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Abstract

The variational framework for learning induc-
ing variables (Titsias, 2009a) has had a large
impact on the Gaussian process literature. The
framework may be interpreted as minimizing a
rigorously defined Kullback-Leibler divergence
between the approximating and posterior pro-
cesses. To our knowledge this connection has
thus far gone unremarked in the literature. In
this paper we give a substantial generaliza-
tion of the literature on this topic. We give
a new proof of the result for infinite index sets
which allows inducing points that are not data
points and likelihoods that depend on all func-
tion values. We then discuss augmented in-
dex sets and show that, contrary to previous
works, marginal consistency of augmentation is
not enough to guarantee consistency of varia-
tional inference with the original model. We
then characterize an extra condition where such
a guarantee is obtainable. Finally we show
how our framework sheds light on interdomain
sparse approximations and sparse approxima-
tions for Cox processes.

1 Introduction

The variational approach to inducing point selection
of Titsias (2009a) has been highly influential in the
active research area of scalable Gaussian process ap-
proximations. The chief advantage of this particular
framework is that the inducing points positions are

variational parameters rather than model parame-
ters and as such are protected from overfitting. In
this paper we argue that whilst this is true, it may
not be for exactly the reasons previously thought.
The original framework is applied to conjugate like-
lihoods and has been extended to non-conjugate
likelihoods (Chai, 2012; Hensman et al., 2015). An
important advance in the use of variational methods
was their combination with stochastic gradient descent
(Hoffman et al., 2013) and the variational inducing
point framework has been combined with such methods
in the conjugate (Hensman et al., 2013) and non-
conjugate cases (Hensman et al., 2015). The approach
has also been successfully used to perform scalable
inference in more complex models such as the Gaussian
process latent variable model (Titsias and Lawrence,
2010; Damianou et al., 2014) and the related Deep
Gaussian process (Damianou and Lawrence, 2012;
Hensman and Lawrence, 2014).

To be more concrete let us set up some notation. Con-
sider a function f mapping an index set X to the set
of real numbers f : X 7→ R. Entirely equivalently we
may write f ∈ R

X or use sequence notation (f(x))x∈X .
We also define set indexing of the function. If S ⊆ X
is some subset of the index set, then fS := (f(x))x∈S

and we may straightforwardly extend this definition to
single elements of the index set fx := f{x}. We can
put this notation to immediate use by defining a subset
D ⊆ X of the index set, of size N , that corresponds to
those input points for which we have observed data. The
corresponding function values will then be denoted fD.
For simplicity, we will initially assume that we have one,
possibly noisy, possibly non-conjugate observation y per
input data point which will together form a set Y .

Gaussian processes allow us to define a prior over func-
1
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tions f . After we observe the data we will have some
posterior which we wish to approximate with a sparse
distribution. At the heart of the variational inducing
point approximation is the idea of ‘augmentation’ that
appears in the original paper and many subsequent ones.
We choose to monitor a set Z ⊆ X of size M . These
points may have some overlap with the input data points
D but to give a computational speed up M will need to
be less than the number of data points N . The Kullback-
Leibler divergence given as an optimization criterion in
Titsias’ original paper is

KL[q(fD\Z , fZ)||p(fD\Z , fZ |Y )]

=

∫

q(fD\Z , fZ) log

{

q(fD\Z , fZ)

p(fD\Z , fZ |Y )

}

dfD\ZdfZ . (1)

The variational distribution at those data points which
are not also inducing points is taken to have the form:

q(fD\Z , fZ) := p(fD\Z |fZ)q(fZ) (2)

where p(fD\Z |fZ) is the prior conditional and q(fZ) is
a variational distribution on the inducing points only.
Under this factorization, for a conjugate likelihood, the
optimal q(fZ) has an analytic Gaussian solution (Titsias,
2009a). The non-conjugate case was then studied in
subsequent work (Chai, 2012; Hensman et al., 2015).
In both cases the sparse approximation requires only
O(NM2) rather than theO(N3) required by exact meth-
ods in the conjugate case, or many commonly used non-
conjugate approximations that don’t assume sparsity.

