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On differential passivity of physical systems

F. Forni, R. Sepulchre, A.J. van der Schaft

Abstract— Differential passivity is a property that allows to
check with a pointwise criterion that a system is incrementally
passive, a property that is relevant to study interconnected
systems in the context of regulation, synchronization, andesti-
mation. The paper investigates how restrictive is the property,
focusing on a class of open gradient systems encountered in the
coenergy modeling framework of physical systems, in particular
the Brayton-Moser formalism for nonlinear electrical circuits.

I. I NTRODUCTION

Motivated by the differential Lyapunov framework pre-
sented in [5] to study incremental stability, the recent papers
[16] and [6] introduced the notion of differential dissipativity
to study incremental dissipativity, the analog of incremental
stability for open systems. A related notion of tranverse
incremental dissipativity is presented in [10] to study limit
cycles. The interest for incremental notions of stability and
dissipativity stems from analysis and design problems con-
cerned with a distance between arbitrary solutions rather than
a distance to a particular (equilibrium) solution : such prob-
lems include regulation and tracking, estimation and observer
design, or synchronization, coordination, and entrainment.

The differential approach to study incremental properties
is rooted in contraction theory, following the influential paper
of [9] in control theory. In short, incremental properties of
dynamical systems can be studied differentially, through the
variational equations. The analysis of the variational equation
(or more precisely of the prolonged system) is appealing
because it leads to pointwise conditions to be verified on the
prolonged vector field rather than on the solutions, in the
spirit of Lyapunov theory. The approach is geometric and
the differential properties are potentially simpler to verify
than their incremental counterparts.

The present paper pursues the developments of [16] and
[6] to investigate how restrictive it is to check differential
passivity on a given system. More fundamentally, we are
interested in which class of physical systems are differen-
tially passive and what is the physical interpretation of the
property, if any. The success of passivity as an analysis and
design concept of system theory stems from its clear energy
interpretation in physical systems: passivity expresses that
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the increase of internally stored energy cannot exceed the en-
ergy supplied by the environment. It is still unclear whether
a similar interpretation exists for differential passivity.

We provide geometric conditions that characterize dif-
ferential passivity with respect to a quadratic storage and
we further investigate the general conditions for a class
of gradient systems. Our motivation stems from the fact
that a broad class of physical models admits a gradient
representation in the coenergy framework, see e.g. [8], [15],
after the work of Brayton and Moser for nonlinear electrical
circuits.

The paper provides a number of simple examples that il-
lustrate that differential passivity may hold for a sizableclass
of physical models and that feedback can help achieving the
property, as for passivity.

The paper is organized as follows: we revisit the notion of
differential passivity in Section II, providing the definitions
of prolonged and variational system, differential storage, and
differential supply rate. Geometric conditions for passivity
are summarized in Section III. Section IV studies the dif-
ferential passivity of gradient systems. Differential passivity
for Brayton-Moser systems is characterized in Section V.

Notation: Given a manifoldX , and a pointx of X , TxX denotes
thetangent spaceof X atx. TX :=

⋃
x∈X{x}×TxX is thetangent

bundle. Given two manifoldsX1 andX2 and a mappingf : X1 →
X2, f is of classCk, k ∈ N, if its coordinate representation is
a Ck function. A curve γ on a given manifoldX is a mapping
γ : I ⊂ R → X . We sometime usėγ(t) to denote∂γ(t)

∂t
.

In is the identity matrix of dimensionn. Given a vectorv, vT

denotes the transpose vector ofv. Given a matrixM we say that
M ≥ 0 or M ≤ 0 if vTMv ≥ 0 or vTMv ≤ 0, for eachv, re-
spectively. Given the vectors{v1, . . . , vn}, Span({v1, . . . , vn}) :=
{v | ∃λ1, . . . λn ∈ R s.t. v =

∑n

i=1 λivi}. In coordinates, we
denote the differential of a functionf at x by ∂f(x)

∂x
. The Hessian

of f at x is denoted by∂
2f(x)

∂x2 .
A distanced : X × X → R≥0 on a manifoldX is a positive

function that satisfiesd(x, y) = 0 if and only if x = y, for each
x, y ∈ X and d(x, z) ≤ d(x, y) + d(y, z) for eachx, y, z ∈ X .
A set S ⊂ X is bounded ifsupx,y∈S d(x, y) < ∞ for any given
distanced on X . A curve γ : I → X is boundedwhen its image
is bounded. Given a manifoldX , a set ofisolated pointsΩ ⊂ X

satisfies: for any distance functiond onX and any given pairx1, x2

in Ω, there exists anε > 0 such thatd(x1, x2) ≥ ε.

