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On differential passivity of physical systems

F. Forni, R. Sepulchre, A.J. van der Schaft

Abstract— Differential passivity is a property that allows to  the increase of internally stored energy cannot exceedrthe e
check with a pointwise criterion that a system is incrementy  ergy supplied by the environment. It is still unclear whethe
passive, a property that is relevant to study interconnecte 5 gimjjar interpretation exists for differential passjvit

systems in the context of regulation, synchronization, anesti- Wi id i diti that ch terize dif
mation. The paper investigates how restrictive is the propey, € provide geometric conditions that characterize dair-

focusing on a class of open gradient systems encountered imet ~ ferential passivity with respect to a quadratic storage and
coenergy modeling framework of physical systems, in partidar ~ we further investigate the general conditions for a class

the Brayton-Moser formalism for nonlinear electrical circuits. of gradient systems. Our motivation stems from the fact
that a broad class of physical models admits a gradient
representation in the coenergy framework, see e.g. [8], [15
Motivated by the differential Lyapunov framework pre-after the work of Brayton and Moser for nonlinear electrical
sented in [5] to study incremental stability, the recentgrap Circuits.
[16] and [6] introduced the notion of differential dissijvétly The paper provides a number of simple examples that il-
to study incremental dissipativity, the analog of incretaén lustrate that differential passivity may hold for a sizabless
stability for open systems. A related notion of tranvers@f physical models and that feedback can help achieving the
incremental dissipativity is presented in [10] to studyitim property, as for passivity.
cycles. The interest for incremental notions of stabilihda  The paper is organized as follows: we revisit the notion of
dissipativity stems from analysis and design problems coulifferential passivity in Sectiof]ll, providing the defiiins
cerned with a distance between arbitrary solutions ratrer t of prolonged and variational system, differential storaayed
a distance to a particular (equilibrium) solution : suchkpro differential supply rate. Geometric conditions for paigiv
lems include regulation and tracking, estimation and oleser are summarized in Sectidn]lll. Sectign] IV studies the dif-
design, or synchronization, coordination, and entrainmen ferential passivity of gradient systems. Differential giaisy
The differential approach to study incremental propertiefr Brayton-Moser systems is characterized in Sedfipn V.
is rooted in contraction theory, following the influenti@er  Notation: Given a manifold¥, and a point: of X, T,X denotes
of [9] in control theory. In short, incremental propertiels 0 thetangent spacef X' atz. TX := | J, . o {2} x T X is thetangent
dynamical systems can be studied differentially, through t bundle Given two Qanifoldﬂl_and Xz and a mappingf : X1 —
variational equations. The analysis of the variationakigm 2. f IS of classC™, k € N, if its coordinate representation is
(or more precisely of the prolonged system) is appealing ¢ function. A curve y on a given ma;|foldX8;Z¢,t)a mapping
because it leads to pointwise conditions to be verified on the’ ['CR— &. We sometime us() to denote=5.=.

| d field h h h luti in th I,, is the identity matrix of dimensiom. Given a vector, v”
prolonged vector field rather than on the solutions, In thBenotes the transpose vectorwfGiven a matrix)M we say that

spirit of Lyapunov theory. The approach is geometric ands > 0 or M < 0 if v“Mv > 0 or v“ Mv < 0, for eachw, re-
the differential properties are potentially simpler to ifyer spectively. Given the vectofw, ..., vn }, Span({vi, ..., vn}) =
than their incremental counterparts. fv13x,.. A0 € Rsto = 370, A} In coordinates, we
The present paper pursues the developments of [16] afgnote the differential 02 a functiofi at = by %ﬁf). The Hessian
[6] to investigate how restrictive it is to check differeaiti of f atx is denoted by L5
passivity on a given system. More fundamentally, we are A distanced : X x X — R>o on a manifoldX’ is a positive
interested in which class of physical systems are differefiunction that satisfiesl(x,y) = 0 if and only if = = y, for each
tially passive and what is the physical interpretation @& thz,y € X andd(z,2) < d(=,y) + d(y, 2) for eachz,y,z € X.
property, if any. The success of passivity as an analysis afdsetS C X' is bounded ifsup, ,cs d(x,y) < oo for any given
design concept of system theory stems from its clear enerdigtanced on X. A curvey : I — X is boundedwhen its image
interpretation in physical systems: passivity expresbas t is bounded. Given a manifold’, a set ofisolated pointsQ2 C X
satisfies: for any distance functiahon X’ and any given pait, z2
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wherexr € X, andu € Y, andy € Y. f andg;,i € {1...m} wherev;, i € {1,...,7}, andh;, i € {1,...,q}, are C!
are vector fieldsh : X — ). vector fields.

