
Balls into bins via local search: cover time and
maximum load
Karl Bringmann1, Thomas Sauerwald2, Alexandre Stauffer3, and
He Sun1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 University of Cambridge, UK
3 University of Bath, UK

Abstract
We study a natural process for allocating m balls into n bins that are organized as the vertices
of an undirected graph G. Balls arrive one at a time. When a ball arrives, it first chooses a
vertex u in G uniformly at random. Then the ball performs a local search in G starting from u

until it reaches a vertex with local minimum load, where the ball is finally placed on. Then the
next ball arrives and this procedure is repeated. For the case m = n, we give an upper bound
for the maximum load on graphs with bounded degrees. We also propose the study of the cover
time of this process, which is defined as the smallest m so that every bin has at least one ball
allocated to it. We establish an upper bound for the cover time on graphs with bounded degrees.
Our bounds for the maximum load and the cover time are tight when the graph is transitive or
sufficiently homogenenous. We also give upper bounds for the maximum load when m > n.

1998 ACM Subject Classification G.3 [Mathematics of Computing]: Probability and Statistics

Keywords and phrases Balls and Bins, Stochastic Process, Randomized Algorithm

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A very simple procedure for allocating m balls into n bins is to place each ball into a
bin chosen independently and uniformly at random. We refer to this process as 1-choice
process. It is well know that, when m = n, the maximum load for the 1-choice process (i.e.,
the maximum number of balls allocated to any single bin) is Θ

(
logn

log logn

)
[10]. Alternatively,

in the d-choice process, balls arrive sequentially one after the other, and when a ball arrives,
it chooses d bins independently and uniformly at random, and places itself in the bin that
currently has the smallest load among the d bins (ties are broken uniformly at random). It
was shown by Azar et al. [3] and Karp et al. [7] that the maximum load for the d-choice
process with m = n and d > 2 is Θ

(
log logn

log d

)
. The constants omitted in the Θ are known

and, as shown by Vöcking [11], they can be reduced with a slight modification of the d-choice
process. Berenbrink et al. [4] extended these results to the case m� n.

In some applications, it is important to allow each ball to choose bins in a correlated
way. For example, such correlations occur naturally in distributed systems, where the bins
represent processors that are interconnected as a graph and the balls represent tasks that
need to be assigned to processors. From a pratical point of view, letting each task choose d
independent random bins may be undesirable, since the cost of accessing two bins which are
far away in the graph may be higher than accessing two bins which are nearby. Furthermore,
in some contexts, tasks are actually created by the processors, which are then able to forward

© K. Bringmann, T. Sauerwald, H. Sun and A. Stauffer;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/131381463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Balls into bins via local search: cover time and maximum load

1 2 3 4 5 6
(a)

1 2 3 4 5 6
(b)

ball i

1 2 3 4 5 6
(c)

ball i+ 1

1 2 3 4 5 6
(d)

ball i+ 2

Figure 1 Illustration of the local search allocation. Black circles represent the vertices 1–6
arranged as a path, and the yellow circles represent the balls of the process (the most recently
allocated ball is marked red). Figure (a) shows the configuration after placing i − 1 balls. As shown
in Figure (b), ball i born at vertex 4 has two choices in the first step of the local search (vertices 3
or 5) and is finally allocated to vertex 2. Figure (c) and (d) shows the placement of ball i + 1 and
i + 2.

tasks to other processors to achieve a more balanced load distribution. In such settings,
allocating balls close to the processor that created them is certainly very desirable as it
reduces the costs of probing the load of a processor and allocating the task.

With this motivation in mind, Bogdan et al. [5] introduced a natural allocation process
called local search allocation. Consider that the bins are organized as the vertices of a graph
G = (V,E) with n = |V |. At each time step a ball is “born” at a vertex chosen independently
and uniformly at random from V , which we call the birthplace of the ball. Then, starting
from its birthplace, the ball performs a local search in G, where the ball repeatedly moves to
the adjacent vertex with the smallest load, provided that this load is strictly smaller than the
load of its current vertex. We assume that ties are broken independently and uniformly at
random. The local search ends when the ball visits the first vertex that is a local minimum,
which is a vertex for which no neighbor has a smaller load. After that, the next ball is born
and the procedure above is repeated. See Figure 1 for an illustration.

The main result in [5] establishes that when G is an expander graph with bounded
maximum degree, the maximum load after n balls have been allocated is Θ(log logn). Hence,
local search allocation on bounded-degree expanders achieves the same maximum load (up
to constants) as in the d-choice process, but has the extra benefit of requiring only local
information during the allocation. In [5], it was also established that the maximum load is

Θ
((

logn
log logn

) 1
d+1
)

on d-dimensional grids, and Θ(1) on regular graphs of degrees Ω(logn).

1.1 Results
In this paper we derive upper and lower bounds for the maximum load, and propose the
study of another natural quantity, which we refer to as the cover time. In order to state
our results, we need to introduce the following two quantities that are related to the local
neighborhood growth of G:

R1 = R1(G) = min{r : r|Bru| log r > logn for all u ∈ V }

and
R2 = R2(G) = min{r : r|Bru| > logn for all u ∈ V },

where Bru denotes the set of vertices within distance r from vertex u. Note that R1 6 R2
for all G. For the sake of clarity, we state our results here for transitive graphs only. In later

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 3

sections we state our results in full generality, which will require a more refined definition
of R1 and R2. We also highlight that for all the results below (and throughout this paper)
we consider that ties are broken independently and uniformly at random; the impact of
tie-breaking procedures in local search allocation was investigated in [5, Theorem 1.5].

Maximum load
We derive an upper bound for the maximum load after n balls have been allocated. Our
bound holds for all bounded-degree graphs, and is tight for transitive graphs (and, more
generally, for graphs where the neighborhood growth is sufficiently homogenenous across
different vertices).

I Theorem 1.1 (Maximum load when m = n). Let G be any transitive graph with bounded
degrees. Then, with probability at least 1−n−1, the maximum load after n balls have been
allocated is Θ(R1).

