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Abstract

We review aspects of twistor theory, its aims and achievements
spanning the last five decades. In the twistor approach, space–time is
secondary with events being derived objects that correspond to com-
pact holomorphic curves in a complex three–fold – the twistor space.
After giving an elementary construction of this space we demonstrate
how solutions to linear and nonlinear equations of mathematical physics:
anti-self-duality (ASD) equations on Yang–Mills, or conformal curva-
ture can be encoded into twistor cohomology. These twistor corre-
spondences yield explicit examples of Yang–Mills, and gravitational
instantons which we review. They also underlie the twistor approach
to integrability: the solitonic systems arise as symmetry reductions of
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ASD Yang–Mills equations, and Einstein–Weyl dispersionless systems
are reductions of ASD conformal equations.

We then review the holomorphic string theories in twistor and am-
bitwistor spaces, and explain how these theories give rise to remarkable
new formulae for the computation of quantum scattering amplitudes.
Finally we discuss the Newtonian limit of twistor theory, and its possi-
ble role in Penrose’s proposal for a role of gravity in quantum collapse
of a wave function.
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1 Twistor Theory

Twistor theory was originally proposed as a new geometric framework for
physics that aims to unify general relativity and quantum mechanics [173,
174, 184, 182, 183]. In the twistor approach, space–time is secondary with
events being derived objects that correspond to compact holomorphic curves
in a complex three–fold, the twistor space. The mathematics of twistor the-
ory goes back to the 19th century Klein correspondence, but we shall begin
our discussion with a formula for solutions to the wave equation in (3+1)–
dimensional Minkowski space–time put forward by Bateman in 1904 [31]

φ(x, y, z, t) =

∮

Γ⊂CP
1

f((z + ct) + (x+ iy)λ, (x− iy)− (z − ct)λ, λ)dλ. (1.1)

This is the most elementary of Penrose’s series of twistor integral formulae
for massless fields [175]. The closed contour Γ ⊂ CP

1 encloses some poles
of a meromorphic function f . Differentiating (1.1) under the integral sign
yields

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
− ∂2φ

∂y2
− ∂2φ

∂z2
= 0. (1.2)

The twistor contour integral formula (1.1) is a paradigm for how twistor
theory should work and is a good starting point for discussing its development
over the last five decades. In particular one may ask

• What does this formula mean geometrically?

The integrand of (1.1) is a function of three complex arguments and we
will see in §2 that these arise as local affine coordinates on projective
twistor space PT which we take to be CP

3 − CP
1. In (1.1) the coor-

dinates on PT are restricted to a line with affine coordinate λ. The
Minkowski space arises as a real slice in the four-dimensional space of
lines in PT.

The map (1.1) from functions f to solutions to the wave equation is not
one to one: functions holomorphic inside Γ can be added to f without
changing the solution φ. This freedom in f was understood in the
1970s in a fruitful interaction between the Geometry and Mathematical
Physics research groups in Oxford [15]: twistor functions such as f in
(1.1) should be regarded as elements of Čech sheaf cohomology groups.
Rigorous theorems establishing twistor correspondences for the wave
equation, and higher spin linear equations have now been established
[81, 218, 108, 29]. The concrete realisations of these theorems lead to
(contour) integral formulae.

• Do ‘similar’ formulae exist for nonlinear equations of mathematical
physics, such as Einstein or Yang–Mills equations?

The more general integral formulae of Penrose [175] give solutions to
both linearised Einstein and Yang–Mills equations. In the case that
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the linearised field is anti-self-dual (i.e., circularly polarised or right
handed) these cohomology classes correspond to linearised deforma-
tions of the complex structure of twistor space for gravity [176, 18] or
of a vector bundle in the Yang-Mills case [210]. We shall review these
constructions in §3 and §5.
These constructions give an ‘in principle’ general solution to the equa-
tions in the sense that locally every solution can be represented locally
in terms of free data on the twistor space as in the original integral
formula. Indeed this leads to large classes of explicit examples (e.g.
Yang-Mills and gravitational instantons which we shall review in the
gravitational case in §33.4) although it can be hard to implement for
general solutions.

It turns out [213] that most known integrable systems arise as symmetry
reductions of either the anti–self–dual Yang–Mills or the anti–self–dual
(conformal) gravity equations. The twistor constructions then reduce
to known (inverse scattering transform, dressing method, . . . ) or new
solution generation techniques for soliton and other integrable equa-
tions [158, 75]. We shall review some of this development in §6.
As far as the full Einstein and Yang-Mills equations are concerned,
the situation is less satisfactory. The generic nonlinear fields can be
encoded in terms of complex geometry in closely related ambitwistor
spaces. In these situations the expressions of the field equations are less
straightforward and they no longer seem to provide a general solution
generation method. Nevertheless, they have still had major impact
on the understanding of these theories in the context of perturbative
quantum field theory as we will see in §7.

• Does it all lead to interesting mathematics?

The impacts on mathematics have been an unexpected major spin–
off from the original twistor programme. These range over geometry in
the study of hyper–Kähler manifolds [18, 107, 138, 139, 191], conformal,
CR and projective structures [101, 26, 100, 48, 144, 83, 144, 88, 59, 50,
27, 82, 32, 219], exotic holonomy [49, 165, 166, 167], in representation
theory [29, 60] and differential equations particularly in the form of
integrable systems [158, 75]. We will make more specific comments
and references in the rest of this review.

• Is it physics?

Thus far, the effort has been to reformulate conventional physics in
twistor space rather than propose new theories. It has been hard to give
a complete reformulation of conventional physics on twistor space in the
form of nonlinear generalizations of (1.1). Nevertheless, in just the past
13 years, holomorphic string theories in twistor and ambitwistor spaces
have provided twistorial formulations of a full range of theories that are
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commonly considered in particle physics. They also provide remark-
able new formulae for the computation of scattering amplitudes. Many
technical issues that remain to be resolved to give a complete reformu-
lation of conventional physics ideas even in this context of peturbative
quantum field theory. Like conventional string theories, these theories
do not, for example, have a satisfactory non-perturbative definition.
Furthermore, despite recent advances at one and two loops, their ap-
plicability to all loop orders has yet to be demonstrated. See §7 for a
full discussion.

The full (non-anti–self–dual) Einstein and Yang–Mills equations are not
integrable and so one does not expect a holomorphic twistor description
of their solutions that has the simplicity of their integrable self-dual
sectors. It is hoped that the full, non–perturbative implementation of
twistor theory in physics is still to be revealed. One set of ideas builds
on Penrose’s proposal for a role of gravity in quantum collapse of a wave
function [178, 180]. This proposal only makes use of Newtonian gravity,
but it is the case that in the Newtonian limit the self–dual/anti–self–
dual constraint disappears from twistor theory and all physics can be
incorporated in the c→∞ limit of PT [80], see §8.

• Does it generalise to higher dimensions?

There are by now many generalisations of twistors in dimensions higher
than four [191, 124, 125, 126, 168, 194, 37, 200, 69, 91, 209]. One defi-
nition takes twistor space to be the projective pure spinors of the con-
formal group. This definition respects full conformal invariance, and
there are analogues of (1.1) for massless fields. However, the (holo-
morphic) dimension of such twistor spaces goes up quadratically in
dimension and become higher than the dimension of the Cauchy data
(i.e., one less than the dimension of space–time). Thus solutions to
the wave equation and its non–linear generalisations do not map to un-
constrained twistor data and this is also reflected in the higher degree
of the cohomology classes in higher dimensions that encode massless
fields. These do not seem to have straightforward nonlinear extensions.

Another dimension agnostic generalisation of twistor theory is via am-
bitwistors. Indeed some of the ambitwistor string models described in
§7 are only critical in 10 dimensions, relating closely to conventional
string theory, although without the higher massive modes.

Twistor theory has many higher dimensional analogues for space-times
of restricted holonomy [191]. The hyper-Kähler case of manifolds of
dimension 4k with holonomy in SU(2)× SP (2k) admit a particularly
direct generalisation of Penrose’s original nonlinear graviton construc-
tion and now has wide application across mathematics and physics.

This review celebrates the fifty years of twistor theory since the publica-
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tion of the first paper on the subject1 by Roger Penrose [173]. We apologize to
the many researchers whose valuable contributions have been inadvertently
overlooked.

2 Twistor space and incidence relation

Twistor theory is particularly effective in dimension four because of an inter-
play between three isomorphisms. Let M be a real oriented four–dimensional
manifold with a metric g of arbitrary signature.

• The Hodge ∗ operator is an involution on two-forms, and induces a
decomposition

Λ2(T ∗M) = Λ2
+(T

∗M)⊕ Λ2
−(T

∗M) (2.3)

of two-forms into self-dual (SD) and anti-self-dual (ASD) components,
which only depends on the conformal class of g.

• Locally there exist complex rank-two vector bundles S, S′ (spin-bundles)
over M equipped with parallel symplectic structures ε, ε′ such that

TCM ∼= S⊗ S
′ (2.4)

is a canonical bundle isomorphism, and

g(p1 ⊗ q1, p2 ⊗ q2) = ε(p1, p2)ε
′(q1, q2) (2.5)

for p1, p2 ∈ Γ(S) and q1, q2 ∈ Γ(S′). The isomorphism (2.4) is related
to (2.3) by

Λ2
+
∼= S

′∗ ⊙ S
′∗, Λ2

−
∼= S

∗ ⊙ S
∗.

• The orthogonal group in dimension four is not simple:

SO(4,C) ∼= (SL(2,C)× S̃L(2,C))/Z2 (2.6)

where S and S′ defined above are the representation spaces of SL(2)

and S̃L(2) respectively. There exist three real slices: In the Lorentzian
signature Spin(3, 1) ∼= SL(2,C) and both copies of SL(2,C) in (2.6)
are related by complex conjugation. In the Riemannian signature
Spin(4, 0) = SU(2) × S̃U(2). In (2, 2) (also called neutral, or ultra-

hyperbolic signature) Spin(2, 2) ∼= SL(2,R) × S̃L(2,R). Only in this
signature there exists a notion of real spinors, and as we shall see in
§3.2 real twistors.

