance of an existing co-reference resolver trained
on this task using domain-specific labelled data.

While the aforementioned works do not address the problem of identifying salient
historical figures for timeline generation, certain intuitions underlying these studies are
relevant in the context of the present chapter. In particular, Siddharthan et al. (2011)
show that referring expressions in news articles, and hence the immediate context of
person names, also depend on whether the referenced entity is perceived as important by
the author of the news story. For instance, the number of relative clauses and copula,
as well as the presence of certain pre-modifiers, seem to be indicative of whether an
entity is a figure of major or minor importance. The definition of importance used by
Siddharthan et al. is specific to news articles, since a major person there must be salient
in the context of the entire news story. In contrast, history articles typically cover a wide
range of different topics and historical figures. Even salient persons are therefore likely to
be mentioned only in a small part of the input document.

For the task addressed in this chapter, I therefore do not make direct use of existing
works such as Siddharthan et al. (2011). However, taking heed of their results, I develop a
machine learning system which makes extensive use of features in the immediate textual
context of name mentions in order to predict the salience of historical figures.

3.2 Overview of the approach

The supervised approach described in this chapter produces a ranked list of names, given
an input article. The n top-ranked names are selected for the timeline, where n is the

46 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

desired length of the timeline. To construct this ranking, each of the persons mentioned
in a textual article is assigned an importance score which indicates how important that
person is for a timeline on the subject.

To identify mentions of person names, I will use a named entity tagger. Consider
the following sentence taken from an example Wikipedia article: “(...) the Hohenstaufen
empire under Frederick I Barbarossa reached its peak in (...) the marriage of his son
Henry (...) to Constance (...).” All the strings in italics have been recognised as persons
by the named entity tagger. However, as the same person may be mentioned more than
once in the same article, evaluation will be performed on the level of persons (types)
rather than based on named entity mentions in text (tokens).

My method assumes that the surface text in a history article gives cues as to which
content is important enough to be contained in the corresponding timeline. Intuitively,
features which might be helpful for this task include lexical cues (e.g. certain verbal
constructions or adverbs underlining the importance of events), syntactic cues (such as
whether a verb in question is mentioned in the main clause of the sentence), document
structure (for instance, where in a section important events tend to be mentioned), and
semantic cues (such as co-occurrences of the name of a historical figure and the title of
the source article).

3.3 Corpus construction

I now turn to the description of my new corpus, which I will use for training and evaluating
methods that identify important historical figures in history articles.

History timelines as defined in Chapter 1 are lists of self-contained event descriptions,
each with a date associated. A large number of such timelines exist on the Web. For
many timelines, it is also possible to find one or more history articles that discuss the
same topic as the timeline. If such pairs of articles and timelines are available, it is possible
to interpret the presence or absence of certain content from the gold-standard timeline
as an indication that a particular historical figure in the source article is important or
not. However, no corpus of timelines and textual articles that was of acceptable size and
quality existed. I therefore compiled such a resource myself from existing data on the
Web.

The main challenge in constructing a corpus is to identify articles of acceptable quality,
and timelines that can be assumed to describe the same subject matter as a given history
article. Once suitable timeline/article pairs have been identified, further problems arise:
The name of a person may be spelt in different ways in a history article and a correspond-
ing timeline. For instance, a given history article may contain the name “George H. W.
Bush”, while the corresponding timeline refers to the same historical figure as “George
Bush Senior”. Such and other inconsistencies may adversely affect the quality of the
resulting corpus and, by extension, of any evaluation performed using the corpus. Care
must therefore be taken during corpus construction to ensure that the problems described
are minimised.

3.3.1 Selection of articles and timelines

To construct a corpus of history articles and corresponding timelines, a search for websites
containing history timelines was performed using a standard search engine (Google).

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 47

Figure 3.1: Example of a timeline downloaded from WorldAtlas.

3.3.1.1 Timelines

Figure 3.1 shows an example of a timeline downloaded from the website WorldAtlas. In
general, there are a small number of specialist websites that contain a large number of
timelines, and a “long tail” with only a few timelines each. Processing these web pages
is time-consuming, as the timelines have to be extracted from standard HTML markup,
and this markup differs from website to website. For instance, some pages contain a table
in which the first column gives the date of the event and the second column contains the
event description. On other pages, a date and the corresponding event description are
separated by a semicolon; and so forth.

Given these complications, it is preferable to focus on a few websites with a higher
number of timelines, and to write scripts that can extract hundreds of them automatically,
because each group of pages will follow the same markup pattern. To do this, I compiled a
list of suitable websites. All websites containing more than 100 timelines were considered
for further processing. Each timeline was transformed into a machine-readable list of
(date, timeline entry) pairs by a specialised script written for that website. An example
of such a list is shown in Figure 3.2. In total, 1333 timelines were processed in this way.

Manual corrections had to be made for a considerable number of timelines, as occasion-
ally the processed timelines had inconsistencies such as single timeline entries spanning
multiple lines; empty extra columns in HTML tables; incorrect use of special characters;
and so forth. A further 9 timelines from three sources (datesandevents.org, Historymole
and The Guardian) were processed and added entirely manually.

In addition to publicly available websites, a further source was used: all timelines

48 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

Date Timeline entry

700-600BC Armenians, an Indo-European people, migrated from the west to mingle with
the Urartu

512BC Armenia annexed to Persia by Darius I; Urartu officially called Armenia for the
first time in the Behistun inscription

331BC Alexander the Great attacked Persia, defeated Darius III, did not conquer Ar-
menia; Armenia regained its independence from Persia

322BC King Yervand I founded the Armenian Orontid Kingdom

190BC Artaxias I reclaimed Armenian sovereignty from the Seleucides; established Ar-
taxiad Dynasty

94-56BC Tigranes Dikran
the Great, a scion of the Eastern Dynasty, ruled, welded two Armenian satrapies
into one strong kingdom

... ...

1998 Ter-Petrosian resigned over opposition to his efforts to find a compromise with
Azerbaijan over Nagorno-Karabakh; nationalist Robert Kocharian elected pres-
ident

... ...

Figure 3.2: Processed version of the WorldAtlas timeline on the history of Armenia.

published on the website www.historyworld.com, which were obtained in the form of
a spreadsheet directly from the author, Bamber Gascoigne, who is well-known as the
original quizmaster on the TV programme “University Challenge”. A problem was that
this data was given as a single list of events shared across multiple timelines, rather than
as self-contained timelines. For instance, an event like the French Revolution is part of the
timelines on French and European history alike (indicated by two subject labels for this
timeline entry). I transformed this list of entries into individual timelines by grouping
together all entries with the same label. This implies that some of the final timelines
share a number of entries. The transformation resulted in a further 246 timelines. In
total, 1588 timelines were collected. Figure 3.3 details, for each data source, the number
of timelines processed.

As a final step, timelines from different data sources which discussed the same topic
were merged manually into a single timeline containing the union of all timeline entries.
This decision was based on the intuition that any timeline entry, whether it occurs in all
timelines present or not, describes an important event.

3.3.1.2 History articles

The next step consisted in matching the timelines with corresponding textual Wikipedia
articles discussing the same topic. For instance, Figure 3.4 shows a section of the
Wikipedia article “History of Armenia”. This article can be matched to the timeline
on Armenian history shown in Figure 3.1.

I identified matching articles manually. In the general case, only Wikipedia articles
whose title starts with “History of” were considered. In a small number of cases, no such
article was available, but the topic’s main article (i.e. an article without “History of” in
the title) was similar to a “History of” article, i.e. it focused on the topic’s history and was
structured chronologically. In such cases, this main article was matched to the timeline.

In order to ensure that the timeline and textual article discuss the same topic, the titles

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 49

Website # Timelines

Wikipedia 442

timelines.ws 383

Worldatlas 308

Historyworld 246

BBC 200

datesandevents.org 5

Historymole 3

The Guardian 1

Total 1588

Figure 3.3: Number of timelines processed for each website.

Ter-Petrosyan was forced to step down in February 1998 after advocating compromised
settlement of the conflict over Nagorno-Karabakh which many Armenians regarded as un-
dermining their security. Ter-Petrosyan’s key ministers, led by then-Prime Minister Robert
Kocharyan, refused to accept a peace plan for Karabakh put forward by international me-
diators in September 1997. The plan, accepted by Ter-Petrosyan and Azerbaijan, called for
a ”phased” settlement of the conflict which would postpone an agreement on Karabakh’s
status, the main stumbling block. That agreement was to accompany the return of most
Armenian-controlled Azerbaijani territories around Karabakh and the lifting of the Azer-
baijani and Turkish blockades of Armenia.

Figure 3.4: Sample paragraph from the history article “History of Armenia”.

of an article and a corresponding timeline must contain the same concept (e.g. “History of
Croatia” and “Timeline of Croatian history”). In most cases, there is also a link at the top
of the timeline page which points to a corresponding textual history article (such as: “To
read about the background to these events, see History of France”). This suggests that an
independent user of Wikipedia has recognised the timeline page as being a representation
of the content in the textual article. In total, 668 articles could be matched to one of the
timelines in the corpus.

3.3.2 Matching person names in timelines and textual articles

A simple way of evaluating my approach would be to use a named-entity classifier to
identify mentions of persons in the gold-standard timeline, and to assume that each such
named entity corresponds to a separate historal figure. Identifying individual instances of
named entities (people, organisations, locations, dates and others) in a given input text
is straightforward using tools such as the Stanford CoreNLP suite (Manning et al., 2014).
The task of an algorithm would be to select a subset of all person mentions contained in
a corresponding textual article. The algorithm would be penalised for each named entity
in the gold-standard timeline that it fails to select.

However, evaluation based on named entities alone would not be meaningful, as there
is no one-to-one correspondence between historical figures and named entities. Different
spellings of the same name, missing diacritics and similar low-level issues may result
in failure to match all mentions of the same historical figure to each other. Such effects
lower the quality of evaluation and can also result in legitimate positive training examples

50 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

being treated as negative examples, which is likely to have a detrimental effect on system
performance at test time. For instance, the name of King Ludwig II. might be spelt “King
Ludwig” in a history article and “Ludwig II.” in the corresponding timeline. An algorithm
that correctly selects “King Ludwig” in the textual article would be penalised, because
“King Ludwig” is not contained in the timeline. This is an unsatisfactory situation that
should be avoided.

There is also a problem if both the timeline and the history article contain the two
named entities “King Ludwig” and “Ludwig II.”, respectively, but the two names have not
been recognised as referring to the same person. An algorithm classifying both names as
important would then be doubly rewarded, although it has recognised only one important
historical figure correctly. Due to these problems, names that refer to the same person
need to be matched in order for evaluation to be meaningful.

A manual analysis of the named entities in both the timelines and the textual articles
suggested that such inconsistencies were widespread. For instance, the politician “Robert
Kocharian” mentioned in the last timeline entry in Figure 3.2 (cf. page 48) is referred to
as “Robert Kocharyan” in the corresponding history article (cf. Figure 3.4 on page 49).
This problem is a disadvantage of merging documents from multiple sources into a single
corpus.

I mitigate the effect of the aforementioned problems by using the concept of name
sets. A name set is defined as the set of all (unique) name variants that refer to the
same historical figure (e.g. “Clinton”, “Hillary Clinton”, “Senator Clinton”) in a given
article or timeline. Each name variant can occur in multiple named entities in the text.
Algorithms have access to the named entities in the source article and their context.
However, evaluation will be performed exclusively on the level of name sets. In this way,
an algorithm selecting the same historical figure multiple times receives only a single point.
Ensuring that this is the case is particularly important for persons mentioned many times
in a history article, which would otherwise receive disproportionate importance.

Name sets are constructed separately for each timeline and history article. For each
name set in the history article, I then a create a link to the name set in the timeline that
refers to the same historical figure, if such a name set exists. An illustration of the desired
output can be found in Figure 3.5.

The creation of name sets from name mentions is related to the well-known task of
entity linking (also known as named entity disambiguation). Entity linkers map name
mentions to entities defined in a knowledge base. Numerous algorithms for solving this
task have been proposed in recent years; overviews may be found in Shen et al. (2015)
and Carmel et al. (2014).

However, I did not use an off-the-shelf entity linker, as the matching attempted here
is different from standard entity linking. For my task, the objective is to link two names
to each other if they refer to the same person, independently of whether that person is
referenced in a knowledge base. In particular, mapping names to entities in a knowledge
base is not a requirement. However, if a knowledge base exists, it can still be useful for
detecting co-referring mentions. For instance, it may provide information about different
spellings of the name of a well-known historical figure in different languages.

A further difference is that publicly available entity linkers such as AIDA (Hoffart
et al., 2011) operate on single texts or even on a single sentence only. My case is special
in that entities need to be linked across documents. Here, one can exploit the fact that
a timeline and a textual article on the same topic can be expected to discuss a similar
set of historical figures. It is unlikely, for instance, that a mention “James Baker” in a

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 51

Timeline

Tony Blair Prime Minister Blair
T. Blair

David Cameron
PM Cameron David Cameron

Jeremy Corbyn

Ed Miliband
Miliband

Textual article

Figure 3.5: Name sets in timelines and textual articles.

history article and a mention of this name in the corresponding timeline refer to different
persons.

To construct name sets, I use the following heuristic, which is applied to a timeline
and a history article on the same topic: The first step is to identify all named entities in a
timeline and the corresponding history article using the Stanford named-entity recogniser
(Manning et al., 2014). The named entities are then divided into three groups, depending
on their length measured in words. The first group contains all single-word names, which
generally are last names (“Blair”). The second group contains all two-word names, which
are mostly combinations of first and last names (“David Cameron”). The third group
contains longer names. These often contain titles or middle names (“David William
Donald Cameron”). Names were grouped in this way to facilitate the matching of full
names to their short-hand versions in later stages of the heuristic.

The procedure then first considers two-word entities, i.e. those which can be expected
to consist of a first and a last name. For each of them (both in the timeline and the
textual article), a new name set is constructed in the first instance.

The next step is the creation of name variations for all (two-word) names in the existing
name sets. An initial comparison of the names used in the timeline and a corresponding
textual article revealed that a large number of matching errors can be attributed to
different writings of one and the same person name – umlauts may be missing; diacritics
may have been omitted; and so forth. To account for these phenomena, further versions of
all names that contain such special characters are created and added to the relevant name
set. For instance, for “François Mitterrand”, a different version “Francois Mitterrand” is
created. If more than one of these phenomena occurs, I use the superset of all possible
changes as the name set. Hence, the name set constructed from “Alex Cartañá” (a name
which contains two special characters) will be extended by the alternative spellings “Alex
Cartaná”, “Alex Cartaña” and “Alex Cartana”. Further to that, I add additional variants
with prefixed nobility titles (e.g. “Emperor Franz Ferdinand” for “Franz Ferdinand”).
For this, I use a list of nobility titles available on Wikipedia. I also add further variants
obtained from the YAGO knowledge base (Suchanek et al., 2007), if the current mention
can be unambiguously matched to a single YAGO entity. For instance, for the named

52 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

entity “David Cameron”, all further name variants contained in YAGO (such as “David
William Donald Cameron” and “David W. D. Cameron”) are added to the name set.

A merging step then ensures that if any of these alternative spellings have already
occurred elsewhere in the document, they will not form a new, separate name set. Instead,
all these named entities will be merged together into a single name set and hence be
assumed to represent the same historical figure.

In the next steps, name sets from the timeline and from the textual article that
represent the same historical figure are matched to each other. The procedure ensures
that a name set on one side (timeline or textual article) is linked to a name set on the
other side whenever they have at least one name in common, and that no name set is
linked to more than one name set on the opposite side. The result is a structure like the
one shown in Figure 3.5, where only a subset of all name sets in the timeline and the
textual article are linked to a name set on the opposite side.

Finally, the other two groups of named entities are merged with the existing name
sets. For multi-word names, I optionally remove any middle names (all tokens other than
the first and the last). In this way, “David William Donald Cameron” can be matched
to “David Cameron”. Single-word names are compared to the last token of any existing
name in any of the existing name sets. This allows for “Juppe” to be matched to “Alain
Juppé”.

Figure 3.6 gives a summary of the heuristic. While this heuristic is not perfect, I
expect it to cover the vast majority of cases, and to produce a number of name sets that
is considerably lower than the number of named entities. I verified the effectiveness of
this heuristic by manually analysing all name sets created for the 20 articles that form
the development set, as I will describe in Section 3.3.4. In particular, I analysed whether
all name variants in a name set refer to the same historical figure, and whether two name
sets that are linked to each other represent the same historical figure. I found that the
heuristic successfully corrected a large number of errors that would have resulted from a
naive processing based on the surface strings of named entities alone. One can therefore
assume that this heuristic has made the evaluation framework more accurate.

Consider the example shown in Figure 3.7 (see page 54), which shows a number of
example name sets for the Wikipedia article “History of Armenia” and the corresponding
timeline on WorldAtlas. Although the spelling of the name of Robert Kocharyan in the
history article is different from that in the timeline (as shown in Figure 3.1 and Figure 3.2),
all occurrences of the person’s name are associated with the same name set as a result of
the heuristic described above.

3.3.3 Filtering of articles

Some article/timeline pairs are not suitable for processing and should be excluded from
the corpus. I will now describe how such pairs are identified.

3.3.3.1 Problems

When constructing the corpus, I assume that each gold-standard timeline contains a
selection of content from the corresponding textual article. In particular, it should be
necessary to perform information reduction in order to construct the timeline based on
the article.

As described in Section 3.3.1.2 (see page 48), the pairs of timelines and articles are
selected such that both documents can be expected to discuss the same topic. However, in

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 53

1. Identify all named entities using the named-entity recogniser by Manning et al. (2014).

2. Automatically divide the named entities so identified into single-, two- and multi-word
named entities.

3. For each two-word named entity:

(a) Create a new empty name set and add the named entity’s string representation
to it.

(b) Create and add alternative versions of this original two-word name:

• a version of the original name with all umlauts replaced by the corresponding
vowel;

• a version of the original name with all umlauts replaced by the corresponding
vowel followed by ’e’ (i.e. ’ae’ for ’ä’);

• a version of the original name with all diacritics removed;

• versions of the original name with titles of nobility added or removed;

• all alternative mention names retrieved from the YAGO knowledge base;

• the superset of these changes.

(c) If any of the names that are now in the name set is contained in one of the other
name sets already created, merge the two name sets.

4. For each name set created for the textual article:

(a) If any of the names in a name set constructed for the corresponding timeline is
contained in the current name set, create a link between the two name sets.

(b) If further name sets constructed for the timeline contain one or more names from
the current name set, merge all these name sets (and maintain the link to the
name set created for the textual article).

5. Repeat step 4 for each name set created for the timeline.

6. For each multi-word name in the timeline and the textual article:

(a) Try to match it to an existing name set (as is or by removing middle names).

(b) If this is not possible, create a new name set for this name.

(c) Repeat step 4 for the name set to which the name was added.

7. For each single-word name in the timeline and the textual article:

(a) Match it to an existing name set if it is equal to the last word of any of the
existing names in that name set (e.g. match “Trump” to “Donald Trump”).
If there are multiple such name sets, pick the one with the higher number of
mentions in the relevant text.

(b) If there is no matching name set, create a new name set for this single-word
name.

(c) Repeat step 4 for the name set to which the name was added.

Figure 3.6: Heuristic for matching entity mentions to name sets.

54 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

Timeline

Mikhail Gorbachev
Gorbachev Mikhail Gorbachev

Karen Demirchian Karen Demirchian

Kocharian
Robert Kocharian
Robert Kocharyan

Stepan Demirchian
Demirchyan

Stepan Demirchyan

Textual article

Kocharian
Robert Kocharyan

Kocharyan

Stepan Demirchian

Levon Ter-Petrosyan
Ter-Petrosyan

Levon Ter-Petrosian
Levon Ter-Petrosyan

Ter-Petrosian
Levon Ter-Petrossian

Figure 3.7: Examples of linked name sets for a timeline on the history of Armenia (left)
and the Wikipedia article “History of Armenia” (right).

some cases, this criterion is not sufficient, as the timeline contains almost all the content
discussed in the history article. In such cases, no information reduction is required in
order to construct the timeline from the textual article.

A second problem is that it is not known which textual resources the timeline authors
used when writing the timeline. A timeline may therefore contain content that is not
mentioned in the corresponding textual article. If there is a large amount of such content,
the timeline and textual article may not be a good match, although they discuss the same
topic.

Often, there are also more subtle problems. A timeline may cover a different timespan
from the one described in the textual article. For example, there are timelines containing
only events that happened from the 20th century onwards, while the corresponding history
articles start with the Middle Ages.

A textual article may also have been extended by very recent events, but the timeline
has not been updated to reflect these changes. All newly added historical figures in the
textual article would then automatically be interpreted as negative examples, as they are
not contained in the timeline. This problem would negatively affect both the quality of
evaluation and the performance of machine learning approaches, which rely on training
examples being labelled correctly.

3.3.3.2 Filter rules

In order to find a good set of article/timeline pairs that do not suffer from the aforemen-
tioned problems, I use a number of filter rules which are applied after name sets have
been created.

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 55

The first rule requires that a minimum number of 5 person entities (represented by
their name sets) from the textual page be present in the timeline. This criterion aims to
eliminate timelines or textual articles that are either too short, or, although their name
suggests otherwise, do not exhibit at least some overlap with the textual page. Moreover,
cases where there was a processing error are removed in this way.

I also exclude pairs of timelines and textual pages where the proportion of people in
the textual article that are also mentioned in the timeline is below 0.1 or above 0.9. If
this number is too low, the timeline is likely not to be a good representation of the textual
article’s content. If it is too high, constructing the timeline from the textual article does
not require substantial information reduction. In many such cases, the timeline is very
long and therefore likely to mention a large number of unimportant events in addition to
important events.

In particular, there are a number of timelines on Wikipedia that are not succinct
descriptions of the important events known for a topic, but rather detailed event logs
(such as a minute-by-minute list of things that happened before the first airplane hit the
World Trade Center in 2001). The individual events mentioned in such a timeline are not
necessarily salient, as the objective is to add as many events as possible to the timeline.
Such timelines are not adequate for my task, since I assume that the events mentioned
in a timeline are salient. In order to exclude such event logs, I apply a length threshold:
If the number of names found in the timeline is more than 5 times as high as that of the
number of names in the textual article, I assume that the timeline is an event log; the
candidate/timeline pair is then removed.

After applying all these constraints, 279 pairs of timelines and textual pages from the
original corpus are retained.

3.3.4 Training, development and test sets

The 279 pairs of timelines and textual articles are divided into training, development and
test sets. 20 pairs were held out for development, and 30 for testing. Due to the nature of
my corpus, it is not a good choice to use a random split (e.g. in a cross-validation setup).
The timelines in my corpus have very different lengths, both in absolute terms and in
terms of the length ratio of timeline to article. In a sound evaluation, one should make
sure that the training and test sets contain a selection of articles representative of the
entire corpus.

I therefore opt for the following approach: I first calculate the entity coverage of
each article with respect to the corresponding timeline. Entity coverage is defined as the
proportion of all name sets in the timeline that are also present in the textual article. I
then stratify the split with respect to entity coverage. This procedure ensures that each
set contains both timelines that are long compared to their textual article counterparts,
as well as timelines that exhibit relatively little additional content.

3.4 My method

In this section, I present a system which identifies significant historical figures in history
articles. More concretely, the system is trained to identify figures that should be contained
in a history timeline on the same topic.

56 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

3.4.1 Linguistic processing

The textual articles as well as the timelines in the corpus need to be pre-processed. This
includes basic operations such as tokenising and POS tagging, as well as dependency
parsing and co-reference resolution. Co-reference chains are created for textual articles
only, as timeline entries are assumed to be independent of each other.

In a first step, tokenisation, POS tagging and named entity recognition are performed
using the Stanford CoreNLP toolkit (Manning et al., 2014), for both textual articles and
timelines. The POS-tagging component of the toolkit is based on a maximum-entropy
model (Toutanova et al., 2003), while the named-entity tagger by Finkel et al. (2005) uses
Conditional Random Fields (Lafferty et al., 2001) and a Gibbs Sampling (Geman and
Geman, 1984) approach.

The textual articles are then parsed by the C&C parser (Clark and Curran, 2007),
which relies on the Combinatory Categorial Grammar (CCG) formalism. This parsing
paradigm follows the intuition that each word in a sentence can be assigned a lexical
category that captures more syntactic information about that word’s syntactic role than
ordinary POS tags. There are only very few atomic categories in CCG (such as S for
sentence or NP for noun phrase), while the rest of the categories are complex, such as
S \NP . These categories can be thought of as functions; S \NP is a category that takes
a noun-phrase (NP) to its left and returns a sentence (S); this category corresponds
to an intransitive verb. Since the number of categories that can be assigned to a word
is potentially very large, the C&C parser uses a sequence tagger, called supertagger, to
assign a limited number of plausible categories to each word before the actual parsing
algorithm, which is based on the CKY algorithm (Kasami, 1965), is run. To identify the
most likely parses, C&C learns a log-linear model with long-range dependency features.
This log-linear model is trained on a special version (Hockenmaier and Steedman, 2007)
of the standard Wall Street Journal (WSJ) treebank (Marcus et al., 1993).

Co-reference relations between noun phrases in the textual articles are annotated using
the Stanford CoreNLP toolkit, which implements a rule-based approach by Lee et al.
(2013).

3.4.2 Named entity scoring

I will now describe how I score name sets by their importance. Each named entity
is first scored individually using a support-vector-machine (SVM) classifier (Cortes and
Vapnik, 1995). Support vector machines are maximum-margin classifiers: Given a labeled
training data set, they place the optimal hyperplane in the space which separates points
with different labels optimally, such that each point has the largest possible distance
(“margin”) to that separating hyperplane.

Basic SVM classifiers are designed for two-class classification problems. By default,
they only output a binary prediction (1 or -1). Platt (2000), however, proposed a well-
known method for computing probability estimates for individual data points. Chang and
Lin (2011) implemented this method in the software packages LibSVM and LibLINEAR
(Fan et al., 2008), which I use for my experiment. LibLINEAR is a variant of LibSVM
which allows for faster training of models that use a linear kernel. The C and gamma
parameters of the SVM classifier are tuned on the development set using grid search.2

2I use the grid search tool provided as part of LibSVM and LibLINEAR.

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 57

This procedure automatically determines the best-performing set of parameters in a cross-
validation setup.

The features I use will be described in Section 3.4.4. I experiment with a number of
different kernels when tuning the algorithm on the development set; this includes linear,
radial-basis-function, sigmoid and polynomial kernels, all of which are implemented in
LibSVM.

3.4.3 Name set scoring

After individual named entities have been scored, I move to scoring name sets. This is a
separate step because the SVM classifier operates on individual named entities, but the
final system must assign a single score to each historical figure. This score denotes the
general relevance of that figure for a timeline on the same topic, which is independent of
the context of a particular mention.

There are several options for calculating the score of a name set. One could use the
sum of all scores assigned to the mentions of a name set in text. However, this would
result in a bias towards historical figures that are mentioned more frequently than other
named entities.

An alternative would be to use the average score of all named entities of a name set,
which does not suffer from this problem. A manual inspection of the data suggested,
however, that even important persons are not necessarily presented as important every
time they are mentioned in text. Often, they are also mentioned in the context of less
important events. Such contexts, which are less indicative of a person’s importance,
should not detract from the general importance of a historical figure. For this reason, the
average of all named entity scores is not an adequate choice for the name set score, as it
considers all mentions equally.

I therefore decided to use as the score of a name set the maximum score assigned to
any mention of that name set in the text. This measure assumes that not all mentions in
the text must reflect the person’s importance.

Besides a continuous notion of importance of a name set for a timeline, I also define an
absolute quality criterion. All name sets that fulfill this criterion are considered relevant
for the timeline in this case, while all others should not be added to the timeline. In order
for a name set to be considered relevant, at least 50% of all named entities in that name
set must have received a score above a threshold value tuned on the development set.
This choice too is inspired by the observation that the importance of a historical figure
must not be represented in the context of each mention of that figure in text (as described
above).

3.4.4 Features

In this section, I describe the features used to train the supervised machine learning
system for named entity scoring described in Section 3.4.2.

Three different groups of features are used. The first group is composed of structural
features (see Figure 3.8) such as the frequency of a name in the input text, the position
of each named entity in the containing sentence, and the position of the named entity’s
sentence (in the containing paragraph) and paragraph (in the containing subsection).

The reason for considering frequency is obvious: Important historical figures are likely
to be mentioned multiple times in the text, as opposed to less important figures which

58 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

ID Description

frequency the frequency of each name in the history article
frequency dividedByAllNEs the frequency of each name in the history article divided by

the total number of named entities

indexOfWordInSentence the position of the named entity in the containing sentence
(word index of the first word of the NE)

indexOfCurrentStanfordNE the index of the named entity in question in the list of all named
entities in the current sentence

indexOfCurrentSentence the index of the sentence that contains the named entity in
question in the list of all sentences of the current paragraph

indexOfCurrentParagraph the index of the paragraph that contains the named entity in
question in the list of all paragraphs of the current subsection

numberOfNEsInSentence the number of named entities in the containing sentence

occursInHeader whether or not the current named entity is in the Wikipedia
document’s header

entity linked to 1 if the person name in the Wikipedia article contains a hyper-
link to the person’s Wikipedia article

numberOfDifferentSpellings the number of different writings of the current name (i.e. the
size of the corresponding name set)

Figure 3.8: Structural features.

ID Description

unigrams all unigrams (lemmatised) in a window size of +/- 3 around the mention,
e.g. “abdicate”

unigrams dist all unigrams (lemmatised) in a window size of +/- 3 around the mention,
annotated with the distance in words from the NE, e.g. “abdicate +1”

bigrams all bigrams (lemmatised) in a window size of +/- 3 around the mention,
e.g. “abdicate after”

bigrams dist all bigrams (lemmatised) in a window size of +/- 3 around the mention,
annotated with the distance in words from the NE, e.g. “abdicate after +1”

postags all POS tags in a window size of +/- 3 around the mention, e.g. “VBD”
postags dist all POS tags in a window size of +/- 3 around the mention, annotated with

the exact distance, e.g. “VBD -1”

Figure 3.9: Lexical features.

tend to occur only once. The features whose names start with “indexOf” reflect intuitions
about where in the text humans tend to place important information (names of persons,
in this case). For instance, a historical figure which has shaped the history of an entire
historical period may be more likely to be mentioned early on in a paragraph.

A further feature considers the number of named entities in the containing sentence.
Sentences with a high number of named entities often contain an enumeration of names.
It is unlikely that a person mentioned in such a list is presented as particularly salient in
the context of a historical event.

The feature “occursInHeader” specifies whether the person name in question is present
in the Wikipedia article’s header section. This header section is likely to contain salient
persons, as it often summarises the most important information contained in the main
article text.

I also examine whether any of the person’s mentions in text is connected to a separate

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 59

ID Description

dep degree1 in the types of all incoming dependency edges of any word that
is part of the named entity (e.g. “dobj”)

dep degree1 out the types of all outgoing dependency edges of any word that
is part of the named entity (e.g. “xcomp”)

dep degree2 in the types of all incoming dependency chains of length 2
starting from any word that is part of the named entity
(e.g. “dobj det”)

dep degree2 out the types of all outgoing dependency chains of length 2
starting from any word that is part of the named entity
(e.g. “xcomp det”)

dep is local or global subject indicator features that indicate whether any of the words in
the named entity are the subject of any clause of the current
sentence or of the main clause

dep is local or global object indicator features that indicate whether any of the words in
the named entity are the object of any clause of the current
sentence or of the main clause

dep numOfsisterDeps the number of “sister dependencies” of the same type (i.e. de-
pendencies of the same type starting from a “parent token” of
the current token in the dependency graph). This measures
how long the list of names is that a name occurs in), and
categorical features that fire if there are at least one, two or
three sister dependencies.