Theorem 1.1 is a special case of Theorem 3.1, which gives a more precise version of the
result above and generalizes it to non-transitive graphs; in particular, we obtain that for
any graph with bounded degrees the maximum load is O(R1) with high probability. We
state and prove Theorem 3.1 in Section 3.

Note that for bounded-degree expanders we have R1 = Θ(log logn), and for d-

dimensional grids we have R1 = Θ
((

logn
log logn

) 1
d+1
)
. Hence the results for bounded-degree

graphs in [5] are special cases of Theorems 1.1 and 3.1. Furthermore, the proof of Theor-
ems 1.1 and 3.1 uses different techniques (it follows by a subtle coupling with the 1-choice
process) and is substantially shorter than the proofs in [5].

Our second result establishes an upper bound for the maximum load when m > n. We
point out that all other results known so far were limited to the case m = n. We establish
that, when m = Ω(R2n), the maximum load is of order Θ(m/n) (i.e., the same order as
the average load). We note that the difference between the maximum load and the average
load for the local search allocation is always bounded above by the diameter of the graph
(see Lemma B.2 below). This is in some sense similar to the d-choice process, where the
difference between the maximum load and the average load does not depend on m [4].

I Theorem 1.2 (Maximum load when m > n). Let G be any graph with bounded degrees.
Then for any m > n, with probability at least 1 − n−1, the maximum load after m balls
have been allocated is O(mn +R2).

Cover time
We propose to study the following natural quantity related to any process based on allocating
balls into bins. Define the cover time as the first time at which all bins have at least one
ball allocated to them. This is in analogy with cover time of random walks on graphs,
which is the first time at which the random walk has visited all vertices of the graph. Note
that for the 1-choice process, the cover time corresponds to the time of a coupon collector
problem, which is known to be n logn + Θ(n) [9, Section 2.4.1]. For the d-choice process
with d = Θ(1), we obtain that the cover time is also of order n logn. We show that for the
local search allocation the cover time can be much smaller than n logn.

Our next theorem establishes that the cover time for transitive bounded-degree graphs
is Θ(R2n) with high probability. Since R2 = O(

√
logn) for all connected graphs, it follows

that the cover time for any connected, bounded-degree graph is at most O(n
√

logn), which

4 Balls into bins via local search: cover time and maximum load

is significantly smaller than the cover time of the d-choice process for any d = Θ(1). In par-
ticular, we obtain R2 = Θ(log logn) for bounded-degree expanders, and R2 = Θ

(
(logn)

1
d+1

)
for d-dimensional grids.
I Theorem 1.3 (Cover time for bounded-degree graphs). Let G be any transitive graph with
bounded degrees. Then, with probability at least 1 − n−1, the cover time of local search
allocation on G is Θ(R2n).
The theorem above is a special case of Theorem 4.2, which we state and prove in Section 4.

Our final result provides a general upper bound on the cover time for dense graphs.
Theorem 1.4 below is a special case of Theorem 4.3, which gives an upper bound on the
cover time for all regular graphs. We state and prove Theorem 4.3 in Section 4.
I Theorem 1.4 (Cover time for dense graphs). Let G be any d-regular graph with d =
Ω(logn log logn). Then, with probability at least 1− n−1, the cover time is Θ(n).

2 Key technical argument

Throughout this paper we assume that G has bounded degrees; i.e., the maximum degree ∆
is bounded above by a constant independent of n. We also assume that, in the local search
allocation, ties are broken independently and uniformly at random. Due to space limitations,
we list in the appendix some known properties from [5] of the local search allocation that
we use.

For each m > 0 and vertex v ∈ V , let X(m)
v denote the load of v (i.e., the number of

balls allocated to v) after m balls have been allocated. Initially we have X(0)
v = 0 for all

v ∈ V and, for any m > 0, we have
∑
v∈V X

(m)
v = m. Denote by X(m)

max the maximum load
after m balls have been allocated; i.e.,

X(m)
max = max

v∈V
X(m)
v .

Also, denote by Tcov = Tcov(G) the cover time of G, which we define as the first time at
which all vertices have load at least 1. More formally,

Tcov = min{m > 0: X(m)
v > 1 for all v ∈ V }.

Let Ui ∈ V denote the birthplace of ball i, and for each m > 0 and v ∈ V , let X(m)
v

denote the load of v after m balls have been allocated according to the 1-choice process. Let
X

(m)
max denote the maximum load for the 1-choice process. More formally,

X
(m)
v =

m∑
i=1

1 (Ui = v) and X
(m)
max = max

v∈V
X

(m)
v (2.1)

We now prove a key technical result (Lemma 2.2 below) that will play a central role
in our proofs later. Let µ : V → R be any function on the vertices of G that satisfies the
following property:

for any two neighbors u, v ∈ V , we have |µ(u)− µ(v)| 6 1. (2.2)

We see µ as an initial attribution of weights to the vertices of G. Then, for any m > 1, after
m balls are allocated, we define the weight of vertex v by

W (m)
v = X(m)

v + µ(v). (2.3)

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 5

Note that for any m > 1 and v ∈ V , we have that Wv can increase by at most one after each
step; i.e., W (m)

v ∈ {W (m−1)
v ,W

(m−1)
v + 1}. The lemma below establishes that a ball cannot

be allocated to a vertex with larger weight than the vertex where the ball is born.
I Lemma 2.1. Let m > 1 and denote by v the vertex where ball m is born (i.e., v = Um).
Let v′ be the vertex where ball m is allocated. Then, W (m−1)

v′ 6W
(m−1)
v .

Proof. Assume that v 6= v′, thus the local search of ball m visits at least two vertices. Let
w be the second vertex visited during the local search. Since v and w are neighbors in G,
we have

W (m−1)
w = X(m−1)

w + µ(w) = X(m−1)
v − 1 + µ(w) 6 X(m−1)

v + µ(v) = W (m−1)
v .