The augmentation is justified by arguing that the model
remains marginally the same when the inducing points
are added. It is therefore suggested that variational in-
ference in the augmented model, including for the pa-
rameters of said augmentation, is equivalent to varia-
tional inference in the original model, i.e that the induc-
ing point positions can be considered to be variational
parameters and are consequently protected from overfit-
ting. For example see Titsias’ original conference paper
(Titsias, 2009a), section 3 or the longer technical report
version (Titsias, 2009b), section 3.1. In the common case
in the literature where the argument proceeds by ap-
plying Jensen’s inequality to the marginal likelihood as,
for example, in Hensman et al (2015) equations (6) and
(17), the slack of the bound on the marginal likelihood is
precisely the KL-divergence (1). Therefore maximizing
such a bound is exactly equivalent to minimizing this
objective and the considerations that follow all apply.

In fact in this paper, whilst we applaud the excellent
prior work, we will show that variational inference in an

augmented model is not equivalent to variational infer-
ence in the original model. Without this justification,
the KL-divergence in equation (1) could seem to be a
strange optimization target. The KL-divergence has the
inducing variables on both sides, so it might seem that
in optimizing the inducing point positions we are try-
ing to hit a ‘moving target’. It is desirable to rigorously
formulate a ‘one sided’ KL-divergence that leads to Tit-
sias’ formulation. Such a derivation could be viewed as
putting these elegant and popular methods on a firmer
foundation. Such a derivation is the topic of this arti-
cle. As we shall show this cements the framework for
sparse interdomain inducing approximations and sparse
variational inference in Cox processes. We wish to re-
emphasize our respect for the previous work and for the
avoidance of suspense we will find that much of the ex-
isting work carries over mutatis mutandis. Nevertheless
we feel that most readers at the end of the paper will
agree that a precise treatment of the topic should be of
benefit going forward.

In terms of prior work for the theoretical aspect, the ma-
jor other references are the early work of Seeger (2003a;
2003b). In particular Seeger identifies the KL-divergence
between processes (more commonly referred to as a rel-
ative entropy in those texts) as a measure of similarity
and applies it to PAC-Bayes and to subset of data sparse
methods. Crucially, Seeger outlines the rigorous formu-
lation of such a KL-divergence which is a large technical
obstacle. Here we give a shorter, more general, and intu-
itive proof of the key theorem. We extend the stochas-
tic process formulation to inducing points which are not
necessarily selected from the data and show that this is
equivalent to Titsias’ formulation. In so far as we are
aware this relationship has not previously been noted in
the literature. The idea of using the KL-divergence be-
tween processes is also mentioned in the early work of
Csato and Opper (2002; 2002) but the transition from
finite dimensional multivariate Gaussians to infinite di-
mensional Gaussian processes is not covered at the level
of detail discussed here. An optimization target that in
intent seems to be similar to a KL-divergence between
stochastic process is briefly mentioned in the work of
Alvarez (2011). The notation used suggests that the
integration is with respect to an ‘infinite dimensional
Lebesgue measure’, which as we shall see is an argu-
ment that arrives at the right answer via a mathemat-
ically flawed route. Chai (2012) seems to have been at
least partly aware of Seeger’s KL-divergence theorems
(Seeger, 2003b) but instead uses them to bound the fi-
nite joint predictive probability of a non sparse process.

This article proceeds by first discussing the finite di-
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mensional version of the full argument. This requires
considerably less mathematical machinery and much of
the intuition can be gained from this case. We then
proceed to give the full measure theoretic formulation,
giving a new proof that allows inducing points that are
not data points and for the likelihood to depend on in-
finitely many function values. Next we discuss augmen-
tation of the original index set, using the crucial chain
rule for KL-divergences. This gives us a framework to
discuss marginal consistency and how variational infer-
ence in augmented models is not necessarily equivalent
to variational inference in the original model. We then
show that under very general conditions augmentation
which is deterministic conditioned on the whole latent
function does have the desired property. We apply our
results to sparse variational interdomain approximations
and to posterior inference in Cox processes. Finally we
conclude and highlight avenues for further research.

