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Abstract

Tumours are highly heterogeneous collections of tissues characterised by a repertoire of
heavily mutated and rapidly proliferating cells. Evading immune destruction is a fundamental
hallmark of cancer, and elucidating the contextual basis of tumour-infiltrating leukocytes
is pivotal for improving immunotherapy initiatives. However, progress in this domain is
hindered by an incomplete characterisation of the regulatory mechanisms involved in cancer
immunity. Addressing this challenge, this thesis is formulated around a fundamental line
of inquiry: how do we quantitatively describe the immune system with respect to tumour
heterogeneity?

Describing the molecular interactions between cancer cells and the immune system is a
fundamental goal of cancer immunology. The first part of this thesis describes a three-stage
association study to address this challenge in pancreatic ductal adenocarcinoma (PDAC).
Firstly, network-based approaches are used to characterise PDAC on the basis of transcription
factor regulators of an oncogenic KRAS signature. Next, gene expression tools are used to
resolve the leukocyte subset mixing proportions, stromal contamination, immune checkpoint
expression and immune pathway dysregulation from the data. Finally, partial correlations are
used to characterise immune features in terms of KRAS master regulator activity. The results
are compared across two independent cohorts for consistency.

Moving beyond associations, the second part of the dissertation introduces a causal
modelling approach to infer directed interactions between signaling pathway activity and
immune agency. This is achieved by anchoring the analysis on somatic genomic changes.
In particular, copy number profiles, transcriptomic data, image data and a protein-protein
interaction network are integrated using graphical modelling approaches to infer directed
relationships. Generated models are compared between independent cohorts and orthogonal
datasets to evaluate consistency. Finally, proposed mechanisms are cross-referenced against
literature examples to test for legitimacy.

In summary, this dissertation provides methodological contributions, at the levels of
associative and causal inference, for inferring the contextual basis for tumour-specific immune
agency.
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Chapter 1

Introduction

This thesis is concerned with studying the interaction between various processes of the
human immune system and cancer cells. To facilitate this, two main statistical approaches
are proposed that characterise interactions from multiomics datasets. The first approach
studies immune-cancer interactions on an association level, identifying features that correlate
with immune agency. The second approach moves beyond associations, using probabilistic
modeling techniques to identify causal drivers for immune traits. This chapter gives a succinct
introduction to tumour heterogeneity, an overview of immunology and how it pertains to
cancer and describes several experimental techniques for immune profiling. The end of this
chapter contains a summary of the entire thesis.

1.1 The Heterogeneous Architecture of Cancer

Tumour heterogeneity accounts for a majority of the variation in pathology exhibited between
cancer samples. Heterogeneity is observed at the genetic level (different combinations of
driver and passenger mutations), and at the cellular level (variations in tumour-specific
phenotypes). The dysregulation of transcription, translation and signalling mechanisms in
cells lead to a characteristic hallmark of cancer termed "immune evasion". Immune system
disruption in the context of tumour heterogeneity has yet to be fully characterised, but is
becoming better understood in the wake of large-scale genome sequencing projects. Inference
of these disruption mechanisms is the central topic of this thesis.

1.1.1 History of Tumour Heterogeneity

Historically, tumours were considered to be homogeneous diseases comprising a uniform
population of identical malignant cells with ambiguity regarding their interaction with sur-
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rounding tissues. Early categorisation on the basis of histopathology alone failed to explain
notable morphological differences in disease presentation or the variability in prognostic
parameters such as metastatic potential or survival [3]. Advancements in genetic profiling
and other experimental tools have enabled the categorisation of tumour cells into lineages of
genotypically and phenotypically distinct populations [4, 5]. This enabled the stratification
of patients presenting with similar cancers into subtypes that demonstrated amenability to a
variety of novel targeted therapeutics, thus fostering the paradigm of personalised medicine
[6].

Microarray technology, next generation sequencing and the rapid development of compu-
tational methods provide compelling evidence for a genomic basis for tumour heterogeneity.
This complements earlier findings by pathologists, who discovered stark intra-tumoural
variability in spatial features pertaining to cell shape and tissue morphology in microscopy
experiments [7, 8]. Throughout the past decade, high throughput sequencing pipelines
enabled the rapid processing of large patient cohorts into large datasets of DNA and mRNA
measurements. By mining this data, researchers discovered striking molecular differences
between patients regarded as having the same disease pathology. [9, 10]. Tumour hetero-
geneity ties these observations into a robust theory of disease progression, and is believed to
account for the majority of disease phenotypic variability between cancer patients.

1.1.2 Heterogeneity Between Patients

Cancer is widely viewed as an evolutionary disease, whereby accumulated mutations pro-
gressively push normal cells into a highly proliferative and malignant state [4], capable of
invading surrounding tissues and evading immune destruction. This stems from the accumu-
lation of mutations that disrupts the normal regulation of the cell proliferation machinery.
The human genome is approximately 3 billion base pairs long, with over 10 trillion cells that
constitute the average human body. In the absence of carcinogens, the normal mutation rate
per generation (children and their parents) is approximately 10−8 per base pair. Qualitatively,
this implies that an offspring’s genome will contain a minimum of 30 novel mutations in the
period between conception and gamete development [11]. Strikingly, tumour cells sequenced
at the exome level demonstrate a burden anywhere between 1 to 1000 somatic aberrations,
potentially conferring genome-wide dysfunction [12]. Cancer phylogenies are complex, and
no two tumours sampled within a population will share an identical genome or collection of
cancer cells as illustrated in Fig. 1.1. This principle is known as inter-tumoral heterogeneity
and is closely linked to the variability in appearance, behaviour and development of tumours
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between patients.

Fig. 1.1 Heterogeneity at the population and tumour level. Here, clones refer to subpopula-
tions of genetically distinct cancer cells within the same tumour site. This figure has been
reproduced from [8].

Transcription Dysregulation All hierarchies of cellular processing are subject to some
kind of regulation, from gene transcription to protein translation to cell signalling. Since
these layers are interconnected, dysregulation at the transcriptional level can potentially
perturb chains of events along the hierarchy, lending to a molecular biology analogue of the
butterfly effect. Transcription factors, for example, regulate the abundance of gene mRNAs,
and they are themselves tightly regulated. Transcription factor dysregulation can manifest
through aberrant feedback loops, damage to DNA binding sites or aberrant production of
intermediary co-factor proteins. As such, transcription factor dysregulation can disrupt
normal cell functionality, break homeostasis, and manipulate surrounding tissues through
disruption to extracellular signal propagation mechanisms.

Cell Signalling Disorder Normal cells are equipped with a repertoire of molecular "pro-
grams" pertaining to cell cycling, migration or local homeostatic maintenance that are
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executed during tissue development or repair. Functional studies reveal that such pro-
grams are underpinned by complex molecular signalling networks that operate on a cell
and tissue-specific manner [13]. Oncogenic mutations disrupt the normal operating proto-
cols of signalling networks, dysregulating mitototic function and reorganising local tissues
into a pro-tumourigenic landscape [14]. The normally reticent cross-talk between normal
and stromal cells is dominated by a crescendo of reprogrammed signaling, abetting an
anti-apoptotic and immunosuppressed environment. [15]. Breaking components associated
with antigen presentation, such as defective or poorly expressed members of the MHC
class I pathway or transporter associated with antigen processing protein (TAP), is one
way tumour cells avoid immune destruction [16] (Fig. 1.2). This results in suppression of
tumour-associated antigen presentation, subsequently leading to reduced immune recognition.
Furthermore, some tumours overexpress immunosuppresive subfamilies of cytokine and
chemokine signalling molecules enhancing immune evasion and promoting proliferation [17].

Fig. 1.2 The MHC class I peptide
presentation pathway. This figure
has been adapted from [18]

Mechanisms of immune evasion will be studied in
greater detail in section 1.2.2. To conclude this paragraph,
we state an obvious observation: since inter-tumoural
heterogeneity guarantees distinct genetic profiles between
patient tumours, cellular processes will show varying
levels of dysregulation, leading to non-uniform immune
profiles across cohorts.

1.1.3 Tumour Antigens

All nucleated cells present fragments of proteins known
as peptides to the immune system in a process known
as peptide processing and presentation. An antigen is
any peptide capable of evoking an immune reaction and
potentially, but not necessarily, lead production of spe-
cific antibodies. MHC class I present peptides to CD8+
T cells, while their class II counterparts present to CD4+
T cells. Although similar in functionality, class I deal
with intracellular peptides whereas class II deal with ex-
ogenous peptides. Fig. 1.2 illustrates the MHC class I
pathway, through which degraded peptides are processed
and presented on the cell membrane. Firstly, intracellular
proteins within the cell cytoplasm are degraded into pep-
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tides that translocate to the endoplasmic reticulum. They
subsequently bind to the cleavage of MHC I molecules,
which can accommodate peptides of length 8-9 amino acids at most. Finally, the MHC-
peptide structure translocates to the cell surface for presentation to CD8+ T cells. Since
degradation occurs towards end of the functional life of a protein, the rate of presentation
is theoretically proportional to this half life. This is true with the exception of defective
ribosomal products (the product of aberrant transcription/translation [19]), which constitute
30% - 70% of all intracellular proteins and which degrade almost immediately after synthesis
[20, 21]. Remarkably, a single cell will often express between 10,000-500,000 MHC-peptide
molecules on the cell surface [22] for immune inspection. There, cross presentation between
the cells and T cells helps decide whether a cell has a suspected pathology and ultimately, if
it should be destroyed.

T cells are designed to discriminate between peptide sequences produced by the body
(self-antigens) and those which are foreign (nonself) through a concept called tolerance.
Therefore, a T cell receptor (TCR) has a higher binding affinity towards MHC I molecules
presenting nonself antigens than self antigens. Tumour antigens are a class of tumour re-
jection molecules characterised by two classes of peptides. The first class are self-peptides
with incomplete T cell tolerance, which can arise dysregulated patterns of tissue-specific
expression. The second class is characterised by peptides not normally present in the genome,
and are referred to as neoantigens. Neoantigen formation results from the degradation of
novel proteins coded for by tumour-altered DNA. This novelty is sufficient to escape central
T-cell tolerance and provoke an immune response [23]. Notably, the neoantigen profiles
of patients are considered unique, since mutational profiles are not shared at high enough
frequencies between patients to create meaningful clusters. Therefore, tumour neoantigens
heterogeneity is one way of explaining downstream heterogeneity in immune agency.

A principle question posed by cancer immunology asks: do all neo-antigens elicit an
immune response? T cell reactivity studied in the context of human melanoma found that
only a small handful of mutations lead to the formation of robust neoantigens [25, 26, 27].
Qualitatively, adequate T-cell reactivity was achieved when melanomas exhibited a somatic
mutation burden rate of at least 10 mutations per coding DNA megabase. Extrapolating this
to other human malignancies, researchers found T cell reactivity potentially correlates with
mutational burden [24]. A seminal paper by Alexandrov et al found large variances in
mutational burden profiles between different types of cancers [28], and based on reactivity
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Fig. 1.3 Somatic mutation frequencies across a range of human cancer malignancies, labeled
on the right by the likelihood of neoantigen formation. These likelihoods are based on
observations from human melanoma studies and adapted from [24].

rates in human melanoma, researchers expect adequate T cell recognition of neo-antigens for
cancers with 10 somatic mutations per megabase or higher (Fig. 1.3).

1.2 Innate and Adaptive Immunity in Cancer

1.2.1 The Human Immune System

Thus far, we have introduced the concept of tumour heterogeneity and its impact on the
appearance, behaviour and development of the tumour, with a scope on tumour immunity.
We will now introduce the general roles of human leukocyte subpopulations, the concept of a
tumour microenvironment with respect to immune cells and mechanisms by which tumours
evade immune destruction.

The immune system is comprised by a complex collective of cells and humoural factors
that can be subdivided into "innate" and "adaptive" subpopulations as illustrated in Fig. 1.4.
These subpopulations play complementary roles in the surveillance, detection and elimination
of pathogens.

Innate Immunity The innate immune system is comprised of a large number of bone
marrow derived cell families including monocytes, macrophages, dendritic cells and natural
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Fig. 1.4 The innate immune system is the first to respond during pathogenesis, and it consists
of a range of immune agents including macrophages, dendritic cells and natural killer cells.
The adaptive immune reaction is a delayed, but highly specialised response targeting specific
antigens. It consists primarily of cell families descended from the T cell and B cell lineages.
This figure has been reproduced from [29].

killer cells that form the basis of a pathogen-directed immune response. Cytokine, interleukin
and chemokine molecules are examples of humoural factors involved in pathways that link
together different components of the immune system.

Adaptive Immunity The central property characterising an adaptive immune system re-
sponse is the production of a special repertoire of proteins, expressed as antigen-specific
antibodies in B cells and T cell receptors (TCR). Non-self antigens, such as tumour neoanti-
gens, have a strong affinity towards matching antibodies and TCRs, resulting in elevated
co-stimulatory signalling and the increased proliferation of antigen-specific lymphocytes.

Mechanisms of Antigen Recognition Dendritic cells present antigens via the MHC class
I pathway through three well characterised channels. Firstly, virally infected dendritic cells
can endogenously process viral proteins into constituent peptide fragments and present them
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Fig. 1.5 A general schematic for anti-tumoural immunity, illustrating the interaction between
the adaptive and innate immune system, and other leukocytes such as immunosuppressive
immune cells and humoural factors. This figure has been reproduced from [30].

on their surfaces. Secondly, dendritic cells can cross-present antigens acquired through
engulfing fragments of dead cells. Finally, it has been proposed that dendritic cells have the
potential to acquire third-party MHC-peptide structures from dead cells through endosomal
fusion or trogocytosis, and subsequently present them to CD8+ T cells in a process known
as cross-dressing [31]. As illustrated in Fig. 1.5, dendritic cells migrate towards proximal
lymph nodes via local lymphatic channels where they activate naive T cells and B cells to
initiate the adaptive immune response.

Activation and Dynamics of the Adaptive Response T cells and B cells specialise with
with billions of surface antigen receptor combinations in order to maximise the probability
of non-self antigen recognition. Upon activation, T cells navigate towards the tumour where
they facilitate cytotoxic mediated cancer cell destruction by engaging the host MHC/antigen
complex via their T cell receptor. B cells secrete their antigen receptors as antibodies
(Fig. 1.5). B-cell antibody production against a specific antigen promotes cancer cell
apoptosis through two well characterised mechanisms [32]. First, antibodies can engage the
complement system, triggering a cascade of reactions within local tissues that upregulate
phagocytosis of cancer cells via phagocytes such as dendritic cells. Secondly, antibodies
can bind directly against the antigen, blocking extrinsic proliferative growth signals from
stimulating the cell and ultimately, cell death [32].
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Immune Cell Regulation If an immune reaction to a pathogen is left unchecked, it can
turn rampant and potentially kill the host. A notable example of this is in the case of a
cytokine storm, whereby the feedback loop between immune cells and cytokines becomes
dysregulated, resulting in an exaggerated immune reaction and damage to local tissues [33].
To prevent this, a system of immune regulatory mechanisms exists that mitigates exaggerated
immune responses. Cancer hijacks these systems as part of its immune escape mechanism
(see section 1.2.3) and uses several subpopulations of leukocytes to create an immunosup-
pressed environment [17].

T-regulatory cells (T-regs) are a classic example of regulatory cells that are often overrep-
resented in tumours relative to normal tissues [34], and are recruited via the overexpression
of tumour-derived chemokines [35]. One mechanism by which T-regs suppress effector
cell activity is the secretion of inhibitory cytokines such as IL-10 and transforming growth
factor beta 1 (TGFβ ) [36] that downregulate the killing function (cytolysis) of effector
cells. Furthermore, T-regs have been shown to secrete vascular endothelial growth factor
(VEGF) [37], a protein promoting both an immunosuppressive tumour microenvironment
and angiogenesis. T-reg infiltration is a predictive of poor prognosis in a variety of cancer
pathologies and subtypes [38].

Macrophages are examples of specialised myeloid progenitor cells that have the propen-
sity to polarise into two subtypes of contrasting tumour-related functionality [39]. Whereas
M1 macrophages enhance anti-tumoural immunity, M2 macrophages have been shown to
induce an immunosuppressive environment. They achieve this through IL-10 secretion and
facilitate tumour progression through VEGF, chemokine ligand 2 (CCL2) & TGFβ secretion
[40, 41, 42]. M2 macrophages are a component of the wound healing response and they
often work with non-immune cells to upregulate alternative mechanisms for immune evasion
(explained further in section 1.2.2).

Myeloid derived suppressor cells (MDSCs) represent a family of immature myeloid cells
that have been prevented from fully specialising into mature granulocytes, macrophages
or dendritic cells [43]. Full differentiation is often impeded in the event of pathological
conditions such as cancer or sepsis. MDSCs have been shown to suppress T-cell proliferation
through several complex mechanisms involving the expression of arginase (ARG1) and nitric
oxide synthase (iNOS) [43].
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1.2.2 Immunity in the Tumour Microenvironment

Thus far, we have introduced the concept of tumour heterogeneity, different components of
the immune system, and a brief overview over how they interact. A holistic understanding of
cancer immunity depends on incorporating additional information relating to other biological
agents in the surrounding tissues. Tumours comprise more than just cancer and immune cells;
non-malignant agents such as fibroblasts, lymphatic & blood vessels, pericytes, adipocytes
are potentially amenable to recruitment and corruption through tumour-derived signaling
pathways. A complex intercellular signaling network consisting of cytokines, chemokines,
growth factors and other humoural factors links these agents together to form the tumour
microenvironment (TME) [44]. In section 1.2.1, examples were given of several cells that
suppress the capacity of the immune system to destroy the tumour. Cancer cells recruit
immunosuppressive leukocytes into the TME through direct or indirect signalling mecha-
nisms between different TME compartments and the immune system. These mechanisms are
becoming progressively better characterised; examples of which are outlined in the following
paragraphs.

Immunosuppressive Leukocytes Cancer cells may recruit T-regs into the TME either via
the direct secretion of CCL-22 [45], inducing M2 Macrophages to express CCL-22 [46], or
promoting a hypoxic microenvironment that results in the expression of CCL-28, a T-reg
recruiting cytokine [37]. Naive macrophage polarisation into the immunosuppressive M2
state can be factilitated through exposure to IL-4, IL-10 or IL-13 [47]. Cancer cells and TME
infiltrating immune cells have been shown to over-express these factors [48] and promote the
overrepresentation of M2 macrophages in the TME.

Immune Inhibitory Checkpoints Another mechanism by which cancer cells influence T
effector cell functionality is through the overexpression of molecular checkpoint molecules
that are normally involved in downregulating exaggerated T cell killing. For example,
epithelial cells express a cell membrane-bound protein known as programmed death ligand
1 (PDL1), designed to limit T cell activity during peripheral tissue inflammation, and thus
lowering the likelihood of an autoimmune reaction. By overexpressing this molecule, cancer
cells significantly increase the probability of engaging the corresponding T cell programmed
death receptor (PD1) [49]. Furthermore, persistent and prolonged exposure to antigens
or inflammation can lead to the progressive loss of effector functionality in cytotoxic T
cells, pushing them into an exhausted state [50]. Exhausted T cells are characterised by the
overexpression of PD1 and other inhibitory receptors such as T IM3 and LAG3 [51].
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Embryonic Developmental Pathways Cancer cells have been shown to hijack embryonic
developmental pathways such as Hedgehog, Wnt and Notch in order to promote tumour
progression [52]. Perturbation to the activity of these pathways has been linked to differential
regulation of immune activity within the tumour microenvironment. For example, Hegehog
signalling has been implicated in impaired T cell proliferation and activation in both basal
cell carcinoma and pancreatic ductal adenocarinoma (PDAC) [1, 53]. Upregulated Notch
pathway signaling has been linked to enhanced T cell responses in PDAC [1] and mouse
models of cancer [54].

Stromal Cells Studies focusing on the immune cell-stroma crosstalk have found that each
component plays an active role in shaping the the other. In one notable example, recruited M2
macrophages drive stromal cell activation through the expression of fibroblast growth factors
FGF-7 and FGF-9. In turn, fibroblasts ablation in vivo is associated with decreased M2
macrophage infiltration, suggesting a potential recruitment mechanism [55]. Furthermore,
cancer associated fibroblasts (CAFs) have been shown to promote Treg infiltration through
the secretion of CCL5 [56]. CAFs have been implicated in inhibiting the intratumoural
infiltration of T cells through the secretion of CXCL12 which binds to CXCR4+ cells [57]

In summary, cancer cells promote a TME that facilitates tumour progression through
overexpression of checkpoint elements, infiltrating T cell corruption, signaling pathway per-
turbation and stromal cell manipulation. The acquisition of these immuno-evasive measures
over time are pivotal to tumourigenesis. A fundamental theory of cancer immunity known as
the immunoediting hypothesis tries to fit these observations together in the context of tumour
heterogeneity, as discussed in the following section.

1.2.3 The Immunoediting Hypothesis

The immunoediting hypothesis stems from the earlier "cancer immunosurveillance" proposed
mechanism for the immunity-driven detection and elimination of cancer cells [59]. This
hypothesis described a system by which components of the immune system act in sentinel-like
fashion to detect and eliminate neoplastic lesions. 50 years later, cancer immunosurviellance
now forms part of a much larger hypothesis consisting of three sequential phases: elimination,
equilibrium and escape [60] (illustrated in Fig. 1.6). Under this new framework, the immune
system not only plays a role in cancer cell destruction, but prunes genetically heterogeneous
subpopulations of cancer cells and ultimately shapes the genotype and resulting phenotype
of the tumour.



12 Introduction

Fig. 1.6 A diagram of the immunoediting process illustrating the immunosurveillance,
equilibrium and escape phases. This figure has been adapted from [58].

Elimination The elimination phase of immunoediting is synonymous with cancer immuno-
surveillance, whereby the innate and adaptive immune system congruently eliminate cancer
cells prior to their progression into a clinically observable tumour. This phase has been
well characterised, with many studies reporting the higher prevalence of spontaneous and
carcinogen-induced tumours in immunodeficient knockdown mice over controls [61, 62]. It
has been shown that NK cells play a crucial role in the elimination of these early lesions,
responding to chemokines and other signalling molecules secreted by stressed cells [63].
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These findings highlight the innate immune system as a key regulator of neoplastic anomalies
in the body, although further studies have shown that CD8+ and CD4+ T cells can also be
recruited via the cross-talk between NK cells and dendritic cells [64].

Equilibrium Cancer cells can progress into a state of equilibrium with the immune system,
with progression and regression pathways upregulated concurrently, pushing the tumour into
a state of functional dormancy. Studies have shown that tumours demonstrate prolonged
persistence in this state, regularised by a balance between proliferation cytokines such as
IL-23/IL-10 and elimination factors such as IL-12/IFN-γ [65]. Immunogenic tumour cells
are eliminated at a faster rate than their more evasive counterparts giving rise to natural
selection. During this phase, tumour cell variants can evolve with characteristics that enable
them to circumvent immune regularisation, resulting in the failure of the immune system to
control tumour growth [63]. This final phase of immunoediting is known as "escape" and is
described below.

Escape Tumours are defined by their characteristic ability to demonstrate unimpeded
growth. When the immune system fails to control the growth of emerging cancer cell vari-
ants, a tumour can be classified as clinically observable. The immune system is said to
have "edited" the emerging disease in such a way that only variants with acquired mutations
conferring immune evasion are observed at the clinical stage. These mutations compro-
mise immunosurveillance by breaking the antigen processing and presentation pathway,
exhausting immune efforts by overexpressing immune checkpoint markers such as PD-L1
and galectin-9 or recruiting a repertoire of immunoregulatory cells such as M2 macrophages
or MDSCs. The skewed balance of cytokines such as such as IL-10, TGF-β and VEGF in
the microenvironment favour tumour progression [63, 60, 66].

1.3 Linking Heterogeneity With Immunity

Intertumoural heterogeneity can give rise to variants that generate a variety of tumour
microenvironments, eliciting differential immune responses whose composition and func-
tionality confer varying clinical implications. The characterisation of the immune landscape
between subtypes of the same cancer class is a key goal in cancer immunology and can help
elucidate which groups of patients stand to benefit the most from treatment options such as
immunotherapy. Immune system decomposition, spatial properties and relative abundance
are crucial features in relating immune response to clinical parameters and dysregualted
cancer signaling. Molecular profiling techniques enable the elucidation of cellular mecha-
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nisms responsible for immunity at the transcription/translation level. At the sample level,
imaging techniques provide a spatial context for the immune system, guiding the search for
useful morphological features. A combination of these approaches can provide profound
insight into the regulatory mechanisms of anti-tumoural immunity [67], arguably one of
the most important tasks in cancer immunology. Additionally, experiment-derived immune
features can be used to build scores that enable robust prediction of outcome and other
clinical parameters [68, 69].

1.3.1 Layered Approaches to Immune Profiling

This section provides a brief experimental protocols overview pertaining to immune feature
extraction and regulatory mechanism inference from tumour specimens, both at the cellular
and sample levels. Each mentioned data modality has been used in the preparation of
projects throughout this thesis. Computational approaches to immune profiling are detailed
extensively in chapter 2.

