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Abstract 

Multilevel models (MLMs) provide a flexible modelling framework for cost-effectiveness 

analysis (CEA) that use cluster randomised trials. However, there is a lack of guidance on 

how to choose the most appropriate MLMs. This paper illustrates an approach for deciding 

what level of model complexity is warranted; in particular how best to accommodate complex 

variance-covariance structures, right-skewed costs and partially-observed data. Our proposed 

models differ according to whether or not they allow individual-level variances and 

correlations to differ across treatment arms or clusters, and by the assumed cost distribution 

(Normal, Gamma, Inverse Gaussian). The models are fitted by Markov chain Monte Carlo 

methods. Our approach to model choice is based on four main criteria: the characteristics of 

the data, model pre-specification informed by the previous literature, diagnostic plots and 

assessment of model appropriateness. This is illustrated by re-analysing a previous CEA that 

uses data from a cluster randomised trial. We find that the most useful criterion for model 

choice was the deviance information criterion, which distinguished amongst models with 

alternative variance-covariance structures, as well as between those with different cost 

distributions. This strategy for model choice can help CEA provide reliable inferences for 

policy-making when using cluster trials, including those with partially-observed data.  
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1. Introduction   

Policy-makers require cost-effectiveness analyses (CEAs) to help decide which health care 

programmes to prioritise.[1-5] For interventions that operate at a group-level, CEAs 

commonly use data from cluster randomised trials (CRTs). A fundamental issue raised by the 

cluster design is that individuals within a cluster are likely to be more similar in their 

characteristics and the care they receive than those in different clusters. Methods that 

accommodate this clustering are well-established for analysing clinical outcomes; however a 

review of 62 published CEAs that used CRTs found that 37(60%) adopted methods that 

disregarded clustering, which can underestimate statistical uncertainty, but can also provide 

misleading point estimates. [6] 

CEA provide evidence on the relative costs and health outcomes of alternative health care 

interventions. This requires studies to report the effects of alternative treatments on the joint 

distribution of costs and health outcomes, i.e. to estimate the between-treatment differences in 

mean costs and health outcomes, together with their respective variances and covariances [7]. 

To meet this requirement, statistical methods for CEA that use data from cluster trials must 

address specific challenges. They must accommodate clustering in individuals’ costs and 

health outcomes, but also recognise correlation between these variables at both individual and 

cluster levels. [7-10] Statistical methods are also required that make appropriate assumptions 

about the distribution of the outcome variables, recognising that costs tend to be heavily right-

skewed. [11-13] The variance-covariance structure may be complex; that is individual-level 

costs may have variances, and correlations with health outcomes, that differ across clusters, 

because for example of clinical practice variations. [14]  Typically, the requisite data are only 

partially-observed [15], which needs to be handled in the analyses and acknowledged in the 

definition and calculation of measures of model fit.[16]  
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Previous research has proposed alternative multi-level models (MLMs) for CEA, and applied 

them to studies that use data from multicentre and cluster trials ([10, 14, 17, 18]). However, 

within this framework many plausible MLMs can be specified and there is no guidance 

available on model choice, particularly in settings where data are partially-observed. This 

paper focuses on approaches for CEA that use partially-observed data from cluster trials, and 

assumes these data are Missing At Random (MAR).  

The aim of this paper is to propose and illustrate a set of criteria for choosing MLM in CEA 

that use cluster trial data. The criteria proposed are: visual inspection of the data, pre-

specifying models drawing on the previous literature [13, 14, 19-21], diagnostic plots [22], 

and assessment of model appropriateness using the Deviance Information Criterion [23]. We 

exemplify these criteria using a case study typical of CEA that use CRT data [6]. 

The next section gives a brief overview of the case study followed by a proposed strategy for 

choosing amongst MLMs. In Section 3 we introduce models drawing on the previous 

literature. Section 4 applies these alternative models to the case study; we present diagnostic 

plots, assessments of model appropriateness, and CEA results. Section 5 discusses the 

proposed strategy to model choice and suggests some areas for further research.   

2. Features of case study and implications for choice of MLMs  

2.1 Case study overview  

The aim of the Secondary Prevention of Heart disEase in geneRal practicE trial (SPHERE) 

study was to assess the effectiveness and cost-effectiveness of a secondary prevention strategy 

for patients with coronary heart disease (CHD). [24, 25] In SPHERE, 48 General Practices 

(with 903 patients) were randomised to intervention (practices and patients had access to 

tailored care plans) or control (patients received usual care). The main endpoints were health 
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service costs and health-related quality of life (HRQoL) assessed by administering the SF-12 

questionnaire and recorded 18 months post randomisation. HRQoL was converted into a 

utility measure using the SF-6D algorithm [26], and combined with mortality data to report 

quality-adjusted life years (QALYs) over 18 months. The CEA reported incremental QALYs, 

costs and the incremental net monetary benefit, known as the INB. The INB reports the 

relative value for money of alternative health care programmes.[27] The INB is calculated by 

estimating the difference between the treatment alternatives in the mean health outcomes, in 

this case QALYs, valuing this difference by the threshold willingness to pay for a unit of 

health gain λ (€20 000 per QALY in our illustrative analysis), and subtracting from this the 

incremental cost, so: INB= λΔe – Δc; where Δe = e�1 − e�0, and  Δc = c�1 − c�0 are the 

incremental health outcomes and costs for treatment (subscript 1) versus control (subscript 0).  