1See also the programme and slides from the meeting, New Horizons in
Twistor Theory in Oxford January 2017 that celebrated this anniversary along
with the 85th birthday or Roger Penrose and the 67th of Nick Woodhouse.
http://www.maths.ox.ac.uk/groups/mathematical-physics/events/twistors50.
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2.1 Incidence relation

The projective twistor space PT is defined to be CP
3 − CP

1. The homoge-
neous coordinates of a twistor are (Z0, Z1, Z2, Z3) ∼ (ρZ0, ρZ1, ρZ2, ρZ3),
where ρ ∈ C∗ and (Z2, Z3) 6= (0, 0). The projective twistor space (which we
shall call twistor space from now on) and Minkowski space are linked by the
incidence relation

(
Z0

Z1

)
=

i√
2

(
ct+ z x+ iy
x− iy ct− z

)(
Z2

Z3

)
(2.7)

where xµ = (ct, x, y, z) are coordinates of a point in Minkowski space. If two
points in Minkowski space are incident with the same twistor, then they are
connected by a null line. Let

Σ(Z,Z) = Z0Z2 + Z1Z3 + Z2Z0 + Z3Z1

be a (++−−) Hermitian inner product on the non–projective twistor space
T = C4 − C2. The orientation–preserving endomorphisms of the twistor
space which preserve Σ form a group SU(2, 2) which is locally isomorphic
to the conformal group SO(4, 2) of Minkowski space. The twistor space T

is divided into three parts depending on whether Σ is positive, negative or
zero. This partition descends to the projective twistor space. In particular
the hypersurface

PN = {[Z] ∈ PT,Σ(Z,Z) = 0} ⊂ PT

is preserved by the conformal transformations of the Minkowski space which
can be verified directly using (2.7). The five dimensional manifold PN ∼=
S2 × R

3 is the space of light rays in the Minkowski space. Fixing the coor-
dinates xµ of a space–time point in (2.7) gives a plane in the non–projective
twistor space C4 − C2 or a projective line CP

1 in PT. If the coordinates xµ

are real this line lies in the hypersurface PN . Conversely, fixing a twistor in
PN gives a light–ray in the Minkowski space.

So far only the null twistors (points in PN ) have been relevant in this
discussion. General points in PT can be interpreted in terms of the com-
plexified Minkowski space MC = C4 where they correspond to α–planes, i. e.
null two–dimensional planes with self–dual tangent bi-vector. This, again, is
a direct consequence of (2.7) where now the coordinates xµ are complex:
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Figure 1. Twistor incidence relation
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Complexified space-time MC ←→ Twistor space PT

Point p ←→ Complex line Lp = CP
1

Null self-dual (=α) two-plane ←→ Point.

p1, p2 null separated ←→ L1, L2 intersect at one point.

2.2 Robinson Congruence

The non–null twistors can also be interpreted in the real Minkowski space,
but this is somewhat less obvious [173]: The inner product Σ defines a vector
space T∗ dual to the non–projective twistor space. Dual twistors are the
elements of the projective space PT

∗. Consider a twistor Z ∈ PT \ PN . Its
dual Z ∈ PT

∗ corresponds to a two–dimensional complex projective plane
CP

2 in PT. This holomorphic plane intersects the space of light rays PN in
a real three–dimensional locus corresponding to a three–parameter family of
light–rays in the real Minkowski space. The family of light rays representing
a non–null twistor is called the Robinson congruence.

Figure 2. Robinson congruence of twisting light rays.

Null ray in M ←→ Point in PN
Robinson congruence {Z} ∩ PN ←→ Point in PT \ PN .

The Robinson congruence in Figure 2 is taken from the front cover of
[184]. It consists of a system of twisted oriented circles in R3: a light–ray is
represented by a point in R3 together with an arrow indicating the direction
of the ray’s motion. It is this twisting property of circles in Figure 2 which
gave rise to a term ‘twistor’ for points of PT. An account of congruences in
general relativity which motivated initial progress in twistor theory is given
in [134, 189, 190].

2.3 Cohomology

The twistor interpretation of Penrose’s contour integral formula (1.1) is as
follows. Cover the twistor space T = C4−C2 by two open sets: U0 defined by
Z2 6= 0 and U1 defined by Z3 6= 0. Consider a function on the non–projective
twistor space f = f(Z0, Z1, Z2, Z3) which is holomorphic on U0 ∩ U1 and
homogeneous of degree −2 in Zα. Restrict this function to a two–dimensional
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plane in T defined by the incidence relation (2.7) with (x, y, z, t) fixed. This
gives rise to an element of the cohomology group2 H1(Lp,O(−2)) on the
projective twistor space, where Lp

∼= CP
1 is the curve corresponding, via the

incidence relation (2.7), to a point p ∈ MC. Integrate the cohomology class
along a contour Γ in Lp. This gives (1.1) with λ = Z3/Z2. For example
f = (PαZ

α)−1(QβZ
β)−1, where α, β = 0, . . . , 3 and (Pα, Qβ) are constant

dual twistors gives rise to a fundamental solution to the wave equation (1.2).
The Theorem of [81] states that solutions to the wave equation (1.2) which
holomorphically extend to a future tube domain in MC are in one–to–one
correspondence with elements of the cohomology groupH1(PT,O(−2)). This
correspondence extents to solutions of zero–rest–mass equations with higher
spin, and elements of H1(PT,O(k)) where k is an integer. See [81, 108, 184,
218, 121] for further details.

3 Twistors for curved spaces

The twistor space of complexified Minkowski space MC = C4 was defined by
the incidence relation (2.7) as the space of all α–planes in C4. Let (MC, g)
be a holomorphic four–manifold with a holomorphic Riemannian metric and
a holomorphic volume form. Define an α–surface to be a two–dimensional
surface in MC such that its tangent plane at every point is an α–plane. If
the metric g is curved, there will be integrability conditions coming from
the Frobenius Theorem for an α–plane to be tangent to a two–dimensional
surface.

3.1 The Nonlinear Graviton construction

Define PT to be the space of α–surfaces ζ in (MC, g). The Frobenius theorem
implies that forX, Y ∈ Tζ → [X, Y ] ∈ Tζ , and there are obstruction in terms
of the curvature of g. This gives rise to the Nonlinear Graviton Theorem

Theorem 3.1 (Penrose [176]) There exists a three–parameter family of
α–surfaces in MC iff the the Weyl tensor of g is anti–self–dual, i.e.

Cabcd = −
1

2
ǫab

pqCcdpq. (3.8)

The anti–self–duality of the Weyl tensor is the property of the whole confor-
mal class

[g] = Ω2g, Ω : MC → C
∗

2The cohomology group H1(CP1,O(k)) is the space of functions f01 holomorphic on
U0∩U1 and homogeneous of degree k in coordinates [Z2, Z3] modulo addition of cobound-
aries (functions holomorphic on U0 and U1). In a trivialisation over U0 we represent f01 by
a holomorphic function f on C∗. In the trivialisation over U1, f01 is represented by λ−kf ,
where λ = Z3/Z2. Here, and in the rest of this paper O(k) denotes a line bundle over
CP

1 with transition function λ−k in a trivialisation over U0. Alternatively it is defined as
the (−k)th tensor power of the tautological line bundle.
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rather than any particular metric. Points in an ASD conformal manifold
(MC, [g]) correspond to rational curves in PT with normal bundleO(1)⊕O(1),
and points in PT correspond to α–surfaces in MC. The ASD conformal
structure on MC can be defined in terms of algebraic geometry of curves
in twistor space: PT is three dimensional, so two curves in PT generically
do not intersect. Two points in MC are null separated if and only if the
corresponding curves in PT intersect at one point.

Theorem 3.2 (Penrose [176]) Let MC be a moduli space of all rational
curves with the normal bundle O(1)⊕O(1) in some complex three–fold PT.
Then MC is a complex four–fold with a holomorphic conformal metric with
anti–self–dual curvature. Locally all ASD holomorphic conformal metrics
arise from some PT.

More conditions need to be imposed on PT if the conformal structure con-
tains a Ricci-flat metric. In this case there exists a holomorphic fibration
µ : PT → CP

1 with O(2)-valued symplectic form on the fibres. Other cur-
vature conditions (ASD Einstein [211, 109, 142, 5, 120], Hyper–Hermitian
[131, 73], scalar–flat Kähler [187], null Kähler [74]) can also be encoded in
terms of additional holomorphic structures on PT. Some early motivation for
Theorem 3.2 came from complex general relativity, and theory of H–spaces.
See [170, 186].

3.2 Reality conditions

The real ASD conformal structures are obtained by introducing an involution
on the twistor space. If the conformal structure has Lorentizian signature,
then the anti–self–duality implies vanishing of the Weyl tensor, and thus g
is conformally flat. This leaves two possibilities: Riemannian and neutral
signatures. In both cases the involutions act on the twistor lines, thus giving
rise to maps from CP

1 to CP
1: the antipodal map which in stereographic

coordinates is given by λ → −1/λ, or a complex conjugation which swaps
the lower and upper hemispheres preserving the real equator. The antipodal
map has no fixed points and corresponds to the positive–definite conformal
structures. The conjugation corresponds to the neutral case.

In the discussion below we shall make use of the double fibration picture

MC

r←− F q−→ PT, (3.9)

where the five–complex–dimensional correspondence is defined by

F = PT×MC|ζ∈Lp
= MC × CP

1

where Lp is the line in PT that corresponds to p ∈MC and ζ ∈ PT lies on Lp.
The space F can be identified with a projectivisation PS′ of the spin bundle
S′ →MC. It is equipped with a rank-2 distribution, the twistor distribution,
which at a given point (p, λ) of F is spanned by horizontal lifts of vectors
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spanning α–surface at p ∈MC. The normal bundle to Lp consists of vectors
tangent to p horizontally lifted to T(p,λ)F modulo the twistor distribution D.
We have a sequence of sheaves over CP1

0 −→ D −→ C
4 −→ O(1)⊕O(1) −→ 0.