Contraction analysis requires sufficient differentiapili A function 6S : TX — Rsq is a differential storage
(C?) of the solutionsy(t, ) to (@), from any initial con- function for the dynamical systent in (@) if there exist
dition zp € X (see, e.g. [9], [12]). To enforce the desiredc;,c, € R>g, p € R>q, and a functionF : TX — Rx
regularity, we make the following standing assumption.  such that, for eacl(mc,fé:v) eTXx, -

Assumption 1:f and g;, i € {1...m}, are C? vector
fields (g; denotes the-th column ofg). h: X — Y is aC? c F(z,6z)? < 0S(z,02) < co F(w,éz)" . )
function. The input signak : R — ¢/ is a C? function.

To a system of the forn[kl) one can associatega-
tional systengiven by

0S and F' must satisfy the following conditions. Given a
set of isolated point§) C X,

(iu) 6S andF areC?, Vz e X, Vox € H, \ {0};

y _ Of(=x Og(x)u

ox = —agéﬁﬁ 00 51 + g()Su @) () 8S(x,6z) = 8S(x,02y) and F(x,0z) = F(x,8zy),

oy = =5, 0w . V(z,0x) € TX such that(z, éz) = (z, dxp) + (z, dxy),
We call prolonged systenthe combination of[{1) and[](2), oxp € Moy @NAox, € Ve,

following [2], [16]. A coordinate free representation ofeth (i) F(x,0x) >0, Vae X\ Q Vox € H, \{0};
prolonged system is provided by the notions of complete angy F(z, Asz) = AF(z,6z), VA>0, Vz€X, Véz € H,;

vertical lifts, as shown in [2], [16]. .

Under Assumption[]1, for every solutiow,u,y)(-) to ) 5(:06,5)(:01\—;—2(;1;]23;5 F(?Mel)g {%’}fjih thawir, %
(), the solutiongdz, éu, 5y)(-) to @) represent infinitesimal /\g tor an iver%7e:§1§ v o
variations on(z,u, y)(-), that is, the infinitesimal mismatch 2 y9 ' -

between(z, u, y)(-) and neighboring solutions. This intuitve ~ WhenV, = (), F(z,dx) provides a non symmetric norm
representation is clarified in RemaEk 1. Pursuing this intuen each tangent spadg.X. A suggestive notation fof’ is
ition, if the dynamics of [{2) guarantee that converges given by |§z|, which combined to[{5) provides an intuitive
to zero then, necessarily, the solutionsﬂo (1) must comvergnterpretation of the differential storage functi®fi as a local
towards each other. A Lyapunov-based analysis of the comeasure of the displacement length. Bgr # @, it may
nection between contraction 6f and incremental stability occur that)S(x, dx1) = 65 (x, dxz) for 0 # dx1 —dxs € V,.
can be found in [5]. In such a case),S measures the length of ea&h by looking
Remark 1:For eachs € [0,1] let v(s) be an initial con- only at its horizontal component. An example of a differahti
dition for () andu(-, s) an input signal. Assume that:) € storage withV,, # 0 is provided bydS(z, 6z) = dy* y.