Flow Cytometry Flow cytometry provides a cell counting protocol enabling the robust
enumeration and sorting of leukocyte families. Heterogeneous cell populations are extracted
from fresh tissue samples and labelled using a fluorescent tag, which are typically modified
antibodies that bind to a distinguishing cell-specific protein marker. The cells are suspended
in media and passed through a machine that measures fluorescence intensity. Subpopulations
are isolated by passing single cells through one by one and cataloging them based on the
fluorescent antibody tag. This enables features such as purity, volume and abundance of
single cells to be extracted from the heterogenous admixture. This method does not offer
any spatial context with respect to cells in the microenvironment and thus provides a limited
overview of immune cell representation in the tumour. There is an upper bound on the
number of antibodies handled at any given time, and hence, comprehensive immune profiling
attempts are laborious and expensive procedures.

Gene Expression Profiling Although flow cytometry can sort and enumerate subpopu-
lations of cells from a sample admixture, it can only measure signals from a handful of
fluorescent tags. This places a strict upper bound on the number of subpopulations that
can be extracted from a sample at any given time. Gene expression assays on the other
hand can measure thousands of mRNA transcripts concurrently from bulk tumours or laser
microdissected compartments of the tumour. Historically, this was achieved using microar-
ray technology, but is rapidly being overtaken by novel mRNA sequencing pipelines that
demonstrate superiority in detecting low abundance transcripts, identifying de novo isoforms
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and detecting rare variants [70]. Recently, computational methods have been proposed that
infer immune system properties such as composition and functional state from expression
data; these are overviewed extensively in chapter 2. Molecular assays cannot provide any
spatial context for measurements however, and the convoluted nature of expression profiling
makes it extremely challenging to localise translational/transcriptional behaviour to single
subpopulations of cells.

Haematoxylin & Eosin Stained Slides Staining tissue samples with Haematoxylin &
Eosin (H&E) is a widely used protocol for analysing biopsies for clinical markers of suspected
neoplastic lesions. Haematoxylin stains only basophilic cell components such as nucleic
acids, making the nucleus appear blue under a microscope. Conversely, Eosin is acidic
and reacts with the acidophilic components of the cell such as amino groups of proteins
in the cell, staining the cytoplasm pink. Pathological analysis of cancer in H&E stained
images has long revealed features of tumour architecture and cell morphology characterising
disease state [67]. For example, lymphocytes and neutrophils demonstrate distinctive cell
morphologies that a trained eye can distinguish from the surrounding tissues, enabling them
to be quantified and their relationship with the surrounding microenvironment described. The
added dimensionality of geometric features is invaluable to describing how the geometric
context of lymphocytes vary between different cancers. H&E stained images contain a limited
number of features and thus, lymphocyte subpopulations cannot typically be distinguished
from the images alone, unlike immunohistochemistry techniques.

Immunohistochemistry Staining The principle methodology underlying immunohisto-
chemistry (IHC) staining is similar to that of flow cytometry, with the exception that IHC
tests the representation of a single specific cellular component per slide. IHC staining
can help us visualise the distribution and localisation of specific leukocytes in the tissue
architecture, enabling a wider variety of features to be extracted. However, in order to
generate a comprehensive overview of immune composition, it is necessary to stain for a
large panel of leukocyte markers which can be time consuming and expensive. Furthermore,
the feasibility of this is determined by the sample volume since this places an upper bound
on the number of slides that can be generated. Less pathological expertise is needed to make
quantitative measures of specific cell family abundance however, as cellular components of
interest typically stain brown and surrounding tissue stains blue. Quantitative profiling can
be achieved using simple scripts that quantify colour intensity [71].
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Proteome Composition Mass spectrometry (MS) quantifies the abundance of a particular
peptide in a given sample. More abundant peptides give rise to higher peaks in the spectrum,
with the intensity specified by a continuous distribution. Algorithms can use a peptide
spectrum to quantify the relative abundance of a protein. Samples from protein mixtures
can be analysed in independent MS batch runs to give quantify the abundance of a panel of
proteins [72]. However, MS requires a complex preparation of samples and is insensitive to
low-abundance proteins such as signalling molecules relative to other immunoassays. [73]

Reverse-phase protein arrays (RPPA) enable the high-throughput measurement of multi-
ple samples under the same experimental conditions. A RPPA is basically a miniature array
of antibodies that enable highly sensitive measurements of a single protein. It has proven to
be extremely useful in quantifying protein abundance from small tumour samples such as a
biopsy. This makes the RPPA an extremely useful clinical tool, especially given the minor
amount of prior preparation needed for analysis. However, this method is limited in that
it requires a specific antibody for every protein, and the limited array size places an upper
bound on the number of tests that can be performed at a given time. Therefore, although
more sensitive measurements can be made of less abundant proteins, less overall proteins
can be measured relative to MS [73].

Somatic Variant Calling Somatic alterations in DNA are mutations introduced after con-
ception, and thus are present in all cells aside from germ cells. Somatic variants in cancer
range from point mutations termed single-nucleotide variants (SNVs), to insertion/deletion
(indels) of nucleotide sequences to chromosomal copy number alterations (CNAs) and rear-
rangements known as structural variants (SVs). High-throughput next generation sequencing
(NGS) techniques such as whole genome sequencing (WGS) have been used to reveal cancer-
specific somatic mutations by measuring and cross-referencing the tumour genome with a
matched normal genome from adjacent tissue or blood. Whole exome sequencing (WES) is
a cheaper alternative to WGS but cannot identify non-coding mutations or SVs. Together,
these technologies have enabled the stratification of patients on the basis of tumour genome
heterogeneity [74, 75], and have even been integrated with gene expression analysis for more
powerful classification schemes [76].

1.3.2 Key Challenges in Cancer Immunology

Understanding potential associations between the immune microenvironment and the out-
come of treatment strategies such as surgery, chemotherapy, radiotherapy, hormone therapy or
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adjuvant therapy has become a prominent goal in cancer immunology. Tumour heterogeneity
often means that many observations are context-dependent and thus, regulators of an immune
phenotype will not necessarily be consistent across tumour types and subtypes. Categorising
the immune microenvironment between subpopulations is essential to determining whether
immunotherapies or potential biomarkers will lend any benefit to said subgroup. Further-
more, understanding the complex interactions between the tumour microenvironment and the
immune system is essential to developing novel immunotherapy strategies.

Association studies between different data modalities are used comprehensively to probe
interactions between the tumour microenvironment and the immune system. For example,
Rooney et al integrate expression, sequencing and copy number data into a seminal anal-
ysis of cytolytic activity and its dysregulation in the TME [69]. Snyder et al use whole
genome sequencing to link tumour genetic landscapes to anti-CTLA therapy [77]. Mlecnik
et al integrate genomic, transcriptomic and imaging data to study the stratification of im-
mune responses by microsatellite instability in colorectal cancer [78]. The success of these
approaches has fostered the field of "multiomics", referring to the rapidly developing field
of biological inquiry that integrates several "omes" (proteomes, genomes, transcriptomes,
imageomes) into a single analysis [79, 80]. Developing multiomics approaches to learn
representations between the TME and infiltrating immune system is the first problem this
thesis addresses.

Association studies can determine regions of the genome that are most likely to explain
the variance in a phenotype, but cannot provide any insight regarding the direction of the
association. Since a fundamental goal of cancer immunology is to find mechanisms through
which immune traits take on the values they have, this constraint limits our confidence in
assigning responsibility to a genomic abnormality. As such, a mechanism describing the
emergence of a phenotype given a mutation is not complete if causality cannot be proved.
Probabilistic models integrating multiomics datasets have demonstrated considerable success
in predicting molecular pathways regulating obesity and diabetes phenotypes [81, 82] .
Reconstructing molecular pathways linking genomic abnormalities to downstream cancer
immune features is the second problem this thesis aims to address.

1.4 Study Aims and Dissertation Summary

Although great advances have been made in the field of cancer immunology, much work
remains to understand the immune microenvironment to the extent where personalised
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immunotherapies can be deployed for all patients. To contribute to this effort, my thesis has
been designed around a central line of inquiry: How do we qualitatively describe the role
of the immune system with respect to tumour heterogeneity? From this stems two primary
questions that this thesis aims to answer:

1. What associations exist between tumour cells and their surrounding microenviron-
ment? Can we use these associations to find patients potentially amenable to existing
immunotherapy strategies?

2. Having elucidated associations, can we find a statistical method to assign directionality?
In other words, does A cause B or can we find another variable that better explains this
association?

To address 1), this thesis draws upon computational approaches to derive immune features
and draw associations between different compartments of the TME. We address 2) by
moving away from association study based schemes to explore causal relationships and
reconstruct regulatory mechanisms between the TME and the immune system. The results
and achievements of my thesis have been summarised in the paragraphs below.

Computational Approaches to Cancer Immunology Chapter 2 gives an overview of
recent computational methods for the quantitative characterisation of immune composition
and function from multiomics data. Computational immunology is a fast growing area of
research aiming to provide methods for analysing the growing prevalence of multimodal
datasets. Gene expression data from bulk tumours contains contributions from a variety of
distinct cell populations in the TME, enabling us to ask: how much of leukocyte A do I
have in my sample and what is its relation with the TME? Sequencing data enable tumour
neoantigen characterisation and MHC typing using predictive algorithms. Imaging data
permits the design of high-throughput computational pathology pipelines that generate high
resolution spatial features of lymphocytes with respect to surrounding tissue structures. The
use of these methods in integrative multiomics pipelines form the basis of the work outlined
in the following chapters.

The Role of Oncogenic KRAS in Pancreatic Cancer Immunity In chapter 3, I present
my work on elucidating key associations between tumour cells and the immune system
in the context of pancreatic adenocarcinoma (PDAC). Work done by colleagues led to
the identification of dysregulated TF clusters modulating three embryonic developmental
pathways contributing to PDAC. Termed Hedgehog/Wnt, Notch and Cell Cycle, these
pathways demonstrate varying degrees of dysregulation amongst PDAC samples, enabling



1.4 Study Aims and Dissertation Summary 19

the identification of three main patient subgroups. Building on my colleague’s PDAC
characterisation, I used gene expression tools to qualitatively describe TME features including
leukocyte subset mixing proportions, stromal contamination, immune inhibitory checkpoint
overexpression and immune pathway dysregulation. Partial correlation analysis revealed a
stromal basis for Hedgehog/Wnt and Notch signaling, suggesting a probable mechanism for
PDAC progression. Hedgehog/Wnt samples demonstrate immunosuppressed TMEs, with a
characteristic M2 macrophage signature and no evidence of significant T cell recruitment. On
the other hand, Notch samples demonstrate a characteristic T cell signature, with upregulated
T cell related pathways and overexpressed inhibitory checkpoint molecules suggesting a
possible immune evasion mechanism through T cell exhaustion. Although the Cell Cycle
subgroup demonstrated the highest mutational burden, it was also characteristic of minimal
immune infiltration relative to the remaining subgroups.

Probabilistic Models for Regulatory Network Reconstruction Moving beyond associa-
tions, chapter 4 serves as a methods introduction for identifying the dependency structure
within and between different data modalities. Termed graphical modelling, this field is a
rapidly growing area of machine learning that can thankfully be condensed into a few simple
principles. A conditional independence statement tries to answer the question: Can the
association between two given variables be explained by the variance in other subsets of
variables? These statements are encoded into the nodes of a graphical model, forming the
basis of well-established methodologies such as Gaussian graphical models and Bayesian
networks. By identifying caveats in existing approaches, we propose a novel framework
for dependency structure visualisation using hypothesis-driven priors. The basic idea is to
anchor our analysis on a fundamental truth in cancer biology, thus reducing model space
complexity and potentially reconstructing ground truth regulatory hierarchies. This approach
sets up the foundation for chapter 5, where I address the second question of my thesis.

Causal modeling dissects tumour- microenvironment interactions in breast cancer Elu-
cidating interactions between cancer cells and their microenvironment is a key goal of cancer
research with implications for understanding cancer evolution and improving immunotherapy.
Previous studies used association-based approaches to infer relationships in transcriptomic
data, but could not infer the direction of interaction. Here I present a causal modeling
approach that infers directed interactions between signaling pathway activity and immune
activity by anchoring the analysis on somatic genomic changes. My approach integrates copy
number profiles, transcriptomic data, image data and a protein-protein interaction network
to infer directed relationships. I demonstrate that my approach generates models with a
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high validation rate in independent cohorts and orthogonal data types. In particular, discover
several novel genomic drivers of lymphocytic infiltration are discovered. This framework is
very general and can be extended to other cancer types, data types and clinical parameters.

In summary, this dissertation provides methodological contributions, at the levels of
associative and causal inference, for inferring the contextual basis for tumour-specific immune
agency.



Chapter 2

Computational Approaches to Cancer
Immunology

In this section I give an overview of recent computational methods for immune profiling in the
tumour microenvironment. This follows from section 1.3.1, where we introduced experimental
methods for immune feature acquisition at the cellular and sample levels of a tumour. In
section 2.1, I introduce statistical approaches for inferring the representation of distinct
cell populations from expression data. For pathway analysis, gene set enrichment analysis
is a well-established class of tools for inferring both immune cell enrichment and immune
pathway dysregulation (section 2.2). Beyond gene expression alone, sequencing data permits
the typing of MHC molecules involved in the peptide presentation process, and also enables
the cancer epitope landscape to be characterised (section 2.3). Finally, I overview standard
approaches to computational pathology for high-throughput sample-level immune feature
extraction in section 2.4.

2.1 Gene Expression Deconvolution

The immune system comprises a range of phenotypically distinct cell families that form an
interaction network between themselves and their environment. Each cell family plays a
unique role in the overall immune response, by regulating pathways involved in processes
ranging from pathogen recognition to wound-healing. Common experimental approaches
to studying immune system composition involve immunohistochemistry (IHC) staining or
flow cytometry; both of which use antibodies specific to a particular cell family to quantify
their abundance in a sample. There are clear advantages to using these approaches, such



22 Computational Approaches to Cancer Immunology

as obtaining an absolute quantification of cell family abundance and enhanced specificity.
However, these approaches do not scale up well to large sample sizes due to the laborious
process of technical preparation (FACS) [83] and pathologist verification and scoring (IHC)
[84]. Furthermore the large panels of antibodies and iterative protocols required make im-
mune profiling more than a handful cell families an infeasible process [85]. As such, these
protocols are usually used in a validation setting rather than large-scale discovery applications.

IHC and flow cytometry make measurements on a cellular level whereas molecular
assays of gene expression typically looks at bulk populations of cells, with the exception of
single-cell profiling. As such, gene expression profiling is said to be done on a sample level
rather than a cellular level. For each gene assayed, the expression signal is a combination of
contributions from individual cells in the TME, such as those belonging to the cancer-cell
autonomous, normal, stromal or immune compartments. A number of algorithmic techniques
have been developed to quantify immune cell profiles from molecular assays of gene expres-
sion (which are much more abundant datasets than IHC or flow cytometry).

The basic idea is to estimate the mixing proportions k = {k1,k2, ...,kn} of n cell sub-
populations where k ⩾ 0 ∀ k ∈ k, by assuming a linear contribution model. The simplest
model can be written by assuming our data admits zero noise and perfect linearity. Let
G = {g1,g2, ...,gm} be a set of m unique gene identifiers such that for any g ∈G, its expres-
sion in a given cell subpopulation i is egi. The total expression in our sample Eg can therefore
be written as the sum of mRNA contributions from each subpopulation:

Eg =
n

∑
i=1

egi. (2.1)

Eg can also be written as the dot product between the mixing proportions k and the
average expression of gene g in each cell family: k · {eg1,eg2, ...,egn}. Since this holds for
all genes, we can extend this relationship across the entire transcriptome E by writing the dot
product as a matrix multiplication equation:

E =


Eg1

Eg2
...

Egm

=


eg1,1 eg1,2 · · · eg1,n

eg2,1 eg2,2 · · · eg2,n
...

... . . . ...
egm,1 egm,2 · · · egm,n




k1

k2
...

kn

 (2.2)
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where egi, j represents the average expression of gene gi in cell family j, and the mixing
proportions {k1,k2, ...,kn} are non-zero and sum to unity. From this starting point, we want
to address the following questions:

• How do we estimate, or at least place an upper bound on the number of unique cell
families in the sample?

• The model outlined by Eqs 2.1 and 2.2 assumes zero noise contamination; a far
cry from reality when working with biological data. How do we estimate mixing
parameters when noise is introduced to the system? Does our assumption of perfect
linearity still hold?

• Can we place an upper bound on m, the number of genes, to minimise volatility in our
estimates of mixing proportions?

The following subsections provide an overview of recent computational approaches that
aim to address these points.

Gene expression deconvolution represents a class of methods that can be used to estimate
unknown parameters in Eq 2.2. There are two types of deconvolution methods typically used
for expression data. The first is known as partial deconvolution, and attempts to estimate only
the unknown mixing proportions vector k = {k1,k2, ...,kn}. The second method, complete
deconvolution estimates both kg and the signature matrix. In this section we will evaluate the
context in which each approach should be used, and give an overview of recent algorithms.

2.1.1 Complete Deconvolution

Given an expression matrix E, the general aim of complete deconvolution approaches is to
measure both k = {k1,k2, ...,kn} and the signature matrix S = egi, j simultaneously. Venet et
al were the first to propose an approach for complete gene expression deconvolution. Their
method sequentially searches for k and S that minimises the norm of the reconstruction error
||E− S×k||2 [86]. Applying their approach to colon cancer, they identified four distinct
cell populations including those of a hematopoietic and fibroblast lineage. However, the
authors state that setting an upper bound on the number of cell populations n is a significant
challenge using this approach.

Building on this, Repsilber et al , use a least squares non-negative matrix factorisation
approach to iteratively compute k and S such that ||E−S×k||2 ⩽ a where a is a user defined
threshold [87]. Unlike Venet et al , the authors verify their results experimentally, using
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paired flow cytometry and gene expression data from blood samples to compare predicted
leukocyte mixing proportions against the ground truth. Other complete deconvolution
methods have been proposed that require signature matrix related hyperparameters. For
example, Erkkilä et al propose a Gaussian mixture model approach with Dirichlet priors
over m mixing components to infer k and S [88]. Kuhn et al ’s approach requires a list of
cell-specific signature genes to help build the signature matrix [89].

2.1.2 Partial Deconvolution

The aim of a partial deconvolution approach is to estimate k = {k1,k2, ...,kn} from a measured
transcriptome E using a pre-defined signature matrix S. This approach reduces the number
of unknown parameters in Eq 2.2, making it easier to rearrange and solve. First implemented
by Lu et al [90], they used feature selection to construct a compact signature matrix of
yeast cells at various phases of the cell cycle process and solved for k using simulated
annealing. Abbas et al were the first to estimate cell mixtures from blood data using a
linear least-squares regression approach in conjunction with a signature matrix [91]. Gong et
al implemented a quadratic programming approach using expression signatures derived from
purified subsets of blood cells [92]. All mentioned approaches have recently been combined
under the umbrella of a single R package CellMix [93], taking user-provided cell-specific
expression signatures as input. Other methods such as perturbation models and robust linear
regression approaches have been put forward to deconvolve mixing proportions in blood
sample transcriptomes[94, 95].

Thus far, these approaches have mostly focused on deconvolving blood data, which is a
far more homogeneous and less noisy tissue than solid tumour tissue. The first application of
partial deconvolution in tumour data came from Ghosh, who used mixture modelling methods
to estimate cell population mixtures in colorectal cancer [96]. A recent approach by Newman
et al uses a ν-support vector regression approach to estimate the mixing proportions of 22
leukocyte subsets from bulk tumour transcriptomic data[85]. The authors use feature selection
to build a signature matrix containing the transcriptomic profiles of 22 purified leukocyte
populations such as T cells, B cells and macrophages. Their algorithm, CIBERSORT,
has been shown to outperform quadratic programming, linear least-squares regression and
other approaches when reconstructing ground truth immune composition examples in both
simulated and real datasets. Since this method motivated a major component of the analysis
performed in chapter 3, it is worthwhile describing the underlying mathematics.

To define ν-support vector regression (ν-SVR), we must first introduce the more general
concept of Support Vector Machines (SVMs) of which ν-SVR is an instance.
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Support Vector Machines Let Xn be a set of m, n-dimensional measurements of the
form {x1,x2, ...,xn} belonging to one of two classes {y1,y2}. Let Y be a vector of length m
representing class membership for points in Xn. Finally, we define Xn

y1 ⊂Xn to denote points
belonging to y1 and define Xn

y2 ⊂ Xn to denote points belonging to y2.

Definition Xn
y1 and Xn

y2 are linearly separable if there exists a set of n+1 real numbers
{w1,w2, ...,wn,k} ∈ Rn+1 such that ∑

n
i=1 wixi > k ∀x ∈ Xn

y1 and ∑
n
i=1 wixi < k ∀x ∈ Xn

y2.

Fig. 2.1 A simple example of optimal
hyperplane construction, maximally
separating the distance between two lin-
early separable groups of observations
in 2D feature space. This figure has
been reproduced from opencv.org.

Our assumption that samples in Xn are linearly
separable by category enables us to write a simple
overview of SVMs. The basic idea of a SVM is
to learn a function f (Xn) that can separate the two
sets of points Xn

y1 and Xn
y2 in n-dimensional space.

In particular we want a function that maximises
the separation between the two classes, by finding
a (n−1)-dimensional separating surface with the
largest distance between it and the nearest data point
on either side. In this case, f (Xn) is referred to as an
optimal hyperplane (a simple example is illustrated
in Fig. 2.1). Formally,

f (Xn) = β0 +β
T x (2.3)

where β0 is a bias term and β is a weight vector.
For any point x ∈ Xn, the distance D between x and the hyperplane parameterised by (β0,β )
is given by

D =
|β0 +β T x|
||β ||

. (2.4)

The closest points to the hyperplane are known as support vectors (SV)s: Xn
SV ⊆ Xn.

Using these points, we can define the canonical hyperplane by choosing β0 and β such that

|β0 +β
T x|= 1 ∀x ∈ Xn

SV . (2.5)
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Considering only the support vectors, the distance can be written

DSV =
|β0 +β T x|
||β ||

=
1
||β ||

∀x ∈ Xn
SV . (2.6)

In SVM theory, the margin MSV is defined as twice the distance:

MSV =
2
||β ||

(2.7)

which we maximise over with respect to a constraint in order to compute the optimal
hyperplane. Since maximising Eq 2.7 is equivalent to minimising f (β ) = ||β ||2

2 , the problem
now becomes:

argmin
β0,β

f (β ) subject to yi|β0 +β
T xi|⩾ 1 ∀yi ∈ Y,xi ∈ Xn, (2.8)

which can be solved using Lagrangian optimisation.

Support Vector Regression Moving on to SVR, we still minimise f (β ), but subject to a
new restraint dependent on a constant distance parameter ε . Here, SVs are values that lie
outside the boundary of the ε-distance region:

argmin
β0,β

f (β ) subject to |yi− (β0 +β
T xi)|⩽ ε ∀yi ∈ Y,xi ∈ Xn. (2.9)

This case of support vector regression is called ε-SVR and is characterised by the
ε-insensitive loss function:

Li = max{0, yi− (β0 +β
T xi)− ε} ∀i ∈ {1,2, ...,m}. (2.10)

The basic idea is to fit a "tube" of diameter ε to the data. The strict nature of these
constraints may result in no solution for f (β ) such that Eq 2.9 is satisfied. One way around
this is to introduce slack variables ξm and ξ ∗m to act as upper bounds on regression errors.
This guarantees a solution for f (β ) subject to slightly modified constraints. Eq 2.9 now
becomes:
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Fig. 2.2 An illustration of ν-support vector regression in 2 dimensions. The ν parameter
places a lower bound on the number of support vectors, and simultaneously, an upper bound
on the classification error. As such, we see that higher values of ν give rise to narrower
ε-tubes. This figure has been reproduced from [85].

argmin
β0,β

||β ||2

2
+C

m

∑
i=1

(ξ ∗i +ξi) subject to (2.11)

yi− (β0 +β
T xi)⩽ ε +ξi, (2.12)

(β0 +β
T xi)− yi ⩽ ε +ξ

∗
i , (2.13)

ξ
∗
i ,ξi ⩾ 0 ∀i ∈ {1,2, ..,m}. (2.14)

C is a positive unbound numeric constant that controls the tradeoff between the model
complexity characterised by ||β ||

2

2 and the ε-insensitive training error ∑
m
i=1(ξ

∗
i +ξi). However,

this formulation assumes that we know a priori the desired accuracy of our model given by
ε ⩾ 0. ν-SVR is a special instance of ε-SVR that automatically minimises ε , giving us a new
objective function and optimisation problem:

argmin
β0,β

||β ||2

2
+C · (εν +

m

∑
i=1

(ξ ∗i +ξi)) (2.15)
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subject to constraints given by Eqs 2.12, 2.13, 2.14. Consequently, different values of ν

alter the diameter of the ε-tube, placing a direct lower bound on the number of SVs and also
an upper bound on the loss function.

