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A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the 

field E in an isotropic fluid is derived: Q = Q(E – U∙E/3), where the quadrupolarizability Q is 10 

proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized 

expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the 

potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born 

energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are 

compared to experimental data for a large number of simple ions in aqueous solutions. From the 15 

comparison the value of the quadrupolar length LQ is determined, LQ = (Q/3)1/2= 1-2 Å. Further, the 

extended Debye-Hückel model is generalized to ions in a quadrupolar solvent. If quadrupole terms are 

allowed in the macroscopic Coulomb law, they result in suppression of the gradient of the electric field. 

In result, the electric double layer is slightly expanded. The activity coefficients obtained within this 

model involve three characteristic lengths: Debye length, ion radius and quadrupolar length LQ. 20 

Comparison to experimental data shows that minimal distance between ions is equal to the sum of their 

bare ion radii; the concept for ion hydration as an obstacle for ions to come into contact is not needed for 

the understanding of the experimental data. 

1. Introduction 

The macroscopic Poisson equation of electrostatics combines the 25 

static macroscopic Coulomb and Ampere laws, 

 ∙D = ();     (1) 

 E = –,     (2) 

with a linear dependence of the electric displacement field D on 
the electric field intensity E 30 

 D ≡ 0E+ P = 0E+ PE = E.   (3) 
Here  is the free charge number density;  is the electrostatic 
potential;  ≡ 0 + P = 0r is the absolute dielectric permittivity, 
0 is the vacuum permittivity, r is the relative permittivity of the 
medium, P is the macroscopic polarizability of the medium. For 35 

a homogeneous medium ( = 0) the Poisson equation for 

follows from Eqs (1)-(3): 

 2 ( )      .     (4) 

For conducting media, one must provide also an equation of state 
for the dependence (). A common assumption is that the 40 

charges are distributed according to the Boltzmann distribution 
 ( ) exp( / )i i ie C e T    ,   (5) 

where ei = eZi is the absolute charge of the ith ion, e is the electron 
charge, Zi is the relative ionic charge, Ci = iCel is the local 
concentration of the ith ion, i stands for its stoichiometric 45 

number, Cel is the electrolyte concentration, T[J] = kBT[K] is the 
thermodynamic temperature. Inserting Eq (5) into Eq (4), one 
obtains the Poisson-Boltzmann equation, widely used in physical 
chemistry and colloid science. Numerous basic concepts such as 
Debye-Hückel double layer1,2, Gouy model for charged 50 

interface3,4, Davies adsorption model for ionic surfactant 
adsorption5,6, the electrostatic disjoining pressure in DLVO 
theory7-9, electrokinetic -potential10, etc., are merely a 
consequence of Eqs (4)-(5).  

 It has been early recognized that both Poisson and Boltzmann 55 

equations (4)-(5) have severe limitations. The derivation of Eq (4) 
involves a multipole expansion of the local potential up to dipole 
terms, i.e., it neglects the quadrupole moment density11-13. Eq (3) 
is strictly valid for linear media14. The Boltzmann distribution (5) 
is only a first approximation valid for ideal solution15-17; other 60 

“external” potentials except ei often arise18-20. In order to make 
Eqs (3)-(5) applicable to real systems, numerous corrections have 
been proposed, to point a few: (i) Corrections to the Boltzmann 
distribution (5) by introduction of various additional interaction 
potentials, either for ion-ion non-electrostatic interaction15-16 or 65 

various ion-surface interactions18-20; (ii) Corrections for the 
macroscopic nature of the equation, involving explicit molecular 
treatment of the first neighbor interactions21,14,22 or other 
discreteness effects23-24; (iii) Correction for the dielectric 
saturation, i.e., the dependence of  on the electric field 70 

intensity25,26,14 E; (iv) corrections related to the inhomogeneity of 

the medium ( 0; e.g., Refs. 27,28); (v) correlation effects2,17 

and non-local electrostatic effects29-32, etc. Every major correction 
of Eqs (4)-(5) have been an impetus for reconsideration of the 
basic concepts following from the Poisson-Boltzmann equation. 75 

 While most studies in physical chemistry criticized mainly the 
Boltzmann part of Poisson-Boltzmann equation, several studies 
of optical phenomena33-36 attacked the Poisson part of it. It was 
demonstrated that the quadrupolar terms in the macroscopic 
Coulomb law (1) become quite significant in cases where high 80 

gradients of E are present. In such cases, quadrupolar term in the 
displacement field D need to be introduced36: 