2 Finite index set case

This section is in fact a less general case of what follows.
It is included for the benefit of those familiar with the
previous work on variational sparse approximations and
as an important special case. Consider the case where
X is finite. We introduce a new set ∗ := X\(D ∪ Z),
in words: all points that are in the index set that aren’t
inducing points or data points. These points might be of
practical interest for instance when making predictions
on hold out data.

We extend the variational distribution to include these
points:

q(f∗, fD\Z , fZ) := p(f∗, fD\Z |fZ)q(fZ). (3)

We then consider the KL-divergence between this ex-
tended variational distribution and the full posterior dis-
tribution p(f |Y )

KL[q(f∗, fD\Z , fZ)||p(f |Y )]

=KL[q(f∗, fD\Z , fZ)||p(f∗, fD\Z , fZ |Y )]

=

∫

q(f∗, fD\Z , fZ) log
q(f∗, fD\Z , fZ)

p(f∗, fD\Z , fZ |Y )
df∗dfD\ZdfZ

(4)

Next we expand the term inside the logarithm and cancel
one of the terms that appears in both the numerator and

the denominator:

q(f∗, fD\Z , fZ)

p(f∗, fD\Z , fZ |Y )

=
p(f∗|fD\Z , fZ)p(fD\Z |fZ)q(fZ)p(Y )

p(f∗|fD\Z , fZ)p(fD\Z |fZ)p(fZ)p(Y |fD)

=
p(fD\Z |fZ)q(fZ)p(Y )

p(fD\Z |fZ)p(fZ)p(Y |fD)

=
q(fD\Z , fZ)

p(fD\Z , fZ |Y )
(5)

Substituting back into the full integral and exploiting
the marginalization property of the conditional density
we obtain:
∫

p(f∗, fD\Z |fZ)q(fZ) log
q(fD\Z , fZ)

p(fD\Z , fZ |Y )
df∗dfD\ZdfZ

=

∫

p(fD\Z |fZ)q(fZ) log
q(fD\Z , fZ)

p(fD\Z , fZ |Y )
dfD\ZdfZ (6)

The last line is exactly the KL-divergence used by Tit-
sias (2009a) that we already described in equation (1).
We thus see that for finite index sets considering the
KL-divergence between the two distributions is equiva-
lent to Titsias’ KL-divergence. We might choose to opti-
mize our choice of the M by selecting them from the |X |
possible values in the index set and comparing the KL-
divergence between distributions given in equation (4).
The equivalence with equation (1) that we have just de-
rived shows us that in this case the appearance of the
inducing values on both sides of the equation is just a
question of ‘accounting’. That is to say, whilst we are in
fact optimizing the KL-divergence between the full dis-
tributions, we only need to keep track of the distribution
over function values fZ and fD\Z . All the other function
values f∗ marginalize. For different choices of inducing
points we will need to keep track of different function
values and be able to safely ignore different values f∗.

3 Infinite index set case

3.1 There is no useful infinite dimensional

Lebesgue measure

One might hope to cope with not only finite index sets
but also infinite index sets in the way discussed in sec-
tion 2. Unfortunately when X and hence f∗ are infinite
sets we cannot integrate with respect to a ‘infinite di-
mensional vector’. That is to say the notation

∫

(·)df∗
can no longer be correctly used.

For a discussion of this see, for example, Hunt et al
(1992). The crux of the issue is that to give sensible
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answers such a measure would need to be translation in-
variant and locally finite. Unfortunately the only mea-
sure that obeys these two properties is the zero measure
which assigns zero to every input set.

Thus we see that it will be necessary to rethink our ap-
proach to a KL-divergence between stochastic processes.
It will turn out that a reasonable definition will require
the full apparatus of measure theory. Readers looking
for some background on these issues may wish to con-
sult a larger text (Billingsley, 1995; Capinski and Kopp,
2004).