II. D IFFERENTIAL PASSIVITY

A. Prolonged systems

Consider the nonlinear systemΣ with state spaceX ,
and inputs and outputs spacesU ⊂ Rm and Y ⊂ Rm,
respectively, given by

{
ẋ = f(x) + g(x)u
y = h(x)

(1)
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wherex ∈ X , andu ∈ U , andy ∈ Y. f andgi, i ∈ {1 . . .m}
are vector fields.h : X → Y.

Contraction analysis requires sufficient differentiability
(C2) of the solutionsψ(t, x0) to (1), from any initial con-
dition x0 ∈ X (see, e.g. [9], [12]). To enforce the desired
regularity, we make the following standing assumption.

Assumption 1:f and gi, i ∈ {1 . . .m}, are C2 vector
fields (gi denotes thei-th column ofg). h : X → Y is aC2

function. The input signalu : R → U is aC2 function.
To a system of the form (1) one can associate thevaria-

tional systemgiven by
{

˙δx = ∂f(x)
∂x

δx+ ∂g(x)u
∂x

δx+ g(x)δu

δy = ∂h(x)
∂x

δx .
(2)

We call prolonged systemthe combination of (1) and (2),
following [2], [16]. A coordinate free representation of the
prolonged system is provided by the notions of complete and
vertical lifts, as shown in [2], [16].

Under Assumption 1, for every solution(x, u, y)(·) to
(1), the solutions(δx, δu, δy)(·) to (2) represent infinitesimal
variations on(x, u, y)(·), that is, the infinitesimal mismatch
between(x, u, y)(·) and neighboring solutions. This intuitive
representation is clarified in Remark 1. Pursuing this intu-
ition, if the dynamics of (2) guarantee thatδx converges
to zero then, necessarily, the solutions to (1) must converge
towards each other. A Lyapunov-based analysis of the con-
nection between contraction ofδx and incremental stability
can be found in [5].

Remark 1:For eachs ∈ [0, 1] let γ(s) be an initial con-
dition for (1) andu(·, s) an input signal. Assume thatγ(·) ∈
C2 and u(·, ·) ∈ C2. Then, for eachs ∈ [0, 1] x(·, s) is a
solution to (1) from the initial conditionγ(s) under the action
of the input u(·, s). Define the displacementδx(t, s) :=
∂
∂s
x(t, s) andδu(t, s) := ∂

∂s
u(t, s). Then, by chain rule and

differentiability, we have thatd
dt
δx(t, s) = ∂2

∂s∂t
x(t, s) =

∂
∂s
[f(x(t, s)) + g(x(t, s))u(t, s)] = ∂f(x(t,s))

∂x
δx(t, s) +

∂g(x(t,s))u(t,s)
∂x

δx(t, s) + g(x(t, s))δu(t, s). Thus,δx(·, s) is
a solution to (2) from the initial condition∂γ(s)

∂s
under the

action of the inputδu(·, s). Moreover, the output signal
δy(t, s) is given by ∂y(t,s)

∂s
= ∂h(x(t,s))

∂x
δx(t, s). y

B. Differential passivity

Henceforth we provide the notion of differential storage
function and differential passivity. These notions are taken
from [6, Sections 3 and 4] and restrict the definitions in
[16, Section 4] to the case in which the functionP in [16,
Definition 4.1 and Proposition 4.3] is a candidate Finsler-
Lyapunov function [5]. This restriction makes possible the
connection between differential passivity and incremental
stability.