Proceeding inductively for each step of the local search we obtain W (m−1)
v′ 6W

(m−1)
v . J

For vectors A = (a1, a2, . . . , an) and A′ = (a′1, a′2, . . . , a′n) such that
∑n
i=1 ai =

∑n
i=1 a

′
i,

we say that A majorizes A′ if, for each κ = 1, 2, . . . , n, the sum of the κ largest entries of A
is at least the sum of the κ largest entries of A′. More formally, if j1, j2, . . . , jn are distinct
numbers such that aj1 > aj2 > · · · > ajn and j′1, j′2, . . . , j′n are distinct numbers such that
a′j′1

> a′j′2
> · · · > a′j′n , then A majorizes A′ if

κ∑
i=1

aji >
κ∑
i=1

a′j′
i

for all κ = 1, 2, . . . , n. (2.4)

Let W (m)
v be the weight of vertex v after m balls are allocated according to the 1-choice

process; i.e., W (m)
v = X

(m)
v + µ(v) for all v ∈ V . The lemma below establishes that W (m)

majorizes W (m) for any m.

I Lemma 2.2. For any fixed m > 0, we can coupleW (m) andW (m) so that, with probability
1, W (m) majorizes W (m).

Proof. The proof is by induction on m. Clearly, for m = 0, we have W (0)
v = W

(0)
v = µ(v)

for all v ∈ V . Now, assume that we can couple W (m−1) with W
(m−1) so that W (m−1)

majorizes W (m−1). Let j1, j2, . . . , jn be distinct elements of V so that W (m−1)
j1

>W
(m−1)
j2

>

· · · > W
(m−1)
jn

and also satisfy that whenever W (m−1)
j`

= W
(m−1)
j`+1

then X(m−1)
j`

> X
(m−1)
j`+1

.

Similarly, let j′1, j′2, . . . , j′n be distinct elements of V so that W (m−1)
j′1

> W
(m−1)
j′2

> · · · >

W
(m−1)
j′n

. Now let ` be a uniformly random integer from 1 to n. Then, for the process
(W (m)

v)v∈V , let ball m be born at vertex j` and define ι such that jι is the vertex to
which ball m is allocated. By Lemma 2.1 and the ordering above, we obtain that ι > `.
For the process (W (m)

v)v∈V , we set the birthplace of ball m to be j′`. Therefore, for any
κ = 1, 2, . . . , n, we have

κ∑
i=1

W
(m)
j′
i

=
κ∑
i=1

W
(m−1)
j′
i

+ 1 (κ > `) >
κ∑
i=1

W
(m−1)
ji

+ 1 (κ > `) (by induction)

>
κ∑
i=1

W
(m−1)
ji

+ 1 (κ > ι) (since ι > `)

=
κ∑
i=1

W
(m)
ji

.

J

6 Balls into bins via local search: cover time and maximum load

Now we illustrate the usefulness of the above result by relating the probability of a vertex
to have a certain load with the probability that balls are born in a neighborhood around a
vertex. Recall that the load vector is smooth (cf. Lemma B.2), which means that if a vertex
v has load `, then a vertex at distance r from v has load at least ` − r and at most ` + r.
For any two vertices u, v ∈ V , we denote by dG(u, v) their distance on G. The proof of the
lemma below is in the appendix.

I Lemma 2.3. For any v ∈ V , and any `,m > 1, we have

Pr
[
X(m)
v > `

]
> Pr

[⋂
w∈B`−1

v

{
X

(m)
w > `− dG(v, w)

}]
and

Pr
[
X(m)
v > `

]
6 Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
.

I Remark 2.4. The lemma above states that one can couple {X(m)
v }v∈V and {X(m)

v }v∈V
so that if X(m)

w > ` − dG(v, w) for all w ∈ B`−1
v , then X

(m)
v > `. However, this is not

necessarily achieved with the “trivial” coupling where each ball is born at the same vertex
for both processes {X(m)

v }v∈V and {X(m)
v }v∈V . In other words, knowing that the number of

balls born at vertex w is at least `− dG(v, w) for all w ∈ B`v does not imply that X(m)
v > `.

Now we extend the proof of Lemma 2.3 to derive an upper bound on the load of a subset
of vertices. The proof of this proposition can be found in the appendix.

I Proposition 2.5. Let S ⊂ V be fixed and ∆ be the maximum degree in G. Then, for all
m > n and ` > 300∆m

n we have

Pr
[∑
v∈S

X(m)
v > `|S|

]
6 4 exp

(
−|S|`14 log

(
`n

m

))
+ exp

(
−m4

)
.

The above inequality implies that, for any given u ∈ V ,

Pr
[
X(m)
u > 2`

]
6 4 exp

(
−|B

`
u|`

14 log
(
`n

m

))
+ exp

(
−m4

)
.

3 Maximum Load

We start stating a stronger version of Theorem 1.1 which also holds for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
1 = R

(γ)
1 (G) = max{r : ∃S ⊆ V with |S| > n

1
2 +γ s.t. r|Bru| log r < logn for all u ∈ S}.

Note that R(γ)
1 is non-increasing with γ. Also, when G is transitive, we have R1 = R

(γ)
1 + 1

for all γ ∈ (0, 1/2]. The theorem below establishes that, for any bounded-degree graph, if
there exists a γ ∈ (0, 1/2] for which R(γ)

1 = Θ(R1), then the maximum load when m = n is
Θ(R1).

I Theorem 3.1 (General version of Theorem 1.1). For any γ ∈ (0, 1/2] and α > 1, we have

Pr
[
X(n)

max <
γR

(γ)
1

4

]
6 n−ω(1) and Pr

[
X(n)

max > 56αR1

]
6 5n−α.