3.2 The KL-divergence between processes

In this section we review the rigorous definition of
the KL-divergence between stochastic processes (Gray,
2011).

Suppose we have two measures µ and η for (Ω,Σ) and
that µ is absolutely continuous with respect to η. Then
there exists a Radon-Nikodyn derivative dµ

dη
and the cor-

rect definition forKL-divergence between these measures
is:

KL[µ||η] =

∫

Ω

log

{

dµ

dη

}

dµ . (7)

In the case where µ is not absolutely continuous with
respect to η we let KL[µ||η] = ∞. In the case where the
sample space is RK for some finite K and both measures
are dominated by Lebesgue measure m this reduces to
the more familiar definition:

KL[µ||η] =

∫

Ω

u log
{u

v

}

dm (8)

where u and v are the respective densities with respect to
Lebesgue measure. The first definition is more general
and allows us to deal with the problem of there being
no sensible infinite dimensional Lebesgue measure by in-
stead integrating with respect to the measure µ.

3.3 A general derivation of the sparse inducing

point framework

In this section we give a general derivation of the sparse
inducing point framework. The derivation is more gen-
eral than that of Seeger (2003a; 2003b) since it does not
require that the inducing points are selected from the
data points. Nor does it assume that the relevant finite
dimensional marginal distributions have density with re-
spect to Lebesgue measure. Finally since the dependence
on the elegant properties of Radon-Nikodym derivatives
has been made more explicit we believe it is clearer why
the derivation works and how one would generalize it.

We are now interested in three types of probability mea-
sure on sets of functions f : X 7→ R. The first is the
prior measure P which will be assumed to be a Gaus-
sian process. The second is the approximating mea-
sure Q which will be assumed to be a sparse Gaussian
process and the third is the posterior process P̂ which
may be Gaussian or non-Gaussian depending on whether
we have a conjugate likelihood. We start with a mea-
sure theoretic definition of Bayes’ theorem for a domi-
nated model (Schervish, 1995). It specifies the Radon-
Nikodym derivative of the posterior with respect to the
prior.

dP̂

dP
(f) =

L(Y |f)

L(Y )
(9)

with L(Y |f) being the likelihood and L(Y ) =
∫

RX L(Y |f)dP (f) the marginal likelihood. As we have
assumed in previous sections we will initially restrict the
likelihood to only depend on the finite data subset of
the index set. We denote by πC : RX 7→ R

C a projection
function, which takes the whole function as an argument
and returns the function at some set of points C. In this
case we have:

dP̂

dP
(f) =

dP̂D

dPD

(πD(f)) =
L(Y |πD(f))

L(Y )
(10)

and similarly the marginal likelihood only depends
on the function values on the data set L(Y ) =
∫

RD L(Y |fD)dPD(fD). In fact, we will relax the assump-
tion that the data set is finite in section 5.2 and the abil-
ity to do so is one of the benefits of this framework. Next
we specify Q by assuming it has density with respect to
the posterior and thus the prior and that the density
with respect to the prior depends on some set of points
Z:

dQ

dP
(f) =

dQZ

dPZ

(πZ(f)) . (11)

Under this assumption Q is fully specified if we know P
and dQZ

dPZ
. To gain some intuition for this assumption we

can compare equations (11) and (10). We see that in the
approximating distribution the set Z is playing a similar
one to that played for D in the true posterior distribu-
tion. We now bring these assumptions together. Let us
apply the chain rule for Radon-Nikodym derivatives and
a standard property of logarithms:

KL[Q||P̂ ]

=

∫

RX

log

{

dQ

dP
(f)

}

dQ(f)−

∫

RX

log

{

dP̂

dP
(f)

}

dQ(f) .

