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Abstract—In this paper we analyse molecular communications
(MC) in a proposed artificial synapse (AS), whose main difference
from biological synapses (BSs) is that it is closed, i.e., transmitter
molecules cannot diffuse out from AS. Such a setup has both
advantages and disadvantages. Besides higher structural stability,
being closed, AS never runs out of transmitters. Thus, MC in AS
is disconnected from outer environment, which is very desirable
for possible intra-body applications. On the other hand, clearance
of transmitters from AS has to be achieved by transporter
molecules on the presynaptic membrane of AS. Except from
these differences, rest of AS content is taken to be similar to
that of a glutamatergic BS. Furthermore, in place of commonly
used Monte Carlo based random walk experiments, we derive
a deterministic algorithm that attacks for expected values of
desired parameters such as evolution of receptor states. To assess
validity of our algorithm we compare its results with average
results of an ensemble of Monte Carlo experiments, which shows
near exact match. Moreover, our approach requires significantly
less amount of computation compared to Monte Carlo approach,
making it useful for parameter space exploration necessary for
optimisation in design of possible MC devices, including but not
limited to AS. Results of our algorithm are presented in case
of single quantal release only, and they support that MC in
closed AS with elevated uptake has similar properties to that
in BS. In particular, similar to glutamatergic BSs, the quantal
size and density of receptors are found to be main sources
of synaptic plasticity. On the other hand, the proposed model
of AS is found to have slower decaying transients of receptor
states compared to BSs, especially desensitised ones, which is
due prolonged clearance of transmitters from AS.

Index Terms—Neuro-spike communication, Synaptic Channel,
Diffusion, Receptor Binding, Synaptic variability

I. INTRODUCTION

Nature, the greatest engineer of all, uses molecules to create
the most complex integrated systems. Deciphering its language
necessarily requires the understanding of principles of MC in
such integrated systems [1]. As our understanding of these
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Fig. 1: AS is divided into two main parts, namely the neurotrans-
mitter pool and the artificial synaptic cleft. Upon arriving impulse
neurotransmitters are into synaptic cleft. As AS is bounded by walls,
transmitters can’t diffuse out and transporter molecules are only
mechanism to clear AS from transmitters.

systems grows, so does our urge to manipulate and control
them. Latter requires the ability to communicate with such
systems, which implies that we need to design networks of
nano-scale machines, i.e., nanomachines, capable of carrying
out reliable MC with the constituents of these systems [2].
ICT based approaches developed for macro-scale networks
are already being refined and utilized to tackle such design
problems [3], [4]. If successful, these undertakings promise
technological progress in fields such as targeted drug delivery
[2], brain-machine interfaces [3] and disease diagnosis [5].

As the estimated number of neurons in an adult brain
is comparable to that of the stars in our galaxy, one of
the most complex of natural systems employing MC is the
human nervous system [6]. In the nervous system, neurons
communicate with each other by means of short pulses of
electrical signals called action potentials. An action potential
produced by a transmitter neuron travels along its axons,
outwardly elongated projections of the neuron, which make
junctions with a receiving neuron. These junctions are called
synapses, and by structural considerations they divide into two
main categories, electrical synapses and chemical synapses [7].
In electrical synapses, there is no gap in the junction, and the
transmission of the electrical signal is achieved by means of
ion flow through ion-channels sitting on the membranes of
both the transmitting, or presynaptic, neuron and the receiving,
or postsynaptic, neuron. On the other hand, chemical synapses
have a small gap, called the synaptic cleft, at the junction
where transmission of information occurs. In these synapses,
the arriving action potential triggers a vesicle filled with a
specific type of molecule, referred to as neurotransmitters, to
release its contents into the synaptic cleft. Upon release, these
transmitters diffuse inside the cleft, and attach to receptors
on the postsynaptic membrane. This causes ion-channels to
be opened on the postsynaptic membrane, resulting in flow
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of ions across the membrane. In both cases of synapses,
the ion flow across the postsynaptic membrane causes the
membrane potential to change. This change in the membrane
potential either increases or decreases the probability that the
postsynaptic neuron produces an action potential, depending
on whether the synapse is an excitatory or inhibitory one,
respectively. The synapses which cause more change in the
postsynaptic neuron are said to be stronger.

From an information theoretical point of view, the chemical
synapses are rather more complex, because they involve trans-
duction of the transmitted signal from electrical to chemical,
and then back to electrical form. This complexity is thought
to be a main contributor of synaptic plasticity, the ability of
synapses to change their strength, which is considered to be
crucial for the processing capabilities of a neural system such
as memory formation and learning [8], [9], [10]. For this
reason, the focus of this paper will be on chemical synapses.

Our aim in this work is to introduce a primitive model of
an AS, and investigate the properties of MC inside it. In the
literature, one can find many innovative designs of AS [11],
[12], [13], [14]. All of these designs are significant in that they
are all realized machines of very small size (but not nano-
scale) capable of, to some extent, mimicking the behavior of
a real biological synapse. However, on the down side, they
are far from being compatible with biological neurons. A
promising approach in terms of biocompatibility is presented
in [15].

In this paper, we do not propose a realizable way of
mimicking real synapses by means of an artificial one, but
rather, we seek to consider the real synapse slightly modified,
and try to understand the effects of this modification on
the MC properties of the synaptic communication channel.
Thus, the main difference of our AS from the biological
synapses is that, the AS is bounded by impermeable walls, as
depicted in Fig.1. Hence, the transmitter molecules are trapped
inside a closed box, which makes the MC inside the AS
independent of phenomena outside the AS. This independence
is a desirable property for an AS. It not only maximizes storage
capacity and permits sparse coding at individual synapses,
but also reduces the risk of bio-incompatibility in possible
intra-body applications. Moreover, as no transmitters get lost
to the surrounding, the transmitter reserves of the AS are
never depleted. Furthermore, the existence of enclosing walls
provides structural stability by establishing contact with the
artificial postsynaptic neuron. All of these properties simplify
the possible physical realization of such an AS.

On the other hand, the fact that our AS is a closed system,
brings about a crucial disadvantage compared to biological
synapses. In biological synapses, except those in neuromuscu-
lar junctions, where acetylcholine is deactivated by enzymatic
degradation [16], the clearance of the transmitters are due to
rapid diffusion out of the cleft [17], [18]. Obviously, such
a mechanism lacks for the proposed AS. Thus, in order to
achieve clearance of transmitters from AS, we place a high
density of transporter molecules on the presynaptic membrane
of AS.

