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We propose an efficient Monte Carlo method for the computation of the volumes of high-
dimensional bodies with arbitrary shape. We start with a region of known volume within the
interior of the manifold and then use the multi-state Bennett acceptance-ratio method to compute
the dimensionless free-energy difference between a series of equilibrium simulations performed within
this object. The method produces results that are in excellent agreement with thermodynamic in-
tegration, as well as a direct estimate of the associated statistical uncertainties. The histogram
method also allows us to directly obtain an estimate of the interior radial probability density profile,
thus yielding useful insight into the structural properties of such a high dimensional body. We
illustrate the method by analysing the effect of structural disorder on the basins of attraction of
mechanically stable packings of soft repulsive spheres.

INTRODUCTION

In science we often face, and occasionally confront, the
following question: “Can we estimate the a priori prob-
ability of observing a system in a very unlikely state?”
An example is: “How likely is a given disordered sphere
packing?”, not to mention questions such as “How likely
is life, or the existence of a universe like ours?” within the
context of dynamical systems and of the multiverse. In a
number of cases, where the states correspond to extrema
in a high dimensional function, this question can be nar-
rowed down to: “How large is the ‘basin of attraction’ of
a given state?”. In such cases, estimating the probability
of observing a particular state is equivalent to computing
the volume of the (high-dimensional) basin of attraction
of this state. That simplifies the problem, but not by
much [1, 2]: analytical approaches are typically limited to
highly symmetric (often convex) volumes, whilst ‘brute
force’ numerical techniques can deal with more complex
shapes, but only in low-dimensional cases. Computing
the volume of an arbitrary, high-dimensional body is ex-
tremely challenging. For instance, it can be proved that
the exact computation of the volume of a convex polytope
is a NP-hard problem [3–5] and, of course, the problem
does not get any easier in the non-convex case.

Yet, the importance of such computations is apparent:
the volume of the basin of attraction for the extrema of a
generic energy landscape, be that of biological molecules
[6], an artificial neural network [7–9], a dynamical system
[10, 11], or even of a “string theory landscape” (where the
minima corresponds to different de Sitter vacua [12, 13]),
is essential for understanding the systems’ behavior.

In high dimensions, simple quadrature and brute-force
sampling fail [14] and other methods are needed. In sta-
tistical mechanics, the problem is equivalent to the cal-
culation of the partition function (or, equivalently, the
free energy) of a system, and several techniques have
been developed to tackle this problem (see e.g [15]). The
earliest class of techniques to compute partition func-
tions is based on thermodynamic integration (TI) [15–

17], which is based on the idea that a transformation of
the Hamiltonian of the system can transform an unknown
partition function into one that is known analytically.
More recent techniques include histogram-based meth-
ods (Wang-Landau [18], parametric and non parametric
weighted histogram analysis method (WHAM) [19]) or
Nested Sampling [20, 21]. In essence, all these techniques
reduce the computation of the partition function to the
numerical evaluation of a one-dimensional integral.

Among the above methods Nested Sampling and Wang
Landau are Monte Carlo algorithms in their own right,
that produce the (binned) density of states as a by-
product. On the other hand, TI can be identified as
a particular Umbrella Sampling scheme [15], that out-
puts multiple sets of equilibrium states that can be anal-
ysed, either by numerical quadrature (e.g. see the Ein-
stein crystal method [22]), or by WHAM and multi-state
Bennet acceptance ratio method (MBAR). All the above
methods can be used to compute high-dimensional vol-
umes. However, the choice of the MBAR method [23] is
an optimal one. Not only is MBAR non-parametric (no
binning is required) and has the lowest known variance
reweighting estimator for free energy calculations, but it
also eliminates the need for explicit numerical integration
of the density of states, thus reducing to a minimum the
number of systematic biases.

One reason why brute force methods are not suited
to estimate the volumes of high-dimensional bodies, is
that for such bodies the volume of the largest inscribed
hypersphere, quickly becomes negligible to the volume
of the smallest circumscribed hypersphere – and most of
the volume of the circumscribed hypersphere is empty.
Hence, using a Monte Carlo ‘rejection method’ to com-
pute the volume of the non-convex body as the fraction
of volume contained in a hypersphere [24, 25], does not
yield accurate results: the largest contribution should
come from points that are barely sampled, if at all.