 In Table 1, to help motivate the subsequent MLMs we report incremental costs, QALYs and 

the INB with two contrasting approaches. Firstly, we report ‘individual level’ incremental 

effects by simply contrasting the means for all individuals within each randomised arm. This 

approach disregards clustering and assumes that each individual’s endpoint is independent, 

and has equal weight; i.e. the endpoints for a cluster with many patients are given higher 

weight than a cluster with few patients. Secondly, we calculate the INB with the summary 

measures of mean costs and QALYs from each cluster. Under this approach, the mean 

endpoints in each cluster have the same weight irrespective of the numbers per cluster. For 

both approaches we estimate the variance of the INB with a standard approach which assumes 

that the central limit theorem applies, and that variances and correlations between costs and 

outcomes are constant [28].  

The alternative ways of weighting the data has little impact on the point estimates of the INB 

which are around   €600 for each approach (Table 1). By contrast, the SEs of the INB are 



6 
 

larger with the summary approach which disregards information at the individual-level versus 

the individual-level approach which assumes each observation is independent, Rather than 

weighting the cluster means equally or according to the numbers per cluster, the subsequent 

MLMs weight the data in each cluster according to the amount of information within versus 

between clusters. The subsequent MLMs differ according to assumptions they make about 

whether or not the individual-level variances and covariances are assumed constant within 

clusters, and according to the assumed distribution of individual-level costs. 

 

TABLE 1 

SPHERE illustrates several potential challenges for CEA that use CRT data, beyond the 

potential clustering of costs and health outcomes. In pragmatic CRTs like SPHERE, the 

treatment protocols tend to accommodate clinical practice variations across clusters. Hence 

resource use and costs may have individual-level variances that differ across clusters.  

Secondly, individual costs and health outcomes tend to be correlated (for example patients 

with lower health status may incur higher costs), and practice variations can result in 

individual-level correlations that differ across clusters (for example, some clusters might 

monitor patients with lower health status more intensively than others). Thirdly, costs tend to 

be heavily right-skewed; in SPHERE a small proportion of patients have lengthy hospital 

stays  at high cost. Complexities, such as cost skewness and complex variation are present in 

CEA of CRT more generally.[6]  

We now examine the features of the SPHERE data most relevant for the choice of MLM 

(Figure 1, Table 1). The cost histograms show typically long right tails in both treatment arms 

(Figure 1). We overlay three alternative distributions (Normal, Gamma and Inverse Gaussian) 
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previously proposed for cost analysis [13, 19-22]; here the Inverse Gaussian appears to fit the 

cost data somewhat better. For QALYs assuming Normality appears reasonable (Figure 1). 

The strength of clustering is commonly reported by the intracluster correlation coefficient 

(ICC) assuming constant within-cluster variation. When individual-level variances differ 

across clusters, the ICC can be uninformative, so  we also report the I2 statistic which was 

originally developed for measuring the degree of inconsistency in studies’ results in a meta-

analysis.[29] It is calculated as I2=100%×(Q-df)/Q, where Q is Cochran’s heterogeneity 

statistic and df the degrees of freedom and they are generally reported in meta analysis by, for 

example, the metaan command in Stata.[30] For each endpoint, the I2 describes the 

percentage of the total variability which is due to heterogeneity, in this case differences in the 

means for each endpoint across clusters, rather than chance.[31]  In SPHERE the I2 is higher 

for costs (85%) than for QALYs (I2=52%).  The standard deviations (SDs) for the individual-

level QALYs were similar across treatment groups and clusters, but differed for the 

individual-level costs (Table 1, Figure 2), and tended to increase with mean costs per cluster 

(Levene’s test of equal variances [32] across all clusters showed evidence of heterogeneity, 

p<0.0001). The correlations between individual costs and QALYs appear to differ across 

clusters (range –0.7 to 0.8) but a forest plot of the Fisher z-transformed correlations [33] 

suggests these differences are compatible with chance, and the heterogeneity across clusters is 

low (I2=0% for control and 27% for treatment clusters). These correlations were calculated 

using cases without missing endpoint data.  

At the cluster-level, the control group mean costs in SPHERE has a higher SD and lower 

correlation with mean QALYs than the treatment group (Table 1). However, SPHERE is 

typical of most CEA that use CRT data in that there is limited information at the cluster level 



8 
 

to assess whether parameters such as the cluster-level SD or correlation between mean costs 

and mean QALYs, differ between treatment groups.  

3. MLMs for the CEA 

SPHERE illustrates complexities that pervade CEA that use CRT more generally, and these 

have implications for the choice of MLM. The mean costs but also the individual-level 

variances can be heterogeneous across clusters. [34] Costs and outcomes tend to be correlated 

at the individual level, and may differ by cluster. Cluster-level variances but also correlations 

between costs and health outcomes may differ by treatment group. Bivariate MLMs for CEA 

of CRT have been previously proposed. [14, 35, 36] In the next stage of the proposed strategy 

we pre-specify a series of MLMs that extend  those previously proposed [14, 35] by allowing 

individual-level correlations to vary across clusters, and cluster-level SDs and correlations to 

differ between treatment groups. We present a flexible modelling framework that recognises 

this complex variance-covariance structure [14], accommodates highly skewed costs, and can 

be applied to CEA with partially observed endpoint data.   