C? andu(-,-) € C%. Then, for eachs € [0,1] (-, s) is a It is worth to mention that a differential storage function
solution to L) from the initial condition(s) under the action 45 is also a horizontal Finsler-Lyapunov function [5, Section
of the inputu(-,s). Define the displacementz(t,s) :=  VII]. Therefore, S endows X with the structure of a
La(t,s) anddu(t, s) := Zu(t,s). Then, by chain rule and pseudo-metric space, connecting differential passivitd a
differentiability, we have that%z?x(t,s) = 63_:;5(15,5) — incremental stabilit_y [14_], [1]. An _extended discussiordan
%[f( (t,s)) + g(z(t, s)ult,s)] = 8f(ﬂé;t-,5 Sx(t,s) + examples are prov_lded in [5, Sec_thns_IV and VIII]. _
Gg(w(tbsa)g)u(t,s)éx(t"s) + g(a(t, s))Su(t, s). Thus,8z(-, s) is The notion of differential passivity introduced below is

just passivity lifted to the tangent bundle.

Definition 2: The dynamical systenx in () is differen-
tially passiveif there exists a differential storage functiéf
such that

a solution to [R) from the initial conditioﬁ’% under the
action of the inputdu(-,s). Moreover, the output signal
Sy(t, s) is given by 24L2) — L) 5y (p ). J
B. Differential passivity t
Henceforth we provide the notion of differential storage 05(z(t), 6z(t)) — 6.5(x(0), 6z(0)) < /0 Sy ()" du(r) dr

function and differential passivity. These notions areetak (6)
from [6, Sections 3 and 4] and restrict the definitions ifor all + > 0 and all solutions(z, u, y, 6z, du, dy)(-) to the
[16, Section 4] to the case in which the functiéhin [16, prolonged systerr{klﬂ(Z). .

Definition 4.1 and Proposition 4.3] is a candidate Finslerthe equivalent formulation %55@@)7535@)) <
Lyapunov function [5]. This restriction makes possible thgy(t)Tgu(t) coincides with [16, Definition 4.1]. In
connection between differential passivity and inCI’erTient@()mparison to passivity, differential passi\/ity builds a
stability. _ o relation between the energy - or costdS associated
Definition 1: Let ©2 be a set of isolated point if’. For = to an infinitesimal variation of the solution:(¢), and
eachxz € X, suppose thal;; ' can be subdivided into a the energy associated to an infinitesimal variation on

vertical distributionV, C T, X the input/output signals. In comparison to incremental
V, = Span({vy(z), ..., v.(x)}) 0<r<d, (3) Ppassivity [4], [13], dyTéu does not impose any
prescribed formAyTAu = (y1 — y2)T(u1 — u2) to

and ahorizontal distribution?{, C T complementary to the input/output mismatch. Instead, following Remark

Vo, 18. Ve &y = T, fl, given a parameterizationu(s),y(s) such that
Ha = Span({hi (@), ..., h(x)})  0<g<d—r (4 (u(0),y(0)) = (u1,91)()) and (u(1),y(1)) = (u2,42)(")



we have that thaty, — y2)"(u, — u) is replaced by  For the casey(xz) = B, for example, [[9) restricts the
Loy T ouls) 1o Note that ! 6%(S)T6u(s) ds = AyTAy  differential storage within the class of metriad (z) such

0 OJs Os s z . . .
only if y(s) = sy1 +y2(1 — s) andu(s) = suy +ug(1—s). that >, wgm(i )[Bu]; = 0, which is satisfied by constant

This is particularly relevant at integration along solaip metrics M (z) = P = P™ > 0. In comparison to passivity,
since an initial parameterization satisfying the idengibove M (x) = P is not an issue for linear systems
at timet = 0 dogs not preserve the identity for> 0, in i — Azt Bu
general (on nonlinear models). { y = Cx

We conclude the section by illustrating two basic results
of differential passivity. The reader is referred to [6]6]1 (A € R™*", B € R»*¥, andC € R”*"). In fact, for passive
for further results. linear systems one can always fiitl= P” > 0 such that

Theorem 1:Let X in ({ll) be differentially passive with a
differential storageys W(Eose vertical distributionV, = 0 ATP+PA < 0 ¢t = PB, (12)
for eachaz € X. Then, [[L) is incrementally stable. 12 which also establishes the equivalence between passivity a