In this Letter we show that MBAR can be used,
not only to arrive at an accurate estimate of a high-
dimensional, non-convex volume, but that it also can be

ar
X

iv
:1

60
3.

09
62

7v
2 

 [
co

nd
-m

at
.d

is
-n

n]
  1

7 
Se

p 
20

16
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/131381395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

used to probe the spatial distribution of this volume.

COMPUTING HIGH-DIMENSIONAL VOLUMES

Our aim is then to measure the volume of a n −
dimensional connected compact manifold Ω ⊆ Rn with
boundaries. We require this body to be “well guaran-
teed”, i.e. it has both an inscribed and a circumscribed
hypersphere [2]. To explore different parts of the non-
convex volume, we use a spherically symmetric bias that
either favors the sampling of points towards the center,
or towards the periphery. We start by performing a se-
ries of K + 1 random walks under different applied bias
potentials, similarly to the Einstein-crystal method [22].
We refer to each of the walkers as a “replica” Ri. Un-
like TI, where biasing is always ‘attractive’ (i.e. it favors
larger confinement), in MBAR we are free to choose both
attractive and repulsive bias potentials (see SM for de-
tails of our implementation). Additionally MBAR uses
the full posterior distribution (hence all moments) rather
than just the average log-likelihood computed over the
posterior, as for TI. The present method directly yields
an estimate for the statistical uncertainty in the results
that depends on the full distributions and is sensitive to
their degree of overlap, thus making the method more
robust to under-sampling. In contrast, TI would require
an expensive resampling numerical procedure to achieve
the same objective.

The Markov Chain Monte Carlo (MCMC) random
walk of replica i ∈ [0,K] will generate samples with un-
normalised probability density qi(x), which for a stan-
dard Metropolis Monte Carlo walk is

qi(x) ≡ e−βiUi(x) (1)

with biasing potential Ui(x) and inverse temperature βi;
from now on we assume βi = 1 for all walkers Ri, without
loss of generality. The normalised probability density is
then

pi(x) = Z−1
i qi(x) (2)

with normalisation constant

Zi =

∫

Rn

qi(x) dx. (3)

We require that the bias potential Ui(x) can be factorised
as

Ui(x) = χ
Ω

(x)ui(x) (4)

where ui is the reduced potential function and χ
Ω

(x) is

the “oracle” [2], such that for all choices of ui(x),

Ui(x) =

{
ui(x) if x ∈ Ω
∞ if x 6∈ Ω

(5)

We thus have that the normalisation constant in Eq. (3)
becomes an integral over the manifold Ω

Zi =

∫

Rn

e−Ui(x) dx =

∫

Ω

e−ui(x) dx. (6)

If replica RM is chosen to have bias uM = 0, by defi-
nition Eq. (6) becomes the volume VΩ. Hence if we can
compute the partition function for the reduced potential
function uM = 0, we can compute the volume VΩ.

The MBAR method [23] is a binless and statistically
optimal estimator to compute the difference in dimen-
sionless free energy for multiple sets of equilibrium states
(trajectories) {x}i obtained using different biasing poten-
tials ui(x). The difference in dimensionless free energy is
defined as

∆f̂ij ≡ f̂j − f̂i = − ln

(
Zj
Zi

)
(7)

which can be computed by solving a set of self-consistent
equations as described in Ref. [23]. Note that only the
differences of the dimensionless free energies are mean-
ingful as the absolute values f̂i are determined up to an
additive constant and that the “hat” indicates MBAR
estimates for the dimensionless free energies, to be dis-
tinguished from the exact (reference) values.

Let us define the volume Vω = πn/2rnω/Γ(n/2 + 1) of a
n-ball ω ⊆ Ω with radius rω centred on x0 and absolute
dimensionless free energy fω = − lnVω. For instance,
when the volume of a basin of attraction in a potential
energy landscape is to be measured, x0 is chosen to be
the minimum energy configuration and ω ⊆ Ω the largest
n-ball centred at x0 that fits in Ω. We also define {x}i
to be the set of states sampled with biasing potential ui
and {x}ω = ∪Ki=0{x : |x − x0| ≤ rω}i to be the set of
states re-sampled within ω with reduced potential

uω(x) =

{
0 if |x− x0| ≤ rω
∞ if |x− x0| > rω

(8)

In other words we augment the set of states with the
additional reduced potential uω. Note that MBAR can
compute free energy differences and uncertainties be-
tween sets of states not sampled (viz. with a different
reduced potential function) without any additional iter-
ative solution of the self-consistent estimating equations,
see Ref. [23] for details.