MLMs for handling skewed costs 

Cost data tend to be right skewed, and models that assume Normality can provide inefficient 

estimates of the mean cost. Any approach for addressing cost skewness has to recognise that 

the prime interest is in the treatment’s effect on the arithmetic mean costs (and health 

outcomes). So if the costs are transformed (for example, by log-transformation), they have to 

then be back-transformed appropriately, which is not straightforward when there is 

heteroscedasticity   [22, 37, 38]. While there is no consensus on which distributions should be 

considered for modelling health care costs, it is acknowledged that model specification is 

inherently complex, and the correct parametric specification may well differ according to the 

specific dataset [30].  Our strategy for model choice is informed by recommendations from 
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the literature which encourage the use of Generalised Linear Models (GLMs) as they allow 

for non-Normal distributions but directly report the effect of treatment on mean costs.[13, 19-

22]. Specifically we consider costs to have Gamma and Inverse Gaussian distributions which 

have variances proportional to increasing power of their means, i.e. 𝜇𝜇2 for Gamma and 𝜇𝜇3 for 

Inverse Gaussian, and consider their relative fit and appropriateness for the dataset in question 

[39] There is evidence in SPHERE, and in CEA more generally, that the cost variance is not 

independent of the mean (Figure 2a). By contrast for QALYs, the variance does not appear to 

differ according to the mean in each cluster (Figure 2b).  

3.1 Range of bivariate MLMs 

Each of the following MLMs jointly models costs and health outcomes (e.g. QALYs), 

includes a linear additive treatment effect, and recognises potential heterogeneity in the mean 

costs and outcomes with cluster-specific random effects. The range of models considered 

differs firstly, by choice of cost distribution (Normal versus Gamma versus Inverse Gaussian) 

and secondly, according to the assumed variance-covariance structure. Following the notation 

of Nixon and Thompson [10]  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  and 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 represent costs and health outcomes for the i-th 

individual in the j-th cluster randomised to the k-th treatment arm. Here j defines k as all 

individuals within a cluster receive the same randomised treatment, and for simplicity k takes 

the value 0 or 1 according to whether the cluster is randomised to the control or treatment 

group.   

Now, we introduce, and assume throughout, bivariate Normal cluster random effects 𝑢𝑢𝑗𝑗𝑐𝑐and 

𝑢𝑢𝑗𝑗𝑒𝑒 for cost and health outcomes respectively, 
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 where variances 𝜏𝜏𝑐𝑐𝑐𝑐2 and 𝜏𝜏𝑒𝑒𝑒𝑒2  and correlation 𝜙𝜙𝑘𝑘 may be specific to each treatment arm.  

We build the bivariate model on the expectations  𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐  and 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 of the two outcomes, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  and 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  defined conditionally on the two cluster effects, following the bivariate models 

introduced by Nixon and Thompson [10, 13]   

𝜼𝜼𝒊𝒊𝒊𝒊𝒊𝒊𝒄𝒄 = 𝜷𝜷𝟎𝟎𝒄𝒄 + 𝜷𝜷𝟏𝟏𝒄𝒄𝒕𝒕𝒌𝒌 + 𝒖𝒖𝒋𝒋𝒄𝒄                                                    [1] 

and health outcomes conditional on costs and cluster effects 

𝜼𝜼𝒊𝒊𝒊𝒊𝒊𝒊𝒆𝒆 = 𝜷𝜷𝟎𝟎𝒆𝒆 + 𝜷𝜷𝟏𝟏𝒆𝒆𝒕𝒕𝒌𝒌 + 𝒖𝒖𝒋𝒋𝒆𝒆 + 𝜸𝜸𝒋𝒋�𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊 − 𝜼𝜼𝒊𝒊𝒊𝒊𝒊𝒊𝒄𝒄 �                     [2] 

The mean costs and health outcomes for the control group are represented by 𝛽𝛽0𝑐𝑐 and 𝛽𝛽0𝑒𝑒, and 

the incremental costs and health outcomes of the randomised treatment by 𝛽𝛽1𝑐𝑐 and 𝛽𝛽1𝑒𝑒 , and the 

individual-level correlation is represented by the regression coefficient, 𝛾𝛾𝑗𝑗. 

3.1.1 Alternative cost distributions 

Throughout, we assume that  𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 |𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ~Normal(𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 ,𝜎𝜎𝑒𝑒𝑒𝑒2 ), while for 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  we consider three 

possible distributions from the exponential family: Normal, Gamma and Inverse Gaussian.  

We begin by assuming that costs follow a Normal distribution, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ~Normal(𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 ,𝜎𝜎𝑐𝑐𝑐𝑐2 ) and 

so, that individual-level residuals, 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐  and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 , are drawn from a bivariate Normal 

distribution (BVN) with variances 𝜎𝜎𝑐𝑐𝑐𝑐2  and 𝜎𝜎𝑒𝑒𝑒𝑒2  and correlation 𝜌𝜌𝑗𝑗  , all of which may differ 

across clusters. For these models, 𝛾𝛾𝑗𝑗 = 𝜌𝜌𝑗𝑗
𝜎𝜎𝑒𝑒𝑒𝑒
𝜎𝜎𝑐𝑐𝑐𝑐

.   

The Gamma distribution is parameterised here in terms of a rate (rijk) and a dispersion 

parameter, shape (sj), as follows: 

 𝑓𝑓(𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖|𝑠𝑠𝑗𝑗, 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 ) = 1
Γ(𝑠𝑠𝑗𝑗)

� 𝑠𝑠𝑗𝑗
𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐 �

𝑠𝑠𝑗𝑗
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠𝑗𝑗−1)exp �− 𝑠𝑠𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐 �, 
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where 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 > 0; 𝑠𝑠𝑗𝑗 > 0, 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 > 0. The mean is  𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐  = 𝑠𝑠𝑗𝑗 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖⁄ , and the variance = 𝑠𝑠𝑗𝑗 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖2⁄ . So we 

write  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ~Gamma(𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑗𝑗).  

Finally, the Inverse Gaussian distribution has been proposed for modelling highly skewed 

costs.[22, 40] When, 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ~IG�𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐 , 𝑠𝑠𝑗𝑗�,  parameterised by its mean, 𝜂𝜂, and shape s, parameters,  

where 𝜂𝜂 >0 and s>0 (with consequent variance 𝜂𝜂3/s).  