Proof: For ju = 0, differential passivity guarantees differential passivity for linear systems. But/(z) = P

thatdS < 0. ForV, = 0, §S is a Finsler-Lyapunov function, determines a limitation for the satisfaction fff (8) on syste
thus incremental stability follows from [5, Theorem 1]®  of the form

Theorem 2:Let X; and ¥, be differentially passive dy- i = f(x) + Bu (13)
namical systemd](1). Lét;, y;) be the input and the output T
of &;, for i = 1,2. Then, the dynamical systel arising since it reduces[|8) toagﬁ) P+ P%(f) < 0. This last

(11)

from the feedback interconnection inequality coincides with the early convergence condition

of Demidovich [3]. See also [11, Theorem 2.29]. It also

Ur ==Yz U1, U2 = Y1 v (") resembles a classical Lyapunov inequality based on quedrat

is differentially passive fromv = (v, vy) € Uy x Uy tO Lyapunov functions and linearized vector fields. In fact,
y=(y1,y2) € V1 X Vo. ,,in the neighborhood of stable equilibria. passivity and

Proof: TakedS=38514895. 65 <dyidvy+0y-0v,. m  differential passivity are related, since locally around

assive systems satisfidd2)" p 4+ P2 <  jocall
IIl. THE GEOMETRY OF DIFFERENTIAL PASSIVITY P y r Oz — y

aroundz,.
| For quadratic differential storage functionsS = The relevance of the condition enforced B}/ (9) is readily
70z M(x)ox (Riemannian metrics)M (z) > 0, the differ-  jjystrated by the following example.

ential passivity of systems of the forrﬂ (1) is characterized Example 1:Consider the simple dynamics éngiven by
geometrically by the following conditions. For eache X

andu € U, &= —sin(z) +g(x)u  glr)=1. (14)
of () af(x)T OM () Forg(z) =1, (E) allows for differential storages of the form
M(z)=5—=+—5— M(z)+ . a—xi[f(x))]i <0 (8) 65 = 1622 forwhichés = — cos(z)dz? +dxdu. Thus, [TH)
i is differentially passive along solution curves whose rng
() Oal(x)u’l OM (x belongs to[—Z, 2. In fact, (§) holds only for: € [—Z, Z].
M (z) g(;x) + g(gx) M)+ 6:5(» )[g(ff)u]z‘ =0 Using a non constant metrid] (8) can be satisfied in the
i ¢ ) whole set(—m, 7). Indeed, taking
Oh(x) " _ 2 _ 1

Ox
In fact, along the solutions to the prolonged system, th@) reads
time derivative ofdS is given by S = oz’ (mys(x) + 2 cos(x) sin(x)?
T

mg(x,u))ox+ox’ M(x)g(x)dx, wherem ¢ (z) andmy(z, u) - - 5
are given by the left-hand sides ¢t (8) afll (9), respectively 1+cos(z)  (1+ cos(z))

@) guarantees that the system is contracting doe=  However, [P) does not hold, unless the input magiix) = 1
0, thus incrementally stable with respect to the geodesin (E) is replaced byy(z) = vcos(3), wherey € R. In
distance induced by the metrdd. The reader will notice that such a case, followin O)|]14) is differential passiveéhwi
@) is just the usual condition for passivifEl™) f(x) < 0 respect to the outpuf = vy 1:’;53)2) . J
lifted to the tangent bundle. In a similar Waﬁr(lo) guaraste  The discussion above makes clear that differential passiv-
thatdy = M (x)g(x)dx, thus enforcing a differential version ity for nonlinear systems of the fornfij (1) can be established
of the passivity conditior?g%g(x) = h(z)T. only for suitable pairsf(x) and g(x). The latter, through

A notable difference with respect to passivity is providedp), defines the class of feasible metrics. The former, tiinou
by condition [p), which requires the columns g@fr) to be (B), is required to be a contractive vector field with respect
killing vector fields for the metrid/ (x). This guarantees that to a feasible metric (see [5], [9]). Finally, in analogy with
u does not appear in the right-hand sidedsf, as required passivity, the (differential) passivating output depeadshe
by @). In this sense, the input matriXx) restricts the class differential storage and on the input matrix, as estabtishe
of metrics that one can use to establish differential pagsiv by @).