In the CIBERSORT SVR implementation, SVs are genes from the signature matrix for
the leukocyte subsets [85]. Leukocyte mixing proportions can be viewed as the orientation of
the ε-tube in feature space. Following their estimation, the mixing proportions vector k are
the normalised regression coefficients such that βi > 0 ∀ i∈ {1,2, ..,m} and ∑

m
i=1 βi = 1. Two

immediate setbacks can be identified in this methodology. Firstly, The ν-SVR formulation
means that CIBERSORT only returns mixing proportions and not absolute measures of
leukocyte subset abundance. Secondly, CIBERSORT fails to correct for co-linearities in
their signature matrix arising from the similarity of leukocyte subsets (for example, activated
and resting CD4+ T cells), which may consequently bias the estimation of leukocyte subset
mixing proportions. Addressing the first limitation, Becht et al introduce the Microenviron-
ment Cell Populations (MCP) counter deconvolution method which computes an abundance
score for 8 distinct leukocyte subsets and 2 stromal populations [97]. To address the second
issue, Li et al propose a deconvolution method that focuses on 6 leukocyte subsets, with
subsequent constraints placed on the signature matrix to minimise inter-subset colinearity
[98].

Subpopulations of cells often express the same genes, making it difficult to construct
signatures specific to a single cell type. Groups of genes with similar expression patterns
amongst leukocyte transcriptomic profiles set up a correlation structure. This is particularly
problematic in partial deconvolution approaches, since large covariances across a signature
matrix can manifest in colinear mixing proportions. One way of dealing with this is by using
cell-specific signatures.

2.1.3 Cell-specific Signatures

Ideally, we would like to annotate each cell population by a set of characteristic genes
expressed uniquely by that cell population and nowhere else. In addition to minimising
artifacts arising from collinearity, this helps with method regularisation, and eliminates
redundant features in a signature matrix S such as genes with minimal or constant expression
variance across the populations. To achieve this, we formally introduce the notion of cell-
specific markers.
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Definition Given a gene-set G and cell population i ∈ {1,2, ...,m}, a gene g ∈ G is said
to be a cell-specific marker for i if the following conditions hold: eg,i > 0 and eg, j = 0
∀ j ∈ m\{i}.

Identifying cell-specific signatures for each population enables us to rewrite Eq 2.2 with
a subsampled signature matrix containing only cell-specific markers for each population

E =


Eg1

Eg2
...

Egm

=


eg1,1 eg1,2 · · · 0

0 eg2,2 · · · eg2,n
...

... . . . ...
egm,1 0 · · · egm,n




k1

k2
...

kn

 , (2.16)

which enables the delineation of unique cell population-specific contributions to E, and
therefore a more accurate measure of k. This is evident when we restrict genes in the
signature matrix to cell-specific genes of a single cell population i. If αi ⊂G is the set of
cell-specific markers for cell population i, the following equality holds:

m

∑
p=1

∑
j∈αi

g j,p×kp = ki× ∑
j∈αi

g j,i. (2.17)

The system of equations generated by applying Eq 2.17 to all cell populations is overde-
termined and almost always has no solution. Alternative approaches to partial deconvolution,
such as taking the geometric or arithmetic mean of marker expression, can be used to infer
cell population abundance. Rooney et al demonstrate that the geometric mean of GZMA
and PRF1 can be used as a score for cytolytic activity, and use their approach to predict
survival across a range of cancer types [69]. However, interpreting the mean expression of
larger gene signatures can be challenging if we do not account for the expression of genes
outside of the signature. Addressing this concern, Gene Set Enrichment Analysis (GSEA)
was proposed, which ranks gene sets relative to the remaining gene universe [99].

2.2 Gene Set Enrichment Analysis

GSEA encompasses a class of techniques used to measure the enrichment of a a gene
signature in a set of samples. GSEA can be used to measure the enrichment of leukocyte
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signatures and pathways. The original formulation proposed by Subramanian et al tests
the over-representation of a signature between sets of samples under different experimental
conditions [99]. Barbie et al proposed a method termed Single Sample Gene Set Enrichment
Analysis (ssGSEA), which tests gene set overrepresentation on a sample-by-sample basis
[100]. ssGSEA forms an integral part of the work done in chapters 3 and 5, thus motivating a
detailed overview of the method in this section.

2.2.1 ssGSEA and Population Signatures

Single sample gene set enrichment analysis (ssGSEA) can be used to infer relative representa-
tion of cell signatures between samples. Unlike mean approaches mentioned in section 2.1.3,
the ssGSEA approach measures over-representation of m signature genes s={s1,s2,s3, ...,sm}
relative to the remaining sample gene set G\ s. The basic idea is to order genes in s by their
absolute expression in a given sample’s transcriptome E. The expression of each signature
gene {es1,es2, ...,esm} ⊂ E is subsequently replaced by a rank. Ordering the list from highest
rank m to lowest 1 enables us to construct a weighted empirical cumulative distribution
function (ECDF) given by:

ECDFsignature(i) =
i

∑
j=0

|es j |α

∑
m
j=0 |es j |α

(2.18)

where α is a weighting parameter. The ECDF for the remaining genes G\ s is given by

ECDFremaining(i) = ∑
j⩽i

1
m−|G\ s|

. (2.19)

An enrichment score is then calculated by computing the integral of the differences
between Eqns. 2.20 and 2.19. Barbie et al demonstrate the robustness of their method over
Kolmogorov-Smirnov statistic-based approaches in lung adenocarcinoma gene expression
data.

ssGSEA has been used extensively to delineate cell population representation in complex
heterogeneous tissue samples such as cancer. Yoshihara et al use ssGSEA in conjunction
with stromal and immune cell-specific signatures derived from leukocyte methylation data
and laser-capture micro-dissection. Their method, ESTIMATE [101] independently recapitu-
lated the well known immunogenic profile of clear cell renal cell carcinomas and furthermore,
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suggested a novel immunogenic component in lung squamous cell carcinoma. Unfortunately,
their immune signature is too general and does not provide enough resolution to delineate
individual immune profiles from gene expression data.

Abbas et al proposed cell-specific signatures using purified cell populations from
blood samples, but lacked validation in a solid tissue setting [91]. Work done by Bindea
et al resulted in the curation of 24 leukocyte-specific signatures from publically available
purified cell population data using solid tumour controls [102]. These signatures have recently
been used in conjunction with ssGSEA to immunoprofile 19 cancer types [103]

2.2.2 Pathway Analysis

GSEA techniques can also be used to measure the relative activity of a molecular signaling
pathway gene expression data. Molecular signaling pathways are typically annotated based
on prior biological knowledge of protein interaction, typically inferred through perturbation
experiments or co-expression studies [104]. Manually curated pathways often contain an
amalgamation of interacting biological processes, such as gene expression regulation, and
only a subset of genes tend to contribute to the series of molecular interactions constituting
a specific event [105]. Furthermore, GSEA methods can delineate distinct processes from
gene sets, by scoring and identifying gene subsets on the basis of contribution to a key event.

The 2005 paper by Subramanian et al provided 1,325 pathways as part of their Molecular
Signatures Database (MSigDB) [99]. Today, MSigDB provides 17779 gene sets including
4872 immunological signatures corresponding to immune cell types, phenotypes and activity.
Typically, these gene sets are curated from microarray experiments measuring the immune
system under two different states and selecting the top 200 most differentially expressed
genes. Gene sets generated in this way are likely to contain genes that are co-expressed
as a result of co-regulation and not phenotype association [99]. This issue is mitigated by
GSEA, since the method implicitly delineates the main biological process from the pathway
admixture. Gene ontology (GO) terms encompass a range of immunological pathways
ranging from antigen processing and presentation to cytotoxic mediated apoptosis. These
have been curated and stored in immune-specific repositories such as InnateDB [106] or
DC-ATAS [107], or more general repositories such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [108] or MSigDB.

One shortfall of the GSEA method arises from overlapping pathways, since the same
genes can contribute to many different biological processes. Overlapping gene sets intro-
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duce an implicit dependency structure amongst GO terms that can bias enrichment tests,
even when multiple hypothesis testing correction is applied [109]. To address these issues,
several followup methods to GSEA have been proposed. For example, Alexa et al model
the dependency structure between GO terms as a hierarchical graph, and reduce biases by
iteratively pruning genes belonging to significant terms higher in the hierarchy. They also
propose a scoring method, whereby genes in a GO term are weighted based on the scores of
their neighbours [110]. Jiang et al address overlap bias by calculating p-values for each
pair of pathways and also the intersection [111].

A further issue arises when attempting to apply multiple hypothesis testing correction to
p-values generated from GSEA. A typical GSEA analysis will typically query hundreds, if not
thousands of gene sets successively generating large sets of p-values. The overlap between
GO terms violates the non-independence criterion of many methods. Correspondingly,
several elegant solutions have been proposed that attempt to circumvent the multiple testing
correction stage altogether. Bauer et al propose embedding each GO term in a Bayesian
network, and leveraging probabilistic models to examine all the terms at once, thus avoiding
multiple hypothesis testing correction. Lu et al use generative models to identify GO terms
most likely to have generated the experimental observation [112].

2.3 Understanding Antigen Presentation

The antigen processing and presentation pathway forms an integral component of the immune
system. In section 1.1.3, it was mentioned how neoantigen burden can correlate with T cell
recognition and activation. Upregulating T cell activation mechanisms is a fundamental goal
of cancer immunotherapy. As such, characterising mechanistic breakages in the antigen
processing and presentation pathway is a substantial goal in computational immunology.
This challenge is typically addressed through two well-established approaches:

1. Human Leukocyte Antigen (HLA) Typing asks: does this person’s HLA allele
confer a selective for tumour cells in the microenvironment?

2. Cancer Epitope Analysis asks: what neoantigens are expressed by this tumour? How
are they related to the immune system and clinical outcome?

HLA typing does not give rise to immunotherapies itself, but can provide robust risk
factors enabling patient stratification. Cancer epitope analysis can be used to stratify patients
and also forms the basis of a novel type of immunotherapy. In this section, we will provide a
brief overview of approaches 1 and 2 along with their clinical implications.
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2.3.1 HLA Typing

Heuman Leukocyte Antigens (HLA) genes code for the Major Histocompatibility Complex
(MHC) proteins in humans which play a central role in antigen processing and presentation
[113]. Introduced in section 1.13, these complexes transport peptide fragments to the surface
of cells. Although there are only 6 HLA genes in the body (3 coding for MHC class I and 3
for class II), HLAs are examples of polymorphic genes, with over 17,000 different identified
alleles existing within and between individuals [114]. This high level of polymorphism
means that with the exception of identical twins, no two people share exactly the same set of
HLA alleles [115].

Specific germline HLA alleles have been associated with a variety of ailments including
inflammatory diseases and cancer [116, 117], subsequently promoting the use of HLA-typing
approaches in understanding cancer progression and anti-tumoural immunity. Additionally,
somatic mutations in HLA genes have been linked to upregulation of cytolytic activity
in cancer [69]. HLA variant calling is challenging due to the polymorphic nature of the
gene and the fact that most reference genomes do not account for this allelic heterogeneity.
Therefore, most approaches for resolving HLA alleles make use of a HLA allele database
such as one maintained by International ImmunoGenetics (IMGT) [118]. An example of
such an approach was proposed by Boegel et al , who call HLA alleles by aligning RNA-seq
reads to IMGT reference sequences [119]. Shukla et al , use an approach combining whole
exome sequencing (WES) data and Bayesian modeling techniques to predict HLA alleles.
Szolek et al propose a linear integer programming approach to predict HLA alleles from
RNA-seq, WES and WGS data, demonstrating an overall accuracy of 97% in benchmarking
experiments [120].

2.3.2 Cancer Epitope Analysis

The processing and presentation of intercellular protein fragments to the immune system
(covered in section 1.4) is a crucial system for maintaining homeostasis. Fragments of
presented antigens that elicit T cell recognition are known as epitopes. In particular, these
are the parts of antigens to which B-cell generated antibodies bind. Higher epitope preva-
lence is characteristic of increased T cell recognition, and it has been shown that mutational
epitopes are positively correlated with the influx of reactive cytotoxic T cell and patient
survival [121, 122]. Identifying patient-specific mutational epitopes can abet immunotherapy
efforts, through therapeutic antibodies and chimeric antigen receptor (CAR) engineered T
cell administration [123]. In addition, patient stratification on the basis of mutational epitopes
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can distinguish whom are most likely to benefit from immune checkpoint blockade or other
immunotherapies [124, 122].

Peptide binding to a MHC I molecule is implicated as the most significant step in the
antigen processing and presentation pathway. As such, the binding strength between a peptide
and MHC I, otherwise known as the binding affinity, can be used as a proxy for cytotoxic T
cell immunogenecity [125]. A range of different algorithms have been proposed to predict
the binding affinity of a peptide given a HLA class I allele. Nielsen et al were the first to
train neural networks to predict binding affinities of peptides. They credit their impressive
classification accuracies to an encoding schema that takes into account the chemical similari-
ties of amino acids [126]. Alternatively, Bui et al use an matrix method that summarises
binding affinities along the peptide chain in terms of individual amino acid contributions,
and compute an overall score using a polynomial function [127]. Their methodology, termed
Average Relative Binding (ARB), returns rankings of specific sized peptides and MHC class
I alleles. More recent MHC I binding affinity predictors are now capable of taking into
account a larger range of peptide lengths and HLA alleles [128, 129].

Binding affinity prediction for class II MHC molecules is less straightforward due to
poorer characterisation of binding motifs and greater variability in the length of peptides that
can bind to them [130]. Therefore, unlike class I methods, sequence alignment must be used
to determine the binding motif of the class II molecules [131]. State of the art methods such as
NETMHCII take into account not only the peptide-binding cleft of the molecule, but the flank-
ing amino acids too, since they have the can potentially affect peptide-binding affinities [132].

Proteomics datasets generated from mass spectrometry (MS) or reverse phase proteomics
array (RPPA) techniques can reveal the extent to which the proteome influences the cancer
epitope landscape. Bassani-Sternberg et al use MS to demonstrate a correlation between
inter-cellular protein abundance and HLA presentation, whilst validating several HLA-bound
peptides as epitopes in a colon cancer cell line [133]. The increasingly high throughput nature
of these assays increases the attractiveness of proteomics approaches for epitope profiling
and sample-wise measures of immunogenecity.

Methods that interrogate the direct interaction between the T cell receptor (TCR) and
MHC-peptide structures are currently under development. These measurements are better
metrics for immunogenecity than MHC-peptide binding affinities since they implicitly in-
corporate features from the adaptive immune system. For example, Birnbaum et al use



2.4 Computational Pathology 35

deep-sequencing and yeast epitope curation tools to predict the T cell response of unseen
examples [134]. Zhang et al use florescence microscopy approaches to measure the rate of
dissociation between the MHC-peptide molecule and the TCR [135].

Although much has been achieved in the study of cancer epitopes, progress is impeded by
an incomplete understanding of the origins of antigenic peptides bound to MHC molecules
[136]. For example, it is hypothesised that a significant fraction of antigenic peptides originate
from defective ribosomal products (DRiPs) [137], or peptides that were malformed during
the translation stage of mRNAs into proteins.

2.4 Computational Pathology

Thus far, we have discussed techniques such as gene expression analysis, WES, WGS and MS
which permit the characterisation of sub-cellular biological processes in bulk or single cell
tissues, but provide no morphological context. Pathologist assessments of suspected lesions
are routinely carried out through the morphological examination of biopsy slides, where
features are tallied to provide clinical scores of stage and grade. Much of computational
pathology is concerned with developing models that can make similar conclusions regarding
tumour presentation, or proposing novel features that can better stratify patients on the basis
of survival [67, 71]. Historically, pathologist assessments were limited to H&E stained
images, but with the advent of novel cancer biomarkers, their assessments have widened
to include IHC stained images and flow cytometry [138]. In this section, we provide a
brief overview of automated computational methods for image analysis, focusing on their
applications to cancer immunology.

The overwhelming majority of primary cancer diagnostics and post-resection follow-up
studies proceed through H&E stained image examination, making them a widely available
resource. Furthermore, almost all slides will have accompanying patient clinical information,
providing opportunities for large-scale feature extraction and survival correlation studies
[67]. Mining large numbers of features is a laborious task that will often involve a series of
pathologists working in parallel. Not only is this manually expensive, but it also introduces
noise through the variability in pathologist scoring of images. The purpose of computational
pathology is to automate this process and return summary statistics of interesting features.
Generally, pipelines consist of three primary steps: data pre-processing, object detection and
segmentation, and finally classification. These steps are detailed in the following paragraphs,
along with context-specific examples from gold-standard pipelines.
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Fig. 2.3 A set of histological images stained under different protocols (left) co-normalised
using the Macenko method (right). This image has been reproduced from [139].

Data Pre-Processing A computational pathology pipeline must be robust to analysing
histological slides that are different from one another due to age or differences in preparation
technique that lead to staining inconsistencies between samples (as is often the case with data
that has been aggregated from different processing centres). For optimum accuracy during
the image analysis phase, the data must be preprocessed to minimise these inconsistencies.
Macenko et al . suggested a normalisation method that co-normalises the colour space
of images processed under different protocols and conditions using the optical density and
singular value decoposition projection [139]. Fig. 2.4 shows an example of a set of images
with staining inconsistencies before normalisation and the same set co-normalised using the
Macenko method. Since this method is completely unsupervised, it can be readily incorpo-
rated into a computational pathology workflow. The embedding, freezing and sectioning
process involved in the initial stages of image generation could potentially give rise to other
artifacts in the image such as folded tissue, air bubbles, and object clumping due to low
spatial resolution. Pre-processing protocols can be designed to eliminate these artifacts
before the image processing step or otherwise, they could be classified as artifacts during the
image processing step as suggested by the methodology employed by Yuan et al [67].

Object Detection and Segmentation Object detection and segmentation are thriving and
rapidly developing fields of computer vision that encompass a broad range of disciplines
ranging from statistics to computer science to neuroscience. In this section we will briefly
overview several methods and discuss the influence of novel deep learning tools on the future
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of image analysis in computational pathology. Generally, most object detection and segmen-
tation methods in computational pathology employ a method to distinguish the foreground
(cell nuclei) from the background (stroma, extracellular matrix, etc.) and apply the watershed
algorithm to segment the cells.

CRImage is a pipeline developed by Yuan et al [67] that generates quantitative scores
of H&E stained tissues using a classifier trained by an expert pathologist. It achieves cell
segmentation through first distinguishing the foreground from the background using Otsu
histogram thresholding [140] and then applying a morphological opening operator to break
up clusters of objects and distinguish cell-shaped objects from artifacts. A distance transform
is then applied, followed by the watershed algorithm in order to separate locally connected
cell nuclei. Given that the object detection and segmentation process is unsupervised, this
pipeline is robust to many datasets with minimal prior preparation. A significant disadvantage
with this method lies with the fact that the combination of thresholding and watershed is
known to heavily oversegment images and thus may give rise to misclassified objects in
downstream analysis.

The approach implemented by Veta et al [141] uses a watershed transform after ap-
plying both a radial symmetry transform to mark regions of the image that are close to
being disk-like (nuclei are relatively symmetric), and a regional minima markers to avoid
oversegmentation of cells. A series of post-processing steps are then applied to the image
to clean it up as indicated by the overall schematic in Fig 2.4. A limitation of this method
is that a single 1000x1000 pixel image can take 90 seconds or more to segment effectively
which increases the computational cost of running it on a series of large slides.

An emerging, extremely powerful classifier known as the convolutional neural network
(CNN) is revolutionising the field of image analysis with applications to object detection,
segmentation and classification. CNNs belong to a class of methods known as Deep Neural
Networks (DNNs), and are made up of several convolutional and max-pooling layers that
naturally automatically learn the features contained within an image as an internal represen-
tation [142]. CNNs first sample local patches in an image and passes them through a filter
bank, linking them to units in the next layer which are organised into feature map. Each unit
in the same feature map shares the same filter bank due to the fact that most local image
features tend to be highly correlated [142], constituting part of a motif. Furthermore, local
image statistics are invariant to location, meaning that distinctive motifs can be detected at
different locations in the image by units sharing the same weight. The layout of a typical
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Fig. 2.4 A schematic for the automated cell detection and segmentation package developed
by Veta et al. This image has been reproduced from [141].

CNN architecture has been illustrated in Fig 2.5. Proof-of-concept studies have shown the
superiority of CNNs in histopathology [143] and it is anticipated that future pipelines will
shift towards these machine learning paradigms.

Object Classification After detecting the objects of interest and segmenting the image,
the challenge becomes to classify the instances as either stromal, lymphocyte or cancer
cells. Typically, an expert pathologist classifies a set of ground truth cells by eye and the
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Fig. 2.5 The layout of a typical CNN illustrating the successive layers of feature banks
connected to subsampling layers with a fully connected layer for the classification of instances
from the feature extraction layers. This image has been reproduced from [144]

morphological features of the cell such as diameter, area and so forth are extracted and used
to train a classifier to distinguish a test set [67]. The fact that a selected bag of features is used
means that the internal representation of the data piped into the classifier will be constrained,
and hence the results would not be as accurate as a system where the features are learned
naturally. Deep learning shows superior performance in the classification of cell types as
demonstrated by the classification of white blood cells from IHC images by [145], with the
one limitation being that the learned features are often too abstract to be informative.





Chapter 3

The Role of Oncogenic KRAS in
Pancreatic Cancer Immunity

The last chapter overviewed a range of approaches to TME computational immune profiling
at both the sample and cell levels. This chapter evaluates the utility of these methods
in elucidating associations between dysregulated tumour cell signalling and the immune
landscape of pancreatic ductal adenocarinoma (PDAC). Firstly, I introduce the motivation
behind studying immunity in the PDAC setting, and provide a review of subtyping initiatives
(section 3.1). Secondly, I introduce work done by my colleagues in identifying embryonic
programmes underpinning the oncogenic KRAS transcriptional signature in PDAC, which
we subsequently use for patient-based stratification (section 3.2). My main contribution to
the project involves mining PDAC gene expression data for immune and stromal features and
using them to elucidate key associations between immune agency and the regulators of the
KRAS signature. (section 3.3).

3.1 Introduction

Pancreatic cancer has the poorest prognosis of any cancer type, with survival time typically
measured in months rather than years after initial diagnosis [147, 148]. There are limited
treatment options available for pancreatic cancer and diagnostic efforts to catch the disease at
a curable stage are exceedingly difficult. In other cancer types, disease molecular characteri-
sation has directly led to the identification of subgroups amenable to inhibitory checkpoint
blockade immunotherapies. Furthermore, identifying biological processes dysregulated
by can potentially lead to the identification of new therapeutic targets. However, efforts
to identify potential immunotherapies in PDAC are hindered by challenges in molecular
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Fig. 3.1 The progressive acquisition of mutations driving normal pancreatic epithelial cells
through several neoplastic transformations into a metastatic state. This figure has been
reproduced from [146]

characterisation. Motivated by this, the main focus of this chapter is studying the effect of
dysregulated PDAC transcriptional processes on immune agency and stromal infiltration.

3.1.1 The role of KRAS in PDAC Oncogenesis

PDAC samples display complex and heterogeneous configurations of genomic instability,
mostly characterised by frequently occurring point mutations and copy number aberrations
[149]. KRAS activating mutations are a strikingly common feature amongst PDAC samples,
with 90% of tumours typically presenting with a mutation exclusively located on codon 12.
[150]. This mutation frequently co-occurs with inactivating mutations in T P53 and SMAD4,
and intragenic mutations in CDKN2A [151].

Oncogenic KRAS is not unique to the pancreas; in fact its prevalence across multiple
organs renders it unsuitable as a biomarker for PDAC. In the absence of additional muta-
tions, activated oncogenic KRAS alone forms a histopathologically distinct pre-cancerous
lesion called Pancreatic Intraepithelial Neoplasia 1, (PanIn-1). These lesions are typically
associated with episodes of chronic inflammation termed pancreatitis. In the absence of
additional mutations, cells with sporadic KRAS mutations typically clear away as part of
normal cell senescence [152]. Progression into a cancerous lesion is usually the consequence
of a function-altering mutation in a tumour suppressor gene, such as p16 or SMAD4/TP53 as
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illustrated in Fig. 3.1.

This repertoire of mutations causes perturbations to intra- and inter-signalling mecha-
nisms between cancer cells and the surrounding tissue. Notably, activated oncogenic KRAS
has been implicated in dysregulating the PI3K, RAF , and MEK signaling pathways, thereby
hijacking cell cycle regulation, evading apoptosis and promoting tumour progression [153].
Another example concerns the dysregulation of the T GF-β pathway by SMAD4 -inactivating
mutations, which are present in at least 50% of all PDAC cases [154]. SMAD4 plays a crucial
role in the nuclear translocation component of the pathway, with its deletion linked to the
formation of more aggressive tumours in activated oncogenic KRAS mice [155]. Lastly
CDKN2A codes for the p16 protein, which plays an integral part of the p16 tumour suppres-
sor pathway. CDKN2A inactivating mutations and subsequently, loss of p16 signalling are
observed in the majority of PDAC cases [156].