(12)
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Taking the first term alone we exploit the sparsity as-
sumption for the approximating distribution:

∫

RX

log

{

dQ

dP
(f)

}

dQ(f)

=

∫

RZ

log

{

dQZ

dPZ

(fZ)

}

dQZ(fZ) . (13)

Taking the second term in the last line of equation (12)
and exploiting the measure theoretic Bayes’ theorem we
obtain:

∫

RX

log

{

dP̂

dP
(f)

}

dQ(f)

=

∫

RD

log

{

dP̂D

dPD

(fD)

}

dQD(fD)

=EQD
[logL(Y |fD)]− logL(Y ) . (14)

Finally noting the appearance of a marginal KL-
divergence we obtain our result:

KL[Q||P̂ ] = KL[QZ ||PZ ]−EQD
[logL(Y |fD)]+logL(Y ) .

(15)
As is common with variational approximations, in most
cases of interest the marginal likelihood will be in-
tractable. However since it is an additive constant, inde-
pendent of Q, it can be safely ignored. The final equa-
tion shows that we need to be able to compute the KL-
divergence between the inducing point marginals of the
approximating distribution and the prior for all Z ⊂ X
and the expectation under the data marginal distribu-
tion of Q of the log likelihood. In the case where the
likelihood factorizes across data terms this will give a
sum of one dimensional expectations. Note the similar-
ity of equation (15) with Hensman et al. (2015) equation
(17) where a less general expression is motivated from
a ‘model augmentation’ view. Notice that at no point
in our derivation did we try to envoke the pathological
‘infinite dimensional Lebesgue measure’ which is impor-
tant for the reasons discussed in section 3.1. The ease
of derivation suggests that Radon-Nikodym derivatives
and measure theory provide the most natural and gen-
eral way to think about such approximations.

4 Augmented index sets

We now consider the case where we supplement the orig-
inal (finite or infinite) index set X with a finite set of
elements I, intending to use them as inducing points.
The precise nature of the augmented prior model will
be parameterized by some parameters θ which we will
hope to tune to give a good approximation. It will be

seen that the this is very much in the spirit of the orig-
inal augmentation argument given by Titsias (2009a)
and the ‘variational compression’ framework of Hensman
and Lawrence (2014). This setup also covers the case
of variational ‘interdomain’ Gaussian processes which
were mooted but not implemented in Figueiras-Vidal
and Lazaro-Gredilla (2009) and implemented under the
basis of the marginal consistency argument in Alvarez
et al (2011). We intend to discuss the marginal consis-
tency argument in some detail and we shall deal with
the thorny issues surrounding the rigorous treatment of
the various infinities involved.

Marginal consistency is easily ensured by specifying the
distribution of the augmented function value points fI
conditioned on the values of the function on the orig-
inal set fX . We denote the corresponding measure as
PI|X(· ; θ)1. Let ΩX = R

X and ΩI = R
I be the sam-

ple spaces associated with the original index set and
the augmenting variables respectively. Let FX and FI

be their σ-algebras. Marginal consistency states that
we will be interested in probability measures that have
the following behaviour on the measurable rectangles
AX ×AI ∈ FX ×FI :

PX∪I(AX ×AI ; θ) =

∫

AX

PI|X(AI ; θ)dPX(fX). (16)

We have included the augmentation parameters θ explic-
itly up until now, but for brevity we will omit them in
what follows. We will make this marginal consistency
assumption in all that follows. Let us call the overall
set X ∪ I the ‘union set’. In a similar vein to the previ-
ous section we assume that the approximating measure
QX∪I has density with respect to the augmented prior
model PX∪I and that the Radon-Nikodym derivative is
only a function of the augmented function points:

dQX∪I

dPX∪I

(fX∪I) =
dQI

dPI

(πI(fX∪I)) . (17)

Acting as if the augmented set were the original index
set we would obtain by a similar argument:

KL[QX∪I ||P̂X∪I ] = KL[QI ||PI ]

−EQD
[logL(Y |fD)] + logL(Y ) .

(18)

Sharp eyed readers, however, will have noted that since
P̂X∪I depends on the augmentation parameters θ we are
back in a situation where we can tune the approxima-
tion on the left hand side and the optimization target

1Note that for brevity our notation for conditional mea-
sures won’t include the explicit function dependence. For
example, in this case we omit the explicit dependence on fX .
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on the right. As we will see in the next section we are
not necessarily rescued by the marginal consistency ar-
gument. It is not the case in general that KL[QX ||P̂X ]
equals KL[QX∪I ||P̂X∪I ]. In fact the relationship is gov-
erned by the chain rule for KL-divergences as we shall
now see.