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 7

Proof. We start establishing a lower bound for X(n)
max. Let A be a Poisson random variable

with mean 1. We first consider the Poissonized versions of the local search allocation and
the 1-choice process (recall the definition of these variants from the paragraph preceding
Lemma B.5). For any v ∈ V and any ` > 0, Lemma 2.3 gives that

Pr
[
X(n)
v > `

]
>

`−1∏
r=0

(Pr [A > `− r])|N
r
v | >

`−1∏
r=0

(
e−1(`− r)−`+r

)|Nrv | ,
where Nr

v is the set of vertices at distance r from v. Let B`v =
⋃`
r=0N

r
v . Hence,

Pr
[
X(n)
v > `

]
> exp

(
−|B`v| − `|B`v| log(`)

)
> exp

(
−2`|B`v| log(`)

)
,

where the last step follows for all ` > 2. Given γ > 0, set ` = γR
(γ)
1

4 . Hence, since |Brv | log r
is increasing with r, we have that there exists a set S with |S| = dn 1

2 +γe such that

Pr
[
X(n)
v >

γR
(γ)
1

4

]
> exp

−γR(γ)
1 |B

R
(γ)
1

v | log(R(γ)
1)

2

 > n−γ/2 for all v ∈ S. (3.1)

Let Y = Y (γ) be the random variable defined as the number of vertices v satisfying X(n)
v >

γR
(γ)
1

4 . Let K be the total number of balls allocated in the Poissonized version of the
local search allocation. Note that E [K] = n and by the last statement of Lemma A.4,
Pr [K > 2en] 6 21−2ne. Regard Y as a function of the K independently chosen birthplaces
U1, U2, . . . , UK . Then, for any given K, Y is 1-Lipschitz by Lemma B.3, and (3.1) implies
that

E [Y | K 6 2en] > n
1
2 +γ ·

(
n−γ/2 −Pr [K > 2en]

Pr [K 6 2en]

)
>
n

1
2 + γ

2

2 .

With this, we apply Lemma A.1 to obtain

Pr
[
X(n)

max <
γR

(γ)
1

4

]

6 Pr
[
|Y −E [Y | K 6 2en] | > 1

2E [Y | K 6 2en] | K 6 2en
]

+ Pr [K > 2en]

6 n−ω(1) + 21−2ne = n−ω(1).

This result can then be translated to the non-Poissonized model via Lemma B.5.
Now we establish the upper bound, where we consider the non-Poissonized process. For

any fixed u ∈ V , we have from the second part of Proposition 2.5 (with m = n) that

Pr
[
X(n)
u > 56αR1

]
6 4 exp

(
−28αR1|B28αR1

u |
14 log(28αR1)

)
+ exp

(
−n4

)
6 4 exp

(
−2αR1|BR1

u | logR1
)

+ exp
(
−n4

)
6 5n−2α.

Taking the union bound over u we obtain that

Pr
[
X(n)

max > 56αR1

]
6 5n−2α+1 6 5n−α.

J

8 Balls into bins via local search: cover time and maximum load

Proof of Theorem 1.2. Applying Proposition 2.5 with ` =
(
m
n +R2

)
c for any constant

c > 300∆, we obtain

Pr
[∑

u∈BR2
u

X(m)
u >

(m
n

+R2

)
c · |BR2

u |
]

6 4 exp
(
−
(m
n

+R2

) c|BR2
u |

14 log c
)

+ exp
(
−m4

)
6 4 exp

(
−cR2|BR2

u |
14 log c

)
+ exp

(
−m4

)
,

where BR2
u denotes the set of vertices within distance R2 from u. By setting c > 0 sufficiently

large, the right-hand side above can be made smaller than n−2. If u has load k, then the
number of balls allocated to vertices in BR2

u is at least

R2∑
i=0

(k − i)|N i
u| > (k −R2)|BR2

u |.

Therefore we obtain that, on the event
∑
u∈BR2

u
X

(m)
u 6

(
m
n +R2

)
c|BR2

u |, we have X(m)
u 6

c
(
m
n +R2

)
+R2 6 2c

(
m
n +R2

)
. Taking the union bound over all u completes the proof. J

4 Cover time

The proposition below gives an upper bound for the cover time.
I Proposition 4.1. Let G be a graph with bounded degrees. Then for any α > 1 there exists
a C = C(α) > 0 such that for all m > CR2n we have

Pr
[
X

(m)
min <

m

224n log ∆

]
6 n−α,

where X(m)
min = minv∈V X(m)

v .

Proof. Fix an arbitrary vertex u ∈ V . We will use the concept of weights defined in
Section 2. Define µ(v) = dG(u, v) and W

(m)
v = X

(m)
v + µ(v). Similarly, for the 1-choice

process, define W (m)
v = X

(m)
v + µ(v). Let Y := minv∈V W

(m)
v be the minimum weight of

all vertices in V in the 1-choice process. Let ` = m
28n log ∆ and recall that Bru is the set of

vertices within distance r from u. We have

Pr [Y < `] = Pr
[⋃

v∈B`−1
u

{
W

(m)
v < `

}]
6 |B`u|Pr

[
X

(m)
u < `

]
6 |B`u|Pr

[∣∣∣X(m)
u −E

[
X

(m)
u

] ∣∣∣ > m

n

(
1− 1

28 log ∆

)]
.

Using Lemma A.3, we obtain

Pr [Y < `] 6 |B`u| exp

− m2

n2

(
1− 1

28 log ∆

)2

7m
3n

6 |B`u| exp

(
− 3m

28n

)
6 exp

(
m

28n −
3m
28n

)
6

1
2 ,

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 9

where the last inequality holds since m/n > CR2 = ω(1) for bounded degree graphs. Now
define Z as the sum of the |BR2

u | smallest values of
{
W

(m)
v : v ∈ V

}
and Z as the sum of the

|BR2
u | smallest values of

{
W

(m)
v : v ∈ V

}
. By Lemma 2.2, we can couple W (m) and W (m)

so that, with probability 1, Z > Z. Further,

E
[
Z
]
>
`|BR2

u |
2 .

We now apply Lemma A.2 in order to show that Z is likely to be at least `|BR2
u |
4 . Let

A1, A2, . . . , Am be the martingale adapted to the filtration Fi generated by U1, U2, . . . , Ui;
i.e., Ai = E

[
Z | Fi

]
. Since changing the birthplace of ball i (and keeping all other birth-

places the same) can change Z by at most one (cf. Lemma B.3), we have that

E [Ai −Ai−1 | Fi−1] 6 1.

Now fix i. Let ζu be the value of Ai when Ui = u and let ζ = 1
n

∑
u∈V ζu. Then we have

EUi

[
(Ai −Ai−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
= 1
n

∑
u∈V

(ζu − ζ)2,

where the expectation above is taken with respect to Ui. Since |ζu−ζu′ | 6 1 for all u, u′ ∈ V ,
we can write

1
n

∑
u∈V

(ζu − ζ)2 6
1
n

∑
u∈V
|ζu − ζ| =

1
n

∑
u∈V

∣∣∣∣ ∑
u′∈V

1
n

(ζu − ζu′)
∣∣∣∣ 6 1

n2

∑
u∈V

∑
u′∈V

|ζu − ζu′ | .