As before, these parameters (𝑠𝑠𝑗𝑗 , 𝛾𝛾𝑗𝑗) may differ across clusters in the more complex models we 

consider. 

3.1.2 Alternative Variance-covariance matrices 

The  MLMs considered here allow for different forms of complexity in the variance-

covariance matrix. The differences across the MLMs are according to whether we allow for 

differences between randomised treatment groups and clusters in: the individual-level 

variances (BVN models) or the corresponding shape parameter 𝑠𝑠𝑗𝑗  (Gamma and Inverse 

Gaussian models), and in the regression parameter between cost and health outcome, 𝛾𝛾𝑗𝑗. The 

MLMs also differ in whether or not the cluster-level variances 𝜏𝜏𝑐𝑐𝑐𝑐2  and 𝜏𝜏𝑒𝑒𝑒𝑒2  and correlation 𝜙𝜙𝑘𝑘   

are allowed to differ by treatment group.  

TABLE 2 

The simplest bivariate Normal model (1), assumes that all variances and correlations are 

constant across clusters, denoted by omitting the j and k subscripts from the variance-

covariance matrices (Table 2).  Models 2a-c allow the individual-level variances to differ first 

by treatment (2a), then by cluster using either different fixed (2b) (FEs) or random (2c) (REs) 

effects. The FE specification assumes that the individual-level variances are different and 

independent from one another, whereas under REs the individual-level variances are assumed 



12 
 

exchangeable, i.e. drawn from some common distribution.  In many CRTs there are some 

clusters with few patients and here cluster-specific variance estimates can be imprecise. By 

using REs to model individual-level variances (and later correlations) we “borrow strength” 

from the larger clusters to estimate the variances (and correlations) of the smaller clusters.[41]   

Models 3a-c allow individual-level correlations to differ first by treatment (3a), then by 

cluster using FEs (3b) or REs (3c). In Model 3c the individual-level correlation, 𝜌𝜌𝑗𝑗, is 

transformed into 𝑧𝑧𝑗𝑗 using Fisher’s z transformation [33]; 𝑧𝑧𝑗𝑗 is modelled by REs with 𝑧𝑧𝑗𝑗 ~ 

N(𝜇𝜇𝑧𝑧,𝜎𝜎𝑧𝑧2). Models 4a-c extend models 3a-c in allowing cluster-level variances and 

correlations to differ by treatment group.  

The analogous bivariate MLMs that assume costs follow a Gamma or Inverse Gaussian 

distribution allow the shape to differ either by treatment (k) or cluster (j) [13, 14].  For these 

models, we specified constant variances for health outcomes 𝜎𝜎𝑒𝑒𝑒𝑒2 , but allowed the  regression 

parameter, 𝛾𝛾𝑗𝑗, to vary by treatment (k) or cluster (j).   

3.2 Model implementation  

We applied each of the BVN models described in Table 2, and the analogous Gamma-Normal 

and Inverse Gaussian-Normal models to estimate incremental QALYs, costs and INBs in the 

SPHERE case study. When fitting the models we used rescaled costs (raw costs were divided 

by a value 4500). The mean (SD) of the scaled costs is 1.045 (1.209). The rescaling improved 

the stability of the MCMC estimation. Each model was fitted in WinBUGS by Markov chain 

Monte Carlo (MCMC) methods[42], with three chains, each with a burn-in of 5 000 iterations 

followed by 10 000 iterations. Convergence was assessed by visual inspection of the mixing 

of the chains and the Gelman-Rubin statistics.[43] The Inverse Gaussian is not a standard 
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distribution in WinBUGS, so we used a Bernoulli distribution with success rate 𝜋𝜋𝑖𝑖 = 𝑒𝑒𝑙𝑙𝑖𝑖, 

where  𝑙𝑙𝑖𝑖  is the IG log-likelihood . [44]   

We assumed vague priors throughout. Wide Normal priors, N(0,106), were assumed for the 

mean  QALYs, vague Gamma (0.01,0.01) for mean costs, wide Uniform priors for the SDs of 

the logarithms of individual QALYs, and for SDs of the individual costs (BVN models), i.e. 

 𝜎𝜎𝑒𝑒𝑒𝑒~ U(-10,5), and when   𝜎𝜎𝑐𝑐𝑐𝑐~ U(-10,10) for costs. We also assumed wide uniform priors for 

the cluster-level SDs, i.e. 𝜏𝜏𝑒𝑒𝑒𝑒 ~U(0,10) for QALYs,  𝜏𝜏𝑐𝑐𝑐𝑐~ U(0,100) for costs [45], and U(-1,1) 

for the individual-level correlations 𝜌𝜌𝑗𝑗 (BVN models), and throughout for the cluster-level 

correlations, 𝜙𝜙𝑘𝑘.  

In the models that used REs for modelling the individual-level SDs (i.e. 2c, 3c and 4c), we 

assumed  log(𝜎𝜎𝑐𝑐𝑐𝑐) ~ N(𝜇𝜇𝜎𝜎𝑐𝑐 ,𝜎𝜎𝑐𝑐𝑐𝑐2 ) with priors 𝜇𝜇𝜎𝜎𝑐𝑐  ~ N(0,10) and  𝜎𝜎𝑐𝑐𝑐𝑐~ U(0,10). For those that 

used REs for individual-level Fisher’s z transformed correlations (i.e. 3c and 4c), 𝑧𝑧𝑗𝑗 ~ 

N(𝜇𝜇𝑧𝑧,𝜎𝜎𝑧𝑧2), we used priors 𝜇𝜇𝑧𝑧 ~ N(0,106) and 𝜎𝜎𝑧𝑧 ~ U(0,1). In Model 2c, the logarithms of the 

individual-level SDs were assumed to be Normally distributed, where log(𝜎𝜎𝑐𝑐𝑐𝑐) ~ N(𝜇𝜇𝜎𝜎𝑐𝑐 ,𝜎𝜎𝑐𝑐𝑐𝑐2 ) 

and log(𝜎𝜎𝑒𝑒𝑒𝑒) ~ N(𝜇𝜇𝜎𝜎𝑒𝑒 ,𝜎𝜎𝑒𝑒𝑒𝑒2 ); the log scale is used to avoid negative variances.  