Computing the free energy difference between the sets
of equilibrium states {x}ω and {x}M , chosen to have
reduced potentials uM = 0 and uω, we find that the
absolute free energy for the unbiased set of states {x}M
is

fM = fω + (f̂M − f̂ω) (9)

where the free energy difference f̂M − f̂ω is obtained by
MBAR with associated uncertainty δ∆f̂Mω. The volume
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of the manifold is then just VΩ = exp(−fM ) with uncer-

tainty δVΩ = VΩδ∆f̂Mω. Note that the set of biasing
potentials ui must be chosen so that there is sufficient
overlap between each neighbouring pair of pi(x). For
instance for the harmonic bias ui = ki|x − x0|2/2 we
must choose a set of coupling constants ki so that all
neighbouring replicas have a sufficient probability den-
sity overlap.

Under an appropriate choice of biasing potential the
present method may yield information such as the ra-
dial posterior probability density function, as an easy to
compute by-product, details are discussed in the SM.

BASINS OF ATTRACTION IN HIGH
DIMENSIONS

We define a basin of attraction as the set of all points
that lead to a particular minimum energy configuration
by a path of steepest descent on a potential energy sur-
face (PES). Exploring a basin of attraction is computa-
tionally expensive because each call to the oracle function
χ

Ω
(x) requires a full energy minimisation and equilibrat-

ing a MCMC on a high dimensional support is difficult
[26–29]. For this reason little is known about the geom-
etry of these bodies [27, 29–31].

Ashwin et al. [25], defined the basin of attraction as
the collection of initial zero-density configurations that
evolve to a given jammed packing of soft repulsive disks
via a compressive quench. On the basis of ‘brute-force’
calculations on low-dimensional systems, Ashwin et al.
suggested that basins of attraction tend to be “branched
and threadlike” away from a spherical core region. How-
ever, the approach of ref. [25] breaks down for higher
dimensional systems for which most of the volume of the
basin is concentrated at distances from the ‘minimum’
where the overwhelming majority of points do not be-
long to the basin. The method that we present here
allows us to explore precisely those very rarified regions
where most of the ‘mass’ of a basin is concentrated.

In general the representation of all high dimensional
convex bodies should have a hyperbolic form such as the
one proposed in the illustration by Ashwin et al. due to
the exponential decay in volume of parallel hypersections
(slices) away from the median (or equator) [32]. This
holds true even for the simplest convex bodies, such as
the hypercube, and the underlying geometry need not
be “complicated”, as one would guess at first from the
two-dimensional representation. For the simplest cases
of the unit d-sphere and the unit d-cube it can be shown
that most of the volume is contained within O(1/d) of
the boundary and that at the same time the volume is
contained in a slab O(1/

√
d) and O(1) from the equator,

irrespective of the choice of north pole, respectively [1,
33]. Hence, there is virtually no interior volume. Such
phenomena of concentration of measure are ubiquitous
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FIG. 1: Structural disorder as a function of polydisper-
sity η is quantified by the average coordination number Z
(grey diamonds) and the Q6 bond orientational order pa-
rameter (blue circles); error bars correspond to one stan-
dard deviation of the distribution of values per particle.
Basin shape is characterized by the asphericity factor Ad
(green triangles) and the mean distance of the centre of
mass from the minmum (orange squares); error bars cor-
respond to the standard error. Filled and empty markers
correspond to packings obtained starting from an fcc and
a disordered arragement respectively. Dotted lines show
the η after which, in order, Z, Ad and Q6 change from

the fcc value.

in high dimensional geometry and are closely related to
the law of large numbers [33].

As we will show, the results presented by Ashwin et
al. are, within the resolution available to their method,
qualitatively consistent with those for a simple (unit) hy-
percube.