Figure 3.10: Syntactic features.

Wikipedia page describing only that person via a hyperlink. The presence of such a
hyperlink may be a cue that the person is important, as it is unlikely that a separate
Wikipedia page exists for minor characters that are only mentioned in passing.

The final feature in this group is the number of different spellings that are known for a
historical figure following the construction of name sets (as described in Section 3.3.2). A
high number of alternative spellings may be caused by the fact that the historical figure
is important.

The second group of features (shown in Figure 3.9) exploits linguistic cues. For in-
stance, a word like “abdicate” in the immediate surroundings of a name might point to
the fact that the person in question was an important king (otherwise his abdication
would not be mentioned explicitly in the text). I use a standard set-up in which features
are created for all unigrams and bigrams in a window of +/-3 words around the named
entity; one version of the features ignores distance to the named entity in words anno-
tated (and hence only takes into account presence anywhere within this window); a second
set of features is distance-specific (i.e. there will be a feature “former -1” indicating that
“former” is the word immediately before the entity, and similarly features “former -2”,
“former +1” etc.). Feature patterns of part-of-speech-tags occurring in a window around
the named entity are created in a similar way.

The third group of features (given in Figure 3.10) considers syntactic dependencies
between words that are part of the named entity and words in the rest of the sentence.
Such features are inspired by intuitions about the way in which important historical
figures tend to be described in text. For example, it is possible that such figures are often
mentioned as the subject of a sentence because, as persons in power, they are more likely

60 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

ID Description

part of corefchain 1 if the current name is part of a coreference chain, 0
otherwise

longest corefchain the length of the longest co-reference chain the cur-
rent name mention is part of

corefchain min5sentences 1 if the longest co-reference chain is longer than 5
sentences, 0 otherwise

corefchain min x InBetweenSentence 1 if there are at least x sentences between the sen-
tences of the co-reference chain involving a person
name, 0 otherwise

corefchain lengthOfBiggestGapMin x 1 if there are at least x sentences between any two
sentences of the co-reference chain involving a person
name, 0 otherwise

corefchain distSpanSentencesMin x the distance (in number of sentences) between the
first and last sentences of any co-reference chain the
current mention is part of

Figure 3.11: Discourse features.

to have actively performed notable actions. Features are also constructed for all chains
of dependencies starting from or ending in a word that belongs to the named entity in
question. A final feature (“dep numOfsisterDeps”), which is based on the same intuition
as the structural feature “numberOfNEsInSentence”, considers whether the named entity
occurs in a list of other named entities, and if so, how long that list is. Persons whose
names occur in long lists, such “A”, “B” and “C” in “Further important discoveries were
made by A, B and C” can be expected to be less important than other persons.

The fourth group of features (shown in Figure 3.11) exploits discourse phenomena,
in particular co-reference chains in which the named entity in question is involved. It
seems plausible that important historical figures are mentioned repeatedly in a given
text in the form of pronouns, as they are likely to have been involved in more than one
important event. I also expect historical figures that are mentioned in different parts of
a document, possibly with large stretches of text between the individual mentions, to be
more important than other persons. I therefore construct features that encode the length
of co-reference chains represented by the number of occurrences, as well as features that
detect chains spanning a high number of sentences. A further feature is created for chains
whose occurrences are far apart in terms of the number of sentences between each of them.

The fifth group of features (given in Figure 3.12) models co-occurrence cues found
in the text. For instance, features are created when a person name and the topic of
the article co-occur in the same sentence (“conceptName thisSentence” and “concept-
Name allSentences”). In that case, the text may express that the person in question had
an impact on the topic of the article. For instance, in “Odoacer’s rule came to an end
when the Ostrogoths, under the leadership of Theodoric, conquered Italy” (taken from the
article “History of Italy”), the co-occurrence of “the Ostrogoths” and “Italy” in the same
sentence may hint to the Ostrogoths being central to Italian history. In a similar fashion,
the final two features incidate that the article topic (e.g. “Italy”) co-occurs with the person
name in a sentence in the person’s own Wikipedia article (“target Sentence withConcept”)
or in a section title in that article (“target Title withConcept”), provided that such an
article exists.

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 61

ID Description

conceptName thisSentence 1 if the name of the concept co-occurs with the name of the
person in the same sentence, 0 otherwise (“History of” is re-
moved from the article title, so that concept names are “Ger-
many” or “Biology”)

conceptName allSentences 1 if the name of the concept co-occurs with the name of the
name of the person in any sentence in the textual document,
0 otherwise

target Sentence withConcept a feature that indicates whether the name of the concept
co-occurs with the name of the name of the person in any
sentence in the person’s Wikipedia article (this feature only
applies if the above hyperlink exists)

target Title withConcept a feature that indicates whether the name of the concept oc-
curs in a section or subsection title in the person’s Wikipedia
article (if the name is linked to this article)

Figure 3.12: Semantic features.

3.5 Baseline and semi-oracle results

In this section, I introduce a baseline to which my method will be compared. I also
describe how I will analyse the impact of errors made during named entity recognition on
the performance of both the system and the baseline.

3.5.1 Baseline

I use a baseline which considers how often a person name is mentioned in the textual
article. More exactly, the ranking is provided by the total frequency in terms of named
entities summed over all names in a name set. In this way, the baseline can abstract
away from different name variants of the same person. Since a high number of mentions
intuitively indicates importance, I expect this baseline to perform competitively.

In some cases, two or more name sets have the same total number of occurrences in the
text. To resolve these ties, the name set with the earliest occurrence of a named entity in
the article text is given preference. This is a reasonable heuristic given that most articles
start with an introduction that mentions the most important names.

I also evaluate this baseline when an absolute quality criterion (defined in Section 3.4.3)
is used instead of a ranking to distinguish relevant from non-relevant persons. The thresh-
old value required in this case is tuned on the development set in the same way as for my
method.

3.5.2 Semi-oracle results

In a pipeline, testing of an individual component can be more informative if follow-on
errors from earlier stages in the pipeline are removed. In order to test how well the
algorithm and the baseline perform if named entity recognition is perfect, I also created
an oracle version of the named entity recognition in which erroneous PERSON instances
have been removed. I did not add PERSON instances which had not been recognised
by the system, as this process would have required a large-scale annotation effort. In
Section 3.6, where I evaluate my method, the results produced using the corrected named

62 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

entity recognition will be shown as “Semi-oracle” (cf. Figure 3.13 on page 65).3 In
contrast, “Automatic” refers to results obtained with the full pipeline, where named
entity recognition is performed automatically by the Stanford named entity recogniser.

3.6 Evaluation

Having described my system and the baseline, I now turn to evaluating my approach.
Evaluation is performed on all name sets created from the textual article. Historical figures
that are only mentioned in the timeline are disregarded for the purpose of evaluation.

3.6.1 Evaluation metrics

I will use two alternative metrics to evaluate my approach.

3.6.1.1 MAP

The first metric is Mean Average Precision (MAP), which is well-known in the field of
Information Retrieval (IR). It is based on a number of simpler metrics commonly used
for evaluating two-class classification problems. I will describe these metrics first.

In many two-class classification problems, the goal is to predict which out of a num-
ber of examples share a certain property. Examples that share the property are called
positives, while other examples are called negatives. In such a setting, two kinds of errors
can be made: Positive examples that the algorithm mistakenly classifies as negative are
called false negatives, while negative examples classified as positive are called false posi-
tives (fp). Positive examples that were correctly classified are called true positives (tp),
and correctly classified negatives are called true negatives (tn).

The relative frequency of each of these cases in an experiment is used to calculate the
well-known evaluation metrics precision and recall. Precision measures how many of the
examples that were classified as positive are indeed positives. It is defined as follows:

P =
tp

tp+ fp
(3.1)

In contrast, recall measures how many of all positives were classified as positive by the
system:

R =
tp

tp+ fn
(3.2)

The weighted harmonic mean of these two metrics is often used to measure the overall
performance of a system. It is called F-score and defined as follows:

Fα =
P ·R

(1− α)P + αR
(3.3)

α is commonly set to 0.5, which results in:

F0.5 = 2 · P ·R
P +R

(3.4)

In what follows, I refer to F0.5 as “F-score”, for simplicity.

3I use the term “semi-oracle” since the oracle does not cover the remaining steps of name set generation.

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 63

Mean Average Precision (MAP) is a measure that evaluates the quality of a ranking
of retrieved documents based on multiple precision values. I choose MAP since I want to
evaluate the ability of the algorithm to create timelines of arbitrary length, not of a given,
fixed length. MAP is calculated as the average over precision values taken at all recall
levels, and therefore gives a summary account of the quality of timelines of any possible
length.

In an information retrieval setting, Average Precision for a single query qj is given as:

AP(qj) =
1

mj

mj∑
k=1

Precision(Rjk) (3.5)

where mj is the number of relevant documents in the ranking, Rjk is the set of ranked
retrieval results from the top result until a relevant document dk, and Precision(Rjk) is
the precision calculated over the k first documents returned for query qj. This means that,
in order to calculate average precision for a query qj, one traverses the entire ranking Rjk

from top to bottom. Whenever a relevant document occurs, precision over all documents
retrieved so far is calculated. Finally, all precision values are averaged over the number
of measurements taken.

Average Precision gives more weight to higher ranks, since these are used to calculate
a higher number of individual precision values in Equation 3.5. This property is desirable
as the most highly ranked name sets will be included in timelines of many different sizes,
i.e. both in very short timelines that only contain the most important historical figures as
well as in longer timelines. On the other hand, persons further down in the ranking will
only occur in longer timelines.

In my setting, each name set is interpreted as a document. To measure performance
across the entire set of timeline/article pairs Q (which is equivalent to a set of queries
in the Information Retrieval setting), I calculate Mean Average Precision (MAP), which
averages the AP scores obtained for each of the timeline/textual article pairs:

MAP(Q) =
1

Q

|Q|∑
j=1

AP(qj) (3.6)

3.6.1.2 Precision, recall and F scores

Both my method and the baseline also define an absolute quality criterion for each name
set individually. Name sets that fulfill the criterion are considered (equally) relevant,
while all other name sets are considered non-relevant. Based on this binary classification
into relevant and non-relevant name sets, I calculate standard precision, recall and F-
score values (as described in Section 3.6.1.1) for all name sets micro-averaged across
all timeline/document pairs. The threshold score value needed for the absolute quality
criterion was tuned on the development set for both the method and the baseline; the
optimal values were found as 0.6 and 0.1, respectively.

3.6.1.3 Significance testing

In order to ensure that a difference in performance between the system and the baseline
is statistically significant, I use the (paired) Wilcoxon signed-ranks test (Wilcoxon, 1945).
Each timeline/document pair in the test set is interpreted as a single data point; hence
there are 30 data points in total.

64 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

The signed-ranks test is a non-parametric test which is more powerful than the easier
sign test, as it takes into account information about the magnitude of the differences
between methods for individual data points (Siegel and Castellan, 1988). The test statistic
relies on the difference scores d for each data point:

di = Xi − Yi (3.7)

where Xi and Yi are the performance scores obtained using two different methods for
a data point i. Next, these differences are enumerated in ascending order according to
their absolute values, i.e. without taking into account their sign: the smallest difference
is assigned rank 1, the next largest rank 2, and so on. Data points where there is no
difference between methods (i.e. di = 0) are discarded, and for cases where two data
points have the same (non-zero) value for di, the average rank is assigned to each of the
di. Next, two sums are calculated: T+ is the sum of all ranks that correspond to positive
difference scores di, i.e. where method X has outperformed method Y , and T− sums up
the remaining ranks.

To calculate the final test statistic z for sample sizes larger than 15, one can exploit the
fact that T+ is approximately normally distributed, which implies that the test statistic

z =
T+ − µT+

σT+

(3.8)

is approximately normally distributed too. The mean uT+ and variance σT+ needed in
Equation 3.8 are calculated based on the number of data points, as follows:

µT+ =
N(N + 1)

4
(3.9)

σT+ =
N(N + 1)(2N + 1)

24
(3.10)

where N is the number of data points. The test statistic z can then be used to calculate
the p value necessary for deciding whether a difference in performance can be regarded
as statistically significant.

3.6.2 Results

The overall results are given in Figure 3.13. For both sets, the machine learning system
(“SVM”) significantly outperforms the frequency-based baseline. For the test set, the
MAP score of the machine learning system is 0.600, while the baseline only achieves a
score of 0.525. This improvement is statistically significant according to the Wilcoxon
signed-ranks test (p = 4.408e−5). For the development set, the machine learning system
outperforms the baseline independently of whether the name sets are constructed fully
(Automatic) or partly (Semi-oracle) automatically.

The individual results achieved on the 30 articles in the test set are shown in Fig-
ure 3.14 (see page 66). The SVM model outperforms the baseline on 23 articles. For the
remaining 7 articles, the baseline achieves a higher score. However, the difference between
the two scores is negligibly small in 4 out of these 7 cases.

All results shown for my method are obtained using a linear kernel; using a polynomial,
a sigmoid or a radial-basis-function kernel results in worse performance. This result is to

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 65

Data set Name sets System MAP P R F

Development Automatic SVM 0.645 0.543 0.662 0.597
Development Automatic BL 0.581 0.492 0.491 0.491
Development Semi-oracle SVM 0.666 0.535 0.662 0.591
Development Semi-oracle BL 0.602 0.505 0.492 0.499

Test Automatic SVM 0.600 0.455 0.639 0.532
Test Automatic BL 0.525 0.338 0.612 0.435

Figure 3.13: Overall results.

be expected, as with a large number of features (such as the lexicalised features in my
approach), linear kernels are known to work best (Hsu et al., 2003).

3.6.3 Ablation study

In order to understand whether the system’s ability to find important historical figures can
largely be attributed to a single feature, I performed an ablation test. The development set
and the semi-oracle name sets were used for this purpose. In all configurations, the MAP
score is above 0.64, which is close to the performance obtained with all features (0.666).
The feature whose removal resulted in the biggest drop (below 0.65) was “frequency” (cf.
Figure 3.8 on page 58).

I also ran the system with only a single feature enabled, for all features described
previously. The performance of all these configurations was below that of the baseline.
As was to be expected, using only the single feature “frequency” leads to an overall
performance close to the baseline.4 These results show that there is no single feature that
is responsible for the performance improvement.

3.7 Outlook on the rest of the thesis

The results obtained in Section 3.6 demonstrate that a supervised approach, combined
with an appropriate corpus of history articles and corresponding timelines, can in principle
be used to learn which content is worthy of being mentioned in a timeline. However, the
system developed here only produces a ranked list of historical figures; no timelines are
created. In what follows, I will therefore discuss whether a similar supervised approach
should be taken for the actual task of timeline generation, i.e. the selection of events for
the purpose of constructing a timeline.

I start by giving a summary of the difficulties observed while constructing a parallel
corpus of timelines and textual articles:

1. Timeline content missing from the article: It is often difficult to ascertain
to what extent a timeline in the corpus reflects the content of the corresponding
textual article. This is a general limitation of a semi-automatic corpus construction
along the lines chosen here.

The problem arises because it is not known which sources were available to the
timeline writer(s) at the time of writing. Hence, content that does not appear in

4The performance is not necessarily equal to that of the baseline since the baseline additionally includes
a way of dealing with ties, as described in Section 3.5 on page 61.

66 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

El Salvador
The Phillipine-American War

Communism
Slovakia

The American Revolutionary War
Guyana

Adelaide
Grenada

The Beatles
Jazz

Delaware
Cyprus

Easter Island
Mathematics

Fiji
Dominican Republic

Lebanon
British Empire

British monarchs from 1066
Paleontology

Angola
Painting

Holy Roman Empire
Geology

The Irish Civil War
Paraguay
Kentucky

Latin literature
Igbo
Ohio

Figure 3.14: Performance of the SVM model (green) and the baseline (red) on the 30
timeline/article pairs in the test set.

the timeline may be missing not because it is irrelevant; the timeline writer may
simply not have used the relevant sources.

Reasonable care was taken to mitigate this problem when constructing the corpus
described in this chapter, e.g. by using filter rules. I assume that the history article
in the corpus was often at least one of the sources used to create the timeline, since
Wikipedia is well-known and widely used. Still, in many cases I observed that there
is content in the timeline which is missing from the corresponding textual article.

2. Coverage of different timespans: The accuracy of evaluation can be negatively
affected in cases where a timeline covers a different timespan than the one in the

CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES 67

corresponding textual article. If the timeline merely contains events up to the year
2010 (for instance, because it has not been updated after this), all content in the
textual article describing more recent events will automatically be marked as non-
relevant during evaluation. In order to guarantee a perfect match between timeline
and textual article in terms of the time span described, such mismatches would have
be to identified manually for each article/timeline pair in the corpus.

3. Imbalanced selection of content: It is not guaranteed that the timeline writer
has tried to achieve a balanced selection of important content for the entire historical
period covered by the source article at hand. For instance, it is possible that a
disproportionately large amount of content was selected from recent periods or from
a particular subject area (such as politics).

4. Different lengths of timelines: Timelines downloaded from the web have vastly
different lengths. This is a problem since with overly long timelines, the fact that
an event from the textual article is also contained in the timeline does not neces-
sarily mean that the event is important. For the corpus introduced in this chapter,
this problem was mitigated by imposing constraints on the length ratio between a
timeline and the corresponding textual article. However, this is only a compromise
and not a general solution to this problem.

5. Low-level noise: There are often multiple variants of a person’s name. If these
name variants are not matched to each other, the quality of evaluation is negatively
affected. I used a heuristic to perform this matching when creating my corpus, but
clearly any such heuristic is imperfect.

6. Single gold-standard timeline: There are many history topics for which only a
single gold-standard timeline is available on the Web. However, given that content
selection tasks are known to be subjective, it would be preferable to use multiple
gold-standard timelines.

These problems would be exacerbated with the more complex task of timeline gener-
ation, given that one and the same event can be expressed in many ways. In order to
match different wordings of one and the same event to each other, a simple heuristic such
as the one presented in Section 3.3.2 is not sufficient, as there is no known way of reliably
detecting paraphrases automatically. Each event mentioned in a timeline would there-
fore have to be manually matched to its counterpart in the corresponding history article.
This task would be prohibitively expensive even for a moderate number of articles, as for
each timeline entry, a human annotator would have to search the entire history article
for matching event mentions. Second, it is unclear how an annotation task should be set
up. In many cases, an annotator would have to make complicated inferences in order to
decide whether two statements are paraphrases of each other. This process is likely to
be unreliable. Moreover, an event expressed in a timeline entry might only be mentioned
implicitly or in passing in the surface text. It is unclear whether such event mentions
should be linked to the corresponding timeline entry or not.

The key criterion for deciding whether the corpus developed in this chapter should
be used for timeline generation is whether the huge annotation effort incurred is justified
by the outcome. In particular, one would have to be certain that such an annotation
study would produce a resource of high quality, which could be trusted to provide a
reliable gold standard for the evaluation of timeline generation. The limitations described

68 CHAPTER 3. IDENTIFYING SIGNIFICANT HISTORICAL FIGURES

above make this seem rather unlikely, and so I did not pursue this approach. Instead, I
decided to create a new corpus of timelines written by human timeline writers (described
in Chapter 5).

3.8 Chapter summary

In this chapter, I presented a preliminary experiment which can be interpreted as a
preparatory step towards timeline generation: the identification of important historical
figures in a history article that should be included in a timeline. I first presented a new
corpus of several hundred pairs of timelines and history articles. I then developed a way
of constructing name sets from the named entities in the two texts. This procedure allows
for evaluation of algorithms on the level of real-world entities (persons) rather than based
on individual named entities. Based on this matching, I filtered out pairs of timelines
and textual articles that do not meet certain quality criteria. I subsequently presented a
supervised learning approach which identifies important figures automatically, based on a
wide range of features. These include structural features (such as the frequency of a name
in the text or the position of the containing sentence in the paragraph), lexical features
(such as words in the name’s context and their part-of-speech tags), syntactic features
(such as the types of syntactic dependencies between the words of the person name and
other words in the sentence), discourse features (such as the length of co-reference chains
involving the person name in question), and semantic features (such as co-occurrences of
the person name with the topic of the article). I showed that this approach significantly
outperforms a competitive frequency-based baseline. Finally, I discussed several problems
that arise from the construction of a corpus from existing timelines and textual articles
found on the Web, such as the presence of entities in a timeline which are not mentioned in
the textual article. I concluded that the construction of a parallel corpus in this way would
not be a good choice for timeline generation, as many of these problems are exacerbated
in this more complex task. In particular, it would be very difficult and time-consuming
to achieve a high-quality mapping between multiple mentions of the same event.

In the next chapter, I will formulate the requirements of an evaluation methodology
for timeline generation. The chapter starts by reviewing existing work on summarisation
evaluation, given that the task can be interpreted as a variant of single-document sum-
marisation. I will then describe desirable properties of an evaluation methodology that
combines the advantages of various existing approaches.

Chapter 4

Related work on summarisation
evaluation

In the remainder of the thesis, I will investigate methods that create a timeline by selecting
events rather than named entities. I treat timeline generation as a special single-document
summarisation task. This chapter is dedicated to the question of how one could evalu-
ate timelines consisting of events, in particular by borrowing from the summarisation
evaluation literature.

Single-document summarisation is the process of creating a condensed version of a
source document which contains the most salient content from that document and ex-
presses this content in a concise and coherent manner. A timeline is a kind of summary,
as it is a compressed version of the original history article. However, timeline generation
also differs from summarisation, since a timeline is not free-form text, but an ordered list
of semi-independent timeline entries.

The question of how to evaluate single-document summarisers has been discussed con-
troversially and remains an unsolved problem to this day. In this chapter, I first describe
different types of summaries and their properties (Section 4.1), and then review exist-
ing literature on summarisation evaluation (Section 4.2). Methods that rely on a human
gold standard and their limitations are discussed in greater detail, as this type of method
is most appropriate to my task. In Section 4.3, I describe how existing approaches to
summarisation evaluation deal with the inherent subjectivity of human annotation. Sec-
tion 4.4 discusses the requirements of an evaluation methodology for the task of timeline
generation. I will introduce such a methodology in Chapter 5.

4.1 Types of summaries

Different types of summaries exist. An important distinction is often made between
extractive and abstractive summaries (Rowley, 1982; Cremmins, 1996). An extractive
summary is created by concatenating text fragments contained in the source article; no
generation of new text is required. Extractive summaries typically lack coherence, as
the text fragments that form the summary are taken from different parts of the source
document. Common problems are dangling anaphors and gaps in the summary’s rhetorical
structure (Mani, 2001). For instance, it is possible that a summary sentence contains a
pronoun which refers to a noun phrase missing from the summary.

An abstractive summary, on the other hand, contains sentences created specifically
for the summary. For instance, a mobile phone test report that is used as the input text

69

70 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

to a summarisation algorithm may describe in detail the many advantages of a phone’s
camera. An abstractive summary for this text might contain a new sentence such as “The
quality of the phone’s camera is outstanding”.

Two strategies for performing abstractive summarisation have been discussed in the
literature. The first option is to parse the source text and perform operations such as sen-
tence compression, sentence fusion and paraphrasing. Such methods manipulate existing
text, but do not generate completely new text based on an underlying generation plan
(Hahn and Mani, 2000). In contrast, “deeper” approaches generate text which verbalises
the result of inference steps made based on the source text, or transform the text into an
abstract meaning representation, from which the summary sentences are then generated.
For instance, information extraction techniques can be used to fill domain-specific tem-
plates; subsequently, natural language generation algorithms generate new sentences from
these templates (Radev and McKeown, 1998; White et al., 2001; Genest and Lapalme,
2012).

Summaries can also be classified according to whether they are informative or indica-
tive. Informative summaries are shorter substitutes of the source text (Hahn and Mani,
2000). Accordingly, informative summaries belong to the same text genre as the original:
An informative summary of a report is again a report. A summary of this kind allows the
reader to process the most salient information contained in the source text more quickly.
The objective of indicative summaries, on the other hand, is to provide a list of the most
important information sources on a topic (Hahn and Mani, 2000). These summaries thus
belong to a different text genre from the original text, and fulfil a similar function to that
of tables of content or even indices. The reader will be required to follow up the pointers
given in the summary in order to access the information contained in the original texts.

A futher distinction can be made between generic and user- or query-focused sum-
maries (Hahn and Mani, 2000). Generic summaries are constructed without a particular
use case in mind. They are not tailored to the needs of a group of users or a specific
subject domain. User- and query-focused summaries on the other hand are constructed
with respect to a given information need. For instance, a user-focused summary of a
mobile phone test report should only describe the mobile phone’s camera provided that
the user is not interested in the other components of the phone. A different example of a
query-focused summary is a summary written in simple language.

4.2 Overview of summarisation evaluation methods

Two major groups of evaluation methodologies exist (Jones and Galliers, 1996; Jing et al.,
1998; Mani, 2001). Intrinsic approaches judge the quality of a summary in its own right,
while extrinsic approaches measure the quality of a summary by evaluating its usefulness
for a downstream task.

4.2.1 Extrinsic evaluation methods

Although the evaluation methodology for timeline generation that will be presented in
Chapter 5 is intrinsic, I will start by giving an overview of extrinsic evaluation methods.
Extrinsic approaches can be subdivided into two groups. Methods in the first group
directly measure the usefulness of a system summary for a given downstream task. For
example, one may a set up an experiment where a human uses the information contained in
a system summary to answer questions on the corresponding, unseen source text (Morris

CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION 71

et al., 1992; Hahn and Mani, 2000). A good summary is one that allows the human to
answer a high number of questions about the original text. Further examples of such tasks
are given by Mani et al. (1999). They describe a relevance decision task in which humans
use the information in the summary to judge the relevance of the source text with regard
to a topic. A further task assesses the ability of humans to categorise the unseen source
text into one of ten topics (such as “Bioconversion” or “Worldwide tax sources”) based
on the summary.

A second group of extrinsic approaches measure the human effort needed to change a
system summary in a such a way that it becomes useful for a downstream task. The eval-
uation by Hovy and Marcu (1998) uses a variant of the Shannon Game, which is inspired
by Shannon’s measures well-known from information theory (Shannon, 1948).1 Humans
were asked to recreate a paragraph in the source text either based on the summary, based
on the full source text, or from scratch. The number of keystrokes needed to perform this
task in each scenario was then measured. A low number of keystrokes indicates that the
information retained by the summary is high.

The advantage of extrinsic approaches is that summaries receive a similar score if
they are equally useful for the downstream task, even if they are very different from each
other. However, extrinsic evaluation methodologies have limitations, too: The quality of a
summary is measured only with regard to a single downstream task. A summary may be
useful for this particular downstream task, but much less useful for other tasks. Further,
extrinsic evaluations are often time-consuming to set up (van Halteren and Teufel, 2003).

4.2.2 Intrinsic evaluation methods

I now turn to describing intrinsic evaluation methods. Such methods can assess two
properties of a summary: the summary’s content and aspects of text quality. Content
evaluation measures to what extent the summary covers the most salient content in the
source, whereas text quality evaluation assesses aspects such as readability, grammar and
coherence (Mani, 2001; Steinberger and Jezek, 2009). Intrinsic approaches either evaluate
the quality of a summary directly using subjective scores elicited from humans, or by
comparing the summary to a human gold standard. In some cases, the use of a gold
standard rests on the assumption that an ideal summary can be directly elicited from a
single human, which can be problematic.

4.2.2.1 Human judgments of summary quality

One way of performing intrinsic evaluation is to elicit human judgments for the summary.
For instance, humans may be asked to assess certain aspects of a summary’s quality on
a numeric scale, e.g. from 0 to 5. The advantage of such methods is that the analysis
can cover quality criteria which are particularly hard to evaluate automatically, such as
coherence and readability (Mani, 2001; Lin, 2004). Human judgments can be collected in a
number of settings: The human annotators can be given access to the source; to a reference
summary; or to a sample summary and the score assigned to it (Mani, 2001). Each of
these sources of information helps the annotators judge the quality of the summary.

A well-known evaluation scheme based on human judgments was proposed in the
context of the Document Understanding Conferences (DUC). In this evaluation effort,
human annotators evaluated both coverage and text quality. In order to assess coverage

1A good explanation of Shannon games can be found in Hassel (2004).

72 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

for a sentence in the gold-standard summary, the annotator first identified all sentences
in the system summary that expressed at least some of the content of the gold-standard
summary sentence. Next, the degree to which that content is expressed needs to be
estimated on a discrete scale of four options (all, most, some and hardly any). Text quality
was evaluated independently of the reference summary. Assessors rated grammaticality,
cohesion and coherence on a discrete scale (all, most, some, hardly any, and none) similar
to one used for the evaluation of coverage (Lin and Hovy, 2002).

4.2.2.2 Shallow gold-standard comparison

Other methods allow for an automatic comparison of reference and system summary.
This has the advantage that new system summaries may be scored without the need for
additional human judgments. Evaluation is typically restricted to assessing the informa-
tiveness of the summary, as the analysis of other aspects is hard to automate.

In such methods, the first step is to elicit a human-written summary. Next, similarity
between the system summary and the human summary is calculated using a similarity
metric. Nowadays, humans are asked to write their own summaries from scratch, and
surface-oriented overlap metrics are used. In earlier work, the human-created summary
was only a sentence-based extract from the source text, and the distance metric between
system summary and human summary was simply the number of sentences co-selected
by the two summaries (Rath et al., 1961). The modern equivalent, ROUGE, uses a range
of overlap metrics based on n-grams and longest common subsequences (Lin, 2004).

In ROUGE, the surface texts of a system and a gold-standard summary are compared
on the level of tokens, using a family of metrics based on n-grams and longest common
subsequences of tokens. Such a comparison is based on the implicit assumption that
dissimilar wording between two statements always entails that the meaning is dissimilar
also. Clearly, this assumption does not hold in practice. Two sentences such as “Prince
William got married to his girlfriend” and “William and Kate tied the knot”, which are
very different in wording, express exactly the same event.

The only human input required for ROUGE is a set of gold-standard summaries writ-
ten by humans. Creating these summaries is a one-time effort, which does not have to be
repeated as new system summaries are evaluated. Further, no annotation is required on
the system summaries themselves. This is an advantage, as new algorithms can be tested
without incurring any further annotation effort.

I will now give an overview of the different ROUGE metrics. ROUGE-N considers
n-grams of varying length, where N is the length of the n-grams; hence bigrams are used
in ROUGE-2, trigrams in ROUGE-3, and so on. The score of the system summary is
then calculated as

ROUGE-N =

∑
S∈{ReferenceSummaries}

∑
gramn∈S

Countmatch(gramn)∑
S∈{ReferenceSummaries}

∑
gramn∈S

Count(gramn)
(4.1)

where S is a sentence occurring in one of the reference summaries, gramn is an n-gram
in a sentence S, Count(gramn) is the number of occurrences of gramn in that sentence,
and Countmatch(gramn) is the number of such occurrences that also occur in the system
summary.

This variant of ROUGE builds on BLEU, a similar n-gram-based metric used for
evaluating machine translation systems (Papineni et al., 2002). BLEU measures how
many n-grams in a candidate translation occur in a reference translation; it is hence

CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION 73

precision-oriented. Conversely, ROUGE is recall-oriented: It measures how much content
from the human gold-standard summaries occurs in a system-generated summary. With
this metric, it is therefore crucial for fairness to only ever compare system summaries of
exactly the same length.

ROUGE-L is another variant of ROUGE. It uses the longest common subsequence
(LCS) of reference summary sentences and system summary sentences in lieu of n-grams,
i.e. it does not differentiate between subsequences of consecutive words and subsequences
with gaps in them. ROUGE-W, a variant of ROUGE-L, assigns a higher weight if there
are consecutive matches between words in the two sentences.