For the Gamma-Normal models, we assumed wide Uniform priors, U(0,10), for the shape 

parameters, sj, and wide Normal N(0,106) for the regression parameters, γ j,  when modelled 

by FEs. When modelled by REs we assumed log(sj) ~ N(𝜇𝜇𝑠𝑠,𝜎𝜎𝑠𝑠2) with priors 𝜇𝜇𝑠𝑠 ~ N(0,104), 𝜎𝜎𝑠𝑠 

~  U(0,10); and 𝛾𝛾𝑗𝑗~ N(𝜇𝜇𝛾𝛾,𝜎𝜎𝛾𝛾2) with priors 𝜇𝜇𝛾𝛾 ~ N(0,106) and 𝜎𝜎𝛾𝛾~ U(0,100). For the Inverse 

Gaussian-Normal models the same priors were used for the regression and shape parameters 

but the shape was constrained to be >1.  
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4. Model comparison  

4.1 Diagnostic plots  

To inform the choice of distributions for the endpoints [33, 39] we considered normal plots of 

deviance residuals as a tool for assessing model fit. We used the posterior mean of the ijk-th 

deviance residual as an estimate of the deviance residual for the corresponding individual.  

The deviance residual Δ𝑡𝑡 was defined as the signed square root of the individual contribution, 

dt, to the total deviance D. Δ𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑡𝑡)�𝑑𝑑𝑡𝑡, where 𝑦𝑦𝑡𝑡 is the observed, and 𝜇𝜇𝑡𝑡 the 

expected value for individual t, so that ∑ Δ𝑡𝑡
2 = 𝐷𝐷𝑡𝑡 . 

With 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐  defined as in  equation [1], the deviance residuals for the three distributions 

considered for costs, cijk, were then given as:  

Normal: Δ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜂𝜂ijkc  

Gamma: Δ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜂𝜂ijkc )�− log �𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖
𝜂𝜂ijk
c � + (𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜂𝜂ijkc )/𝜂𝜂ijkc  

Inverse Gaussian: Δ𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜂𝜂ijkc �/(𝜂𝜂ijkc �𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖) 

For models that fit the data well, the deviance residuals should approximate a Normal 

distribution and lie along the line of identity in the normal plots. [22] For each chosen cost 

distribution, the plots of the residual deviances do not reveal noticeable differences across the 

models with increasingly complex variance structure as shown by the three illustrative plots 

for each cost distribution in Figure 3. However, when costs are assumed to follow a Gamma 

rather than a Normal distribution, the residual plots suggest some improvement in model fit; 

with further, albeit marginal gains when using an Inverse Gaussian distribution.  
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4.2 Model appropriateness 

Overall model fit and appropriateness can be summarised by measures such as the mean 

deviance and the deviance information criterion (DIC). The advantage of the DIC is that it 

reflects predictive accuracy by penalising models which have a greater effective number of 

parameters [23], and it is useful for comparing the fit of non-nested models. The DIC is 

calculated as DIC = D(𝜃̅𝜃) + 2pD , where D(𝜃̅𝜃) is the deviance evaluated at the posterior means 

of the parameters being estimated, and pD  is the effective number of parameters. The model 

with the lowest DIC may then be judged the ‘most appropriate’, although models with DIC 

within 5 units also warrant consideration [46].  Other related measures include the Akaike 

Information Criterion (AIC) [47] and Bayesian Information Criterion (BIC) [48, 49], but both 

require the number of model parameters to be known which is problematic for random effects 

models.  

The DIC is constructed using the likelihood of the parameters given the data, and has been 

extended to the missing data setting [16, 50, 51]. In the SPHERE example, the data are  

partially-observed , so we use here the appropriate extension of the DIC, based on the 

observed data likelihood 𝐿𝐿(𝜽𝜽|𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐),  under ignorability of the missing data [51], but 

conditional on the cluster. This means that the inferential focus is the cluster, and this is the 

DIC typically implemented for hierarchical models in WinBUGS. In the context of the 

missing data setting (DIC7 in [16]), we have: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐶𝐶 =  𝐷𝐷(𝜽𝜽,�  𝒖𝒖�𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐) +  2𝑝𝑝𝐷𝐷 
                            2𝐷𝐷(𝜽𝜽,𝒖𝒖|𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)���������������� − 𝐷𝐷(𝜽𝜽,𝒖𝒖������𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)

                                    −4𝐸𝐸{𝑙𝑙(𝜽𝜽,𝒖𝒖|𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)} + 2𝑙𝑙(𝜽𝜽,𝒖𝒖������𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)
 

Where the cluster random effect 𝒖𝒖  is considered as an extra parameter to be estimated, 
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 𝐷𝐷(𝜽𝜽,𝒖𝒖|𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)���������������� = − 2Eθ[log f(𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐 |u, θ) | 𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐]  and 𝑝𝑝𝐷𝐷 denotes the number of effective 

parameters, defined as 𝑝𝑝𝐷𝐷 = 𝐷𝐷(𝜽𝜽,𝒖𝒖|𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐)���������������� − (𝜽𝜽,𝒖𝒖������𝒚𝒚𝒐𝒐𝒐𝒐𝒐𝒐).  This requires computation of the 

observed data likelihood for our bivariate models with random effects, which cannot be 

calculated automatically by WinBUGS. In particular, for those models assuming Gamma or 

IG distributions, the marginal distribution of the health outcomes does not have a known 

closed form, and we use Monte Carlo integration to calculate the corresponding likelihood 

and the DICC. The intuitive reason for the need to calculate the DIC for a specific model using 

the observed data alone, rather than using the observed data and current Bayesian draw of the 

missing data, is that model fit should only be assessed with respect to the observed data. 