 D = 0E + P – ½∙Q.     (6) 

Here, Q is the macroscopic density of the quadrupole moment 

tensor. Note that the coefficient in front of ∙Q depends on the 85 

choice of definition of quadrupole moment (for convenience, a 
derivation of Eq (6) and the definitions of the involved quantities 
are given in Supplementary information A†). The substitution of 
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Eq (6) into Eq (1) yields a generalization of the Poisson equation 
(4), 

 

1

2
 

 
      

 
E Q ,    (7) 

which opens a vast field for analysis of the effect of the 
quadrupole moments of the molecules composing a medium on 5 

the properties of charged particles in such medium. It have been 
recently demonstrated that quadrupole terms in D can play a role 
in solvent-solute interaction12,13. The correction for Q will be 
important if the solvent molecules possess large quadrupole 
moment – such is the case of water37 and many others, including 10 

“non-polar” media of low dipole moment but high quadrupole 
moment such as liquid CO2, fluorocarbons etc.13,38.  
 The purpose of our study is to analyze the consequences of the 
new term in Maxwell equation for several basic problems of 
physical chemistry of electrolyte solutions and colloid chemistry. 15 

Eq (7) is largely unknown to physical chemists and virtually has 
never been used in colloid science. There are three reasons for 
this negligence. First, Eq (7) is useless without an equation of 
state for Q. There are several existing studies of this constitutive 
relation39-42,12,13,36 but all are scarcely analyzed. Therefore, in 20 

Section 2, we will derive a new equation of state as simple as 

possible, showing that Q is a linear function of E – U∙E/3, 

with a scalar coefficient of proportionality – the 
quadrupolarizability33 Q (here U is the unit tensor). The second 
reason for Eq (7) to be unknown in the colloid field is that it is a 25 

fourth-order equation with respect to , and requires the use of 
new boundary conditions. Seemingly, these new conditions have 
been derived only recently39,40. We will review this problem in 
Section 3. Finally, the third obstacle to use Eq (7) is that it 
involves a new parameter of unknown value – Q. We will give 30 

in this paper both theoretical estimation and values determined 
from 3 independent sets of experimental data for ions in water.  
 In Sections 4 and 5, Eq (7) is used to reinvestigate the most 
basic concepts in the physical chemistry of electrolyte solutions – 
Born energy and Debye-Hückel diffuse ionic atmosphere. It will 35 

be shown that the “correction” Q in Eq (7) in fact leads to results 
which have no counterpart in the frame of Poisson equation (4), 
notably, finite electrostatic potential and energy of a point charge 
in quadrupolarizable medium (similar result was obtained in Ref. 
12). In Sections 4 and 5, we compare our results for both the 40 

Born energy and the Debye-Hückel diffuse atmosphere in 
quadrupolar medium to experimental data, which allows us to 
determine the value of quadrupolarizability Q of water. 
 

2. Equations of state for the quadrupole moment 45 

density 

The problem for the constitutive relation between Q and the field 

gradient E has been addressed several times33,36,39-42,12,13. Using 

as a starting point the approach of Jeon and Kim13, we will be 
able to obtain a new simple equation of state which relates Q to 50 

the field gradient E and the molecular properties of the solvent. 

 Consider an ideal gas consisting of molecules possessing a 
solid quadrupole moment tensor q0 (for the sake of simplicity, the 
molecule is assumed non-polarizable and with no dipole 
moment). Since q0 is symmetrical and traceless, by a suitable 55 

choice of the coordinate system it can be diagonalized43 and in 
the general case, its diagonal form is: 
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0 0
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q

q

 
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 

q U .   (8) 

The term (qxx+qyy+qzz)/3U ensures that the trace of q0 is 0 and can 
be added because the field created by a quadrupole in vacuum is 60 

invariant with respect to the operation of exchanging the 
quadrupole strength q0 with q0 + XU where X is any scalar11,44. 
The molecule is constantly rotating. An arbitrary rotation changes 
the quadrupole moment tensor from q0 to q. For a rotation at 
arbitrary Eulerian angles ,  and , the Euler matrix E is 65 

given by: 
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cos sin sin sin
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 
 
 

 

E .