Effect of structural disorder on the basins of
attraction of jammed sphere packings

We characterise the basins of attraction for a number
of 32 hard-core plus soft-shell three-dimensional sphere
packings, analogous to the ones described in Ref. [29].
The soft shell interactions are short ranged and purely re-
pulsive, the full functional form of the potential and fur-
ther technical details are reported in the SM. We system-
atically introduce structural disorder by preparing pack-
ings with (geometrically) increasing particle size polydis-
persity η, i.e. the (positive) radii are sampled from a
normal distribution N (1, η). For each η we prepare ∼10
packings at a soft packing fraction φ = 0.74148 with a
soft to hard-sphere radius ratio of rSS/rHS = 1.12. The
particles are placed initially in a fcc arrangement xfcc

and then relaxed via an energy minimisation to a me-
chanically stable state x0. Thus, for the lowest polydis-
persities the packings remain in a perfect fcc structure
and with increasing η they progressively move away into
a disordered glassy state. For the largest polydispersity,
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FIG. 2: Top plot shows the measured basin radial prob-
ability density function h(r) (DOS) for packings at dif-
ferent polydispersities. The solid and dashed blue curves
correspond to the DOS of a 93D hypercube, measured
from the centre of mass (‘iso-cube’) and from a point in
one of the corners. The top inset shows the cumulative
distribution function for h(r). The bottom panel shows
the logarithm of the ratio of the DOS of the basin and
of a 93D hyperball. The bottom inset shows the set of
barely distinguishable overlapping curves measured for
low polydispersities. Top and bottom plots share the x-

axis.

for which hard-core overlaps do not allow an initial fcc
arrangement, we sample a series of completely random
initial states followed by an energy minimisation. Note
that even for η ≈ 0, due to the high packing fraction,
starting from a completely random set of coordinates,
an energy minimisation does not lead to the fcc crystal
but rather to the closest glassy state (inherent structure).
We are interested in the effect of structural disorder on
the shape of the basin of attraction for the soft sphere
packings.

We determine the amount of structural disorder in the
packing by computing the Q6 bond orientational order
parameter [34] and the average number of contacts per
particle Z, shown in Fig. 1. As the polydispersity of
the system is increased, the coordination number Z de-
cays monotonically from the close-packed value of 12 to a

value Zfcc > Z > Ziso, where Ziso = 6 is the average con-
tact number at iso-staticity for a three-dimensional pack-
ing of frictionless spheres [35]. The Q6 order parameter,
computed using a solid-angle based nearest-neighbor def-
inition [36], decays from its fcc value well after the contact
number has dropped below the close-packed value of 12.

We start characterising the shape of the high dimen-
sional basins of attraction associated with these pack-
ings by performing an unconstrained random walk within
the basin and performing principal component analysis
(PCA) on the trajectory thus obtained [14]. PCA yields
a set of eigenvectors that span the d-dimensional config-
urational space with associated eigenvalues λ1, . . . , λd. If
the basin posses d-dimensional spherical symmetry then
all the eigenvalues are expected to be equal. A measure
of the shape of a random walk is then the asphericity
factor [37]

Ad =

∑
i>j(λi − λj)2

(d− 1)
(∑d

i=1 λi

)2 , (10)

that has a value of 0 for a spherically symmetric random
walk and of 1 for a walk that extends only in one di-
mension. Furthermore, we compute the distance of the
centre of mass (CoM ) position from the minimum en-
ergy configuration for the random walk, |〈x〉 − x0|. This
quantity reveals whether the basin is isotropic around
the minimum or not. Both quantities, averaged over all
packings, are plotted as a function of polydispersity in
Fig. 1 along with the structural order parameters. In-
terestingly, we observe that for low η the basins are, on
average, spherically symmetric and isotropic around the
minimum. With the onset of structural disorder we ob-
serve a marginal increase in asphericity and in the CoM
distance from the minimum. In order to observe a sig-
nificant change however, we need to go to the fully dis-
ordered packings at higher polydispersity. With increas-
ing polydispersity, we observe significant changes in the
structural order parameters and in the asphericity factor
Ad and CoM distance from the minimum.

The implementation details of the MBAR method that
we have used are discussed in the SM. Using this method
to compute the volume of the basins of attraction, we find
excellent agreement with thermodynamic integration, see
Fig. S2. As a natural by-product of the computation we
are able to compute the radial probability density func-
tion (DOS), shown in Fig. 2 together with the logarithm
of the ratio between the measured DOS, and that of a
d-hypersphere. The log-ratio curves clearly show that
all basins have a well-defined hyperspherical core region,
where the curves are flat around 0, followed by a series
of exponential decays at larger distances from the mini-
mum. For η < 10−4 the curves are mostly indistinguish-
able from one another with most of the probability mass
concentrated between 1 < r < 3, as it can be seen from
the inset showing the corresponding cumulative distribu-
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tion function (CDF). For higher polydispersity, the DOS
curves have ever longer tails, as it is also shown by the
systematic shift in the CDF.