4.1 The chain rule for KL-divergences

For what follows we will require the chain rule for KL-
divergences (Gray, 2011). Let U and V be two Polish
spaces endowed with their standard Borel σ-algebras and
let U × V be the Cartesian product of these spaces en-
dowed with the corresponding product σ-algebra. Con-
sider two probability measures µU×V , ηU×V on this prod-
uct space and let µU|V , ηU|V be the corresponding reg-
ular conditional measures. Assume that µU×V is domi-
nated by ηU×V . The chain rule for KL-divergences says
that:

KL[µU×V ||ηU×V ]= EµV

{

KL[µU|V ||ηU|V ]
}

+KL[µV ||ηV ].
(19)

The first term on the right hand side is referred to as
the ‘conditional KL-divergence’ or ‘conditional relative
entropy’.

4.2 The marginally consistent augmentation

argument is not correct in general.

Applying the chain rule for KL-divergences to the diver-
gence on the union set we obtain:

KL[QX∪I ||P̂X∪I ]

= EQX

{

KL[QI|X ||P̂I|X ]
}

+KL[QX ||P̂X ]

= EQX

{

KL[QI|X ||PI|X ]
}

+KL[QX ||P̂X ] . (20)

The final line follows from the fact that in the assumed
model augmentation scheme the additional variables fI
are conditionally independent of the data given fX . This
relation makes precise our claim that marginal con-
sistency is not enough to guarantee that KL[QX ||P̂X ]
equals KL[QX∪I ||P̂X∪I ]. In fact this will only be true if
QI|X = PI|X , QX -almost surely. In the case where this
is not true variational inference in the family of aug-
mented models is not equivalent to variational inference
in the original model and we will be optimizing a ‘two-
sided’ objective function. We will consider an important
condition which ensures the desired equality does hold
in the next section.

Before we move on, however, it is also instructive to con-
sider a transformation of the original unaugmented prob-
lem into the augmented problem. Take the transformed

augmentation set and index set (Ĩ , X̃) to be defined in
terms of the old sets as (X\D,D). The chain rule then
tells us that the KL-divergence on the data set is not
in general equal to the KL-divergence on the index set
although this is true if Z ⊂ D.

4.3 Deterministic augmentation

Here we discuss an important case where the augmented
KL-divergence and the unaugmented KL-divergence are
indeed equal, namely where the additional variables fI
are a deterministic function h of the function values on
the original index set fX . A few conceptual points may
be useful before we go into the detail. First the con-
straint only says that the values are deterministic condi-
tioned on the function over the whole index set and the
index set itself may be infinite. Usually in practice ei-
ther through noise, finite observations or both, we can’t
know the latent function exactly and hence in our model
we won’t know the inducing variables exactly. Second,
whilst this assumption may initially seem contrived, in
fact it covers two very important cases: the original
framework where some inducing points are selected from
the index set X then ‘copied’ over to I and as we shall
see later the interdomain inducing point framework.

Having a deterministic function mapping is equivalent
to having a delta function conditional distribution cen-
tred on the function value. Thus the conditional KL-
divergence term in equation (20) i.e the expectation of
the conditional on the right hand side, will be zero if the
approximating measure QX∪I has the same delta func-
tion conditional. The next theorem shows that if we
follow the usual prescription for defining QX∪I this will
indeed be the case.