Note that, for any realization of U1, U2, . . . , Ui−1, Ui+1, . . . , Um, ζu and ζu′ only differ if
exactly one of u or u′ is among the |BR2

u | smallest loads. Hence,
∑
u∈V

∑
u′∈V |ζu − ζu′ | 6

2|BR2
u |n. Consequently,

EUi

[
(Ai −Ai−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
6

2|BR2
u |
n

.

Now, Lemma A.2 gives

Pr
[
Z <

`|BR2
u |

4

]
6 Pr

[
|Z −E

[
Z
]
| > 1

2E
[
Z
]]

6 exp

− (1
2E
[
Z
])2

4 · |B
R2
u |
n ·m+ 1

6E
[
Z
]
 .

Clearly, E
[
Z
]
6 m|BR2

u |
n , which gives that

Pr
[
Z <

`|BR2
u |

4

]
6 exp

− E
[
Z
]2

16 · |B
R2
u |
n ·m+ 2m|BR2

u |
3n

 6 exp
(
−`

2|BR2
u |/4

17m/n

)
.

Using the value of ` and m, we have

Pr
[
Z <

`|BR2
u |

4

]
6 exp

(
−

m
n |B

R2
u |

68(28 log ∆)2

)
6 exp

(
− CR2|BR2

u |
68(28 log ∆)2

)
6 n

− C
68(28 log ∆)2 .

Due to our coupling which gives Z > Z we conclude that with probability at least 1 −
n
− C

68(28 log ∆)2 there exists a vertex v ∈ BR2
u with W (m)

v > `
4 and thus X(m)

v > `
4 −R2. Then,

by smoothness of the load vector (cf. Lemma B.2), we have that with probability at least

10 Balls into bins via local search: cover time and maximum load

1− n−
C

68(28 log ∆)2 , every vertex in BR2
u has load at least `

4 − 3R2 > m
224n log ∆ , where the last

step follows for all C > 672 log ∆. Then the result follows by taking the union bound over
all u, which gives that with probability at least 1− n−

C
68(28 log ∆)2

+1, all vertices have load at
least m

224n log ∆ . The proof is then completed by setting C large enough with respect to α so
that C

68(28 log ∆)2 − 1 > α. J

We prove a stronger version of Theorem 1.3, which holds also for non-transitive graphs.
For γ ∈ (0, 1/2], let

R
(γ)
2 = R

(γ)
2 (G) = max{r : ∃S ⊆ V with |S| > n

1
2 +γ s.t. r|Bru| < logn for all u ∈ S}.

Note that R(γ)
2 is non-increasing with γ. Also, when G is transitive, we have R2 = R

(γ)
2 + 1

for all γ > 0. The theorem below establishes that, for any bounded-degree graph, if there
exists a γ ∈ (0, 1/2] for which R(γ)

2 = Θ(R2), then the cover time is Θ(R2).

I Theorem 4.2 (General version of Theorem 1.3). For any γ ∈ (0, 1/2] and α > 1, there exists
C = C(α,∆) so that

Pr
[
Tcov <

γR
(γ)
2 n

8∆

]
6 n−ω(1) and Pr [Tcov > CR2n] 6 n−α.

Proof. The second inequality is established by Proposition 4.1. For the first inequality, let
S be a set of n 1

2 +γ vertices u for which R(γ)
2 · BR

(γ)
2

u < logn. Let m = γR
(γ)
2 n

8∆ . We consider
the Poissonized version of the local search allocation and the 1-choice process. We abuse
notation slightly and let X(m)

v and X(m)
v denote the load of v for the Poissonized version of

the local search allocation and 1-choice process, respectively, when the expected number of
balls allocated in total is m. For any u ∈ S, we will bound the probability that X(m)

u = 0.
By the second part of Lemma 2.3, we have that

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈V

{
X

(m)
w 6 dG(u,w)

}]
.

Recall that Nr
u is the set of vertices at distance r from u and B`u =

⋃`
r=0N

r
u. By independ-

ence of the Poissonized model, we can write

Pr
[
X(m)
u = 0

]
> Pr

[⋂
w∈B

R
(γ)
2

u

{
X

(m)
w = 0

}]
Pr
[⋂

i>R
(γ)
2

⋂
w∈Niu

{
X

(m)
w 6 i

}]

> exp

−m|BR(γ)
2

u |
n

(1−
∑

i>R
(γ)
2

∑
w∈Niu

Pr
[
X

(m)
w > i

])

> exp

−m|BR(γ)
2

u |
n

(1− 2
∑

i>R
(γ)
2

∑
w∈Niu

(me
ni

)i)
,

where the last inequality follows by the last statement of Lemma A.4. Using the simple
bound |N i

u| 6 ∆i and the fact that me∆
ni 6 1

2 for all i > R
(γ)
2 (as ∆/R(γ)

2 = o(1) since
∆ = O(1)), we have

Pr
[
X(m)
u = 0

]
> exp

−m|BR(γ)
2

u |
n

1− 4
(
me∆
nR

(γ)
2

)R(γ)
2
 > n−γ/8 · 1

2 .

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 11

Now let Y be the random variable defined as the number of vertices v satisfying X(m)
v = 0.

Let K be the random variable for the total number of balls allocated and regard Y as a
function of the K independently chosen birthplaces U1, U2, . . . , UK . Then, Y is 1-Lipschitz
by Lemma B.3 for any given K. The calculations above give that

E [Y | K 6 2em] > E [Y]− |S|Pr [K < 2em]
Pr [K 6 2em] >

n
1
2 + 7γ

8

2 .

Note that m = O(n logn) for any G. With this, we apply Lemma A.1 and the last statement
of Lemma A.4 to obtain

Pr
[
X

(n)
min = 0

]
6 Pr

[
{|Y −E [Y | K 6 2em] | > 1

2E [Y | K 6 2em]} | {K 6 2em}
]

+ Pr [K > 2em]

6 2 exp
(
−n

1+14γ/8

8(2em)

)
+ 21−2me = n−ω(1).