Except the differences mentioned, the molecular content of
AS is taken to be the same as that of a glutamatergic synapse.

The postsynaptic membrane is assumed to contain α-amino-
3-hydroxy-5methyl-isoxazolepropionic acid receptors (AM-
PARs) and N -methyl-D-aspartate receptors (NMDARs), which
are known to be localized at many glutamatergic synapses
[19], [20], [21], [22], [23]. Glutamate uptake in biological
glutamatergic synapses is known to be preformed by at least
five different transporter proteins [24]. We assume only one
type of glutamate transporter (GluT) to occupy the presynaptic
wall of AS.

In order to investigate the properties of the MC of our
AS, instead of simulating via Monte Carlo based random
walk experiments, we develop by means of mathematical
analysis a deterministic code. This code directly calculates
the expected values of desired variables, such as the glutamate
concentration inside AS and the occupancy rates of receptor
states. This approach has the advantage of determining the
expected behavior of AS in a single run-time as opposed to
the many experiments required in the Monte Carlo method. It
also causes significantly less energy consumption and permits
a faster and cheaper method to explore the parameter space.

The remainder of the paper is organized as follows. In
Section II we first give the details of our physical model of
the AS, where we introduce the nominal values used for the
physical dimensions of the AS, as well as the quantities of
the types of molecules used and their reaction kinematics with
each other. All these parameters are first chosen as in [25] to
enable the opportunity of comparison of results of our method
with that of the Monte Carlo method used there. However, as
[25] deals with biological glutamatergic synapses, we modify
values of some parameters later to obtain a desired response
from our AS. Next, in Section II-B we analytically derive the
partial differential equation (PDE) together with its boundary
conditions, which governs the MC inside the AS. After that, in
Section II-B2, we devise a numerical scheme based on a finite
difference method, which we show to be an approximation
to the PDE under given boundary conditions. The analytical
scheme developed is the basis of our code, with which we
predict the MC in AS. Finally, in Section II-C we evaluate
the performance by comparing it to the approach employed
in [25], and confirm the validity of our code by comparing
its results to the average of the results of a series of Monte
Carlo experiments. Section III is devoted to the presentation
and interpretation of the results of the algorithm developed
in Section II. Our aim here mainly is to demonstrate that for
a wide part of the parameter space, the AS shows behavior
similar to a biological synapse, that is the lack of clearance of
glutamates due to diffusion can be compensated by an elevated
population of GluTs on the presynaptic membrane. Finally, in
Section IV, we conclude by summarizing our findings and
point out directions for future research.

II. THE MODEL

A. The Artificial Synapse

As was mentioned in Section I, our AS is bounded by the
vertical reflective walls, see Fig.1, which are assumed to be
devoid of any receptor or transporter molecules. The nominal
values used for all parameters of AS are presented in Table
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I. All nominal values, except that of the GluT density, fall
into the range of typical values for a biological neuron, and
the nominal value of GluT density used is encountered on
the membranes of hippocampal astroglia, although not on the
presynaptic membrane of glutamatergic synapses [25]. The AS
is assumed to have the shape of a rectangular box with a
0.5 × 0.5 µm2 quadratic base, and a height of 20 nm. We
are not interested in the dimensions and configuration of the
part of the AS illustrated in Fig.1 as the transmitter pool. All
we assume is that, upon the arrival of an electric pulse via
the artificial axon, the injector injects a prescribed amount of
transmitters into the AS.

TABLE I: Nominal values of AS parameters.

Parameter Value
Base area of AS 0.5 × 0.5 µm2

Height of AS cleft 20 nm
Diameter of the PSD 350 nm
Number of AMPARs 80
Number of NMDARs 20
GluT density 10000 molecules/µm2

Quantal size 3000
Diffusion rate constant, D 0.2 µm2/ms

The molecular content of the AS is assumed to be similar
to that of a biological glutamatergic synapse. We uniformly
distribute AMPARs and NMDARs on the postsynaptic density
(PSD), which covers a disk of diameter 350 nm on the
postsynaptic membrane, with nominal values of 80 AMPARs
and 20 NMDARs, unless specified otherwise. For the reaction
schemes of AMPAR and NMDAR with glutamate we use the
kinematic models illustrated in Fig.2(a) and 2(b) as in [26]
and [27], respectively. According to these models, AMPAR
and NMDAR require two glutamate molecules to reach the
open state. The GluTs are uniformly spread over all of
the presynaptic membrane with a nominal density of 10000
molecules per µm2. The GluTs are assumed to obey a simple
three-state reaction scheme with a slow turnover rate [28], also
used in [29] and [30]. The rate constants for all these kinematic
models are provided in Table II. The nominal quantal size is
taken to be 3000 molecules per transmitter release event unless
specified otherwise. The time-course of glutamate release is
very rapid, [31], and therefore, we assume that the transmitter
release is instantaneous, and also point-wise.

The glutamate diffusion rate constant, D, inside the AS is
taken as 0,2 µm2ms−1, [32], approximately one-third of that
of aqueous glutamine due to molecular overcrowding, [33],
[34], [35].

B. Mathematical Analysis and Numerical Scheme

1) Mathematical Analysis: The diffusion of the glutamate
molecules inside the synaptic cleft is modeled by the cele-
brated diffusion equation

∂tu(x⃗, t) =D∆u(x⃗, t), x⃗ ∈ Ω, t > 0, (1)

where D is the diffusion rate constant, Ω corresponds to the
inside of the synaptic cleft, ∂t stands for the partial derivative

with respect to time, and ∆ =
3

∑
i=1
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Fig. 2: Reaction schemes for the assumed kinetic models.

(x1, x2, x3). u(x⃗, t) is the expected concentration of glutamate
molecules at the point x⃗ at time t, and therefore, the expected
number of glutamates found in a volume V ⊂ Ω at time t,
NV (t), is given by

NV (t) = ∫
V

u(x⃗, t)dv, dv =
3

∏
i=1

dxi.

We use the notation N(t) ∶= NΩ(t) for the expected number
of all free glutamate molecules left inside the artificial synaptic
cleft.