Using the abstract index notation [184] (so that, for example, πA′
denotes a

section of S′, and no choice of a local frame or coordinates is assumed) the
map C4 −→ O(1)⊕ O(1) is given by V AA′ −→ V AA′

πA′ . Its kernel consists
of vectors of the form πA′

ρA with ρ ∈ S varying. The twistor distribution is
therefore D = O(−1)⊗ S and so there is a canonical LA ∈ Γ(D⊗O(1)⊗ S),
given by LA = πA′∇AA′, where A = 0, 1.

• Euclidean case. The conjugation σ : S′ → S′ given by σ(π0′ , π1′) =
(π1′ ,−π0′) descends from S′ to an involution σ : PT → PT such that
σ2 = −Id. The twistor curves which are preserved by σ form a four–
real parameter family, thus giving rise to a real four–manifold MR. If
ζ ∈ PT then ζ and σ(ζ) are connected by a unique real curve. The
real curves do not intersect as no two points are connected by a null
geodesic in the positive definite case. Therefore there exists a fibration
of the twistor space PT over a real four–manifold MR. A fibre over a
point p ∈MR is a copy of a CP

1. The fibration is not holomorphic, but
smooth.

In the Atiyah–Hitchin–Singer [18] version of the correspondence the
twistor space of the positive definite metric is a real six–dimensional
manifold identified with the projective spin bundle P (S′)→ MR.

Given a conformal structure [g] on MR one defines an almost–complex–
structure on P (S′) by declaring

{πA′∇AA′, ∂/∂λ}

to be the anti–holomorphic vector fields in T 0,1(P (S′)).

Theorem 3.3 (Atiyah–Hitchin–Singer [18]) The six–dimensional
almost–complex manifold

P (S′)→MR

parametrises almost–complex–structures in (MR, [g]). Moreover P (S′)
is complex iff [g] is ASD.

• Neutral case. The spinor conjugation σ : S′ → S
′ given by σ(π0′ , π1′) =

(π0′ , π1′) allows an invariant decomposition of a spinor into its real and
imaginary part, and thus definition of real α-surfaces [224, 74].
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In general π = Re(π)+iIm(π), and the correspondence space F = P (S′)
decomposes into two open sets

F+ = {(p, [π]) ∈ F ; Re(πA′)Im(πA′

) > 0} = MR ×D+,

F− = {(p, [π]) ∈ F ; Re(πA′)Im(πA′

) < 0} = MR ×D−,

where D± are two copies of a Poincare disc. These sets are separated by
a real correspondence space F0 = MR×RP1. The correspondence spaces
F± have the structure of a complex manifold in a way similar to the
AHS Euclidean picture. There exists an RP

1 worth of real α–surfaces
through each point in MR, and real twistor distribution consisting of
vectors tangent to real α–surfaces defines a foliation of F0 with quotient
PT0 which leads to a double fibration:

MR

r←− F0
q−→ PT0.

The twistor space PT is a union of two open subsets PT+ = (F+) and
PT− = (F−) separated by a three-dimensional real boundary PT0.

These reality conditions are relevant in the twistor approach to inte-
grable systems (see §6), integral geometry, twistor inspired computa-
tions of scattering amplitudes (see §7), as well as recent applications
[16] of the Index Theorem [23] which do not rely on positivity of the
metric. The discussion in this subsection has assumed real analyticity
ofMR. The approach of LeBrun and Mason [148] based on holomorphic
discs can weaken this assumption.

3.3 Kodaira Deformation Theory

One way of obtaining complex three–manifolds with four–parameter families
of O(1) ⊕ O(1) curves comes from the Kodaira deformation theory applied
to PT = CP

3 − CP
1

L

                                  U                              
U

Figure 3. Curvature on (MC, g) corresponds to deformations of PT

The normal bundle N(Lp) ≡ T (PT )|Lp
/TLp

∼= O(1)⊕O(1) satisfies

H1(Lp, N(Lp)) = 0.

The Kodaira theorems [136] imply that there exist infinitesimal deformations
of the complex structure of PT which preserve the four parameter family MC
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of CP1s, as well as the type of their normal bundle. Moreover this deformed
family admits an isomorphism

H0(Lp, N(Lp)) ∼= TpMC

identifying tangent vectors to MC with pairs of linear homogeneous polyno-
mials in two variables. This identification allows to construct a conformal
structure on MC arising from a quadratic condition that both polynomials
in each pair have a common zero. There are some examples of ASD Ricci
flat metrics arising from explicit deformations - see [121, 75]. A method of
constructing such examples was pioneered by George Sparling.

3.3.1 Twistor solution to the holonomy problem.

The Kodaira approach to twistor theory has given rise to a complete clas-
sification of manifolds with exotic holonomy groups (holonomy groups of
affine connections which are missing from Berger’s list). The first land-
mark step was taken by Robert Bryant [49] who generalised the Kodaira
theorems and the twistor correspondence to Legendrian curves. Complex
contact three–folds with 4–parameter family of Legendrian rational curves
with normal bundle O(2)⊕O(2) correspond to four manifolds MC such that
TpMC

∼= C2⊙C2⊙C2 and there exists a torsion–free connection with holon-
omy group GL(2,C). The theory was extended by Merkulov to allow Legen-
drian deformations of more general submanifolds [165, 166]. This work lead
to a complete classification by Merkulov and Schwachhofer [167].

3.4 Gravitational Instantons

Gravitational instantons are solutions to the Einstein equations in Rieman-
nian signature which give complete metrics whose curvature is concentrated
in a finite region of a space-time. The non–compact gravitational instantons
asymptotically ‘look like’ flat space. While not all gravitational instantons
are (anti)–self–dual (e.g. the Euclidean Schwarzchild solution is not) most
of them are, and therefore they arise from Theorems 3.2 and 3.3.

• There exists a large class of gravitational instantons which depend on
a harmonic function on R3:

g = V (dx2+dy2+dz2)+V −1(dτ +A)2, where ∗3 dV = dA. (3.10)

where V and A are a function and a one–form respectively which do not
depend on τ . This is known as the Gibbons-Hawking ansatz [96]. The
resulting metrics are hyper–Kähler (or equivalently anti–self–dual and
Ricci flat). The Killing vector field K = ∂/∂τ is tri–holomorphic - it
preserves the sphere of Kähler forms of g. It gives rise to a holomorphic
vector field on the corresponding twistor space which preserves the
O(2)–valued symplectic structure on the fibres of PT→ CP

1. Therefore
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there exists an associated O(2) valued Hamiltonian, and the Gibbons–
Hawking twistor space admits a global fibration over the total space of
O(2). Conversely, any twistor space which admits such fibration leads
to the Gibbons–Hawking metric on the moduli space of twistor curves
[207, 115].

• An example of a harmonic function in (3.10) which leads to the Eguchi–
Hanson gravitational instanton is V = |r + a|−1 + |r − a|−1. It is
asymptotically locally Euclidean (ALE), as it approaches R

4/Z2 for
large |r|. The corresponding twistor space has been constructed by
Hitchin [107].

• A general gravitational instanton is called ALE if it approaches R4/Γ at
infinity, where Γ is a discrete subgroup of SU(2). Kronheimer [138, 139]
has constructed ALE spaces for finite subgroups

Ak, Dk, E6, E7, E8

of SU(2). In each case the twistor space is a three–dimensional hyper–
surface

F (X, Y, Z, λ) = 0

in the rank three bundle O(p) ⊕ O(q) ⊕ O(r) → CP
1, for some inte-

gers (p, q, r), where F is a singularity resolution of one of the Klein
polynomials corresponding to the Platonic solids

XY −Zk = 0, X2+Y 2Z+Zk = 0, . . . , X2+Y 3+Z5 = 0 (isocahedron.)

The twistor spaces of these ALE instantons admit a holomorphic fi-
bration over the total space of O(2n) for some n ≥ 1. In case of Ak

one has n = 1 and the metric belongs to the Gibbons–Hawking class.
In the remaining cases n > 1, and the resulting metrics do not admit
any tri–holomporphic Killing vector. They do however admit hidden
symmetries (in the form of tri–holomorphic Killing spinors), and arise
from a generalised Legendre transform [150, 77, 41, 45].

• There are other types of gravitational instantons which are not ALE,
and are characterised by different volume growths of a ball of the given
geodesic radius [66, 106]. They are ALF (asymptotically locally flat),
and ‘inductively’ named ALG, ALH spaces. Some ALF spaces arise
from the Gibbons–Hawking ansatz (3.10) where

V = 1 +

N∑

m=1

1

| x− xm |

where x1, . . . ,xN are fixed points in R
3 (the corresponding twistor

spaces are known), but others do not. In [65] some progress has been
made in constructing twistor spaces for Dk ALF instantons, but finding
the twistor spaces, or explicit local forms for the remaining cases is a
open problem.
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There also exist compact examples of Riemannian metrics with ASD con-
formal curvature. The round S4 and CP

2 with the Fubini–Study metric are
explicit examples where the ASD metric is also Einstein with positive Ricci
scalar. A Ricci–flat ASD metric is known to exist on the K3 surface, but the
explicit formula for the metric is not known.

LeBrun has proven [147] that there are ASD metrics with positive scalar

curvature on any connected sum NCP
2
of reversed oriented complex projec-

tive planes. This class, together with a round four–sphere exhaust all simply
connected possibilities. The corresponding twistor spaces can be constructed
in an algebraic way. The strongest result belongs to Taubes [202]. If M is
any compact oriented smooth four–manifold, then there exists some N0 > 0
such that

MN = M#NCP
2

admits an ASD metric for any N ≥ N0.

4 Local Twistors

There exists at least three definitions of a twistor which agree in a four–
dimensional flat space. The first, twistors as α–planes, was used in the
last section, where its curved generalisation lead to the Nonlinear Gravi-
ton construction and anti–self–duality. The second, twistors as spinors for
the conformal group, relies heavily on maximal symmetry and so does not
generalise to curved metrics. The last, twistors as solutions to the twistor
equation, leads to interesting notions of a local twistor bundle and a local
twistor transport [182, 70, 184, 196] which we now review.