This result can then be translated to the non-Poissonized process using Lemma B.5 and the
fact that m = γR

(γ)
2 n

4 = O(n logn). J

We now state a stronger version of Theorem 1.4. The proof is deferred to the appendix.
I Theorem 4.3 (General version of Theorem 1.4). Let G be any d-regular graph. Then, for
any α > 1 there exists C = C(α) > 0 such that

Pr
[
Tcov > C ·

(
n
(

1 + logn · log d
d

))]
6 n−α.

5 Remarks and open questions

Blanket time
In analogy with the cover time for random walks, for each δ > 1, we can define the blanket
time as the first time at which the load of each vertex is in the interval (1

δ ·
m
n , δ ·

m
n). It

follows from Theorem 1.2 and Proposition 4.1 that, for bounded-degree transitive graphs,
the blanket time is Θ(nR2) for all large enough δ.

Extreme graphs

Note that for any connected graph G, we have R1(G) 6
√

logn
log logn and R2(G) 6

√
logn.

Thus, the cycle is the graph with the largest possible maximum load (when m = n) and
largest possible cover time among all bounded-degree graphs up to constant factors. Also,
for any graph G with bounded degrees, we have R1(G) and R2(G) of order Ω(log logn).
Thus bounded-degree expanders are the graphs with the smallest maximum load (when
m = n) and smallest cover time among all bounded-degree graphs up to constant factors.

Open questions
1. For any transitive graph (not necessarily of bounded degrees), does it hold that X(n)

max =
Θ(R1) and Tcov = Θ(R2n) with high probability?

2. For any transitive graph (not necessarily of bounded degrees) and any m = ω(nR2), does
it hold that X(m)

max = m
n + Θ(R2) with high probability?

12 Balls into bins via local search: cover time and maximum load

3. For any transitive graph, is the blanket time of order nR2 for all ε ∈ (0, 1)? In particular,
is the blanket time of the same order as the cover time for all transitive graphs?

4. Let G = (V,E) and G′ = (V,E′) be two graphs such that E ⊂ E′. Is the maximum load
on G stochastically dominated by the maximum load on G′ for any m?

References
1 Micah Adler, Eran Halperin, Richard M. Karp, and Vijay V. Vazirani. A stochastic process

on the hypercube with applications to peer-to-peer networks. In Proc. 35th Symp. on Theory
of Computing (STOC), pages 575–584, 2003.

2 N. Alon and J.H. Spencer. The probabilistic method. John Wiley & Sons, 3rd edition, 2008.
3 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM

J. Comput., 29(1):180–200, 1999.
4 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced alloc-

ations: The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.
5 P. Bogdan, T. Sauerwald, A. Stauffer, and H. Sun. Balls into bins via local search. In

Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
16–34, 2013.

6 F. Chung and L. Lu. Concentration inequalities and Martingale inequalities: a survey.
Internet Mathematics, 3:79–127, 2006.

7 Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. Efficient PRAM
simulation on a distributed memory machine. Algorithmica, 16(4/5):517–542, 1996.

8 C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics, 141:148–
188, 1989.

9 M. Mitzenmacher and E. Upfal. Probability and Computing: randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

10 Martin Raab and Angelika Steger. Balls into bins - a simple and tight analysis. In 2nd
International Workshop on Randomization and Computation (RANDOM’98), pages 159–
170, 1998.

11 Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4), 2003.

A Standard technical results

I Lemma A.1 ([8, Lem 1.2]). Let X1, X2, . . . , Xn be independent random variables with Xk

taking values in a set Λk for each k. Suppose that the measurable function f :
∏n
k=1 Λk → R

satisfies for every k that

|f(x)− f(x′)| 6 ck,

whenever the vectors x and x′ differ only in the kth coordinate. Then for any λ > 0,

Pr [|f −E [f] | > λ] 6 2 · exp
(
− 2λ2∑n

k=1 c
2
k

)
.

I Lemma A.2 ([6, Thm 6.1]). Let X0, X1, . . . , Xm be a martingale adapted to the filtration
Fi. Suppose that there exists a fixed positive c for which |Xi−Xi−1| 6 c for all i and there
exists c′ such that E

[
(Xi −Xi−1)2

∣∣Fi−1
]
6 c′ for all i. Then,

Pr [|Xm −X0| > λ] 6 exp
(
− λ2

2c′m+ cλ/3

)
.

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 13

For the special case where X1, . . . , Xm are independent Bernoulli random variables, we
can apply the above lemma to the random variables (Xi − E [Xi])i with c′ = E [X1] and
c = 1 to obtain the inequality below.

I Lemma A.3. Let X1, . . . , Xm be m independent, identically distributed Bernoulli random
variables. Let X :=

∑m
i=1Xi. Then, for any λ > 0,

Pr [|X −E [X] | > λ] 6 exp
(
− λ2

2E [X] + λ/3

)
.

I Lemma A.4 ([2, Theorem A.1.15]). Let X have Poisson distribution. Then for any 0 < ε <

1,

Pr [X 6 (1− ε)E [X]] 6 exp
(
−ε

2E [X]
2

)
.

Also, for any x > 2eE [X], it follows by Stirling’s approximation that

Pr [X > x] 6 2
(

E [X] e
x

)x
.

B Background and notation

In this section we recall some basic properties of the local search allocation that will be
useful in our proofs. We omit the proofs in this section since they can be found in [5].

The lemma below establishes that the load vector obtained by the 1-choice process ma-
jorizes the load vector obtained by the local search allocation. As a consequence, we have
that X(n)

max = O
(

logn
log logn

)
and Tcov = O (n logn) for all G.

I Lemma B.1 (Comparison with 1-choice, [5, Lemma 2.1]). For any fixed k > 0, we can couple
X(k) and X(k) so that, with probability 1, X(k) majorizes X(k). Consequently, we have that,
for all k > 0, X(k)

max stochastically dominates X(k)
max.

For any v ∈ V , let Nv be the set of neighbors of v in G. The next lemma establishes
that the local search allocation always maintains a smoothed load vector in the sense that
the load of any two adjacent vertices differs by at most 1.