We need to supplement (1) with boundary conditions, which
should be determined by the characteristics and distribution
of the receptors and transporters on the boundary that inter-
act with the glutamate molecules. In order to derive these
conditions, we first notice that, the rate of change in the
number of free glutamate molecules inside Ω is related to
the gradient of the concentration at the boundary. This follows
upon integration of equation (1) over Ω. Thanks to the Stoke’s
theorem one obtains

d

dt
N(t) =D∫

∂Ω

∇u(σ, t) ⋅ n⃗(σ)dσ,

where ∂Ω is the boundary of Ω, and n⃗(σ) is the outward unit
normal vector at the boundary point σ. Thus, the number of
glutamate molecules we lose to a boundary patch Γ ⊂ ∂Ω over
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TABLE II: Rate constants for the kinetic models.

Parameter Symbol Value Ref.
AMPA Receptors [26]

First association rate constant KC0C1
4.59 × 106M−1s−1

First dissociation rate constant KC1C0
4.26 × 103s−1

Second association rate constant KC1C2
2.84 × 106M−1s−1

Second dissociation rate constant KC2C1
3.26 × 103s−1

Channel opening rate constant KC2O 4.24 × 103s−1

Channel closing rate constant KOC2
900s−1

C1 to C3 desensitization rate constant KC1C3
2.89 × 103s−1

C3 to C1 resensitization rate constant KC3C1
39.2s−1

C3 to C4 association rate constant KC3C4
1.27 × 106M−1s−1

C4 to C3 dissociation rate constant KC4C3
45.7s−1

C2 to C4 desensitization rate constant KC2C4
172s−1

C4 to C2 resensitization rate constant KC4C2
0.727s−1

C4 to C5 isomerization rate constant KC4C5
16.8s−1

C5 to C4 isomerization rate constant KC5C4
190.4s−1

Open to C5 desensitization rate constant KOC5
17.7s−1

C5 to Open resensitization rate constant KC5O 4.0s−1
NMDA Receptors [27]

First association rate constant KC0C1
2 × 5.0 × 106M−1s−1

First dissociation rate constant KC1C0
4.7s−1

Second association rate constant KC1C2
5.0 × 106M−1s−1

Second dissociation rate constant KC2C1
2 × 4.7s−1

Channel opening rate constant KC2O 46.5s−1

Channel closing rate constant KOC2
91.6s−1

C2 to C3 desensitization rate constant KC2C3
8.4s−1

C3 to C2 resensitization rate constant KC3C2
1.8s−1

Glutamate Transporters [30]
Association rate constant KT0T1

18.0 × 106M−1s−1

Dissociation rate constant KT1T0
180s−1

Transition state rate constant KT1T2
180s−1

Transport rate constant KT2T0
25.7s−1

the time interval (t, t +∆t) is given by

nΓ(t, t +∆t) = −D

t+∆t

∫
t

∫

Γ

∇u(σ, τ) ⋅ n⃗(σ)dσdτ. (2)

Now, we turn our attention to the boundary itself. As
explained before, the boundaries of our artificial synapse
contain AMPA and NMDA receptors, as well as glutamate
transporters. The kinetic models used for the reactions of
these molecules with glutamate are presented in Fig.2 with
corresponding rate constants supplemented in Table II.

Let us now derive the amount of free glutamate molecules
that are captured by a given receptor. Let R be a receptor with
a fixed kinematic model with states Si, i = 1,⋯, r. Observe
that, for a given receptor the loss of free glutamates to that
receptor occurs only during transitions between certain states,
i.e., during transitions C0 → C1, C1 → C2 and C3 → C4 for
AMPAR, C0 → C1 and C1 → C2 for NMDAR, and during
T0 → T1 for GluT. All such state transitions are referred to
as adsorbing state transitions, and their inverses are called
releasing state transitions, since either a glutamate is adsorbed
or released during these transitions. The common theme in all
adsorbing state transitions is that the transition rate linearly
depends on the glutamate concentration around the receptor
with the linearity coefficient equal to the rate constant given
in Table II. For each i, j = 1,⋯, r, let us denote by κij the
transition rate constant from state Si to Sj in units s−1, that
is for adsorbing transitions the correct transition rate constant
is found by multiplying the concentration of glutamates near
the receptor by the rate constant given in Table II, which is
in units M−1s−1. We use the convention that κij = 0 if there
is no transition from the state Si to Sj . In particular, we have
κii = 0 for each i = 1,⋯, r, signified by the fact that there is
no rate constant in Table II in the form Kii. Then, PR,i(t), the

probability that the receptor R is in state Si at time t, satisfies
the following

d

dt
PR,i(t) = −

r

∑
j=1

κijPR,i(t) +
r

∑
j=1

κjiPR,j(t), i = 1,⋯, r.

(3)
With the notation PR(t) ∶= (PR,1(t),⋯, PR,r(t))

T and the
convention on κij’s, these equations can be written in the more
compact form

d

dt
PR(t) = AR(t)PR(t), (4)

where AR(t) is a r × r-matrix with coefficients

(AR)ij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−
r

∑
k=1

κik , if i = j,

κji , if i ≠ j,
(5)

and is called the state transition matrix of the receptor R. As
an example, the state transition matrix of a GluT at position
σ ∈ ∂Ω at time t is

AGluT =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−u(σ, t)KT0T1 KT1T0 KT2T0

u(σ, t)KT0T1 −KT1T0 −KT1T2 0
0 KT1T2 −KT2T0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Observe that in all columns of AGluT the sum of the entries
is zero. This is generally true for all state transition matrices,
which easily follows by adding the equations in (3) over i,
and corresponds to the fact that the sum of the entries of
the probability vector PR(t) remains constant in time. Thus,
starting at t0 with an initial state distribution such that

r

∑
i=1

PR,i(0) = 1,

the solution to (4) will satisfy
r

∑
i=1

PR,i(t) = 1, ∀t ≥ 0.

In view of (4), the evolution of the occupancy probabilities of
the states of a given receptors R satisfies

PR(t +∆t) = exp
⎛
⎜
⎝

t+∆t

∫
t

AR(τ)dτ
⎞
⎟
⎠
PR(t), t,∆t ≥ 0. (6)

The expected number of free glutamates a given receptor
R captures during the time interval (t, t+∆t), nR(t, t+∆t),
can be found by keeping track of the adsorbing and releasing
state transitions. We have

nR(t, t+∆t) = (∑
ads.

−∑
rel.