Signalling pathway dysregulation between the tumour epithelial compartment and the re-
maining TME is not fully understood. In part, this stems from an incomplete characterisation
of the transcriptional response to activated oncogenic KRAS. Most research into KRAS-
mediated tissue transformation focuses on mechanism dysregulation in the tumour epithelial
compartment and the characteristic stromal component of PDAC, which plays a decisive
role in tumour progression [157]. Immunity inference in this domain is made challenging by
the fact that PDAC is notoriously difficult to subtype using expression methods - strikingly,
PDAC tends to cluster closer to normal pancreatic tissue than to purely neoplastic PDAC
cell lines [158], highlighting the extent to which tumour epithelial cells integrate amongst
normal and stromal tissues. The next section focuses on this perplexing characteristic in
greater detail.

3.1.2 PDAC and the TME

PDAC has a characteristic inflammatory stroma phenotype, with evidence that local fibroblast
and stellate cells undergo phenotypic changes during the mesenchymal transition phase of
early PanIN lesions [152]. This provides evidence that KRAS promotes a tumourigenic
microenvironment even at low activity levels. PDAC is vascularised by angiogenic factors
expressed by the stellate cells [160]. Furthermore, they produce hyaluronic acid and collagen
fibers, helping to maintain the extracellular matrix supporting the tumour bed [161]. Although
little is known regarding the exact mechanism of active stroma formation, studies inactivating
KRAS in early PanIN lesions observe an immediate ablation of activated fibroblasts from
the pancreas and a mitigation of pancreatitis [159]. This provides overwhelming evidence
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Fig. 3.2 The influence
of activated oncogenic
KRAS on various
compartments of the
TME including the
stromal component
and the adaptive and
innate immune systems.
The origin and nature
of KRAS derived sig-
nalling factors is an
area of active research.
This figure has be
reproduced from [159]

that KRAS plays a direct role in maintaining the active stroma, through mechanisms that
are actively being characterised (a schematic of potential interactions is illustrated in Fig. 3.2).

One working theory suggests that cells harbouring activated oncogenic KRAS express
Sonic hedgehog (Shh), which upregulates the Hedgehog signalling pathway in stromal cells
and contributes to the inflammatory stroma [162]. Lesina et al use mouse models to
demonstrate the importance of inflammatory cytokine IL-6 in early PanIN progression and
development of PDAC [163]. Finally, Charo et al suggest that KRAS activity is connected
with the overexpression of prostaglandin E2 (PGE2), which acts on stellate cell receptors to
promote pancreatic fibrosis [164].

The influence of the tumour epithelial TME compartment on infiltrating immune cells
is not well understood. Early PanIN lesions demonstrate extensive infiltration of immuno-
suppressive leukocytes including TRegs, MDSCs and mast cells [159] with no consistent
mechanism behind their representation in the tumour. PDACs have been stratified on the basis
of M2 macrophage abundance [165], but no working theory has yet explained the origins
of this stratification. KRAS and its consequent transcriptional reprogramming is a potential
candidate as a regulator of PDAC immunity. In fact, PanIN immune cell depletion has been
demonstrated when KRAS is switched off [159], signifying a direct role of the mutation in
leukocyte recruitment. The following section focuses on characterising oncogenic KRAS in
terms of PDAC-specific transcriptomic profiles.
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3.1.3 Identifying KRAS-specific Subtypes

The goal of this chapter is to study the effect of dysregulated PDAC mechanisms on immune
agency and stromal infiltration. To this aim, we seek to characterise PDAC in terms of acti-
vated KRAS-induced molecular changes. Basically, this enables us to identify mechanisms
that are differentially regulated between normal and PDAC epithelial cells. Building a picture
of KRAS from proteomics data would be ideal, since proteins are ultimately responsible for
mechanisms contributing to cell physiology. However, proteomics datasets are laborious to
assemble and assays typically generate a handful of features (see section 1.3.1). Transcrip-
tomic studies on the other hand are high-throughput and can generate tens of thousands of
features from a single assay. Therefore, most approaches focus on subtype identification
from gene expression data [166, 167, 168, 169].

At the time this project was proposed, there existed only two other major gene expression
subtyping schemes for PDAC. Collisson et al were the first to propose a classification
scheme, using non-negative matrix factorisation (NMF) with consensus clustering to identify
three clinically distinct subtypes [147]. They demonstrate that their schema can be used to
stratify cell lines by KRAS mutational burden, but do not illustrate the role of these subtypes
in the generation of TME phenotypes. Moffitt et al use NMF to perform a deconvolu-
tion of pancreatic gene expression data into stromal and epithelial compartments [148].
They proceed to perform consensus clustering on stromal component factor genes, deriving
two stromal-centric PDAC subtypes: activated and normal. The activated stroma subtype
demonstrates a characteristic macrophage and activated fibroblast signature, indicative of
chronic inflammation. However, the authors do not place their findings in the context of
any governing biological processes, and fail to explain the role of KRAS in initiating the
transcriptomic changes giving rise to these subtypes. Finally they do not provide a link
between their subtypes and the immune landscape.

In order to identify the cellular processes and transcriptional dysregulation brought on by
activated KRAS, we make use of a powerful well established regulatory network approach
termed master regulator analysis (MRA) [170, 171, 172]. MRA aims to identify subsets of
TFs whose primary function is to coordinate the regulatory activity of a specific trait, thus
conferring a distinct transcriptional signature upon the system. Our approach builds on this,
whereby we first construct a KRAS-specific signature and then look for a specific repertoire
of TFs generating it. We term these TFs the master regulators (MRs) of the oncogenic KRAS
signature. Theoretically, identified MRs should elucidate the regulatory programs underlying
TME features, since activated KRAS is intimately linked with stromal and immune cell
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recruitment and phenotype transition [152]. The remainder of this chapter introduces our
classification schema for PDAC based on MRA, and how the biological processes governing
each subtype link to distinct profiles of stromal recruitment and immune agency.

3.2 MRA Subtyping of PDAC

The work done in this section is split into three stages. Firstly we generate an oncogenic
KRAS-specific signature from a murine PDAC cell line. Next, we use MRA to identify
regulatory mechanisms that underlie the signature. Finally, we use community detection tools
to cluster identified MRs into groups of biologically meaningful processes. We demonstrate
how the activity of these processes can be used to stratify patients into clinically distinct
clusters. The work done in this section was exclusively carried out by my colleagues Dr.
Shivan Sivakumar and Dr. Ines de Santiago, and its purpose is to provide the contextual basis
for my own independently generated results, presented in section 3.3.

3.2.1 Transcriptomic Datasets

Our study makes use of existing published resources, including both microarray and RNA-seq
derived datasets. All microarray data was generated from Affymetrix GeneChip® Human
Genome U133 Plus 2.0 arrays. These included raw gene expression data files for six PDAC
studies, which we obtained from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds)
with accession numbers: GSE17891, GSE15471, GSE16515, GSE32676, GSE2109, GSE49149
and GSE36924 (the last two accession numbers arise from the same ICGC study) [147, 173,
174, 175, 176, 177, 178]. TCGA RNA-seq data was downloaded from the Cancer Genomics
Hub using the following search terms: Assembly: GRCh37/HG19; Disease: Pancreatic
adenocarcinoma (PAAD); Sample Type: Primary Solid Tumor; Library Type: RNA-Seq;
State: Live; Disease: Pancreatic adenocarcinoma. The ICGC and TCGA expression datasets
had matched clinical metadata; access to ICGC clinical metadata was granted directly by
Peter Bailey, whereas TCGA clinical data was downloaded via cBioPortal.

3.2.2 Computing a Transcriptional Signature for Actviated Oncogenic
KRAS

KF508 is an epithelial pancreatic ductal cell line that contains a mutant variant of the KRAS
allele, with transcriptional repression mediated using a Lox-Stop-Lox cassette right before
the gene locus. Following the introduction of a Cre-expressing adenovirus to the cell, the
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Fig. 3.3 A. Volcano plot illustrating differential expression between KRAS-on and KRAS-
off murine PDAC cell lines. Each point corresponds to a microarray probe with non-zero
expression. B. GTPAse assay showing elevated RAS in KRAS-on cells (M - mock; C -
cre). C. A graph illustrating the 55 identified master regulators of the KRAS signature
(large nodes) and their regulons (small nodes). Edges here represent regulatory relationships
between the MRs and their inferred targets. Coloured subgraphs highlight the three largest
communities of MRs identified by the fast greedy community detection algorithm. The
three subgroups encompass 27/55 oncogenic KRAS MRs and correspond to three biological
processes overrepresented for the Hedgehog, Notch and Cell Cycle pathways. D. A list of the
27 MRs from the community search, ordered by community membership. The first column
represents the activity of the MR as measured by VIPER. The second column illustrates the
t-statistic of MR differential expression between the KRAS-on and KRAS-off murine PDAC
cell lines. This figure has been reproduced from [1].

stop sequence is deleted, permitting expression of oncogenic KRAS. As a negative control,
an equal number of cell samples were exposed to an adenovirus-mock. Six sets of mock- and
cre- treated KF508 samples were generated and harvested for total mRNA content. mRNA
hybridisation was conducted using Illumina Mousev2 BeadChips using 24 arrays with 46,235
randomly distributed bead types, ultimately interrogating 20,562 genes. 8,472 genes were
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interrogated by multiple bead types and 12,014 bead types did not map to any genes.

Differential gene expression analysis between the mock- and cre- groups was performed
using the bioconductor package "limma" [179]. 667 differentially expressed probe sets were
found in total (Fig 3.3A), and the bioconductor package "biomart" was used to map the
mouse Ensembl gene identifiers to their equivalent human orthologues (or removed from the
list if no orthologue exists). Gene Ontology annotation of the probe sets revealed that the
the MAPK and cell growth regulation pathways are overrepresented in the signature, which
coincides with our introduction to KRAS-mediated oncogenesis (section 3.1.1) .

3.2.3 Characterising PDAC subtypes using MRA

Fig. 3.4 Heatmaps illustrating the unsu-
pervised clustering of patient-wise MR
activity into three clear subgroups cor-
responding to the differential activity
of the Hedgehog, Notch and Cell Cycle
pathways. Our observations are con-
sistent across the ICGC and TCGA co-
horts. This figure has been reproduced
from [1].

In sections 3.1.2/3.1.3 we discussed how oncogenic
KRAS can lead to downstream perturbations of sig-
nalling pathways. We hypothesise that this mech-
anism dysregulation arises from differential TF ac-
tivity presenting between the active and inactive
oncogenic KRAS states. To identify these MRs,
we built a coexpression network for PDAC using
six independent pancreatic transcriptomic datasets,
for a total of 560 samples. Each dataset was nor-
malised separately and corrected for batch effects.
Regulatory networks between TFs and their set of
inferred target genes (henceforth known as "reg-
ulons"), were built using partial correlations, im-
plemented via the shrinkage estimates of partial
correlations method. The significance of each par-
tial correlation was computed using the fdrtool R
package [180]. fdrtool enables parameter inference
for a variety of null distributions over correlation
coefficients, Z-scores, t-statistics, etc. Z-scores are
useful statistical instruments since they simultane-
ously encode information regarding both the sig-
nificance and directionality of the association. As
such, Z-scores were computed for each association
pair by hypothesis testing against an estimated null
distribution over all associations.
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We compared each network to test the consistency of regulon substructures was con-
served across each cohort. The 7 separate networks were collapsed into a single network
using Stouffer’s method for Z-score integration [181], where the weights assigned to each
network are proportional to the size of each study. This was done to ensure that larger cohorts
contributed more to the overall integrated network.

The oncogenic KRAS signature was then overlaid onto the integrated network using the
msviper function of the VIPER (Virtual Inference of Protein-activity by Enriched Regulon
analysis) bioconductor package [182]. Basically, msviper tests for a significant overlap
between the genes in the signature and each regulon, with the regulators of overrepresented
regulons returned as the MR of the signature. 55 such MRs were identified, with several pre-
viously associated with PDAC such as GLI3, AEBP1, and CASP5, and novel MRs proposed
such as TCF21, TWIST1, and FOXF2. 8/27 MRs demonstrated upregulated transcriptional
activity whereas the remaining 19 MRs demonstrated downregulated activity (Fig. 3.3D).

Fig. 3.5 A. Kaplan-Meier curves representing survival differences between our schema-
stratified ICGC cohort. The logrank test demonstrates a significant survival difference
amongst the groups (p = 1.8e−4). B. Kaplan-Meier curves representing survival differences
between our schema-stratified TCGA cohort for patients receiving adjuvant therapy and those
not receiving adjuvant therapy. Cox proportional hazards modelling showed a significant
stratification (p = 0.02) after correcting for clinical covariates including gender, age, therapy
status and stage. This figure has been reproduced from [1].

A community detection approach was used to identify hubs of enriched biological pro-
cesses in our regulatory network. The three largest communities were comprised of 27/55
identified MRs, and were overrepresented for the Hedgehog/Wnt, Notch and Cell Cycle
signalling pathways (Fig. 3.3C). The Notch and Hedgehog/Wnt groups clustered more
closely together whereas the cell cycle MRs formed a more distant subgroup. When the
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activity of the 27 MRs was measured in patient cohorts, three distinct processes could clearly
be discerned clustering the sample space. This observation is consistent between both the
ICGC and TCGA datasets (Fig. 3.4). Although most PDAC cases have oncogenic KRAS
as a driver, these results indicate that tumour development forks into three separate paths,
dominated by the activity of the Hedgehog/Wnt, Notch and Cell Cycle signalling pathways.
These subtypes are clinically distinct, with Notch having the best and Hedgehog the worst
survival after correcting for age, gender and tumour stage (Fig. 3.5). The group of patients
with dominant cell cycle activity demonstrated the highest mutational burden relative to the
other subgroups.

We next focused on identifying immune and stromal features of the TME in the context
of Hedgehog/Wnt, Notch and Cell Cycle signalling. Focus was directed towards the two
biggest studies in our dataset collection, using the ICGC cohort (n = 242) as a discovery set
and the TCGA cohort (n = 178) as an independent validation set.

3.3 The Role of Activated KRAS in PDAC Immunity

In the previous chapter, we derived a molecular characterisation for oncogenic KRAS-
mediated transcriptional dysregulation in terms of Hedgehog/Wnt, Notch and Cell Cycle
signalling. We would now like to investigate the association between these signalling path-
ways and immune/stromal features of the TME. This section is organised in the following
way: Firstly, datasets are pre-processed and normalised according to the generating platform.
Secondly, we mine the ICGC and TCGA expression datasets for features using computational
methodologies introduced in the previous chapter, such as CIBERSORT, ESTIMATE and
ssGSEA. We make use partial correlation approaches to link the activity of each signaling
pathway to our mined features. Finally, we investigate the assignment of well established
PDAC cell lines to our schema.

3.3.1 Data Preprocessing

TCGA Normalisation In RNA-Seq count data, genes with higher average expression
across samples also tend to have larger variances than those with lower average expression.
This implies that genes with more abundance will be more scattered than genes with lower
expression. In statistical jargon, this is referred to as heteroscedasity, and is characterised
by an exponential relationship between the rank mean and the standard deviation of gene
expression across all genes and samples. There is no straightforward method to correct
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this, and normalisation typically proceeds by finding a method that stabilises the variance
across the dynamic range of gene expression. The variance stabilising transform has been
developed specifically to deal with this issue, and was applied to the TCGA dataset prior to
the application of inference tools.

ICGC Normalisation The ICGC GEP is microarray data and thus is normalised differently
from RNA-seq data. The output of the Affymetrix array experiment contains close to twenty
probes per mRNA target, half of which are used to measure mis-match spots and the non-
specific binding of a particular target. The ICGC expression matrix was normalised using the
robust multi-array average (RMA) approach, which summarises probe sets using the median
polish algorithm and finally employs quantile normalisation in order to make inter-sample
comparisons meaningful. Multiple probes mapping to a single gene is a classic issue in the
field of bioinformatics since most bioinformatics tools work on the gene level instead of the
probe level. These probes typically correspond to different mRNA segments in the gene or
splice variants of the same gene. Therefore, the commonly accepted solution of averaging
probe signals is not optimal since there is no guarantee that the signals correlate between
individual probes. Bourgon et al propose a solution that filters probesets by overall variance
[183]. Using this, they demonstrate that the discovery rate during differential expression
analyses increases by as much as 50%. They confirm that this represents a significant
performance increase over filtering by overall mean. Therefore, we selected probes with
maximum variance since they are most likely to deliver the most discriminatory power within
the sample space. Probes mapping to more than one gene were removed from the expression
matrix.

3.3.2 Master Regulator Activity Predicts Immune and Stromal Infil-
tration

To produce individual stromal and immune content estimations for each sample in our
cohorts, ESTIMATE [101] was run using the gene expression matrices as input. The
Wilcoxon rank sum test was used to look for any significant stratification of the immune
and stromal signatures across our subtypes. The stromal signature demonstrated significant
overrepresentation in samples belonging to the Hedgehog/Notch subtypes relative to the Cell
Cycle subtype; this result was consistent in both the TCGA and ICGC cohorts (Fig. 3.6B).
The Hedgehog and Notch subtypes demonstrated similar patterns of stromal infiltration, with
Notch being slightly more enriched for the signature in the ICGC cohort (ICGC: p = 1.7e–05,
TCGA: p = 7.8e–08; Wilcoxon rank sum test). Interestingly the Hedgehog, Notch and Cell
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Cycle subtypes demonstrated significantly varied patterns of immune enrichment, with Notch
being the most immunogenic and Cell Cycle being the least. Although Notch and Hedgehog
samples demonstrate similar stromal contamination profiles, there is a notable contrast in
terms of immune enrichment (ICGC: p = 1.7e–05, TCGA: p = 7.8e–08; Wilcoxon rank sum
test).

3.3.3 Notch Activity Associated with Upregulated Adaptive Immunity

We wanted to gain a representative overview of the activity of pathways in the tumour
microenvironment that are specific to immune function. To facilitate this, the MSigDB
[99]), KEGG [108] and BIOCARTA v5.0 [184] gene set collections were used to build a
compilation of immune-specific pathways. This was done by filtering all three aggregated
gene sets for immunity-related terms including "T cell", "Immune", "Cytolytic" and so forth.
77 pathways were found that satisfied these filtering requirements, and were subsequently
included in the analysis. ssGSEA [100] was implemented via the R package "GSVA" [185]
to compute enrichment scores for each immunological pathway across all samples in both
the TCGA and ICGC cohorts. To infer the activity of Hedgehog and Notch signalling, gene
signatures for each biological process were constructed by aggregating their representative
MRs and regulons. These signatures enabled sample-specific Hedgehog and Notch signalling
enrichment to be measured using ssGSEA. Notably, sample-wise Hedgehog and Notch sig-
nalling were found to be significantly intercorrelated across both the TCGA cohorts (Students
t-test p ⩽ 10−16 and p ⩽ 10−16) respectively. The strong association sets up a latent depen-
dency structure between Hedgehog/Notch signalling and the rest of the microenvironment
that must be accounted for. First order partial correlations enable associations to be made
between pairs of variables whilst correcting for the variance introduced by a third related
variable. Using this principle, correlations between immune pathway enrichment scores and
Notch/Hedgehog signalling were evaluated using the R partial correlation toolbox "ppcor"
[186] which returns association t-statistics and p-values as output. Bonferroni multiple
hypothesis testing correction was applied to p-values in order to correct for type I errors.
The significance threshold for each association was set at p ⩽ 0.05. Of the 77 immune
pathways tested, 29 significantly correlated with Notch activity when conditioned upon
Hedgehog signalling (Fig. 3.6A). Notably, 7/29 of these pathways pertained exclusively to
T-cell mechanisms, including activation and proliferation pathways (Fig. 3.7B). The remain-
ing 22 pathways referred to general immune functionality, including cytokine production
and extracellular-induced apoptosis. In contrast to Notch signalling, the Hedgehog pathway
demonstrated zero significant partial correlations with T cell pathways given Notch signalling.
Notch signalling dominated Hedgehog signalling for immune pathway enrichment as shown
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Fig. 3.6 A. Associations between ssGSEA scores for each immunological pathway and
Notch/Hedgehog signalling were evaluated using hypothesis testing for partial correlations.
Each bar represents the difference between the Notch and Hedgehog t-statistics. This metric
enables the visualisation of the dominant direction of association between the immune path-
way and Hedgehog/Notch signalling. Positive differences imply a stronger association with
Notch signalling, whereas negative differences imply a stronger association with Hedgehog
signalling. B. Boxplots illustrating the stratification of ESTIMATE-derived immune and
stromal signature scores by our subtyping schema. C. Associations with CIBERSORT-
derived leukocyte mixing proportions and the Hedgehog/Notch pathways were evaluated
using hypothesis testing for partial correlations. As with A., the t-statistic difference was
used to visualise the dominant direction of association. This figure has been reproduced from
[1].

in Fig. 3.6A.
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Fig. 3.7 A. The association between Hedgehog/Notch signalling and a panel of immune
checkpoint markers was quantified using partial correlation hypothesis testing. Each bar
represents the t-statistic measurement of association between T IGIT , PDCD1 (PD-1), and
CT LA4 expression conditioned on Hedgehog/Notch signalling. Bars crossing the dotted line
are significant associations. B. The association between Hedgehog/Notch signalling and
T-cell related pathways as quantified by partial correlation testing. Each bar represents the
t-statistic of partial association and the dotted line represents the significance threshold. This
figure has been reproduced from [1].

3.3.4 Leukocyte Composition Related to MR Processes

In section 2.1, we overviewed several deconvoluton methods for delineating leukocyte mix-
ing proportions from bulk tumour gene expression data. CIBERSORT [85] is a partial
deconvolution approach that provides a signature matrix containing the transcriptomic for
22 distinct purified subsets of leukocytes. CIBERSORT accepts a gene expression matrix
as input, and returns the a estimated leukocyte mixing proportions vector, a p-value and a
correlation measuring the success of each deconvolution for each sample. For each cohort,
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CIBERSORT was run with 1000 permutations and deconvolutions with p-value of 0.05 or
less were considered significant.

The correlation score output from CIBERSORT can be used as a metric to indicate
the degree to which CIBERSORT leukocytes are overrepresented in a sample. Comparing
this to the immune score output of ESTIMATE, we observed strong correlations for both
TCGA and ICGC (Pearson’s test R = 0.55 and R = 0.84 respectively). Samples classified
as "Cell Cycle" illustrated a negligible median ESTIMATE immune score; and therefore
the Cell Cycle signalling pathway was not interrogated for further associations. T-statistic
associations between Hedgehog/Notch signalling and leukocyte mixing proportions were
evaluated using first order partial correlations. p-values determined by the t-statistic were
corrected for multiple hypothesis testing type I errors using the Bonferroni formulation in
the ICGC cohort only. A p-value threshold of p ⩽ 0.05 defined the significance threshold in
both cohorts. We illustrate the dominant phenotype by computing the t-statistic difference
between the Hedgehog and Notch associations (Fig. 3.6C).

These tests revealed a significant overrepresentaiton of CD8+ T cells in samples with
elevated Notch signalling. In contrast, Hedgehog signalling was significantly associated with
a dominant M2 Macrophage and Natural Killer cell signature. These results are conserved
well across the ICGC and TCGA cohorts.

Finally, a panel of immune inhibitory checkpoints, including CTLA4, PD-1, PD-L1,
TIM3 and TIGIT, were tested for association with both the Hedgehog and Notch pathways
through the use of first-order partial correlation analysis. Results between the ICGC and
TCGA cohorts correlated well, with CTLA4, PD-1, and TIGIT expression demonstrating
significant positive correlations with Notch activity, and no significant association with
Hedgehog activity (Fig. 3.7A).

3.3.5 Cell Line Classification

A microarray dataset containing the expression profiles of 44 pancreatic carcinoma cell
lines was acquired from the Broad Institute’s cell line resource. Gene expression centroids
for each subtype were computed from the ICGC cohort using the R package "pamr". The
ICGC cohort was chosen over TCGA since it is also a microarray dataset. The centroids
were used to classify each cell line into our schema using the shrunken centroids method
[187] and strikingly, all 44 cell lines classified into the "Cell Cycle" group. Cell lines
are hypothetically homogeneous cell populations of a single cellular lineage, leading us
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Fig. 3.8 A. A transcriptomic dataset containing the expression profiles of 44 pancreatic
carcinoma cell lines was acquired from the Broad Institute’s cell line resource. ssGSEA
analysis revealed that the majority of cell lines demonstrated a dominant pattern of Cell Cycle
signalling with downregulated Notch and Hedgehog signalling. B. Clustering the cell lines
on the basis of master regulator expression clearly defines a distinct cluster of overexpressed
MRs corresponding to the Cell Cycle pathway. In contrast, the master regulators of Hedgehog
and Notch display underrepresented expression relative to the Cell Cycle MRs. This figure
has been reproduced from [1].

to hypothesise that Hedgehog and Notch signalling are part determined by cancer cell
interactions with other components in the microenvironment such as the stroma. As an
orthogonal mode of validation, Hedgehog, Notch and Cell Cycle activity were computed
for each cell line using ssGSEA, with Cell Cycle signalling activity dominating the other
pathways (Fig. 3.8A).
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3.4 Discussion

PDAC is a devastating disease that confers a poor prognosis relative to other cancer histolo-
gies. Attempts to describe PDAC in terms of mutational drivers commonly identify activating
mutations in KRAS as a consistent disease progenitor. Molecular subtyping efforts do exist,
but they attempt to place KRAS in the context of clustered subtypes rather than directly derive
clusters from a KRAS transcriptional signature. Hence, they are often unable to find mech-
anisms linking the progenitor mutation to TME features and clinically observable phenotypes.