I will now explain the difference between ROUGE-N and ROUGE-L. ROUGE-N com-
pares n-grams of a given, fixed size, but does not give a specific reward if there are longer
common subsequences of words. For instance, if a gold-standard summary and the system
summary share an entire sentence that is ten words long, ROUGE-2 only recognises that
there are 9 bigrams that occur in both sentences, but does not take into account that the
largest common n-gram is in fact a 10-gram. On the other hand, LCS-based methods only
take into account a single (longest) subsequence of words in a pair of sentences (Lin, 2004),
while other subsequences are not considered. For example, if a sentence in a gold-standard
summary reads as “The election of Trump as President of the United States was a surprise
to many political analysts”, and the system summary contains the sentence “Many polit-
ical analysts were surprised by the election of Trump as President of the United States”,
LCS-based methods would only recognise that there is a common longest subsequence of
length 10 (“the election of Trump as President of the United States”), but would not take
into account other common subsequences (here: “many political analysts”). In contrast,
ROUGE-N would detect the presence of common n-grams in all parts of the sentence.

Two further ROUGE variants (ROUGE-S and ROUGE-SU) consider skip-bigrams,
i.e. in-order pairs of words in a sentence. In “Sally is young”, there are three skip-
bigrams: (Sally, is), (Sally, young) and (is, young). ROUGE-SU is a special version of
ROUGE-S which considers unigram overlap in addition to skip bigrams. ROUGE-S and
ROUGE-SU are similar to ROUGE-L in that non-consecutive word pairs are taken into
account. However, a fixed n-gram size is used as in ROUGE-N.

Although some variants of ROUGE, such as ROUGE-S, cover simple modifications of
the source text (such as the insertion or deletion of a word), surface-oriented methods are
unable to assign points if the system summary uses a wording to express a given fact that
this completely different from the wording used in the gold-standard summaries. This
limitation does not apply to a different class of evaluation methodologies, which I will
describe next.

4.2.3 Deep evaluation methodologies

An alternative way of scoring a summary using a gold standard starts by identifying
meaning units in summaries. A system summary is rewarded if it expresses a high number
of meaning units contained in the human gold-standard summary. Such methods are
able to abstract away from different surface representations of the same content, as they
award points even if the system summary expresses a meaning unit contained in the
gold-standard summary using different words.

In practice, however, the annotation cost of such methods is often prohibitive, as
each system summary has to be annotated from scratch. A further problem is that
the definition of meaning units in such methods is often vague. Existing approaches

74 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

represent the semantics of a sentence using elementary discourse units (Carlson et al.,
2001; Harman, 2002), first-order-predicate logic-style semantics (van Halteren and Teufel,
2003), or vaguely defined “Semantic Content Units” (SCUs) (Nenkova et al., 2007).

One of the most widely used deep evaluation methodologies is the pyramid method
(Nenkova and Passonneau, 2004; Nenkova et al., 2007). Here, semantic content units
(SCUs) have to be created manually for both system and gold-standard summaries.

SCUs are constructed empirically. Initially, one SCU is created for each sentence in
the gold-standard or system summary. An SCU is then split if any two summaries express
different parts of the meaning of an existing SCU. Using this approach, a system summary
is guaranteed to be penalised for omitting content mentioned in a gold-standard summary.

For instance, let us assume that the system summary contains the following sentence:
“A terror attack in the US killed 10 people.” If only one of the gold-standard summaries
contained content from this sentence, a single SCU with this meaning would be created.
Now consider the case where there are three gold-standard summaries, each containing
some of the content mentioned in the above system summary sentence:

• Sentence in gold-standard summary 1: There was a terror attack in the US.

• Sentence in gold-standard summary 2: A terror attack in the US killed 10.

• Sentence in gold-standard summary 3: A terror attack killed 10.

In this case, three SCUs are created to account for the fact that the gold-standard
summaries mention different parts of the system summary sentence.

• SCU 1: There was a terror attack.

• SCU 2: The terror attack was in the US.

• SCU 3: 10 people were killed.

This approach has the undesirable side effect that the relative importance of content
for evaluation increases if it is represented by multiple content units. For instance, the
single system summary sentence above is represented by three content units. For many
other sentences, only a single content unit would be created.

The SCUs constructed from the gold-standard summaries are then grouped into tiers,
based on the number of gold-standard summaries expressing them. An SCU in tier n
is expressed in n gold-standard summaries, and is said to have SCU weight n. A tier
n usually contains fewer SCUs than tier n − 1, as it is unlikely that a high number of
annotators express the same content. This structure can be visualised in the form of a
pyramid (see Figure 4.1). In this visualisation, each SCU is represented by a black dot.
The layer at the bottom represents tier 1, and layers further up in the pyramid correspond
to tiers with higher n. The width of each layer relates to the expected number of SCUs
in each tier, with layers for lower tiers being wider, as they normally contain a higher
number of SCUs. Nenkova and Passonneau assume that a pyramid shape will naturally
evolve for summaries, and this is generally empirically the case.

Once SCUs have been annotated for a new system summary, evaluation can be carried
out automatically using the following procedure: It is assumed that an ideal summary
can be formed by adding the most highly weighted SCUs to the summary, until the target
summary size nSCU has been reached. The target summary size is measured in terms

CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION 75

Tier 3

Tier 2

Tier 1

Figure 4.1: Pyramid with SCUs (represented as black dots).

of the number of SCUs expressed in the text. The maximum score that a system can
achieve for a given input document d and a given target summary size nSCU is the sum
of the weights of the most highly weighted SCUs up to the size limit:

maxscore(d, nSCU) =
nt∑

i=j+1

i · |Ti|+ j · (nSCU −
nt∑
j+1

|Ti|) (4.2)

with

j = max
i

(
nt∑
t=i

|Tt| ≥ nSCU) (4.3)

where Ti is the set of all SCUs with weight i; j is the index of the next-lower pyramid
tier; and nt is the index of the lowest pyramid tier all of whose SCUs can be included in
the summary.

For instance, in a scenario where there are 4 SCUs of weight 3, 10 SCUs of weight 2
and 23 SCUs of weight 1, and where the target summary size is 15 SCUs, maxscore is
calculated as 4 · 3 + 10 · 2 + 1 · 1 = 12 + 20 + 1 = 33. In practice, it may prove difficult
to choose the parameter nSCU appropriately if the goal is to ensure that the system
summary does not exceed a certain number of words or sentences.

The score given to the system summary is then calculated as follows:

score(d, nSCU) =

∑
s∈Sd

w(s)

maxscore(d, nSCU)
(4.4)

where Sd is the set of all SCUs represented in the system summary, and w(s) is the SCU
weight of SCU s. A score of 1 means that the summary is optimal in that it contains the
nSCU most highly weighted SCUs in the pyramid.

Since SCUs have to be created manually for each system summary, followed by a
manual annotation of links to an existing pyramid, the pyramid method is too expen-
sive for many real-world evaluations, in particular for day-to-day algorithm development.
Harnly et al. (2005) and Passonneau et al. (2013) attempt to automate these expensive
steps. The method of Harnly et al. (2005) finds the set of contiguous text spans in each
system-summary sentence that produces the highest overlap with the SCUs in an existing
pyramid. These text spans are then used as the system summary’s SCUs.

76 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

The algorithm starts by listing all possible contiguous spans of words for each sen-
tence in the system summary (called candidate contributors). For instance, for the sen-
tence “Canada was founded” the candidate contributors “Canada”, “Canada was”, “was
founded“ and “Canada was founded” are created. Next, for each candidate contributor
and SCU in the pyramid, a score set sim(ĉ, C) is calculated:

set sim(ĉ, C) = combineci∈C(span sim(ĉ, ci)) (4.5)

where ĉ is the candidate contributor to be scored, C is an SCU in the pyramid, ci is a
contributor of that SCU, span sim is a function calculating a similarity score between
a candidate contributor and a contributor in the SCU, and combine is a function which
combines the different scores into a single score for the candidate contributor. For each
possible partitioning, the sum of all scores is calculated. The highest-scoring set is iden-
tified using a dynamic programming algorithm.

A number of alternatives for the functions combine and span sim are explored. The
best-performing method uses a span sim function which counts the number of overlapping
unigrams between the candidate contributor and the contributor from the SCU. The
best-performing method for combine uses the minimum of all scores obtained, i.e. the
candidate contributor must achieve a high score with all existing contributors. Functions
that consider the maximum or the average of all scores result in lower performance.

According to Harnly et al. (2005) themselves, the fact that the mapping is based on
unigram overlap is a disadvantage of their algorithm, as it is impossible to map a candidate
contributor to an SCU if one or more human summarisers have used a paraphrase to
describe the same content. This problem is exacerbated by the combine function which
performed best. This method produces a low total score even if only a single gold-standard
summary uses a paraphrase instead of the identical wording. In a way, this limitation
defeats the purpose of a “deep” evaluation methodology, which is supposed to capture
cases where the same idea is expressed using different words. Unigram overlap is not ideal
also because it ignores word order.

Passonneau et al. (2013) attempt to address some of these limitations by using a 100-
dimensional latent vector representation instead of unigram overlap to compare candidate
contributors to existing contributors in SCUs. They also perform an additional evaluation
in order to analyse the algorithm’s performance on assigning a candidate contributor
to the correct existing SCU chosen by human annotators. Even when a latent vector
representation is used, the correct SCU can only be identified in 50% of all cases. Without
a qualitative analysis, it is not possible to judge whether the algorithm can indeed deal
with abstraction and reformulation.

A second limitation of the pyramid method is that SCUs are tied to a given, fixed set
of summaries due to the way in which the SCUs are created. If further summaries are
added at a later stage, existing content units may have to be separated and re-defined
(van Halteren and Teufel, 2003).

4.3 Subjectivity of human content selection tasks

All evaluation methods presented are potentially prone to the problem of subjectivity of
human content selection. In particular, methods that presume the existence of a gold stan-
dard assume that there is an “ideal” summary that all other summaries can be compared
against. Intrinsic evaluations that do not use a gold standard, for instance methods that

CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION 77

rely on human judgment of summary quality, are subject to human subjectivity as well.
Whenever a new evaluation method is proposed, it is therefore necessary to demonstrate
that any human input that the method depends on is replicable.

Subjectivity in human annotation can be reduced by using guidelines which are given
to the human participants (Carletta, 1996). Guidelines communicate the experimenter’s
interpretation of the annotation to the annotators. With a good set of guidelines, different
annotators will have a similar interpretation of the task and therefore produce more similar
annotations. An annotation study that involves guidelines typically consists of four stages:
the development of suitable guidelines, the training of annotators who did not participate
in constructing the guidelines, the collection of the final judgments, and a formal reliability
study (Teufel, 2010).

4.3.1 Quantifying subjectivity

I will now first discuss common methods for measuring subjectivity, before turning to
subjectivity in summarisation tasks in particular.

If it is possible to interpret the data collection from humans as an annotation task, the
methodology of content analysis (Krippendorff, 1980) can be used to measure the amount
of subjectivity present. This methodology assumes that an annotation scheme or coding
scheme has been created. An annotation scheme is a set of categories or classes that
annotators can choose from, together with descriptions of the semantics of each category.

The usual way to establish trust in such an annotation scheme is to conduct a re-
liability study. Krippendorff distinguishes three different properties that an annotation
scheme must fulfill: Stability (or intra-annotator agreement) is the requirement that one
and the same annotator should produce the same judgments when asked to complete
the annotation of the same data again at a later point in time. Reliability (also repro-
ducibility or inter-annotator agreement) quantifies the similarity of judgments produced
by different annotators on the same data. Finally, accuracy or validity measures how well
an annotator’s judgments correspond to a known gold standard, if such a ground truth
exists.

For categorial annotation tasks, standard agreement metrics exist. Summary metrics
are single numbers that allow for quick assessment of agreement (Carletta, 1996). The
most well-known such metric is Fleiss’ κ (Fleiss, 1971), which takes into account chance
agreement between annotators, as opposed to a simple percentage agreement; and Krip-
pendorff’s α, which additionally considers degrees of similarity between categories. Fleiss’
κ is given as

κ =
P̄ − P̄e
1− P̄e

(4.6)

where P̄ − P̄e is the degree of agreement actually attained in excess of chance, and 1− P̄e
is the degree of agreement attainable above what would be predicted by chance (Fleiss,
1971). Krippendorff’s α is calculated as follows:

α = 1− Do

De

(4.7)

where Do refers to the observed disagreement among values chosen for any single data
point, and De is the disagreement that one would expect if annotation were performed

78 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

randomly (taking into account the observed category distributions, as described above for
Fleiss’ κ). The observed disagreement Do is calculated as

Do =
1

n
·
∑
c

∑
k

ockδ
2
ck (4.8)

where ook is the number of data points for which two annotators differed in their annota-
tion and chose classes o and k, respectively; n is the total number of pairs of annotations;
and δ2ck is the (manually specified) importance of a misclassification involving classes c
and k. For instance, in a setting where only two classes (a and b) and two annotators are
used, the value of oab would be 3 if there are three data points for which one annotator has
chosen class a and the other annotator has chosen class b.2 Note that ock = okc, i.e. each
frequency of a type of misclassifications is used twice for calculating α.

The additional difference function δ2ck in Equation 4.8, which can be given either in
closed form or as an enumeration of all function values, allows for treating different types
of misclassifications differently. For instance, where the class labels are numbers on an
interval scale, a misclassification between classes 1 and 3 should result in a higher observed
disagreement than one between classes 2 and 3. This can be achieved, for instance, by
using a difference function that grows quadratically as the difference between the two
labels increases (Krippendorff, 2007):

intervalδ
2
ck = (c− k)2 (4.9)

The expected disagreement assuming a random assignment of class labels is calculated
accordingly:

De =
1

n(n− 1)
·
∑
c

∑
k

ncnkδ
2
ck (4.10)

where nc refers to the total frequency of misclassifications between class c and any other
class, and nk is calculated analogously.

4.3.2 Subjectivity in summarisation tasks

Having discussed how subjectivity in human annotation can be quantified in principle, I
now turn to subjectivity in summarisation tasks.

In general, human agreement on content selection for summarisation is known to be
low (Rath et al., 1961; Salton et al., 1997; Marcu, Daniel, 1997; Lin and Hovy, 2002). This
was demonstrated first in early work by Rath et al. (1961), who found that both intra-
and inter-annotator agreement for their sentence selection task was poor, although better
than with a random selection. They conclude that there is no single set of representative
sentences that all humans can be expected to agree on, but many equally representative
sets of sentences for a given article. Similarly, for the DUC evaluation scheme, it has
been shown on the basis of percentage agreement that both intra- and inter-annotator
agreement are low (Lin and Hovy, 2002).

One should therefore avoid constructing a gold standard for summarisation on the
basis of a single human solution only, as the scores assigned to a system summary using

2An explanation for cases where higher number of annotators and/or classes are used can be found in
Krippendorff (2007).

CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION 79

such a gold standard may vary considerably depending on which human was used. As a
consequence, most recent evaluation methods aim to reduce the impact of subjectivity by
using multiple human solutions. For instance, the ROUGE family of surface-based overlap
metrics are commonly calculated using multiple reference summaries (cf. Section 4.2.2.2
on page 72). In particular, those ROUGE metrics that operate on n-grams score the
system summary based on the combination of all n-grams found in any of the system
summaries. As each gold-standard summary is expected to contain n-grams that do not
occur in any of the other gold-standard summaries, the system summary will be scored
based on a higher overall number of gold-standard n-grams compared to the case where
only a single gold-standard summary is used. This property somewhat increases the
probability that a system summary is adequately rewarded even if some gold-standard
summaries use a different wording to express a fact mentioned in the system summary.

Since ROUGE is only surface-based, it will miss many true similarities that are ex-
pressed by different wordings. Lin and Hovy therefore test to what extent ROUGE scores
correlate to human judgments, in particular to the judgments elicited in the DUC eval-
uation effort. However, it is questionable whether correlation to human judgments can
demonstrate the reliability of an evaluation method if these human judgments cannot
themselves be reliably elicited, as was demonstrated by the low intra- and inter-annotator
agreement for the DUC annotation scheme found by Lin and Hovy (2002).

Multiple gold-standard summaries have also been used with deep evaluation methods.
The pyramid method by Nenkova and Passonneau (2004) addresses human subjectivity
in content selection by assigning higher weight to content units expressed by multiple
summary writers.

Nenkova et al. (2007) investigate the human subjectivity present in their method in
various ways. One approach is to evaluate a pair of held-out summaries3 using pyramids of
different sizes. Even if the scores of the two summaries differ considerably when evaluated
using a single large pyramid (e.g. of size 9), some too small pyramids (e.g. of size 2) can
result in the worse summary receiving a higher score (Nenkova et al., 2007), which is
undesirable. Choosing the right pyramid size means finding the right balance between
annotation effort and score reliability (Nenkova and Passonneau, 2004). In addition,
Nenkova and Passoneau analyse the subjectivity present in other steps of their evaluation
methodology. This includes the creation of SCUs from human summaries and system
summaries respectively, and the matching of SCUs to each other.

4.4 Requirements of timeline generation evaluation

Each of the evaluation methods presented has important limitations. Shallow evaluation
methodologies assume that a difference in wording always represents a difference in mean-
ing, which is not true. Existing semantically-oriented evaluation methodologies, on the
other hand, often require prohibitive annotation effort.

An evaluation methodology for single-document summarisation algorithms which does
not suffer from these problems must fulfill the following requirements:

1. It should be “deep”, i.e. based on abstract semantic meaning units, like the pyramid
method. However, it should not incur the quality problems observed in a surface-
oriented automation of SCU candidate identification, such as in Harnly et al. (2005)
and Passonneau et al. (2013).

3A similar analysis is performed with more than two held-out summaries, using correlation coefficients.

80 CHAPTER 4. RELATED WORK ON SUMMARISATION EVALUATION

2. It should require as little annotation effort as possible. In particular, the annota-
tion effort should be a one-time effort that is performed before system summaries
are created and that is independent of the number of system summaries considered
(as is the case for ROUGE). This has the advantage that an infinite supply of new
system summaries (e.g. those created in day-to-day development) may be evaluated
at no further cost. However, the one-time effort needed to construct the evalua-
tion resource is still substantial, in particular with larger numbers of articles. The
evaluation methodology must therefore provide detailed guidelines on how time-
line creation should be performed, such that the risk of having to repeat the data
collection is minimised.

In the next chapter, I will describe an evaluation methodology for the special sum-
marisation task of timeline generation which fulfills these requirements. I will follow the
intuitions of Nenkova and Passonneau (2004) and Teufel (2010) in that semantic units
will be created from multiple timelines. Similar to Nenkova and Passoneau, I do not
use subjective judgments of summary quality, as these scores can often not be reliably
elicited (Lin and Hovy, 2002). While the specifics of my evaluation methodology are
tailored towards the task of creating a history timeline, it can be applied, with suitable
modifications, to single-document summarisation tasks more generally.

Chapter 5

Evaluation of timelines using
semantic units

In the previous chapter, I discussed the merits and limitations of different methods for
summarisation evaluation. Methods that use semantic units are robust in cases where
the same content is expressed differently, but the need for manually matching these units
makes such methods expensive, as this has to be done for each system summary in turn.
On the other hand, surface-oriented methods such as ROUGE, which require less anno-
tation effort, assume that a difference in wording always corresponds to a difference in
meaning, which is not true. For this reason, such methods typically fail to detect the pres-
ence of important content in a system summary if that content is presented, for instance,
in a more abstract form than in the source text.

In this chapter, I will describe an evaluation methodology for timeline generation
which suffers from neither of these limitations.1 It is similar to the pyramid method of
Nenkova et al. in that semantic units are used. In particular, I will use a unit that covers
exactly one event; this unit will be called “Historical Content Unit” (HCU). However, in
contrast to the pyramid method, the methodology can be used for automatic evaluation
of system timelines without the need for manual annotation of each timeline.

The chapter is structured as follows. In Section 5.1, I will describe the main princi-
ples of my evaluation methodology. In Section 5.2, the various steps needed to evaluate
timelines using the methodology will be presented. Section 5.3 introduces an evaluation
resource constructed using my methodology. In Section 5.4, I will describe experiments
carried out in order to verify that central concepts of the methodology are meaningful. In
particular, I will analyse whether the evaluation resource created is reproducible. I will
also present an additional development resource which was created in a simplified manner
(Section 5.5).

5.1 Principles of the evaluation methodology

In this section, I will introduce central concepts of my evaluation methodology.

1The work presented in this chapter has been published previously (Bauer and Teufel, 2015). The eval-
uation resource presented in Section 5.3 can be downloaded from http://www.cl.cam.ac.uk/~smb89/

form.html.

81

http://www.cl.cam.ac.uk/~smb89/form.html
http://www.cl.cam.ac.uk/~smb89/form.html

82 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

5.1.1 Event definition

Let us first turn to the definition of an event. The event definition I adopt strikes a balance
between the event model of TimeML and that of the Automatic Content Extraction effort,
which were both introduced in Section 2.2. I define an event as follows:

1. An event is equivalent to an action (such as “France invades Algeria”) or a state
change (“Cameron becomes prime minister”) in the real world. Approaches such as
TimeML (described in Chapter 2) do not guarantee this equivalence. Examples of
descriptions that are not events under my definition include cognitive acts, such as
accounts of what people like, think, doubt, understand or remember, and descrip-
tions of states (verbs like “remain”, “be” etc.). Similarly, verbs denoting wishes and
aspirations (such as “want” or “desire”) do not constitute events.

2. The action or state change must hold true beyond doubt according to the text.
Negated verbs, hypothetical statements or other constructions whose truth value
strongly depends on someone’s viewpoint are excluded.

3. It must be possible to anchor the action or state change in time and space. This
criterion excludes actions and state changes that are independent of time (e.g. “vol-
canic activity occurs along these earth plate boundaries”), location (e.g. “the new
year began”), or both (e.g. “trees use sunlight to convert water and carbon dioxide
into sugar”). However, acceptable actions include those that are repeated over a
limited period of time (e.g. “the king invaded various countries between 1413 and
1426”) or in a limited number of locations (e.g. “the new faith spread to many
surrounding cities”).

An event in my approach is an abstract semantic unit, similar to ACE events. But as
opposed to ACE, I do not use a finite list of fixed event types. All real-world actions and
state changes that meet the above criteria can be annotated, independently of whether
they fall in a pre-specified event schema or not. Similar to TimeML, I assume that the
real-world action or state change expressed by an event can be represented by a single
verb, nominalisation or event-like noun in the text.

5.1.2 HCUs

I now introduce the concept of a Historical Content Unit (HCU). An HCU is a content
unit which expresses an event. This is in contrast to Semantic Content Units (SCUs) in
the pyramid method of Nenkova et al. (2007), which often represent details mentioned
in the surface text that do not themselves constitute an event, such as the number of
casualties of a terror attack (as described in Section 4.2.3, cf. page 73).

HCUs are defined based on overlap between multiple human gold-standard timelines
for a given source text, similar to SCUs. HCUs are also like SCUs in that they are
associated with a pyramid weight (called HCU weight) and a manually created description.
The HCU weight specifies how many timeline writers expressed an HCU in their timeline.

In addition, HCUs contain manually created links back into the source text; in partic-
ular, to TimeML events identified automatically in the text. A link is created whenever
a TimeML event fully or partly expresses an HCU’s semantic content. For each link, an
anchor weight is additionally annotated. The anchor weight quantifies to what extent the
TimeML event represents the HCU’s semantic content.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 83

HCU 16

Action Fatos Nano is elected Prime Minister

Agent not given

Patient Fatos Nano

Time June 1997

Location Albania

TimeML events e18(1.0); e20(0.5)

Timeline entries
Fatos Nano was elected Prime Minister. Timeline writer F
Fatos Nano became Prime Minister. Timeline writer C

Figure 5.1: Example of an annotated HCU.

Each HCU can be represented by a description similar to the one shown in Figure 5.1.
The Action field contains a textual description of the real-world action or state change
represented by the HCU. The field “Agent” describes who caused the real-world action
or state change, while “Patient” shows who was affected by it. “Time” and “Location”
describe how the HCU is anchored in time and space. The figure also shows the identifiers
of two TimeML events (“e18” and “e20”) in the source text that express the content of
this HCU, together with their respective anchor weights (“1.0” and “0.5”); and two gold-
standard timeline entries expressing the HCU which were written by two different timeline
writers.

5.1.3 Overview of the evaluation methodology

I will now give an overview of my evaluation methodology. Figure 5.2 depicts the process
of creating an evaluation resource. In a first step (represented by the arrow between the
top and left boxes in the figure), timelines representing a history article on a given topic
are elicited from human timeline writers.

In a second step (represented by the arrow between the left and right boxes at the
bottom of the figure), a human experimenter familiar with the evaluation methodology
(here: myself) identifies HCUs. HCUs are identified only based on the human-written
timelines; system summaries are not considered at this stage. For instance, HCU 3 in
the figure represents one particular event which has been expressed in two human-written
timeline entries. It therefore receives an HCU weight of 2.

In a third step (represented by the arrow between the right and top boxes in the figure),
the links between HCUs and TimeML events (including anchor weights) are annotated
by a human experimenter. For instance, HCU 1 in Figure 5.2 can be represented by an
event description involving “annexed” and another event description involving “invaded”.

Once these steps are complete, the resulting resource can be used to evaluate an
unlimited number of system timelines, as long as the system timeline has been created by
selecting a number of TimeML events from the source text. No human annotation on these
new timelines has to be performed. At evaluation time, the score of a system timeline is
calculated based on the HCUs (including the anchor weights) previously annotated. A
system that recalls many HCUs with a high HCU weight for a given timeline length will
score better than a system that does not. As this evaluation metric is recall-oriented, a
system will be punished for selecting redundant information.

84 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Article

Input text

HCUsTimelines written by humans

In 1346, they invaded the country .
TimeMLEvent

Then they annexed some regions .
TimeMLEvent

It culminated in a war .

HCU 1
HCUDescription
Agent
Patient

HCU weight

2

ArticleSentence

ArticleSentence

ArticleSentence It culminated in a war .ArticleSentence

It culminated in a war .ArticleSentence ... and Franco died in Madrid in 1975 .ArticleSentence

TimeMLEvent

HCU 2
HCUDescription
Agent
Patient

HCU weight

3

HCU 3
HCUDescription
Agent
Patient

HCU weight

2

Manually identified event anchor

Human 1 TimelineEntry

TimelineEntry

SurfaceString

SurfaceString

TimelineEntry

SurfaceString

SurfaceString

Human 2 TimelineEntry

TimelineEntry

SurfaceString

SurfaceString

TimelineEntry
SurfaceString

SurfaceString

Human 3 TimelineEntry

TimelineEntry

SurfaceString

SurfaceStringTimelineEntry

SurfaceString

SurfaceString

Process 1
Timeline

creation by
human subjects

Process 2
Creation of

HCUs by the
experimenter

Process 3
Creation of links
into the surface

text by the
experimenter0.5 1.0

1.0 1.0Anchor
weights

Figure 5.2: Overview of the evaluation methodology.

5.2 Design of the evaluation methodology

I will now describe the three central steps of my evaluation methodology in detail. Each
step will be illustrated using examples drawn from the evaluation resource I created based
on my methodology. This resource itself will be described in greater detail in Section 5.3.

5.2.1 Timeline elicitation

The first step in my methodology is to collect gold-standard timelines from human timeline
writers. As described in the introduction, I define a timeline as a list of dated events or
timeline entries. I assume that humans perform three main tasks when creating such a
timeline for a given source article:

1. Real-world events are identified in the source text. Human timeline writers are
free to decide what exactly constitutes an event in their mind. In particular, they
may abstract away from the text by combining multiple individual actions described
in the text into a single event. For instance, the annexation of several regions of a
country within a longer time period may be summarised into a single event denoting
the annexation of that country.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 85

Your task is to create a historical digest for the following article describing the history of
printing. A historical digest is a list of pairs of dates and important events, each on a single
line:

date xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

date xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

date xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

You should create as many lines as you feel are appropriate, but no more than 25.
Each line should be understandable on its own, without context, and contain only one event.
If you feel that more than one important event is taking place at a particular point in time,
then please create more than one line for that time.
In general, a good historical digest strikes a balance between mentioning all and only im-
portant events and still giving a complete account of the overall time period covered.
Ideally, all the events you select are important and it is possible to assign an exact date to
each of them.
There are cases, however, such as time periods in which few events take place, or time periods
that we know relatively little about (such as prehistory), where you may depart from these
criteria. For example, you may choose an event that is less important in order to make sure
a time period is covered; or you may use a vaguer date for an event. If there is an event that
covers a longer time period, it is better to create a single entry with the entire time period
as the date than to create individual entries for the beginning and end of the event.
If you happen to know additional facts about the topic of the text, please do not use them.
When creating your historical digest, please also do not use any other sources (e.g. web
pages, encyclopaedias).

Thank you very much for participating in this task. It will help develop algorithms
that create historical digests automatically.

Figure 5.3: Guidelines for writing a timeline.

2. A subset of these events is selected for the timeline.

3. Each selected event must be expressed as a timeline entry, which consists of a date
and a textual event description. Given that event descriptions are self-contained
sentences or noun phrases, their surface form is often different from text in the source
article. In particular, event descriptions should be independent of the document
context, and also independent of each other.

Recall that a good timeline is expected to contain only salient events while covering
the entire time period described by the article. These objectives are often conflicting:
Ensuring coverage of the whole time period described sometimes necessitates the selection
of less important events. A good timeline should therefore strike a balance between these
conflicting objectives.

In order to elicit timelines that meet the aforementioned criteria, I use the guidelines
shown in Figure 5.3. No further background knowledge, e.g. linguistic or subject matter
expertise, was required to perform the task. The word “timeline” is not mentioned in the
guidelines, as participants of the experiment should not feel reminded of any objects called
timelines which they might have seen earlier, for instance graphical timelines. The term

86 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

“historical digest” was used instead. In line with the desirable properties of timelines,
the instructions do not contain any statements about the linguistic realisation of timeline
entries.

An important parameter in timeline elicitation is the length of the timeline created,
i.e. the number of entries it contains (25 in the guidelines shown in Figure 5.3). Timelines
that are too long are often not useful in practice, while short timelines may lack important
content. It may also be difficult to achieve agreement between timeline writers if timelines
are too short.

In general, the length ratio between a summary and the source text is referred to as
the compression factor. I define the compression factor of a timeline as follows:

CF =
number of timeline entries

number of verbs in the source text
(5.1)

The number of verbs is used since the task is to select events in the surface text, which
are often represented by verbs.

Choosing the number of timeline entries as the length of the summary and the number
of verbs as the length of the source text is in contrast to standard single-document sum-
marisation tasks, where the length of both the summary and the source text is measured
in words, as follows:

CF =
number of words in the summary

number of words in the original text
(5.2)

I nonetheless use the number of timeline entries since I consider the number of words
in a timeline entry to be irrelevant for a content selection task.

The aim during timeline elicitation should be to achieve the same compression factor
for all timelines. For each article, I therefore set a different upper limit on the number of
timeline entries, based on the number of verbs contained in the source article.

I will now describe how a sensible value for CF can be chosen. In a first step, I write
timelines for randomly chosen articles myself, without a pre-specified restriction on the
number of entries. I then calculate their CF values. The average of these empirically
determined values for CF is used for all remaining articles.

For practical reasons, I will use the inverse of the compression factor (called inverse
compression factor or ICF) in the remainder of this chapter. Using the procedure de-
scribed above, ICF was set to 23.19. For other types of source texts (e.g. articles describ-
ing a smaller number of historical events in greater detail), a different value for ICF may
be more appropriate.