)
⎛
⎜
⎝

exp
⎛
⎜
⎝

t+∆t

∫
t

AR(τ)dτ
⎞
⎟
⎠

⎞
⎟
⎠
ji

PR,i(t),

(7)
where the sums are over adsorbing and releasing state tran-
sitions. If we denote by fR the distribution of the receptor
of type R on the boundary, then the expected number of
glutamates captured by a given patch on the boundary, Γ ⊂ ∂Ω,
during the time interval (t, t +∆t) can be written as

nΓ(t, t +∆t) =∑
R
∫

Γ

nR(t, t +∆t)fR(σ)dσ. (8)
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where the sum is over the types AMPAR, NMDAR and GluT.
Comparing (2) and (8), in view of (7), we deduce the following
relation on the boundary

−D

t+∆t

∫
t

∇u(σ, τ) ⋅ n⃗(σ)dτ =

∑
R

(∑
ads

−∑
rel

)
⎛
⎜
⎝

exp
⎛
⎜
⎝

t+∆t

∫
t

AR(σ, τ)dτ
⎞
⎟
⎠

⎞
⎟
⎠
ji

PR,i(σ, t)fR(σ)

(9)

valid for all σ ∈ ∂Ω and t,∆t ≥ 0. Finally, differentiating (9)
with respect to ∆t and evaluating at ∆t = 0, we deduce the
following boundary condition

−D∇u(σ, t) ⋅ n⃗(σ) =

∑
R

(∑
ads

−∑
rel

)(AR(σ, t))ji PR,i(σ, t)fR(σ).
(10)

To write this boundary condition in a more explicit form
observe that, all state transitions, and in particular adsorbing
and releasing state transitions, happen between different states,
which implies that in all terms that appear in (10) we have
i ≠ j, and consequently from (5) we see that

(AR(σ, t))ji = κij(σ, t).

Moreover, for the releasing state transitions the transition
rate constant κi,j is equal to the corresponding rate constant
provided in Table II, which we denote as Kij , and is therefore
constant. However, for the adsorbing state transitions we have

κij(σ, t) = u(σ, t)Kij , σ ∈ ∂Ω, t ≥ 0.

Thus, more explicitly the boundary condition (10) may be
rewritten as

−D∇u(σ, t) ⋅ n⃗(σ) = Cads(σ, t)u(σ, t) −Crel(σ, t), (11)

where

Cads,rel(σ, t) =∑
R

∑
ads,rel

KijPR,i(σ, t)fR(σ). (12)

Note that, as PR,i depend nonlinearly on the concentration at
the boundary, the boundary condition given above is highly
nonlinear. Observe also that, as all the receptors lie on the
two horizontal boundaries, see Fig.1. Therefore, the receptor
distributions fR vanish at the vertical boundaries, and the
condition (11) for these boundary components reduces to the
Neumann boundary condition

∇u(σ, t) ⋅ n⃗(σ) = 0.

2) Numerical Scheme: We divide our rectangular artificial
synapse into smaller rectangles of sidelengths ∆xi, i = 1,2,3.
We take the midpoints of these small rectangles as the points of
our grid, on which we employ the numerical scheme described
below.

It is well-known that, (1) can be obtained as the limit of
a discrete Brownian random walk on a 3-dimensional regular
grid, which also corresponds to the discretization of (1) on the
grid. Indeed, consider the discrete random walk of a single

particle, whose progression of the occupancy probabilities of
the grid points, u[x⃗, t] (x⃗ is now an integer valued vector), is
given by the iterative formula

u[x⃗, t +∆t] = (1 −
3

∑
i=1

2D∆t

∆x2
i

)u[x⃗, t]

+D∆t
3

∑
i=1

u[x⃗ + e⃗i, t] + u[x⃗ − e⃗i, t]

∆x2
i

,

(13)

where e⃗i corresponds to the vector with the ith entry equal to
one and rest to zero, i = 1,2,3. In order to assure the positivity
of occupancy probabilities in (13) one also needs to choose
the time and space increments as to satisfy

3

∑
i=1

2D∆t

∆x2
i

< 1. (14)

(13) can equivalently be rewritten as

u[x⃗, t +∆t] − u[x⃗, t]

∆t
=

D
3

∑
i=1

u[x⃗ + e⃗i, t] − 2u[x⃗, t] + u[x⃗ − e⃗i, t]

∆x2
i

.
(15)

(15) together with the assumption that the paths of the particles
are independent of each other, i.e., there are no collisions, gives
us (1) in the limit as ∆x,∆t→ 0.

The iterative formula (13) is valid only for the interior points
of the grid. To derive the iteration formula for the points on
the boundary, we first need to keep track of the receptor states,
which is done by discretizing (6)

PR(t +∆t) = exp(AR(t)∆t)PR(t), t,∆t ≥ 0. (16)

Consequently, nδ(σ, t,∆t), the density function on the bound-
ary for the number of free glutamates captured by the receptors
during the time interval (t,∆t) can be approximated as

nδ(σ, t,∆t) =

∑
R

(∑
ads

−∑
rel

)(exp (AR(σ, t)∆t))ji PR,i(σ, t)fR(σ).
(17)

In order to write the iteration formula for the boundary points
of our grid, let the integer valued vector x⃗ = (x1, x2, x3)

denote the position of a boundary grid point, and let I ⊂

{1,2,3} denote the directions in which x⃗ sits at the boundary.
Furthermore, for the sake of ease of presentation suppose that
{xi}i∈I are maximal, i.e., our grid does not contain points with
coordinates xi+1. With this notation, the iterative formula for
the boundary points of our grid reads

u[x⃗, t +∆t] = (1 −
3

∑
i=1

2D∆t

∆x2
i

)u[x⃗, t]

+D∆t∑
i∉I

u[x⃗ + e⃗i, t] + u[x⃗ − e⃗i, t]

∆x2
i

+D∆t∑
i∈I

u[x⃗, t] + u[x⃗ − e⃗i, t]

∆x2
i

−∑
i∈I

nδ(σ, t,∆t)

∆xi
.

(18)
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Indeed, (18) can be rewritten as
√

∆t
u[x⃗, t +∆t] − u[x⃗, t]

∆t
=

D
√

∆t∑
i∉I

u[x⃗ + e⃗i, t] − 2u[x⃗, t] + u[x⃗ − e⃗i, t]

∆x2
i

+∑
i∈I

D
√

∆t

∆xi
(−
u[x⃗, t] − u[x⃗ − e⃗i, t]

∆xi
−
nδ(σ, t,∆t)

D∆t
) .