Definition 1: Let Ω be a set of isolated point inX . For
eachx ∈ X , suppose thatTxX can be subdivided into a
vertical distributionVx ⊂ TxX

Vx := Span({v1(x), . . . , vr(x)}) 0 ≤ r < d , (3)

and ahorizontal distributionHx ⊆ TxX complementary to
Vx, i.e. Vx ⊕Hx = TxX ,

Hx := Span({h1(x), . . . , hq(x)}) 0 < q ≤ d− r (4)

where vi, i ∈ {1, . . . , r}, and hi, i ∈ {1, . . . , q}, areC1

vector fields.
A function δS : TX → R≥0 is a differential storage

function for the dynamical systemΣ in (1) if there exist
c1, c2 ∈ R≥0, p ∈ R≥1, and a functionF : TX → R≥0

such that, for each(x, δx) ∈ TX ,

c1 F (x, δx)
p ≤ δS(x, δx) ≤ c2 F (x, δx)

p . (5)

δS andF must satisfy the following conditions. Given a
set of isolated pointsΩ ⊂ X ,

(ia) δS andF areC1, ∀x ∈ X , ∀δx ∈ Hx \ {0};

(ib) δS(x, δx) = δS(x, δxh) and F (x, δx) = F (x, δxh),
∀(x, δx) ∈ TX such that(x, δx) = (x, δxh)+(x, δxv),
δxh ∈ Hx, andδxv ∈ Vx;

(ii) F (x, δx) > 0, ∀x ∈ X \ Ω ∀δx ∈ Hx \ {0};

(iii) F (x, λδx) = λF (x, δx), ∀λ>0, ∀x∈X , ∀δx∈Hx;

(iv) F (x, δx1 + δx2) < F (x, δx1) + F (x, δx2),
∀x ∈ X \Ω and∀δx1, δx2 ∈ Hx \ {0} such thatδx1 6=
λδx2 for any givenλ ∈ R. y

WhenVx = ∅, F (x, δx) provides a non symmetric norm
on each tangent spaceTxX . A suggestive notation forF is
given by |δx|x which combined to (5) provides an intuitive
interpretation of the differential storage functionδS as a local
measure of the displacement length. ForVx 6= ∅, it may
occur thatδS(x, δx1) = δS(x, δx2) for 0 6= δx1−δx2 ∈ Vx.
In such a case,δS measures the length of eachδx by looking
only at its horizontal component. An example of a differential
storage withVx 6= 0 is provided byδS(x, δx) = δyT δy.

It is worth to mention that a differential storage function
δS is also a horizontal Finsler-Lyapunov function [5, Section
VIII]. Therefore, δS endowsX with the structure of a
pseudo-metric space, connecting differential passivity and
incremental stability [14], [1]. An extended discussion and
examples are provided in [5, Sections IV and VIII].

The notion of differential passivity introduced below is
just passivity lifted to the tangent bundle.

Definition 2: The dynamical systemΣ in (1) is differen-
tially passiveif there exists a differential storage functionδS
such that

δS(x(t), δx(t)) − δS(x(0), δx(0)) ≤

∫ t

0

δy(τ)T δu(τ) dτ

(6)
for all t ≥ 0 and all solutions(x, u, y, δx, δu, δy)(·) to the
prolonged system (1),(2). y

The equivalent formulation d
dt
δS(x(t), δx(t)) ≤

δy(t)T δu(t) coincides with [16, Definition 4.1]. In
comparison to passivity, differential passivity builds a
relation between the energy - or cost -δS associated
to an infinitesimal variation of the solutionx(t), and
the energy associated to an infinitesimal variation on
the input/output signals. In comparison to incremental
passivity [4], [13], δyT δu does not impose any
prescribed form∆yT∆u = (y1 − y2)

T (u1 − u2) to
the input/output mismatch. Instead, following Remark
1, given a parameterizationu(s), y(s) such that
(u(0), y(0)) = (u1, y1)(·) and (u(1), y(1)) = (u2, y2)(·)



we have that that(y1 − y2)
T (u1 − u2) is replaced by

∫ 1

0
∂y(s)
∂s

T ∂u(s)
∂s

ds. Note that
∫ 1

0
∂y(s)
∂s

T ∂u(s)
∂s

ds = ∆yT∆u
only if y(s) = sy1 + y2(1− s) andu(s) = su1 + u2(1− s).
This is particularly relevant at integration along solutions,
since an initial parameterization satisfying the identityabove
at time t = 0 does not preserve the identity fort > 0, in
general (on nonlinear models).