Our approach attempts to find the master regulators (MR)s of the KRAS-induced tran-
scriptional response. To achieve this aim, we use MR analysis to isolate 55 TFs forming the
regulatory apparatus for a KRAS-specific transcriptomic signature derived from the KF508
murine cell line. Community detection approaches identified 27/55 MRs as the central
components of three embryonic signalling pathways: Hedgehog, Notch and Cell Cycle. The
activity of these MRs enabled the stratification of patients into three clinically distinct sub-
type with distinct mutational burden profiles. Each subtype is characterised by three routes
of PDAC development facilitating differential transcriptomic responses. Computational
immunology tools were used to mine each transcriptional response for features of adaptive
and innate immune agency. We find that each route of PDAC development is characterised
by a unique immune and stromal profile, possibly contributing to the prognostic discrepancy
between subtype.

3.4.1 Notch/Hedgehog Signalling and Stromal Recruitment

Patients classified as either "Hedgehog" or "Notch" by our schema were represented by
high levels of stromal infiltration. Sonic hedgehog (Shh) factors expressed by epithelial
cells are known to have a paracrine like-function on the surrounding tissue, upregulating
the effect of Hedgehog signalling in the surrounding stroma [188]. Furthermore, Hedgehog
signalling in stromal tissue is implicated in the maintenance of a reactive stroma and thus,
chronic pancreatitis could be an explanatory factor for the poor prognosis of the "Hedgehog"
subtype [189]. The expression of Hedgehog factors takes place in both the cancer-cell
autonomous and stromal compartments of the TME, making it difficult to resolve how much
signalling is taking place where. Notch signalling is mostly isolated to the cancer-cell
autonomous compartment with little known about its activity in the stroma [157]. The
overrepresentation of stromal content in Notch-dominated samples most likely arises due to
concurrent Hedgehog signalling; the two pathways are strongly inter-correlated. Furthermore,
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the epithelial growth factor receptor EGFR pathway is upstream from Notch signalling, and
has previously been implicated as a regulator of pancreatic fibrosis [190]. As such, the exact
role of Notch in stromal signalling warrants further inquiry.

3.4.2 Hedgehog Upregulates Immunosuppression

Our study found significant overlaps between Hedgehog signalling and downregulated
adaptive leukocyte functionality. The Hedgehog process was especially enriched for M2
macrophages, a well established mediator of immunosuppression. We mentioned earlier
that M2 macrophages are used to stratify patients on the basis of survival through unknown
recruitment mechanisms. Since the activated stroma employs several well characterised sys-
tems for M2 macrophage polarisation (section 1.2.2), our findings recapitulate an important
feature of the PDAC microenvironment in the context of mechanisms driven by oncogenic
KRAS. Interestingly, our study found that Hedgehog was overrepresented for Natural Killer
cells but underrepresented for cytotoxic T cells. This suggests that immunosuppression takes
place at the adaptive immune level. Although Hedgehog patients have the worse prognosis,
they could stand to benefit from newer targeted immunotherapies.

3.4.3 Notch Signalling Promotes Immune-Induced Tumour Cytotoxic-
ity

We uncovered a significant over-representation of adaptive immune function in the Notch
process, including pathways annotating T cell activation and proliferation. Our observation is
consistent with work done by Palaga et al , who demonstrate that Notch regulation is required
for IFN-γ production and the proliferation of CD8+/CD4+ T cells [191]. Furthermore,
Maekawa et al suggest that the cytotoxic action of CD8 T cells can be upregulated by
Notch ligands binding to the Notch1 and Notch2 transmembrane receptors [192]. Indeed,
several studies have demonstrated that some tumours promote a Notch-suppressive TME
to escape immunosurveillance [135, 193]. This may account for our observation of greater
CD8+ T cell representation in tumours with greater Notch signalling. Furthermore, Mathieu
et al show that Notch signalling upregulates the binding of the NICD-RBPj molecule to the
PDCD1 promoter, causing it to become overexpressed on the surface of activating CD8+ T
cells [194]. This is directly consistent with our observations of a correlation between PD-1
and Notch signalling, suggesting that patients in the "Notch" category may be potentially
amenable to inhibitory checkpoint therapies.



Chapter 4

Probabilistic Models for Regulatory
Network Reconstruction

In this chapter, I introduce the motivation behind causal inference and how it can be used to
deepen our understanding of cancer-immunity interactions (section 4.1). I introduce a range
of graphical modeling methods, which differ with respect to how extensively they explain
the correlation between two events given a third event (section 4.2). Bayesian networks are
dealt with in section 4.3, and how they pertain to genomic signaling events. Section 4.4
introduces methodologies for learning these networks from real data, and the benchmarking
of well established approaches. We end the chapter by proposing a new method that aims to
overcome limitations encountered whilst benchmarking other approaches, thus forming the
basis for chapter 5.

4.1 Introduction

4.1.1 Association Studies in Cancer Immunology

Investigating cancer-immune interactions is challenging given the heterogeneous and evolv-
ing nature of the cell populations. The two compartments form complex multicellular
ecosystems: cancer cell development widely viewed as an evolutionary process [4] whereas
the immune system is comprised of adaptive and innate immune agents that demonstrate
different levels of phenotypic plasticity and memory [195]. High throughput technologies
such as NGS generate vast quantities of data that have been successfully mined to provide
insight into cancer by developing mechanistic theories that support clinical decision making
[76, 1]. These techniques have been extended to cancer immunogenomics, where NGS data
such as whole exome sequencing (WES), whole genome sequencing (WGS) and RNA-seq
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are probed for links to the immune system [69, 85, 117].

For example, Rooney et al integrate RNA-seq, WES and SNP array data into a working
theory of tumour-specific cytolitic activity [69]. Martins et al combine RNA-seq and IHC
data to validate PTEN loss as a driver for ovarian cancer [196]. Orru et al gauge the
genomic basis for variations observed in 95 immune cell types across over 1600 patients,
using a combination of WGS and flow cytometry [197]. Finally, Yuan et al use lymphocyte
expression signatures alongside H&E features to build an integrative classifier for survival
[67]. These studies propose that using a combination of data modalities for inference may be
more advantageous than focusing on singular data types.

Association-based methods have been used to characterise TME interactions within
bulk [102, 198] and micro-dissected tumour transcriptomes [199]. For example, Ali et
al [198] showed that patterns of immune infiltration varied between molecular subtypes of
breast cancer in bulk tumour transcriptomes; and Oh et al [199] derived stromal-epithelial
co-expression networks from micro-dissected tumour data to investigate crosstalk within
the tumour microenvironment. Although these studies can determine regions of the genome
most likely to explain phenotypic variance, they cannot provide any insight regarding the
direction of the association. This problem has prompted a need for causal inference using
more sophisticated statistical methods.

4.1.2 The Need for Statistical Causal Inference

A fundamental goal of cancer immunogenetics is to find mechanisms in the tumour that give
rise to observable immune phenotypes. Association studies alone are non-mechanistic and
lack the context required to temporally order two correlated events. As such, a mechanism
describing the emergence of a phenotype given a mutation is not complete if causality cannot
be proved. Causal inference provide a means of predicting the perturbation of a variable given
a change in a related causal variable [200]. As described in the following paragraphs, causal
inference can be extremely resourceful and provides an excellent means of reconstructing
mechanisms from existing datasets.

Mechanism Discovery and Prediction A well-defined biological mechanism is desirable
for two reasons. Firstly, tracing the origins of a phenotype through layers of molecular
interactions can potentially reveal targets amenable to therapy. Secondly, it will enable the
prediction of perturbations to a phenotype under different experimental settings, helping
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guide future hypotheses.

Association analyses amongst variables involved in an experiment aims to infer param-
eters of a "true distribution" from which samples were drawn. In addition to gauging the
association between variables, these parameters help make predictions regarding past and
future events, and probabilities can be updated when further experimental evidence is in-
corporated into our beliefs. So as long as the experimental conditions that generated the
data are invariant, the parameters and thus, inference should not be perturbed. This directly
arises from there being nothing in probability distribution functions to enable the prediction
of the change of one distribution parameter with respect to another [200]. Causal inference
generalises this analysis, enabling us to infer probabilities under both static and changing
conditions, making it an excellent approach for mechanism discovery.

In a typical NGS experiment, the number of variables typically ranges in the tens of
thousands, with a limited means of reducing the search space of alternative causal hypotheses.
Even with the high throughput capacity of NGS, the number of experiments required draw
causal conclusions between thousands of genes becomes extremely large and impractical.
Non-automated causal discovery protocols do not demonstrate adequate robustness given
the limited feasibility of experimental deployment, whereas the rate of development of
computational processing power and storage space can support search algorithms that operate
over large causal hypotheses domains. Statistical approaches such as graphical modeling can
fit many variables into the context of an overall causal structure, describing the influence
of variables over one another. These statistical implementations narrow down many causal
hypotheses into only a handful.

Data Recycling

The availability of extensive multi-omics resources from projects such at The Cancer Genome
Atlas (TCGA) [201], the International Cancer Genome Consortium (ICGC) [202] and other
datasets published alongside smaller studies (Gene Expression Omnibus for example [203])
have been extensively mined for associations but not causal interactions. A causal model
can integrate multiple data modalities and provide sufficient resolution for reconstructing a
mechanism of interest. These types of analysis rarely require supplementary experimentation
other than end-stage validation to functionally characterise the causal drivers of a phenotype
[81]. As such, causal inference methodologies stands to benefit from the ever increasing



62 Probabilistic Models for Regulatory Network Reconstruction

sample sizes of data collecting initiatives.

The remainder of this chapter focuses on providing a statistical methods overview for
causal inference. These approaches focus on visualising the dependency structure between
observations in the form of probabilistic graphical models. The fundamental premise of
causal inference stems from the notion of conditional independence, which we formally
introduce in the next following section.

4.2 Conditional Independence Models

A graph is defined by G = (V,E) ordered pairs of V vertices and E edges. In probabilistic
models, each vertex v ∈ V corresponds to a random variable Xv and we let the set X =
(X1,X2.....Xn) represent a set of n random variables. Let Y denote M draws from X, such
that y ∈ Y= (x1,x2, ...,xn). Y can be represented as a n×M matrix with rows representing
each random variable and columns representing each sample. E represents the dependency
between the random variables X ∈ X represented by V and thus forms the graph topology. A
special case of G has directed edges and permits no cycles, referred to as a directed acyclic
graph (DAG), and plays a prominent role in causal inference.

The biological interpretation of each v ∈V depends on the type of data being analysed.
Microarray data is used to construct transcriptonal gene regulatory networks, protein data
used to build protein-protein interaction networks and so forth. Vertices needn’t be restricted
to singular modalities: v1 may represent RNA-seq measurements and v2 represent image
features for example. Multimodal conditional independence models built and validated using
multi-omics datasets form the basis of work done in chapter 5.

4.2.1 Skeletal Association Graphs

Biological mechanisms typically proceed through chains of biochemical interactions between
molecules. Consequently, much of functional genomics focuses on attempting to cluster
together similar groups of random variables representing molecules such as mRNA transcript
abundance [204, 205]. This stems from a fundamental heuristic that genes which are
coexpressed are more likely to be coregulated: i.e. their expression is controlled by the same
regulatory programs. Coexpression networks can be built to represent these relationships,
with the vertex space V representing genes and E representing pairwise correlations between



4.2 Conditional Independence Models 63

genes. Typically, the quality of this correlation is judged by generating a p-value, with a
threshold set to determine if an edge is kept or discarded. Association networks can also
be constructed from multimodal datasets, illustrating the relationship between alternative
families of molecules, such as mRNAs and proteins.

Initialising Skeletal Association Graphs To proceed with an association analysis, we first
formally define the notion of a similarity measure between variables. A similarity measure
is any relationship between observed variables that can be represented in terms of a joint
distribution. Correlations are the simplest similarity measures, with 0 correlation signifying
statistical independence between two sets of observations. Correlations networks are accurate
even when considering the issue of the large n small M problem (the number of genes in an
expression assay will almost always exceed the number of samples in a dataset). In R2 space,
two vectors {yi,y j} ∈ Y are said to be linearly dependent if α can be determined such that
yi = α× y j holds. Depending on the value of α , the correlation between yi and y j is either
exactly -1 or 1. If α cannot be determined, {yi,y j} are said to be linearly independent, and
will take on R2 ∈ (−1,1). Variables will not always be linearly related, especially if they
represent different data modalities. Discovering non-linear relationships between {yi,y j}
requires moving away from correlations to pair-wise mutual information or non-parametric
estimation techniques like kernel functions [206, 207].

The second step of graph construction involves controlling for the multiplicity of simulta-
neous association inferences. Rejecting the test statistic at the error level of 0.05 means that
5% of all hypotheses will on average be rejected incorrectly. Considering that the expected
number of incorrect rejections (formally known as Type I errors) grows linearly with the
number of pairwise tests forming a complete graph, (n(n−1)/2 in the context of n vertices),
this quickly becomes problematic. The p-value is defined as the probability under the null
hypothesis (i.e. the statement "no relationship exists between A and B) of sampling extrema
values from a statistical model. A practical method consists of building a R2 null distribution
through comprehensive column and row-wise permutations of the data matrix, and comparing
the edge distribution of the real data graph to that of the null distribution. Type I errors can
be addressed using methods ranging from the more conservative Bonferroni correction to the
more passive Benjamini-Hochberg procedure [208].

Skeletal Association Graphs are not Causal Let X ,Y and Z be random variables that
demonstrate an underlying non-zero correlation structure. In the context of a biological
system, we can let X ,Y and Z pertain to the expression profiles of three genes. The depen-
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dency relations between these variables cannot be distinguished through associations alone.
A functional genomics solution exists to solve this dilemma: perturbation experiments. By
perturbing the "resting" state of a cell, the resultant values of X ,Y and Z can be used to
figure out a dependency structure between the variables. However, this approach becomes
laborious when the number of genes in the correlation structure becomes large, as is typical
in NGS experiments. Thankfully, a statistical approach can be used in place of perturbation
experiments. Such methods not only search for significant correlations, but those that cannot
be explained by the variance in other variables. If the association between X and Y can be
explained by the variance in Z, X and Y are said to be conditionally independent given Z.

Definition If X ,Y and Z are three disjoint subsets of variables under a joint distribution
P(X ,Y,Z), then X and Y are conditionally independent given Z (denoted X ⊥Y |Z) if and only
if P(X ,Y |Z)=P(X |Z) ·P(Y |Z) ∀ X = x, Y = y and Z = z assignments for which P(Z = z)> 0.

For interpretation, X ⊥ Y |Z can be stated as "After observing Z, subsequently observing
Y gives me no new knowledge to understand X". In the context of associations, X ⊥ Y |Z
implies that the correlation between X and Y can be explained by the variance in Z. This
is equivalent to writing P(X |Y,Z) = P(X |Z), a generalisation for the independence relation
P(X |Y ) = P(X ,Y )

P(Y ) = P(X)·P(Y )
P(Y ) = P(X). The definition also holds when conditioning on a

vector of variables Z.

In the context of graphs, conditional independence statements concerning variables
encoded by V constitute edges in E. Depending on the size of the conditioning set, special
cases of graphs can be built. For example, skeletal association graphs can be seen as a special
case with Z = /0. All statistical models we deal with in this chapter are built upon the notion of
conditional independence. We will see in the upcoming sections that biological assumptions
can be used to minimise the number of variables |Z| conditioned upon the correlation between
X and Y and thus simplify graph structures.

4.2.2 Gaussian Graphical Models

Let (X1,X2, ...,Xi, ...,X j, ...,Xn) ∈X be a n-dimensional vector of random variables drawn
from the Gaussian N(µ ,Σ), where the covariance matrix Σ is positive definite and therefore
invertible. The distribution has the precision matrix P = Σ−1 = (pi j)i j.
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Definition The partial correlation between (Xi,X j) ∈ X given Y = X\{Xi,X j} is defined
by

ρi, j·Y =−
pi j√pii p j j

. (4.1)

It follows that between any two vertices i, j ∈V where i ̸= j,

Xi ⊥ X j|Y⇔ ρi, j·Y = 0. (4.2)

Partial correlations enable us to construct a class of undirected graphs called Gaussian
Graphical Models, which encode statements of conditional independence between pairs of
nodes given all other nodes in the network [209].

Definition Let V be a vertex set such that each i ∈V represents a random variable given
by Xi ∈ X. A Gaussian Graphical Model (GGM) is a graph where the edge set E is defined
such that {i, j} ∈V are adjacent iff the partial correlation between them given the remaining
vertex space Y =V \{i, j} is non-zero (i.e., ρi, j·Y = 0).

In practice, GGMs can be built from most datasets with invertible covariance matrices Σ.
Partial correlation coefficients can be computed using entries in the precision matrix P = Σ−1.
Statistical tests are then employed to gauge whether ρi, j·Y is significantly different than zero.
The GGM over the vertex space is populated by edges where this condition is satisfied.

Advantages over Association Graphs Association graphs are built from entries in the
data covariance matrix Σ and provide a useful visualisation of relationship structures between
variables. GGMs are built instead from the precision matrix Σ−1, and provide a visualisation
of the correlation between variables after correcting for the variance of all other variables in
the data. Correlation coefficients and partial correlation coefficients both demonstrate strong
and weak criteria for dependency testing between variables as shown in Table 1. Correlation
coefficients tend to be non-zero for most pairs of variables and thus are strong criterions of
independence, but concurrently, weak for establishing meaningful dependence statements.
Conversely, partial correlation coefficients tend to be zero after conditioning upon all other
variables, and are thus strong measures of dependence but a weak criterion of independence.

GGMs are encoded by strong criteria for dependence and thus will be more sparse
than association graphs. The vanishing associations prove useful in filtering correlations
between variables whose values stem from an underlying regulator. In the context of biology,
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Dependence Criterion Independence Criterion
Correlation Coefficient Weak Strong
Partial Correlation Coefficient Strong Weak

Table 4.1 Comparison between Correlations and Partial Correlations

these may be genes whose expression profiles are coregulated by a transcriptional program.
Furthermore, GGMs can isolate variables of interest, such as interactions between a TF and a
regulated gene that may be weakly correlated in an association graph, but strongly related in
terms of partial correlations with respect to neighbouring genes.

GGM construction is not trivial GGMs are easy to build in theory, but the process be-
comes less trivial when we work with real data. Most omics datasets are high dimensional,
with the number of variables almost always tending to exceed the number of samples (|X| »
N). A covariance matrix built from data with relatively few observations tend to be singular
and therefore non-invertible. This is highly problematic, as partial correlations depend on a
precision matrix that cannot be computed from a singular covariance matrix. One way of
addressing the issue of |X| » N is simply to make |X| smaller using variable selection. Toh
and Horimoto were the first to do this, implementing a clustering analysis as a preprocessing
step of GGM construction, thereby reducing the effective size of |X| [210]. Alternatively,
Schafer et al. recommend using the Moore-Penrose pseudoinverse in place of regular matrix
inversion for singular matrices [211].

GGMs are examples of fully conditional graphs. They ask "Does the correlation between
two variables hold if I condition on every other variable?". The next section examines a
powerful but simpler class of graphs with a conditioning space size of 1.

4.2.3 Triplet Graph Models

Triplet graph models are special cases of GGMs, where associations are conditioned upon
only a single other variable rather than the remaining vertex set. Formally,

Definition Let {i, j,k} be three unique points in a vertex set V corresponding to random
variables {Xi,X j,Xk} ∈ X. A Triplet Graph is a graph where the edge set E is defined
such that i and j are adjacent iff ρi, j·k ̸= 0 ∀ k ∈V \{i, j}. These edges encode conditional
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independence statements of the form

Xi ̸⊥ X j|Xk⇔ ρi, j·k ̸= 0 ∀k ∈V \{i, j} (4.3)

into the graph. For gene coexpression, triplet graphs greatly reduce the dimensionality
problem of GGMs since we only test triplets of genes at any given time. This property makes
triplet graphs ideal for any multiomics dataset, where the set of variables X can include
transcriptomic, genomic and proteomic data or any combination thereof. Furthermore, it can
be shown that a triplet graph coincides with a GGM over the same vertex space provided the
GGM contains no cycles.

4.3 Bayesian Networks

Thus far, we built association graphs by asking: "what does the correlation structure of X look
like?". We then considered fully conditional graphs by asking: "what does the correlation
structure between Xi and X j look like when we condition upon all of X\{Xi,X j}?" Finally,
we built triplet graphs by asking: "what is the correlation structure between Xi and X j look
like when we condition upon each other variable Xk?".

We can summarise these graphs into a query concerning general conditional independence
by asking: "what does the correlation structure between Xi and X j look like hen we condition
upon all subsets of the remaining nodes XS ⊆ X\{Xi,X j}?". The edges in this graph are
undirected, although the dependency between vertices in GGMs and triplet graphs already
imply some form of directionality in terms of conditional independence. We can formalise
this directionality in the form of a Bayesian Network. According to Jensen, a graph G= (V,E)
must satisfy four criteria to be a Bayesian Network [212].

1. E must consist of directed edges between variables.

2. The set of random variables X assigned to each vertex in V must consist of a set of
mutually exclusive, finite values.

3. The graph must be acyclic, and hence by property 1) a DAG.

4. A vertex v ∈ V is represented by the conditional probability P(Xv|Xpa(v)) where
pa(v)⊆V \ v represents v’s parents in the graph.

The joint probability distribution over all vertices is expressed as the product of all node
conditional probabilities:
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p(XV ) = ∏
v∈V

p(Xv|Xpa(v)). (4.4)

The union set of v’s parents, its children and its children’s parents is known as a Markov
Blanket.

Definition Given a a vetex v ∈V in a Bayesian network, the collective union of its parents,
children and children’s parents is known as a Markov blanket. It follows that if δV is the
Markov blanket of v,

p(Xv|δV,X\δV ) = p(Xv|δV ), (4.5)

and thus v is conditionally independent of any subset of nodes in the network given its
Markov blanket.

This property, along with the DAG structure of Bayesian networks naturally implies an
ordering of vertices. Now that an introduction to Bayesian networks has been given, the
process by which to build them from data can be outlined. This will be broken down into
several subsections that answer the following questions:

1. How do we compute p(Xv|Xpa(v))?

2. What is conditional independence in the context of DAGs?

3. How do we select the best Bayesian network structure?

4.3.1 Node Probability Distributions

The definition of a Bayesian network includes a probability distribution attached to each
vertex v ∈V , conditional on its parents pa(v): p(Xv|Xpa(v)). Xv is a random variable that can
be draw from many different discrete and continuous distributions. In practice, multinomial
distributions are used for discrete Xv and Gaussian distributions for continuous Xv. For
Bayesian networks modeling multi-omics data, a combination of discrete and continuous
distributions will often be used. We briefly introduce each of these distributions:

• Discrete Case: Let Xv represent a random variable assigned to v ∈ V and let Xpa(v)

represent the set of v’s discrete parent random variables. The probability distribution
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attached to node v can be described by a multinomial distribution function:

Xv|Xpa(v) ∼Multin(1,θv|Xpa(v)
) (4.6)

where θv = {θv|xpa(v)
} parameterises the function.

• Continuous Case: Let Xv represent a random variable assigned to v ∈V and let Xpa(v)

represent the set of v’s continuous parent random variables. The probability distribution
attached to node v follows the Gaussian distribution function:

xv|xpa(v) ∼ N(µv,σ
2
v ) (4.7)

where µv is given by the linear contributions from each parent node in the following
model:

µv = β
0
v + ∑

i∈pa(v)
β

i
vxi (4.8)

and β i
v are regression coefficients. The parameterisation of Eq. 4.7 can therefore be

expressed θv = {β v,σ
2
v }.

4.3.2 Conditional Independence in DAGs

In the case of Bayesian networks, each edge refers to a conditional independence statement.
We have seen how to compute independence statements by reading the topology of undirected
graphs, but how does it work in the case of directed edges? A criterion called directed d-
separation was formulated to address this issue. Basically, d-separation is a measure of
independence between a two sets of disjoint observations X and Y given a third disjoint set
of observations Z. The idea here is to associate the notion of dependence with that of path
connectedness. Let X and Y be a set of nodes in a DAG G = (V,E) separated by a sequence
of consecutive edges known as a path.