The target numbers of events for the remaining articles were calculated using the
following formula:

target number of timeline entries =
number of verbs in the article

ICF
(5.3)

As I suspected that timeline writers in general have a tendency towards writing longer
timelines, the resulting values were multiplied by 1.2 and then rounded to the next multiple
of 5. Statistics on the target numbers of timeline entries chosen for the articles in my own
evaluation resource will be given in Section 5.3.

Figures 5.4 and 5.5 show two timelines on the history of the jet engine elicited from
human timeline writers. These examples demonstrate that timelines on the same topic
can be very different in nature. Overall, the first timeline writer produced shorter timeline

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 87

Date Timeline entry

150 BCE The aeolipile, a device that uses steam power to cause a sphere to spin,
was invented.

13th century The Chinese invented the rocket, which has the idea of jet propulsion.

1633 As a stunt, Ottoman Lagari Hasan Çelebi took off with a cone-shaped
rocket.

1913 René Lorin came up with a more efficient form of jet engine, the subsonic
pulsejet.

1791 The patent for a stationary turbine was granted to John Barber in England.

1903 Norwegian engineer Ægidius Elling built the first gas turbine to run self-
sustaining.

1915 In Hungary, Alberto Fonó increased the range of artillery by uniting a
gun-launched projectile with a ramjet propulsion unit.

1921 Frenchman Maxime Guillaume filed the first patent for using a gas turbine
to power an aircraft.

1923 Edgar Buckingham of the US National Bureau of Standards expressed scep-
ticism about jet propulsion.

16/01/1930 Frank Whittle submitted his patent for a two-stage axial compressor feed-
ing a single-sided centrifugal compressor.

1926 A.A. Griffith published a seminal paper that makes practical axial com-
pressors possible.

April 1937 Frank Whittle had his first engine running on liquid fuel.

September 1937 In Germany, Hans von Ohain had their first engine running on hydrogen
supplied under external pressure.

1938-1942 The first turboprop, the Jendrassik Cs-1, designed by György Jendrassik,
was produced in the Ganz factory.

15 May 1941 A flyable version of Whittle’s engine was fitted to an airframe to carry out
the first flight.

1944 Mass production of Junno 004 engine started as a powerplant for the first
jet-fighter, the Messerschmitt Me 262.

1941 The Metrovick F.2, the UK’s first axial-flow engine, ran.

1950s The jet engine became almost universal in combat aircraft, with the ex-
ception of cargo.

1960s All large civilian aircraft has become jet powered.

1970s The innovation of high bypass jet engines achieved higher fuel efficiency
than the best piston and propeller engines.

Figure 5.4: Human-written timeline (first example) on the history of the jet engine.

entries. Certain entities are mentioned using longer referring expressions (e.g. “Norwe-
gian engineer Ægidius Elling” and “Frenchman Maxime Guillaume”). However, relatively
few subordinate clauses are used. In contrast, the second timeline writer produced very
long timeline entries which are rich in subordinate clauses (e.g. “Whittle produces first
jet engine that runs and that is liquid-fueled and includes a self-contained fuel pump.”)
and prepositional phrases. In many cases, it appears that a single timeline entry contains
multiple event and state descriptions which are interconnected in complex ways (for in-
stance in the entry “Erich Warsitz flies an He-178 fitted with Hans von Ohain and Max
Hahn’s HeS 3 gasoline-fueled engine marking the world’s first turbo-jet-powered flight.”).
Another difference is that the first timeline starts in Antiquity and also covers an event in
the Middle Ages, while the first event mentioned in the second timeline took place as late

88 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Date Timeline entry

1791 Patent for a stationary gas turbine granted to John Barber in England

1903 Ægidius Elling, a Norwegian engineer, builds first gas turbine to success-
fully run self-sustaining.

1903 Manufacturing limitations affecting safety and reliability inhibit the ex-
ploitation of the gas turbine in viable engines

1921 First patent for using a gas turbine to power an aircraft filed in 1921 by
Frenchman Maxime Guillaume.

1926 The fact that axial compressors became practical is attributed to ideas
published by A.A. Griffith.

1928 Frank Whittle formally submits his ideas for a turbojet to his superiors.

1928 Albert Fonó applies for a German patent on aircraft powered by super-
sonic ramjets.

1932 Whittle’s Jet-engine patent showing a two-stage axial feeding a single-
sided centrifugal compressor is granted.

1932 Albert Fonó is awarded a German patent on aircraft powered by super-
sonic ramjets.

1935 Hans von Ohain starts working on a design similar to Whittle’s without
knowledge of his work.

April, 1937 Whittle produces first jet engine that runs and that is liquid-fueled and
includes a self-contained fuel pump.

September, 1937 Hans von Ohain and Max Hahn produce first HeS 1 centrifugal engine
using hydrogen supplied externally as fuel.

August 27, 1939 Erich Warsitz flies an He-178 fitted with Hans von Ohain and Max Hahn’s
HeS 3 gasoline-fueled engine marking the world’s first turbo-jet-powered
flight.

15/5/41 First flight of Whittle’s engine, fitted to a Gloster E28/39 airframe is
carried out at RAF Cranwell.

1943 First flight based on Metrovick F.2, UK’s first operational axial-flow en-
gine

1944 Anselm Franz’s axial-flow compressor-based turbine jet engine design goes
into mass production as the power-plant of the Messerschmitt Me 262
fighter.

Following end of
WW II

Centrifugal-flow engines continue to be improved and due to their small
size and robustness, when compared to axial flow, they are used in heli-
copters.

Following end of
WW II, 1950s

and 1960s

Originating from British designs, US and Russian axial-flow engines find
application on fighters such as the MiG-15 and F-86 Sabre.

1960s Relentless improvements in the turboprop amount to the piston engine
being replaced in mainstream aviation by jet engines.

1970s and
beyond

The invention of the high bypass engine highlights the fuel efficiency of
the jet engine, obtained at high altitudes, gradually transforming aviation
into safe, economic and fast travel.

Figure 5.5: Human-written timeline (second example) on the history of the jet engine.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 89

as in the 18th century. It seems that the first timeline writer placed greater importance
on covering the overall time period described by the article, while the second writer was
of the impression that many events in the 20th century were too important to be omitted
in favour of events in earlier time periods.

5.2.2 Creation of HCUs

Once human-written timelines have been elicited, a human experimenter creates an eval-
uation resource consisting of HCUs, as described in Section 5.1. The process of creating
HCUs from human-written timelines consists of two stages: identifying candidates for
HCUs in individual human-written timelines, and merging these HCU candidates into
HCUs. I will now describe these two processes in turn.

5.2.2.1 Identification of HCU candidates

For each HCU candidate, I fill in a template which consists of the five fields shown at
the top of Figure 5.1 on page 83 (Action, Agent, Patient, Time, Location). In normal
operation, one HCU candidate is created for each human-written timeline entry, since
each entry is expected to express exactly one historical event. However, this heuristic
does not work in all cases.

The first potential problem is that some timeline entries may describe something that
is not an event by my definition. I therefore discard a timeline entry if it does not express
an event according to the definition in Section 5.1.1.

The identification of HCU candidates is also complicated when a single timeline entry
is composed of two entirely separate event descriptions which are written as two separate
sentences or joined by a comma or semicolon. Here, I create a separate HCU candidate
for each event. The date of the original timeline entry is used for all resulting HCU
candidates.

Another problem arises where a timeline entry is syntactically complex, i.e. where it is
not simply a noun phrase (“Crowning of King Peter”) or a main clause (“King Peter was
crowned”). In particular, the timeline entry may contain additional syntactic modifiers,
for instance a subordinate clause or a prepositional phrase. Where such a modification
is essential to the semantics of the event, I consider it to be part of the HCU candidate’s
semantics2. Conversely, if it is redundant, I disregard it.

One example of syntactic modification that I expect to appear frequently is relative
clauses. Restrictive relative clauses (RRC) serve to delimit the potential referents of the
head, whereas non-restrictive relative clauses (NRRC) merely give an additional piece of
information about an already identified entity. NRRCs are usually set off from the main
clause by commas (Comrie, 1981).

These two types of relative clauses are treated differently. RRCs are always added
to the HCU description, while for NRRCs this must be decided on a case-by-case basis.
Consider the following example timeline entries:

1. “Thousands of people were killed in the 9/11 terrorist attacks, which remain a
national trauma to this day.”

2. “Louis issued a new constitution which provided for a parliament composed of an
elected Chamber of Deputies.”

2These modifications will be treated as “background information” later on (cf. page 98).

90 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Timeline entry Kingdom of Hadramaut was conquered by Himyarite king Shammar
Yuhar’ish, unifying all of the South Arabian Kingdoms.

HCU candidate Kingdom of Hadramaut conquered by Himyarite king Shammar
Yuhar’ish

Timeline entry Kingdom of Ma’in ended, one of the first to end, and the Minaic language
died

HCU candidate 1 Kingdom of Ma’in ended

HCU candidate 2 the Minaic language died

Timeline entry Justinian I sent fleet to Yemen to prevent Dhu Nunas massacre, turning
West Yemen into vassal state.

HCU candidate Justinian I sent a fleet to Yemen to prevent Dhu Nunas massacre

Timeline entry Yemen became a province in the Islamic Empire, being ruled as part of
Arab-Islamic caliphates.

HCU candidate Yemen became a province in the Islamic Empire

Timeline entry Mutawakkilite kingdom of Yemen formed in the north after Turkish forces
withdraw.

HCU candidate Mutawakkilite kingdom formed in the north of Yemen

Timeline entry Royalist forces, supported by Saudi Arabia and Jordan, opposed, starting
the North Yemen Civil War

HCU candidate Royalist forces opposed and thereby started the North Yemen Civil War

Timeline entry Republic of Yemen (ROY) was declared with Saleh as president and al-
Baidh as vice president.

HCU candidate The Republic of Yemen was declared

Figure 5.6: Examples of timeline entries and corresponding HCU candidates (Action fields
only) where the creation of HCU candidates was non-trivial.

In the first example, the information contained in the NRRC “which remains a national
trauma to this day” is not essential to the main event’s semantics (the killing of many
people). In contrast, the RRC “which provided for a parliament composed of an elected
Chamber of Deputies” in the second sentence arguably contains an essential part of the
main event’s semantics.

Under no circumstances did I create separate HCUs for events described in a syntactic
modification of another event, given that the timeline writer did not perceive them as
important enough to be expressed in a separate timeline entry.

Figure 5.6 shows a number of timeline entries for which one of the aforementioned
problems occurred, as well as the Action fields of the corresponding HCU candidates.

5.2.2.2 Merging HCU candidates

Once HCU candidates have been identified in a set of human-written timelines for a
document, HCUs have to be created based on these candidates. In particular, any group
of HCU candidates that represent the same real-world event have to be merged into a
single HCU.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 91

Establishing whether two HCU candidates refer to the same event can be difficult, as
the same event may be expressed in many different ways. I apply two basic principles
to test this. The first is the principle of unification of non-conflicting information. This
principle means that when two or more HCU candidates appear to refer to the same real-
world event, I merge them into a single HCU if they do not contain conflicting information.
To verify whether there is conflicting information, the values of each field (Action, Agent
etc.) are compared. If there is a conflict in any of the fields, the HCU candidates cannot
be merged.

The second principle is that of atomicity. It means that separate HCUs are created
when the real-world action or state change of one HCU candidate is not fully covered
by the action or state change the other HCU candidate expresses. For example, if one
HCU candidate expresses the invasion of two countries, but a second HCU candidate only
mentions the invasion of one of the countries, two HCUs have to be created, one for each
country.3

A similar procedure was used by van Halteren and Teufel (2003) for annotating fac-
toids, and Nenkova et al. (2007) used the same intuition for creating Semantic Content
Units (SCUs) in the pyramid method. However, splitting of existing content units tends
to happen less frequently with HCUs than with SCUs, since no second HCU is created
when two timeline entries merely describe different aspects of the same real-world event
(e.g. a general statement about the impact of a natural disaster vs. the exact number of
victims).

Figure 5.7 shows a screenshot of the database software used to create HCUs according
to the schema in Figure 5.1 on page 834. The example HCU shown merges two HCU
candidates describing the same event (the invention of the first gas turbine) into a single
HCU. Although the second HCU candidate additionally mentions that the gas-turbine
successfully ran self-sustaining (a fact ommitted by the first HCU candidate), the two
candidates can be merged into a single HCU, given that the additional information (the
success) is non-conflicting information and does clearly not constitute a separate action
or state change in the real world. Further examples of how HCU candidates are merged
into HCUs are given in Figure 5.8 (see page 93).

5.2.3 Creation of links between HCUs and TimeML events

I will now describe how an HCU, once created, should be linked to TimeML events in the
text which express the HCU’s semantic content.

5.2.3.1 General principles

Anchor weights. I define anchor weights as numbers between 0 and 1. An anchor
weight of 1.0 is used where a TimeML event fully expresses the semantic content of an
HCU. This is the case, for instance, when the timeline writer has copied a text fragment
from the source text. Many HCUs are only linked to a single TimeML event, and this
one event is assigned an anchor weight of 1.0.

Anchor weights are normally assigned independently for each link to a TimeML event.
This makes annotation fast and less complex. However, at evaluation time, this can lead

3Note that the HCU representing the invasion mentioned by two timeline writers will receive a higher
HCU weight.

4The links from HCUs to TimeML events are not shown in this example.

92 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

F
igu

re
5.7:

E
x
am

p
le

H
C

U
for

th
e

article
H

istory
of

the
jet

en
gin

e
created

from
tw

o
H

C
U

can
d
id

ates.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 93

HCU San’a’ becomes the district capital

HCU candidate 1 Ottomans made San’a’ the district capital

HCU candidate 2 San’a’ was made Yemeni district capital

HCU candidate 3 San’a’ becomes Yemeni district capital

HCU A war between the Mutawakkilite kingdom of Yemen and the house of
Saud breaks out

HCU candidate 1 The Mutawakkilite Kingdom of Yemen engaged in hostilities with the
House of Saud

HCU candidate 2 War breaks out between Kingdom of Yemen and House of Saud

HCU candidate 3 Mutawakkilite kingdom – House of Saud war.

HCU North and South Yemen make efforts toward unification

HCU candidate 1 Efforts were made for reunification of North and South Yemen.

HCU candidate 2 North and South Yemen agree to renew discussions of unification

HCU candidate 3 Real efforts towards unification

HCU The government fights numerous insurgents

HCU candidate 1 The government fights numerous rebel groups.

HCU candidate 2 Government fights various insurgents

HCU The Kingdom of Qataban is founded

HCU candidate 1 Qataban founded in Baihan Valley

HCU candidate 2 Establishment of Kingdom of Qataban (Baihan Valley)

HCU candidate 3 The Kingdom of Qataban was established

Figure 5.8: Examples of HCUs and the HCU candidates they were created from (Action
fields only).

to a problem if the system timeline contains two TimeML events that express the same
HCU, since the sum of the weights for all TimeML events related to a single HCU can
be greater than one. This situation should be avoided, since the importance of an HCU
during evaluation should not depend on how many TimeML events in the text express
it. The reward that an algorithm can be given per HCU will therefore be capped to 1.0
during evaluation, as I will explain in Section 5.2.4 (cf. page 100).

Procedure. In a first step, for each HCU I manually identify all sentences that express
its content fully or partly. I could have chosen to start by analysing individual TimeML
events, but for human processing, the procedure is speeded up if the identification starts
from sentences instead. Subsequently, each TimeML event in these selected sentences
is analysed individually. A TimeML event is only assumed to represent an HCU if its
context in the source text is consistent with the HCU’s fields. However, it is not necessary
for the content of each field to be explicitly mentioned in the text.

In cases of doubt, I use the intuition underlying Rappaport Hovav and Levin’s defini-
tion of an achieved state to help me make the decision. Verbs of change of state lexicalise
a particular achieved state in the real world and denote the bringing about of this state.
For instance, the verb “cleaned” in “Peter cleaned the floor” entails a resulting change
in the contacted surface (Rappaport Hovav and Levin, 1997). I assume that two events

94 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

France was invaded and then occupied in 1940 .
TimeMLEvent

It culminated in a war .

ArticleSentence

ArticleSentence ...they started the occupation of France .ArticleSentence

TimeMLEvent

TimeMLEvent

0.5

0.5

HCU 7 France was invaded and occupied in 1940.
HCU weight

1

Anchor
weights

Event group

0.25

Figure 5.9: Event groups.

can describe the same achieved state in the real world even if they are lexically differ-
ent. For instance, the two event descriptions “The Arabs conquered Spain” and “The
Arabs established their rule in Spain” arguably entail the same achieved state, namely
the beginning of Arab rule in Spain. When deciding whether an HCU is represented by a
TimeML event, I compare the achieved state entailed by the TimeML event (taking into
account its context) to that entailed by the HCU description and then decide whether
they are the same.

Dependencies between events. Dependencies between TimeML events need to be
modelled explicitly only if there is a group of events that express only part of any given
HCU’s semantics, even if selected together. In such cases, I use the concept of event
groups . An event group is defined as a set of events which together do not express more
than a certain fraction of the HCU’s semantics. This fraction is called the event group’s
anchor weight.

Consider the situation in Figure 5.9. There are three events “invaded”, “occupied”
and “occupation”, which all express part of the semantics of the HCU’s semantic content
“France was invaded and occupied in 1940”, namely the invasion and subsequent occu-
pation of France. The events “occupied” and “occupation”, however, are reformulations
of the same information, whereas “invaded” expresses a different portion of the HCU’s
semantics. Therefore, the HCU’s semantics is fully expressed only if the algorithm has
selected the event “invaded” and at least one of the events “occupied” and “occupation”.
Consequently, I use an event group containing the events “occupied” and “occupation”.

Event groups can be defined recursively: Some of the events in an event group can be
grouped together in a further event group, if taken together they express only a specific
fraction of the HCU’s content.

5.2.3.2 Guidelines

There are cases where the general principles given previously are not sufficient, since the
relationship between an HCU and one or more TimeML events is more involved. In those
cases, I use the guidelines below. They cover two groups of frequently occurring cases:
Situations where it is not clear whether a given text fragment expresses the semantic

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 95

content of an HCU at all, and cases where it is difficult to decide which one out of several
TimeML events should be linked to the HCU.

1. When multiple event words in the same clause express the HCU’s semantic content
(e.g. the two underlined events in “the king waged war against Russia” for an HCU
with the description “War against Russia”), I assign an anchor weight of 1.0 to each
event.

2. No links are created for verbs which, although they are used in an idomatic ex-
pression expressing an event, do not themselves lexicalise the real-world action or
state change expressed by that event. For instance, the event “saw” in “the next
century saw the crowning of King Peter” would not receive a link, only the event
“crowning”.

3. If there are multiple separate mentions of the same event in the text, only the first
mention receives an anchor weight of 1.0. Later mentions receive an anchor weight
of 0.5 if they are the main focus of their containing sentence. Otherwise, no link is
created.

The reason for this weighting decision is that only the first mention is discourse-
new ; all further mentions are discourse-old. These concepts are taken from the
theory of information status (Prince, 1992). Discourse-old events have already been
evoked in the discourse, while discourse-new events have not. Discourse-old events
are typically less suitable for creating a timeline entry, as they rely on the reader’s
knowledge of the document context.

In the following example, the first instance of “conquered” is discourse-new and
the second is is discourse-old. The second instance is the main focus of the second
sentence and would thus receive an anchor weight of 0.5.

... and conquered France. (...) France was conquered by ...

Conversely, in the following example, the second TimeML event (“conquest”) is not
the main focus of the sentence. Here, no link would be created.

... and conquered France. (...) After the conquest of France by (...)

4. No links are created for events that are attributed or presented as uncertain. The
event “tortured” in the sentence “According to government sources, the president
was tortured” is an example of such a case.

The likely reason why the author used such a construction is that it is controversial
whether the event mentioned indeed took place. My event model, however, requires
that an action or state change must be true beyond doubt according to the text.

5. If an HCU description describes content mentioned in the source text using a syn-
onymous expression, an anchor weight of 1.0 is awarded. I consider two descriptions
as synonymous if they can be assumed to refer to the same real-world event in the
given context, e.g. in the case of “allowed” vs. “permitted” or “ties the knot with”
vs. “marries”.

96 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

When I found it difficult to decide whether two events are synonymous, the similarity
score between the two event words as calculated by word2vec (Mikolov et al., 2013)
is used as a guide; for the examples in my corpus, a similarity score of 0.4 or higher
seems to indicate synonymity.

6. Where an entity mentioned in the HCU description involves metonymy in the source
text or vice versa, I award an anchor weight of 1.0. Metonymy is a phenomenon
whereby a concrete concept refers to a more complex, abstract concept to which
it is closely related (Gibbs Jr., 1994). For instance, a sentence in the source text
might state that a scientist “contacted London”. Here, the reference to the capital
functions as a metonymy for the British government. The corresponding HCU
description could mention that the scientist contacted the government.

7. Events which plausibly entail the action or state change described by the HCU are
assigned an anchor weight of 1.0. The entailment must be immediately obvious
to a reader regardless of background knowledge without the need for additional
interpretation. For instance, the two descriptions “the last monarch of France was
executed” and “the French monarchy ended” can be assumed to refer to the same
real-world event. Although the execution of the last king of France and the end of
the monarchy are technically distinct, the first statement directly implies the second
and would thus receive an anchor weight of 1.0.

8. Where the text describes the beginning of a historical event, there is a potential
problem because two verbs are present: a verb indicating the beginning (such as
“start” or “begin”) and the actual event verb. But of course this combination does
not correspond to two separate events. My solution is to assign an anchor weight
of 1.0 only to the actual event verb, while no link is created for the verb indicating
the beginning, unless the HCU description places emphasis on the beginning of the
event. If the emphasis is on the beginning of the event, an anchor weight of 1.0
is awarded to the verb indicating the beginning, while the main verb receives an
anchor weight of 0.5.

9. When the source text mentions the end of an event described in the HCU, I award an
anchor weight of 1.0 to both the description of the ending and the main event word.
For example, both “annexation” and “completed” in the sentence “The annexation
was completed by 1564” receive an anchor weight of 1.0 if the HCU describes the
annexation. The reason for this rule is that an action and its completion result in
the same achieved state.

10. If timeline writers generalise one or more concrete events in the source text, the
anchor weight is distributed evenly across all these events. An example of such
a case is where the article mentions a series of disputes in a royal family, and
the human writer abstracts away from these individual happenings by creating the
timeline entry “quarrels in the royal family”.

11. Where the source text first describes a fact in general terms and then mentions
a special case (such as “New machines were invented in the 19th century. This
includes the steam engine.”), but the HCU description only discusses the special case
(here: “the steam engine was invented”), the TimeML event expressing the general
fact (here: “invented”) is linked to the HCU. I use this rule since the semantic

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 97

content expressed by the HCU is best represented by the general statement (here:
an invention). TimeML events occurring in the context of the special case (here:
“includes”) are irrelevant.

12. If the HCU description contains a plural noun phrase for which a collective reading5

applies (such as for “A and B married”), no link is constructed to a TimeML event
whose context fails to mention the entire set of entities denoted by that phrase. The
same applies in the reverse case, i.e. when there is a collective plural noun phrase
in the source text and the HCU description omits some of the entities denoted by
that noun phrase.

Noun phrases for which a distributive reading applies are treated differently. If the
context of a TimeML event omits some of the entities denoted by the corresponding
noun phrase in the HCU description, the TimeML event is assigned an appropriately
reduced anchor weight to reflect the fact that it does not express the HCU’s semantic
content fully. An anchor weight of 1.0 is awarded, however, where the missing
entities are negligible. Consider the following example, where for an HCU with the
description “Gutenberg and his colleagues invent movable type”, the corresponding
text in the article reads as follows:

“It is traditionally summarized that Johannes Gutenberg, of the German city of
Mainz, developed European movable type printing technology with the printing
press around 1439 and in just over a decade, the European age of printing began.
However, the details show a more complex evolutionary process spread over multiple
locations. Also, Johann Fust and Peter Schöffer experimented with Gutenberg in
Mainz.”

Here, despite the HCU description stating that Gutenberg made the invention in
collaboration with colleagues, the involvement of colleagues is arguably a negligible
detail.

In the reverse case, i.e. where the HCU description omits some of the entities denoted
by a plural noun phrase in the TimeML event’s context, an anchor weight of 1.0 is
assigned, since the TimeML event still expresses the HCU’s semantic content fully.6

13. Where the text explicitly describes a cause-and-effect relationship between two his-
torical events, no link is constructed for a TimeML event which expresses this rela-
tionship, unless that event is itself part of the HCU description.

For example, for an HCU whose semantic content is “Italy was unified”, no link
is created for the verb “led” in the sentence “and this led to Italy being unified”.

5Plural noun phrases can have a distributive reading or a collective reading. A distributive or non-
collective reading means that what a plural noun phrase says about a set can be paraphrased exhaustively
as a conjunction of predications of the individual members of this set; this is not possible with a collective
reading (Kamp and Reyle, 1993). The sentence “The inhabitants built a town hall” has a collective read-
ing: Every inhabitant made a contribution to the construction of the town hall, but only the synergetic
effect of their concerted action allowed them to succeed (Kamp and Reyle, 1993).

6Note that my evaluation methodology is inherently limited where a TimeML event is syntactically
linked to a plural noun phrase, but two distinct HCUs have been created for subsets of the entities denoted
by that noun phrase. For instance, it is possible that the two invasions mentioned in “Nazi Germany
invaded Poland and Denmark” in the source text are represented by different HCUs. As HCUs are linked
to single event words (and not to their arguments), there is no way to take this fact into account during
evaluation. I do not offer a special treatment for such cases as they occur very rarely.

98 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

This is an adequate choice since the semantic content of the HCU is the process of
unification, not an action that preceded the unification.

14. When the syntactic construction containing the TimeML event is modified by a
control construction or a raising construction7, the assignment of anchor weights
depends on whether that construction is mentioned in the HCU description.

No links are created for introducing verbs which are not mentioned in the HCU
description (e.g. the verb “happened” in the construction “the king happened to
arrive early”), as a positive context arguably adds nothing substantial to the HCU
semantics. Here, an anchor weight of 1.0 is assigned to the subordinated event.

If the HCU description also mentions the introducing verb, an anchor weight of
1.0 is given to the introducing verb, and an anchor weight of 0.5 is assigned to the
subordinated event.

However, no link is constructed for the subordinated event if it is negated or invali-
dated by the introducing event. Examples of introducing verbal constructions that
show this behaviour include “prevented from”, “refuses to” and “demanded in vain
that”. This rule is necessary because syntactically dominating verbs can change the
truth-conditional status of a sentence.

One example is a sentence in the source text describing the fact that country A
prevented country B from invading country C. Here, although the corresponding
HCU description will mention the invasion and there is a TimeML event which
describes that invasion, it is a truth-condition of the sentence that the invasion
did not take place. It would therefore be wrong to construct a link for the event
describing this negated invasion.

15. Some TimeML events express a syntactic modification which is part of an HCU
description. I call such TimeML events “background information”8. In contrast,
TimeML events in the text that express the main predicate of the HCU are called
“foreground information”. Events referring to background information receive an
anchor weight of 0.5, while the corresponding foreground information receives an
anchor weight of 1.0. For instance, there may be an HCU with the following de-
scription:

“Territorial expansion was put to an end by the death of Suryavarman II”

7Control and raising constructions consist of an intransitive matrix clause with an infinitival comple-
ment (for instance, “Barnett seemed to understand the formula”) (Davies and Dubinsky, 2008). Control
and raising constructions have different thematic structures: In raising constructions such as “Barnett
seemed to understand the formula”, the matrix subject (“Barnett”) has a thematic role only in the ac-
tion of the inifinitival complement (“understand the formula”). The predicate “seem” does not assign
a thematic role to “Barnett”. They are called “raising constructions” because the subject of the un-
derstanding, “Barnett”, is raised to the main clause (Carnie, 2002). On the other hand, in a sentence
such as “Barnett tried to understand the formula”, both “try” and “understand” assign a thematic role
to “Barnett” (Davies and Dubinsky, 2008). Such constructions are called control constructions, because
the subordinate clause (“to understand the formula”) is assumed to contain a special null NP which is
controlled by the subject of the main clause (“Barnett”) (Carnie, 2002).

8As I explained on page 89, the existence of background material in a sentence is a side effect of my
decision to bundle it into an HCU if it is a syntactic modification of a main event which is essential to
the semantics of the event.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 99

Here, the death of Suryavarman II is arguably an important part of the event’s
semantics, as the territorial expansion was stopped directly by his death. It was
therefore made part of the HCU description during HCU creation. However, the
territorial expansion is the core semantic content of this HCU.

16. Where the core semantic content of an HCU occurs as the subordinated verb of
a periphrastic causative9 (e.g. “do” in “make someone do something”) or as the
past participial complement of a causative verb (e.g. “done” in “have something
done”), only the subordinated verb is given an anchor weight of 1.0. For instance,
the HCU description may say that “King Mark resigned”, but the text contains
the periphrastic causative construction “his son had King Mark resign”. In this
case, no link is created for the causative “had”, as the subordinated verb (“resign”)
expresses the actual semantic content (the resignation).

If, however, the causative verb is part of the HCU description, an anchor weight
of 1.0 is awarded to the causative verb, and an anchor weight of 0.5 is awarded to
the subordinated verb. In the example above, this would be the case if the HCU
description also mentioned the role of the son in King Mark’s resignation (“his son
had King Mark resign”).

17. A historical event and its later discovery are assigned the same anchor weights. For
instance, a TimeML event describing the discovery of a temple receives an anchor
weight of 1.0 if the corresponding HCU represents the construction of that temple
in Antiquity.

This is a relatively common phenomenon, as articles tend to mention the recent
discovery of historical evidence (e.g. the excavation of an ancient city in the 20th
century). The discovery provides evidence that an earlier event took place. The
importance of the discovery is directly tied to the importance of the original event.

5.2.3.3 Examples

Figure 5.10 gives two examples of HCUs for which some anchor weight assignments were
non-trivial. I consider an assignment as trivial if the textual description in the HCU
Action field literally corresponds to text in the source text, does not contain background
information, and can be straightforwardly linked to a single TimeML event using an
anchor weight of 1.0.

In the first example in Figure 5.10, the HCU Action description contains background
information (the terrorist attack of 2001) in addition to the foreground information (the
killing of 65 state residents). The TimeML event representing the background information
(“attack”) is therefore given an anchor weight of 0.5, while the event representing the
killing (“killed”) is assigned an anchor weight of 1.0.

In the second example, multiple concrete events (conquests and annexations of indi-
vidual cities and cities etc.) were generalised into a single timeline entry “Carolingian
conquest”, which led to the creation of a single HCU. Here, since no TimeML event de-
scribes the entire conquest, the HCU’s anchor weight is distributed across all TimeML
events describing actions that are arguably part of the Carolingian conquest. As there
are seven such events in this case, each of them receives an anchor weight of 1

7
.

9A periphrastic causative is a construction such as “they have someone do something” that consists of
a noun phrase, a causative verb (such as “get”, “have” or “make”), another noun phrase, and an infinitive
(Hollmann, 2003).

100 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

HCU 113

Action 65 state residents were killed in the 9/11 terrorist attack

Agent –

Patient 65 state residents

Time 11/09/2001

Location –

TimeML events In the terrorist attacks (0.5) of September 11 , 2001 , 65 state residents
were killed (1.0) .

Timeline entries

65 state residents were killed in the terrorist attack.
65 state residents were killed in the terrorist attacks
65 state residents were killed in the terrorist attacks on the World Trade
Centre

HCU 385

Action The Carolingians conquer Catalonia

Agent the Carolingians

Patient Catalonia

Time 760-801

Location Catalonia

TimeML events The first county to be conquered (1
7) from the Moors was in the former

area of Septimania that became Roussillon -LRB- with Vallespir -RRB-
in around 760 .
In 785 the county of Girona -LRB- with Besalú -RRB- on the south side
of the Pyrenees was taken (1

7) .
Ribagorza and Pallars were linked (1

7) to Toulouse and were added
(1
7) to this county around 790 .