We shall make use of the isomorphism (2.4). Let Zα be homogeneous
coordinates of a twistor as in §2. Set Zα = (ωA, πA′). Differentiating the
incidence relation (2.7) yields

∇A′
(AωB) = 0, (4.11)

where ∇A′
A = ǫAB∇BA′ , and ǫAB = −ǫBA is a (chosen) symplectic forom on

S∗ used to raise and lower indices.
The space–time coordinates (x, y, z, t) are constants of integration result-

ing from solving this equation on MC. Let us consider (4.11) on a general
curved four–manifold, where it is called the twistor equation. It is conformally
invariant under the transormations of the metric g → Ω2g. The prolongation
of the twistor equation leads to a connection on a rank–four vector bundle
S⊗E [1]⊕S′ called the local twistor bundle. Here E [k] denotes a line bundle of
conformal densities of weight k. This connection also called the local twistor
transport, and is given by [70]

Da

(
ωB

πB′

)
=

(
∇aω

B − ǫA
BπA′

∇aπB′ − PABA′B′ωB

)
,
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where Pab is the Schouten tensor of conformal geometry given by

Pab =
1

2
Rab −

1

12
Rgab.

The holonomy of the local twistor transport obstructs existence of global
twistors on curved four manifolds (all local normal forms of Lorentzian met-
rics admitting solutions to (4.11) have been found in [149]).

The tractor bundle is isomorphic to the exterior square of the local twistor
bundle. It is a rank–six vector bundle T = E [1] ⊕ T ∗M ⊕ E [−1], and its
connection induced from the local twistor transform is

Da




σ
µb

ρ


 =




∇aσ − µa

∇aµb + Pabσ + gabρ
∇aρ− Pa

bµb


 . (4.12)

This connection does not arise from a metric, but is related to a pull back of
the Levi–Civita connection of the so-called ambient metric to a hypersurface.
See [88, 59] as well as [100] for discussion of the ambient construction.

The point about the connection (4.12) is that it also arises as a prolon-
gation connection for the conformal to Einstein equation

(∇a∇b + Pab)0σ = 0, (4.13)

where (. . . )0 denotes the trace–free part. If σ satisfies (4.13) where ∇a and
Pab are computed from g, then σ−2g is Einstein [146]. Therefore the holonomy
of (4.12) leads to obstructions for an existence of an Einstein metric in a given
conformal class [30, 146, 99, 78]. The Bach tensor is one of the obstructions
arising from a requirement that a parallel tractor needs to be annihilated by
the curvature of (4.12) and its covariant derivatives.

Conformal geometry is a particular example of a parabolic geometry - a
curved analog of a homogeneous space G/P which is the quotient of a semi-
simple Lie group G by a parabolic subgroup P . Other examples include
projective, and CR geometries. All parabolic geometries admit tractor con-
nections. See [60] for details of these construction, and [101, 98, 84] where
conformally invariant differential operators have been constructed. Examples
of such operators are the twistor operator ωA →∇A′(AωB) underlying (4.11)
and the operator acting on Sym4(S∗)

CABCD → (∇C
(A′∇D

B′) + PCD
A′B′)CABCD.

This operator associates the conformally invariant Bach tensor to the anti–
self–dual Weyl spinor.

5 Gauge Theory

The full second–order Yang Mills equations on R4 are not integrable, and
there is no twistor construction encoding their solutions in an unconstrained
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holomorphic data on PT - there do exist ambitwistor constructions [220, 127,
105] in terms of formal neighbourhods of spaces of complex null geodesics,
but they do not lead to any solution generation techniques. As in the case of
gravity, the anti–self–dual sub–sector can be described twistorialy, this time
in terms of holomorphic vector bundles over PT rather than deformations of
its complex structures.

5.1 ASDYM and the Ward Correspondence

Let A ∈ Λ1(R4)⊗ g, where g is some Lie algebra, and let

F = dA+ A ∧A.

The anti–self–dual Yang–Mills equations are

∗F = −F (5.14)

where ∗ : Λ2 → Λ2 is the Hodge endomorphism depending on the flat metric
and the orientation on R

4. These equations together with the Bianchi identity
DF := dF + [A, F ] = 0 imply the full Yang–Mills equations D ∗ F = 0.

Let us consider (5.14) on the complexified Minkowski space MC = C4

with a flat holomorphic metric and a holomorphic volume form. Equations
(5.14) are then equivalent to the vanishing of F on each α–plane in MC.
Therefore, given ζ ∈ PT, there exists a vector space of solutions to

laDaΦ = 0, maDaΦ = 0, where ζ = span{l, m} ∈ TMC. (5.15)

The converse of this construction is also true, and leads to a twistor corre-
spondence for solutions to ASDYM equations

Theorem 5.1 (Ward [210]) There is a one-to-one correspondence between:

1. Gauge equivalence classes of ASD connections on MC with the gauge
group G = GL(n,C),

2. Holomorphic rank–n vector bundles E over twistor space PT which are
trivial on each degree one section of PT→ CP

1.

The splitting of the patching matrix FE for the bundle E into a product
of matrices holomorphic on U0 and U1 is the hardest part of this approach
to integrable PDEs. When the Ward correspondence is reduced to lower
dimensional PDEs as in §6, the splitting manifests itself as the Riemann–
Hilbert problem in the dressing method.

To obtain real solutions on R4 with the gauge group G = SU(n) the
bundle must be compatible with the involution σ preserving the Euclidean
slice (compare §33.2). This comes down to detFE = 1, and

FE
∗(ζ) = FE(σ(ζ)),

where ∗ denotes the Hermitian conjugation, and σ : PT → PT is the anti–
holomorphic involution on the twistor space which restricts to an antipodal
map on each twistor line. See [218, 223].
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5.2 Lax pair

Consider the complexified Minkowski spaceMC = C4 with coordinates w, z, w̃, z̃,
and the metric and orientation

g = 2(dzdz̃ − dwdw̃), vol = dw ∧ dw̃ ∧ dz ∧ dz̃.

The Riemannian reality conditions are recovered if z̃ = z, w̃ = −w, and
the neutral signature arises if all four coordinates are taken to be real. The
ASDYM equations (5.14) arise as the compatibility condition for an overde-
termined linear system LΨ = 0,MΨ = 0, where

L = Dz̃ − λDw, M = Dw̃ − λDz, (5.16)

where Dµ = ∂µ + [Aµ, ·], and Ψ = Ψ(w, z, w̃, z̃, λ) is the fundamental matrix
solution. Computing the commutator of the Lax pair (L,M) yields

[L,M ] = Fz̃w̃ − λ(Fww̃ − Fzz̃) + λ2Fwz = 0,

and the vanishing of the coefficients of various powers of λ gives (5.14). The
geometric interpretation of this is as follows: for each value of λ ∈ CP

1

the vectors l = ∂z̃ − λ∂w, m = ∂w̃ − λ∂z span a null plane in MC which
is self–dual in the sense that ω = vol(l, m, . . . , . . . ) satisfies ∗ω = ω. The
condition (5.14) takes the equivalent form ω ∧F = 0, thus F vanishes on all
α planes. For a given YM potential A, the lax pair (5.16) can be expressed
as L = l + l A,M = m+m A.

5.3 Instantons

Instantons, i. e. solutions to ASDYM such that
∫

R4

Tr(F ∧ ∗F ) <∞

extend from R
4 to S4. The corresponding vector bundles extend from PT

to CP
3. The holomorphic vector bundles over CP

3 have been extensively
studied by algebraic geometers. All such bundles (and thus the instantons)
can be generated by the monad construction [19].

One way to construct holomorphic vector bundles is to produce extensions
of line bundles, which comes down to using upper-triangular matrices as
patching functions. Let E be a rank–two holomorphic vector bundle over
PT which arises as an extension of a line bundle L⊗O(−k) by another line
bundle L∗ ⊗O(k)

0 −→ L⊗O(−k) −→ E −→ L∗ ⊗O(k) −→ 0. (5.17)

If k > 1 then the YM potential A is given in terms of a solution to the linear
zero–rest–mass field equations with higher helicity.
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Theorem 5.2 (Atiyah–Ward [22]) Every SU(2) ASDYM instanton over
R4 arises from a holomorphic vector bundle of the form (5.17)

Advances made in anti–self–dual gauge theory using the twistor methods lead
to the studies of moduli spaces of connections. Such moduli spaces continue
to play an important role in mathematical physics [153], and gave rise to
major advances in the understanding of topology of four–manifolds [71].

5.4 Minitwistors and magnetic monopoles

Another gauge theoretic problem which was solved using twistor methods
[110, 111] is the construction of non–abelian magnetic monopoles.

Let (A, φ) be a su(n)–valued one–form and a function respectively on R3,
and let F = dA+A∧A. The non–abelian monopole equation is a system of
non–linear PDEs

dφ+ [A, φ] = ∗3F (5.18)

These are three equations for three unknowns as (A, φ) are defined up to
gauge transformations

A −→ gAg−1−dg g−1, φ −→ gφg−1, g = g(x, y, z) ∈ SU(n) (5.19)

and one component of A can always be set to zero.
Following Hitchin [110] define the mini twistor space Z to be the space of

oriented lines in R3. Any oriented line is of the form v + su, s ∈ R where
u is a unit vector giving the direction of the line, and v is orthogonal to u
and joints the line with some chosen point (say the origin) in R3. Thus

Z = {(u,v) ∈ S2 × R
3, u.v = 0}.

For each fixed u ∈ S2 this space restricts to a tangent plane to S2. The
twistor space is the union of all tangent planes – the tangent bundle TS2

which is also a complex manifold TCP1.

L

L
P  

                                                                                                                                                                                       R
3                                                                                                                                                                                                                             TCP

                                                                                                                                                                                             CP
                                                                                                                                                                                                                                   1

    1

P

Figure 4. Minitwistor Correspondence.