We report the DICC, the deviance (at the posterior mean 𝜽𝜽�,  called the plug-in deviance), and 

the effective number of parameters  across the MLMs under comparison. 

As Table 3 shows, the MLMs that assumed an Inverse Gaussian distribution for individual 

costs gave substantially lower deviances and DICs, and were judged more appropriate than 

any of the bivariate Normal or Gamma-Normal models (Table 3). Within each assumed cost 

distribution, the simplest MLM that assumed constant variances and correlations gave the 

highest DIC; moving to MLMs with more complex variance-covariance structures generally 

improved model fit and appropriateness; these gains were relatively large for the bivariate 

Normal models (Table 3).  The models with the lowest DIC were the Inverse Gaussian-

Normal models that allowed individual-level shape and regression parameters to differ by 

cluster using REs (Models 3c and 4c). Under such circumstances, the results from both 

models should be reported.  

Analogous models (3b and 4b) that allowed the shape and regression parameters to differ by 

fixed effects gave lower residual deviances, but these models required many more parameters 

to be fitted and hence gave higher DICs.   
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TABLE 3 

4.3. Cost-effectiveness results  

The cost-effectiveness results across all the models considered reported that the intervention 

had positive point estimates of the INB, with 95% credible intervals that included zero 

(Figure 4). For the Inverse Gaussian-Normal models, the mean (95% credible intervals) were 

similar across the MLMs with different variance-covariance matrices (Figure 4). Within the 

alternative bivariate Normal models, there were more differences in both the point estimates 

and width of the credible intervals, versus the more appropriate Gamma-Normal and Inverse 

Gaussian-Normal models. In particular, the bivariate Normal models 2b-c and 3b-c gave 

much narrower credible intervals than their better fitting Inverse Gaussian and Gamma 

counterparts (Figure 4). The two Inverse Gaussian-Normal models with the lowest DIC 

(models 3c and 4c) reported similar INB of around €600 (95% credible intervals from around 

-500 to 1600). Some of the  Inverse Gaussian-Normal models, which considered a simpler 

variance-covariance structure gave somewhat different INB, for example the simplest Inverse 

Gaussian-Normal model (1) reported an INB of approximately  €400 (95% credible Interval 

from -1200 to 1800).    

5. Discussion  

This paper extends previous research on statistical methods for CEA (Willan et al, 2004; 

Nixon and Thompson 2005; Bachmann et al, 2007; Grieve et al, 2010; Gomes et al, 2012), by 

providing an approach for choosing amongst MLMs for CEA that use cluster trials. Such 

studies tend to have complex data structures, and current CEA methods guidance does not 

offer advice for choosing amongst a range of models .[14] This paper encourages future 

studies to take a systematic approach to model choice in considering a range of alternative 

model specifications to address issues such as: missing data,  cost skewness, and between-
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setting differences in the variances of individual costs. Our paper therefore addresses an 

important gap in the literature by providing a strategy for model choice with four 

complementary strands: a) data description, b) pre-specification of MLMs drawing on the 

literature, c) diagnostic plots, and d) assessment of model fit and appropriateness for partially-

observed data. To help future CEA that use cluster trial data chose between MLMs, we 

provide exemplar WinBUGS code for calculating the DIC in typical settings, i.e. when cost or 

health outcome data are partially-observed, and the cost data are non-Normally distributed 

[http://www.lshtm.ac.uk/php/hsrp/ceathatuseclustertrials/index.html: code to add, pre re-

submission].  

This approach to model choice was illustrated by re-analysis of a representative case study.[6] 

In particular, the cost data were right-skewed, and clinical practice variations appeared to lead 

to individual cost variances that differed across clusters. In these circumstances many 

alternative MLMs warrant consideration and can be fitted by MCMC in WinBUGS or 

OpenBUGs, which has now implemented the inverse Gaussian distribution.  The data 

description encouraged the specification of MLMs that allowed individual costs to have non-

Normal distributions with variances that differed by cluster, but assumed that health outcomes 

were Normally distributed. SPHERE, like many CRTs, [6] has moderate numbers of clusters 

and so little information was available on cluster-level parameters such as the correlation 

between mean costs and health outcomes. Hence, a careful description of the salient features 

of the data appears a necessary but insufficient criterion for model choice. 

We followed recommendations for handling right-skewed cost data, and considered the GLM 

family of models, such as those that assume a Gamma or Inverse Gaussian distribution 

[22],These can accommodate common mean-variance relationships, allow the choice of a 

range of link and variance functions. While in this case study, it was plausible to assume that 
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treatment had an additive effect on mean costs and health outcomes, if a priori reasoning and 

the data description suggest treatment has a multiplicative effect then a GLM with a log-link 

could be chosen instead.[18]  In principle the proposed approach, of using residual plots and a 

measure of model appropriateness such as the DIC, can also inform the choice of link 

function.  