Definition Let Z correspond to the set of nodes that lie along all paths between X and Y.
A path p between two nodes is said to be d-separated by Z if and only if:

1. p contains a chain x→ j→ y or a fork x← j→ y such that the middle node j is in Z

2. p contains a "collider" x→ j← y such that the middle node j is not in Z and no
descendant of j (in G) is in Z.
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Under this definition Z is said to d-separate a node x ∈ X from y ∈ Y in G (denoted
(x⊥ y|Z)G if and only if it d-separates every path from x to y.

Bayesian networks over the same vertex space may be defined by a different edge space,
but still contain the same statements of conditional independence. These networks are said to
Markov Equivalent.

Definition Let G1 = (V,E1) and G2 = (V,E2) be two DAGs defined over the same vertex
space V . G1 and G2 are said to be Markov equivalent if for every three subsets of vertices
X ,Y,Z ⊆V , (x⊥ y|z)G1 ↔ (x⊥ y|z)G2 ∀ x ∈ X , y ∈ Y , z ∈ Z.

Markov equivalent networks are statistically indistinguishable from one another, placing
a direct theoretical limit on structure inference from even data with many observations. For-
tunately, Markov equivalent networks share the same underlying skeletal structure, meaning
we can distinguish them from other less relevant structures [213].

4.4 Structure Learning

Learning dependency relations E over a set of nodes V in a Bayesian network involves
computing the conditional independence state of node pairs given all other subsets of nodes in
V . This is more challenging than in the case of our conditional independence graph examples
where we conditioned on either a single other variable or all other variables. The mathematics
behind Bayesian network structure learning is tractable in settings where |V | is small, but
becomes more challenging as we scale up the number of variables. A straightforward way of
bypassing this issue is through scoring-based approaches. This section will briefly describe
different scoring techniques that can be used for structure selection.

4.4.1 Maximum Likelihood Estimation

Bayesian networks are basically DAGs with conditional independence distributions attached
to each node, and the joint distribution over all nodes given by equation 4.4. Therefore, we
can set up a one-to-one correspondence between the set of DAG structures and the set of
joint distributions over the node space. This enables us to do model selection by choosing
the DAG that best fits the data X.
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The basic idea behind maximum likelihood estimation (MLE) is to search for parameters
θ that maximise the likelihood p(X|M,θ) where M is the joint distribution over the nodes
corresponding to a particular DAG. This technique is useful in cases where parameters are
not known a priori. Formally, MLE computes the following likelihood L for each DAG

L = argmax
θ

p(X|M,θ) (4.9)

Model selection proceeds by selecting the network with the greatest likelihood. However,
models with many parameters can lead to overfitting, and consequently, larger likelihoods
may be observed for more complex DAGs than simpler ones. It is possible to correct for
overfitting using scoring regularisation that factors in the number of model parameters.
A widely used approach to penalising MLE scores by model complexity are the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Akaike Information Criterion (AIC) The AIC provides a criterion for penalised model
selection from the maximum likelihood estimates of several different models given the same
data. It basically regularises the MLE by adding a term to the negative log likelihood that
is directly proportional to the number of model parameters. A good way to think about the
AIC is that it seeks the model with the greatest fit to the data with the smallest number of
parameters. For any given model M, its AIC is given by

AICM =−2loge(argmax
θ

p(X|M,θ))+2P (4.10)

where P is the number of free parameters. Generally, the model with the smallest AIC is
chosen. Unforunately, the AIC does not perform null hypothesis testing and thus it cannot
make statements regarding the absolute quality of a model. Consequently, all models may fit
the data poorly, and the AIC will only permit "least-worst" ranking. Lastly, the AIC typically
selects for high dimensional approximating models that do not tend to the true model that
generated the data. This also means that the AIC has a tendency to find more overfitting
models.

Bayesian Information Criterion (BIC) Like the AIC, the BIC also provides a criterion
for model selection which is based in part on model likelihood estimation. The equations
themselves differ very little: the multiplicand of the number of free parameters P in BIC
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scales logarithmically with the number of samples N.

BICM =−2loge(argmax
θ

(X|M,θ))+ loge(N)P, (4.11)

where N » P. When N ⩾ e2, the BIC confers a stricter penalty on complex models than
the AIC. Furthermore, the BIC attempts to find the true model amongst a set of models and
is consistent, i.e. as N→ inf, the BIC selects the correct model with probability 1. This is
achieved by placing an uninformative uniform prior over the number of free parameters and
estimating the model with the highest posterior probability.

When it comes to choosing between the BIC or AIC as an information criterion for model
selection, it is useful to bear in mind the individual assumptions both methods make. The
AIC is a constant plus the relative measure of the distance between the latent true likelihood
function of the data and the proposed fitted likelihood function of the model. The BIC is an
estimate of the posterior probability of the model being true under a Bayesian framework.
In both cases, the model with the smallest criterion is the one closest to the true unknown
likelihood function. Despite their theoretical differences, the main discriminant between
equations 4.10 and 4.9 lies in the size of the penalty assigned to more complex models, which
is greater in the BIC than the AIC for large N. Therefore, the AIC has a higher probability
of selecting an overfitting model, and the BIC is more prone to underfitting. So how do we
select the best information criterion for a given set of models? As a rule of thumb, the AIC
should be used in circumstances where a false negative result would be more misleading than
a false positive. Correspondingly, the BIC should be used in circumstances where a false
positive result would be considered more misleading than a false negative.

4.4.2 Bayesian Model Scoring

In Bayesian network scoring, we search for a model topology M that best describes the data
D by computing the posterior probability

p(M|D) =
p(D|M) · p(M)

p(D)
(4.12)

over all the model space. In Bayes’s formalism, p(M) is intended to describe our prior
beliefs over the model space. With no reason to believe otherwise, p(M) can be represented
by a uniform distribution over all models. If we have any prior knowledge on what we expect
the dependency structure in the data to look like, p(M) may have a different distribution.
p(D) averages the data likelihood over all possible models and is used to normalise p(M|D),
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(i.e. force its integral between (−∞,∞) to equal unity). p(D|M) represents the marginal
probability of observing data D given model M. It is computed by marginalising out all
parameter configurations Θ in the full model:

p(D|M) =
∫

θ∈Θ

p(D|M,θ)p(θ |M)dΘ. (4.13)

Unlike the MLE approach, we are not optimising over the model parameters θ , but
instead we integrating them out of the equation. For this reason the θ term appears in the
MLE framework but not in Eq. 4.12. As a consequence, the Bayesian setup implicitly
prevents overfitting by averaging over many parameter configurations.

Network Structure Priors Structure priors abet model simplification by integrating prior
biological knowledge from orthogonal datasets. Refining and building upon existing net-
works is often more advantageous than starting from scratch, since it enables computational
overheads to be reduced and provides statistical confidence in new inference. There is a
straightforward approach to building DAGs from structural priors. Given a prior network
ζ = (V,E), we can define a search space µ(ζ )⊆ ζ . DAGs M ∈ µ are equally likely to be
observed in this new subgraph. The prior probability can therefore be described by a uniform
distribution over the search space

p(M) =

 1
|µ(ζ )| , D ∈ µ(ζ )

0, D ̸∈ µ(ζ ).
(4.14)

We include M in the model space if p(M) ̸= 0. The prior network therefore acts as a filter
over the model space, drawing focus to those supported by biological evidence. Examples
of structural priors include protein-protein interaction networks and co-expression matrices
derived from other studies. p(M) can be used both as an informative prior in Eq. 4.12, and
can be used to inform model selection in the MLE framework.

Prior conjugacy To be able to analytically compute the integral in Eq. 4.13, the model prior
p(θ |M) and the marginal likelihood p(D|M,θ) must display conjugancy. If the posterior
distribution p(M|D) is from the same family as the prior distribution p(θ |M), p(θ |M)

is said to be a conjugate prior for the marginal likelihood function p(D|M,θ). Without
conjugancy, the posterior distribution cannot be computed analytically and we require
heuristic approximations [214]. Fortunately, conjugate priors already exist for the node
probability distributions introduced in section 4.3.1, and we briefly outline each of these here.
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• Multinomial Case: Likelihoods described by multinomial distribution exhibit conju-
gancy with the Dirichlet prior. Let θv be a vector of multinomial parameters. Then

θv ∼ Dirichlet(αv) (4.15)

where αv is the Dirichlet scale parameter.

• Gaussian Case: Likelihoods described by a multivariate Gaussian function exhibit
conjugancy with a Normal-Wishart distribution prior. If µ|µ0,λ ,∆ ∼ N(µ|µ0,λ∆−1)),
with mean µ|µ0 and covariance matrix λ∆−1 where ∆|W,ν ∼Wishart(∆|W,ν), then
(µ ,∆) has the Normal-Wishart distribution:

(µ,∆)∼ NW (µ0,λ ,W,ν) (4.16)

Likelihood Equivalence DAGs may exhibit structural variations but generate the same
likelihood scores given any dataset given the same parameterisation. Given two graphs G
and G′ where p(G) > 0 and p(G′) > 0, G and G′ are said to be likelihood equivalent iff
p(G|θ) = p(G′|θ) [215].

An example to illustrate this can be shown simply using a three variable domain {X ,Y,Z}
with parameterisation Θ = {θX ,θY ,θZ}. If we let G = X → Y → Z and G’ = X ← Y ← Z,
it can be seen that θX |Y,Z = θX |Y θZ|Y is the conditional independence statement for both G
and G′. These networks are called hypothesis equivalent and therefore imply likelihood
equivalence. In causal Bayesian networks, hypothesis equivalence is avoided by asserting
that each non-root node is caused directly by its parents and no other node in the network.
Heckermann asserts that the assumption of likelihood equivalence is valid regardless, and
can be used to learn network structures from transcriptomic data [215].

Enforcing this assumption requires that we place restrictions on our choice of prior pa-
rameters. In the case of discrete data, our marginal likelihood takes the form of a multinomial
and our prior is a Dirichlet distribution, parameterised by a set {αiδ ,ipa(δ )

} where the node
δ in a DAG is in the state iδ and whose parents are in the states ipa(δ ). Ensuring likelihood
equivalence is achieved by placing the following restrictions over the Dirichlet parameters

{αiδ ,ipa(δ )
}= αP(Iδ = iδ |Ipa(δ ) = ipa(δ )) (4.17)
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where α ⩾ 0 captures the strength of our prior beliefs, termed the "concentration parameter".
α is a hyperparameter and is independent of network node values, and whose value strongly
determines the regularisation of the network structure.

Network Regularisation Regularisation is a technique used in machine learning to address
model overfitting and solve ill-posed problems (specifically finding unique solutions in the
context of network inference). Earlier we overviewed solutions to the overfitting problem in
GGMs, specifically where the number of variables exceeded the number of samples (|X| » N).
In fact, regularisation is always needed in cases where |X| » N, although different approaches
are used in Bayesian networks.

Steck and Jaakola showed that the value of α in Eq. 4.20 consequently influences network
regularisation [205]. α is partitioned on the basis of the number of parent node configurations,
and thus {αiδ ,ipa(δ )

} tends to be small for complex models. This implies that large α networks
are weakly regularised, since more complex networks have a higher probability of being
selected. Another approach involves informatively selecting the distribution around each
network node. For example Bulashevska et. al. select distributions that build parent-child
dependency structures around noise-based logic gates [216]. An obvious disadvantage arising
from this is the risk of loss of conjugacy between the marginal likelihood and the model prior.
Under these circumstances, the marginal likelihood can no longer be evaluated analytically
and heuristic approaches such as Gibbs sampling or variational inference need to be applied.

4.4.3 Model Selection

The framework for inferring optimal models can be generalised into a three component
strategy. The basic idea is to first define a search space over all models and transverse it
using a search strategy, assigning "optimality" scores along the way using an appropriate
scoring metric. We extensively discussed Bayesian and MLE scoring metrics in the previous
sections.

Search Space For Bayesian networks, the search space is the set of all networks defined
over a vertex set V , each encoding a different dependency structure in the form of conditional
independence statements. The number of DAGs permissible on a set of n edges can be
written analytically
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an =
n

∑
i=1

(−1)i−1
(

n
i

)
2i(n−i)an−i (4.18)

where a0 = 1 [217]. This number becomes large extremely quickly, and exhaustively
transversing the entire set can become computationally intractable. Since many of these
networks will be Markov equivalent, they will encode the same conditional independence
statements and thus their scoring metrics will be identical. This implies that the set M of all
DAGs over V vertices is strictly larger than the set of DAGs encoding unique conditional
independence statements. Chickering et.al. employ a methodology that defines a search
space only over DAGs that uniquely describe a joint distribution [218].

Castelo and Kocka demonstrate that by moving from DAG space into the space of canon-
ical essential graph representations, the overall number of representations can be reduced
by a factor of 4, including Markov equivalent DAGs, [219]. They showed that there are
on average 4 times as many equivalent DAGs as there are essential graphs. The sparsity
of essential graphs is related to the number of Markov equivalent DAGs, with the number
decreasing rapidly as the essential graphs become less dense.

The search space can also be narrowed by focusing on the set of DAG subgraphs rather
than entire network structures. Friedman and Koller argue that ordering of nodes form a
more regular search space with a smoother posterior distribution [220].

Search Strategy The aim of an efficient search strategy is to return the highest scoring
network from a search space using the least computational overhead. The following list of
algorithms have been developed to perform optimised selection over DAG search spaces.

1. Hillclimbing Greedy Search This relatively simple algorithm initialises a k-connected
graph (k being a hyperparameter) graph G= (V,E) where V is the set of DAGs. We call
Nv ⊂V the neighbourhood of v ∈V if ∀nv ∈ Nv, v and nv are neighbours (connected by
an edge). The algorithm selects a node at random, then computes the Bayesian or MLE
scores for each DAG in the node’s neighbourhood. The one with the highest score is
selected. The algorithm iterates until no DAG in the neighbourhood has a higher score
higher score than the current DAG. This search can become computationally expensive
at in large DAG search spaces regardless of the choice of k.



4.4 Structure Learning 77

2. Sparse Candidate Algorithm This algorithm iteratively constrains the search space
to belong to a small subset of candidates by searching for highly dependent sets of
nodes.

3. Ideal Parent Algorithm For each variable V in the network, this algorithm generates
an ideal parent profile representing a hypothetical parent variable Pv that is most likely
to predict the values in V [221]. Network selection proceeds by searching for DAGs
that contain the most number of ideal parents given a set of variables.

Model Confidence Even the most optimal learned probabilistic models will harbour some
degree of uncertainty. The reasoning lies in the name: probabilistic model. Representing
complex multivariate datasets in terms of combinations of conditional distributions and
expecting zero residuals is an unreasonable venture. Instead of selecting one true model,
the plan is to scan the posterior distribution of model likelihoods and make an informed
selection. In the context of Bayesian scoring, the ideal method of directly sampling the
posterior distribution is unfeasible given the intractability of p(D) in Eq. 4.15.

Markov Chain Monte Carlo (MCMC) can be used to sample posterior distributions
p(M|D) that are analytically intractable. The idea is to propose network structures by sam-
pling parameters from p(M|D) under the Metropolis-Hastings acceptance criterion [222].
This sampling is iterated until an approximation to the posterior distribution can be built. An
important result in MCMC is that the sampled distribution is guaranteed to converge to the
posterior distribution as the number of samples tends to infinity. This method is used widely
in the Bayesian framework of learning dynamic DAG structures and node ordering.

Other methods exist to deal with both MLE and Bayesian score evaluated networks. Boot-
strapping is a commonly used approach to evaluate model robustness. The idea is to sample
variables with replacement from a dataset and assemble a collection of "bootstrap datasets".
Network inference is then performed on each bootstrap dataset and the relative frequency of
network features is used as a metric for model confidence. Replacement sampling can become
problematic by giving rise to identical datapoints in some bootstrap datasets. Consequently,
this can increase the collinearity between variables that would otherwise demonstrate weak or
no correlation. In datasets with fewer samples, this collinearity effect becomes more dramatic.

Steck and Jakkola correct for this using the commonly used leave-k-out approach [205].
Instead of sampling with replacement, all except k samples are chosen at random, effectively
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generating a sample-permuted bootstrap dataset. Repeating this process multiple times
provides a reliable measure of model uncertainty.

4.4.4 Method Benchmarking

Baysian networks are ultimately visualisation tools for conditional dependence structures
in multivariate data. Recapitulating ground truth biological examples is needed to evalu-
ate model robustness and reliability. One way of achieving this is testing how well they
reconstruct cellular networks of various complexity. Most benchmarking studies focus on
reconstructing networks with a small number of nodes as a proof of concept. Zak et al.
use a system of differential equations to simulate a set of conditional independence state-
ments and encode a 10-gene transcriptional network [223]. Their benchmarking attempt
failed to generate the same network given the data and a mixture of linear and log-linear
approaches. However, Husmeier showed the same simulated 10-node network could be
better recapitulated using dynamic Bayesian networks (DBNs) by fine-tuning parameters
such as the training set size. In fact DBNs were found to display improved accuracy over
other methods on the same simulated 19-node network [224]. Smith et al. demonstrated how
Bayesian networks were highly efficient in recovering the functional network structure of
data simulated at multiple biological organisation hierarchies such as gene expression, neural
anatomy and behaviour [225].

These examples demonstrate inconsistent success when it comes to recovering network
structures from simulated data. We can explain this volatility in three ways. Firstly, model
uncertainty can play a decisive role in network reconstruction, a factor which is strongly con-
trolled by the number of data samples. More data also lead to more accurate measurements of
model uncertainty (i.e. through leave-k-out bootstrapping). Secondly, these examples focused
primarily on simulated observational data whereas most networks in biology are characterised
by node perturbations. Data generated from real or simulated perturbation experiments have
been shown to enhance network reconstruction relative to observational data alone [226,
227]. Lastly, we saw that simulated data encoding the hierarchical dependency structures of
biological processes were reconstructed more efficiently than data simulated from standard
distributions. In chapter 5, We propose a methodology that aims to minimises reconstruction
errors through hypothesis-driven network simplification - modelling perturbative events in
hierarchical biological processes. Cancer is system where perturbations propagate through a
chain of biological processes, rooted at a single defining event. In theory, this will enable us
to control for uncertainty and improve network reconstruction accuracy.



Chapter 5

Causal Modeling Dissects
Tumour–Microenvironment Interactions
In Breast Cancer

In the last chapter, I overview statistical approaches to causal inference including graphical
modeling methods. Building on these frameworks, I propose an hypothesis-driven approach
to learn regulatory mechanisms driving lymphocyte infiltration (section 5.1). I use method-
ologies introduced in chapter 2 to mine gene expression and image data for immune features
(section 5.2). In particular, this analysis incorporates large independent cohorts of genomic,
transcriptomic and imageomic data, that are independently pre-processed. (section 5.3).
By applying my methods to breast cancer data, I discover novel regulatory hierarchies
and mutational regulators of lymphocyte infiltration in expression data, and validate these
findings in image data (section 5.4). Finally, I discuss my results and evaluate limitations of
my methods in section 5.5.

The work in this project led to the preprint Chlon et al. [2] currently hosted on
the bioRxiv repository and awaiting publication - https://doi.org/10.1101/144832. I
am the copyright holder of this preprint. Furthermore, I am the only author on this
paper alongside my supervisor Dr. Florian Markowetz. All results, figures, text and
supporting information are exclusively my own work. Sections 5.3 - 5.5 contain text
and figures reproduced from my own preprint Chlon et al. [2].
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5.1 Hypothesis-driven Network Reconstruction

In the previous chapter, the concept of Bayesian networks and statistical tools were introduced
that can be used to learn graphical model topologies from real data. The purpose of this
chapter is to use these methods to investigate regulatory mechanisms underpinning immune
responses in breast cancer. This project aims to look for scenarios where a perturbation in the
cancer genome can propagate through the cancer cell and manifest downstream at the immune
level. For example, one mechanism might start with the amplification of PIAS3, leading to
the downregulation of T FEB activity followed by decreased lymphocyte recruitment. This
would distinguish it from another scenario where T FEB activity and lymphocyte recruitment
could be independent events given PIAS3 amplification. To do this an approach was designed
with the following questions in mind:

1. What breast cancer mutations are associated with an immune phenotype?

2. Are there any transcription factors (TFs) whose activity correlates with both the
mutation and the immune phenotype?

3. Is the dysregulated TF activity causal for the immune phenotype, or is the immune
phenotype causal for the dysregulated TF activity?

4. Considering questions 1, 2 and 3, can a regulatory structure be found that links together
the mutation, TF activity dysregulation and the immune phenotype?

The proposed method orders DAG nodes with respect to sequences of biological pro-
cesses. The aim is to find an event that we can anchor the rest of the analysis to, as this will
simplify the resultant network. The anchoring node has no parents, and therefore its Markov
blanket limited to its children and its children’s descendants. The network anchor can be
thought of as the beginning of a sequence of events, and must be empirically substantiated
in the context of biology. Cancer is commonly referred to as a disease of the genome, and
much of what we know about carcinogenesis and progression can be qualitatively described
by genomic alterations [228]. It has become the consensus that cancer development begins
in the genome through of loss of tumour suppressor function, or gain of oncogenic function
[229, 230].

Point genetic mutations cannot be anything other than anchor nodes, since knowing the
mutational state of one gene does not enable you to make predictions about another. Genes
can sometimes be replicated or deleted concurrently in a chromosomal event known as a
copy number variation (CNV) [231]. This sets up a gene-level copy number correlation
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structure in an amplified/deleted chromosomal region. Conditional independence can easily
demonstrated by conditioning such associations on the chromosomal event itself. As such,
CNVs can be used alongside point mutations as anchor nodes.

5.1.1 Model Definitions

The biological process of transcription is required to code genes into proteins. In transcription
regulation, a trans-acting element is a gene whose translation codes for a protein/RNA
directly involved in the transcription of another gene [232]. Cis-acting elements are non-
coding DNA regions that regulate the transcription of an adjacent or closely proximal gene,
typically by acting as transcription factor binding sites [233]. As such, genomic alterations to
trans/cis-acting DNA sites can perturb gene expression, examples being loss/gain-of-function
(LOF/GOF) mutations or amplification/deletion of proteins/binding sites [234]. As such, a
hierarchical perturbation event starting at the genomic level and affecting the transcriptomic
level is a biologically sound hypothesis. We can say that the anchor mutation M is causal for
a gene expression fluctuation δg

M→ δg (5.1)

for an arbitrary gene g in the set of all genes g ∈ G. Cancer cells are not the only players
in the tumour microenvironment, and δg could represent expression changes brought about
by varying levels of immune cell infiltration and functionality.

δ Ip→ δg (5.2)

where δ Ip is a metric quantifying the change in representation or activity of a leuko-
cyte population p. Eq 5.1 can lead to dysregulated cancer-immune signalling or antigen
presentation, giving rise to the reciprocal of Eq 5.2:

δg→ δ Ip. (5.3)

The immune system responds to cancer, there is no known biological function by which
immune cells can mutate DNA and cause non-hematopoietic cancer. The immune system
either responds to the signalling of stressed cells or recognises neo-antigens on the cancer
cell surface [60]. Therefore, δ Ip can be anchored on M
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M→ δ Ip. (5.4)

Stemming from this formulation are three fundamental hypotheses which are summarised
below.

1. The gene expression change δg is causal for δ Ip, conditioned on M. We illustrate it in
the following DAG model

M→ δg→ δ Ip. (5.5)

Using conditional independence statements, we can factorise the joint distribution over
Eq 5.5: P(M,δg,δ Ip) = P(M)P(δg|M)P(δ Ip|δg).

2. The gene expression change δg is reactive to δ Ip conditioned on M. We illustrate it in
the following DAG model

M→ δ Ip→ δg (5.6)

Using conditional independence statements, we can factorise the joint distribution over
Eq 5.6: P(M,δg,δ Ip) = P(M)P(δ Ip|M)P(δg|δ Ip) describes this DAG.

3. The gene expression change δg and δ Ip are independent given M. We illustrate it in
the following DAG model

δ Ip←M→ δgi (5.7)

Using conditional independence statements, we can factorise the joint distribution over
Eq 5.7: P(M,δg,δ Ip) = P(M)P(δg|M)P(δ Ip|δg,M) describes this DAG.

The probability density functions of 1,2 and 3 follow from standard Markov assumptions.
The joint distribution at each node factors into at most, 2 two-dimensional Gaussian functions,
placing an upper bound on the number of parameters and greatly reducing overfitting and
complex model selection bias. These models are hierarchical in the sense that events start at
the genome, propagate up the transcriptome and manifest at the TME level. We can exploit
this to write simple likelihood functions based on regression models. To do this, we must
first formally introduce the mathematical concept of bivariate normal regression.
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5.1.2 Bivariate Normal Regression

Conditional probabilities of random variables allow us to introduce the notion of linear
regression.

Definition Let X1 and X2 be two normally-distributed variables such that their conditional
distribution function f (X2|X1) is a Gaussian. It follows that the conditional expectation of X2

on X1 can be written

E(X2|X1) = αX1 +β (5.8)

where α and β are constants to be found. 5.8 is termed the linear regression of X2 on X1.