Given (A, φ) solve a matrix ODE along each oriented line x(s) = v + su

dV

ds
+ (ujAj + iφ)V = 0.

This ODE assigns a complex vector space Cn to each point of Z, thus giving
rise to a complex vector bundle over the mini–twistor space. Hitchin shows
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[109] that monopole equation (5.18) on R
3 holds if and only if this vector

bundle is holomorphic.
The mini–twistor space of Hitchin can also be obtained as a reduction of

the twistor space PT = CP
3−CP

1 by a holomorphic vector field correspond-
ing to a translation in R4. An analogous reduction of ASDYM on R4 by a
rotation gives nonabelian hyperbolic monopoles [14].

In the next section we shall discuss how more general reductions of PT
give rise to solution generation techniques for lower dimensional integrable
systems.

6 Integrable Systems

Most lower dimensional integrable systems arise as symmetry reductions of
anti–self–duality equations on (M, [g]) in (2, 2) or (4, 0) signature.

The solitonic integrable systems are reductions of ASDYM as their linear
systems (Lax pairs) involve matrices. The program of reducing the ASDYM
equations to various integrable equations has been proposed and initiated by
Ward [213] and fully implemented in the monograph [158]. The dispersionless
integrable systems are reductions of anti–self–duality equations on a confor-
mal structure [76, 75]. A unified approach combining curved backgrounds
with gauge theory has been developed by Calderbank [57].

In both cases the reductions are implemented by assuming that the Yang–
Mills potential or the conformal metric are invariant with respect to a sub-
group of the full group of conformal symmetries. Conformal Killing vectors
on MC correspond to holomorphic vector fields on PT. The resulting reduced
system will admit a (reduced) Lax pair with a spectral parameter coming
from the twistor α–plane distribution. It will be integrable by a reduced
twistor correspondence of Theorem 3.2 or Theorem 5.1.

6.1 Solitonic equations

The general scheme and classification of reductions of ASDYM on the com-
plexified Minkowski space involves a choice of subgroup of the complex con-
formal group PGL(4,C), a real section (hyperbolic equations arise from AS-
DYM in neutral signature), a gauge group and finally canonical forms of
Higgs fields.

We have already seen one such symmetry reduction: ASDYM on R4

invariant under a one–dimensional group of translations generated by K =
∂/∂x4 reduce to the non–abelian monopole equation (5.18). The Higgs field
on R3 is related to the gauge potential A on R4 by φ = K A. The analogous
reduction from R2,2 leads to Ward’s integrable chiral model on R2,1 [214]. It
is solved by a minitwistor construction, where the minitwistor space Z from
the description of monopoles is instead equipped with an anti–holomorphic
involution fixing a real equator on each twistor line [215]. The solitonic
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solutions are singled out by bundles which extend to compactified mini–
twistor spaces [217, 185]. Below we give some examples of reductions to two
and one dimensions.

• Consider the SU(2) ASDYM in neutral signature and choose a gauge
Az̃ = 0. Let Tα, α = 1, 2, 3 be two by two constant matrices such that
[Tα, Tβ] = −ǫαβγTγ . Then ASDYM equations are solved by the ansätze

Aw = 2 cosφ T1 + 2 sinφ T2, Aw̃ = 2T1, Az = ∂zφ T3

provided that φ = φ(z, z̃) satisfies

φzz̃ + 4 sinφ = 0

which is the Sine–Gordon equation. Analogous reductions of ASDYM
with gauge group SL(3,R) or SU(2, 1) lead to the Tzitzeica equations
and other integrable systems arising in affine differential geometry [75].
A general reduction by two translations on R4 lead to Hitchin’s self–
duality equations which exhibit conformal invariance and thus extend
to any Riemann surface [112].

• Mason and Sparling [156] have shown that any reduction to the AS-
DYM equations on R2,2 with the gauge group SL(2,R) by two transla-
tions exactly one of which is null is gauge equivalent to either the KdV
or the Nonlinear Schrodinger equation depending on whether the Higgs
field corresponding to the null translation is nilpotent or diagonalisable.
In [157] and [158] this reduction has been extended to integrable hier-
archies.

• By imposing three translational symmetries one can reduce ASDYM
to an ODE. Choose the Euclidean reality condition, and assume that
the YM potential is independent on xj = (x1, x2, x3).

Select a gauge A4 = 0, and set Aj = Φj , where the Higgs fields Φj are
real g–valued functions of x4 = t. The ASDYM equations reduce to
the Nahm equations

Φ̇1 = [Φ2,Φ3], Φ̇2 = [Φ3,Φ1], Φ̇3 = [Φ1,Φ2].

These equations admit a Lax representation which comes from taking
a linear combination of L and M in (5.16). Let

B(λ) = (Φ1 + iΦ2) + 2Φ3λ− (Φ1 − iΦ2)λ
2.

Then

Ḃ = [Φ2 − iΦ1,Φ3] + 2[Φ1,Φ2]λ− [Φ2 + iΦ1,Φ3]λ
2

= [B,−iΦ3 + i(Φ1 − iΦ2)λ]

= [B,C], where C = −iΦ3 + i(Φ1 − iΦ2)λ.
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The Nahm equations with the group of volume–preserving diffeomor-
phism of some three-manifold as the gauge group are equivalent to ASD
vacuum equations [13].

• Reductions of ASDYM by three–dimensional abelian subgroups of the
complexifed conformal group PGL(4,C) lead to all six Painlevé equa-
tions [158]. The coordinate–independent statement of the Painleve
property for ASDYM was first put forward by Ward [212]: If a so-
lution of ASDYM on MC = C4 has a non- characteristic singularity,
then that singularity is at worst a pole. Another twistor approach to
the Painlevé equation is based on SU(2)–invariant anti–self–dual con-
formal structures [205, 113, 164].

6.2 Dispersionless systems and Einstein–Weyl equa-

tions

There is a class of integrable systems in 2+1 and three dimensions which do
not fit into the framework described in the last section. They do not arise
from ASDYM and there is no finite–dimensional Riemann–Hilbert problem
which leads to their solutions. These dispersionless integrable systems admit
Lax representations which do not involve matrices, like (5.16), but instead
consist of vector fields.

Given a four–dimensional conformal structure (M, [g]) with a non-null
conformal Killing vector K, the three–dimensional space W of trajectories
of K inherits a conformal structure [h] represented by a metric

h = g − K ⊗K

|K2| .

The ASD condition on [g] results in an additional geometrical structure on
(W, [h]); it becomes an Einstein-Weyl space [130]. There exists a torsion–free
connection D which preserves [h] in the sense that

Dh = ω ⊗ h (6.20)

for some one–form ω, and the symmetrised Ricci tensor of D is proportional
to h ∈ [h]. These are the Einstein–Weyl equations [62]. They are conformally
invariant: If h −→ Ω2h then ω −→ ω + 2d(log Ω).

Most known dispersionless integrable systems in 2 + 1 and 3 dimensions
arise from the EW equations. Consult [75, 57, 86] for the complete list. Here
we shall review the twistor picture, and examples of integrable reductions.

Theorem 6.1 (Hitchin [109]) There is a one–to–one correspondence be-
tween solutions to Einstein–Weyl equations in three dimensions, and two–
dimensional complex manifolds Z admitting a three parameter family of ra-
tional curves with normal bundle O(2).
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Figure 5. Einstein–Weyl twistor correspondence.

In this twistor correspondence the points of W correspond to rational O(2)
curves in the complex surface Z, and points in Z correspond to null surfaces
in W which are totally geodesic with respect to the connection D.

To construct the conformal structure [h] define the null vectors at p in
W to be the sections of the normal bundle N(Lp) vanishing at some point
to second order. Any section of O(2) is a quadratic polynomial, and the
repeated root condition is given by the vanishing of its discriminant. This
gives a quadratic condition on TW.

To define the connection D, let a direction at p ∈ W be a one–dimensional
space of sections of O(2) which vanishing at two points ζ1 and ζ2 on a line Lp.
The one–dimensional family of twistor O(2) curves in Z passing through ζ1
and ζ2 gives a geodesic in W in a given direction. The limiting case ζ1 = ζ2
corresponds to geodesics which are null with respect to [h] in agreement with
(6.20). The special surfaces in W corresponding to points in Z are totally
geodesic with respect to the connection D. The integrability conditions for
the existence of totally geodesic surfaces is equivalent to the Einstein–Weyl
equations [62].

The dispersionless integrable systems can be encoded in the twistor corre-
spondence of Theorem 6.1 if the twistor space admits some additional struc-
tures.

• If Z admits a preferred section of κ−1/2, where κ is the canonical bundle
of Z, then there exist coordinates (x, y, t) and a function u on W such
that

h = eu(dx2 + dy2) + dt2, ω = 2utdt

and the EW equations reduce to the SU(∞) Toda equation [216, 147]

uxx + uyy + (eu)tt = 0.

This class of EW spaces admits both Riemannian and Lorentzian sec-
tions (for the later replace t by it or x by ix), which corresponds to
two possible real structures on Z. It can be characterised onW by the
existence of twist–free shear–free geodesic congruence [206, 58].

• If Z admits a preferred section of κ−1/4, then there exist coordinates
(x, y, t) and a function u on W such that

h = dy2 − 4dxdt− 4udt2, ω = −4uxdt (6.21)
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and the EW equations reduce to the dispersion-less Kadomtsev-Petviashvili
(dKP) equation [76]

(ut − uux)x = uyy.

This class of EW spaces can be real only in the Lorentzian signature.
The corresponding real structure on Z is an involution which fixes an
equator on each CP

1 and interchanges the upper and lower hemisphere.
The vector field ∂/∂x is null and covariantly constant with respect to
the Weyl connection, and with weight 1/2. This vector field gives rise
to a parallel real weighted spinor, and finally to a preferred section of
κ−1/4. Conversely, any Einstein–Weyl structure which admits a covari-
antly constant weighted vector field is locally of the form (6.21) for
some solution u of the dKP equation.