I Lemma B.2 (Smoothness, [5, Lemma 2.2]). For any k > 0, any v ∈ V and any u ∈ Nv, we
have that |X(k)

v −X(k)
u | 6 1.

The next lemmas establish that the load vector X(n) satisfies a Lipschitz and monoton-
icity condition.

I Lemma B.3 (Lipschitz property, [5, Lemma 2.5]). Let k > 1 be fixed and u1, u2, . . . , uk ∈ V
be arbitrary. Let (X(k)

v)v∈V be the load of the vertices of G after the local search allocation
places k balls with birthplaces u1, u2, . . . , uk. Let i ∈ {1, 2, . . . , k} be fixed, and let (Y (k)

v)v∈V
be the load of the vertices of G after the local search allocation places k balls with birthplaces
u1, u2, . . . , ui−1, u

′
i, ui+1, ui+2, . . . , uk, where u′i ∈ V is arbitrary. In other words, (Y (k)

v)v∈V
is obtained from (X(k)

v)v∈V by changing the birthplace of the ith ball from ui to u′i. Then,
there exists a coupling such that, with probability 1,∑

v∈V

∣∣∣X(k)
v − Y (k)

v

∣∣∣ 6 2. (B.1)

14 Balls into bins via local search: cover time and maximum load

I Lemma B.4 (Monotonicity, [5, Lemma 2.6]). Let k > 1 be fixed and u1, u2, . . . , uk ∈ V be ar-
bitrary. Let (X(k)

v)v∈V be the load of the vertices after k balls are allocated with birthplaces
u1, u2, . . . , uk. Let i ∈ {1, 2, . . . , k} be fixed, and let (Z(i,k)

v)v∈V be the load of the vertices
of G after k − 1 balls are allocated with birthplaces u1, u2, . . . , ui−1, ui+1, ui+2, . . . , uk. In
other words, Z(i,k)

v is obtained from X
(k)
v by removing ball i. There exists a coupling such

that, with probability 1, ∑
v∈V

∣∣∣X(k)
v − Z(i,k)

v

∣∣∣ = 1.

In many of our proofs we analyze a continuous-time variant where the number of balls
is not fixed, but is given by a Poisson random variable with mean m. Equivalently, in this
variant balls are born at each vertex according to a Poisson process of rate 1/n. We refer
to this as the Poissonized version. We will use the Poissonized versions of both the local
search allocation and the 1-choice process in our proofs. Since the probability that a mean-
m Poisson random variable takes the value m is of order Θ(m−1/2) we obtain the following
relation.

I Lemma B.5. Let A be an event that holds for the Poissonized version of the local search
allocation (respectively, 1-choice process) with probability 1 − ε for some ε ∈ (0, 1). Then,
the probability that A holds for the non-Poissonized version of the local search allocation
(respectively, 1-choice process) is at least 1−O(ε

√
m).

C Proofs omitted from Section 2

Proof of Lemma 2.3. For the first inequality, set µ(w) = dG(v, w) for all w ∈ V . Let A(m)

be the event that all vertices have weight at least ` after m balls are allocated, and let
A(m) be the same event for the 1-choice process. In symbols A(m) = {minu∈V W (m)

u > `}
and A(m) = {minu∈V W

(m)
u > `}. By Lemma 2.2, we have that Pr

[
A(m)] > Pr

[
A(m)].

Clearly, we have A(m) ⊆ {X(m)
v > `}, but the two events are in fact equal since, by the

smoothness of the load vector (cf. Lemma B.2), {X(m)
v > `} implies A(m). The proof is then

complete since A(m) =
⋂
w∈B`v

{
X

(m)
w > `− dG(v, w)

}
.

For the second inequality, set µ(w) = −dG(v, w) for all w ∈ V . Then define B(m)

to be the event that there exists at least one vertex with weight at least ` after m balls
are allocated, and let B(m) be the corresponding event for the 1-choice process. Thus,
B(m) = {maxu∈V W (m)

u > `} and B(m) = {maxu∈V W
(m)
u > `}. Similarly as for the event

A(m), we have that the events {X(m)
v > `} and B(m) are identical. Applying Lemma 2.2 we

obtain that Pr
[
B(m)] 6 Pr

[
B(m)] = Pr

[⋃
w∈V

{
X

(m)
w > `+ dG(v, w)

}]
. J

Proof of Lemma 2.5. For any v ∈ V , let dG(v, S) stand for the distance between v and S
in G; i.e., dG(v, S) = minv′∈S dG(v, v′). Define µ(v) = −dG(v, S) and (cf. (2.3)) W (m)

v =
X

(m)
v + µ(v). Let K(m)

S be the sum of the weights of the |S| vertices with largest weights
after m balls are allocated, and K(m)

S be the corresponding value for the 1-choice process.
Then, ∑

v∈S
X(m)
v =

∑
v∈S

W (m)
v 6 K

(m)
S 6 K

(m)
S ,

where the last step follows by majorization (cf. Lemma 2.2). Let Ŵ (k)
v be the weight of

vertex v for the Poissonized version of the 1-choice process with expected number of balls
equal to k, and K̂(k)

S be the sum of the weights of the |S| vertices with largest weight for this

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 15

Poissonized version. If the Poissonized version with k = 2m allocates at least m balls, then
we can couple the allocations of the first m balls with the allocation in the non-Poissonized
version of the 1-choice process, and it holds that K̂(2m)

S > K
(m)
S . Hence by the first statement

of Lemma A.4 we have that

Pr
[
K̂

(2m)
S > K

(m)
S

]
> 1− exp

(
−m4

)
. (C.1)

From now on, we consider only the Poissonized version. Let K̃(2m) be the sum of the weights
of the vertices with weight at least `/16. More formally, K̃(2m) =

∑
v∈V : Ŵ (2m)

v >`/16 Ŵ
(2m)
v .

Then, we have that, on the event K̂(2m)
S > K

(m)
S ,

∑
v∈S

X(m)
v 6 K̂

(2m)
S 6

`

16 |S|+ K̃(2m).