4.3.1 The governing theorem on deterministic

augmentation

Let (ΩX ,FX) and (ΩI ,FI) be two Polish spaces and let
(ΩX × ΩI ,FX × FI) be their product space endowed
with product σ-algebra. Let h : ΩX 7→ ΩI be a FX/
FI measurable function. We are interested in a measure
P : FX × FI 7→ R which has the following property on
the measurable rectangles AX ×AI

P (AX ×AI) = PX(AX ∩ h−1(AI)) (21)

where PX := P (AX×ΩI) is the marginal distribution for
X . This assumption in turn implies that the marginal
distribution for I has the form

PI(AI) = PX(h−1(AI)) (22)
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which is the push forward measure of PX under the func-
tion h. It is clear that the regular conditional distribu-
tion PI|X(·) has a point measure property:

PI|X(AI) = δh(fX)(AI) . (23)

Let PX|I(·) be the regular conditional distribution of
fX conditioned on fI . Next we define a second measure
Q : FX × FI 7→ R which has the following property on
measurable rectangles

Q(AX ×AI) =

∫

AI

PX|I(AX)dQI(fI) . (24)

Finally we assume that QI << PI . The theorem states
that under the assumptions of the previous section the
marginal distributions of Q have the following property:

QI(AI) = QX(h−1(AI)) . (25)

That is to say the marginal distribution of Q for Z is
the push forward measure of QX under the function h.
Consequently the approximating distribution for fI con-
ditioned on fX also has the point measure property

QI|X(AI) = δh(fX )(AI) . (26)

We now give a proof. Starting from the right hand side
of equation (25)

QX(h−1(AI)) = Q(h−1(AI)× ΩI)

=

∫

ΩI

PX|I(h
−1(AI))dQI(fI) . (27)

Next since QI << PI we apply the Radon-Nikodym the-
orem:
∫

ΩI

PX|I(h
−1(AI))dQI(fI)=

∫

ΩI

PX|I(AX)
dQI

dPI

dPI(fI) .

(28)

The existence of conditional distributions is also guar-
anteed by the Radon-Nikodym theorem. Explicitly we
have

PX|I(AX) =
dP (AX × ·)

dPI(·) . (29)

Continuing on from equation (28) and applying an el-
ementary theorem of Radon-Nikodym derivatives we
have:

∫

ΩI

PX|I(h
−1(AI))

dQI

dPI

dPI(fI)

=

∫

ΩI

dQI

dPI

dP (h−1(AI)× fI) . (30)

Now we apply the property given by equation (21)

∫

ΩI

dQI

dPI

dP (h−1(AI)× fI)

=

∫

ΩI

dQI

dPI

dPX(h−1(AI) ∩ h−1(fI)) . (31)

Now we apply some algebraic manipulations of the inte-
gral:

∫

ΩI

dQI

dPI

dPX(h−1(AI) ∩ h−1(fI))

=

∫

ΩI

dQI

dPI

dPX(h−1(AI ∩ fI))

=

∫

ΩI

dQI

dPI

dPI(AI ∩ fI)

=

∫

AI

dQI

dPI

dPI(fI) = QI(AI) (32)

as was claimed.

5 Examples

5.1 Variational interdomain approximations

Here we consider the sparse variational interdomain
approximation which was suggested but not realized
in Figueiras-Vidal and Lazaro-Gredilla (2009) and ap-
peared under the basis of the marginal consistency ar-
gument in Alvarez et al (2011). An interdomain variable
is a random variable, indexed by i ∈ I defined in the
following way:

fi(θ) =

∫

X

gi(x, θ)fx dλ(x) (33)

Here λ is a measure on X with some appropriate σ-
algebra, {gi : i ∈ I} is a set of λ-integrable functions
from X to R. The interdomain variables may be viewed
as deterministic conditional on the whole function fX so
the theorems of section 4.3 come into play. Since the
intention here is to put this framework on a firm logical
footing, we should also consider the thorny issue of the
measurability of this transformation and the associated
random variable. The existence of separable measur-
able versions of stochastic processes including most com-
monly used Gaussian processes was settled in the work of
Doob (1953). It also discusses the conditions necessary
to apply Fubini’s theorem to expectations of the random
variable defined by equation (33). The application of Fu-
bini’s theorem is essential to the utility of such methods
in practice (Figueiras-Vidal and Lázaro-Gredilla, 2009).
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Thus we may correctly optimize the parameters θ of in-
terdomain inducing points safe in the knowledge that
this decision is variationally protected from overfitting
and optimizes a well defined KL-divergence objective.
The potential for a wide variety of improved sparse ap-
proximations in this direction is thus, in our opinion,
significant.