Urgell and Cerdanya were added (1
7) in 798 .

After a series of struggles , Charlemagne ’s son Louis took (1
7)

Barcelona from the Moorish emir in 801 and set (1
7) up the County

of Barcelona .

Timeline entries Carolingian conquest

Figure 5.10: Examples of anchor weight annotations for two HCUs.

5.2.4 Scoring system summaries

Once anchor weights have been assigned, HCUs can be used to score system summaries.
I will now describe how this is done in practice.

Pyramid scores. System-generated timelines are scored using an adapted version of
the pyramid score proposed by Nenkova et al. (2007). The difference is that the extent to
which the timeline covers an HCU can now be calculated automatically from the anchor
weights. In contrast, the original pyramid method requires a human expert to analyse
which gold-standard SCUs are covered in each individual system summary.

My metric Pd(T, nHCU) is a variation of the pyramid score in Nenkova et al. (2007)
and defined as follows:

Pd(T, nHCU) =

∑
h∈Hd

score(h,Eh, T)

maxscore(d, nHCU)
(5.4)

where d refers to an article, T is the set of all TimeML events in the system-generated

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 101

timeline, Hd is the set of all HCUs annotated for an article d, Eh is the set of all events for
which a link to HCU h exists, and nHCU is the number of HCUs that an ideal timeline is
expected to express. I set nHCU to the number of TimeML events n that the algorithm
is allowed to select, given that very few TimeML events in the source text are linked to
more than a single HCU, as I will show experimentally in Section 5.3.7 (cf. page 107).

The maximum score that an algorithm can receive for an HCU is calculated analo-
gously to the original pyramid method, with HCUs taking the place of SCUs:

maxscore(d, nHCU) =
nt∑

i=j+1

i · |Ti|+ j · (nHCU −
nt∑
j+1

|Ti|) (5.5)

where

j = max
i

(
nt∑
t=i

|Tt| ≥ nHCU) (5.6)

and i is the HCU weight as defined in Section 5.1.2, i.e. the number of timeline writers
who expressed an HCU in their timelines. The score that an algorithm obtains for a single
HCU h is defined as follows:

score(h,Eh, T) = wh · Cov(h,Eh, T) (5.7)

where wh is the HCU weight of HCU h. The maximum weight possible is equal to the
number of timeline writers.

The function Cov(h,Eh, T) is central to algorithm scoring. I use it to calculate the
extent to which the semantic content of HCU h is expressed by the events T chosen by
the algorithm. For instance, an HCU h may have links to two TimeML events. Both
these links have an anchor weight of 0.5. Assuming that a system timeline to be scored
only contains one of those events, the function Cov(h,Eh, T) will return a score of 0.5.

The basic version of Cov(h,Eh, T) is defined as follows:

Cov(h,Eh, T) = min(1.0,
∑
e∈Eh

vej · s(T, ej)) (5.8)

where vej are the anchor weights between 0 and 1 that were previously annotated, and
s(T, ej) is a helper function indicating whether the set of events T in a system timeline
includes event ej:

s(T, ej) =

{
1 if ej ∈ T
0 otherwise

(5.9)

As described in Section 5.2.3.1, the anchor weights vej are normally assigned separately
for each TimeML event, but the total score a timeline can obtain for an HCU is capped
to 1.0 (cf. Equation 5.8). This upper limit prevents a timeline from being rewarded for
containing redundant information.

Recall that in many cases, there is only a single TimeML event which expresses the
HCU’s semantics, and its anchor weight is 1.0. In those cases, Equation 5.8 simplifies to:

Cov(h,Eh, T) = s(T, ej) (5.10)

where ej is the one TimeML event that fully expresses the HCU’s semantics.
The total score a system timeline receives is the sum of the individual scores calculated

for each HCU, as in the original pyramid method.

102 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Event groups. The score in Equation 5.8 is calculated by summing the anchor weights
vej of all events the algorithm has chosen. In some cases, however, there are dependencies
between TimeML events that need to be modelled using event groups, as described in
Section 5.2.3.1 (see page 94).

Recall that event groups are defined recursively. Formally, an event group Ek can be
written as

Ek = {e1, e2, ..., E1, E2, E3, ...} (5.11)

where ei refers to individual events and E1, E2, E3, ... are further event groups.
Due to the introduction of event groups, Equation 5.8 has to be revised. The score

that a system timeline is awarded for a given HCU is calculated as follows:

Cov(h,Eh, T) = min(gEh
,

∑
Ehj
∈Eh

Cov(h,Ehj , T) +
∑
e∈Eh

vej · s(T, ej)) (5.12)

where gEh
is the anchor weight of event group Eh, Ehj are further event groups that are

part of event group Eh, and Eh is now a special top-level event group with gEh
= 1 that

is implicitly defined for every HCU10.

5.3 Construction of an evaluation resource

Using the design described in the aforementioned section, I constructed an evaluation
resource from human-written timelines.11 I will now describe the details of this process.

5.3.1 Selection of input texts

I will first describe how input articles for the resource were selected.

Selection principles. It is important to choose articles that are representative of all
history articles for which timelines can be constructed. Only Wikipedia articles contained
in the corpus presented in Chapter 3 were considered, for two reasons: First, these articles
can be guaranteed to exclusively describe historical content, as their titles start with
“History of”. Second, the presence of a corresponding gold-standard timeline indicates
that humans find a timeline about the article’s topic relevant.

Articles were selected such that a variety of subject areas were covered; examples of
subject areas are “Invention” or “Sport”. The subject area of each article was identified
manually.

I tried to approximate the distribution over subject areas in the timeline corpus pre-
sented in Chapter 3. This distribution was skewed, with more than 80% of all articles
belonging to the subject area “Geo-political entity” (GPE). The next most frequent sub-
ject areas were “Field of science” and “Invention”. For most subject areas, only one or
two articles were available.

10If no event groups have been annotated, this top-level event group merely contains all events for
which links to the relevant HCU exist.

11The evaluation resource can be downloaded from http://www.cl.cam.ac.uk/~smb89/form.html.

http://www.cl.cam.ac.uk/~smb89/form.html

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 103

For each subject area, the average number of sentences per article was calculated. I
then selected, for each subject area, those articles whose number of sentences was close to
the average. Overly long articles take considerably longer to annotate, which is prohibitive
given the already high annotation effort. Many very short articles skip entire time periods
as they are incomplete.12

Exclusion criteria. Articles which exhibited one of the following problems were ex-
cluded:

• articles containing text that is already arranged in the form of a timeline;

• articles that contain empty sections, given that the presence of an empty section
often entails that a particular time period is not covered by the text;

• non-chronological articles, where I declare an article as non-chronological if more
than half of any section describes events that took place earlier in time than the
events described before that section;

• articles very similar in terms of topic to an article already chosen.

In contrast, generally low text quality was not a reason for removing an article. There
is no theory of text quality that can be automatically applied, and hence any such fil-
tering would have been subjective.13 More importantly, such a manipulation would have
negatively impacted the general applicability of my algorithm to any history article in
principle.

Resulting selection of articles. Timelines for 11 articles were collected, six describing
the history of geo-political concepts (GPE), two on the history of inventions, one on the
history of a field of science, and one article describing the history of a food item. Table
5.11 contains statistics in terms of sentences, words and verbs.

Number of timelines per article. Three timelines per article were elicited. This
choice was a compromise which allowed me to collect pyramids of acceptable size for a
reasonably large number of articles.

Choice of timeline lengths. The rightmost column in Figure 5.12 gives the hard
upper limit on the number of entries for each article. Interim results in red color were
calculated using Equation 5.3 (cf. the procedure described on page 86).

When performing the experiments in Chapter 6, I soon discovered that one of the
most deciding factors for algorithm performance was whether or not an event was close
to a date. This is a problem since it means that even a baseline which randomly selects
events with an associated date can perform very well. For four articles in the corpus, the
number of events with an associated date was so low that randomly selecting from them

12The probability that an article is incomplete is higher for short than for long articles. However, not
every short article is necessarily incomplete. There are a high number of well-maintained articles that
are shorter than others because the topic discussed is very specific.

13It would have been possible to filter out articles which the Wikipedia community has marked as low-
quality. For instance, some articles contain a warning such as “This section is outdated. Please update
this article to reflect recent events or newly available information”. But ultimately, such classifications
are subjective too.

104 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

ID Topic Subject area Sentences Words Verbs

1 Yemen GPE 209 5513 646

2 Connecticut GPE 206 5395 605

3 Cambodia GPE 205 5061 573

4 Paleontology Field of science 178 5604 657

5 Jet engine Invention 94 2655 352

6 Wine Food 135 3741 440

7 Wales GPE 183 5117 615

8 Melbourne GPE 223 5593 599

9 Namibia GPE 203 5512 637

10 Catalonia GPE 196 6786 567

11 Printing Invention 286 6835 956

Figure 5.11: Statistics for the articles in the test corpus.

ID Topic Sentences Verbs Target # events Max. # events

1 Yemen 209 646 27.86 35

2 Connecticut 206 605 26.09 35

3 Cambodia 205 573 25 30

4 Paleontology 178 657 28.33 35

5 Jet engine 94 352 15 20

6 Wine 135 440 18.97 25

7 Wales 183 615 26.52 35

8 Melbourne 223 599 25.83 35

9 Namibia 203 637 27.47 35

10 Catalonia 196 567 24.45 30

11 Printing 286 956 41.22 50

Figure 5.12: Target and maximum numbers of timeline entries.

would have resulted in a performance close to the maximum score. For one article, the
number of events with an associated date was even lower than the maximum number of
events to be chosen for the timeline.

The problem was caused by the fact for those articles, my estimation of the maximum
number of events was too high, and that consequently, timeline writers were asked to
write too many timeline entries. The estimate would have been more accurate if I had
based it on the number of dates rather than on the number of verbs.

I resolved the problem in the following way: The article where the number of events
with an associated date was lower than the maximum number of events was excluded
from the corpus. For the remaining three affected articles, I went back to the original
timeline writers and asked them to remove a specified number of entries. Before doing
so, I calculated a new upper limit maxEvNew on the number of timeline entries for each
article affected as follows:

maxEvNew = r̄ · EvWithDate (5.13)

where EvWithDate is the number of events with an associated date, and r̄ is the ratio
between the maximum number of events and the number of dated events in the seven
articles for which the problem did not occur. It is obtained as the average of a ratio r
calculated separately for each of the seven articles, which is defined as

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 105

ID Topic Max. # events (original) Max. # events (corrected)

1 Yemen 35 35

2 Connecticut 35 35

3 Cambodia 30 30

4 Paleontology 35 22

5 Jet engine 20 12

7 Wales 35 35

8 Melbourne 35 35

9 Namibia 35 35

10 Catalonia 30 30

11 Printing 50 25

Figure 5.13: Corrected maximum numbers of timeline entries.

r =
maxEv

EvWithDate
(5.14)

where maxEv is the maximum number of events for an article, and EvWithDate is the
number of events with an associated date in that article. Figure 5.13 shows the corrected
maximum number of timeline entries in bold font for the three affected articles.

5.3.2 Participants

The data collection was performed using 30 human timeline writers, who agreed to write
one or two timelines each. Participants included postdocs and graduate students of the
University of Cambridge. Not all were native speakers of English, but they all had lived
in English-speaking countries for a minimum of one year (most of them much longer) and
were used to working with scientific English on a daily basis. While a majority of the
participants were computational linguists, not all of them were.

5.3.3 Materials

Human participants were provided with hard copies of the following:

• the article to be summarised;

• the set of guidelines on how to complete the task (cf. Figure 5.3 on page 85);

• ruled paper on which to write the timeline entries (timeline writers were free to use
them or use their own paper).
Each line on the ruled paper contained a short field for the date of the event, and a
long field spanning the rest of the line which was intended to be used for the textual
event description.

The articles were pre-processed before the experiment. Introductory sections which
appear before the table of contents were removed. These often contain a form of summary
already, which should not be available to the timeline writers at the time of writing. I also
removed hyperlinks and images. These could have distracted the reader and/or provided
unwanted cues. For example, some readers might have considered an event to be less

106 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

important only because the mention of the event’s agent (i.e. some historical figure) was
not linked to the Wikipedia article describing that figure. I wanted the timeline writers’
judgments to be based only on the running text.

5.3.4 Procedure

The data collection was carried out in December 2014 and January 2015. Each article was
assigned to timeline writers who were unlikely to have prior knowledge about the history
of the concept described in the article. I wanted to avoid a situation where the timeline
writers’ choices of events could have been influenced by their prior knowledge.

Timeline writers who were not present in Cambridge at the time of the data collection
were sent the materials via email, and were asked to print the materials before starting
to create timelines. They were free to work on the task in their own time.

Upon return of the created timeline(s), I asked the timeline writers to give an estimate
of the total time required, and recorded any comments the timeline writers chose to voice
to me. The creation of a timeline for a medium-sized article took about two hours on
average (including the time required for reading the source article). Timeline writers
seemed to apply different strategies when composing a timeline. Some writers first read
the entire article and then selected events in a separate step. Other writers started by
marking up a large number of events while reading the source text, and then removed
some of them in further iterations, until the limit on the number of timeline entries was
respected.

No written or oral instructions apart from the written guidelines were standardly
given. A small number of timeline writers who asked for clarification of the guidelines
were provided with explanations that were as close as possible to the written guidelines.

5.3.5 Characteristics of gold standard

Figure 5.14 lists the number of timeline entries that the participants wrote for each article.
For most articles, the average number of lines written is slightly below the maximum
allowed, but note also that some participants exceeded the maximum number of events.
Since the deviation was only marginal, I chose to accept the slightly longer timelines
without asking the participants to correct their timelines.

A further observation is that timeline entries are typically short in terms of words:
The average entry in the human-written timelines is only 11 words long and only consists
of a noun phrase or main clause.

5.3.6 Creation of HCUs

I will now give statistics for the creation of HCUs that I performed based on the human-
written timelines. This step was carried out in January 2015, using a standard relational
database. Creating HCUs for a single article required about three to six hours of process-
ing time, depending on the length of the source article. This estimate includes the time
required to digitise hand-written timeline entries.

Figure 5.15 lists the number of HCUs I created for each article. Longer articles tend
to have a higher number of HCUs annotated, although the relationship is not strictly
proportional. For instance, 82 HCUs have been annotated for the article on the history
of Melbourne (which has a line limit of 35 entries), while only 25 HCUs exist for the

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 107

Article Writers Max. events
Number of lines written

Average no. of words
min avg max

Yemen 6 35 24 32.67 38 8.96

Connecticut 3 35 30 32.00 34 11.21

Cambodia 3 30 25 27.67 30 10.14

Paleontology 3 22 20 21.33 22 13.18

Jetengine 3 12 12 12.00 12 16.52

Wales 3 35 35 36.67 38 9.29

Melbourne 3 35 21 30.00 35 9.05

Namibia 3 35 21 27.00 31 11.87

Catalonia 3 30 23 26.67 30 9.47

Printing 3 25 25 25.33 26 10.69

Average 11.04

Figure 5.14: Statistics on the number of timeline entries (lines) written per article.

Article Line limit HCUs
Number of HCUs with

HCU weight 1 HCU weight 2 HCU weight 3

Yemen 35 76 46 22 8

Connecticut 35 72 43 23 6

Cambodia 30 73 48 19 6

Paleontology 22 46 31 9 6

Jetengine 12 25 14 10 1

Wales 35 72 31 27 14

Melbourne 35 82 59 18 5

Namibia 35 57 35 13 9

Catalonia 30 62 37 18 7

Printing 25 59 40 11 8

Figure 5.15: HCU statistics for each article in the corpus.

much shorter article on the history of the jet engine (where the line limit is 12 entries).
Figure 5.15 also shows that using multiple timeline writers leads to the characteristic
pyramid shape known from Nenkova et al.’s pyramid method (with HCUs instead of
SCUs). Such a pyramid shape is obtained for all articles in the corpus, i.e. the number of
HCUs per tier decreases from left to right in each line of Figure 5.15. This suggests that
the final limits on the number of timeline entries were chosen sensibly.

5.3.7 Anchor weight annotation

I now provide statistics for the annotation of anchor weights performed. This step, which
was completed in March 2015, took about one to two weeks for all articles. Note that
this process would have required considerably more time if anchor weights could not be
assigned independently of each other in most cases.

Figure 5.16 shows that the average number of TimeML events that an HCU is linked
to is 1.04 (macro-averaged across articles). The number of TimeML events per HCU is
lowest for the article “History of printing”. This is due to the article’s writing style. The
text is written such that many important events, which timeline writers added to their
timelines, are mentioned only implicitly. For instance, for a sentence starting with “A

108 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Article TimeML events per HCU

Yemen 1.13

Connecticut 1.08

Cambodia 1.15

Paleontology 1.20

Jetengine 0.88

Wales 1.04

Melbourne 1.02

Namibia 1.25

Catalonia 0.84

Printing 0.76

Average 1.04

Figure 5.16: Number of TimeML events per article.

Number of links to a TimeML event (per HCU) Number of HCUs

0 121 (17.2 %)

1 468 (66.5 %)

2 97 (13.8 %)

3 14 (2.0 %)

4 2 (0.3 %)

7 2 (0.3 %)

Total 704

Figure 5.17: Number of TimeML events linked to per HCU.

dot matrix printer or impact matrix printer refers to a type...”, timeline writers are likely
to create a timeline entry describing the invention of the matrix printer, although the
invention is never explicitly stated. In such cases, it is not possible to find a suitable
TimeML event which expresses the HCU’s content.

Figure 5.17 shows how many TimeML events HCUs are linked to. 82.8% of HCUs are
linked to at least one TimeML event; 17.2% of HCUs are not linked to any event. The
highest number of events that any HCU is linked to is 7. However, only a very small
number of HCUs are linked to three or more TimeML events. An additional analysis (not
shown in the table) revealed that for 57.0% of all HCUs without a linked event, there is
in fact a suitable textual anchor somewhere in the text, but the word concerned was not
recognised as a TimeML event.

Figure 5.18 shows how many HCUs TimeML events are linked to. 83.8% of all TimeML
events are not linked to any HCU. The vast majority of linked events are linked to a single
HCU; only 9 events are linked to two HCUs, and none to more than two. This suggests
that an algorithm selecting k TimeML events is highly unlikely to express the semantic
content of more than k HCUs.14

14This result reconfirms the assumption underlying the scoring mechanism introduced in Section 5.2.4
that an ideal selection of k TimeML events expresses exactly k HCUs.

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 109

Number of HCUs linked to (per TimeML event) Number of TimeML events

0 3707 (83.8 %)

1 708 (16.0 %)

2 9 (below 0.1 %)

Figure 5.18: Number of HCUs linked to per TimeML event.

5.4 Reliability of the resource

In Section 4.3, I mentioned that the evaluation of summarisation tasks is complicated by
human subjectivity. This potential problem also applies to my evaluation methodology.

Any good evaluation methodology strives to prove that the underlying evaluation
resource is replicable. I will now present my experiments investigating reliability.

5.4.1 Suitability of pyramids

Both the elicitation of gold-standard timelines and the subsequent creation of HCUs
are subject to human subjectivity. It is theoretically possible that the task of timeline
generation is so arbitrary that a completely different timeline would emerge if different
timeline writers were used. Similarly, it could also be the case that my definition of an
HCU would not enable other human experimenters than myself to create a reproducible
set of HCUs.

I therefore analysed agreement between two independently created pyramids for one
randomly selected article. To this end, a further three human timelines for this article
were elicited, such that six timelines are available in total. There are six possible splits
of the six timeline writers into two teams of three timeline writers each. For each split,
a matrix like the one shown in Figure 5.19 and Figure 5.20 was created. The matrices
summarise how many HCUs were chosen by m timeline writers in Team 1 (shown as rows)
and by n writers in Team 2 (shown as columns), for all possible pairs of m and n.

Note that cell (0,0) is a special case. This cell refers to historical events in the source
text that no writer has chosen to mention in their timeline. The number of such HCUs
cannot be measured automatically, as I annotated (and indeed encountered material for)
HCUs only for those historical events that at least one writer had expressed. I there-
fore estimated the value of this cell, called avgEventFreq, using the average number of
TimeML events per HCU:

avgEventFreq =
eHCU

nHCU
=

305

100
= 3.05 (5.15)

where eHCU is the total number of TimeML events in sentences with at least one TimeML
event for which a link to an HCU exists; and nHCU is the number of HCUs created for
the article. This calculation is based on the simplifying assumption that a sentence (and
hence, any TimeML events contained in it) expresses the content of at most one HCU.

I now estimate the number of HCUs that could be constructed from the remaining

110 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Team 2
0 1 2 3

Team 1

0 87* 19 2 1

1 18 15 10 1

2 6 8 9 4

3 1 0 3 3

Figure 5.19: Best split (with 94.1% of all HCUs falling into one of the grey cells).

Team 2
0 1 2 3

Team 1

0 87* 17 6 0

1 20 9 6 3

2 8 14 5 1

3 0 2 6 3

Figure 5.20: Worst split (with 89.8% of all HCUs falling into one of the grey cells).

sentences in the text:

approx =
eNoHCU

avgEventFreq

=
266

3.05
≈ 87

(5.16)

where eNoHCU is the number of TimeML events in sentences that do not express an
annotated HCU. In Figure 5.19 and Figure 5.20, the value of cell (0,0) is marked with an
asterisk to differentiate it from the cells whose values were directly observed.

Perfect agreement between the two teams would manifest itself in a diagonal matrix,
i.e. for all HCUs, the number of timeline writers per team who chose a particular HCU
would be the same in Teams 1 and 2, and all other cells would contain a zero. In reality,
the weights are not fully identical, but only similar.

I now perform the following analysis in order to quantify agreement between the two
teams. I assume that a positive case is where the two teams’ frequencies differ at most
by one; the cells which represent those cases are coloured grey in the two matrices. All
other cases were assumed to reflect poor agreement. Figure 5.19 shows the split where
the proportion of HCUs in the grey area is highest, while Figure 5.20 gives the split where
it is lowest. On average across all splits, 91.9% of all HCUs fall into the grey area. This
result suggests that the reproducibility of pyramids is acceptable to be used for evaluation
of system summaries.

The above way of measuring agreement is more appropriate than more standard sum-
mary metrics such as Krippendorff’s α or Fleiss’ κ. What is being measured here is not
inter-annotator agreement between a number of individual coders who annotate a set of
coding units according to a provided coding scheme. Instead, agreement is measured
between teams of fully independent timeline writers, each of whom writes a new timeline
based on a textual input document.

However, to give the reader a rough idea of the agreement achieved if a summary
metric were used, I calculated Krippendorff’s α in the following non-standard way: Each
team of three timeline writers was interpreted as a single coder; each HCU was treated

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 111

as a coding unit; and the value assumed to have been chosen by a team was the number
of timeline writers in the team who expressed that HCU in their timelines. I assumed
that HCU weights are values on an interval scale, and therefore used an interval difference
function for α as proposed by Krippendorff (1980). The value for α achieved using this set-
up was 0.530. This number, while not in the range of highest agreement, is an acceptable
result given the high level of subjectivity. This number expresses the same facts as the
figures calculated by simple agreement, but shows the effect of using much more rigorous
summary metrics.

5.4.2 HCU weight judgement

I conducted a further small experiment in order to investigate whether a difference in
HCU weight corresponds to a perceived difference in importance. I assume that this is
the case if a person without knowledge of the annotated HCUs considers HCUs with a
higher weight to be more important than HCUs with a lower weight. Knowledge of the
source text is arguably not necessary for this task, as HCUs with a higher weight are
expected to describe inherently more salient events.

Due to the subjective nature of HCU weighting, it is not adequate to test this hypoth-
esis on individual HCUs, since two humans are fairly likely to perceive the importance
of any single HCU differently. However, I expect these differences to average out when a
human is presented multiple HCUs of the same weight simultaneously as a set.

I therefore construct two lists of HCUs for a given article. One list contains all HCUs of
weight 1 and 3, while the other list is composed of all HCUs of weight 2 and 3. The HCUs
with weight 3 were included in both lists in order to give the human judge information
about the most important events in the history of the concept, so that they could relate
the other less important events they were judging within the framework of the important
events. Each HCU is represented by its date and its HCU Action description. In addition,
the HCU weight is shown (as “(3)”) if it is 3. The following is an extract of such a list:

...
1945 (3) World War II ended
1948 A new currency was introduced
...

The human judge (my supervisor Simone Teufel), who had not previously read the
source texts, was given the two lists for an article simultaneously. For two randomly
selected articles, she was able to determine correctly which of the two lists contained
HCUs with a higher weight. This is a further reason to believe that HCU weight measures
importance in a way that is sufficient to be usable for practical evaluation.

5.4.3 Inter-annotator agreement for anchor weight annotation

Another step in my evaluation methodology which is potentially affected by human sub-
jectivity is the assignment of anchor weights. To confirm the usability of the guidelines
presented in Section 5.2.3.2, a subset of anchor weight assignments was also performed by
a second experimenter (my supervisor Simone Teufel), who was provided with the match-
ing sentences for a subset of HCUs as identified by the first experimenter (myself). She
independently assigned anchor weights to all pairs of HCUs and TimeML events in the

112 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

matching sentences (158 in total). In 87.9% of all cases, the same weight was assigned.
The result of this experiment suggests that the guidelines designed by myself enabled
acceptable reproducibility.

Outright mismatches (e.g., where one experimenter thought that an event represented
an HCU, but the other did not) were mostly due to inference, as the decision whether one
event entails another can be subjective.

I only give percentage agreement here. κ cannot be calculated because there is no
fixed set of categories from which the annotator can choose (instead, a number between
0 and 1 is assigned). Note also that the two experimenters do not work under the same
conditions. The first experimenter starts by selecting matching sentences and then assigns
anchor weights to TimeML events in these sentences. In contrast, the second experimenter
has to follow the first experimenter’s choice of matching sentences.

Overall, the results obtained in the three experiments described in this section give
reason to believe that the three central steps of my evaluation methodology can be reliably
performed.

5.5 Construction of a development resource

The test corpus presented in Section 5.3 should not be used for day-to-day development
of new algorithms, as systems must not be optimised on test data. I therefore constructed
a separate corpus for the purpose of day-to-day development.

A radically simplified procedure was used to construct the development corpus, since
the human effort with the full evaluation methodology followed up to now is considerable.
With the original method, the following time-consuming steps have to be carried out:

1. Human timeline writers have to read and mentally process the source article.

2. Timeline entries need to be written by the timeline writers.

3. HCU candidates need to be created by an experimenter.

4. HCU candidates need to be merged into HCUs by an experimenter.

5. Links (including anchor weights) between HCUs and TimeML events need to be
assigned by an experimenter.

It is not possible to reduce the time the human timeline writer spends reading the
source text, as a good understanding of the article is the necessary preparation for writing
a timeline. However, the other steps can be simplified at the price of lower quality. I made
the following modifications to the original method:

• I performed the selection of important content as a single person instead of using
multiple human timeline writers.

• I did not write textual timeline entries. Instead, I directly marked up important
text spans in the source text.

• I did not create HCU candidates and HCUs using the procedure described earlier.
Instead, a single HCU was directly constructed for each marked-up text span in the
source article, without the prior creation of HCU templates as shown in Figure 5.1

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 113

on page 83.15 In a second step, the HCU was linked to one or more TimeML events
in that text span which expressed it. Anchor weights were assigned as in the original
procedure.

The aforementioned simplifications lower the quality of the resource in the following
ways:

• Due to the well-known subjectivity of content selection tasks, the simplified proce-
dure is less reliable than the original method.

• It is possible that humans perform content selection differently when no textual
timeline entries have to be produced.

• It is now no longer impossible by construction that two different HCUs refer to
the same real-world event, as was guaranteed before. The main reason for this
is that I no longer verify that two HCUs indeed refer to different events. In the
full methodology, all HCU candidates that refer to the same event are merged into
a single HCU. On the other hand, in my simplified procedure, HCUs are created
independently of each other, one at a time. When there are two mentions of the
same real-world event and both have been selected as important text spans, two
HCUs will be created. A second reason is that HCUs are no longer created from
human-written timelines. In the full methodology, it is extremely unlikely that a
human timeline writer would create a timeline describing the same event twice.

• Due to the lack of textual timeline entries, a potential surface generation component
of timeline generation algorithms cannot be evaluated. With the original method,
this was a prospect for future work (although not performed here).

The simplified procedure however allowed me to create a development corpus with
considerably more (30) articles than in the test corpus (10).

For selecting the articles, the same distribution over subject areas as in the test corpus
was used. This results in 19 articles about geo-political entities, 3 articles about fields
of science, 5 articles about inventions, and 3 articles about foods and drinks (as listed in
Figure 5.21). The limits on the number of events to be selected were calculated in the
same way as for the test corpus. Articles which met the exclusion criteria outlined in
Section 5.3.1 (cf. page 103) were removed.

The development resource was used to tune the methods described in Chapter 6. In
contrast, the test resource was held out during development and only used in the final
evaluation.

5.6 Chapter summary

In this chapter, I introduced an evaluation methodology for timeline generation algo-
rithms. This methodology combines the advantages of existing approaches in that it is
based on semantic meaning units and, once an initial investment into evaluation resources
has been made, enables free automatic evaluation of an unlimited number of system time-
lines.

15Creating and merging HCU candidates is not necessary here, since content selection is only performed
by a single timeline writer.

114 CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS

Topic Sentences Verbs Max. events

GPE

Serbia 354 968 55

East Timor 252 717 40

New South Wales 293 968 55

Martinique 232 566 30

Lithuania 563 1618 85

Lyon 159 393 25

Warsaw 333 881 50

Prague 213 529 30

Grenada 140 384 20

Queensland 187 455 25

Honduras 416 1363 75

Taiwan 307 1004 55

Burma 382 1136 60

Singapore 288 878 50

Venezuela 182 525 30

United States 566 1669 90

Slovakia 322 859 45

Croatia 222 666 35

Falkland Islands 423 1510 80

Invention

Hearing aids 113 345 20

Paper 121 450 25

Rockets 178 575 30

The camera 149 488 30

Weapons 298 1054 55

Field of science

Artificial intelligence 314 1074 60

Botany 283 985 55

Optics 166 577 30

Food and drink

Alcoholic beverages 238 765 40

Sugar 153 421 25

The hamburger 334 1161 65

Figure 5.21: Statistics for the articles in the development corpus.

The initial investment is admittedly substantial. It is a process that requires three
major steps: First, human gold-standard timelines for a number of source articles have
to be elicited. These articles are used, in a second step, to create Historical Content
Units (HCUs) which abstract away from different wordings of the same content. The
final step is the annotation of anchor weights between HCUs and textual anchors in the
source text. Crucially, with this system no annotation of system summaries whatsoever
is required, which allows for the automatic free scoring of new system summaries in day-
to-day development. I hope that this property will considerably simplify and accelerate
the development of new timeline generation algorithms, which was hitherto hampered by
the difficulties posed by evaluation.

I have also presented two evaluation resources created based on my methodology. The

CHAPTER 5. EVALUATION OF TIMELINES USING SEMANTIC UNITS 115

first resource was constructed by 30 human participants not familiar with the evaluation
methodology. It can be used as a test corpus and has been made available to the research
community. I used this resource to perform three experiments concerning the reliability of
my methodology, and confirmed that there is reason to believe that the method is reliable.

The second resource can be used for development and tuning. It contains a much
higher number of articles, but is not of the same high quality and suffers from a number
of other methodological drawbacks.