The exact form of 5.8 can be found by explicitly writing out the marginal distribution
f (X2|X1). The joint distribution of X1 and X2 is written

f (X1,X2) =
1

2πσX1σX2

√
1−ρ2

exp[−
(

x1−µx1
σX1

)2−2ρ(
x1−µx1

σX1
)(

x2−µx2
σX2

)+(
x2−µx2

σX2
)2

2(1−ρ2)
]. (5.9)

Considering the relation f (X2|X1) =
f (X1,X2)

f (X1)
, the marginal distribution can be written

explicitly by dividing Eq. 5.9 by the X1’s distribution function, giving us

f (X2|X1) =
1√

2πσ2
X2
(1−ρ2)

exp[−
[x2−µX2−ρ(

σX1
σX2

)(x1−µX1)]
2

2σ2
X2
(1−ρ2)

]. (5.10)

The expectation value of Eqn. 5.10 gives us the exact form of Eqn. 3.28

E(X2|X1 = x1) = µX2 +ρ(
σX1

σX2

)(x1−µX1). (5.11)

which is the exact form of the linear regression of X2 on X1.

5.1.3 Likelihood Function Definitions

We are now in a position where we can define the joint probabilities at each model node. To
construct the marginal distribution components, we first define regression functions to be
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used as expectation values. We can model gene expression changes and immune variation as
functions of an underlying mutation

gi = µgi +αg f (M)+ εg (5.12)

ci = µc +αc f (M)+ εc (5.13)

where gi and ci are the respective gene expression and immune trait measurements for
sample i, α and β are regression parameters to be learned, and the residual ε is normally
distributed with mean 0 and variance σg or σc respectively.

f is a function defined to map the genotype probability of M onto a suitable domain. In
the original parameterisation by Falconer for SNP data [235], f is a signed indicator function
sampling values from {−1,0,1} depending on the genotype of M. This works well in the
context of SNPs since there is no linear dependency structure between acquired mutations
and expression; you cannot have more than one point mutation in the same DNA position.
By contrast, CNV events replicate entire regions of the genome, setting up a correlation
structure with gene expression. To account for this correlation structure, f is defined as a
weighted signed function, effectively normalising the CNV signal.

f (LM) =
LM−µLM

σLM

(5.14)

is a simple z-score transform with LM representing the continuous copy number signal of
mutation M. A high positive value of f (M) provides confidence that M is amplified, whereas
a low negative value provides confidence that M is deleted. These regression models also
account for the probability of M being normal since in that case, f (M)→ 0.

Using the parameterisation of Eqns 5.12 and 5.13, we can begin outlining the conditional
expectation definitions needed to write out the joint probability distribution components of
these models.
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P(g|M) =
1√
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2
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 ,
where σg,σc,µg,µc and ρ are parameters to be learned. µgM and µcM come directly from

the parameterisations of the regression formulae Eqns 5.12 and 5.13, and represent the mean
given the mutation genotype at M. For example, in the case of CNVs

µgM =


µ +α f (LM), M = ampli f ied

µ−α f (LM), M = deleted

µ M = normal

(5.15)

is an analogue of the Falconer parameterisation for single point mutations [235]. For each
possible genotype, we assume the distribution around the mutation locus M to be normal
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with a constant variance. These components multiply to form the probability density function
around each DAG, which we will label henceforth as M1 (Eqn. 5.5), M2 (Eqn 5.6) and M3

(Eqn. 5.7). The model likelihood functions are computed as the product of the sum of sample-
wise model likelihood probabilities over all genotypes j ∈ {Ampli f ied,Deleted,Normal}
for all samples i ∈ N.

L(θM1;M1) =
N

∏
i

∑
j

P(m j)P(gi|m j)P(ci|gi), (5.16)

L(θM2;M2) =
N

∏
i

∑
j

P(m j)P(ci|m j)P(gi|ci), (5.17)

L(θM3;M3) =
N

∏
i

∑
j

P(m j)P(gi|m j)P(ci|gi,m j), (5.18)

where {θM1,θM2,θM3} are parameter vectors taken as the union set of the individual
component parameters composing each respective model.

Now that we have established a model framework aimed at addressing benchmarking
issues outlined in section 4.4.4, we can begin addressing issues that may cause this approach
to fail. These are enumerated below, and solutions discussed in the following subsections.

1. How do we control for correlation structures arising from gene expression co-regulation?

2. How do we filter interesting gene-specific CNV associations from false positives that
happen to be co-amplified/deleted on the same chromosomal arm?

3. What is the optimal approach to model selection?

5.1.4 Transcription Factor Network

Genes are encoded to mRNAs through the transcription process. This process is facilitated
by proteins called transcription factors (TFs) that selectively bind to different areas of the
genome. Basically, TFs bind to regions near a gene, appropriately termed transcription factor
sites, and regulate the expression of a gene. One TF species can regulate many different
genes, and union of these coregulated genes is known as a regulon. Much of the correlation
structure in gene expression data can be attributed to groups of genes being coregulated by
the same TF. As such, it is easier to establish links between TFs and other variables rather
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than individual genes.

Establishing links between TFs and the immune system requires establishing a robust
score for TF activity. Scoring TF activity is non-trivial since the word "activity" is vague
and differs between studies. The gene expression readout of a TF is not enough to assay its
viability as a metric of activity since it can be misleading. For example, the tumour suppres-
sor Rb can mutate and consequently upregulate the TF E2F1, leading not to upregulated
expression of E2F1 but that of its regulon [236]. One well established computational method
for scoring TF activity tests the over/under-representation of regulon expression in a sample.

Activity measurement methods TF activity inference methods generally assume that the
aggregate expression of a TF regulon can be used as a multiplexed proxy for the TF’s activity
[182, 236]. As such, TF activity inference can be performed computationally using gene
expression data. Rhodes et al. propose computing TF activity as the overlap between a TF
regulon and enriched cancer transcriptional signatures. Their method effectively quantifies
the contribution of a TF to a disease, but the dependency on curated signatures can give
misleading results when taken out of context, especially in cancer where intra-sample hetero-
geneity needs to be accounted for [236]. Their method also tells us nothing about TF activity
on the level of individual samples.

Alvarez et al. propose a score based on the idea of regulons, using gene expression data
to generate sample-wise statistics for TF activity. Their algorithm, virtual inference of protein
activity by enriched regulon analysis (VIPER), also operates under the assumption that TF
activity can be measured through regulon enrichment [182]. The idea here is to first build a
TF regulatory network and then use it to compute scores for TF activity in gene expression
samples. The TF regulatory network is constructed from gene expression data, using either
Markov network reconstruction algorithms or more simple first order partial correlations
approaches. The final network encodes information regarding each TF and its regulon.
Regulon enrichment is computed using an analogue of single sample Gene Set Enrichment
Analysis (ssGSEA) that corrects for pleiotropic effects. In this context, pleitropic effects
refers to non-active TFs falsely appearing activated if their regulons overlap significantly
with the regulon of an active TF. Their method corrects for false positives by penalising the
proportion of the activity that comes from genes in the overlap.

VIPER has been validated extensively in CHiP-seq experiments that measure TF activity
as a function of DNA binding. Furthermore, it has been used to infer TF activity in various
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cancer transcriptomic studies, including breast cancer [172]. In summary, VIPER produces
the sample-wise coregulation scores we need to overcome the first limitation outlined at the
end of section 5.1.3.

5.1.5 Protein Interactome Structural Prior

Since whole chromosomal arms are prone to amplification/deletion, events at the gene level
are not necessarily mutually exclusive events. Therefore, the copy number of adjacent genes
in a CNV region may be correlated and finding associations between TF activity and gene-
level copy number is complicated by false positives. Attributing the variance in a phenotype
to the copy number profile of a single gene is very challenging using comparative studies
alone. The proposed solution to this builds on the premise that TFs can be up or down
regulated by trans-acting modulator proteins [236, 237, 238]. The idea is that false positives
can be minimised by limiting inference to genes that code for proteins already known to
interact with a TF of interest. This places a direct prior over the domain of significant
associations between CNV events and TF activity.

In section 4.4.2, we described how network structure priors can be used to narrow the
model search space and improve statistical confidence in new inference. Protein interaction
networks are excellent candidates as structure priors, since they implicitly encode interactions
between TFs and all other intercellular proteins. In the following paragraphs, we briefly
describe several well known approaches to building protein interaction networks.

Proteomics Data In section 1.3.1 we overviewed the mass spectrometry (MS) and reverse-
phase protein array (RPPA) approaches for quantitatively profiling protein abundance from
tissue samples. Probabilistic methods have been tremendously successful in reconstructing
protein-protein interaction networks from these data. Breitkreutz et al. use a Bayesian mixture
modelling approach to estimate protein interaction likelihoods in yeast [239]. In human
data, Sowa et al. assign deterministic scores to interactions based on both the frequency
and uniqueness and co-occurrence of protein pairs to build networks [240]. Unfortunately,
validating protein interaction networks generated this way is laborious, requiring extensive
in vitro knock-downs of network nodes and cross-referencing networks against the resulting
perturbations [241].

Protein Interaction Databases Dedicated experimental data repositories annotate protein
interaction both at the level of pairwise interactions and in the context of molecular path-
ways. Experimental data are distributed amongst these repositories, detailing hundreds of
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millions of protein interactions across thousands of organisms [242, 243, 244]. A number
of text-mining approaches have been proposed to extract protein-protein interactions from
these databases including GeneMANIA [245], VisANT [246] and STRING [247]. These
algorithms typically use word co-occurrence scoring to test if two proteins appear in the
same sentence, paragraph or whole documents more often by chance.

STRING has over 200 million interactions across 5 million proteins and over 1000 organ-
isms, holding both experimentally verified and predicted interactions [247]. Protein-protein
interaction networks (PPI) built from these resources are designed to be experimentally
verified from the ground up, making them excellent candidates for structural priors. Since
STRING’s PPI is an ongoing project, it does not yet include every experimentally verified
interaction between the entire human proteome. Nonetheless, networks built from experi-
mental data provide more confident statements regarding protein interaction than those built
from probabilistic models. This network asserts a uniform prior over the search space, thus
narrowing the number of models in the selection phase of DAG learning and reducing the
false positive rates. I use STRING’s PPI to address the second challenge outlined at the end
of section 5.1.3.

5.1.6 Model Search Strategy

To address the final challenge outlined in section 5.1.3, we turn to our primer on model
selection (section 4.4.3), where I describe a three component strategy consisting of a search
space, a scoring metric and a search strategy.

Search Space Let P= (V,E) be a protein-protein interaction network where V corresponds
to protein identifiers and E represents the dependency relation between pairs of vertices.
Let T be a set of transcription factors such that T⊆V and denote nt as the neighborhood
of any t ∈ T in P. Let I denote the lymphocyte infiltration metric, as computed from
image data, FACS, transcriptomic data or otherwise. The aim is to see which hypothesis
(represented by models M1, M2 and M3) is most likely to describe the dependency structure
between the activity at t ∈ T, copy number aberrations at nt and I. Since this approach is
hypothesis-driven, the search space is always populated by exactly three models:
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M1 CNg∈nt → Activityt → I (5.19)

M2 CNg∈nt → I→ Activityt (5.20)

M3 I←CNg∈nt → Activityt (5.21)

where CNg∈nt is a copy number event at g in the neighbourhood nt and Activityt is
the activity of TF t. For each g ∈ nt , search space is created and populated by Eqs. 5.20,
5.21 and 5.22 iff CNg∈nt , Activityt and I form a complete association graph after multiple
correction testing, (all three vertices must be interconnected). This demonstrates a significant
degree of linear dependence amongst the variables, an essential requirement for subsequently
establishing conditional independence. Association significance is measured using Student’s
T test with Benjamini-Hochberg FDR correction.

Scoring method The likelihood functions of M1,M2 and M3 are given by Eqs. 5.17, 5.18
and 5.19 respectively. The mean and variance of the absolute number of free parameters
across the search space are small, and so complex model selection bias is unlikely to be an
issue here. Overfitting will not pose as big an issue in these models as with more complex
likelihood functions. Although Bayesian scoring would eliminate overfitting altogether,
MLE is a more straightforward solution and less computationally expensive than computing
posterior distributions across thousands of search spaces. This structural prior implicitly
controls for false positive discovery and false negatives still remain to be controlled for. The
AIC is advantageous here when penalising Eqs. 5.17, 5.18 and 5.19, as it works well when
false negative results are more misleading.

Search method Given a PPI P = (V,E), and a TF t ∈ (T ) where T ⊆ V , let nt be the
neighborhood of t in P. For each protein g ∈ nt , this algorithm tests if a complete association
graph can be constructed from the copy number profile CNg∈nt , the transcription factor
activity Activityt and a metric for immune infiltration I. If so, t and g are fed into the search
method, where for each model, the likelihood function is maximised over the data and the
parameter space using MLE. MLE returns the negative log likelihood (NLL) of each model
and populates the search space with the AIC of each model. The method then uses insertion
sort to find the minimum value. Given a search space S where |S| = 3, it is easy to see that
insertion sort will find the smallest AIC given at worst, 9 tries. This algorithm is illustrated
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using the following pseudocode.

Data: {PPI, t, I}
Result: most likely models, if any.
n = neighbours(t, PPI);
for g in n do

D = {CN(g), Activity(t), I};
g = correlationGraph(D);
if g.isComplete then

NLL, nParams = {MLE(M1,D), MLE(M2,D), MLE(M3,D)};
AIC = -2 * nParams + 2 * NLL;
return minimum(AIC);

else
return NULL;

end
end

Algorithm 1: Pseudocode describing the search method

5.2 Quantifying Anti-Tumoural T-Cell Response

5.2.1 Motivation

Cytotoxic T-cells are significant players in the anti-tumoural adaptive immune response.
CD8+ T cell infiltration, as measured absolutely or relative to the overall tumour mass, is
often associated with positive prognosis in a number of cancer types including breast cancer
[248]. Novel immunotherapies focus on increasing the efficacy of this response by down-
regulating immunosupressive factors, such as checkpoint blockade or signaling molecule
therapies [249]. However, progress in this field is hindered by an incomplete understanding
of suppressive factors in the tumour microenvironment. We have yet to characterise many of
the mechanisms that cancer leverages to escape CD8+ T cell mediated destruction.

Motivated by this, this project aims to quantify T cell infiltration for use in the causal in-
ference framework. The work presented here is the first of its kind to place T cells in a causal
context with the cancer cell autonomous compartment of the tumour microenvironment.
In section 1.4 several methods were introduced for measuring the abundance of a specific
cell type from a sample, including IHC, flow cytometry and gene expression signatures.
Gene expression signals are robust metrics of lymphocyte infiltration, but not as accurate
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as cell-counting experiments. Large online multimodal datasets will not often have IHC
and flow cytometry measurements for T cells; especially not with matched copy number
and transcriptomic data per-sample. H&E stained images, however, are readily available
with these datasets, since biopsies are routinely produced for diagnostic purposes. These
images can be mined for lymphocyte statistics using computational approaches as described
in section 2.4.

5.2.2 Gene Expression Signal

T cells stem from a specific hematopoietic lineage of thymocytes and express unique
membrane-bound markers shared by no other family of cells in the tumour. As such,
computational methods make it possible to elucidate a T cell "signal" from the bulk tumour
transcriptome using either a panel of T-cell specific markers or a more general T-cell signa-
ture. Markers and signatures differ in that the latter admits non-specific T-cell genes whilst
the former contains only T-cell genes. Their utility depends on the approach being used,
for example, gene expression deconvolution approaches work better with larger gene sets.
However, deconvolution approaches are designed to resolve admixtures of cell populations,
whereas this metric aims to estimate the infiltration of a single family of thymoctic lineage
cells. Therefore an independently developed marker-based approach termed the "T Cell
Score" (TCS) was developed. This subsection will be split into two parts; firstly defining the
TCS mathematically and secondly validating it on ground truth examples.

Geometric Average of Markers Inspired by a similar approach for cytolytic activity [69],
a relative score for T cell infiltration was defined that is applicable to both RNA-seq and
microarray data. Given a panel of m T cell markers N = {N1,N2, ...,Nm}, the overall T cell
representation in sample i is given by the geometric mean of the expression vector Gi

N :

TCSi =
m
√

Gi
N1
×Gi

N2
...×Gi

Nm
(5.22)

The geometric mean is chosen over arithmetic mean since it is less sensitive to outliers.

Choosing Marker Genes Marker gene selection aims to find a subset of genes that can
maximally separate a cell population from the remaining transcriptome. T cells are cate-
gorised by specific "clusters of differentiation", or immunophenotyping markers, such as the
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CD3, CD8, CD4 receptors coded for by the genes CD3D, CD8A, CD8B, CD4. These genes
are expressed primarily in cells of the thymocyte lineage with little noise contamination from
the rest of the tumour.

Validation of TCS Typical approaches to validating gene expression scores involve com-
parison with a ground truth metric, typically generated using an orthogonal dataset. To
facilitate this, a paired gene expression and flow cytometry blood sample dataset was down-
loaded that examines 9 leukocytes subsets including CD8+ T cells (see section 5.3 Data
and Preprocessing). Following this, the TCS was computed for each sample, correlations
between FACs evaluated using Pearson’s test and significance tested using Student’s T test.
No positive significant correlations were observed for any leukocyte subset other than CD8+
T cells (ρ = 0.675, P = 0.001). This validation strongly corroborates the TCS is a robust
predictor of CD8+ T cell infiltration in gene expression data.

5.2.3 H&E Images

H&E images illustrate a snapshot of the morphological state of a tumour region prior to
biopsy/ resection. They encode tissue architecture features such as cancer cell, immune
cell and stromal cell spatial distributions. The admixture is more linearly separable at the
morphological level than in typical bulk tumour molecular assays; trained pathologists
routinely use H&E features for diagnostic purposes. Unlike molecular assays containing tens
of thousands of features (genes), H&E image features are limited to colour, shape and texture
descriptors, severely constraining the resolution we can get with cell phenotyping. On the
other hand, pathologist assessment of lymphocyte infiltration is more direct and relies on
fewer statistical assumptions [67]. Since H&E images are in theory, as abundant as patient
gene expression profiles, they are an excellent orthogonal measure for lymphocyte infiltration.
Computational approaches to image segmentation and object classification have produced
large quantitative H&E feature datasets [71, 67]. METABRIC is a notable breast cancer
dataset with matched transcriptomic, copy number profiles and images per sample, making it
an excellent candidate for this study [76].

5.3 Data and Preprocessing

This will briefly overview the sources of data and preprocessing protocols used in this study,
such that the results of the analysis can be reproduced more easily.
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Gene Expression Data Microarray transcriptomic profiles corresponding to 1980 patients
from the METABRIC [76] cohort were downloaded from the European Genome-Phenome
archive under the accession id: EGAD00010000268. The issue of multiple probes map-
ping to the same gene was addressed by selecting the probe with the highest variance.
RNA-seq count data comprising 1154 BRCA samples was downloaded from the TCGA
archive [201] (https://tcga-data.nci.nih.gov/tcga) and processed using a two-step process:
applying the variance stabilising transform and quantile normalising the matrix with respect
to the METABRIC gene expression distribution. This was done to correct for the large
heteroscedasticity between genes and make the expression distributions more comparable.

DNA copy number aberrations METABRIC Affymetrix SNP 6.0 data were downloaded
from the same resource as the transcriptomic data. SNP array genomic positions were mapped
to gene symbols using the hg18 build. TCGA GISTIC2 [250] gene-level normalised copy
number calls for each patient were accessed from GDAC Firehose (http://gdac.broadinstitute.org/).

Protein-protein interactions A network detailing protein-protein interactions was down-
loaded from the STRINGdb resource (http://string-db.org/) and ENSEMBL identifiers were
mapped to HUGO gene symbols using the R biomaRt package.

Transcripton Factor Network Enrichment To infer TF activity, a coexpression network
for 788 experimentally verified TFs derived using mutual information was used [172] to
calculate the activity of each TF for each sample using the R package viper (virtual inference
of protein activity by enriched regulon analysis) [182] using default parameters.

T Cell Score Validation using Flow Cytometry Gene expression profiles for 20 periph-
eral blood mononuclear cell admixture samples and their corresponding flow cytometry pro-
files as measured by Newman et al [85] were downloaded from (http://cibersort.stanford.edu).

H&E Section Data This project use of the image dataset published by Yuan and colleagues
[67], comprising the segmented H&E stained primary tissue sections of 564 patients sampled
from the METABRIC cohort. Segmented objects were classified using a SVM trained by
an expert pathologist and metrics pertaining to the absolute number of lymphocytes and the
lymphocyte density relative to the number of overall objects were measured. The absolute
number of lymphocytes were then log-transformed to enable more robust comparison across
the patient space. Furthermore, this transformation ensures input to the MLE process exhibits
a similar range of values and that the algorithm can be initialised with the same parameters
for all cohorts.
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5.4 Results

The aim of this project was to establish a framework that formally describes the regulatory
structure between somatic genomic events, signaling pathway activity and immune activity
in the tumour. This approach is implemented in the statistical environment R [251] and all
code to reproduce the results presented here is available as part of an annotated document
hosted on the bioRxiv [2] repository - https://doi.org/10.1101/144832 .

Genomic events were measured using the copy number profiles of 19,702 genes, as
provided by the METABRIC [76] and TCGA projects [201]. To measure signaling pathway
activity, a breast cancer regulatory network [172] for 788 experimentally verified TFs [252]
was used as input alongside the TCGA/METABRIC transcriptional profiles to VIPER [182],
a method for network based prediction of transcription factor activity.

To measure immune activity, two orthogonal approaches were used: the first approach
uses the mean expression of marker genes to define a cytolytic score (CS) [69] and a novel
T-cell score (TCS). While the CS trait is a measure of lymphocyte activity, the TCS measures
the degree to which they are represented in the tissue. The second approach uses paired H&E
images from the METABRIC cohort to measure the absolute number of lymphocytes and
their density per tumour [67].

5.4.1 A multi-step causal inference approach to assign directionality to
signaling-immune associations

The proposed framework to assign directionality to signaling-immune associations is out-
lined in section 5.1. Different causal relationships are formalised using three different DAGs
(Fig. 5.1A). Model 1 (M1: the causative model) represents a case in which a genomic event
changes immune activity by dysregulating signaling activity. Model 2 (M2: the reactive
model) represents a case in which a genomic event leads to a change in immune activity,
which then in turn perturbs signalling activity. Model 3 (M3: the independence model)
represents a case in which the genomic event influences immune activity and signaling
activity independently of each other.

Likelihood functions for each of the three models are derived in section 5.1.3 using stan-
dard assumptions of causal inference [200]. To limit the model search space and reduce the
number of triplets to test, a multi-step causal model inference framework (CMIF) approach
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TF Interactions

 from PPI Network

Causal ModelsA

Fig. 5.1 Description of CMIF A Directed Acyclic Graphs (DAGs) representing each re-
spective hypothesis evaluated during the analysis. B The inputs for CMIF are a matrix
of TF activities per sample as measured by VIPER, continuous intensity profiles for the
copy number calls and phenotype data that can be either image features or features derived
from gene expression data. C Using a uniform network prior over interactions between
TFs and other proteins, a skeletal association graph is computed between the TF activity,
the CN profile of an interacting protein and the immune phenotype. For significant triplets,
pre-defined likelihood functions for each model in A are maximised over their parameters
using maximum likelihood estimation, with the model most likely to be supported by the
data determined by the model with the smallest Akaike Information Criterion (AIC). D The
output of CMIF is a table of functional triplets with their corresponding model classification.
This figure has been reproduced from my preprint Chlon et al. [2]
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was developed as illustrated in Fig. 5.1.

In a first step, CMIF selects genes with an experimentally verified protein-protein interac-
tion (PPI) with any TF of interest (Fig. 5C). There are 19,702×788 = 15,525,176 pairwise
associations between copy number profiles and TF activities, and filtering them according
to the PPI network from the StringDB database [253] results in just 2,333 potential models.
This filtering substantially reduces the search space and enriches for biologically relevant
drivers in groups of correlated genes that are jointly amplified or deleted. In a second step,
undirected skeletal association graphs are constructed for CNA events underlying both the
TF activity and immune phenotype by computing pairwise correlation coefficients between
the variables. Benjamini-Hochberg multiple hypothesis testing correction [208] is applied
to each p-value, and only complete skeletal graphs are passed to the final step (Fig. 5.1C).
Finally, the likelihood function of each model is maximised over the parameter space, and
the model with the smallest Akaike Information Criterion (AIC) is chosen. After filtering
and model selection, CMIF provides as output the regulatory structure between the CNA
event, TF activity and lymphocyte phenotype. (Fig. 5.1D).

5.4.2 Evaluating CMIF with CS/TCS immune metrics

In the first analysis, the TCS and CS metrics derived from gene expression data were used as
phenotypes of immune activity. Applying CMIF to the TCS/CS metrics, TF activities and
copy number profiles produced 475 complete skeletal graphs characterised by 111 unique
TFs. These models were anchored by CNA events at loci corresponding to 176 unique genes.
Each complete skeletal graph was admitted to the next stage of analysis, where the likelihood
models M1, M2 and M3 were fit to the data using maximum likelihood estimation.