We conclude the section by illustrating two basic results
of differential passivity. The reader is referred to [6], [16]
for further results.

Theorem 1:Let Σ in (1) be differentially passive with a
differential storageδS whose vertical distributionVx = 0
for eachx ∈ X . Then, (1) is incrementally stable. y

Proof: For δu = 0, differential passivity guarantees
that ˙δS ≤ 0. ForVx = 0, δS is a Finsler-Lyapunov function,
thus incremental stability follows from [5, Theorem 1].

Theorem 2:Let Σ1 andΣ2 be differentially passive dy-
namical systems (1). Let(ui, yi) be the input and the output
of Σi, for i = 1, 2. Then, the dynamical systemΣ arising
from the feedback interconnection

u1 = −y2 + v1 , u2 = y1 + v2, (7)

is differentially passive fromv = (v1, v2) ∈ U1 × U2 to
y = (y1, y2) ∈ Y1 × Y2. y

Proof: TakeδS=δS1+δS2. ˙δS≤δy1δv1+δy2δv2.

III. T HE GEOMETRY OF DIFFERENTIAL PASSIVITY

For quadratic differential storage functionsδS =
1
2δx

TM(x)δx (Riemannian metrics),M(x) > 0, the differ-
ential passivity of systems of the form (1) is characterized
geometrically by the following conditions. For eachx ∈ X
andu ∈ U ,

M(x)
∂f(x)

∂x
+
∂f(x)

∂x

T

M(x)+
∑

i

∂M(x)

∂xi
[f(x))]i ≤ 0 (8)

M(x)
∂g(x)u

∂x
+
∂g(x)u

∂x

T

M(x) +
∑

i

∂M(x)

∂xi
[g(x)u]i = 0

(9)
∂h(x)

∂x

T

=M(x)g(x) . (10)

In fact, along the solutions to the prolonged system, the
time derivative ofδS is given by ˙δS = 1

2δx
T (mf (x) +

mg(x, u))δx+δx
TM(x)g(x)δx, wheremf (x) andmg(x, u)

are given by the left-hand sides of (8) and (9), respectively.
(8) guarantees that the system is contracting foru =

0, thus incrementally stable with respect to the geodesic
distance induced by the metricM . The reader will notice that
(8) is just the usual condition for passivity∂S(x)

∂x
f(x) ≤ 0

lifted to the tangent bundle. In a similar way, (10) guarantees
thatδy =M(x)g(x)δx, thus enforcing a differential version
of the passivity condition∂S(x)

∂x
g(x) = h(x)T .

A notable difference with respect to passivity is provided
by condition (9), which requires the columns ofg(x) to be
killing vector fields for the metricM(x). This guarantees that
u does not appear in the right-hand side of˙δS, as required
by (6). In this sense, the input matrixg(x) restricts the class
of metrics that one can use to establish differential passivity.

For the caseg(x) = B, for example, (9) restricts the
differential storage within the class of metricsM(x) such
that

∑

i
∂M(x)
∂xi

[Bu]i = 0, which is satisfied by constant
metricsM(x) = P = PT ≥ 0. In comparison to passivity,
M(x) = P is not an issue for linear systems

{
ẋ = Ax+Bu

y = Cx
(11)

(A ∈ Rn×n, B ∈ Rn×ν , andC ∈ Rν×n). In fact, for passive
linear systems one can always findP = PT ≥ 0 such that

ATP + PA ≤ 0 CT = PB , (12)

which also establishes the equivalence between passivity and
differential passivity for linear systems. ButM(x) = P

determines a limitation for the satisfaction of (8) on systems
of the form

ẋ = f(x) +Bu (13)

since it reduces (8) to ∂f(x)
∂x

T
P + P

∂f(x)
∂x

≤ 0. This last
inequality coincides with the early convergence condition
of Demidovich [3]. See also [11, Theorem 2.29]. It also
resembles a classical Lyapunov inequality based on quadratic
Lyapunov functions and linearized vector fields. In fact,
in the neighborhood of stable equilibriaxe passivity and
differential passivity are related, since locally aroundxe
passive systems satisfies∂f(x)

∂x

T
P + P

∂f(x)
∂x

≤ 0 locally
aroundxe.