We can construct the weight of vertices that reach weight `/16 as follows. For each
vertex, let balls arrive according to a rate-1 Poisson point process up to time 2m/n or until
the vertex reaches weight `/16, whatever happens first. Then, if the vertex reaches weight
`/16, continue adding balls for an additional time interval of length 2m/n. This construction
stochastically dominates the weight of the vertices by the memoryless property of Poisson
random variables. The probability that a vertex v with µ(v) = −k reaches weight `/16 is

∞∑
x=`/16+k

e−2m/n(2m/n)x

x! 6
∞∑

x=`/16+k

(
2me
nx

)x
6 2

(
2me

n(`/16 + k)

)`/16+k
,

since 2me
n(`/16+k) 6 1

2 for all k > 0 and x! > (x/e)x for any integer x. Now any Bernoulli
random variable with mean p 6 1/2 is stochastically dominated by a Poisson random variable
with mean 2p, which follows from the fact that e−2p 6 1 − p for 0 6 p 6 1/2. Using this,
and denoting by Nk

S the set of vertices at distance k from S, we have that the number of
vertices reaching weight `/16 is a Poisson random variable of mean

∑
k>0
|Nk

S |4
(

2me
n(`/16 + k)

)`/16+k
6 4|S|

(
32me
n`

)`/16∑
k>0

∆k

(
2me

n(`/16 + k)

)k

6 8|S|
(

32me
n`

)`/16
,

for large enough ` > 300∆m/n. Then the probability that the number of vertices reaching
weight `/16 is larger than 8|S| is at most

∑
k>8|S|

(
8e|S|

(32me
n`

)`/16

k

)k
6 2

(
8e|S|

(32me
n`

)`/16

8|S|

)8|S|

= 2 exp
(
−8|S|

(
`

16 log
(

`n

32me

)
− 1
))

,

since 8e|S|(32me
n`)`/16

8|S| = e
(32me

n`

)`/16
6 1

2 . Using that ` > `n
m > 300∆, we have

`

16 log
(

`n

32me

)
− 1 >

`

80 log
(
`n

m

)
− 1 >

`

96 log
(
`n

m

)
.

16 Balls into bins via local search: cover time and maximum load

Putting the last two equations together, we obtain that

Pr
[
more than 8|S| vertices reach weight `

16

]
6 2 exp

(
−`|S|12 log

(
`n

m

))
. (C.2)

If the event above occurs, then K̃
(2m)
S is stochastically dominated by 8|S| · `16 = `|S|

2 plus
a Poisson random variable of mean 8|S| · 2m

n = 16|S|mn , which is larger than 7`|S|
16 with

probability at most

∞∑
k= 7`|S|

16

(
16e|S|m
nk

)k
6 2

(
16 · 16e|S|m

7n`|S|

) 7`|S|
16

= 2 exp
(
−7`|S|

16 log
(

7`n
256em

))
6 2 exp

(
−7`|S|

96 log
(
`n

m

))
.

(C.3)

Therefore, by summing the right-hand sides of (C.2) and (C.3), with probability at least
4 exp

(
− `|S|14 log

(
`n
m

))
, we have K̃(2m)

S 6 `|S|
2 + 7`|S|

16 6 15`|S|
16 . This and the fact that

K̂
(2m)
S 6 `|S|

16 + K̃
(2m)
S , together with (C.1), establish the first part of the lemma.

The second part of Proposition 2.5 holds by setting S = B`u. If u has load k > `, then
the total number of balls allocated to B`u is at least

∑̀
i=0

(k − i)|N i
u| > (k − `)|B`u|.

Then setting k = 2` and applying the first part of the proposition yields the result. J

D Proof omitted from Section 4

Proof of Theorem 4.3. The result is shown by a coupling with the following stochastic
process, introduced in [1], which we call coupon collector process. Initially, every node of
G is uncovered. Then in each round i, a node Ũi is chosen independently and uniformly
at random. If node Ũi is uncovered, then it becomes covered. Otherwise, if Ũi has any
uncovered neighbor, then a random node among this set becomes covered. For this process,
let us denote by C̃(i) the set of covered nodes after round i. We shall prove that there is a
coupling so that for every round i, C̃(i) ⊆ {v ∈ V : X(i)

v > 1}; in other words, every node
which is covered by the process defined above after round i is also covered by the local search
allocation after the allocation of ball i.

The coupling is shown by induction. Clearly, the claim holds for i = 1. Consider now
the execution of any round i+ 1, assuming that the induction hypothesis holds for round i.
In our coupling, we choose the same node v for Ũi+1 and Ui+1.

In the first case, we assume that v is uncovered in the coupon collector process. Then
the coupon collector process will cover node v in round i+ 1. If v has not been covered by
the local search allocation, then we have X(i)

v = 0 and hence ball i+ 1 will be allocated on
node v in round i+ 1. Otherwise, v has been covered previously. In either case, we conclude
that node v is covered after round i+ 1 in the local search allocation.

For the second case, suppose that v is covered in the coupon collector process. Then
the coupon collector process will try to cover an uncovered neighbor of v if there exists one.
This uncovered neighbor is chosen uniformly at random from all uncovered neighbors of v.

Karl Bringmann, Thomas Sauerwald, Alexandre Stauffer, and He Sun 17

This random experiment can be modelled by first choosing a random ranking of all deg(v)
neighbors and then picking the uncovered neighbor with the highest rank, say node u. In our
coupling, we assume that the local search allocation chooses the same ranking of all deg(v)
neighbors. This, together, with the induction hypothesis, guarantees that if there is node
u which becomes covered by the coupon collector process, then this node u also becomes
covered by the local search allocation if it has not been covered in an earlier round.

Combining the two cases, we have shown that there is a coupling such that C̃(i) ⊆ {v ∈
V : X(i)

v > 1}. Since it was shown for the coupon collector process in [1] that with probability
1 − n−c for some constant c > 0, O(n(1 + logn·log d

d)) rounds suffice to cover all nodes, the
theorem follows. J

	Introduction
	Results

	Key technical argument
	Maximum Load
	Cover time
	Remarks and open questions
	Standard technical results
	Background and notation
	Proofs omitted from Section 2
	Proof omitted from Section 4