The most general Lorentzian Einstein–Weyl structure corresponds [79] to the
Manakov–Santini system [152]. Manakov and Santini have used a version of
the non–linear Riemann–Hilbert problem and their version of the inverse
scattering transform to give an analytical description of wave breaking in
2 + 1 dimensions. It would be interesting to put their result in the twistor
framework. The inverse scattering transform of Manakov and Santini is
intimately linked to the Nonlinear Graviton construction. The coordinate
form of the general conformal anti–self–duality equation [79] gives the master
dispersionless integrable system in (2 + 2) dimensions, which is solvable by
methods developed in [33, 225].

7 Twistors and scattering amplitudes

Although there has been a longstanding programme to understand scatter-
ing amplitudes in twistor space via ‘twistor diagrams’ [182, 116], the modern
developments started with Witten’s twistor-string [221] introduced in 2003.
The fallout has now spread in many directions. It encompasses recursion
relations that impact across quantum field theory but also back on the origi-
nal twistor-diagram programme, Grassmannian integral formulae, polyhedral
representations of amplitudes, twistor actions and ambitwistor–strings.

7.1 Twistor-strings

The twistor string story starts in the 1980’s with a remarkable ampitude
formula due to Parke and Taylor [172], and its twistorial interpretation by
Nair [169]. Consider n massles gluons, each carrying a null momentum
pi

µ, i = 1, . . . , n. The isomorphism (2.4) and the fomula (2.5) imply that
null vectors are two-by-two matrices with zero determinant, and thus rank
one. Any such matrix is a tensor product of two spinors

pi
µ = πi

A′

π̃A
i .
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In spinor variables, the tree level amplitude for two negative helicity gluons
and n− 2 positive leads to [172]

An =
< πiπj >

4 δ4(
∑n

k=1 pk)

< π1π2 >< π2π3 > · · · < πn−1πn >< πnπ1 >
, (7.22)

where < πkπl >:= ǫA′B′πk
A′
πl

B′
, and ith and jth particles are assumed to

have negative helicity, and the remaining particles have positive helicity.
Nair [169] extended this formula to incorporate N = 4 supersymmetry and
expressed it as an integral over the space of degree one curves (lines) in
twistor space using a current algebra on each curve.

Witten [221] extended this idea to provide a formulation of N = 4 super
Yang–Mills as a string theory whose target is the super–twistor space CP

3|4

(see, e.g. [87]). This space has homogeneous coordinates ZI = (Zα, χa)
with Zα the usual four bosonic homogeneous coordinates and χb four anti–
commuting Grassmann coordinates b = 1, . . . , 4. The model is most simply
described [35] as a theory of holomorphic maps3 Z : C → T from a closed
Riemann surface C to nonprojective twistor space. It is based on the world-
sheet action

S =

∫

C

WI ∂̄Z
I + aWIZI .

Here a is a (0, 1)-form on the worldsheet C that is a gauge field for the
scalings (W,Z, a) → (e−αW, eαZ, a + ∂̄α). A prototype of this action was
introduced in [192]

To couple this to Yang–Mills we introduce a d-bar operator ∂̄ + A on a
region PT in super twistor space with A a (0, 1)-form taking values in some
complex Lie algebra, and the field J which is a (1, 0) form with values in
the same Lie algebra on the worldsheet, and generates the current algebra4.
When expanded out in the fermionic variables χ, such A with ∂̄A = 0 give
a Dolbeault cohomology classes in H1(PT,O(p)) for p = 0, . . . ,−4 corre-
sponding via the Penrose transform to the full multiplet for N = 4 super
Yang-Mills from the positive helicty gluon to the fermions and scalars down
to the negative helicity gluon.

The standard string prescription for amplitudes leads to a proposal for
tree amplitudes for n particles as correlators of n ‘vertex operators’ when
Σ = CP

1. These take the form Vi =
∫
C
tr(AiJ) where Ai is the ‘wave

function’, i.e., twistor cohomology class H1(PT,O), of the ith particle in the
scattering, usually taken to be a (super-)momentum eigenstate and tr is the
Killing form on the Lie algebra. The correlators break up into contributions
corresponding to the different degrees d of the map from C = CP

1 into twistor
space. The degree d contribution gives the so-called NkMHV amplitudes with

3These are D1 instantons in Witten’s original B-model formulation.
4To turn this into a string theory one includes a chiral analogue of worldsheet gravity

which when gauge is fixed just lead to ghosts and a BRST operator.
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d = k + 1 where the MHV degree5 k corresponds to k + 2 of the external
particles having negative helicity with the rest positive.

Let us give a flavour of the formula. If C is a degree-d curve in twistor
space, and Md is the moduli space of curves containing C, then, for any
(0, 1) form A on CP

3|4 with values in gl(N,C), we can restrict A to C and
consider ∂A|C . The perturbative YM scattering amplitude is then obtained
from the generating function

∫

Md
R

det(∂A|C)dµ,

where dµ is a holomorphic volume form onMd andMd
R
a real slice ofMd.

The role of det(∂̄A|C) is as the generating function of current algebra corre-
lation functions on the curve C. The nth variation of this functional with
respect to A as a (0, 1)-form on C gives the current algebra correlator that
forms the denominator of the Parke–Taylor factor when C is a line (together
with some multitrace terms). In the full formula, the nth variation with
respect to A with values in the cohomology classes of linearized gauge fields
for momentum eigenstates, is then the scattering amplitude as a function
of these linear fields. In principle, the genus of C determines the number
of loops in the perturbative series, but the formulae have not been verified
beyond genus 0.

This correlation function was evaluated for momentum eigenstates by
Roiban, Spradlin and Volovich (RSV) [188] as a remarkably compact integral
formula for the full S-matrix of N = 4 super Yang-Mills. The NkMHV
component is expressed as an integral over the moduli of rational curves of
degree k − 1 with n marked points, a space of bosonic|fermionic dimension
(4d+ n)|4(d+1). Furthermore, many of the integrals are linear6 and can be
performed explicitly reducing to a remarkable compact formula with 2d+2+n
bosonic integrations against 2d+6+n|4(n−d−1) delta-functions (the excess
bosonic delta functions expressing momentum conservation). The resulting
formula for the amplitude is, in effect, a sum of residues, remarkably simpler
than anything that had been found before and difficult to imagine from the
perspective of Feynman diagrams.

7.2 Twistor-strings for gravity

The Witten and Berkovits twistor string models also compute amplitudes
of a certain conformal gravity theory with N = 4 supersymmetry [36]. So
it demonstrated the principle that gravity might be encoded in this way.

5MHV stands for maximal helicity violating because amplitudes vanish when k < 0 or
k > n− 2.

6It is simplfied by the fact that the space of rational curves of degree d in CP
3|4 can be

represented as homogeneous polynomials of degree d in homogeneous coordinates, C2 for
CP

1 and so it is a vector space of dimension 4(d + 1)|4(d+ 1) modulo GL(2) which also
acts on the marked points.
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However, it is a problem for the construction of loop amplitudes for super
Yang-Mills as these conformal gravity modes will of necessity run in the loops,
although it is in any case still not clear whether the model can be used to
calculate loop amplitudes even with conformal supergravity. Furthermore,
conformal gravity is widely regarded as a problematic theory, certainly quan-
tum mechanically because it necessarily contains negative norm states.

Although there was an early version of the Parke Taylor MHV formulae
for gravity found in the 1980s [34], the one given by Hodges [119] was the
first to manifest permutation invariance and enough structure to suggest a
version of the RSV Yang-Mills formula for maximally supersymmetric N = 8
gravity tree amplitudes. This was discovered by Cachazo and Skinner [53],
see [56] for a proof and further developments. An underlying twistor string
theory for this formula has been constructed by Skinner [193], who showed
that N = 8 supergravity is equivalent to string theory with target CP3|8 but
now with a supersymmetric worldsheet and some gauged symmetries.

7.3 The CHY formulae and ambitwistor strings

The twistor string theories of Witten, Berkovits, and Skinner gave a remark-
able new paradigm for how twistor theory might encode genuine physics.
However, their construction very much relies on maximal supersymmetry and
it is unclear how more general theories might be encoded. The framework is
also tied to four dimensions (for some this is a positive feature). Although
the string paradigm suggested that multiloop processes should correspond to
amplitudes built from higher genus Riemann surfaces, the details seem to be
at best unclear and quite likely obstructed by anomalies.

In a parallel development, already before the Cachazo–Skinner formula
for gravity amplitudes, Cachazo and coworkers had been exploring the rela-
tionship between the twistor-string amplitude formulae and a family of ideas,
originating in conventional string theory, whereby gravity amplitudes can be
expressed as the square of Yang-Mills amplitudes via the KLT relations [133]
and their extensions to colour-kinematic duality [40]. This led to an inde-
pendent twistor inspired formula for four dimensional gravity [52]. Cachazo,
He and Yuan (CHY) subsequently refined and developed these ideas into
a remarkably simple and elegant scheme for formulae analagous to those
arising from the twistor-string for gauge theories and gravity (and a certain
bi-adjoint scalar theory) in all dimensions [54]. The framework has by now
been extended to a variety of theories [55]. In all of these formulae, the
KLT idea of expressing gravity amplitudes as the square of Yang-Mills is
essentially optimally realized (indeed much more elegantly than in KLT).

The essential observation on which all these formulae rely is that the
residues on which all the twistor-string formulae of RSV and so on are sup-
ported are configurations of points on the Riemann sphere obtained from
solutions to the scattering equations. These are equations for n points on
the Riemann sphere given the data of n null momenta subject to momentum
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conservation that can be in any dimension. They were first used in [85] to
construct classical string solutions associated to n particle scattering, but
also arose from strings at strong coupling in calculations of Gross and Mende
[102]. On the support of the scattering equations, the complicated momen-
tum kernel that forms the quadratic form in the gravity equals Yang-Mills
squared in the KLT relations is diagonalized.