The relevance of the condition enforced by (9) is readily
illustrated by the following example.

Example 1:Consider the simple dynamics onS given by

ẋ = − sin(x) + g(x)u g(x) = 1 . (14)

For g(x) = 1, (9) allows for differential storages of the form
δS = 1

2δx
2, for which ˙δS = − cos(x)δx2+δxδu. Thus, (14)

is differentially passive along solution curves whose range
belongs to[−π

2 ,
π
2 ]. In fact, (8) holds only forx ∈ [−π

2 ,
π
2 ].

Using a non constant metric, (8) can be satisfied in the
whole set(−π, π). Indeed, taking

δS =M(x)δx2 M(x) =
1

1 + cos(x)
(15)

(8) reads

−
2 cos(x)

1 + cos(x)
−

sin(x)2

(1 + cos(x))2
= −1 . (16)

However, (9) does not hold, unless the input matrixg(x) = 1
in (14) is replaced byg(x) = γ cos(x2 ), whereγ ∈ R. In
such a case, following (10), (14) is differential passive with
respect to the outputy = γ

∫ x

0

cos( z
2
)

1+cos(z)dz. y

The discussion above makes clear that differential passiv-
ity for nonlinear systems of the form (1) can be established
only for suitable pairsf(x) and g(x). The latter, through
(9), defines the class of feasible metrics. The former, through
(8), is required to be a contractive vector field with respect
to a feasible metric (see [5], [9]). Finally, in analogy with
passivity, the (differential) passivating output dependson the
differential storage and on the input matrix, as established
by (10).



IV. OPEN GRADIENT SYSTEMS

A. General formulation and prolonged system

Given a smooth manifoldX , a Riemannian metricQ on
X , and a potential functionV : X → R, the local coordinates
representation of a gradient system is given by

Q(x)ẋ = −
∂V (x)

∂x
+Bu . (17)

Following the discussion of the previous section, the studyof
differential passivity for gradient systems amounts to verify
that f(x) := Q(x)−1 ∂V (x)

∂x
and g(x) := Q(x)−1B satisfy

(8), (9) for some differential storageδS = 1
2δx

TM(x)δx.
The prolonged system is given by (17) and by the varia-

tional system

Q(x) ˙δx = −

[
∂2V (x)

∂x2
δx+Bδu

]

+ Γ

(

x, u,
∂V (x)

∂x

)

δx

(18)
where the matrixΓ satisfies

Γ

(

x, u,
∂V (x)

∂x

)

δx := −

[
∑

i

∂Q(x)

∂xi
δxi

]

ẋ .

Γ is homogeneous of degree one in∂V (x)
∂x

and u, thus
converges to zero asx approaches an extremal point ofV and
u converges to0. Note thatΓ = 0 whenQ(x) is constant.

B. Differential passivity via natural metric and convexity

For M(x) = Q(x) = P > 0 (constant), the differential
storageδS = 1

2δx
TPδx guarantees that both (8) and (9)

hold, provided that∂
2V

∂x2 ≥ 0 for all x ∈ X . In fact, along
the solutions of the prolonged system, we have

˙δS = − δxT
∂2V (x)

∂x2
δx

︸ ︷︷ ︸

≥0

+δxTBδu . (19)

Thus, the gradient system is differentialy passive with respect
to the outputy = BTx.

The case ofQ(x) non constant is more involved. For
M(x) = Q(x) conditions (8) and (9) may not hold, in
general. In fact, along the solutions of the prolonged system,
the differential storageδS = 1

2δx
TQ(x)δx has derivative

˙δS = − δxT
∂2V (x)

∂x2
δx+ δxTBδu

+
1

2
δxTΓ

(

x,u,
∂V (x)

∂x

)T

δx+
1

2
δxTΓ

(

x,u,
∂V (x)

∂x

)

δx

+
1

2
δxTΩ

(

x,u,
∂V (x)

∂x

)

δx (20)

where

Ω

(

x, u,
∂V (x)

∂x

)

:=
∑

i

∂Q(x)

∂xi
ẋi ; (21)

and (8) and (9) are equivalent to the following inequality

δxT
(

−
∂2V (x)

∂x2
+ ΓT + Γ+ Ω

)

δx ≤ 0 . (22)

When (22) holds for each(x, δx) ∈ TX andu ∈ U , then (17)
is differentially passive with respect to the outputy = BTu.