5.2 Approximations to Cox process posteriors

In this section we relax the assumption that the data set
D is finite, which is necessary to consider Gaussian pro-
cess based Cox processes. One specific case of this model
is considered by Lloyd et al (2015) under the marginal
consistency motivation. A Gaussian process based Cox
process has the following generative scheme:

f ∼ GP(m,K)

h = ρ(f)

Y |h ∼ PP(h) . (34)

Here GP(m,K) denotes a Gaussian process with meanm
and kernel K, ρ : R 7→ (0,∞) is an inverse link function,
PP(h) is a Poisson process with intensity h and D is a
set of points in the original index set X . For example
in a geographical spatial statistics application we might
take X to be some bounded subset of R2. The key issue
with the Poisson process likelihood is that it depends not
just on those points in X where points where observed
but in fact on all points in X . Intuitively the absence
of points in an area suggests that the intensity is lower
there. Thus D = X . The likelihood in question is:

L(Y |fD) =





∏

y∈Y

ρ(y)



 exp

{

−

∫

X

ρ(x)dm(x)

}

. (35)

where m denotes for instance Lebesgue measure on X .
The full X dependence manifests itself through the inte-
gral on the right hand side. We will require that the inte-
gral exists almost surely. In Lloyd et al (2015) equation
(3), the application of Bayes’ theorem appears to require
a density with respect to infinite dimensional Lebesgue
measure. As pointed out in 3.1 such a notion is patholog-
ical. This however can be fixed because the more general
form of Bayes’ theorem in equation (9) of this paper still
applies. Thus we can apply the results of section 3.3 to
obtain:

KL[Q||P̂ ] =KL[QZ ||PZ ]−
∑

y∈Y

EQy
[log ρ(y)]

+ EQX

[∫

X

ρ(x)dm(x)

]

+ logL(Y ) . (36)

As in section 5.1 we will need to check that the conditions
for Fubini’s theorem apply (Doob, 1953) which gives:

KL[Q||P̂ ] =KL[QZ ||PZ ]−
∑

y∈Y

EQy
[log ρ(y)]

+

∫

X

EQx
[ρ(x)] dm(x) + logL(Y ) . (37)

For the specific case of ρ used in Lloyd et al (2015) the
working then continues as in that paper and the ele-
gant results that follow all still apply. Note that one
could combine these Cox process approximations with
the interdomain framework and this could be a fruitful
direction for further work.

6 Conclusion and acknowledgements

In this work we have elucidated the connection be-
tween the variational inducing point framework (Titsias,
2009a) and a rigorously defined KL-divergence between
stochastic processes. Early use of the rigorous formu-
lation of KL-divergence to the Gaussian processes for
machine learning literature was made by Seeger (2003a;
2003b). Here we have increased the domain of appli-
cability of those proofs by allowing for inducing points
that are not data points, and removing unnecessary de-
pendence on Lebesgue measure. We would argue that
our proof clarifies the central and elegant role played by
Radon-Nikodym derivatives. We then consider for the
first time in this framework the case where additional
variables are added solely for the purpose of variational
inference. We show that marginal consistency is not
enough to guarantee a principled optimization objective
but that if we make the inducing points deterministic
conditional on the whole function then a principled op-
timization objective is guaranteed and the parameters of
the augmentation are variationally protected. We then
show how the extended theory allows us to correctly han-
dle principled interdomain sparse approximations and
that we can cope correctly with the importance case of
Cox processes where the likelihood depends on an infi-
nite set of function points.

It seems reasonable to hope that elucidating the measure
theoretic roots of the formulation will help the commu-
nity to generalise the framework and lead to even better
practical results. In particular it seems that since inter-
domain inducing points are linear functionals, the the-
ory of Hilbert spaces might profitably be applied here.
It also seems reasonable to think given the generality of
section 3.3 that other Bayesian and Bayesian nonpara-
metric models might be amenable to such a treatment.
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