       (9) 
The relation between the tensor q for a randomly oriented 
molecule and the tensor q0 is 70 

 0( , , )ij ik jl klq E E q     .    (10) 

In the absence of a gradient of the electric field the average value 

of q is 0. In an external electric field gradient E, the molecule 

tends to orientate itself in order to minimize its electric energy, 
given by the expression (Eq 4.17 of Jackson11): 75 

 
el

1
:

2
u   Eq .         (11) 

The orientation of the molecule must follow the Boltzmann 
distribution which can be linearized in the case of uel/T << 1: 
  n el n elexp( / ) 1 /c u T c u T     .   (12) 

Here, cn is a normalizing coefficient calculated as 80 

  
2π 2π π

2
n el

0 0 0

1 / 1 / sin d d d 1 / 8πc u T         . (13) 

The average quadrupole moment q  of a molecule can be 

calculated directly using Eqs (8)-(13): 

 

 
2π 2π π

0 0 0

sin d d d / 3q             E Eq q U . (14) 

Here, the molecular quadrupolarizability q was introduced, 85 

related to the diagonal components of q0 as follows: 
 

0 0: / 10q T  q q  

           2 2 2 / 15xx yy zz xx yy xx zz yy zzq q q q q q q q q T      . (15) 

Eq (15) was obtained e.g. in Ref. 13. 
 The macroscopic density Q of the quadrupole moment in a gas 90 

acted upon by a field gradient E is the gas concentration C 

times q , Eq (14): 

  / 3Q    E EQ U .    (16) 

Here, the macroscopic quadrupolarizability Q is given by 
 

0 0: / 10Q qC C T   q q .   (17) 95 

Our constitutive relation Eq (16) is a direct consequence of the 
general form (8) of the molecular solid quadrupole and the 
linearized Boltzmann distribution (12). Note that according to Eq 
(16) Q is traceless11, in contrast to Eq 2.25 of Jeon and Kim13. 
Refs. 42 and 45 contain some discussion in favor of their choice. 100 

However, in Supplementary information A†, we present 



 
arguments that the use of tensor Q with non-zero trace is 
incompatible with Eqs (6)-(7). Eq 2.4 of Chitanvis12 postulates an 

equation of state in which only the U∙E term of our Eq (16) is 

present, i.e., according to him, Q has only diagonal elements and 
a non-zero trace. 5 

 In general, Q depends not only on the field gradient but also on 
the field E itself, and, on the other hand, electric field gradient 

E can induce non-zero dipole moment39,36. For an ideal gas of 

solid dipoles within the linear approximation for , this is not 
the case. This can be shown by a direct calculation analogous to 10 

the derivation of Eq (16): if the molecule has dipole moment p0 
and quadrupole moment q0, then in external field E and field 

gradient E its energy is11: 

 el

1
:

2
u     p E Eq .    (18) 

Using this expression instead of Eq (11), one can calculate the 15 

average dipole and quadrupole moments. This calculation yields 
for Q again Eq (16), because the terms proportional to E cancel 
each other. Calculation of the macroscopic polarization P gives 
the classical result14: 

 P = PE,   2
0 / 3P pC Cp T   ,   (19) 20 

where p and P are the molecular and the macroscopic 
polarizabilities. 
 The derivation above is strictly valid for a gas of solid 
multipoles. It can be readily generalized to include molecular 
polarizabilities and quadrupolarizabilities13. This yields instead of 25 

Eq (17) the expression  

 0 0 0: / 10q q T  q q ,    (20) 

where 
0q  is the average intrinsic (atomic + electronic) molecular 

quadrupolarizability (Eq 4.5 of Jeon and Kim13). Eq (20) can be 
compared to the well-known formula for the polarizability14 30 

 2
0 0 / 3p p p T   ,    (21) 

where 
0p  is the average intrinsic molecular polarizability. In 

addition, in the case of liquids one can introduce a Clausius-

Mossotti type of relation for the local gradient E to the 

macroscopic quadrupole moment density Q and a reaction field 35 

(similar to the relation between local field and average 
macroscopic polarization14 P). The local field is investigated in 
Refs. 12 and 13. We shall not attempt such a generalization in our 
study and in what follows we will assume that the equation of 

state (16) is valid for isotropic fluids, provided that E and E are 40 

not too large (in order Eq (12) to be applicable). For dense fluids, 
Eq (17) for Q will be invalid but it still must give the correct 
order of magnitude of the quadrupolarizability. 
 Using the values of the quadrupole moment of water from Ref. 
37: qxx = +5.85×10-40 Cm2, qyy = -5.56×10-40 Cm2 and qzz = -45 