- 1. (16




IV. OPEN GRADIENT SYSTEMS
A. General formulation and prolonged system
Given a smooth manifoldt’, a Riemannian metri€) on

X, and a potential functiolr : X — R, the local coordinates

representation of a gradient system is given by

oV (x)

Q(z)z = — o + Bu a7)

Following the discussion of the previous section, the siofdy

Example 2:[Example [ revised] Taking/(z) =
cos(z) andg(x) = 1 the dynamics in[(]4) reads
oV (x))

Note that V'(x) is convex in the region—7,7
62V(1) o T 7T

I8 = cos(z) > 0 for o € [-Z,Z]. In fact, (2]) is
differentially passive with§S = §z2 andy = .

For g(z) = cos(% ) defineQ(z) = ﬁ andV(x) =

1 —

(23)

Z,Z] since

differential passivity for gradient systems amounts tafyer —4cos(5). Then, ) is well defined if—m, 7) and reads

that f(z) := Q(z) 2% and g(z) :=

Q(r)~'B satisfy
@, @ for some differential storages =

1627 M (z)0x.

The prolonged system is given b[kl?) and by the varia-

tional system

. 2 €T
Q(z)ox = — [6 Viz)

Ox?

596—}—364 +T (w, u, 5)V_(x)) ox

ox
(18)
where the matrixX® satisfies

r<x,u, a‘gff)>5x = [Z agiz) x]:c

I" is homogeneous of degree one % and u, thus
converges to zero asapproaches an extremal pointidfand
u converges td). Note thatl’ = 0 when@(x) is constant.

B. Differential passivity via natural metric and convexity
For M(z) =

hold, provided thata V. > 0 for all z € X. In fact, along
the solutions of the prolonged system, we have

X 2
55 = —ox Taa (2 )52 4807 Bou

—_—
>0

(19)

Thus, the gradient system is differentialy passive witlpees
to the outputy = B x.

The case of@(x) non constant is more involved. For
M(z) = Q(zx) conditions [B) and[{9) may not hold, in

Q(z) = P > 0 (constant), the differential
storagedS = 1627 Pz guarantees that botf] (8) anfl (9)L62T M (x)dz where M (x) =

sm(:z:)
ey .

V(z) is convex in(—m, 7), however differential dissipativity
cannot be achieved because the té&ifn+ I' + Q in (@)
shows a dependence an J

Remark 2:When [2B) does not hold, we can still achieve
local differential passivity under the assumption of s$tric
convexity of V, for small signaI5u Given a (sufficiently
small) neighborhood’(z.), V(@) - of for x € C(xe),
while the last three terms |rﬁ22) are bounded by a function
of the form b(z.)|u||2 ””)| by homogeneity. ThusjS <

—a + b(ze)|ul ‘6‘/@) |62]? + d2T Béu < 62T Bou for
x € C(z.) and for|u| andC(x.) sufficiently small. 4

oV (x)
Ox

Q(z)t = — +u = —2sin (g)—i—u:— +u

C. Differential passivity beyond the natural metric

We consider the case of differential storage functidfis=
Q(z)PQ(x) for some given
matrix P = PT > 0. A first consequence of the definition
of M(x) is that@ can be relaxed to a pseudo-Riemannian
metrics, that is,Q(x) is not necessarily positive but still
invertible. In contrast to this generalization effort, vesstrict

Q to the class of pseudo-metrics defined®yr) = a(z)

ox2 !

wheregq is a function differentiable sufficiently many times.
Under these assumptions, for
o 94(@)

y=C—5— (25)

general. In fact, along the solutions of the prolonged sgste (B). (@), and [10) are equivalent to the following conditon

the differential storagéS = 1627 Q(z)dz has derivative

0%V (z)

58 = — 627 ) oz + 627 Béu
( )5 T 6:cTr< av(“’)) Sz
or
+ ;5 o ( u, ) (20)
where

Q (w,u, 61(;;:6)) = Z %fc)xz : (22)

and [13) and |]9) are equivalent to the following inequality
0%V (z)
T
ox (— 92

When (22) holds for eactr, §z) € TX andu € U, then )
is differentially passive with respect to the output BT .