Importantly, the curves show that a ‘rejection’ method
to measure the basin volume will fail. In this method,
the volume of the basin is determined by integrating the
fraction of points on a hyper-shell with radius r that fall
inside the basin. That fraction is the function shown in
the bottom panel of Fig. 2. The most important contri-
bution to the integral would come from the range of r
values where h(r) (top panel of Fig. 2) has a significant
value. As can be seen from the figure, for disordered sys-
tems this happens for values of r where the fraction of
hyper-sphere points within the basin is extremely small,
in the example shown O(10−30). Hence, the dominant
part of the integral would come from parts that are never
sampled.

To interpret our results for the DOS curves, it is useful
to compare with the corresponding result for a unit hy-
percube (see Fig. 2). In one instance we do so by placing
the ‘origin’ of the hypercube at its CoM, and in another
by placing the origin on one of the 2d corners of the hy-
percube, to generate a DOS of a system with a very ani-
sometric density distribution. Not surprisingly, moving
the origin of the system from the center to the corner of a
hypercube has a dramatic effect on the shape of the DOS,
which is now much more similar to the curves for large
η, with similar characteristic changes of slope observed
for the basins. Again, this agrees with the observation
that the CoM distance increases with increasing struc-
tural disorder. The effect of the basin asphericity, as
measured by the asphericity factor Ad is difficult to infer
from the DOS alone.

We thus observe that the structural isotropy and high
degree of rotational symmetry in the crystal, as indicated
by the Q6 parameter, is reflected in the isotropy and
spherical symmetry of the basin around the minimum,
even for relatively large polydispersities when the average
contact number has already dropped considerably from
the close-packed value. Similarly, the structural disorder
at larger η is reflected in the anisotropy and asphericity
of the basin. Hence, changes in the basin structure, as
indicated by the asphericity factor, the CoM and the
density profile, occur before any observable changes occur
in Q6 and after the average contact number (Z . 9) has
fallen well below the close-packed value of 12.
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I. VOLUME COMPUTATION

We choose a set of harmonic bias potential functions

ui =
1

2
ki|x− x0|2 (S1)

with ki∈[1,M ] = {k1, . . . , kM−1, 0} and perform 1010 Hamiltonian Parallel Tempering steps as described in Ref. [1] [2].
Note that each Monte Carlo step is followed by a full energy minimisation to test whether the walker has stepped
outside the basin of attraction. We choose half of the k’s to be positive and the other half negative to accelerate
equilibration as well as to increase the DOS resolution near the boundary of the basin. The distributions obtained
from the replicas with negative coupling constants contribute to the final MBAR volume estimation, unlike for TI.
We stress that the choice of biasing potential is arbitrary. Near the origin we sample the set of configurations {x}0
directly from a hypersphere centred at x0 with radius sampled from a Gaussian distribution with standard deviation
σ =

√
〈|x− x0|2〉k1

, corresponding to a coupling constant k0 = 1/σ2. This choice of k0 is such that there is sufficient
overlap between the distributions of {x}0 and {x}1, as can be verified looking at the two leftmost curves in Fig. (S1)
[3]. The corresponding bias potential function is

u0 = (n− 1) log |x− x0|+
1

2
k0|x− x0|2, (S2)

where the first term on the right-hand-side is the log-DOS for a n-ball, necessary to account for the greater entropy
associated with the regions of space further away from the origin. For a system of N particles in d dimensions with fixed
centre of mass we have n = (N−1)d degrees of freedom. The overhead associated with this calculation is insignificant
compared to the Hamiltonian Parallel Tempering since the samples thus drawn are completely uncorrelated.

We compute the reduced free energy differences between each of 1 + 31 replicas with reduced potential functions
given by Eqs. (S1)–(S2) using PyMBAR [4, 5]. As reference volume we choose ω to be the n-ball of radius rω centred
on x0 with approximately R = 0.9 of its volume contained within the basin Ω. We choose ω 6⊆ Ω to allow more
samples with |x− x0| ≤ rω thus reducing the uncertainty in the MBAR estimate. For R ≈ 1 we can correct exactly
for this by noting that

R =
1

Vω

∫

ω

p0(x)dx (S3)

and R can be computed directly by Monte Carlo. We thus rewrite Eq. (9) as

fM = fω − logR+ (f̂M − f̂ω). (S4)

Note that the difference in reduced free energies computed using a reference sphere of radius rω/2 or 2rω is within
the statistical uncertainty, hence the method is robust with respect to the choice of reference sphere. We also note
that this method ought not be limited to the n-ball as the choice of reference volume, in fact any geometrical body
ω ⊆ Ω of known volume and surface (thus for which a similar expression to Eq. (S2) can be derived) is suitable, for
instance a hypercube or a hyperellipsoid. If ω 6⊆ Ω then an accurate estimate of R must be available.