0.29×10-40 Cm2 (a factor of 2/3 for the different definitions of q0 
used here and in Ref. 37 must be accounted for), we can calculate 

the value Q = 1×10-30 Fm from Eq (17). Both 
0q  and the 

Clausius-Mossotti effect increase Q. For comparison, the 
experimental value for the polarizability of water is P =  – 0 = 50 

6.8×10-10 F/m, which is about 3 times higher than the one 

calculated through the estimation 2
0 / 3P Cp T  . By analogy, we 

can assume that Q is several times larger than the value 
following from Eq (17). 
 Let us now estimate the pressure and temperature derivatives 55 

of Q. Assuming that the molecular quadrupolarizability q is 
independent on p, from Eq (17) it follows that 

 
1 1Q

T

Q TT

C

p C p






   
    

   
,   (22) 

where T is the isothermal compressibility. Since Eq (17) is 
approximate, the result Eq (22) also gives only an estimate of 60 

∂Q/∂p. For the temperature derivative of Q (suitably made 
dimensionless by a factor of T/Q), we use Eq (20) for the 
dependence of the molecular quadrupolarizability on temperature 
and the relation Q = Cq to obtain: 

 Q q

pQ qp p

T T C T

T C T T

 

 

     
      

      
 65 

   0 0

0 0 0

: / 10

: / 10
v
p

q

T
T

T



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

q q

q q
. (23) 

Here p
v = –C–1(∂C/∂T)p is the coefficient of thermal expansion. 

For water46, Tp
v = 0.0763. To estimate the second term, we 

assume that 
0 0 0: / 10q T  q q  (water has high quadrupole 

moment q0 and it is a “hard” molecule of low intrinsic 70 

polarizability 
0p  and perhaps low 

0q ). In this limit, the second 

term in Eq (23) is about –1, much larger in absolute value than 
v
pT . Therefore, we can write approximately that 

 1Q

Q

T

T






 


.     (24) 

3. Boundary conditions for the generalized 75 

Poisson equation 

Within the quadrupolar approximation, the Coulomb-Ampere law 
(7) is of fourth order with respect to  since upon substituting Eq 
(16) in Eq (7) one obtains: 

  
1

/ 3 ( )
2

Q   
 

          
 

E E EU .  (25) 80 

In a homogeneous medium, this equation simplifies to 

 2 2 2 4 ( )

3

Q

QL
  

 
 

          E E .  (26) 

Here, we have introduced the quadrupolar length LQ defined with 
the relation: 
 2 / 3Q QL   .     (27) 85 

From the estimation of Q in the end of the previous Section 2, 
we can say that LQ = (Q/3)1/2> 0.2Å, perhaps several times 
larger. Eqs (26)-(27) are of the same form as those of Chitanvis12, 
with the only difference that he obtained different numerical 
coefficient in Eq (27). We are mainly concerned with spherical 90 

symmetry in this study, where Eq (26) reads: 

 
22 2

2

2 2 2

1 d d d 1 d ( )

d d d d

Qr r
Lr E r E r

r
r r r r r r r




  .  (28) 

We will need an explicit expression for Q and ∙Q; the gradient 

and the divergence of E in spherical coordinates are given by: 
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E r

 
 

   
 
 
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d 2

d
r rE E

r r
   E . (29) 95 

Then, from Eq (16) one obtains  
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3 d d
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r

E E E

r r r r

  
     

 
Q e ,  (30) 

where er is a unit vector, collinear with the radius-vector. 
 The boundary conditions of Eq (7) have been derived recently 
by Graham and Raab39, using the singular distributions approach 
of Bedeaux et al.47-48 in the case of a flat boundary surface of an 5 

anisotropic medium with arbitrary equation of state; alternative 
derivation, again for flat boundary, was given in Ref. 40. 
Following the approach of Graham and Raab, we will deduce 
here the boundary conditions of Eq (7) at a spherical surface 
dividing two isotropic phases. First, we write the singular 10 

distributions of E, Q and : 

 η η        E E E ; 

 η η    Q Q Q ;    (31) 

 Sη η δ         . 