In the next chapter, I will use the evaluation methodology presented here to compare
more than 15 methods for timeline generation. With my methodology, it was very easy
to evaluate such a high number of methods, since evaluation was now completely free, yet
guaranteed to be meaningful and semantically-oriented.

Chapter 6

Algorithms for timeline generation

In this chapter, I investigate various methods that perform timeline generation, and eval-
uate them using the evaluation methodology and resources described in Chapter 5.1 The
chapter is structured as follows: In Section 6.1, I present simple, uninformed methods
that exploit explicit document structure and the presence of dates. Section 6.2 describes
informed methods that rely on external knowledge. In particular, I adapt the existing
supervised approach by Chasin et al. (2014), which was introduced in Section 2.6. I also
present unsupervised methods that combine subject-area-specific lexical tendencies, syn-
tactic dependencies between a verb and a date, as well as co-selection constraints between
multiple events. The sources of income are combined using integer linear programming.
All methods are evaluated in Section 6.4. Although the supervised methods can exploit
the additional development resource described in Section 5.5 for training, they are out-
performed by a combination of three unsupervised methods.

6.1 Uninformed methods

I now present methods for selecting events which I call uninformed, as they are not de-
pendent on linguistic analysis of the article text, machine learning approaches, or external
background knowledge. In contrast, more complicated methods typically require training
data or some form of external knowledge.

The particular uninformed methods used here exploit document structure and the
presence of dates. I analyse to which degree these properties are predictors for the rel-
evance of particular events for the timeline. The advantage is that such cues are easily
obtainable for any input text, including for texts from niche domains, for which additional
background information might not exist.

6.1.1 Section structure

History articles, similar to many other types of documents, are organised into sections.
It seems reasonable to assume that timeline writers start a new section in the article
once a drastic shift in history occurs. My first method tests the improvement which can
be achieved by assuring a balanced selection of content from all sections. The timeline
must necessarily contain events from all parts of the source article, as it is supposed
to retrace the evolution of history throughout the time period described in the article.

1The work presented in this chapter has been published previously (Bauer and Teufel, 2016).

117

118 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

In particular, I use a round-robin method (henceforth called Random RR) that chooses
TimeML events randomly from each section in turn, until the maximum number of events
n to be selected is reached. Once sections run out, the algorithm moves back to the first
section.

However, aside from covering all sections of a text in the timeline, it is also important
to establish where exactly in each section important content is likely to occur. One
hypothesis is that sections tend to start with key events that should be added to the
timeline. To test this, I use a modified version (First RR) of the round-robin method
introduced above which selects the first TimeML event from each section in turn. When
no more sections are available, the second event of each section is selected, and so forth.

There is an analogy with the well-known first-n-words baseline used for summarising
news articles. A news article typically starts with a description of the main event reported
in the article. The rest of the article often contains further details and explanations of
that event. For this reason, selecting the first n words (where n is the intended summary
length) has proven to be a strong baseline for news summarisation. In an evaluation of 31
systems and 6 baselines performed by Nenkova (2005), only a single system outperforms
this approach.

Alternatively, one could assume that important events tend to occur at the end of
a section rather than at the beginning. This is also plausible as the last sentence of a
section typically describes the result state of a longer series of events, such as the final
settlement of a territorial dispute. Method Last RR selects the last event in each section
in a round-robin fashion.

I also test variants (First Sen RR, Last Sen RR) of the methods above that
select events sentence by sentence in a round-robin fashion, instead of selecting individual
events. In other words, the program would first select all events in the first sentence of the
first section, then select all events in the first sentence of the second section, and so on.
This reflects the intuition that the first sentence of each section should contain at least
one important event. If all events from this sentence are selected at once, this important
event would be guaranteed to be selected.

The aforementioned approaches are compared to simple methods that do not take
section structure into account. Method First global is an adapted version of the first-
n-words summariser from news summarisation. Instead of the first n words, I select the
first n events in the article. Method Last global is a variation which selects the final
n events in the article. Method Random global selects events completely at random.
My hypothesis is that methods that use section structure should perform substantially
better than these very simple methods.

6.1.2 Presence of dates

Another hypothesis is to assume that article writers tend to furnish important events with
an explicit date. I therefore construct a further method (called Simple dates) which
randomly selects events from sentences that contain at least one absolute date. This
definition excludes relative dates such as “the year before”, as well as other temporal
expressions (e.g. “every other year”).

There are reasons why even some important events may not be explicitly dated. If the
date of an event (whether important or not) can be straightforwardly inferred because
one or more dates occur in preceding sentences, the writer may choose not to use an
explicit date to avoid unnatural-sounding redundant text. Another possible factor is the

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 119

communication technology of the era considered. Events in earlier time periods were often
passed on orally, and the exact dates were not recorded. It is also possible that an event
can only be inferred retrospectively in the first place and that no exact date can be given.

Despite these other possible factors, I expect that important events are more likely to
co-occur with a date than less important events, and that it is often left to the reader to
infer the dates of less central events from dates in the event’s context.

In my method, date mentions are identified using the state-of-the-art temporal infor-
mation extraction toolkit HeidelTime (Strötgen and Gertz, 2010), which is rule-based and
analyses each sentence independently (cf. Section 2.3.2 on page 28).

6.2 Informed methods

In this section, I describe methods for timeline generation that require access to informa-
tion beyond the input text itself, such as an annotated corpus of training timelines or a
background corpus of historical texts.

6.2.1 Supervised approach by Chasin et al.

I first describe the modified version of the approach proposed by Chasin et al. (2014)
(cf. Section 2.6) which I use here. Like the original method, I use an SVM model to
perform a binary classification of TimeML events into important and unimportant events.
In my case, a timeline is constructed by selecting the n events with the highest scores
assigned by the system.

6.2.1.1 Features

I re-implementated all features proposed by Chasin et al. These include structural, lin-
guistic and semantic features as well as named entity weights and the importance of the
sentence containing the event as calculated using TextRank. However, I adapted most
features since the original method assigns the same feature vector to all events in a sen-
tence, which is undesirable. In the modified Chasin method, I define features on the
event level rather than on the sentence level whenever logically possible. Only features
that are inherently tied to the sentence as a whole (such as the TextRank score) are left
unchanged.

There are some other differences. Chasin et al. did not clarify what keywords their
final system uses for calculating the maximum WordNet similarity. They considered the
following alternatives: (a) the first two nouns in the article, (b) the first noun and the
first verb, and (c) the first noun and the next word that is either a noun or a verb. I
chose to use the first two nouns in the article as keywords, since the first verb in my
history articles was almost always a general verb such as “to be”.2 Typical keywords are
“territory” and “settlements” for geo-political entities, and “production” and “beverage”
for food articles. Another difference to the original implementation is the choice of event
recogniser. While the work of Chasin et al. was based on Evita (Sauŕı et al., 2005), I
use the publicly available state-of-the-art system TipSem-B (Llorens et al., 2010), which
performs better than Evita (cf. the discussion in Section 2.3.2 on page 28).

The features I use are summarised in Figure 6.1. Bold font indicates a modification.

2The article’s introductions, which are otherwise excluded from processing in my evaluation method-
ology (see Section 5.3.3 on page 105) were retained for the purpose of obtaining keywords.

120 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

Structural

Digit presence in the sentence
Position of the sentence in the article normalized by the number of sentences
in the article
Length of the event word
Number of events in the sentence
Number of “to be” verbs in the sentence

Linguistic

Aspect of the event word (perfective vs. others)
Percentage of events in the sentence that have been assigned class “occur-
rence”
Negation of the event word
Part-of-speech of the event word (verb vs. non-verb)
Tense of the event word (past tense vs. other tenses)

Named entities Sum of the named entity weights in the sentence

Semantic
Maximum WordNet similarity of the event word to the first two
nouns in the article

TextRank
TextRank rank of the sentence in the article, normalised by the number of
sentences in the article

Figure 6.1: Modified set of features used in method Chasin.

6.2.1.2 Training

25 randomly chosen articles in the development corpus were used for training, while the
remaining 5 articles were used for development. The amount of training data available here
is higher than in Chasin et al.’s original method, where only 13 articles were available in
total. Many of the articles in their corpus were also considerably shorter than my articles,
given that they discussed only a single war or battle rather than the entire history of a
concept. For training the SVM models, I used the LibLINEAR software (Fan et al., 2008)
package, in the same way as for the experiment in Chapter 3. The C and g parameters of
the model were tuned using standard grid search and 5-fold cross validation over the 25
articles. The SVM model was used to produce a probability estimate for each TimeML
event, following the method by Platt (2000). These estimates were used as the scores
assigned to events.

6.2.2 Unsupervised approaches

In this section, I propose several unsupervised approaches to timeline generation. I use the
following three ideas: First, I expect information about the subject matter of an article
to be a good predictor of the events that should be included in the timeline, as certain
types of events (depending on the subject area) are well-known to have a decisive impact
on history. For instance, the history of a country is often shaped by the proclamation
of a new constitution or a severe military conflict. I will describe this idea further in
Section 6.2.2.1.

The second idea (Section 6.2.2.3) is that events which are syntactically attached to a
date are likely more important than events merely co-occurring with a date. I use this
additional criterion since there are ways of using a date that intuitively do not indicate
that a given event is important (e.g. dates which describe a less important detail of an
event that is mentioned in a subordinate clause; dates in brackets etc.). I also investigate
whether there are certain years in world history that are more likely to be mentioned in
a timeline regardless of the article’s topic, since events of exceptional importance took

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 121

place in those years (Section 6.2.2.2).
The third idea is that certain events should not be selected concurrently (Sections 6.2.2.4

to 6.2.2.6). For example, it is likely that a timeline should not contain many events oc-
curring in the same year.

All three ideas will be put to the test in Section 6.4, separately and jointly.

6.2.2.1 Typicality of events

Multi-document summarisers typically exploit redundancy in a large corpus, as described
in Section 2.5. Conversely, single-document timeline generation algorithms have very little
text to work with and no redundancy inside their own text base.

I therefore propose a method which acquires information about events typical for a
given subject area. I expect that prior knowledge about the text’s subject area can help
identify important events, as, depending on the subject area, certain types of events are
a priori more relevant for a timeline than others, as described above.

For instance, one can see that words such as “develop” and “professor” are overrepre-
sented in articles on fields of science, while words such as “election” and “constitution”
are highly frequent in articles on geo-political entities, for example.

In order to identify events typical of a given subject area automatically, I contrast
the textual content of all Wikipedia history pages that belong to that subject area to
the textual content in the rest of Wikipedia. To identify such pages, I use the following
procedure: For geo-political entities, I use an exhaustive list of pages describing the
history of countries, states and cities (e.g. “History of Austria”, “History of Texas”, ...).
For all other subject areas, I exploit the fact that Wikipedia is organised as a hierarchy
of categories. The category system of Wikipedia corresponds to a directed acyclic graph,
given that each article can belong to multiple categories. I use categories to compile lists
of articles that are relevant to a given subject area. The Wikipedia category is chosen
manually (e.g. “History of food and drink” for the subject area “Food and drink”) here,
but this process could be automated.

Crucially, this approach has the advantage that it does not require individual events to
be mentioned as being important in the Web corpus. Events which are globally important
are not necessarily considered important by the author of a given history article, and vice
versa. For example, the description of the history of a field of science in the 18th century
might present a particular invention as being important for the subsequent development
of the field, although this event may not be mentioned at all in a general corpus of history
articles.

My method starts by calculating for each event in the source text how typical it is of
the article’s subject area. Typicality of an event can be estimated by comparison to all
other subject areas as follows:

typ(e) =

∑
w∈R(e)

fr(A,l(w))
1+dist(we,w)

C
(6.1)

where R(e) is a fixed-size window of words (not crossing sentence boundaries) around the
event word in question, l(w) is the lemma of word w, A is the set of all articles that fall
into the article’s subject area, fr(A, l(w)) is a frequency ratio (henceforth called typicality
score) indicating how typical l(w) is of subject area A, dist(we, w) is the absolute distance
in words between word w and the event word we, and C is a normalisation constant.

The typicality score for a single token w and a subject area A is calculated as

122 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

GPE INVENTION FOOD

absolutism (35.1) gas-works (7623.2) yerba (2638.5)
protectorate (33.8) reverse-angle (5366.8) hamburger (1992.5)

serfdom (33.0) flashback (1571.1) saffron (1958.0)

club (0.02) season (0.1) play (0.1)
game (0.02) team (0.1) member (0.3)
season (0.02) school (0.1) bear (0.3)

Figure 6.2: Words with high and low typicality scores for three subject areas.

fr(A, l(w)) =
wordscore(A, l(w))

wordscore(H, l(w))
(6.2)

where H refers to the set of all Wikipedia articles whose title starts with “History of”,
and wordscore is a function that calculates the relative frequency of a word lemma in a
number of articles:

wordscore(G, l(w)) =
freq(G, l(w))

freq(G, ∗)
(6.3)

where freq(G, l(w)) is the number of times word lemma l appeared in the set of articles
G, and freq(G, ∗) is the total number of words in the set of articles. The normalisation
constant C is defined as:

C =
∑

w∈R(e)

1

1 + dist(we, w)
(6.4)

Normalisation is necessary since the number of words in R(e) is not always constant,
despite the fixed window size. This is because with a window size n, there are not always
n words before and after the event word (e.g. where the event word is the first or the last
word in the sentence). Without a suitable normalisation, an event at the beginning or
end of a sentence would wrongly receive lower scores.

Figure 6.2 shows for three sample subject areas words with high and low typicality
scores (calculated using Equation 6.2). As expected, words that are intuitively related
to the subject area receive high scores (such as absolutism for geo-political entities and
hamburger for food). Words which are unrelated to the subject area (such as season and
team for inventions) receive low importance scores.

The method based on typicality scores (called Typicality in Section 6.4) selects the
n events with the highest typicality typ(e), where n is the desired number of events in the
timeline.

6.2.2.2 Global importance of dates

Although the Web corpus cannot be expected to contain information about each and
every event in the source text, it is possible that events from certain years are more likely
to be mentioned in timelines generally, since events of exceptional global importance took
place in those years. For instance, the end of World War II influenced the history of many
countries and fields of science alike. It can therefore be expected that the year 1945 is
more likely to be present in timelines than other years.

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 123

I therefore use a method which considers the frequency glob(y(e)) of the event’s year
in all sentences in Wikipedia, where e is the event in question, and y(e) is the year in
which event e took place. Each event is linked to a date; events taking place in years that
are frequently mentioned are expected to be more important for the timeline.

Each event is linked to its date of occurrence using the following heuristic. As dates,
I consider all absolute dates identified by HeidelTime3:

1. If the year in which the event took place is stated explicitly (“Charlemagne was
crowned in 800”), I select this date. In order to identify these cases, I examine
whether the event word is linked to a date via a dependency path in which the
intermediate word is the preposition “in”. If there are multiple such paths, I select
the shortest one.

2. Otherwise, if the event word occurs in a subordinate clause and a syntactically
connected event word in the corresponding main clause has an explicitly annotated
date, that event’s date is selected, as the two events are likely to have taken place
at the same date. For instance, in a sentence such as “The Indian campaign of
Alexander the Great began in 326 BC, when he conquered the Achaemenid Empire
of Persia”, the event word “conquered” would be assigned the year 326 BC because
it syntactically depends on the word “began”, which has an explicitly annotated
date.

3. Otherwise, I use the closest date to the left of the event (crossing sentence bound-
aries); if there is no event to the left (i.e. at the beginning of the article), I use the
closest event to the right.

Method typ. + global dates combines this global frequency with the typicality of
each event (from method Typicality). It starts by calculating the combined importance
comb(e) of typicality and global frequency:

comb(e) = typ(e) · glob(y(e)) (6.5)

where comb(e) is the combined importance assigned to event e, and typ(e) is the event’s
typicality as described in Section 6.2.2.1. It then chooses the n events with the highest
combined importance comb(e), similar to method Typicality.

As method Typicality, this method does not require information about specific
events from the article under consideration to be present in the Web corpus.

6.2.2.3 Syntactic links between an event and a date

The informed methods described here use a syntactic parser to identify events that are
syntactically connected to an absolute date. This is in contrast to method Simple dates
(presented in Section 6.1.2), which simply considers whether the event co-occurs with an
absolute date in the same sentence.

I base two methods on this idea. The first method (Syntactic dates) selects ran-
domly from all events that are syntactically linked to a date. The second method (Typ.
+ Syntactic dates) is a combination of methods Typicality and Syntactic dates.

3There is no existing system that links all TimeML events to their date of occurrence, unless the event
and the date occur in the same sentence.

124 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

As in method Typicality, the n most highly ranked events are selected for the timeline.
However, only events that are syntactically connected to an absolute date are considered.

Absolute dates are identified using the HeidelTime package, as before; all other date
expressions are discarded. Syntactic dependencies between tokens are determined using
the C&C dependency parser (version 1.0) (Clark and Curran, 2007). I use them to
construct a directed dependency graph for the sentence.

For each TimeML event, I then calculate the minimal distance t in terms of the number
of dependency arcs to any token that is found to be part of a date. For instance, the
dependency path from “designed” to “1810” in the sentence “With a patent in 1810,
Koenig designed a steam press much like a hand press connected to a steam engine” has
four arcs. Only events that are connected to a date via a dependency path up to T arcs
long are considered to be syntactically linked to a date. A sensible minimum value for
T is 2. This is due to constructions such as “was developed before 1398”, where the
dependency path between date and the event verb is of length 2. Experimental tuning of
T on the development resource (described in Section 5.5) confirmed that this minimum
of T = 2 is indeed optimal.

6.2.2.4 Discouragement of event pairs

A good timeline does not contain redundant events. A simple way of reducing redundancy
is to discourage the selection of two or more events from the same year. Many pairs of
events that happened in the same year are related to each other, and are therefore likely
to be redundant with respect to each other. However, there are also counterexamples
where two unrelated important events happen to occur in the same year. For instance,
both the inauguration of Winston Churchill and the bombings of British cities took place
in 1940; arguably, both these events should be mentioned in a timeline of British history.

I therefore impose a soft constraint which makes it less likely, but not impossible, that
two events from the same year are included in the timeline. In order to achieve this, I use
an integer linear program. Integer Linear Programming (ILP) is a way of maximising (or
minimising) a linear objective function subject to a number of linear inequality constraints.
Schrijver (1986) gives one common formulation of the integer linear programming problem
as: Given a matrix A, and vectors b and c, determine max{cx|x ≥ 0;Ax = b;x integral}.

In a strict sense, ILP constraints are always hard constraints. For instance, one may
specify that the sum of two variables may not exceed 5. Many practical implementations,
however, also use soft constraints. Soft constraints are part of the program’s objective
function, whereas hard constraints are not. A soft constraint is a penalty score designed
to encourage or discourage certain solutions of the problem. I will use a soft constraint
to discourage the selection of events from the same year, and several hard constraints.
These ensure, for instance, that the number of events selected does not exceed a given
maximum.

I maximise the following objective function using the SCIP solver by Achterberg
(2009): ∑

ei∈E

xi · typ(ei)−
∑
ei∈E

∑
ej∈E\ei

bij · sameyear(ei, ej) (6.6)

where i and j are running numbers of TimeML events, E is the set of all TimeML
events, each variable xi indicates whether a corresponding event with number i has been
chosen for inclusion in the timeline, bij is a variable indicating that both events i and j

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 125

have been selected for inclusion in the timeline, typ(ei) is the typicality of event i, and
sameyear(ei, ej) is an indicator function which returns 1 if events i and j happened in the
same calendar year according to the date assignment created using the heuristic described
in Section 6.2.2.2, and 0 otherwise. In other words, whenever two selected events ei and
ej have the same date, the function sameyear(ei, ej) applies a penalty to the value of the
objective function.

This function is optimised subject to hard constraints which are partly inspired by the
well-known multi-document summariser proposed by McDonald (2007).

The first two constraints ensure that the variables xi (indicating that event i is chosen)
and b (indicating that events i and j are chosen) are binary, i.e. their only possible values
are 0 and 1:

xi ∈ {0, 1} ∀i (6.7)

bij ∈ {0, 1} ∀i, j (6.8)

A third constraint ensures that bij is always 1 if both the variables xi and xj are set
to 1:

xi + xj − bij ≤ 1 ∀i, j (6.9)

A further set of constraints ensures that the variable bij can only be 1 if the corre-
sponding variables xi and xj for the individual events are 1 also:

bij ≤ xi ∀i, j (6.10)

bij ≤ xj ∀i, j (6.11)

The final hard constraint guarantees that the total number of selected events is equal
to the maximum timeline length Lmax:∑

ei∈E

xi = Lmax (6.12)

The method called Same-year penalty combines this criterion with method Syn-
tactic dates, i.e. the integer linear program described here does not consider events
that are not syntactically linked to an absolute date.

6.2.2.5 Section balance criterion

The next method (sec. bal.) discourages the selection of too many events from any
single part of the document. To this end, I again use an integer linear program, and
impose a series of hard constraints in order to ensure that at least one event from each
section in the document is selected: ∑

ei∈ES

xi > 0 ∀S (6.13)

where S is a section, and ES is the set of all events in section S.
System sec. bal. is otherwise identical to System Same-year penalty, except for

the objective function, for which I only use the sum of the event’s typicalities:∑
ei∈E

xi · typ(ei) (6.14)

126 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

6.2.2.6 Maximising the distance between selected events

Another method assumes that timeline writers try to maximise the temporal distance
between any two events in the timeline, while selecting only important events. This is
one way of ensuring that the timeline covers the entire timespan described by the article.

It is not practical to use an integer linear program to test this hypothesis, as one would
have to create a variable for each pair of events in the text. Such a program would take
prohibivitely long to solve. I therefore use a graph-based approach whose nodes reflect
events at a given position in the timeline. Here, finding the optimal selection of events
involves finding the shortest path of length tlmax through the graph. The cost of taking a
particular path is determined by the typicality of the selected events and the time distance
between two selected events. A path has a low cost if it involves important events that
are far apart in time.

The structure of the graph can be visualised as a lattice of nodes with height |E|
and width tlmax (see Figure 6.3), where |E| is the number of events, and tlmax is the
permissible number of events in the timeline.

For each event ei, there are tlmax nodes, one for each possible position in the timeline.
Node ei,k represents a choice of event ei in the article as the kth event in the timeline.
For each node, I create edges to all logically possible nodes for the next timeline position,
namely those that represent an event taking place later in time than the event represented
by the current node. For instance, for the node e141,1, I create edges to all nodes ei,2 for
timeline position 2 representing events that took place later in time than event e141. In
this way, I ensure that the timeline created advances in time.

The weight of an edge between two nodes n1 and n2 represents the cost for adding the
two events represented by these nodes to the timeline. This cost C is calculated as

C(n1, n2) =
1

typ(e(n2)) · distyears(e(n1), e(n2))
(6.15)

where e(ni) is a function that returns the event represented by node i, typ(e(n2)) is
the typicality of event e2 as defined in Section 6.2.2.1, and distyears(e(n1), e(n2)) is the
absolute time distance (in years) between events e(n1) and e(n2). Absolute dates are
assigned to events as before.

For finding the shortest path through the graph, I use Dijkstra (1959)’s shortest-path
algorithm. In order to facilitate implementation, I add designated start and end nodes es
and ee to the graph (not shown in Figure 6.3), which are connected to all nodes ei,1 and
ei,tlmax , respectively. The shortest path is then calculated from node es to ee.

My method Maximal Distance combines this criterion with method Syntactic
dates: The graph is constructed only using events that are syntactically linked to a date;
all other events are disregarded.

6.2.3 Combination of the unsupervised method with the ap-
proach by Chasin et al.

A further method (+Chasin) combines two of my unsupervised methods (Typicality
and Syntactic dates) with the supervised approach by Chasin et al. (2014). In partic-
ular, the typicality of an event is used as a further feature in method Chasin. In addition,
events that are not syntactically connected to a date are discarded.

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 127

1 2 3 tl

1

2

3

|T|

...

...

...

...

... ...

Timeline

D
o
c
u
m
e
n
t

4 ...

36 ...

... ...

max

Figure 6.3: Structure of the graph.

6.3 Example output

Before proceeding to the evaluation, I will now show some example output of one of
my systems. Figure 6.4 lists a number of sentences in the Wikipedia article “History of
Wales” from which the algorithm has selected a TimeML event for the timeline. The
selected events are printed in bold font. Selected events which are linked to an HCU
in the annotated test resource presented in Chapter 5 (i.e. at least one human timeline
writer has expressed these HCUs in their timeline) are printed in red color. The dates of
the selected events, which were extracted automatically, are also shown.

Many of the events in red color as well as their context are intuitively typical of the
history of geo-political entities, e.g. in the case of “assassinate”, “revolted” and “elected”.
It is reasonable to expect that revolts and elections are more likely to be contained in
timelines on countries than in other texts. Such subject-area-specific preferences are
modelled by the typicality scores I use.

However, there are of course also events that have not been selected by human anno-
tators although they appear to be typical, such as the passing of a set of laws in 1402.
This result is to be expected, since the salience of an event is likely signalled by many
different cues in the text. In the example shown, the passing of the Penal Laws in 1402 is
presented in the context of a rebellion which is mentioned at the beginning of the sentence.
In such a case, the human timeline writer could, for instance, perceive the rebellion itself
to be more salient than the passing of a set of laws which is the result of that rebellion.
Examples like this one show that it could be worthwhile to investigate discourse effects
which let events in the text appear more or less salient than they would be perceived in
isolation. This and similar ideas for future work will be discussed in Section 7.3.

One can also see that the example output shown in Figure 6.4 only contains events
that co-occur with a date. In fact, each of these events is syntactically connected to its
date of occurrence, because this output was generated using a method that removes all
other events.

128 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

1241 War broke out in 1241 and then again in 1245 , and the issue was still in the balance
when Dafydd died suddenly at Abergwyngregyn , without leaving an heir in early 1246
.

1244 Llywelyn the Great ’s other son , Gruffudd had been killed trying to escape from the
Tower of London in 1244 .

1301 After passing the Statute of Rhuddlan which restricted Welsh laws , King Edward ’s
ring of impressive stone castles assisted the domination of Wales , and he crowned his
conquest by giving the title Prince of Wales to his son and heir in 1301 .

1378 The English government responded to the threat by sending an agent to assassinate
Owain in Poitou in 1378 .

1400 In 1400 , a Welsh nobleman , Owain Glyndŵr (or Owen Glendower) , revolted
against King Henry IV of England .

1402 As a response to Glyndŵr ’s rebellion , the English parliament passed the Penal Laws
in 1402 .

1455 In the Wars of the Roses which began in 1455 both sides made considerable use of
Welsh troops .

1900 The first Labour MP , Keir Hardie , was elected as junior member for the Welsh
constituency of Merthyr Tydfil and Aberdare in 1900 .

Figure 6.4: Subset of selected TimeML events (in bold font) for “History of Wales”.

6.4 Evaluation

I will now evaluate the performance of all methods using the evaluation methodology
presented in Chapter 5.

6.4.1 Method

The performance of all 18 methods (of which 9 are uninformed and 9 are informed)
is evaluated using pyramid scores averaged across the 10 articles in the annotated test
resource presented in Section 5.3. For each article, a pyramid score is calculated using
Equation 5.4 (cf. page 100), with nHCU set to the upper limit on the number of timeline
entries used for eliciting the respective human-written timelines.

6.4.2 Results and Discussion

In Figure 6.5, the results of uninformed and informed methods are listed separately.

6.4.2.1 Uninformed Methods

I first describe the results of all uninformed methods. A completely random selection
of events (Random global) results in a score of 0.10. As expected, selecting events
from the beginning (First global) or end (Last global) of the article does not result
in a clear improvement (0.12 and 0.09 respectively). However, selecting events from
the beginning of each section in turn (First RR) leads to a much higher score (0.21)
compared to methods that do not take section structure into account.

Constructing a timeline using the final events in each section (Last RR) has no effect
(0.10). It makes no difference to the result whether the events at the beginning or end
of a section are selected one at a time (First RR and Last RR) or in blocks, sentence

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 129

Method Description Result
U

N
IN

F
O

R
M

E
D

M
E

T
H

O
D

S
random global Random selection of events in the article 0.10
last global Last events in the article 0.09
first global First events in the article 0.12
first RR First events per section (round-robin) 0.21
last RR Last events per section (round-robin) 0.10
random RR Random selection per section (round-robin) 0.12
first sen RR All events in first sentences per section

(round-robin)
0.19

last sen RR All events in final sentences per section
(round-robin)

0.10

simple dates Random selection from events with a date in
the same sentence

0.16

IN
F

O
R

M
E

D
M

E
T

H
O

D
S

syntactic dates Random selection from events syntactically
connected to a date

0.25

Chasin Modified version of supervised method by
Chasin et al. (2014)

0.12

typicality events with highest typicality 0.17
typ. + global dates Method Typicality combined with informa-

tion about globally important dates
0.14

typ. + syntactic dates Method Typicality with events that are not
syntactically connected to a date removed

0.29

same-year penalty ILP-based method penalising pairs of events
from the same year

0.30

sec. bal. ILP-based method ensuring that content from
each section is selected

0.29

maximal distance Graph-based method maximising typicality
and time distance between any two events

0.29

+Chasin Combination of Chasin et al.’s supervised ap-
proach with unsupervised features

0.28

Figure 6.5: Average pyramid scores for all methods on the test set.

by sentence (First Sen RR and Last Sen RR, the scores of which are 0.19 and 0.10
respectively).

These results suggest that in history articles, important events tend to be placed at
the beginning of each section, not at the end. For timeline generation, methods First
RR and First Sen RR seem to be the equivalent of the first-n-words approach for
news summarisation, which has been shown to result in superior performance. But the
difference lies in the fact that for timelines, it is not the beginning of the text where all
important events are located. Instead, the nature of a timeline implies that all parts of
the input article must be covered. A simple round-robin selection seems to achieve this
to a satisfactory degree.

However, this class of methods might not work as well with articles for which my
selection criteria do not hold. Remember that all articles in the evaluation resource are
chronologically structured. While for such articles it is likely that each section contains
at least some important event, this cannot be assumed, for instance, for articles whose
document structure is different.

Let us now consider the last method in this section, Simple dates. This method is
distinct from the other uninformed methods in that it uses not document structure, but

130 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

the presence of dates. Here, an improvement (0.16) over absolute random choice (0.10)
occurs. The pair of results from methods Simple dates and Syntactic dates show
that dates are a very successful cue for the presence of a salient event. Simple dates at
0.16 is better than its respective uninformed baseline despite only applying a very crude
method of finding dates. The implementation effort involved in identifying dates in a
more sophisticated way using a dependency parse is worth the while, as the improved
result of 0.25 shows. I therefore chose this method as the baseline of informed methods,
and it proves surprisingly high.

6.4.2.2 Informed Methods

I now turn to describing the results obtained with the remainder of the informed methods.
Chasin et al.’s (2014) approach does not do any better than the uninformed methods

and performs much worse than syntactic dates. This is a vindication of my hypothesis
that Chasin et al.’s method is too domain-specific for my corpus. Their method is designed
to work on articles describing individual battles and wars, at which it performs well
(Chasin et al., 2014). The low performance of this method can also not be explained by
the pure size of the training data used, as this is larger than what they originally used.
Of course, this method might well perform a lot better with a corpus orders of magnitude
larger, and we also know that the development corpus is of lower quality and was created
differently from the test corpus. But nevertheless, the large gap between this system’s
performance and the baseline for informed methods (0.12 vs. 0.25) is surprising.