+FT+P+Q) sx<0. (22)

Theorem 3:Considerg : X — R and Q(z) = £4(x).
Then (18) is differentially passive with respect to the aitp
= Caf’a—(;) if there exists a matrix® = P > 0 such that

forall z €¢ X

TV poia) + QP = 0 (2sa)
T = (26b)

68 = 3627Q(x)PQ(x)dx is the differential storage
() is a generalized convexity property bn We get
classical convexity wher(x) = P = I. For P positive
definite, the particular selection of the output= Ca‘g—(j)
guarantees thal 7) has relative degree one. In fact,
ey — (T (y) 4 Bu), whereCB = BT PB.
Flnally, note that forq( ) = V(z), the inequality in [(26)
is alwa s satisfied. This is not surprising since, by defining
W) (@) reads: = —e + Bu, y = Ce.



Proof of Theoren]]3Define () :— [azq(z)} ! a‘g_gf), where the state-s[ace is given by flow and effarts (f,e),

oz?
2 -1 V is a the potential, and)(z) satisfies
g(a) = | T Bu, andh(z) := CT 242 "and consider P H ()
the prolonged systenﬂ(lm(Z). By exploiting the differanti Q(z) = — a7 0 (31)
bility of ¢, and using the chain rule, 0 %
: Q(z)f(z)] I[Q(x)g(z)u] H* is the Legendre transform of the Hamiltonigi. In
_ 5.7 :
05 = da Q(x)P[ ox oz + Ox oz relation to the theory developed in the previous section, we
+ 027 Q(2)PQ(x)g(x)du assume that/* has the following structure
H* =H; H’ 32
_ 5£CTQ(£C)P8V(:C)5ZC+ 5ITQ(I)P a[Bu] 556 (fae) f(f)+ e(e) ( )
v Qx hich hat(s) = PEHDHHE] |
pe 5 which guarantees th&)(z) = ——5———. In a similar
+ &CTQZ:C) PB Su way, we assume that has the form
~~
cr V(z,u) = p(z) + 2T Bu . (33)
< 02t Q@)CTou = oy’ ou . (p7) ~Under these assumption§, [30) reads
‘ T oV (z) 2 IT%*
(E)’ @), 3[) read ox Q(‘T)P—Bz ox < 0, 0°H (Z)Z _ 8p(z) + Bu . (34)
627 Q(x) P54 6x = 0, and 02" Q(x)PB = 6zQ(x)C7, 022 0z
respectively. B From Theorenf]3, the systerh [34) is differential passive with
Remark 3:Theoren|B extends to systems of the form respect to the output = B” 6;(2), if
)t = A(z) + Bu 28 O2H*(2) 0?2 02 O2H*
Q(z) () (28) ! 2(2) 81?(;) N ap(‘j) ! 2(Z) <0. (3
whereA(z) is a vector field not derived from a potential. In o z z z
this case 294" in (263) is replaced bys ™. L The reader will notice that the outpyt = BT 22 () js

Example 3:[Example[l2 revised] Consider the system fornot the usual passive output, = B”z. However,y and
mulation given in [24) for the casgz) = cos (2). Take the ¥, show an intriguing duality, through energy and co-energy
differential storagesS = 1627 Q(z)PQ(z)éx for P = 1. formulation of the system [15, Section 4].