In our case study we found that plots of individual-level residuals can help in choosing 

amongst MLMs that make different distributional assumptions: the MLMs that assumed costs 

were from Inverse Gaussian distributions appeared to fit the data relatively well. However, 

these residual plots were less useful for differentiating between models with different 

variance-covariance matrices. Alternative diagnostic tools such as Bayesian p-values could 

also be considered, but they require simulations from the posterior distribution which is not 

straightforward for distributions beyond those available by default in the modelling software, 

WinBUGS.  

Of the criteria considered, we found that the DIC was the most useful overall for choosing 

amongst the plausible MLMs; it differentiated between cost distributions but also amongst 

models with alternative variance-covariance structures. Other ways of comparing models 

include Bayes factors [52] and cross-validation.[53, 54]  In line with standard practice in 

WinBUGS, the DIC we have reported here is calculated conditional on the cluster level 

random effects. Marginalising over these (away from the tractable BVN models) involves 

extremely time-consuming double numerical integration.  

Our approach to model choice is not necessarily intended to lead the analyst to a single MLM. 

Indeed in this case study at least two models warranted careful consideration (Inverse 

Gaussian-Normal models 3c and 4c). While in this example plausible models yielded similar 

cost-effectiveness estimates, more generally in CEA, models with similar fit can yield 
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radically different inferences.[13] A formal and objective way to synthesise the results from 

alternative models, while accounting for the uncertainty around model choice, is to employ 

Bayesian model averaging.[55]  

In CEA previous methodological studies have encouraged analysts to fit models by MCMC 

estimation, in WinBUGS, because this offers a wide choice of distributions.[10, 14, 56]  This 

raises the potential concern that results can be sensitive to the choice of prior distributions 

particularly for cluster-level parameters such as the random effects.[57]  For all model 

parameters we aimed to choose vague priors such as wide Normal, Uniform or Gamma 

distributions. However, there is no universally accepted standard for vague priors, and 

analysts are encouraged to explore the sensitivity of results to alternative choices of prior 

distributions.[58] In the SPHERE example, we found that the estimates of the INB were very 

similar when we chose alternative prior distributions. 

This paper has some limitations. Firstly the residual plots suggested there was scope for 

improvement in the fit of the models to the cost data. Secondly, the approach presented was 

illustrated for a single dataset. Other CEA of CRT may present further challenges; for 

example they may require covariate adjustment, health outcomes may be binary rather than 

continuous, and may take the form of repeated measures over time. Thirdly, in common with 

previous studies the approach did not consider whether it was plausible to assume that cluster-

level residuals were Normally distributed.[14, 35]  In CEA, the major interest is in the 

incremental cost-effectiveness, and such fixed parameter estimates have been shown to be 

generally robust to misspecification of the distribution of random effects.[59]  Nonetheless, 

our models could be expanded to consider non-Normal distributions for the random effects.  

The approach presented to model choice for CEA that use CRT data opens up areas for 

further research.  Firstly, the approach to model choice could consider a broader range of 
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alternative handling skewed costs. These include flexible parametric approaches such as beta-

type size distributions that can model cost skewness and heterogeneity as a function of 

covariates (see Jones et al 2012 for a review), and common alternatives to the GLMs 

considered, such as the lognormal distribution. Secondly, this paper focuses on CEA that use 

data from cluster trials, but approaches to model choice are also required for other study 

designs such as CEA that use multicentre or multinational RCTs.[17, 18]  Thirdly, the 

proposed approach to model choice could be expanded to the context where data are assumed 

Missing Not at Random. Here, the use and interpretation of measures of model 

appropriateness such as DIC raise challenges which are currently unresolved [50]. 
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Table 1. Descriptive statistics for the SPHERE case study. Crude means, SDs, 
correlations (at individual and cluster level), incremental costs, QALYs and net benefits. 
Incremental effects are reported by taking means at the individual-level ignoring 
clustering and from cluster-level summary statistics.  

 Control Treatment Overall 

    

Number Individuals (n) 

Clusters 

455 

24 

437 

24 

892 

48 

Mean (SD) cost [€] 5 066 (5 966) 
 

 4 324 (4 810) 
 

4 704 (5 442) 
 

Mean (SD) QALY 1.020  (0.121) 1.014 (0.141) 1.017 (0.131) 

SD of mean costs across 
clusters 

1 365 1 317 1 363  

SD of mean QALYs 
across clusters 

0.032 0.043 0.037 

ICC costs (SD) <0.001  (0.021) 0.014     (0.021)   0.007     (0.013)   

ICC QALYs (SD) 
<0.001   (0.024) 0.005    (0.026) <0.001  (0.017) 

Correlation (individual 
costs and QALYs)I   

-0.04 -0.04 -0.04 

 Correlations (cluster 
mean costs and QALYs)  

-0.34 -0.08 -0.18 

 

Cost-effectiveness results 

 Individual-level Cluster-level  

    

Incremental costs -742 -619  

Incremental QALYs -0.0058 -0.0031  

INB (SE)II 626 

 (409) II 

 556  

(580)II 

 

Notes: I: Correlations estimated from cases without missing endpoints. II: INB = λ × incremental QALY – 
incremental cost where λ is the willingness to pay threshold of €20 000 per QALY. II. Standard error of INB is 
as defined in Nixon et al (2010) and uses all available data. [28]  
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Table 2. Specification of the bivariate Normal MLMs according to assumptions made 
for costs and health outcomes about the individual- and cluster-level variances and 
correlations 