Here, X+ and X– denote the corresponding physical quantities for 15 

the phase situated at r > R and r < R, respectively; S is the 
surface charge density; the notations ± and  stand for the 
Heaviside function  and the Dirac -function: 

 η η( )r R   ;      η η( )R r   ;      δ δ( )r R  . (32) 

To obtain the necessary boundary conditions, we insert Eqs (31) 20 

into Eq (7) and use the irreducibility of ±,  and its derivative 1 

= d/dr. We need first to calculate ∙E and :Q, where E 

and Q are given by Eq (31): 

 
 η η δ r rE E                      E E E ; 

     1: η : δ δ δ ( )r r rrQ r                Q Q Q Qe e  25 

        1η : δ δ δ ( )r r rrQ r              Q Q Qe e . (33) 

Using Eqs (33), we can write Eq (7) in the form 
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 1

1
δ ( ) ( ) 0

2
rr rrQ R Q R    .   (34) 

For the derivation of Eqs (33)-(34), we have used the properties 

of the singular functions: + = er; – = –er;  = er1; 

1Qrr(r) = 1Qrr(R) – dQrr/dr|r=R. Decomposition of Eq (34) 
yields, first, the bulk equations for the two phases (the 35 

coefficients of ± in Eq (34)): 


1

2
     

      
 
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Setting the factor multiplying  in Eq (34) to 0, we obtain a 
generalization of the Gauss law for the quadrupolar media: 
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The last term of Eq (34), proportional to 1, results in a new 
boundary condition, which balances the quadrupole moment 

densities on the two sides of the spherical surface: 

 ( ) ( ) 0rr rrQ R Q R   .    (37) 45 

We now substitute Eqs (30) into Eqs (36) and (37) and obtain the 
explicit form of the boundary conditions. Eq (36) reads: 
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S .      (38) 50 

The explicit form of Eq (37) is: 
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Subtracting Eq (38) and Eq (39), we obtain the relation: 

 S
r rD D    ,     (40) 

which is formally equivalent to the classical Gauss law, but one 55 

must keep in mind that D involves higher derivatives of the field 
E, cf. Eq (6).  

4. Effect of the quadrupolarizability of a medium 
on the Born energies, partial molar volumes 
and entropies of dissolved ions 60 

In this part of our study the general equation (28) of electrostatics 
in quadrupolar media at spherical symmetry and its boundary 
conditions (38)-(39) derived in the previous sections will be used 
to solve several basic electrostatic problems of high significance 
to the physical chemistry of electrolyte solutions. 65 

4.1. Point charge in an insulator 

We solve Eq (28) with  = ei(r). The general solution of the 
equation is: 
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       (41) 70 

In order to determine the three integration constants k1, k2 and k3, 
we need to impose three conditions on E. The first one is to 
require E to tend to a finite value as r → ∞ (this gives k3 = 0). 
The second condition is that the asymptotic behavior of E at r → 
∞ is unaffected by the presence of quadrupoles, that is, the field 75 

of a point charge at r → ∞ tends to q/4r2. This condition yields 
k1 = q/4 (the same result can be obtained by the Gauss law). 
There is one final condition needed to determine k2. Our 
assumption is to require that E tends to something finite as r → 0 
i.e. there is no singularity of E at r → 0, which yields k2 = –k1. Eq 80 

(28) has thus a finite solution, which is: 
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.  (42) 

Integration of this result gives the following formula for the 
electrostatic potential: 
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The potential in r = 0 is also finite, and its value at r = 0 is 0 = 
ei/4LQ. The ion has, therefore, a finite energy: 

 2
el 0 / 2 / 8πi i Qu e e L   .    (44) 

This is in marked contrast to the case of ion in vacuum where the 
potential is diverging as 1/r and the electrostatic self-energy of a 90 



 
point charge is infinite (Fig. 1). For a point charge in water at T = 
25˚C, if LQ = 2 Å, we obtain 0 = 92 mV and uel = 3.6×T. Eq 2.8 
of Chitanvis12 has the same form as Eq (43) (but his relation 
between LQ and Q is different). Eq (43) can be compared also to 
Eq 2.48 of Jeon and Kim13, who obtained a divergent potential 5 

since they used another constitutive relation for Q and implied 
different conditions on their solutions to determine the integration 
constants. In order to corroborate our non-classical choice for the 
finite field condition, a different approach will be presented in the 
following Section 4.2 to derive the same result (43), by placing 10 

the charge into a spherical cavity of radius R (at r = R the 
boundary conditions derived in Section 3 will be applied) and 
then taking the limit R → 0 of the resulting potential. 