The question remained as to what the underlying string theory for these
formulae might be. This was answered in [163] based in its simplest form on
a chiral, infinite tension limit of the ordinary bosonic string

S =

∫

C

P · ∂X − eP 2/2 (7.23)

where (X,P ) are coordinates on T ∗M , and P is understood to take values
in 1-forms on the Riemann surface C. The Lagrange multiplier e restricts
the target space to a hypersurface P 2 = 0 and is a gauge field for the action
of the geodesic spray D0 = P · ∇. This is just a Lagrangian expression
of the usual (holomorphic) symplectic reduction of the cotangent bundle to
the space of (scaled) null geodesics A. In four dimensions this has become
known as ambitwistor space as it is both the cotangent bundle of projective
twistor space and of projective dual twistor and so chooses neither chirality.
However, it clearly exists in all dimensions as {T ∗M |P 2=0}/D0, the space of
complexified null geodesics. It can be defined for geodesically convex regions
in a complexification of any analytic Lorentzian or Riemannian manifold of
any dimension. If dim(M) = d then dim(PA) = 2d− 3.

The study of ambitwistor space for d = 4 started in 1978 with construc-
tions by Witten and Isenberg, Yasskin and Green for Yang-Mills. In four
dimensions, ambitwistor space of complexified Minkowski space MC can be
expressed as a quadric ZαWα = 0 in PT × PT

∗. The ambitwistor space is
a complexification of the real hypersurface PN ⊂ PT introduced in §2. In
[220, 127, 105] (see also [135]) it was shown that generic analytic connections
on bundles on Minkowski space correspond to topologically trivial bundles on
ambitwistor space. The full Yang-Mills equations can be characterised as the
condition that the corresponding holomorphic vector bundles on PA extend
to a third formal neighbourood in PT× PT

∗. The Witten version [220, 105]
reformulated this third order extension condition to the simple requirement
of the existence of the bundle on a supersymmetric extension of ambitwistor
space built from N = 3 supersymmetric twistor spaces. This generalises the
Ward correspondence (Theorem 5.1) but unlike this Theorem, it has not yet
led to any effective solution generating techniques.

Gravitational analogues of the Witten, Isenberg, Yasskin and Green were
developed by LeBrun, Baston and Mason [30, 146].

Theorem 7.1 (LeBrun [143]) The complex structure on PA determines
the conformal structure (MC, [g]). The correspondence is stable under defor-
mations of the complex structure on PA which preserve the contact structure
P · dX.
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The existence of 5th order formal neighbourhoods corresponds to vanishing
of the Bach tensor of the space-time and, when the space-time is algebraically
general, a 6th order extension corresponds to the space-time being conformally
Einstein.

The string theories based on the action (7.23) have the property that they
need to use ambitwistor cohomology classes arising from the ambitwistor
Penrose transform in amplitude calculations; it is the explicit form of these
cohomology classes that imposes the scattering equations. In order to ob-
tain Yang-Mills and gravitational amplitudes from the theory, worldsheet
supersymmetry needs to be introduced by analogy with the standard RNS
superstring string and/or other worldsheet matter theories for other theo-
ries [63] (current algebras are required for the original biadjoint scalar and
Yang-Mills formulae).

The ambitwistor string paradigm extends to many different geometrical
realizations of ambitwistor space. Ambitwistor strings have also been con-
structed that are analogues of the Green-Schwarz string and the pure spinor
string [28, 38]. In particular, the original twistor strings can be understood
simply as arising from the four-dimensional realization of A as the cotangent
bundle of projective twistor space. However, the approach of [92] uses the
four dimensional realization of ambitwistor space as a subset of the product of
twistor space with its dual to provide an ambidextrous twistorial ambitwistor
string theory leading to new amplitude formulae for Yang-Mills and gravity
that no longer depend on maximal supersymmetry.

In another direction, one can realize ambitwistor space geometrically as
the cotangent bundle T ∗I of null infinity I, [2, 93]. This gives new insight
into the relationship between asymptotic ‘BMS’ symmetries and the soft
behaviour of scattering amplitudes, i.e., as the momentum of particles tends
to zero.

An important feature of ambitwistor strings is that they lead to exten-
sions of the CHY formulae to ones for loop amplitudes. The original models
of [156] are critical in 26 dimensions for the bosonic string and in 10 for the
type II RNS version with two worldsheet supersymmetries. This latter model
was developed further in [3], where it was shown that this theory does indeed
correspond to full type II supergravity in 10 dimensions and that anomalies
all vanish for the computation of loop amplitudes. An explicit conjecture for
a formula at one loop for type II supergravity amplitudes was formulated
using scattering equations on a torus in a scheme that in principle extends to
all loop orders. This formula was subsequently shown [94] to be equivalent
to one on a Riemann sphere with double points that does indeed compute
amplitudes at one loop correctly. Furthermore, on the Riemann sphere it is
possible to see how to adapt the formulae to ones for many different theo-
ries in different dimensions with varying amounts of supersymmetry. There
remains the challenge to extend this to a scheme that transparently extends
to all loop orders, but although the framework does work at two loops, it
already there needs new ideas [95].
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Much remains to be understood about how ambitwistor strings reformu-
late conventional massless theories, particularly at higher loops or in the
nonlinear regime. One key advance in the latter direction was the construc-
tion of ambitwistor strings on a curved background [4] providing a kind of
Lax pair for the full type II supergravity equations in 10 dimensions in the
sense that the quantum consistency of the constraints is equivalent to the
full nonlinear supergravity equations.

7.4 Twistor actions

At degree d = 0 Witten argued that the effective field theory of the twistor-
string is given by the twistor space action holomorphic Chern-Simons action

I =

∫

CP
3|4

Ω ∧ Tr(A∂A+
2

3
A ∧ A ∧A),

where Ω = d3|4Z is the natural holomorphic super-volume-form on CP
3|4

(which turns out to be super-Calabi-Yau), and A is a (0, 1)-form. The field
equations from this action are simply the integrability of the ∂̄-operator,
∂̄2
A = 0. Interpreting this via the Ward transform (Theorem 5.1) on super -

twistor space now leads to the spectrum a of full N = 4 super Yang–Mills,
but with only anti-self-dual interactions.

The question arises as to whether one can complete this action to provide
the full interactions of super Yang-Mills. This can be done by borrowing the
leading part of the twistor-string computation and some experimentation
shows that the interaction term

Sint =

∫

M1

R

log det(∂A|C)dµ,

gives the correct interactions for full maximally supersymmetric Yang-Mills
theory [159, 43]. Here the integration is nonlocal in twistor space being firstly
a nonlocal one over degree one rational curves (i.e., lines) and secondly over
M1

R
which is a real form of the complexified Minkowski space - for example

the Euclidean space. This can be shown to be equivalent to the standard
space-time action in Euclidean signature in a gauge that is harmonic on
twistor lines as introduced in [223]. Despite its nonlocality, the resulting
Feynman diagram formalism is remarkably tractable in an axial gauge in
which a component of A is set to zero in the direction of some fixed reference
twistor Z∗. This then leads [42] to the so-called MHV diagram formalism
introduced informally in [51] by considering twistor-strings on degree-d curves
that arise as disjoint unions of d lines. In this formalism, amplitudes are
computed via 1/p2 propagators and interaction vertices built from (7.22) via
a simple off-shell extension.

The formulation of these rules via a twistor action allowed them to be
expressed with maximal residual symmetry beyond the choice of Z∗, and
extended from amplitudes to more general correlation functions.
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Perhaps the most important application of these ideas was to a proof
of the conjectured amplitude/Wilson loop duality. This conjecture, origi-
nally due to Alday and Maldacena, arose from AdS/CFT considerations and
stated that the planar amplitude (i.e., in the large N limit for gauge group
SU(N)) for maximally supersymmetric Yang Mills is equivalent to a Wil-
son loop around a null polygon whose sides are made from the momenta of
the particles in the scattering amplitude; the planarity condition means that
there is a trace order for the gluons in the amplitude as in (7.22) that deter-
mines the ordering of the momenta around the polygon. This null polygon is
particularly easy to represent in twistor space, as it corresponds naturally to
a generic polygon there and one can express the Wilson-loop on space-time
in terms of a holomorphic Wilson-loop in twistor space that can be com-
puted via the twistor action. In the Feynman diagram framework that arises
from the twistor action in the axial gauge, one finds that the Feynman dia-
grams for the holomorphic Wilson loop are dual to those for the amplitude
in the sense of planar duality, giving a proof of the amplitude/Wilson loop
correspondence at the level of the loop integrand [162].

Much of this and related material is reviewed in [1] although this does
not cover more recent work on stress-energy correlators [67] and form factors
[137, 68].

7.5 Recursion relations, Grassmannians and Polytopes

The BCFW recursion relations [47] were a separate major development that
sprang from the twistor string. These use an elegant Cauchy theorem argu-
ment to construct tree amplitudes with n external particles from amplitudes
with fewer external particles. The idea is to introduce a complex parameter
z by shifting the spinor representation of the momenta of two of the particles

(πA′

1 π̃A
1 , π

A′

n π̃A
n )→ (πA′

1 (π̃A
1 + zπ̃A

n ), (π
A′

n − zπA′

1 )π̃A
n ) .

As a function of z, an amplitude only has simple poles where the momenta
flowing through an internal propagator becomes null (i.e., where some partial
sum of momentum becomes null as z varies). The residues at these poles are
products of the tree amplitudes on each side of the propagator evaluated
at the shifted momentum. Thus the amplitude can be expressed as the
residue of 1/z times the amplitude at z = 0, but this can be expressed
as the sum of the residues where z 6= 0 which are expressed in terms of
lower order amplitudes (it turns out that there are many good situations
where there is no contribution from z =∞). These recursion formulae have
subsequently been extended quite widely to include gravity and Yang-Mills
in various dimensions and with varying amount of supersymmetry [6], and to
loop integrands of planar gauge theories [9]. Andrew Hodges [117] expressed
the recursion relations in terms of twistor diagrams providing a generating
principle that had hitherto been missing.
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Further work on expressing BCFW recursion in twistor space [7, 160]
led to a Grassmannian contour formula for amplitudes and leading singu-
larities (invariants of multiloop amplitudes) [8]. A related Grassmannian
formula was obtained soon after, which with hindsight, gave the analagous
Grassmannian contour integral formulae for the Wilson-loop, but, by the
amplitude/Wilson-loop duality, gives an alternative but quite different con-
tour integral formula for amplitudes [161] that are rather simpler than the
original Grassmannian formulae.