Remember that, in (17) inside the sum the indices obey i ≠ j,
which implies

nδ(σ, t,0) = 0.

As a consequence we have

lim
∆t↘0

nδ(σ, t,∆t)

∆t
=

d

d∆t
nδ(σ, t,∆t)∣

∆t=0

,

which is equal to the right hand side of the boundary con-
dition (11) by the same calculations done there. Thus, taking
limit above as ∆t,∆xi → 0 with

√
∆t/∆xi kept constant,

i = 1,2,3, we find the boundary condition (11).

C. Performance and Validation

When implementing the numerical scheme described in the
previous subsection, one has a restriction on the magnitudes of
the spatial and temporal increments one can choose, namely
the requirement that the inequality (14) must be satisfied.
According to (14), for given values of spatial increments and
the diffusion rate constant, one has an upper bound on the
magnitude of the time increment as

∆t <
1

2D
(

3

∑
i=1

1

∆x2
i

)

−1

.

Considering the value of D and the dimensions of the AS
given in Table I, in order to satisfy this restriction we choose
our time-step as 0.1 µs. With this time-step calculating 10 ms
of real-time required ∼ 250 seconds for a 10×10×2 grid, and
∼ 1000 seconds on a 20× 20× 2 grid on a single 2.1 GHz PC
workstation. The code was run on MATLAB.

For verification and performance comparison we have also
run MCell, the Monte Carlo based molecular simulation
program used by [25]. The results of the analytic approach
and the average results of MCell experiments are overlaid in
Fig.8 for 10 ms. of real-time. The comparison shows similar
trends of receptor state evolution for both AMPA and NMDA
receptors, although they are not an exact match. With a time-
step of 0.1 µs, the simulation of 10 ms of real time took
∼ 1000 seconds on the same workstation. Considering the
fact that, the Monte Carlo approach requires a multitude of
experiments to accurately obtain average results, we deduce
that our approach is much faster and energy efficient. Another
important point favoring our approach is the fact that our codes
performance scales with the grid-size, where as any Monte
Carlo experimental approach will scale with the number of
molecules. Thus, in scenarios with high number of molecules
or high density our approach becomes even more advanta-
geous. and on a lower level programming language it should
take significantly less time. Moreover, our code is highly

parallelizable, as high as the number of spatial grid points,
which ranged from 200 to 1600 in our calculations. We have
pursued this direction as well, and parallellized our code. The
parallellization is effective in decreasing the execution time for
low number of cores, but ceases to be so for higher numbers,
see Fig.3. The parallelization is done in spatial dimensions
with each core specialized on a specific block. In order to carry
out the necessary calculations for diffusion there is a need of
information transfer amongst cores at the end of each time-
step. This brought about an extra communication overhead,
which diminished the effects of parallelization for high number
of cores, rendering the pursuit for higher parallellization
useless. To further understand the discrepancies between the
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Fig. 3: The graph of the execution time of the code for a specific
setup against varying number of cores used in parallel processing.

results of the analytic approach and MCell (Fig.8) and to
provide further assessment to correctness of our simulation
approach, we have written a separate code based on Monte
Carlo approach, which simulates with the help of random
number generators a simple random walk on a regular mesh.
The reaction probabilities for this code were obtained again
from (4) of our mathematical analysis. The comparison of the
results are provided only for 10 ms. of real time, mainly due
to the bad performance of the Monte Carlo approach (∼1600
seconds for 1 ms. real time with 0.1 microsec. time-step)
combined with insufficiencies in the amount of available time
and computational resources. For the evolution of AMPAR and
NMDAR state occupancies, see Fig.7, shows a near perfect
match between the analytic approach and the devised Monte
Carlo approach (average of 100 experiments). This shows that
the analytic approach accurately captures expected behavior of
Monte Carlo experiments, and that the discrepancies observed
in Fig.8 are mainly due to the different approaches of the
Monte Carlo experiments. In our approach, diffusion process
was carried out on a regular orthogonal grid, whereas in MCell
there are no grids, and the random jump of the diffusing
molecules are achieved by choosing a random direction and
a jump distance. Moreover, the reactions in the analytic and
Monte Carlo approach devised here always depend on the
transmitter concentration inside the boundary grid where the
reaction occurs. In contrast to this, in MCell reactions occur
if transmitters hit the boundary inside a given radius around
the receptor.

III. RESULTS

A. Variations in GluT Density

In synaptic MC it is essential that, soon after the quantal
release the transmitters should be cleared out of the synaptic
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Fig. 4: Timecourse of free glutamate inside AS for different values
of GluT density. The graph on the right is the zoomed in version
of the one on left. The initial rapid capture of glutamates by GluTs
slows down due to slow turnover rate of GluT.
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Fig. 5: Timecourse of free glutamate inside the cleft of AS for
different values of quantal sizes. The clearance time of glutamates
linearly depends on the quantal size for large quantal sizes.

cleft. Indeed, as was verified by the simulations of [25], the
clearance time for the biological synapse is around 1 ms.
Our calculations for the AS reveal that, as in Fig.4, GluTs
do, in fact, clear the AS of glutamates in < 1 ms. However,
due to the slow turnover rate of GluT, [28], the amount of
this initial clearance is restricted to the number of GluTs
on the presynaptic membrane of AS. Indeed, for example
for the GluT density of 10000 molecules per µm2 our AS
contains 2500 GluTs, which is exactly the amount of initial
rapid decrease observed in Fig.4. After all GluTs capture a
glutamate, it takes a long time for them to recapture another
glutamate because of their slow turnover rate, and therefore
the clearance slows down. Fig.5 shows that the clearance time
linearly increases with quantal size, which seemingly makes
things even worse. In view of this, it is reasonable to argue
that glutamate clearance time from AS can be taken down to
the level of a biological synapse by increasing the number of
GluTs inside AS, which can be achieved either by increasing
the GluT density or by increasing the base area of the AS.
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Fig. 6: Timecourse of (A) AMPAR and (B) NMDAR state occupan-
cies.

However, we do not pursue this direction and settle with the
density of 10000 GluTs per µm2, mainly to demonstrate that,
for large quantal sizes (> 3000), even with such poor clearance
times, the time-courses of the open states for both AMPARs
and NMDARs are similar to those in a biological synapse.