 
Fig. 1. Electrostatic potential  of a point charge in a quadrupolar medium 15 

vs. the distance r from the point charge in water, Eq (43), for various 
quadrupolar lengths LQ. In a quadrupolar medium, the point charge has 

finite potential at r = 0. Solid line: LQ = 2 Å; dashed line: LQ = 1 Å; dash-
dotted line: LQ = 0 (the classical solution).  

4.2. Ion of finite size in an insulator 20 

There are various models of an ion of finite size in a solution, 
which yield the same expression for the Born energy49,28,40. The 
simplest model assumes that the ion is a point charge situated into 
a cavity, i.e., in an empty sphere of permittivity 0 and radius Rcav; 
the empty sphere is located in a medium of dielectric permittivity 25 

. This model neglects the detailed charge distribution in the ion 
and can be generalized in various ways12,13,17,21,22,27-32,50. Here, in 
order to keep the picture simple, we will hold on to the empty 
sphere model, only adding into account the quadrupolarizability 
Q of the medium. Similar problem (an entity of certain charge 30 

distribution placed into a cavity in a medium with intrinsic 
quadrupolarizability) was considered by Chitanvis12 and Jeon and 
Kim13 using different equation of state and a different set of 
boundary conditions. 
 We formulate the problem with the following equations: 35 

(i) Inside the sphere (superscript “i”), at r < Rcav, there are no 
charges, bound or free, apart from the central ion of charge ei: 

 i
0 δ( )ie   E r .    (45) 

(ii) Outside the sphere (no superscript), at r > Rcav, Eq (28) is 
valid with  = 0: 40 
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(iii) The boundary conditions at r = Rcav are given by Eqs (38)-
(39): 
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The solution of Eqs (45)-(48) in terms of the electrostatic 
potential is: 
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       (49) 
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   at r > Rcav;  (50) 50 

we used also the condition  = i at r = Rcav. As Rcav → 0, Eq (50) 
for  simplifies to Eq (43) for a point charge, which justifies the 
assumption for finite E and  at r → 0 which was used in Section 
4.1 to derive Eq (43) – that is, the results obtained in Section 4.1 
can be obtained alternatively by taking the limit from Eq (50) 55 

without making use of such a non-classical condition. 
 The self-energy uel of the ion is determined by the potential i 
= i – ei/40r, created by the polarized medium and acting upon 
the ion. It is obtained from Eq (49) as 
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. (51) 60 

It can be compared to Eq 3.1 of Chitanvis12, who used instead of 
our Eq (48) a condition for continuity of dEr/dr at r = Rcav, 
without discussion. Jeon and Kim13 used another condition – for 
non-oscillatory solution, also with no good justification. When LQ 
→ 0, Eq (51) simplifies to the familiar expression for the Born 65 

energy49,50: 
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.    (52) 

It follows from Eq (51) that the Born energy of small ions is more 
strongly affected from the quadrupolarizability of the medium.  
 The obtained result (51) for the effect of the quadrupolar 70 

length LQ on the self-energy uel is not easy to test directly due to 
the fact that, at least for water, the 1/0 term is by far larger than 
the second term in the brackets of Eq (51), which involves LQ. To 
test Eq (51) we will eliminate the term 1/0 by differentiating uel 
either with respect to p or to T in Sections 4.4 and 0. Prior to this, 75 

we need first to discuss the relation of Rcav to the crystallographic 
radius Ri of the ion. Following Latimer, Pitzer and Slansky50, we 
assume that 
 Rcav,c = Ri + Lc      and      Rcav,a = Ri + La  (53) 
for cations and anions, respectively. Latimer, Pitzer and Slansky 80 

assumed that the lengths Ri + Lc and Ri + La are measures of the 
distance between an ion and the dipole closest to it. Rashin and 
Honig51 argued that Ri + Lc is, in fact, the covalent radius of the 
cation. The length Lc is the same for all cations, and La is the 
same for all anions; both are of the order of the water effective 85 

radius. Latimer, Pitzer and Slansky obtained Lc = 0.85 Å and La = 
0.1 Å, using data for the free energies for hydration 0i of few 
monovalent ions (Lc > La because La must be about the distance of 
the anion to a proton and Lc must be about the distance of a cation 
and an oxygen atom). We will determine these values more 90 

precisely in the following section, using a larger set of data for 
0i. 
 