A. Density of states

From the analysis of the posterior probability density functions, the present method may yield structural informa-
tion, as an easy to compute by-product. Choosing a set of biasing potentials ui(r) that are a function of the distance
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FIG. S1: Kernel density estimation of the distance sampled by a random walk within the basin, coupled to the
minimum with decreasing coupling constant from left to right. The left-most curve was obtained by direct sampling
as described in the main text. Replicas with negative coupling constants explore regions of the volume that would

otherwise never be visited. This particular example is of a disordered packing with polidispersity η = 0.037.

from the origin r = |x − x0|, we can compute the overall density of states (DOS) for the manifold as a function of
r. From each of the K + 1 replicas’ trajectories {x}i we obtain a (binless) kernel density estimation (KDE) [6] of
the probability density functions hi(r), see Fig. (S1) for an example, which must be unbiased and summed over all
replicas to obtain the overall log-DOS function as

log h(r) =
K∑

i=0

wi(r)
(

log hi(r) + ui(r)−∆f̂0i

)
. (S5)

where wi(r) = hi(r)/
∑K

i=0 hi(r) are normalised weights and ∆f̂0i are the free energy differences between replicas Ri

and R0.

B. Comparison to thermodynamic integration
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FIG. S2: Comparison of the volumes computed by thermodynamic integration, using only the replicas with positive
coupling constant, and by MBAR following the protocol described in this work.
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FIG. S3: Dimensionless free energy (F ≡ − lnV ) versus pressure of the mechanically stable states analysed in the
main text. For details of the the strong correlation between pressure and volume refer to Martiniani et al.[1].

II. JAMMED PACKINGS OF POLYDISPERSE HS-WCA SPHERES

We draw N = 32 particle radii {rHS}N from a Gaussian distribution Normal(1, η) > 0, truncated at rHS = 0, set
the box size to meet the target packing fraction of the hard sphere fluid φHS and then place the particles in a valid,
either fcc or random, initial hard sphere configuration, as described in the main text.

Given these hard sphere configurations, we switch on a soft repulsive interaction to generate over-compressed
jammed packings of the particles and relax the system to a mechanically stable state by energy minimization. The

particles are inflated with a WCA-like potential [7] to reach the target soft packing fraction φSS > φ
(RCP)
HS > φHS.

The hard spheres are inflated proportional to their radius, so that the soft sphere radius is

rSS =

(
φSS
φHS

)1/d

rHS, (S6)

where d is the dimensionality of the box, rSS and rHS the soft and hard sphere radii respectively. Clearly, this
procedure does not change the polydispersity of the sample.
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We define the WCA-like potential around a hard core as follows: consider two spherical particles with hard core
distance rHS and soft core contact distance rSS = rHS(1 + θ), with θ = (φSS/φHS)1/d − 1. We can then write a
horizontally shifted hard-sphere plus WCA (HS-WCA) potential as

vHS-WCA(r) =





∞ r ≤ rHS,

4ε

[(
σ(rHS)
r2 − r2HS

)12

−
(
σ(rHS)
r2 − r2HS

)6
]

+ ε

rHS < r < rSS,

0 r ≥ rSS

(S7)

where σ(rHS) = (2θ + θ2)r2HS/2
1/6 guarantees that the potential goes to zero at rSS. For computational convenience

(avoidance of square-root evaluations), the potential in Eq. S7 differs from the WCA form in that the inter-particle
distance in the denominator of the WCA potential has been replaced with a difference of squares.

Numerically evaluating this potential, we match the gradient and linearly continue the function vHS-WCA(r) for
r ≤ rHS + ε, with ε > 0 an arbitrary small constant, such that minimisation is still meaningful if hard core overlaps
do occur.

Energy minimisations are performed with the CG DESCENT algorithm [8–10].
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