Model 𝝈𝝈𝒄𝒄𝒄𝒄𝟐𝟐  𝝈𝝈𝒆𝒆𝒆𝒆𝟐𝟐  𝝆𝝆 𝝉𝝉𝒄𝒄𝒄𝒄𝟐𝟐  𝝉𝝉𝒆𝒆𝒆𝒆𝟐𝟐  𝝓𝝓𝒌𝒌 

Group Number 

Basic 1 𝜎𝜎𝑐𝑐2 𝜎𝜎𝑒𝑒2 𝜌𝜌 𝜏𝜏𝑐𝑐2 𝜏𝜏𝑒𝑒2 𝜙𝜙 

+ Individual-level 

variances differ 

2a 𝜎𝜎𝑐𝑐𝑐𝑐2  𝜎𝜎𝑒𝑒𝑒𝑒2      

2b fixed 𝜎𝜎𝑐𝑐𝑐𝑐2  fixed 𝜎𝜎𝑒𝑒𝑒𝑒2      

2c random 𝜎𝜎𝑐𝑐𝑐𝑐2  random 𝜎𝜎𝑒𝑒𝑒𝑒2      

+ Individual-level 

correlations differ 

3a 𝜎𝜎𝑐𝑐𝑐𝑐2  𝜎𝜎𝑒𝑒𝑒𝑒2  𝜌𝜌𝑘𝑘    

3b fixed 𝜎𝜎𝑐𝑐𝑐𝑐2   fixed 𝜎𝜎𝑒𝑒𝑒𝑒2  fixed 𝜌𝜌𝑗𝑗    

3c random 𝜎𝜎𝑐𝑐𝑐𝑐2  random 𝜎𝜎𝑒𝑒𝑒𝑒2  random 𝜌𝜌𝑗𝑗    

+ Cluster-level 

variances and 

correlations differ 

4a 𝜎𝜎𝑐𝑐𝑐𝑐2  𝜎𝜎𝑒𝑒𝑒𝑒2  𝜌𝜌𝑘𝑘 𝜏𝜏𝑐𝑐𝑐𝑐2  𝜏𝜏𝑒𝑒𝑒𝑒2  𝜙𝜙𝑘𝑘 

4b fixed 𝜎𝜎𝑐𝑐𝑐𝑐2  fixed 𝜎𝜎𝑒𝑒𝑒𝑒2  fixed 𝜌𝜌𝑗𝑗    

4c random 𝜎𝜎𝑐𝑐𝑐𝑐2   random 𝜎𝜎𝑒𝑒𝑒𝑒2  random 𝜌𝜌𝑗𝑗    

Note:  = same as the cell above; k refers to randomised treatment; j refers to cluster 
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Table 3. Model fit and appropriateness (deviances at posterior parameter means, effective numbers of parameters and DICs) 
Model 

bivariate Normal Gamma-Normal 

Inverse Gaussian-

Normal 

GroupII Number D(𝜽𝜽�) 𝐩𝐩𝐃𝐃 DIC D(𝜽𝜽�) 𝐩𝐩𝐃𝐃 DIC D(𝜽𝜽�) 𝐩𝐩𝐃𝐃 DIC 

Basic 1 2015.09 20.68 2033.82 811.15 39.61 890.37 369.95 33.77 437.49 

Varying 

individual-level 

variances 

2a 1989.93 21.59 2033.12 791.89 41.23 874.35 414.71 81.34 577.40 

2b 1153.95 116.73 1387.40 590.30 84.43 759.16 245.46 70.63 386.71 

2c 1167.41 103.86 1375.12 567.88 87.33 742.54 231.13 89.92 410.96 

Varying 

individual-level 

correlations 

3a 1987.40 23.39 2034.18 770.45 42.90 856.26 324.01 51.21 426.44 

3b 1148.01 128.57 1405.15 407.65 132.69 673.03 96.38 136.94 370.25 

3c 1156.92 108.44 1373.81 456.49 113.84 684.18 159.26 93.76 346.78 

Varying cluster-

level variances 

and correlations 

4a 1980.05 28.46 2036.97 769.92 45.66 861.23 260.86 116.16 493.18 

4b 1138.35 132.91 1404.17 423.59 122.14 667.87 94.91 131.14 357.19 

4c 1147.63 112.81 1373.25 464.50 105.29 675.07 159.38 95.18 349.74 

Notes: I. D(𝜃̅𝜃) = deviance evaluated at posterior mean of parameters; pD = effective number of parameters; DIC = deviance information criterion  
II. Variance and correlation are substituted by shape, s, and regression, γ, parameters for the non-Normal models.  
The DICs in bold correspond are the smallest, and therefore represent best fit for the data. 
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Figure 1. SPHERE case study: individual QALYs and costs, with fitted densities of 
Normal, Gamma and Inverse Gaussian distributions, by treatment arm (values in plots 
are log-likelihoods)  
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Figure 2. SPHERE case study endpoints (all patients, n=892) 

a) Mean costs ± 1 SD by cluster and treatment arm 

 

b) Mean QALYs ± 1 SD by cluster and treatment arm 

 

 

 

 

Note: Clusters are ordered by their means.  
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Figure 3.  Normal plots of deviance residuals for costs from a subset of bivariate MLMs 
assuming that costs have Normal, Gamma and Inverse Gaussian distributions, and 
QALYs have Normal distributions (95% credible intervals in grey shade).  

 

Note: Model 1 assumes constant variances and correlations, Model 3c allows individual variances 
(shapes) and correlations (regression parameters) that differ by cluster with random effects, and Model 
4c extends 3c by allowing cluster level variances (shapes) and correlations (regression parameters) that 
differ by treatment group    
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Figure 4. SPHERE cost-effectiveness results according to MLMs that assume different 
cost distributions and levels of complexity in their variance-covariance matrices. Results 
are reported as mean INB (95% credible intervals).  

 

Notes:  
I. N-N: bivariate Normal; G-N: Gamma-Normal; IG-N: Inverse Gaussian-Normal  
II. INBs estimated at the willingness to pay threshold value of €20 000 per QALY   
 