The score of the method that selects the events with the highest typicality alone
(Typicality) is lower at 0.17 than that of method Syntactic dates. In a way, this
is disappointing because the information contained in typicality contains semantic trends
about the nature of events, whereas dates can be harvested only by using a syntactic
parser. I must conclude that timeline writers naturally use explicit dates in the source
text as a signal of importance which is easibly detectable in a superficial manner. The
semantic trends of typicality of events may require more data or they are a weaker signal
when used in isolation. What happens when we combine the two signals? With method
typ. + syntactic dates, which excludes events without an attached date but is
otherwise identical to method typicality, the result improves (0.29), although it is still
broadly in the same range of pyramid scores.

The highest result is observed using method same-year-penalty, which also in-
cludes typicality and syntactic dates. The method combines semantic trends via typical-
ity with one method of respecting inter-relationships between events and also profits from
the presence of syntactically linked dates. Note that it is better than method First RR
although it does not depend on document structure. It will work equally well whether a
text from the Internet is organised in sections or not, whereas first rr entirely relies on
section structure. Same-year penalty is thus the more general method.

Given that same-year penalty does not use section structure, one could ask whether
it could profit from having additional access to this information. Unfortunately, I did not
know which features would work best in combination, so I did not test the combination of
the method same-year penalty with section information. However, I have results of a
comparable method, sec. bal., in which the constraints about pairs of events are replaced
by the section balance criterion. This method performs identically to typicality +
syntactic dates. This is somewhat surprising given that a section criterion is useful
with uninformed methods such as First RR. It seems that the improvement of method
First RR over method random global has less to do with the balanced selection of

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 131

material from all article sections, and instead with the location of that material at the
beginning of each section.

What about the other methods encoding constraints between events? It turns out
that they do not result in further performance improvement compared to the methods
presented thus far.

In particular, information about globally important dates (method typ. + Global
dates) is not beneficial at all (0.14). Note that this is the case although all articles in
the test resource discuss rather general topics such as the entire history of a country or
field of science. One could expect that years such as 1945 are relevant in many history
articles discussing the history of a country or field of science. The poor result obtained,
however, suggest that the opposite is the case. This may indicate that mentions of globally
important events are often mentioned in passing in an article, which makes global dates
a feature not specific enough for a particular article. Although it would be possible to
explore different ways of using background information, I see this as another argument in
favour of using only or mostly local cues in the single article at hand in order to identify
important events.

Another approach that does not lead to an improvement is method Maximal Dis-
tance. This result suggests that the expectation that a good timeline should cover the
entire time period considered by the article does not necessarily result in a selection of
equidistant (in terms of time) events. Our timeline writers seemed to be accepting of
larger gaps despite the fact that the guidelines explicitly asked them to balance coverage
with salience. This can potentially result in larger gaps between events in the timeline,
in particular if a high number of important events happen in a short period of time. For
instance, timeline authors might find it acceptable to skip earlier time periods in German
history in order to be able to add multiple events about the Nazi era and Second World
War to the timeline.

The final system evaluated here (+Chasin) considers whether Chasin et al.’s method
(Chasin) can be improved by combining it with typicality and syntactic dates,
which is not the case (0.28). Given that their supervised approach performed poorly on
its own, this result is not surprising. However, it is not unthinkable that better ways of
combining Chasin et al.’s method with my unsupervised methods exist, but I have not
explored them here.

6.4.2.3 Final remarks

In this evaluation, I have compared many unsupervised methods with an existing super-
vised approach, the only one that existed when I started working on this topic. This
existing approach was the one that is most similar in remit to the objectives of this thesis,
as it also frames timeline generation as a selection of events from a single article. My
methods beat this supervised approach on the test resource presented in Chapter 5.

However, as it turns out, the task that Chasin et al. set themselves and my task
are not so similar. My method is independent of domain, the time period discussed,
and background knowledge about individual important events. In contrast, Chasin et
al. restrict themselves to articles which discuss a single battle or war. This difference is
important to me, because I set out to create a general system. In such an environment,
totally unsupervised approaches often work better, and my achievement is to compare a
wide range of such unsupervised methods. More sophisticated supervised methods may
well fare a lot better. However, my guess is that they will require substantially more
training data than is provided here.

132 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

Chasin et al. have shown that with a relatively small training corpus, supervised
methods can do well for domain-specific treatments of one type of events (battles and
wars). The task approached here is much more ambitious. In particular, training a
supervised system on less domain-specific history articles is much harder, as this would
require the ability to generalise across domains. More sophisticated supervised methods,
better machine learning, intermediate processing or any other better algorithms could
in principle be developed. It is also possible that a training corpus one or two orders
of magnitude larger would help. However, what I have shown here is that my task is
unlikely to be solvable with relatively simple features such as Chasin et al.’s and a small
training corpus. This is the case even though I have treated Chasin et al.’s system
fairly by giving it access to at least comparable training data size and even better event
extraction (TIPSem-B) than originally used (Evita). In addition, my implementation of
Chasin et al.’s system had access to introduction sections for extracting keywords, unlike
all other methods considered.

6.5 Qualitative analysis

Finally, I analyse the created system output qualitatively, in order to give the reader an
impression of the quality of timelines at different recall levels. Figures 6.6 (see page 133),
6.7 (see page 134) and 6.8 (see page 135) show extracts of three timelines for the article
“History of Connecticut” produced by different systems. In particular, Figure 6.6 shows
part of a timeline produced using method last RR, which achieved a pyramid score of
0.14; Figure 6.7 gives entries of a timeline created using method first rr, achieving a
pyramid score of 0.26; and Figure 6.8 shows part of a timeline produced using method
typ. + syntactic dates, which obtained a pyramid score of 0.37. For each timeline,
the first 10 entries in chronological order are listed. The leftmost column shows the
reward given to the respective algorithm for selecting a single event, as calculated using
Equation 5.7 (cf. page 101).

Figures 6.6 and 6.7 make it obvious that methods which select events purely based on
their position in the document (e.g. from the beginning or the end of a section) have two
main drawbacks. First, it is very likely that events which took place in the same year are
co-selected, which is clearly undesirable. For instance, the timeline in Figure 6.7 contains
four events from the same year (1650). In many cases, the co-selected TimeML events in
fact refer to the same real-world event, such as with the two events taking place in 1689
shown in Figure 6.6. A second disadvantage is that TimeML events which do not express
real-world events according to the definition in Section 5.1.1 (such as “according” and
“stood” in Figure 6.7) are arguably more likely to be selected by uninformed methods
(Figures 6.6 and 6.7) than by informed methods (Figure 6.8). This is due to the fact
that uninformed methods do not consider the presence of dates or the typicality of an
event and its context with respect to the article’s subject area. On the other hand, a
method such as first rr is apparently more likely to select sentences such as the first
one in Figure 6.7, which contain a summary statement of the ensuing historical era and
are often considered important.

Although the extract of a timeline produced by method typ. + syntactic dates
(shown in Figure 6.8) also contains a case where two closely related TimeML events have
been co-selected (see the first two entries shown), the fact that events are selected from
across the text reduces the risk of this happening considerably. Important events now
have to be identified on the basis of cues such as the presence of a syntactically attached

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 133

Cont. Date Timeline entry

1687 The Connecticut court met and voted on May 9 , 1689 to restore the old
charter .

1687 When word arrived that the Glorious Revolution had placed William and
Mary on the throne , the citizens of Boston arrested Andros and sent him
back to England in chains .

1689 The Connecticut court met and voted on May 9 , 1689 to restore the old
charter .

2.0 1689 The Connecticut court met and voted on May 9 , 1689 to restore the old
charter .

1.0 1698 They also reelected Robert Treat as governor each year until 1698 .

1781 The French General the Comte de Rochambeau celebrated the first Catholic
Mass in Connecticut at Lebanon in summer 1781 while marching through the
state from Rhode Island to rendezvous with General George Washington in
Dobbs Ferry , New York .

1781 The French General the Comte de Rochambeau celebrated the first Catholic
Mass in Connecticut at Lebanon in summer 1781 while marching through
the state from Rhode Island to rendezvous with General George Washington
in Dobbs Ferry , New York .

1.0 1781 The French General the Comte de Rochambeau celebrated the first Catholic
Mass in Connecticut at Lebanon in summer 1781 while marching through the
state from Rhode Island to rendezvous with General George Washington in
Dobbs Ferry , New York .

1781 New London and Groton Heights were raided in September 1781 by Con-
necticut native and turncoat Benedict Arnold .

1792 An area 25 miles -LRB- 40 km -RRB- wide at the western end of the Western
Reserve , set aside by Connecticut in 1792 to compensate those from Danbury
, New Haven , Fairfield , Norwalk , and New London who had suffered heavy
losses when they were burnt out by fires set by British raids during the War
of Independence , became known as the Firelands .

Figure 6.6: First 10 entries of a timeline for the article History of Connecticut produced
using method last rr (achieving a pyramid score of 0.14).

date or an event whose context is typical of the article’s subject area. One example visible
in Figure 6.8 is the event “negotiated” in year 1683, which was not selected by the two
uninformed models that created the timelines in Figures 6.6 and 6.7.

To conclude, in some cases even a small collection of timeline entries provide obvious
visual cues as to why one timeline obtains a higher pyramid score than another. This is
not generally the case, however. Due to the high subjectivity of content selection tasks,
an independent experimenter trying to analyse the strengths and weaknesses of a given
algorithm will not necessarily share the timeline writers’ intuitions. A reduction of this
inherent subjectivity can arguably only be achieved by increasing the number of timeline
writers used to construct the gold standard.

6.6 Chapter summary

In this chapter, I investigated different methods for the content selection stage of timeline
generation. The approaches were evaluated using the evaluation methodology described

134 CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION

Cont. Date Timeline entry

2.0 1614 Various Algonquian tribes inhabited the area prior to European settlement
.

1614 In 1614 Adriaen Block explored the coast of Long Island Sound , and sailed
up the Connecticut River at least as far as the confluence of the Park River ,
site of modern Hartford , Connecticut .

1614 In 1614 Adriaen Block explored the coast of Long Island Sound , and sailed
up the Connecticut River at least as far as the confluence of the Park River ,
site of modern Hartford , Connecticut .

1623 By 1623 , the new Dutch West India Company regularly traded for furs there
and ten years later they fortified it for protection from the Pequot Indians
as well as from the expanding English colonies .

1.0 1633 By 1623 , the new Dutch West India Company regularly traded for furs there
and ten years later they fortified it for protection from the Pequot Indians as
well as from the expanding English colonies .

1650 According to the 1650 Treaty of Hartford with the Dutch , the western
boundary of Connecticut ran north from the west side of Greenwich Bay “
provided the said line come not within 10 miles -LRB- 16 km -RRB- of Hudson
River . ”

1650 According to the 1650 Treaty of Hartford with the Dutch , the western bound-
ary of Connecticut ran north from the west side of Greenwich Bay “ provided
the said line come not within 10 miles -LRB- 16 km -RRB- of Hudson River
. ”

1650 According to the 1650 Treaty of Hartford with the Dutch , the western bound-
ary of Connecticut ran north from the west side of Greenwich Bay “ provided
the said line come not within 10 miles -LRB- 16 km -RRB- of Hudson River
. ”

1650 According to the 1650 Treaty of Hartford with the Dutch , the western bound-
ary of Connecticut ran north from the west side of Greenwich Bay “ provided
the said line come not within 10 miles -LRB- 16 km -RRB- of Hudson River
. ”

1662 Up until this time , Connecticut had adhered to the 1662 Charter , and with
the independence of the American colonies over forty years prior , much of
what the Charter stood for was no longer relevant .

Figure 6.7: First 10 entries of a timeline for the article History of Connecticut produced
using method first rr (achieving a pyramid score of 0.26).

in Chapter 5.
I first introduced a number of uninformed methods, which do not rely on external

background information. I then presented a range of informed methods, in particular an
improved version of a supervised system from the literature, and various novel unsuper-
vised methods.

The results show that an unsupervised method that considers subject-area-specific in-
formation, syntactic links and the presence of events from the same year achieves the best
result, outperforming a method that is restricted to syntactic links, other unsupervised
methods, and a supervised approach from the literature that has access to an annotated
training corpus of 30 articles.

Another result was that methods that select events from the beginning of each section
(“First RR”) perform better than a method that performs a random selection. This

CHAPTER 6. ALGORITHMS FOR TIMELINE GENERATION 135

Cont. Date Timeline entry

1.5 1662 On April 22 , 1662 , the Connecticut Colony succeeded in gaining a Royal
Charter that embodied and confirmed the self-government that they had cre-
ated with the Fundamental Orders .

1662 On April 22 , 1662 , the Connecticut Colony succeeded in gaining a Royal
Charter that embodied and confirmed the self-government that they had
created with the Fundamental Orders .

2.0 1683 Finally , on November 28 , 1683 , the states negotiated a new agreement
establishing the border as 20 miles -LRB- 32 km -RRB- east of the Hudson
River , north to Massachusetts .

1.0 1789 Connecticut ’s government continued unchanged even after the revolution ,
until the United States Constitution was adopted in 1789 .

1795 Connecticut owned this territory until selling it to the Connecticut Land
Company in 1795 for $ 1,200,000 , which resold parcels of land to settlers .

1796 In 1796 , the first settlers , led by Moses Cleaveland , began a community
which was to become Cleveland , Ohio ; in a short time , the area became
known as “ New Connecticut ” .

1796 In 1796 , the first settlers , led by Moses Cleaveland , began a community
which was to become Cleveland , Ohio ; in a short time , the area became
known as “ New Connecticut ” .

1806 In 1806 , the state leadership sent town leaders instructions for the forthcom-
ing elections .

1.0 1817 The failure of the Hartford Convention in 1814 wounded the Federalists , who
were finally upended by the Republicans in 1817 .

1.0 1818 In 1818 , a new constitution was adopted that was the first piece of written
legislation to separate church and state in Connecticut , and give equality all
religions .

Figure 6.8: First 10 entries of a timeline for the article History of Connecticut produced
using method typ. + syntactic dates (achieving a pyramid score of 0.37).

suggests that exploiting structural information about the input article can – where it is
available – improve the performance of a timeline generation algorithm.

Chapter 7

Conclusion

7.1 Thesis overview

In this thesis, I have introduced the new research task of generating a timeline from a
single history article. I assume that the process of creating a timeline involves selecting
a subset of historical events from the source article. Due to the novelty of this task,
evaluation frameworks were not readily available. A substantial part of this thesis has
therefore discussed the design of suitable evaluation methodologies and the construction
of adequate evaluation corpora. These resources were then used to evaluate a wide range
of timeline generation algorithms.

The creation of timelines from textual resources has been an active research topic for
about 15 years. In Chapter 2, I reviewed existing work. The term “timeline generation”
has been used to describe a number of very different tasks, e.g. the identification of
all events in a given text and the subsequent creation of a temporal ordering, or the
identification of emerging topics in a stream of news stories.

Many existing works are not applicable to my task as they are in the tradition of
multi-document summarisation. They assume the presence of a large electronic corpus
of documents (mostly news articles) with annotated document creation times. As such
information is only available for the most recent periods in history, existing works in this
field have been evaluated on collections of news articles covering, for instance, the 1990s
or the 2000s. One could even go so far as renaming this task “news timeline generation”.
Methods that assume the presence of a parallel corpus cannot be applied to my task, as
my remit includes texts that describe events in the non-recent past, either exclusively or
in combination with events from the recent past.

In my setting, content mentioned in a single input document has to be scored using
mostly local cues. This task, however, is arguably harder than judging importance based
on overlap between multiple documents. As an example of such an approach, I reviewed
the work by Chasin et al. (2014), which classifies TimeML events in a single history
article into important and unimportant events. The approach is evaluated using human
judgments on the importance of individual TimeML events. Such an evaluation is of
limited usefulness in practice, as it is difficult for a human annotator to decide whether
an individual event word is important or not. This problem arises because TimeML events
do not provide a clear one-to-one mapping to real-world events.

In Chapter 3, I described an initial experiment in the context of timeline generation. I
introduced a supervised approach for the problem of identifying important historical fig-
ures that should be contained in a timeline on a given topic. The classifier uses both local

137

138 CHAPTER 7. CONCLUSION

features from the entity’s surroundings and semantic features about the entity’s impor-
tance. My experiments show that this machine-learning approach results in performance
superior to that of a frequency baseline, which is competitive in this setting. The results
were achieved using a corpus specifically constructed by myself using existing timelines
harvested from the web and history articles on the same topics, as well as a heuristic for
aligning different mentions of the same person. I also discussed the limits of my approach,
and explained my decision not to use the aforementioned corpus for the task of timeline
generation, which was investigated in the remainder of the thesis.

The approach to timeline generation which I described in Chapters 4 to 6 is based on an
interpretation of the task as an instance of single-document summarisation. In search of
an appropriate evaluation methodology, I reviewed existing approaches to summarisation
evaluation (Chapter 4). Evaluation methodologies based on semantic units, such as the
pyramid method by Nenkova et al. (2007), assess whether a system summary expresses
the same content as a number of gold-standard summaries written by humans. This
approach has one crucial advantage over the alternatives: It is able to abstract away
from the wording used to express the content. However, this robustness to reformulation
comes at a cost: The need for human annotation of system summaries makes such methods
prohibitively expensive.

The only alternative is surface-oriented evaluation, which can be performed automat-
ically once a number of system summaries have been collected. But such methods, which
rely on string overlap, cannot guarantee that a summary indeed expresses the semantic
content that most human judges perceived as important.

Based on this comparison, I outlined the requirements for an evaluation methodology
for the task of timeline generation which strikes a balance between these two families of
approaches. The methodology should be based on semantic meaning units, yet ideally
require no human annotation of system summaries whatsoever. In addition, the creation
of semantic units from the gold-standard summaries should be reproducible.

Note that these considerations are valid for summarisation tasks more widely. Evalua-
tion methodologies which make it possible to use semantically-oriented, “deep” evaluation
in day-to-day algorithm development (and still not require boundless human annotation)
are a key prerequisite for making significant advances in summarisation research in the
future.

Chapter 5 presents a novel evaluation methodology which fulfills the requirements
outlined in Chapter 4. I first introduced the concept of Historical Content Units (HCU)
and described the event model used. I then explained the main principles of the proposed
evaluation methodology. Next, I described how HCUs are created on the basis of the
human-written timelines. A large part of the chapter was concerned with the identification
of textual anchors for HCUs in the source text, in a move to automate the HCU detection.
To this end, I introduced anchor weights, which are a way of quantifying the extent to
which a TimeML event represents the semantic content of an HCU. I described how a
human expert assigns such anchor weights, starting with general principles, and presented
a detailed set of guidelines describing how HCUs and TimeML events are related in the
many grey-area cases one encounters in practice. I then showed how an existing evaluation
resource can be used to score system timelines.

Next, I described the creation of an evaluation corpus consisting of gold-standard
timelines for a set of history articles. I explained how the source articles were chosen
and pre-processed, and gave statistics for the resulting corpus. I also presented a second
corpus consisting of annotated history articles. This corpus, which was created in a

CHAPTER 7. CONCLUSION 139

drastically simplified manner in order to reduce the human effort required, can be used
for development and tuning of new timeline generation algorithms.

I then showed that my way of creating HCUs results in the desired pyramid shape and
that the concept of HCU weights is meaningful. I also gave statistics for the annotation of
anchor weights performed, and analysed whether a consistent annotation can be achieved
using my set of guidelines.

In Chapter 6, I compared the performance of various methods for timeline generation.
I first described a number of uninformed methods which do not rely on external knowledge
or linguistic processing, instead making use of section structure and the presence of dates.
I then discussed a number of informed methods, starting with an improved version of
Chasin et al.’s supervised approach that was trained on the additional development corpus
described in Chapter 5. A second group of informed methods are unsupervised. Events
are selected on the basis of an article’s subject area or syntactic links between an event
and a date. I also experimented with date-based co-selection constraints and important
dates harvested from Wikipedia. Finally, all methods were evaluated using the evaluation
methodology described in Chapter 5. The numerically best-performing method was a
combination of three methods which consider the article’s subject area and syntactic
dates, while discouraging the co-selection of events from the same year. This is slightly
surprising as all three methods are unsupervised.

7.2 Contributions

The main contributions of the thesis can be summarised as follows:

• I proposed an evaluation methodology for timeline generation that allows for eval-
uation of timelines using deep meaning units, which I call Historical Content Units
(HCU). Creating HCUs requires multiple human-written timelines and extensive
human annotation for each text. However, thanks to the anchoring of HCUs in the
source text, no human annotation of system summaries is required. (Chapter 5)

• I investigated the performance of various informed and uninformed approaches to
timeline generation. Informed approaches included supervised as well as unsuper-
vised methods. I found that a combination of three unsupervised methods outper-
forms both other uninformed methods and a supervised approach. (Chapter 6)

• I showed that a supervised approach which uses structural, linguistic and semantic
features outperforms a strong frequency baseline on the task of identifying important
historical figures that should be mentioned in a timeline on a given topic. (Chapter
3)

• I created the following evaluation resources:

– a manually annotated corpus (consisting of human-written timelines, HCUs
and anchor weights for pairs of HCUs and TimeML events) that can be used
to evaluate timeline generation algorithms according to the methodology pre-
sented in Chapter 5;

– a separate development corpus (being of lower quality but comprising a larger
number of articles than in the test corpus) that can be used for tuning timeline
generation algorithms;

140 CHAPTER 7. CONCLUSION

– a corpus of several hundred gold-standard timelines and accompanying history
articles that can be used to train and evaluate systems which select important
entities for timelines.

7.3 Directions for further research

Based on the insights obtained through my experimental work, I will now outline possible
avenues for extending the methods presented in this thesis.

Surface realisation of important historical events. This thesis has not investigated
surface realisation of timeline entries, but for any deployable system, one would need a
way to present the content selected for a timeline entry.

For this purpose, one could either use natural language generation (NLG) techniques
that create a new sentence from scratch, or manipulate the original surface text in suit-
able ways. Constructing timeline sentences directly from original article text is likely to
involve operations such as sentence compression or sentence fusion. Often information
from previous sentences has to be added in order to make a timeline sentence understand-
able. For instance, where a pronoun refers to an entity earlier on in the text, it must
be resolved. The original sentence may also contain superfluous subordinate clauses that
should be removed.

There are cases where the original source text cannot be transformed into a timeline
entry. Here, entirely new timeline sentences need to be generated. This task would
likely require deeper understanding of the event’s meaning. For instance, events could be
mapped to a matching frame in FrameNet (Baker et al., 1998), which would then be used
as the starting point for creating a short timeline sentence.

Before research in this area can be performed, my evaluation methodology for timeline
generation would have to be extended by a comprehensive strategy for measuring the
quality of surface realisation. The resource I created already contains the textual timeline
entries needed for this task. However, it is not known whether humans agree on how a
given historical event should be verbalised in a timeline. It would therefore make sense
to collect additional human-written timeline entries for a set of given historical events.
The annotation effort for this corpus construction would be considerably lower than for
the task of content selection, as human annotators need not read and process an entire
history article before writing timeline entries.

Evaluation of other single-document summarisation tasks. My new evaluation
methodology could, with suitable modifications, be used with other single-document sum-
marisation tasks also. Its central advantage is that deep evaluation is possible without
costly annotation of each and every system timeline. Being able to test the performance
of new algorithms rapidly and reliably would be desirable in summarisation evaluation
more generally. In particular, an approach that can easily evaluate multiple system sum-
maries would, for the first time, allow for the automatic evaluation of a large number of
single-document summarisers using an evaluation method based on semantic units.

My evaluation methodology would have to be adapted in a suitable way before it could
be used with other single-document summarisation tasks. A main difference between my
task and general single-document summarisation is that timeline entries always describe

CHAPTER 7. CONCLUSION 141

events. This led to the definition of HCUs as meaning units. With other forms of single-
document summarisation, these units would have to be defined differently. For instance,
one could identify lexical cues in the gold standard summary which signal that the sum-
mary writer intended to start a new meaning unit. The guidelines for linking meaning
units to anchors in the source text would also have to be redesigned in this case.

Topical changes in the article text. The methods for timeline generation presented
in this thesis could be extended. For instance, it is likely that discourse phenomena in
the source text play an important role when timeline writers decide on the events that
should be added to the timeline.

One option is to use methods that detect where in the article text a topic shift occurs,
for instance lexical chains (Barzilay and Elhadad, 1997) or topic models such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). The article would first be segmented
into text blocks discussing a single topic each. These text blocks could be used as an
additional feature in any supervised or unsupervised timeline generation algorithm. It
seems worthwhile to investigate this hypothesis since there is not necessarily a one-to-one
correspondence between section and paragraph breaks and the beginning of a new topic.

Exploiting other discourse phenomena. Other discourse phenomena could be ex-
plored as well. For example, it is unlikely for a side event that is merely presented as
evidence of another event to be mentioned in the timeline. In order to identify instances
of such relations, one might use an existing discourse parser, for instance one which is
based on Rhetorical Structure Theory (RST). The output of such a parser could be used
to define co-selection constraints such as the ones I used in Chapter 6.

Timeline generation with regard to a user query. Further work may also address
the related problem of timeline generation with regard to a user query. Timeline gener-
ation in this thesis refers to the creation of generic timelines, which are not tailored to
any particular information need the user may have. However, some users may be more
interested in learning about a country’s economic history than about scientific advances,
for instance. An algorithm that is able to take such preferences into account has to bal-
ance two potentially conflicting objectives: creating a timeline that is of high quality in
its own right (which requires identifying salient events and covering the entire time period
discussed in the article), and ensuring that events added to the timeline are relevant to
the query. One way of operationalising query relevance would be to use query expansion
techniques from information retrieval in order to assess for each sentence in the article
to which degree its vocabulary is related to the query topic. This query relevance score
could then be combined with a query-independent typicality score akin to the one used
in my experiments.

Methods for timeline generation using texts from other genres. It would be use-
ful to study the performance of different timeline generation algorithms with input texts
other than history articles in an encyclopedia. With history books, textbooks or historical
texts, it may be necessary to use different or adapted timeline generation algorithms, since
texts from these genres could present historical information in a different way compared
to history articles. For instance, textbooks often aim to interpret and explain historical
events instead of simply enumerating them. Identifying the actual historical events could
be a harder task with such texts than with relatively concise Wikipedia articles.

142 CHAPTER 7. CONCLUSION

Recent events vs. events in the distant past. One could also investigate whether
the best of way of constructing a timeline depends on how distant in the past the historical
events in the input text are. For instance, it seems likely that a revolt that took place in
2013 is perceived as important by many human readers, while a similar uprising in the
more distant past is omitted from the timeline. One possible reason is that humans find
events that are similar to events which they have experienced personally more important.
Timeline writers are also likely to have more background knowledge about history in
the 20th and 21st century than about earlier periods of history. Knowledge about such
preferences could, for instance, be used to fine-tune the algorithms presented in this thesis
depending on the time period considered.

More sophisticated supervised methods. An obvious strategy for improving the
performance of all supervised methods presented in this thesis is to use more powerful
machine learning methods. For instance, it seems likely that neural networks, which have
been shown to outperform other methods in many natural language processing tasks,
could be used to learn a more robust model of what is an important entity or event
that should be added to a timeline. The higher complexity of neural networks, however,
means that training is not possible without a substantial amount of labelled data. To
perform timeline generation using neural networks, an evaluation resource several orders
of magnitude larger than the one presented in Chapter 5 would have to be constructed
upfront.

An alternative would be to use active learning methods, e.g. for improving the per-
formance of models based on support vector machines (Tong and Koller, 2002). Such
approaches can help reduce the effort required for labelling training instances.

Identifying important named entities of other types. My preliminary experiment
in Chapter 3 started from the assumption that a good timeline can be constructed by
identifying important historical figures in a source article. A possible extension is to
investigate which named entities of other types (such as locations or organisations) should
be added to the timeline. An analysis of this kind would require the construction of a
mapping between such entities in an article and co-referring entities in a gold-standard
timeline (similar to the mapping for person names presented in Chapter 3).

Construction of textual timelines based on important historical figures. Fur-
ther research should also address the construction of a full textual timeline based on a set
of salient historical figures. While knowledge about important historical figures is useful
for constructing a timeline, a concatenation of all sentences that mention an important
person is unlikely to result in a good timeline. In particular, problems arise because in
many cases, only a small number of the mentions of an important historical figure contain
salient content that humans would add to the corresponding timeline. Even clearly impor-
tant persons such as Winston Churchill may be mentioned in the context of unimportant
side events. My supervised method therefore assigns a separate importance score to each
mention of a historical figure. I do not yet use this score for the next step, the creation of
timeline entries. To perform this step, one would have to investigate which mentions of
an important figure should be used as the basis for constructing timeline entries. Ideally,
those mentions that have been assigned the highest importance scores by my algorithm
work best.

CHAPTER 7. CONCLUSION 143

7.4 Outlook

It is my hope that timeline generation for single history articles will continue to be an
attractive task. There is an increasing public interest in acquiring a better understanding
of the recent as well as the distant past. Timelines are ideal for providing this knowledge,
due to their visual and conceptual simplicity. Possible applications range from the use in
educational institutions to interactive history browsers on the web.

This thesis has defined single-document timeline generation as a research task for the
first time. I have here introduced a range of supervised and unsupervised approaches
to timeline generation, but this is only the beginning of a new line of investigation.
The evaluation methodology I presented will hopefully allow the research community
to evaluate new algorithms in a more meaningful way than hitherto possible, and at a
considerably reduced annotation cost.

Bibliography

Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41. http://mpc.zib.de/index.php/MPC/article/view/4.

Allan, J., editor (2002). Topic Detection and Tracking: Event-based Information Organi-
zation. Kluwer Academic Publishers, Norwell, MA, USA.

Allan, J., Carbonell, J., Doddington, G., Yamron, J., and Yang, Y. (1998). Topic Detec-
tion and Tracking Pilot Study: Final Report. In Proceedings of the DARPA Broadcast
News Transcription and Understanding Workshop, pages 194–218, Lansdowne, VA,
USA.

Allan, J., Gupta, R., and Khandelwal, V. (2001). Temporal Summaries of New Topics. In
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, pages 10–18, New York, NY, USA.
ACM.

Bach, E. (1981). On time, tense, and aspect: An essay in English metaphysics. Radical
Pragmatics, pages 63–81.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project. In
Proceedings of the 17th International Conference on Computational Linguistics - Vol-
ume 1, COLING ’98, pages 86–90, Montreal, Québec, Canada. Association for Compu-
tational Linguistics.

Barzilay, R. and Elhadad, M. (1997). Using Lexical Chains for Text Summarization. In
Proceedings of the ACL/EACL 1997 Workshop on Intelligent Scalable Text Summariza-
tion, pages 10–17, Madrid, Spain.

Barzilay, R. and Lapata, M. (2008). Modeling Local Coherence: An Entity-based Ap-
proach. Comput. Linguist., 34(1):1–34.

Bauer, S., Clark, S., and Graepel, T. (2014). Learning to Identify Historical Figures for
Timeline Creation from Wikipedia Articles. In Aiello, L. M. and McFarland, D. A.,
editors, Social Informatics - SocInfo 2014 International Workshops, Barcelona, Spain,
November 11, 2014, Revised Selected Papers, volume 8852 of Lecture Notes in Computer
Science, pages 234–243. Springer.

Bauer, S. and Teufel, S. (2015). A Methodology for Evaluating Timeline Generation Al-
gorithms based on Deep Semantic Units. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 2: Short Papers,
pages 834–839. The Association for Computer Linguistics.

145

http://mpc.zib.de/index.php/MPC/article/view/4

146 BIBLIOGRAPHY

Bauer, S. and Teufel, S. (2016). Unsupervised Timeline Generation for Wikipedia History
Articles. In Su, J., Carreras, X., and Duh, K., editors, Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2343–2349. The Association for Computational
Linguistics.

Belz, A., Kow, E., and Viethen, J. (2009). The GREC Named Entity Generation Chal-
lenge 2009: Overview and Evaluation Results. In Proceedings of the 2009 Workshop
on Language Generation and Summarisation, UCNLG+Sum ’09, pages 88–98, Suntec,
Singapore. Association for Computational Linguistics.