This led to a programme to understand the residues that arise in the
Grassmannian. It emerged that a key idea that is required is to think of
the Grassmannians as real manifolds and study their positive geometry [10]
leading to simple combinatorial characterisations of the residues.

The twistors for the Wilson-loop version of the amplitude were first in-
troduced by Hodges [118] and called momentum twistors as they can be
obtained locally from the momenta for the amplitude. He used them in a
completely novel way to show that the redundancy and choices built into a
BCFW decomposition of an amplitude could be understood geometrically in
momentum twistor space as arising from different dissections of a polyhedron
that describes the whole amplitude as one global object. This was originally
only realized for NMHV amplitudes, but the programme has continued and
matured into the amplituhedron [11] (although this is essentially the dual of
Hodges’ original picture which has still not been fully realized).

8 Gravitization of Quantum Mechanics and

Newtonian Twistors

In [178, 180] Roger Penrose has argued that a collapse of the wave function
is a real process taking place in time, and is not described by the Schrödinger
equation. Gravity should have a role to play in explaining the nature of the
quantum collapse, and the conventional views on quantum mechanics may
need to be revisited in the process. The key idea is that the superposition of
massive states must correspond to superposition of space–times. This makes
the notion of the stationary states ambiguous - its definition depends on a
choice of a time–like Killing vector. In [178] an essentially Newtonian calcu-
lation led to the conclusion that the timescale of instability of one stationary
state is τ ≈ ~/EG where EG is the gravitational energy need to separate
two mass distributions. To attempt a twistor understanding of this relation
one first has to take a Newtonian limit of the relativistic twistor correspon-
dence. Analysing the incidence relation (2.7) in the flat case shows that such
a limit corresponds to the jumping line phenomenon [80]. If PTc is a family
of twistor spaces corresponding to a flat Minkowski space parametrised by a
finite speed of light c, then exploiting the holomorphic fibration PTc → O(2)
one finds

lim
c→∞

(PTc = O(1)⊕O(1)) = PT∞ = O ⊕O(2).
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In the Nonlinear Graviton and Ward correspondences (Theorems 3.2 and
5.1) the presence of jumping lines corresponds to singularities of the metric
or gauge fields on a hypersurface [204, 114, 195]. In the Newtonian twistor
theory all curves jump.

The curved twistor space in the Newtonian limit can be understood by
considering a one–parameter family of Gibbons–Hawking metrics (3.10)

g(c) = (1 + c−2V )(dx2 + dy2 + dz2) + c2(1 + c−2V )−1(dτ + c−3A)2.

and taking a limit c→∞ in the Gibbons–Hawking twistor space. This leads
to a Newton–Cartan theory [61, 208] on the moduli space M of O(2) ⊕ O
curves. The limit of {c−2g(c), g−1(c),∇(c)}, where ∇(c) is the Levi–Civita
connection of g(c) is a triple consisting of one–form θ = dτ giving a fibration
M → R (absolute time), a degenerate inverse metric hij = δij on the fibres,
and a torsion–free connection preserving h and θ with the only nonvanishing
Christoffel symbols given by Γi

ττ = 1
2
δij∂jV .
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Figure 6. Newton Cartan space-time.

9 Other developments

Our presentation has omitted many interesting applications of twistor meth-
ods. A good reference are articles which appeared in Twistor Newsletter
published by the Twistor group in Mathematical Institute between 1976 and
2000, and reprinted in [123, 155]. In particular they contain a discussion
of the notoriously difficult and still unsolved Googly Problem of encoding
self–dual (rather than anti–self–dual) and more general Einstein spaces in a
geometry of PT. See also [24, 141, 122, 179] (and [21, 17] for recent ideas of
how four–manifolds can be used in constructing some geometric models of
matter). Below we list some other developments.

In integral geometry the role of space–time and twistor space is turned
round. The subject goes back to F. John [129] who considered the prob-
lem of characterising functions φ on the space or oriented lines in R3 such
that φ(L) :=

∫
L
f if f : R3 → R. The image of this integral transform is

characterised by the kernel of the ultra-hyperbolic Laplacian. The resulting
integral formula (see [129, 224]) is an analytic continuation of Penrose’s con-
tour integral formula (1.1). A general relationship between twistor theory
and integral geometry has been explored in [97, 171, 25] and in the language
of systems of 2nd order ODEs in [103, 64].
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Quasi local mass. In the study of asymptotic properties of space–time one
seeks satisfactory definitions of energy and momentum which make sense
at extended, but finite regions of space–time, i. e. at the quasi local level.
One definition associates these quantities to an arbitrary two–surface in space
time, and makes use of twistor theory of such surfaces [177, 72, 199]. Another
twistor approach to this problem [154] is based on the Ashtekar variables [12].

In loop quantum gravity twistors provide a description of spin network
states. This approach has been developed by Simone Speziale and his col-
laborators. See [90, 140]. Their description of symplectic structures and
canonical quantisation builds on a work of Tod [203].

Space-time points are derived objects in twistor theory. They become
‘fuzzy’ after quantisation which initially seemed to be an attractive frame-
work for quantum gravity. One possible realisation of this may be a non–
commutative twistor theory [201, 89, 132, 104, 46, 151] as well as the most
recent twistorial contribution from Roger Penrose [181].

10 Conclusions

Twistor theory is a set of non-local constructions with roots in 19th century
projective geometry. By now twistor ideas have been extended and general-
ized in many different directions and applied to many quite different problems
in mathematics and physics. A unifying feature is the correspondence be-
tween points in space-time and holomorphic curves or some family of higher
dimensional compact complex submanifolds in a twistor space, together with
the encoding of space-time data into some deformed complex structure.

Complex numbers play an essential role. The local non–linearities of
anti–self–dual Einstein and Yang–Mills equations in space–time are replaced
by algebro–geometric problems in twistor–space or by the Cauchy–Riemann
equations in the Atiyah–Hitchin–Singer picture adapted to Riemannian real-
ity conditions. Twistor and ambitwistor string theories couple directly to the
complex geometry of twistor and ambitwistor spaces; the cohomology classes
on twistor and ambitwistor spaces that represent space-time fields restrict di-
rectly to give the vertex operators of the corresponding theories. These give
a coherent twistorial formulation of many of the physical theories that lead
to striking simplifications over their space-time formulations, particularly in
amplitude calculations. There is now clear evidence that the conventional
string is tied up with the geometry of twistors in ten dimensions [39].

We wish twistor theory and its founder all the best on the occasion of
their respective anniversaries. We expect the future of twistor theory to be
at least as productive as its past, and that there will much to celebrate in
this 21st century.
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Painlevé-III. Classical Quantum Gravity 12, 15351547.

47



[207] Tod, K.P. & Ward, R.S. (1979) Self-dual metrics with self-dual Killing
vectors Proc. R. Soc. A368 411-427.

[208] Trautman, A. (1963) Sur la theorie newtonienne de la gravitation.
Comptes Rendus Acad. Sci. Paris 247, 617.

[209] Uvarov, D. V. (2007) Supertwistor formulation for higher dimensional
superstrings, Class. Quant. Grav. 24, 5383

[210] Ward, R. S. (1977) On self-dual gauge fields, Phys. Lett. 61A, 81-2.

[211] Ward, R. S. (1980) Self-dual space-times with cosmological constant
Comm. Math. Phys. 78, 1-17.

[212] Ward, R. S. (1984) The Painleve Property for the Selfdual Gauge Field
Equations. Phys. Lett. A102 279.

[213] Ward, R. S. (1985) Integrable and solvable systems and relations among
them, Phil. Trans. R. Soc. A 315, 451-7.

[214] Ward, R. S. (1988) Soliton solutions in an integrable chiral model in
2 + 1 dimensions. J. Math. Phys. 29, 386–389.

[215] Ward, R. S. (1989) Twistors in 2+1 dimensions, J. Math. Phys. 30
2246-2251.

[216] Ward, R. S. (1990) Einstein-Weyl spaces and SU(∞) Toda fields. Clas-
sical Quantum Gravity 7 (1990), L95L98.

[217] Ward, R. S. (1998) Twistors, geometry, and integrable systems. In The
Geometric Universe. Science, Geometry and the Work of Roger Penrose,
edited by S. A. Huggett et al., Oxford University Press.

[218] Ward R. S. & Wells R. (1990) Twistor Geometry and Field Theory,
CUP.

[219] West, S. (2007) Neutral ASD Conformal Structures with Null Killing
Vectors. Thesis. University of Cambridge.

[220] Witten, E. (1978) An interpretation of classical Yang-Mills theory,
Phys. Lett., 77B, 394-8.

[221] Witten, E. (2004) Perturbative Gauge Theory As A String Theory In
Twistor Space, Comm. Math. Phys. 252 189–258.

[222] Wolf, M. (2010) A First Course on Twistors, Integrability and Gluon
Scattering Amplitudes, J.Phys.A A43 393001.

[223] Woodhouse, N. M. J. (1985) Real methods in twistor theory. Classical
Quantum Gravity 2, 257–291.

48



[224] Woodhouse, N. M. J.(1992) Contour integrals for the ultrahyperbolic
wave equation. Proc. Roy. Soc. London Ser. A 438, 197206.

[225] Yi, G. and Santini, P. M. (2015) The Inverse Spectral Transform for
the Dunajski hierarchy and some of its reductions, I: Cauchy problem
and longtime behavior of solutions. J. Phys. A: Math. Theor. 48. 215203.

49