Example 2: [Example 1 revised] TakingV (x) = 1 −
cos(x) andg(x) = 1 the dynamics in (14) reads

ẋ = −
∂V (x))

∂x
+ u . (23)

Note that V (x) is convex in the region[−π
2 ,

π
2 ] since

∂2V (x)
∂x

= cos(x) ≥ 0 for x ∈ [−π
2 ,

π
2 ]. In fact, (23) is

differentially passive withδS = δx2 andy = x.
For g(x) = cos(x2 ), defineQ(x) = 1

cos( x
2
) and V (x) =

−4 cos(x2 ). Then, (14) is well defined in(−π, π) and reads

Q(x)ẋ = −
sin(x)

cos
(
x
2

)+u = −2 sin
(x

2

)

+u = −
∂V (x)

∂x
+u .

(24)
V (x) is convex in(−π, π), however differential dissipativity
cannot be achieved because the termΓT + Γ + Ω in (22)
shows a dependence onu. y

Remark 2:When (22) does not hold, we can still achieve
local differential passivity under the assumption of strict
convexity of V , for small signalsu. Given a (sufficiently
small) neighborhoodC(xe),

∂2V (x)
∂x2 > aI for x ∈ C(xe),

while the last three terms in (22) are bounded by a function
of the form b(xe)|u||

∂V (x)
∂x

|, by homogeneity. Thus,˙δS ≤
(

−a+ b(xe)|u|
∣
∣
∣
∂V (x)
∂x

∣
∣
∣

)

|δx|2 + δxTBδu ≤ δxTBδu for

x ∈ C(xe) and for |u| andC(xe) sufficiently small. y

C. Differential passivity beyond the natural metric

We consider the case of differential storage functionsδS =
1
2δx

TM(x)δx whereM(x) = Q(x)PQ(x) for some given
matrix P = PT ≥ 0. A first consequence of the definition
of M(x) is thatQ can be relaxed to a pseudo-Riemannian
metrics, that is,Q(x) is not necessarily positive but still
invertible. In contrast to this generalization effort, we restrict
Q to the class of pseudo-metrics defined byQ(x) = ∂2q(x)

∂x2 ,
whereq is a function differentiable sufficiently many times.

Under these assumptions, for

y = C
∂q(x)

∂x
(25)

(8), (9), and (10) are equivalent to the following conditions.

Theorem 3:Considerq : X → R andQ(x) = ∂2q
∂x2 (x).

Then (18) is differentially passive with respect to the output
y = C

∂q(x)
∂x

if there exists a matrixP = PT ≥ 0 such that
for all x ∈ X

∂2V (x)

∂x2
PQ(x) +Q(x)P

∂2V (x)

∂x2
≥ 0 (26a)

CT = PB . (26b)

δS = 1
2δx

TQ(x)PQ(x)δx is the differential storage y

(26a) is a generalized convexity property onV . We get
classical convexity whenQ(x) = P = I. For P positive
definite, the particular selection of the outputy = C

∂q(x)
∂x

guarantees that (17) has relative degree one. In fact,ẏ =

C
∂2q(x)
∂x2 ẋ = C(∂V (x)

∂x
(x) + Bu), whereCB = BTPB.

Finally, note that forq(x) = V (x), the inequality in (26)
is always satisfied. This is not surprising since, by defining
e = ∂V (x)

∂x
, (17) readsė = −e+Bu, y = Ce.