Then, from Theorerf] 3, the inequality (P6a) reads B. Differential passivity of a nonlinear RC circuit

cos (%) _ The behavior of the nonlinear circuit represented in Figure
=22>0, (29) . X .
coS (ﬂ) E is captured by the following equations:

%nq{hu;s dlffeient?lly passive ili—m, ) W|th_ respect _ %(q% g=Cv) = oh ).
puty = [; Q(z)dz. Because [@9) is strictly dq v
positive, the system is incrementally asymptotically Eab

The solutions converge to the unique steady-state solution i ic i

compatible with the input signal [5] (see Fig[ll). a

[\

2

[ V)

Gg=—i,+1,i, = R(v), v

v C(v) || R(v)

]

Fig. 2. V,I - external voltage and current.,i. - capacitor voltage and
current.v,,i,- - resistor voltage and current.

w

Defining Q(v) = ‘ﬁTh;(U), we get the gradient system

t Qv)o = —R(v) +i . (36)
Fig. i Oim_rai”f?efl“f?f@(‘j‘)ﬁ‘:"it@;(w) = COLSKL(%—)Ifor ;h? (Sn;a”)_ i?]FtJUt From Theoren{]3, differential passivity can be achieved if
w= 1+ 0:5sin(rt), left, and the (large) input = 1+ Bsin(rt), oMt ) 010) ) "I fact, definingdS (v, ov) = (Q(v)dv)?,
we have that

V. BRAYTON-MOSER SYSTEMS .
- " S = —Q(v)aR—(v)(SUQ + Q(v)dvdi . (37)
A. Passivity conditions

X
O N ko kN oW
X

0 2 4 6 8 10

ov

The approach developed in the previous section allowsherefore, if R(v) is not decreasing ané% is strictly
for the analysis of the passivity of Brayton-Moser systemincreasing, we get
[71, [8], [15]. Brayton-Moser modeling of physical systems . , ,
characterizes a class of gradient systems of the form S < Qv)dvdi = bqdi . (38)

oV (z,u) For example, suppose thatcan only take positive values,
Qz)z = . (30)  and takeR(v) = v°. R(v) models a nonlinear resistar=



? ? Forl; =3, 1, =2 I3 =1andr; = ry = ry3 = 0.2,
I 15 , to achieve a desired steady-state soluid(t),0,0]” it is
ol o sufficient to defineG = [1,0,0]T andv = r1d(t) +d(t), as
] shown on the left of Figur§]4 fod(t) = 3sin(xt). Using

05 05 differential passivity, we can improve the convergence rat
by output feedback = —0.5y + (1 + 0.5)d(t) + d(t), as

° 2 4 e 8 024 68 19 shown in the simulation on the right.

Fig. 3. Contraction and nonlinear behavior of the nonlinB& circuit.
The left figure illustrates contraction for a broad rangeniial conditions. 4 4
The right figure illustrates the nonlinear response of theudi to a large
harmonic input signal.

1 : 1
R(i)i whose valueR(i) decreases as increases. For the DWW’W OWMVW""
4 , 4

capacitor, consider the relati@i(v) = %—’f(v) = log(1+wv), ! . - . 1 . - . 1
to model a saturation effect on the capacitor plates, whe  _ t t

the charge on the plates grows at sub-linear rate with réspe®y. 4. The passivation design on the rigid body guaranteesraction.
to the voltage. Note tha@(v) = -1 S oforv>0. The left figure illustrates the contraction of the threeestaDutput injection

The incremental stability pa)plérrvty of the circuit is clgarl ¥~ G improves the convergence rate, as illustrated by the righirdi

visible in the left part of Figurﬂ 3. The steady-state bebavi
of the circuit is independent from the initial condition, VI. CONCLUSIONS
(nonlinear filter).

Building upon [6] and [16], we introduced the notion of
differential passivity and we proposed geometric condgio
for differential passivity of gradient and Brayton-Moser
systems. The meaning and the feasibility of such conditions

C. Differential passivation of the rigid body
Let us consider the rigid-body dynamics given by

, s Wols is investigated through detailed discussion and seveeahex
[ 0 })2 0 } W — [ 207° 13911 0 wiws | +u  (39) Ples. E_xamples suggests that differential passivity mdgl ho
0015 0 O L=l 1wy for a sizeable class of physical models.
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