B. Evolution of Receptor States

The evolution of the receptor states calculated by our
algorithm, shown in Fig.6 and Fig.7, match quite well with
the predictions of the Monte Carlo simulations of [25] except
the artefacts introduced by the special setting of our AS. In
the case of AMPAR, Fig.6(A) and Fig.7(A), the first state to
attain its peak is C1, which is followed by the peak of C2.
Next peaks the open state O, which occurs in less than 1 ms,
which is in agreement with [25]. In forthcoming times the
receptors go into the desensitized states, and after 300 ms all
receptors come back to the initial state C0. The main difference
compared to [25] is that, in our case the peaks of states C1, C2

and O are very small. This is due to the fact that, in our case
free glutamates start being captured by GluTs immediately
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Fig. 7: Time-course of (A) AMPAR and (B) NMDAR state occupan-
cies zoomed in. The results of our code and the Monte Carlo code
(average of 100 experiments) are overlaid for comparison.
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Fig. 8: Timecourse of (A) AMPAR and (B) NMDAR state occupan-
cies zoomed in. The results of our code (thin lines) and MCell (thick
lines, average of 100 experiments) are overlaid for comparison.

after the release, which decreases the glutamate concentrations
near the receptors. Another artifact we have is a slower decay
of desensitized AMPAR states, which is mainly due to the slow
clearance of glutamates from AS mentioned before. For the
case of NMDARs, Fig.6(B) and Fig.7(B), the agreement with
[25] is stronger. The states follow exactly the same patterns,
and the peak value and peak time of open NMDARs match
quite well with a peak of 6 open NMDARs and a peak time
of just above 20 ms. However, again we observe a slower
decay of desensitized NMDAR states due to the slow clearance
of glutamates. In addition, our calculations verify the high
glutamate affinity of NMDARs compared to AMPARs, [36],
which is observed in the slower decay of NMDAR open states,
and is due to the slow dissociation rate of glutamates from
NMDARs.

C. Variations in Quantal Size and Receptor Number

In biological synapses quantal size and receptor number
are suggested to be main contributors for synaptic plasticity,
where, in particular, AMPAR number at individual synapses
is thought to be the underlying factor in long-term synaptic
plasticity, [37], [38], [39]. Our calculations support both of
these hypotheses, and show that they are also valid for our AS.
As seen in Fig.9, the peak value of open AMPARs increase
with quantal size, whereas higher quantal size (> 3000) has
no effect on the peak value and time of the NMDARs. This
implies that, quantal size is a contributor to synaptic plasticity
through AMPARs, and in a synapse containing only NMDARs
quantal size has no effect on plasticity. On the other hand,
receptor number contributes to synaptic plasticity through
both AMPARs and NMDARs. In fact, Fig.10 shows that the
ratio of the peak value of open AMPARs and NMDARs to
the total number of AMPARs and NMDARs, respectively, is
independent of the number of receptors in AS. This implies
that the peak values of open AMPARs and NMDARs are both
linear functions of the receptor number for any given quantal
size. Another important difference between open AMPAR
dynamics of the proposed AS and of the biological synapses
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Fig. 9: Timecourse of open states of AMPARs (left) and NMDARs
(right) for different values of quantal size.

can be observed from Fig.9. In [25], it is found that upon
a vesicle release of quantal size 3000, the number of open
AMPARs decay to zero in around 200 ms. However, in Fig.9,
we see that our calculations predict a decay to zero in less
than 50 ms. This difference seems to contradict to our finding
that the clearance of glutamates from the AS with the assumed
GluT density is slower than that of the biological synapses.
However, it can be explained by the fast dissociation rate
of glutamates from AMPARs, which in the biological setup
causes glutamate molecules to associate with and dissociate
from many AMPARs before they are able to leave the cleft,
increasing the effective reserve of glutamate for AMPARs.
However, in the proposed AS this phenomenon of multiple
binding should be observed much less, as the glutamate
molecules do not need to travel all the way across the cleft,
but are sucked away from the AS through the presynaptic
membrane, which is only 20 nm away. It is very interesting,
however, that this phenomenon overcomes the difference in the
glutamate clearance times. On the other hand, as the NMDARs
have slow dissociation rate, such phenomenon does not apply
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to them, and in fact our calculations give worse decay rates
for the number of open NMDARs compared to those of [25],
which is, of course, due to the slow clearance from AS. In
fact, in the second graph of Fig.9, in the decaying phase of
open NMDARs, one can see a bump starting to appear for
high quantal sizes, which is an artifact of slow clearance.
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Fig. 11: Peak time for open AMPARs (above) and NMDARs (below)
as a function of quantal size plotted for different values of receptor
numbers.

Another interesting feature is the invariance of peak times
for open AMPARs or NMDARs with respect to changes in
receptor number, as in Fig.11. This phenomenon is due to
the fact that the open states of both receptors peak in a
short time compared to their dissociation rates, AMPARs with
high dissociation rate peak very quickly (0.5 − 1.5 ms) and
NMDARs peak rather slowly (25 − 80 ms) but have low
dissociation rates, and consequently, up until the peak time
glutamate bindings to receptors are almost independent from
each other.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we have given a novel mathematical analysis
of a proposed artificial synaptic channel. In the analysis,
complex reaction dynamics of the communicating molecules
are included. The analysis resulted in the development of
a deterministic algorithm, which can calculate the expected
behavior of various quantities of interest, such as the evolution
of the states of various receptors, and the amount of free
transmitters left in the cleft, etc. The success of this algorithm
comes from the fact that, it is much faster than the widely
used Monte Carlo algorithms.

Another novelty of this paper is the proposition of an AS.
From the MC point of view, the proposed model of AS is
theoretically shown to possess many desired properties of a
biological synapse. As the most desired property, the time-
course of the open receptors are found to greatly match to
that of a biological synapse, where the peak values and peak
time of open receptors were a near exact match, except some
discrepancy in the peak values of open AMPARs. The decay
of open NMDARs was slower in the AS, and of AMPARs
was faster, which, in view of the fact that as a design of

nature AMPARs react fast and NMDARs slow, seems to be
of little concern. Moreover, the AS showed great promise in
terms of demonstrating synaptic plasticity, where the results of
our algorithm suggests that the quantal size increases synaptic
potency through its effect on AMPARs, and the synaptic
potency linearly depends on the number of receptors for both
AMPARs and NMDARs. The higher desensitization transients
for both receptor types, observed due to longer glutamate
clearance time of AS, is a source of synaptic depression,
although this point was not elaborated upon.