Proof of Theorem 3:Define f(x) :=
[
∂2q(x)
∂x2

]−1
∂V (x)
∂x

,

g(x) :=
[
∂2q(x)
∂x2

]−1

Bu, andh(x) := CT ∂q(x)
∂x

, and consider
the prolonged system (1),(2). By exploiting the differentia-
bility of q, and using the chain rule,

˙δS = δxTQ(x)P

[
∂[Q(x)f(x)]

∂x
δx+

∂[Q(x)g(x)u]

∂x

]

δx

+ δxTQ(x)PQ(x)g(x)δu

= δxTQ(x)P
∂V (x)

∂x
δx

︸ ︷︷ ︸

≤0

+ δxTQ(x)P
∂[Bu]

∂x
︸ ︷︷ ︸

=0

δx

+ δxTQ(x) PB
︸︷︷︸

CT

δu

≤ δxTQ(x)CT δu = δyT δu .
(27)

(8), (9), (10) read δxTQ(x)P ∂V (x)
∂x

δx ≤ 0,
δxTQ(x)P ∂[Bu]

∂x
δx = 0, and δxTQ(x)PB = δxQ(x)CT ,

respectively. �

Remark 3:Theorem 3 extends to systems of the form

Q(x)ẋ = A(x) +Bu (28)

whereA(x) is a vector field not derived from a potential. In
this case,∂

2V (x)
∂x2 in (26a) is replaced by∂A(x)

∂x
. y

Example 3: [Example 2 revised] Consider the system for-
mulation given in (24) for the caseg(x) = cos

(
x
2

)
. Take the

differential storageδS = 1
2δx

TQ(x)PQ(x)δx for P = 1.
Then, from Theorem 3, the inequality (26a) reads

2
cos

(
x
2

)

cos
(
x
2

) = 2 ≥ 0 , (29)

and (24) is differentially passive in(−π, π) with respect
to the outputy =

∫ x

0
Q(z)dz. Because (29) is strictly

positive, the system is incrementally asymptotically stable.
The solutions converge to the unique steady-state solution
compatible with the input signalu [5] (see Fig 1). y
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Fig. 1. Entrainment of (24) withg(x) = cos
(

x
2

)

for the (small) input
u = 1 + 0.5 sin(πt), left, and the (large) inputu = 1 + 5 sin(πt), right.

V. BRAYTON-MOSER SYSTEMS

A. Passivity conditions

The approach developed in the previous section allows
for the analysis of the passivity of Brayton-Moser systems
[7], [8], [15]. Brayton-Moser modeling of physical systems
characterizes a class of gradient systems of the form

Q(z)ż =
∂V (z, u)

∂z
, (30)

where the state-s[ace is given by flow and effortsz = (f, e),
V is a the potential, andQ(z) satisfies

Q(z) =

[

−∂2H∗(f,e)
∂f2 0

0 ∂2H∗(f,e)
∂e2

]

. (31)

H∗ is the Legendre transform of the HamiltonianH . In
relation to the theory developed in the previous section, we
assume thatH∗ has the following structure

H∗(f, e) = H∗
f (f) +H∗

e (e) (32)

which guarantees thatQ(z) =
∂2[−H∗

f (f)+H∗

e (e)]

∂z2 . In a similar
way, we assume thatV has the form

V (z, u) = p(z) + zTBu . (33)

Under these assumptions, (30) reads

∂2H∗(z)

∂z2
ż =

∂p(z)

∂z
+Bu . (34)

From Theorem 3, the system (34) is differential passive with
respect to the outputy = BT ∂H∗(z)

∂z
, if

∂2H∗(z)

∂z2
∂2p(z)

∂z2
+
∂2p(z)

∂z2
∂2H∗(z)

∂z2
≤ 0 . (35)

The reader will notice that the outputy = BT ∂H∗(z)
∂z

is
not the usual passive outputyp = BT z. However,y and
yp show an intriguing duality, through energy and co-energy
formulation of the system [15, Section 4].

B. Differential passivity of a nonlinear RC circuit

The behavior of the nonlinear circuit represented in Figure
2 is captured by the following equations:

q̇ = −ir+ i, ir = R(v), v =
∂h

∂q
(q), q = C(v) =

∂h∗

∂v
(v) .

ic iri

v C(v) R(v)

Fig. 2. V ,I - external voltage and current.vc,ic - capacitor voltage and
current.vr ,ir - resistor voltage and current.