The CMIF revealed that 344 triplets (72%) were best represented by the causal model
(M1) whereas the reactive model (M2) best explained the regulatory structure in the remaining
131 (28%) cases. Strikingly, no M3 models were supported by the data, highlighting the
efficiency of the PPI prior (Fig. 5.1C) in filtering independent regulatory structures.

Validation in independent cohort The 475 proposed models were validated indepen-
dently in the TCGA cohort. Of the candidate triplets, 194 (54.6%) M1 and 24 (18.3%) M2
models were reproduced in the TCGA cohort using CMIF (Fig. 5.2A). The higher validation
percentage of M1 models over M2 models in TCGA data suggests that causal drivers of
T cell infiltration are more robust and thus more frequently recapitulated in breast cancer
populations. The higher prevalence of M1 over M2 models might be explained by cancer
cells being immunoedited [60], a process by which somatic mutations break downstream
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Fig. 5.2 Model validation in TCGA A. Scatter plots with fitted regression lines illustrating
strong concordance between METABRIC and TCGA when transcription factor activity
significantly explains the variance in the TCS and CS immune traits. B. The proportion of
predicted relationships in METABRIC that validate in TCGA as stratified by model type
and lymphocyte trait. C. Stacked barchart illustrating the frequency and overlap of models
between the different immune traits. D. Top and bottom 10 TCGA-validated causal models
as ranked by the proportion of TCS variance explained by the transcription factor activity. Y-
axis indexing is organised as (Gene at locus of CNA event): (Transcription Factor). Heatmap
columns illustrate Pearson’s correlation coefficient between the CNA signal and transcription
factor activity, and transcription factor activity and TCS measurement (left to right). This
figure has been reproduced from my preprint Chlon et al. [2]

pathways associated with a normal immune response. Over time, this would enable the
tumour to exert more control over the immune system than vice-versa.

The correlation between TF activity and the individual immune traits was well conserved
between METABRIC and TCGA (TCS: ρ = 0.98, P< 2.2×10−16; CS: ρ = 0.984, P< 2.2×
10−16) (Fig. 5.2B). As such, these associations illuminate robust co-dependence relationships
between lymphocyte infiltration/activation and TF activity. Of the validated models, 118
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were shared between the TCS and CS traits, with 47 unique to the TCS (165 total) and 53
unique to the CS (171 total). (Fig. 5.2C.). This high degree of concordance is reassuring
considering that lymphocyte recruitment and cytolytic activity are complemetary systems,
underpinned by common co-regulators.

Validation by literature Many of the top predictions generated by CMIF are well sup-
ported by the literature. When ranked by correlation strength, IRF1 activity was highlighted
as the most significant causal mediator of the TCS phenotype across both METABRIC and
TCGA. CMIF also found that IRF1 activity is significantly down-regulated by the amplifi-
cation of PIAS3 (Fig. 5.2D). These findings are consistent with reports that PIAS3 induces
transcriptional repression of IRF1 by binding to it as a SUMO-1 ligase [254]. Furthermore,
IRF1 has been shown to play a crucial role in driving anti-tumour immune response [255]
and thus this model’s categorisation as causal for TCS is well substantiated by the strong
body of literature surrounding the relationship between the variables.

In another example, RUNX3, a well known tumour suppressor gene [256], was identified
as the second strongest causal modulator of the TCS. This is consistent with reports that
RUNX3 activity mediates lymphocyte chemotaxis through the TGF-B pathway [257]. A
positive association found between TAL1 and RUNX3 has been also been confirmed in
studies demonstrating that the RUNX genes are direct targets of TAL1 [258]. Additionally,
CMIF identified ET S1 as a causal mediator for the TCS, which is unsurprising given that its
activity has been shown to regulate the transcription of chemokines and cytokines directly
involved in lymphocyte migration [259].

Interestingly, CMIF discovered mechanisms leveraging TFs associated with the downreg-
ulation of T cell proliferation. One notable example is RORC, whose activity is known to
suppress the expression of IL2, a known T cell proliferation cytokine [260, 261]. Further-
more, HES1 activity was ranked as the most significant downregulator of the TCS. Extensive
literature exists detailing the role of HES1 in T cell development and proliferation [262],
but its influence over the immune component of TMEs in solid lesions is not fully under-
stood. This observation warrants more extensive investigation in the context of lab-based
experiments.

Validation with image-derived features Another way of validating the robustness of a
proposed model is testing how well it predicts lymphocyte infiltration in an orthogonal dataset.
To this end, this study incorporated paired tumour whole tissue section slides stained with
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Haematoxylin and Eosin (H&E) from the METABRIC study [76], enabling an orthogonal
estimation of lymphocytic infiltration independent of the gene expression based estimates
used in the first analysis.

The list of 165 filtered TCS M1 models was tested for reproducibility in an image dataset
consisting of 534 samples. This dataset had previously been processed by an automated
pathology pipeline [67], producing sample-wise measurements of absolute lymphocyte count
and the lymphocyte density. Further normalisation techniques were applied in this study
to generate traits from these features as described in section 5.3. Next, image features, TF
activities and copy number profiles were integrated into the CMIF approach to produce a
image-specific list of models. The overlap between the image-based causal models and those
from the transcriptomic phenotype set revealed that 18 (10.9%) of the initial predictors of
the TCS were also predictive of the image features. Interestingly, the majority (15/18) of
validated image models belonged to the lymphocyte density trait.

Surprisingly, the extent to which TF activity correlated with both the TCS and the image
lymphocyte density was more poorly conserved (ρ = 0.45, P < 2.2×10−16) than that be-
tween the TCS between METABRIC and TCGA. This is not particularly surprising given
that transcriptomic T cell features are not perfect proxies for lymphocyte features extracted
from images. While the TCS makes measurements about T cells exclusively, H&E image
resolution is is not sufficiently descriptive to differentiate T cells from other cells with a
similar morphology. Furthermore, there are confounding systematic errors that may have
arisen during the segmentation and classification process used to generate the image features
that render the correlation with the transcriptomic phenotypes weaker than expected. For
consistency, the overlapping model list was filtered for models where the association sign
was conserved between TF activity correlations with the TCS/image phenotypes.

The image-validated model list was comprised of 12 triplets, revealing 11 unique genes
exerting influence over lymphocyte infiltration by dysregulating the activity of 8 TFs (Table
1). Notably, 8 out of the top 10 strongest causal models for the TCS phenotype (as ranked by
association with TF activity) validated for the image lymphocyte density trait, highlighting
excellent conservation of predictive utility across orthogonal data types.

Of the validated models, notable examples include a process by which PIAS3 copy
number amplification was found to attenuate the TCS/lymphocyte density by downregulating
T FEB and IRF1 activity, both of which positively associate with the mentioned traits (Table



5.4 Results 101

CNA TF TF-TCS Correlation TF-TCS P value Model Type
RBBP5 YEATS4 -0.10 0.00 1 TCS

CREBBP ETS1 0.62 0.00 1 TCS
EP300 ETS1 0.62 0.00 1 TCS
PIAS3 IRF1 0.94 0.00 1 TCS
PIAS3 TFEB 0.80 0.00 1 TCS

POU2F1 NR3C1 0.60 0.00 1 TCS
PARP1 HES1 -0.85 0.00 1 TCS
NR5A2 NFYA -0.08 0.00 1 TCS
PATZ1 BACH2 0.81 0.00 1 TCS
TAL1 RUNX3 0.91 0.00 1 TCS
CBFB RUNX3 0.91 0.00 1 TCS
HAX1 HCLS1 0.84 0.00 1 TCS

Table 5.1 CMIF output of genomic drivers and TF perturbations causal for the TCS trait that
also predict lymphocyte density in stained tumour sections.

5.1). CREBBP and EP300 were found to exert similar causal pressure on the traits through
their action on the TF ET S1. This coincides with experimental evidence demonstrating
that CREBBP and EP300 form a protein complex CBP/p300 that is recruited by ET S1 to
facilitate its TF functionality [263].

NR3C1 was identified in the top 8 candidate TFs (Table 5.1): this gene encodes for the
glucocorticoid receptor, and influences immune activity through inflammation [264]. This
TF was ranked only 95th of 510 in the list of image associations and 27th of 510 in the
TCS associations list. Its function as a consistent driver of immune infiltration was only
elucidated once the causal relationships between genome, signaling and immune phenotypes
were modeled together, highlighting the advantage of regulatory networks over standard
association approaches.

5.4.3 Causal model case studies and mechanisms

These results provide several specific biological examples of causal models of the interaction
between cancer signaling and immune activity.

EP300 and NCOR1 modulate cytolytic activity through ETS1/SPI1/TP53 network per-
turbation Copy number amplification of EP300 and NCOR1 were found to dysregulate
the cytolytic activity trait in both the METABRIC and TCGA cohorts. Interestingly, the orig-
inal study by Rooney and colleagues [69] found that single nucleotide variants in these genes



102 Causal Modeling Dissects Tumour–Microenvironment Interactions In Breast Cancer

correlated positively with cytolytic activity in cancer types other than breast. The CMIF’s
ability to elucidate these mechanisms in breast cancer may be due the higher prevalence of
CNA mutations over SNPs in the disease [230], thus providing our analysis with more statis-
tical power. Furthermore, the CMIF extends our understanding of the association between
the list of mutational drivers and cytolytic activity by suggesting they act by dysregulating
the activity of ET S1, SPI1 and T P53.

The discovery of a positive association between SPI1 activity and the CS (ρ = 0.7) is
consistent with studies demonstrating that SPI1 transcribes CCL5, a key player in cytolytic
activity [265]. Similarly, ET S1 deletion in mice has been linked to decreased cytolytic activity
in NK cells [266], consistent with the model’s observed positive correlation (ρ = 0.58). The
association between TP53 activity and cytolysis is poorly understood, although some findings
have found associations between mutant TP53 and downregulated cytolytic activity in ovarian
and other cancers [69]. Individually, the direct correlations between cytolytic activity and
EP300 (ρ = 0.141) and NCOR1 (ρ = 0.08) are weak. However, inferring the regulatory
structure with respect to TF activity enabled the CMIF to highlight EP300 and NCOR1
amplification as key drivers of cytolytic activity in breast cancer.

TF drivers of immune localisation regulate adaptive immune pathways Functional an-
notation of TF transcriptional targets can elucidate which molecular pathways are over- or
underrepresented in the presence of an immune phenotype. To investigate this, the model set
was partitioned according to the sign of the association between TF activity and lymphocyte
infiltration. Across both partitions, the transcription targets of each TF were aggregated, and
GO term enrichment was applied to functionally annotate the gene sets.

For TFs positively associated with lymphocyte recruitment, the terms “T cell activation"
and “adaptive immune response" were among the top associated pathways (adjusted P =

1.7×10−33 and 2.4×10−28) (Fig. 5.3B). Interestingly, “antigen processing and presentation"
was also ranked highly on the list (adjusted P = 1.3×10−14), reinforcing the importance of
comprehensive antigen recognition in facilitating lymphocyte recruitment. TFs negatively
associated with lymphocyte recruitment displayed disjoint sets of target genes (Fig. 5.3A(i))
whose aggregate functional annotation was predominantly associated with pathways involved
in innate immune cell regulation (Fig. 5.3B). In contrast, all positively associative TFs in the
model space demonstrated overlapping regulons (Fig. 5.3A(ii)).
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Fig. 5.3 Analysis of TF targets A Network visualisation of the inter-regulon overlap (illus-
trated through purple dots) between causal TFs that (i) down-regulate the TCS/lymphocyte
density and (ii) those that up-regulate it. Evidently, TFs that causally up-regulate the T cell
representation have a greater degree of regulon overlap whereas no intersection is observed
for TFs that down-regulate the trait. B GO term enrichment analysis highlighting the most
significantly annotated terms to the gene sets A(i) and A(ii) respectively. Whereas regulons
pertaining to TFs positively associative with lymphocyte infiltration are more enriched for
T-cell related pathways, down-regulators the phenotype are more associated with innate
immune system pathways. This figure has been reproduced from my preprint Chlon et al. [2]

Systems driving lymphocyte recruitment stratify by ER status Differences in magni-
tude and prognostic relevance of lymphocytic infiltration between ER stratified breast cancer
patients have been widely observed [267, 268, 198], but little is known regarding the causal
chain of events that gives rise to this discrepancy. It was hypothesised that dysregulated
TF activity in ER+ samples could provide a potential mechanism by which ER+ tumours
evade immune destruction. To investigate this, the clinical dataset for the METABRIC cohort
samples was used to infer whether genomic drivers of lymphocytic recruitment stratify by
pathologist-assigned ER status.
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Fig. 5.4 METABRIC ER Stratification of Causal Models a Boxplots highlighting the
difference in the normalised DNA copy number signal between ER+/ER- cases in the
validated triplet list. Population mean rank difference is computed using the Wilcoxon
signed-rank test. The plot shows that 10/11 genes are differentially amplified/deleted between
ER+/ER- at P ⩽ 0.05. b Heatmap highlighting the difference in causal transcription factor
activity as stratified by ER status. It can be seen that a large proportion TFs positively
associated with lymphocyte infiltration have upregulated activity in the majority of ER-
samples. Concurrently, TFs inversely or weakly correlated with the phenotype demonstrate
stronger representation in ER+ samples over ER-. This figure has been reproduced from my
preprint Chlon et al. [2]
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The copy number profiles of all genomic drivers in the list of models (Table 5.1) signifi-
cantly stratified by ER status with the exception of HAX1 (Fig. 5.4A). For example, genes
such as PIAS3, POU2F1 and CREBBP were significantly more amplified in ER+ over ER-
samples. The amplified states significantly downregulate TFs positively associated with
lymphocytic activity such as T FEB, IRF1, NR3C1 and ET S1. This leads to significantly
downregulated lymphocytic infiltration relative to ER- samples (Fig. 5.4B). In contrast, TAL1
and CBFB were significantly more amplified in ER- over ER+ samples, and significantly
higher activity was observed for TFs positively associated with lymphocyte recruitment.
Lower cytolytic activity was also observed in ER+ samples relative to ER-, which is un-
surprising given that transcriptional targets of TFs positively associated with lymphocytic
recruitment were also shown to modulate T cell activation in our GO term analysis (Fig.
5.3B).

These observations provide compelling evidence for a genomic basis for the ER strat-
ification of lymphocyte infiltration and activity. These results are difficult to infer from
association studies alone, highlighting a chief advantage of a deriving causal frameworks
from large datasets.

5.5 Discussion

The aim of this study was to dissect interactions between cancer cells and their microenviron-
ment. To achieve this aim, a multistep methodology was developed for inferring directed
relationships between signaling activity and immune infiltration in the tumour microenvi-
ronment. This approach overcomes the limitations of conventional association studies by
anchoring the analysis on somatic genomic events.

This work uses established methods to estimate TF activity and lymphocyte infiltration
(CS) from gene expression data, and proposes a novel score for lymphocytic activity (TCS).
Since genes tend to be amplified/deleted together, a PPI network is used as a biological
network prior to isolate drivers from a list of genes correlated with an immune trait. Causal
inference is achieved using a likelihood test, which returns the most likely relationship
between the genotype, TF activity and phenotype given the data. Association based methods
are widely used in cancer research and the CMIF methodology is a step towards a causal and
mechanistic understanding of these relationships.
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This analysis consisted of three steps: identifying models for the TCS/CS traits in a
discovery cohort (METABRIC [76]), validating them in a large independent cohort (TCGA
[201]) and further evaluating their predictive utility using orthogonal measures of lymphocyte
infiltration from H&E images. The final model list revealed 11 driver genes regulating
lymphocyte recruitment into the microenvironment by dysregulating the activity of 8 TFs.
Whilst the majority TFs in these models have been experimentally linked to lymphocyte
infiltration, many of driver genes identified in this study are novel, highlighting a principal
advantage of causal driver discovery over standard association studies. This was further
realized with the discovery of EP300/NCOR1 copy number alterations as drivers of cytolytic
activity, whereas SNV mutations in these genes were previously found not to correlate with
the trait in breast cancer. Drivers of lymphocytic infiltration were found to stratify by ER
status, leading to significant stratification of activity profiles of TFs found to be causal for
lymphocyte infiltration. This observation provides evidence supporting a genomic basis for
the observed stratification of lymphocyte infiltration and prognostic utility by ER status.

This approach has several limitations, many of which are technical and relate to the
assumptions to permit the statistical modelling of CMIF’s framework. One such limitation
involves measurement errors within the individual data inputs to the integrative analysis
pipeline. If the margin of error for one variable is wider than that of another, it could
potentially lead to the misclassification of the causal-reactive relationship between the two
variables. Another limitation arises from the simplicity of the DAGs designed to model the
interaction between variables. TFs causal for a trait will regulate genes that are interacting
within the context of a much larger network and with feedback controls that need to be
accounted for. Although these proposed models successfully predict lymphocyte infiltration
in image cohorts, a stronger validation would involve knockdown experiments in mice in
order to directly observe changes in TF profile and a trait of interest. Finally, although
our analysis proceeded through a likelihood method-based approach, sampling from the
precision matrix could potentially serve as a less computationally expensive alternative.
For example, Friedman et al. propose Glasso, a method for learning sparse networks from
a precision matrix using a lasso-based approach; their method demonstrates remarkable
computational efficiency with respect to large datasets [269]. CMIF’s methodology uses
well-established regularisation methods to prevent overfitting and optimise model selection,
a step not explicitly dealt with by Glasso.

A conceptual limitation is that the whole study is based on one major assumption: ge-
nomic events in the cell-autonomous compartment drive the development of the cancer and
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can thus be used as anchors for causal analysis. This assumption is shared by almost all
cancer genomics studies, in particular those that aim to identify genomic drivers of the breast
cancer [76, 230]. However, it is acknowledged that in rare occasions, local tissue disruptions
such as prolonged period of inflammation could be causal for genomic alterations instead of
being caused by them.

Despite these limitations, the CMIF method has demonstrated the ability to recapitulate
known mechanisms and has proposed robust models across a variety of independent datasets
and orthogonal data types. Given this method’s high validation rate between two large and
independent datasets and its capacity to predict results supported by the literature, it stands a
robust predictor of cancer-immune communication mechanisms from multiomics data.

This analysis was focused on breast cancer, but large efforts like The Cancer Genome
Atlas (TCGA) or the International Cancer Genome Consortium (ICGC) provide the same
types of data for many other kinds of cancer and thus CMIF’s methodological framework
can be easily be applied to many other forms of cancer. Additionally, the framework is not
confined to the CS/TCS metrics as measures of immune activity and can be applied to any
other available feature of the microenvironment.

In summary, my thesis has presented an integrative analysis of genomic events, signaling
activity and immune markers, which is flexible and can form the foundation for a more
mechanistic understanding of tumour-microenvironment interactions across cancer types.





Chapter 6

Summary and Outlook

Understanding the interaction between cancer and the immune system is pivotal to the devel-
opment of novel therapeutics. With the advent of high-throughput platforms for collecting
biological data, computational immunology can be used to build novel representations of
cancer immunity at resolutions ranging from the molecular to sample level. By combining
statistical approaches with multiomics data, my thesis tackles two pressing issues in cancer
immunology:

1. The association between immune traits and cancer signalling is not fully understood.
Dysregulation in the cancer epithelium leads to molecular signalling aberrations asso-
ciated with local immunosuppression in the TME. In chapter 3, I demonstrate how the
differential activity of Hedgehog and Notch signalling in PDAC promote contrasting
immune landscapes. Although such associations are well established, my approach
links cancer immunity back to the DNA level, by placing both signalling dysregulation
and immune features in the context of somatic point mutations at the KRAS gene locus.

2. Reconstructing mechanisms underlying immune traits cannot be done using associa-
tions alone. Systems biology focuses on reconstructing causal mechanisms underlying
a trait by learning dependency structures between molecular components. Recent
methods suggest that structures inspired by hierarchical biological processes give rise
to more accurate representations of a system. Chapter 5 builds on this observation,
where we propose a framework for learning the dependency structure between copy
number profiles, transcriptional dysregulation and immune features using Bayesian net-
work approaches. This framework was used to elucidate de novo mutations regulating
lymphocyte recruitment and cytolytic activity.

Problem 1. requires careful measurements of cancer epithelium signalling, immune
features and factors contributed by other TME constituents such as stromal cells. In our
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approach, we assume that the aggregate expression of a TF regulon acts as a multiplexed
reporter for the activity of the TF protein. Under this assumption, we are able to fit the
transcriptional signature of oncogenic KRAS to three biological processes characterised
by master regulator TFs and their regulons. This approach is particularly powerful since
it implicitly describes a system rooted at oncogenic KRAS, propagating through layers of
transcriptional reprogramming and manifesting in immune response disruption. However,
the lack of a formal dependency structure is a major caveat deterring us from confidently
labelling our system a "mechanism" of cancer-immune landscaping. Examples from well-
established findings may corroborate our discovery of a link between upregulated embryonic
development pathways and dysregulated leukocyte behaviour in PDAC, but we cannot make
definitive causal claims using correlations alone: correlation does not imply causation.

This brings us to problem 2: reconstructing immune regulatory mechanisms. Cancer cells
signal to the immune system through complex transcription, translation and transduction
regulatory hierarchies. Our assertion that genomic alterations are progenitor events for the
causal procession of cancer development enables us to use them as anchors for subsequent
events. Linking these processes together into a mechanism is achievable if we account for
the regulatory structure within and between data modalities. We facilitate this by correct-
ing gene expression associations for co-regulation and gene-level copy number calls for
co-amplification/deletion. The usefulness of my approach was demonstrated by identifying
de novo regulatory hierarchies for immune features rooted at novel mutations. My method
generates consistent models across independent cohorts that are well substantiated by similar
in vivo and in vitro findings from other studies.

Murine Validation Study Our approach in chapter 5 proposed 12 novel mechanisms
for CD8+ T cell regulation in BRCA from existing datasets. A gold standard approach for
functionally validating these kinds of models involves the in vivo administration of carcinoma
cell lines genetically modified with respect to the expression of the driver gene, and assessing
variations in CD8+ T cell phenotypes and TF activity. At the time of writing, an experimental
protocol is underway to validate our predicted mechanisms as predictors for ground truth
lymphocyte recruitment. In our in vivo validation protocol, we aim to address the following
hypotheses:

1. For a mutation g, Is there a quantifiable difference in the number of infiltrating CD8+
cytotoxic T cells between mutated cell lines and controls? Is this difference statistically
significant?
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2. Which transcription factors, if any, are up/down-regulated in the tumour microenviron-
ment of cells with mutation vs control?

3. If hypotheses 1. And 2. fail, can this failure be explained in the context of other
infiltrating immune cells or variables unaccounted for by the original model?

The outcome of testing hypotheses 1-3 will inform us how well our approach is able to
predict phenotype variance at the in vivo level. To address these points, we are in the process
of engineering spontaneous murine carcinoma cells with somatic mutations sampled from
our list of predicted drivers. To do this, we make use of the EMT6 mus musculus mammary
carcinoma cell line, which is typically used to grow tumours in the murine mammary fat pad
of immunogenic mice without risk of spontaneous rejection. There is evidence to suggest
that EMT6 is more immunogenic than 4T1, another commonly used cell line and most
importantly, EMT6 tumours demonstrate robust T cell infiltration in immunogenic mice
[173]. Validation work is actively being done in collaboration with the biorepository unit
core at Cancer Research UK, Cambridge Institute.

Non-immune phenotypes Given their relation to improved prognostic outcomes, lympho-
cyte features form extremely popular lines of inquiry for cancer immunologists. As such,
our proposed method in chapter 5 looked at lymphocyte features downstream of perturbed
transcriptional programmes to reconstruct regulatory hierarchies. On the other hand, our
method can be readily extended to any other immunological feature or TME phenotype. The
integrative multiomics basis of our framework means that phenotype data originating from a
variety of experimental platforms can be incorporated. The only requirement is that these
phenotypes can be anchored on a progenitor mutation in the cancer epithelium. This paves
the way for reconstructing the regulatory hierarchy involved in non-lymphocyte immune
agency, stromal infiltration or even events leading to cancer metastasis.

Extending the Hierarchy Our approach in chapter 4 only accounts for cell operations
organised on the genomic, transcriptomic and morphological layers. This is a substantial
improvement on earlier approaches that model phenotypes as the function of a single layer.
However, there are many more layers connecting genomic aberrations in the cancer epithe-
lium to immune phenotypes, such as the proteome and the metabolome which contains
molecules essential for routine cell operations such as amino acids and sugars. Compre-
hensively characterising mechanisms giving rise to immune phenotypes requires addressing
all layers of cellular organisation. This poses a considerable challenge given the limited
availability of matched data types. International data gathering consortia are a step in the



112 Summary and Outlook

right direction, with growing cohorts of matched multimodal datasets paving the way for
future models integrating genomic, transcriptomic, proteomic, metabolomic and imageomic
data. Less fragmented hierarchical regulatory models are likely to be more robust predictors
of phenotypic changes.
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