In our investigation of the AS, we have pursued only the
case of a single quantal release. However, an understanding of
the dynamics of AS in the case of multiple quantal release is
of paramount importance. Although it was not pursued here, it
should be expected that, a multiple quantal release in AS upon
an input spike train of high enough frequency (inside the range
of frequencies observed in biological neural networks) should
cause undesired temporal correlations between consecutive
signals, mainly because of the high glutamate residence time
of AS and the consequent slow decay of desensitized states
of receptors. The analysis of the dynamics of the MC of our
AS under multiple consecutive quantal inputs awaits further
research.

The work done in this paper was solely interested in what
happens inside the cleft of our AS, and that was done with
molecules of biological origins, which are hard to synthesize
or come by. One of the greatest challenges in realizing an
AS remains to be devising its constituents. Other than the
structural parts of the AS, there is a need to find appro-
priate candidate molecules for transmitters, transporters and
receptors, which should be compatible with each other in
terms of their reaction dynamics. Moreover, the transporters
and receptors should be compatible with the structure, as to
have the desired trans-membrane effects. There are ongoing
studies to find candidate molecular machinery to achieve such
tasks. For instance, in [40], the authors propose a promising
molecular machinery capable of producing electrical output
upon detection of molecules, which is a possible candidate
for a receptor in AS design. Apart from the inside of the
cleft of the AS, the transmitter pool and the injector as its
main apparatus are hard design, even conceptually. Finally, the
ultimate and most difficult challenge in realizing a true AS is
in devising the MC between its parts in order to effectively
regulate factors that contribute to synaptic plasticity.

REFERENCES

[1] D. Malak and O. B. Akan, “Molecular communication nanonetworks
inside human body,” Nano Communication Networks, vol. 3, no. 1, pp.
19–35, 2012.

[2] T. Nakano, M. J. Moore, F. Wei, A. V. Vasilakos, and J. Shuai, “Molecu-
lar communication and networking: Opportunities and challenges,” IEEE
transactions on nanobioscience, vol. 11, no. 2, pp. 135–148, 2012.

[3] T. Nakano, T. Suda, Y. Okaie, M. J. Moore, and A. V. Vasilakos,
“Molecular communication among biological nanomachines: A layered
architecture and research issues,” IEEE transactions on nanobioscience,
vol. 13, no. 3, pp. 169–197, 2014.

[4] P. Mathur, R. H. Nielsen, N. R. Prasad, and R. Prasad, “Conasense
at nanoscale: Possibilities and challenges,” Role of ICT for Multi-
Disciplinary Applications in 2030, vol. 47, p. 185, 2016.

[5] B. Picconi, G. Piccoli, and P. Calabresi, “Synaptic dysfunction in
parkinsons disease,” in Synaptic Plasticity. Springer, 2012, pp. 553–
572.



PUBLISHED IN IEEE TRANSACTIONS ON NANOBIOSCIENCE, 21 JULY 2017. DOI: 10.1109/TNB.2017.2730582 10

[6] O. B. Akan, H. Ramezani, T. Khan, N. A. Abbasi, and M. Kuscu,
“Fundamentals of molecular information and communication science,”
in Proceedings of the IEEE. IEEE, 2016.

[7] D. Purves, G. J. Augustine, D. Fitzpatrick, L. C. Katz, A.-S. LaMantia,
J. O. McNamara, and S. M. Williams, Neuroscience, 2nd Edition.
Sinauer Associates, 2001.

[8] H. Ramezani and O. B. Akan, “Synaptic channel model including
effects of spike width variation,” in Proceedings of the Second Annual
International Conference on Nanoscale Computing and Communication.
ACM, 2015, p. 11.

[9] D. Malak and O. B. Akan, “A communication theoretical analysis
of synaptic multiple-access channel in hippocampal-cortical neurons,”
IEEE Transactions on communications, vol. 61, no. 6, pp. 2457–2467,
2013.

[10] E. Balevi and O. B. Akan, “A physical channel model for nanoscale
neuro-spike communications,” IEEE Transactions on Communications,
vol. 61, no. 3, pp. 1178–1187, 2013.

[11] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and
M. Aono, “Short-term plasticity and long-term potentiation mimicked
in single inorganic synapses,” Nature materials, vol. 10, no. 8, pp. 591–
595, 2011.

[12] L. Q. Zhu, C. J. Wan, L. Q. Guo, Y. Shi, and Q. Wan, “Artificial synapse
network on inorganic proton conductor for neuromorphic systems,”
Nature communications, vol. 5, 2014.

[13] W. Xu, S.-Y. Min, H. Hwang, and T.-W. Lee, “Organic core-sheath
nanowire artificial synapses with femtojoule energy consumption,” Sci-
ence advances, vol. 2, no. 6, p. e1501326, 2016.

[14] C. Zhang, Y.-T. Tai, J. Shang, G. Liu, K.-L. Wang, C. Hsu, X. Yi,
X. Yang, W. Xue, H. Tan et al., “Synaptic plasticity and learning
behaviours in flexible artificial synapse based on polymer/viologen
system,” Journal of Materials Chemistry C, vol. 4, no. 15, pp. 3217–
3223, 2016.

[15] M. C. Peterman, N. Z. Mehenti, K. V. Bilbao, C. J. Lee, T. Leng,
J. Noolandi, S. F. Bent, M. S. Blumenkranz, and H. A. Fishman, “The
artificial synapse chip: a flexible retinal interface based on directed
retinal cell growth and neurotransmitter stimulation,” Artificial organs,
vol. 27, no. 11, pp. 975–985, 2003.

[16] J. C. Eccles, B. Katz, and S. W. Kuffler, “Effect of eserine on neuro-
muscular transmission,” Journal of Neurophysiology, vol. 5, no. 3, pp.
211–230, 1942.

[17] J. C. Eccles and J. C. Jaeger, “The relationship between the mode
of operation and the dimensions of the junctional regions at synapses
and motor end-organs,” Proceedings of the Royal Society of London B:
Biological Sciences, vol. 148, no. 930, pp. 38–56, 1958.

[18] L. Wahl, C. Pouzat, and K. Stratford, “Monte carlo simulation of fast
excitatory synaptic transmission at a hippocampal synapse,” Journal of
neurophysiology, vol. 75, no. 2, pp. 597–608, 1996.

[19] J. M. Bekkers and C. F. Stevens, “Nmda and non-nmda receptors are co-
localized at individual excitatory synapses in cultured rat hippocampus,”
1989.