DefiningQ(v) = d2h∗

dv2 (v), we get the gradient system

Q(v)v̇ = −R(v) + i . (36)

From Theorem 3, differential passivity can be achieved if
Q(v)∂R(v)

∂v
≥ 0. In fact, definingδS(v, δv) = 1

2 (Q(v)δv)2,
we have that

Ṡ = −Q(v)
∂R(v)

∂v
δv2 +Q(v)δvδi . (37)

Therefore, ifR(v) is not decreasing and∂h
∗(v)
∂v

is strictly
increasing, we get

Ṡ ≤ Q(v)δvδi = δqδi . (38)

For example, suppose thatv can only take positive values,
and takeR(v) = v5. R(v) models a nonlinear resistorv =
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Fig. 3. Contraction and nonlinear behavior of the nonlinearRC circuit.
The left figure illustrates contraction for a broad range of initial conditions.
The right figure illustrates the nonlinear response of the circuit to a large
harmonic input signal.

R̃(i)i whose valueR̃(i) decreases asi increases. For the
capacitor, consider the relationC(v) = ∂h∗

∂v
(v) = log(1+v),

to model a saturation effect on the capacitor plates, where
the charge on the plates grows at sub-linear rate with respect
to the voltage. Note thatQ(v) = 1

1+v
> 0 for v ≥ 0.

The incremental stability property of the circuit is clearly
visible in the left part of Figure 3. The steady-state behavior
of the circuit is independent from the initial condition,
(nonlinear filter).

C. Differential passivation of the rigid body

Let us consider the rigid-body dynamics given by

[
I1 0 0
0 I2 0
0 0 I3

]

ẇ =

[
I2−I3 0 0

0 I3−I1 0
0 0 I1−I2

]




ω2ω3

ω1ω3

ω1ω2



+ u (39)

whereωk andIk are the angular velocities of the body with
respect to the axis of a frame fixed to the body, and the
principle moments of inertia.

Suppose thatI1 > I2 > I3 and define

I := diag(I1, I2, I3)

Q̃ := diag(I2 − I3, I3 − I1, I1 − I2)

Q := IQ̃−1

p(ω) := ω1ω2ω3

(40)

then we can rewrite the rigid body dynamics as follows

Qω̇ =
∂p(ω)

∂ω
+ Q̃−1u (q(ω) =

1

2

∂2ωTQω

∂ω2
) . (41)

Furthermore, let us consider a passivation design given by

u = I(−r(ω) +Gv) , r(ω) :=
[
r1ω1 r2ω2 r3ω3

]T
.

(42)
(41) becomes

Qω̇ =
∂p(ω)

∂ω
−Qr(ω) +QGv . (43)

From Theorem 3, pickingP = Q−2, (26a) reads

Q−1 ∂
2p(ω)

∂ω2
+
∂2p(ω)

∂ω2
Q−1 − 2

∂r(ω)

∂ω
≤ 0 (44)

while condition (26a) becomesCT = Q−1G. Therefore,
differential passivity fromv to y = GTω can be guaranteed
semi-globally, since for any given compact region of veloci-
ties, there exists a selection ofr1, r2, r3 that guarantees (44)
within that region.

For I1 = 3, I2 = 2, I3 = 1 and r1 = r2 = r3 = 0.2,
to achieve a desired steady-state solution[d(t), 0, 0]T it is
sufficient to defineG = [1, 0, 0]T andv = r1d(t) + ḋ(t), as
shown on the left of Figure 4 ford(t) = 3 sin(πt). Using
differential passivity, we can improve the convergence rate
by output feedbackv = −0.5y + (r1 + 0.5)d(t) + ḋ(t), as
shown in the simulation on the right.
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Fig. 4. The passivation design on the rigid body guarantees contraction.
The left figure illustrates the contraction of the three states. Output injection
y = GTω improves the convergence rate, as illustrated by the right figure.

VI. CONCLUSIONS

Building upon [6] and [16], we introduced the notion of
differential passivity and we proposed geometric conditions
for differential passivity of gradient and Brayton-Moser
systems. The meaning and the feasibility of such conditions
is investigated through detailed discussion and several exam-
ples. Examples suggests that differential passivity may hold
for a sizeable class of physical models.
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