Bethard, S. (2013). ClearTK-TimeML: A minimalist approach to TempEval 2013. In
Second Joint Conference on Lexical and Computational Semantics (‘*‘SEM), Volume 2:
Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval
2013), pages 10–14, Atlanta, Georgia, USA. Association for Computational Linguistics.

Bethard, S., Kolomiyets, O., and Moens, M. (2012). Annotating Story Timelines as
Temporal Dependency Structures. In LREC, pages 2721–2726. European Language
Resources Association (ELRA).

Bethard, S., Martin, J. H., and Klingenstein, S. (2007). Finding Temporal Structure in
Text: Machine Learning of Syntactic Temporal Relations. Int. J. Semantic Computing,
1(4):441–457.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach.
Learn. Res., 3:993–1022.

Brin, S. and Page, L. (1998). The Anatomy of a Large-scale Hypertextual Web Search
Engine. In Proceedings of the Seventh International Conference on World Wide Web
7, WWW7, pages 107–117, Amsterdam, The Netherlands, The Netherlands. Elsevier
Science Publishers B. V.

Carbonell, J. and Goldstein, J. (1998). The Use of MMR, Diversity-based Reranking for
Reordering Documents and Producing Summaries. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98, pages 335–336, New York, NY, USA. ACM.

Carletta, J. (1996). Assessing Agreement on Classification Tasks: The Kappa Statistic.
Comput. Linguist., 22(2):249–254.

Carlson, L., Conroy, J. M., Marcu, D., O’Leary, D. P., Okurowski, M. E., Taylor, A., and
Wong, W. (2001). An Empirical Study of the Relation between Abstracts, Extracts,
and the Discourse Structure of Text. In Proceedings of the DUC-2001 Workshop on
Text Summarization, New Orleans, Louisiana, USA.

Carmel, D., Chang, M., Gabrilovich, E., Hsu, B. P., and Wang, K., editors (2014).
ERD’14, Proceedings of the First ACM International Workshop on Entity Recognition
& Disambiguation, July 11, 2014, Gold Coast, Queensland, Australia. ACM.

Carnie, A. (2002). Syntax: A Generative Introduction. Wiley Desktop Editions. Wiley.

BIBLIOGRAPHY 147

Caselli, T., Fokkens, A., Morante, R., and Vossen, P. (2015). SPINOZA VU: An NLP
Pipeline for Cross Document TimeLines. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages 787–791, Denver, Colorado, USA.
Association for Computational Linguistics.

Caselli, T., Lenzi, V. B., Sprugnoli, R., Pianta, E., and Prodanof, I. (2011). Annotating
Events, Temporal Expressions and Relations in Italian: The It-TimeML Experience for
the Ita-TimeBank. In Proceedings of the 5th Linguistic Annotation Workshop, LAW V
’11, pages 143–151, Portland, Oregon, USA. Association for Computational Linguistics.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Chasin, R., Woodward, D., Witmer, J., and Kalita, J. (2014). Extracting and Displaying
Temporal and Geospatial Entities from Articles on Historical Events. Comput. J.,
57(3):403–426.

Chierchia, G. (1995). Individual-Level Predicates as Inherent Generics, pages 176–223.
Chicago University Press, Carlson & Pelletier edition.

Chieu, H. L. and Lee, Y. K. (2004). Query Based Event Extraction Along a Timeline.
In Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’04, pages 425–432, New York, NY,
USA. ACM.

Cieri, C., Graff, D., Liberman, M., Martey, N., and Strassel, S. (1999). The TDT-2 Text
And Speech Corpus. In Proceedings of DARPA Broadcast News Workshop, pages 57–60,
Herndon, Virginia, USA. Morgan Kaufmann.

Clark, S. and Curran, J. R. (2007). Wide-Coverage Efficient Statistical Parsing with CCG
and Log-Linear Models. Comput. Linguist., 33(4):493–552.

Comrie, B. (1981). Language Universals and Linguistic Typology: Syntax and Morphology.
University of Chicago Press.

Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Mach. Learn., 20(3):273–
297.

Cremmins, E. (1996). The Art of Abstracting. Information Resources Press.

Dale, R. (1992). Generating Referring Expressions Constructing Descriptions in a Domain
of Objects and Processes. In ACL-MIT press series in natural language processing.

Davidson, D. (1967). The Logical Form of Action Sentences. In Rescher, N., editor, The
Logic of Decision and Action. University of Pittsburgh Press.

Davies, W. and Dubinsky, S. (2008). The Grammar of Raising and Control: A Course in
Syntactic Argumentation. Wiley.

Diab, M. T., Baldwin, T., and Baroni, M., editors (2013). Proceedings of the 7th In-
ternational Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2013, Atlanta,
Georgia, USA, June 14-15, 2013. The Association for Computer Linguistics.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

148 BIBLIOGRAPHY

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numer.
Math., 1(1):269–271.

Edmundson, H. P. (1969). New Methods in Automatic Extracting. J. ACM, 16(2):264–
285.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR:
A Library for Large Linear Classification. J. Mach. Learn. Res., 9:1871–1874.

Filannino, M., Brown, G., and Nenadic, G. (2013). Mantime: Temporal expression iden-
tification and normalization in the tempeval-3 challenge. In Diab et al. (2013), pages
53–57.

Filatova, E. and Hovy, E. (2001). Assigning Time-stamps to Event-clauses. In Proceedings
of the Workshop on Temporal and Spatial Information Processing - Volume 13, TASIP
’01, pages 13:1–13:8, Toulouse, France. Association for Computational Linguistics.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL ’05, pages 363–370,
Ann Arbor, Michigan, USA. Association for Computational Linguistics.

Fleiss, J. L. (1971). Measuring Nominal Scale Agreement Among Many Raters. Psycho-
logical Bulletin, 76(5):378–382.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell., 6(6):721–
741.

Genest, P.-E. and Lapalme, G. (2012). Fully Abstractive Approach to Guided Summariza-
tion. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers - Volume 2, ACL ’12, pages 354–358, Jeju Island, Korea.
Association for Computational Linguistics.

Gibbs Jr., R. W. (1994). Figurative thought and figurative language. In Handbook of
Psycholinguistics, pages 411–446, San Diego, CA, US. Academic Press.

Goldstein, J., Mittal, V., Carbonell, J., and Kantrowitz, M. (2000). Multi-document Sum-
marization by Sentence Extraction. In Proceedings of the 2000 NAACL-ANLPWorkshop
on Automatic Summarization - Volume 4, NAACL-ANLP-AutoSum ’00, pages 40–48,
Seattle, Washington, USA. Association for Computational Linguistics.

Grishman, R., Westbrook, D., and Meyers, A. (2005). NYU’s English ACE 2005 System
Description. Technical report, Department of Computer Science, New York University.

Grosz, B. J., Weinstein, S., and Joshi, A. K. (1995). Centering: A Framework for Modeling
the Local Coherence of Discourse. Comput. Linguist., 21(2):203–225.

Gundel, J., Hedberg, N., and Zacharski, R. (1993). Cognitive Status and the Form of
Referring Expressions in Discourse. Language, 69:274–307.

Hahn, U. and Mani, I. (2000). The Challenges of Automatic Summarization. Computer,
33(11):29–36.

BIBLIOGRAPHY 149

Harman, D. (2002). The Development and Evolution of TREC and DUC. In Oyama,
K., Ishida, E., and Kando, N., editors, Proceedings of the Third NTCIR Workshop on
Research in Information Retrieval, Automatic Text Summarization and Question An-
swering, NTCIR-3, Tokyo, Japan, October 8-10, 2002. National Institute of Informatics
(NII).

Harnly, A., Nenkova, A., Passonneau, R., and Rambow, O. (2005). Automation of Sum-
mary Evaluation by the Pyramid Method. In Proceedings of the Conference of Recent
Advances in Natural Language Processing (RANLP) 2005, Borovets, Bulgaria.

Hassel, M. (2004). Evaluation of Automatic Text Summarization - A practical implemen-
tation. Licentiate thesis, Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, Stockholm, Sweden.

Higginbotham, J. (1985). On Semantics. Linguistic Inquiry, 16:547–593.

Higginbotham, J. (2000). On Events in Linguistic Semantics. In Higginbotham, J.,
Pianesi, F., and Varzi, A., editors, Speaking of Events. Oxford University Press.

Hockenmaier, J. and Steedman, M. (2007). CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank. Comput. Linguist.,
33(3):355–396.

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B.,
Thater, S., and Weikum, G. (2011). Robust Disambiguation of Named Entities in Text.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLP ’11, pages 782–792, Edinburgh, Scotland, United Kingdom. Association for
Computational Linguistics.

Hollmann, W. B. (2003). Synchrony and Diachrony of English Periphrastic Causatives:
A Cognitive Perspective. University of Manchester, School of English and linguistics.

Hou, Y., Markert, K., and Strube, M. (2013). Global Inference for Bridging Anaphora
Resolution. In Vanderwende, L., III, H. D., and Kirchhoff, K., editors, Human Language
Technologies: Conference of the North American Chapter of the Association of Com-
putational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel,
Atlanta, Georgia, USA, pages 907–917. The Association for Computational Linguistics.

Hou, Y., Markert, K., and Strube, M. (2014). A Rule-Based System for Unrestricted
Bridging Resolution: Recognizing Bridging Anaphora and Finding Links to An-
tecedents. In Moschitti, A., Pang, B., and Daelemans, W., editors, Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pages 2082–2093. ACL.

Hovy, E. and Lin, C. Y. (1999). Automated Text Summarization in SUMMARIST. In
Mani, I. and Maybury, M. T., editors, Advances in Automatic Text Summarization.
MIT Press.

Hovy, E. and Marcu, D. (1998). Automated Text Summarization Tutorial – COL-
ING/ACL’98.

150 BIBLIOGRAPHY

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A Practical Guide to Support Vector
Classification. Technical report, Department of Computer Science, National Taiwan
University.

Jing, H., Barzilay, R., Mckeown, K., and Elhadad, M. (1998). Summarisation Evaluation
Methods: Experiments and Analysis. In Intelligent Text Summarization. Papers from
the AAAI Spring Symposium, Stanford, California, USA.

Jones, K. S. and Galliers, J. R. (1996). Evaluating Natural Language Processing Systems:
An Analysis and Review. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Model-theoretic
Semantics of Natural Language, Formal Logic and Discourse Representation Theory,
volume 42 of Studies in Linguistics and Philosophy. Springer, Dordrecht, The Nether-
lands.

Kasami, T. (1965). An Efficient Recognition and Syntax-Analysis Algorithm for Context-
Free Languages. Technical report, Air Force Cambridge Research Lab, Bedford, Mas-
sachusetts, USA.

Kessler, R., Tannier, X., Hagège, C., Moriceau, V., and Bittar, A. (2012). Finding Salient
Dates for Building Thematic Timelines. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers - Volume 1, ACL ’12,
pages 730–739, Jeju Island, Korea. Association for Computational Linguistics.

Kolomiyets, O., Bethard, S., and Moens, M. (2012). Extracting narrative timelines as
temporal dependency structures. In The 50th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Conference, July 8-14, 2012, Jeju Is-
land, Korea - Volume 1: Long Papers, pages 88–97. The Association for Computer
Linguistics.

Kratzer, A. (1995). Stage-Level and Individual-Level Predicates. In The Generic Book,
pages 125–175. Chicago University Press, Gregory N. Carlson and Francis J. Pelletier
edition.

Krippendorff, K. (1980). Content analysis: An introduction to its methodology. Sage
Publications, Beverly Hills, California, USA.

Krippendorff, K. (2007). Computing Krippendorff’s Alpha Reliability. Technical report,
University of Pennsylvania, Annenberg School for Communication.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–289,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Laokulrat, N., Miwa, M., Tsuruoka, Y., and Chikayama, T. (2013). UTTime: Temporal
Relation Classification using Deep Syntactic Features. In Diab et al. (2013), pages
88–92.

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., and Jurafsky, D. (2013).
Deterministic Coreference Resolution Based on Entity-centric, Precision-ranked Rules.
Comput. Linguist., 39(4):885–916.

BIBLIOGRAPHY 151

Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In
Marie-Francine Moens, S. S., editor, Text Summarization Branches Out: Proceedings of
the ACL-04 Workshop, pages 74–81, Barcelona, Spain. Association for Computational
Linguistics.

Lin, C.-Y. and Hovy, E. (2002). Manual and Automatic Evaluation of Summaries. In
Proceedings of the ACL-02 Workshop on Automatic Summarization - Volume 4, AS
’02, pages 45–51, Phildadelphia, Pennsylvania, USA. Association for Computational
Linguistics.

Linguistic Data Consortium (2005). ACE (Automatic Content Extraction) English An-
notation Guidelines for Events, 5.4.3 2005.07.01 edition.

Llorens, H., Chambers, N., UzZaman, N., Mostafazadeh, N., Allen, J., and Pustejovsky,
J. (2015). SemEval-2015 Task 5: QA TempEval - Evaluating Temporal Information
Understanding with Question Answering. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages 792–800, Denver, Colorado, USA.
Association for Computational Linguistics.

Llorens, H., Saquete, E., and Navarro, B. (2010). TIPSem (English and Spanish): Evalu-
ating CRFs and Semantic Roles in TempEval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 284–291, Uppsala, Sweden. Association for
Computational Linguistics.

Luhn, H. P. (1958). The Automatic Creation of Literature Abstracts. IBM J. Res. Dev.,
2(2):159–165.

Maienborn, C. (2005). On the limits of the Davidsonian approach: The case of copula
sentences. Theoretical Linguistics, 31(3):275–316.

Mani, I. (2001). Summarization Evaluation: An Overview. In Proceedings of the Third
Second Workshop Meeting on Evaluation of Chinese & Japanese Text Retrieval and
Text Summarization, NTCIR-2, Tokyo, Japan, March 7-9, 2001. National Institute of
Informatics (NII).

Mani, I., House, D., Klein, G., Hirschman, L., Firmin, T., and Sundheim, B. (1999). The
Tipster Summac Text Summarization Evaluation. In EACL 1999, 9th Conference of the
European Chapter of the Association for Computational Linguistics, June 8-12, 1999,
University of Bergen, Bergen, Norway, pages 77–85. The Association for Computer
Linguistics.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and McClosky, D.
(2014). The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL
2014, June 22-27, 2014, Baltimore, MD, USA, System Demonstrations, pages 55–60.
The Association for Computer Linguistics.

Marcu, Daniel (1997). From Discourse Structures to Text Summaries. In Proceedings
of ACL Workshop on Intelligent Scalable Text Summarisation, pages 82–88, Madrid,
Spain.

152 BIBLIOGRAPHY

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a Large Anno-
tated Corpus of English: The Penn Treebank. Comput. Linguist., 19(2):313–330.

Markert, K., Hou, Y., and Strube, M. (2012). Collective Classification for Fine-grained
Information Status. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers - Volume 1, ACL ’12, pages 795–804, Jeju
Island, Korea. Association for Computational Linguistics.

McDonald, R. (2007). A Study of Global Inference Algorithms in Multi-document Sum-
marization. In Proceedings of the 29th European Conference on IR Research, ECIR’07,
pages 557–564, Berlin, Heidelberg. Springer-Verlag.

McDonald, R., Pereira, F., Ribarov, K., and Hajič, J. (2005). Non-projective Dependency
Parsing Using Spanning Tree Algorithms. In Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing, HLT ’05,
pages 523–530, Vancouver, British Columbia, Canada. Association for Computational
Linguistics.

Mihalcea, R. and Tarau, P. (2004). TextRank: Bringing Order into Text. In Proceedings
of the 2004 Conference on Empirical Methods in Natural Language Processing, EMNLP
2004, A meeting of SIGDAT, a Special Interest Group of the ACL, held in conjunction
with ACL 2004, 25-26 July 2004, Barcelona, Spain, pages 404–411. ACL.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. In Burges, C. J. C.,
Bottou, L., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural In-
formation Processing Systems 26: 27th Annual Conference on Neural Information Pro-
cessing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, USA, pages 3111–3119.

Minard, A.-L., Speranza, M., Agirre, E., Aldabe, I., van Erp, M., Magnini, B., Rigau,
G., and Urizar, R. (2015). SemEval-2015 Task 4: TimeLine: Cross-Document Event
Ordering. In Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015), pages 778–786, Denver, Colorado, USA. Association for Computa-
tional Linguistics.

Moens, M. and Steedman, M. (1988). Temporal Ontology and Temporal Reference. Com-
put. Linguist., 14(2):15–28.

Morris, A. H., Kasper, G. M., and Adams, D. A. (1992). The Effects and Limitations
of Automated Text Condensing on Reading Comprehension Performance. Information
Systems Research, 3:17–35.

Navarro, B. and Saquete, E. (2015). GPLSIUA: Combining Temporal Information and
Topic Modeling for Cross-Document Event Ordering. In Cer, D. M., Jurgens, D., Nakov,
P., and Zesch, T., editors, Proceedings of the 9th International Workshop on Semantic
Evaluation, SemEval@NAACL-HLT 2015, Denver, Colorado, USA, June 4-5, 2015,
pages 820–824. The Association for Computer Linguistics.

Nenkova, A. (2005). Automatic Text Summarization of Newswire: Lessons Learned from
the Document Understanding Conference. In Veloso, M. M. and Kambhampati, S.,
editors, Proceedings, The Twentieth National Conference on Artificial Intelligence and

BIBLIOGRAPHY 153

the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13,
2005, Pittsburgh, Pennsylvania, USA, pages 1436–1441. AAAI Press / The MIT Press.

Nenkova, A., Passonneau, R., and McKeown, K. (2007). The Pyramid Method: Incorpo-
rating Human Content Selection Variation in Summarization Evaluation. ACM Trans.
Speech Lang. Process., 4(2).

Nenkova, A. and Passonneau, R. J. (2004). Evaluating Content Selection in Summariza-
tion: The Pyramid Method. In Hirschberg, J., Dumais, S. T., Marcu, D., and Roukos,
S., editors, Human Language Technology Conference of the North American Chapter
of the Association for Computational Linguistics, HLT-NAACL 2004, Boston, Mas-
sachusetts, USA, May 2-7, 2004, pages 145–152. The Association for Computational
Linguistics.

Nguyen, K., Tannier, X., and Moriceau, V. (2014). Ranking Multidocument Event De-
scriptions for Building Thematic Timelines. In Hajic, J. and Tsujii, J., editors, COLING
2014, 25th International Conference on Computational Linguistics, Proceedings of the
Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland, pages 1208–1217.
ACL.

Nissim, M. (2006). Learning Information Status of Discourse Entities. In Proceedings of
the 2006 Conference on Empirical Methods in Natural Language Processing, EMNLP
’06, pages 94–102, Sydney, Australia. Association for Computational Linguistics.

Nissim, M., Dingare, S., Carletta, J., and Steedman, M. (2004). An Annotation Scheme
for Information Status in Dialogue. In Proceedings of the Fourth International Confer-
ence on Language Resources and Evaluation, LREC 2004, May 26-28, 2004, Lisbon,
Portugal. European Language Resources Association.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Comput.
Linguist., 34(4):513–553.

Otterbacher, J. C., Radev, D. R., and Luo, A. (2002). Revisions That Improve Cohesion
in Multi-document Summaries: A Preliminary Study. In Proceedings of the ACL-02
Workshop on Automatic Summarization - Volume 4, AS ’02, pages 27–36, Phildadel-
phia, Pennsylvania, USA.

Paice, C. D. (1990). Constructing Literature Abstracts by Computer: Techniques and
Prospects. Inf. Process. Manage., 26(1):171–186.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A Method for Auto-
matic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics, ACL ’02, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational Linguistics.

Parsons, T. (1990). Events in the Semantics of English: A Study in Subatomic Semantics.
MIT Press.

Parsons, T. (2000). Underlying States and Time Travel. In Varzi, A., Higginbotham, J.,
and Pianesi, F., editors, Speaking of Events. Oxford University Press.

154 BIBLIOGRAPHY

Passonneau, R. J., Chen, E., Guo, W., and Perin, D. (2013). Automated Pyramid Scor-
ing of Summaries using Distributional Semantics. In ACL (2), pages 143–147. The
Association for Computer Linguistics.

Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). WordNet::Similarity: Measuring
the Relatedness of Concepts. In Demonstration Papers at HLT-NAACL 2004, HLT-
NAACL–Demonstrations ’04, pages 38–41, Boston, Massachusetts, USA. Association
for Computational Linguistics.

Platt, J. (2000). Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. In Smola, A., Bartlett, P., Schoelkopf, B., and
Schuurmans, D., editors, Advances in Large Margin Classifiers, pages 61–74.

Prince, E. F. (1992). The ZPG Letter: Subjects, Definiteness, and Information-status.
In Discourse Description: Diverse Analyses of a Fund-raising Text, pages 295–325,
Philadelphia, Pennsylvania, USA. John Benjamins.

Pustejovsky, J., Castaño, J. M., Ingria, R., Sauŕı, R., Gaizauskas, R. J., Setzer, A., Katz,
G., and Radev, D. R. (2003a). TimeML: Robust Specification of Event and Temporal
Expressions in Text. In Maybury, M. T., editor, New Directions in Question Answering,
Papers from 2003 AAAI Spring Symposium, Stanford University, Stanford, CA, USA,
pages 28–34. AAAI Press.

Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., Radev, D.,
Sundheim, B., Day, D., Ferro, L., and Lazo, M. (2003b). The TIMEBANK corpus. In
Proceedings of Corpus Linguistics 2003, pages 647–656, Lancaster, United Kingdom.

Radev, D. R. and McKeown, K. R. (1998). Generating Natural Language Summaries
from Multiple On-line Sources. Comput. Linguist., 24(3):470–500.

Rahman, A. and Ng, V. (2011). Learning the Information Status of Noun Phrases in
Spoken Dialogues. In Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP ’11, pages 1069–1080, Edinburgh, Scotland, United
Kingdom. Association for Computational Linguistics.

Rappaport Hovav, M. and Levin, B. (1997). Building Verb Meanings. In Butt, M. and
Geuder, W., editors, The Projection of Arguments: Lexical and Compositional Factors,
pages 97–134. CSLI Publications, Stanford.

Rath, G. J., Resnick, A., and Savage, T. R. (1961). The Formation of Abstracts by the
Selection of Sentences. Part 1. Sentence Selection By Men and Machines. American
Documentation, 12(2):139–141.

Rösiger, I. and Teufel, S. (2014). Resolving Coreferent and Associative Noun Phrases
in Scientific Text. In Bouma, G. and Parmentier, Y., editors, Proceedings of the 14th
Conference of the European Chapter of the Association for Computational Linguistics,
EACL 2014, April 26-30, 2014, Gothenburg, Sweden, pages 45–55. The Association for
Computer Linguistics.

Rowley, J. (1982). Abstracting and Indexing. Outlines of modern librarianship. C. Bingley.

Salton, G., Singhal, A., Mitra, M., and Buckley, C. (1997). Automatic Text Structuring
and Summarization. Inf. Process. Manage., 33(2):193–207.

BIBLIOGRAPHY 155

Sauŕı, R., Knippen, R., Verhagen, M., and Pustejovsky, J. (2005). Evita: A robust
event recognizer for QA systems. In HLT/EMNLP, pages 700–707. The Association for
Computational Linguistics.

Sauŕı, R., Littman, J., Gaizauskas, R., Setzer, A., and Pustejovsky, J. (2006). TimeML
Annotation Guidelines, Version 1.2.1.

Schilder, F. and Habel, C. (2001). From Temporal Expressions to Temporal Information:
Semantic Tagging of News Messages. In Proceedings of the Workshop on Temporal
and Spatial Information Processing - Volume 13, TASIP ’01, pages 9:1–9:8, Toulouse,
France. Association for Computational Linguistics.

Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons,
Inc., New York, NY, USA.

Setzer, A. (2001). Temporal Information in Newswire Articles: An Annotation Scheme
and Corpus Study. PhD thesis, The University of Sheffield, Sheffield, United Kingdom.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell system technical
journal, 27.

Shen, W., Wang, J., and Han, J. (2015). Entity Linking with a Knowledge Base: Issues,
Techniques, and Solutions. Transactions on Knowledge & Data Engineering, 27(2):443–
460.

Siddharthan, A., Nenkova, A., and McKeown, K. (2011). Information Status Distinc-
tions and Referring Expressions: An Empirical Study of References to People in News
Summaries. Comput. Linguist., 37(4):811–842.

Siegel, S. and Castellan, N. (1988). Nonparametric statistics for the behavioral sciences.
McGraw–Hill, Inc., second edition.

Smith, D. A. (2002). Detecting Events with Date and Place Information in Unstructured
Text. In Proceedings of the 2Nd ACM/IEEE-CS Joint Conference on Digital Libraries,
JCDL ’02, pages 191–196, New York, NY, USA. ACM.

Steinberger, J. and Jezek, K. (2009). Evaluation Measures for Text Summarization.
Computing and Informatics, 28(2):251–275.

Strötgen, J. and Gertz, M. (2010). HeidelTime: High Quality Rule-Based Extraction
and Normalization of Temporal Expressions. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 321–324, Uppsala, Sweden. Association for
Computational Linguistics.

Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: A Core of Semantic
Knowledge. In Proceedings of the 16th International Conference on World Wide Web,
WWW ’07, pages 697–706, New York, NY, USA. ACM.

Swan, R. and Allan, J. (2000). Automatic Generation of Overview Timelines. In Pro-
ceedings of the 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’00, pages 49–56, New York, NY, USA.
ACM.

156 BIBLIOGRAPHY

Teufel, S. (2010). The Structure of Scientific Articles: Applications to Citation Indexing
and Summarization. CSLI Studies in Computational Linguistics. Center for the Study
of Language and Information.

Tong, S. and Koller, D. (2002). Support Vector Machine Active Learning with Applica-
tions to Text Classification. J. Mach. Learn. Res., 2:45–66.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich Part-of-
speech Tagging with a Cyclic Dependency Network. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for Computational Linguistics
on Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Edmonton,
Canada. Association for Computational Linguistics.

Tran, G. B., Alrifai, M., and Quoc Nguyen, D. (2013). Predicting Relevant News Events
for Timeline Summaries. In Proceedings of the 22Nd International Conference on World
Wide Web, WWW ’13 Companion, pages 91–92, New York, NY, USA. ACM.

Tran, G. B., Herder, E., and Markert, K. (2015). Joint Graphical Models for Date Se-
lection in Timeline Summarization. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages
1598–1607. The Association for Computer Linguistics.

UzZaman, N. and Allen, J. F. (2010). Event and Temporal Expression Extraction from
Raw Text: First Step towards a Temporally Aware System. International Journal of
Semantic Computing, 4(04):487–508.

UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., and Pustejovsky,
J. (2013). SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events,
and Temporal Relations. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval 2013), pages 1–9, Atlanta, Georgia, USA. Association
for Computational Linguistics.

van Halteren, H. and Teufel, S. (2003). Examining the Consensus Between Human Sum-
maries: Initial Experiments with Factoid Analysis. In Proceedings of the HLT-NAACL
03 on Text Summarization Workshop - Volume 5, HLT-NAACL-DUC ’03, pages 57–64,
Edmonton, Canada. Association for Computational Linguistics.

Vendler, Z. (1967). Linguistics in philosophy . Cornell University Press Ithaca, N.Y.,
USA.

Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., and Pustejovsky, J.
(2007). SemEval-2007 Task 15: TempEval Temporal Relation Identification. In Pro-
ceedings of the 4th International Workshop on Semantic Evaluations, SemEval ’07,
pages 75–80, Prague, Czech Republic. Association for Computational Linguistics.

Verhagen, M., Sauŕı, R., Caselli, T., and Pustejovsky, J. (2010). SemEval-2010 Task 13:
TempEval-2. In Proceedings of the 5th International Workshop on Semantic Evaluation,
SemEval ’10, pages 57–62, Los Angeles, California, USA. Association for Computational
Linguistics.

BIBLIOGRAPHY 157

White, M., Korelsky, T., Cardie, C., Ng, V., Pierce, D., and Wagstaff, K. (2001). Mul-
tidocument Summarization via Information Extraction. In Proceedings of the First
International Conference on Human Language Technology Research, HLT ’01, pages
1–7, San Diego, California, USA. Association for Computational Linguistics.

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6):80–83.

Yan, R., Kong, L., Huang, C., Wan, X., Li, X., and Zhang, Y. (2011a). Timeline Gen-
eration Through Evolutionary Trans-temporal Summarization. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
433–443, Edinburgh, Scotland, United Kingdom. Association for Computational Lin-
guistics.

Yan, R., Wan, X., Otterbacher, J., Kong, L., Li, X., and Zhang, Y. (2011b). Evolutionary
Timeline Summarization: A Balanced Optimization Framework via Iterative Substi-
tution. In Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’11, pages 745–754, New York, NY,
USA. ACM.

Zavarella, V. and Tanev, H. (2013). FSS-TimEx for TempEval-3: Extracting Temporal
Information from Text. In SemEval@NAACL-HLT, pages 58–63, Atlanta, Georgia,
USA. The Association for Computer Linguistics.

	Introduction
	Properties of an ideal timeline
	Central problems
	Thesis outline

	Related work on timeline generation
	Overview of related work
	Event models
	Events in linguistics
	Early event models in Natural Language Processing
	TimeML
	Automatic Content Extraction

	Temporal information extraction
	The TempEval shared tasks
	Choice of TimeML third-party tools

	Timeline generation based on TimeML
	Temporal dependency trees
	Cross-document event ordering

	Timeline generation in a multi-document summarisation setting
	Identifying important topics
	Timeline generation based on a user query
	Dependencies between events
	Salience of dates
	Related tasks

	Identifying important TimeML events
	Features
	Results and Discussion

	Requirements for my approach
	Chapter summary

	Identifying significant historical figures
	Motivation and related work
	Overview of the approach
	Corpus construction
	Selection of articles and timelines
	Matching person names in timelines and textual articles
	Filtering of articles
	Training, development and test sets

	My method
	Linguistic processing
	Named entity scoring
	Name set scoring
	Features

	Baseline and semi-oracle results
	Baseline
	Semi-oracle results

	Evaluation
	Evaluation metrics
	Results
	Ablation study

	Outlook on the rest of the thesis
	Chapter summary

	Related work on summarisation evaluation
	Types of summaries
	Overview of summarisation evaluation methods
	Extrinsic evaluation methods
	Intrinsic evaluation methods
	Deep evaluation methodologies

	Subjectivity of human content selection tasks
	Quantifying subjectivity
	Subjectivity in summarisation tasks

	Requirements of timeline generation evaluation

	Evaluation of timelines using semantic units
	Principles of the evaluation methodology
	Event definition
	HCUs
	Overview of the evaluation methodology

	Design of the evaluation methodology
	Timeline elicitation
	Creation of HCUs
	Creation of links between HCUs and TimeML events
	Scoring system summaries

	Construction of an evaluation resource
	Selection of input texts
	Participants
	Materials
	Procedure
	Characteristics of gold standard
	Creation of HCUs
	Anchor weight annotation

	Reliability of the resource
	Suitability of pyramids
	HCU weight judgement
	Inter-annotator agreement for anchor weight annotation

	Construction of a development resource
	Chapter summary

	Algorithms for timeline generation
	Uninformed methods
	Section structure
	Presence of dates

	Informed methods
	Supervised approach by Chasin et al.
	Unsupervised approaches
	Combination of the unsupervised method with the approach by Chasin et al.

	Example output
	Evaluation
	Method
	Results and Discussion

	Qualitative analysis
	Chapter summary

	Conclusion
	Thesis overview
	Contributions
	Directions for further research
	Outlook

	Bibliography