[20] V. Kharazia and R. Weinberg, “Immunogold localization of ampa and
nmda receptors in somatic sensory cortex of albino rat,” The Journal of
comparative neurology, vol. 412, no. 2, pp. 292–302, 1999.

[21] Y. Takumi, V. Ramı́rez-León, P. Laake, E. Rinvik, and O. P. Ottersen,
“Different modes of expression of ampa and nmda receptors in hip-
pocampal synapses,” Nature neuroscience, vol. 2, no. 7, pp. 618–624,
1999.

[22] A. K. McAllister and C. F. Stevens, “Nonsaturation of ampa and
nmda receptors at hippocampal synapses,” Proceedings of the National
Academy of Sciences, vol. 97, no. 11, pp. 6173–6178, 2000.

[23] C. Racca, F. A. Stephenson, P. Streit, J. D. B. Roberts, and P. Som-
ogyi, “Nmda receptor content of synapses in stratum radiatum of the
hippocampal ca1 area,” The Journal of Neuroscience, vol. 20, no. 7, pp.
2512–2522, 2000.

[24] N. Danbolt, F. Chaudhry, Y. Dehnes, K. Lehre, L. Levy, K. Ullensvang,
and J. Storm-Mathisen, “Properties and localization of glutamate trans-
porters,” Progress in brain research, vol. 116, pp. 23–43, 1998.

[25] K. M. Franks, T. M. Bartol, and T. J. Sejnowski, “A monte carlo
model reveals independent signaling at central glutamatergic synapses,”
Biophysical journal, vol. 83, no. 5, pp. 2333–2348, 2002.

[26] P. Jonas, G. Major, and B. Sakmann, “Quantal components of unitary
epscs at the mossy fibre synapse on ca3 pyramidal cells of rat hip-
pocampus.” The Journal of Physiology, vol. 472, no. 1, pp. 615–663,
1993.

[27] R. Lester and C. E. Jahr, “Nmda channel behavior depends on agonist
affinity,” The Journal of neuroscience, vol. 12, no. 2, pp. 635–643, 1992.

[28] J. I. Wadiche, J. L. Arriza, S. G. Amara, and M. P. Kavanaugh, “Kinetics
of a human glutamate transporter,” Neuron, vol. 14, no. 5, pp. 1019–
1027, 1995.

[29] J. S. Diamond and C. E. Jahr, “Transporters buffer synaptically released
glutamate on a submillisecond time scale,” The Journal of neuroscience,
vol. 17, no. 12, pp. 4672–4687, 1997.

[30] J. R. Geiger, A. Roth, B. Taskin, and P. Jonas, “Glutamate-mediated
synaptic excitation of cortical interneurons,” in Ionotropic Glutamate
Receptors in the CNS. Springer, 1999, pp. 363–398.

[31] J. R. Stiles, D. Van Helden, T. M. Bartol, E. E. Salpeter, and M. M.
Salpeter, “Miniature endplate current rise times less than 100 microsec-
onds from improved dual recordings can be modeled with passive
acetylcholine diffusion from a synaptic vesicle,” Proceedings of the
National Academy of Sciences, vol. 93, no. 12, pp. 5747–5752, 1996.

[32] L. Longsworth, “Diffusion measurements, at 25, of aqueous solutions of
amino acids, peptides and sugars,” Journal of the American Chemical
Society, vol. 75, no. 22, pp. 5705–5709, 1953.

[33] T. M. Bartol, A study of miniature endplate current generation at the
vertebrate neuromuscular junction using electrophysiology and Monte
Carlo simulation. Cornell University, May, 1992.

[34] M. B. Elowitz, M. G. Surette, P.-E. Wolf, J. B. Stock, and S. Leibler,
“Protein mobility in the cytoplasm of escherichia coli,” Journal of
bacteriology, vol. 181, no. 1, pp. 197–203, 1999.

[35] R. J. Ellis, “Macromolecular crowding: obvious but underappreciated,”
Trends in biochemical sciences, vol. 26, no. 10, pp. 597–604, 2001.

[36] D. K. Patneau and M. L. Mayer, “Structure-activity relationships for
amino acid transmitter candidates acting at n-methyl-d-aspartate and
quisqualate receptors,” The Journal of Neuroscience, vol. 10, no. 7, pp.
2385–2399, 1990.

[37] J. T. Isaac, R. A. Nicoll, and R. C. Malenka, “Evidence for silent
synapses: implications for the expression of ltp,” Neuron, vol. 15, no. 2,
pp. 427–434, 1995.

[38] R. C. Carroll, D. V. Lissin, M. von Zastrow, R. A. Nicoll, and R. C.
Malenka, “Rapid redistribution of glutamate receptors contributes to
long-term depression in hippocampal cultures,” Nature neuroscience,
vol. 2, no. 5, pp. 454–460, 1999.

[39] Y. Hayashi, S.-H. Shi, J. A. Esteban, A. Piccini, J.-C. Poncer, and
R. Malinow, “Driving ampa receptors into synapses by ltp and camkii:
requirement for glur1 and pdz domain interaction,” Science, vol. 287,
no. 5461, pp. 2262–2267, 2000.

[40] M. Kuscu and O. Akan, “Modeling and analysis of sinw fet-based molec-
ular communication receiver,” IEEE Transactions on Communications,
vol. 64, no. 9, pp. 3708–3721, 2016.

Bilgesu A. Bilgin [M’17] received his B.S. degree in
Electrical and Electronics engineering from Middle
East Technical University in 2008, M.Sc. and Ph.D.
degrees in mathematics from Koc University, in
2011 and 2015, respectively. He has worked as a
postdoctoral fellow in Next-generation and Wire-
less Communications Laboratory at Koc University
from 2015 to 2017. Currently, he is working as a
postdoctoral research associate in the Engineering
Department at the University of Cambridge. His
research interests include molecular communication,

intrabody nanonetworks, partial differential equations and dynamical systems.

Ozgur B. Akan [M’00-SM’07-F’16] received PhD
degree from the School of Electrical and Computer
Engineering, Georgia Institute of Technology, USA,
in 2004. He is currently with the Electrical Engineer-
ing Division, Department of Engineering, University
of Cambridge, UK and the Department of Electrical
and Electronics Engineering, Koc University, Istan-
bul, Turkey. His research interests include wireless,
nano, molecular communications, and Internet of
Everything.