4.3. Ion free energy of hydration 

The chemical potential of an ion in dilute aqueous solution is: 95 

 0 0ln /i i iT C C   .    (54) 

The standard molarity-based chemical potential 0i 



 

  

(corresponding to a standard concentration C0 = 1 M) reflects the 
state of a single ion in the solution, including the effect of the 
ion’s field on the molecules of the solvent in the vicinity of the 
ion. For this energy one can write2,17,22,52: 

 3
0 intra el 0

4
( ) π ln

3
i i VT u p R g T C     .  (55) 5 

The first term in Eq (55), intra, is related to the intramolecular 
state of the ion itself. For simple ions, it is assumed that this term 
is the same in gaseous state and in any solvent. The second term, 
uel, stands for the electrostatic ion-water interaction; we will use 
for uel the generalized expression for the Born energy of the ion, 10 

Eq (51), involving the quadrupolar length LQ. The third term, pv0, 
is the mechanic work for introducing an ion of radius Ri into a 
medium at pressure p; gV is a packing factor standing for the fact 
that the real volume v0 occupied by the ion is not a sphere (of 
volume 4/3 Ri

3) but rather a polyhedron. For example, if the 15 

packing of the solvent molecules around the ion is dodecahedral, 
then gV = 1.33; for a cubic packing, it is 1.6; for very large ions, 
gV is close to 1. Since for very small ions the term pv0 is 
unimportant, and we are not going to analyze data for large ones 
due to the more complicated structure of their standard potential 20 

0i, we will assume that gV is approximately 1.33 for all ions 
studied below. The fourth term, TlnC0, originates from the choice 
of the standard state. Other contributions to Eq (55), such as the 
energy for cavity formation52 and various specific interactions, 
are here neglected for simplicity. This makes Eq (55) inapplicable 25 

to large ions. Since the electrostatic effects we are investigating 
are significant for small ions only, this is not a drawback, but all 
data for molar hydration energies and partial molar volumes for 
ions larger than 3.2 Å will be neglected below. Hydrophobic 
effect is especially important for the partial molar entropy53, 30 

therefore, only data for ions smaller than 2.3 Å will be taken into 
account. The full list of data-points is given in the Supplementary 
information C†.  
 The standard molar free energy of hydration of an ion 0i = 
0i – 0i

G is the energy for transfer of 1 mol ions from a 35 

hypothetical ideal gas at standard pressure p0 to a hypothetical 
ideal 1M solution54. The expression for 0i follows from Eq (55) 
for 0i and an analogous expression for 0i

G: 
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The first term stands for the choice of standard states in the 
aqueous solution (hypothetical ideal solution with concentration 
C0 = 1M = 1000×NA m-3, NA – Avogadro’s number) and in the 
gas state (ideal gas of ions at standard pressure p0 = 101325 Pa). 
The second term stands for the mechanical work for introducing 45 

an ion of volume 4/3 Ri
3 into the aqueous solution. This term is 

negligible compared to the other ones in Eq (56). The third term 
is the electrostatic energy for transferring an ion from a gas phase 
to an aqueous solution. The electrostatic energy in the gas (the 
1/0 term in the brackets) is about 100 times larger than the 50 

respective energy in the solution (the term proportional to 1/). 
Therefore, our expression (56) for 0i yields essentially the 
same results for the value of 0i as those of Latimer, Pitzer and 
Slansky who did not accounted for LQ. Nevertheless, since we 
will use a more extended set of thermodynamic data for ions, we 55 

repeated their calculations by fitting the data for 0i taken from 
Refs. 54 and 52. Data-points for large ions as well as certain ions 
of high polarizability or dipole moments were neglected (cf. 
Supplementary information C† for the list). 

 The merit function is defined as: 60 

 2
Δ c a( , , )QL L L   

    

4
2

0 ,th c a 0 ,exp
Z 1

Δ ( , , ;Z, ) Δ (Z, )

N f

i Q i i i
i

L L L R R 


  





, (57) 

where 0i,th is the predicted value according to Eq (56) of an ion 
of valence Z and bare radius Ri;0i,exp is the respective 
experimental value; N=86 is the number of data points and f is 65 

the number of free parameters used in the optimization procedure. 
This merit function is almost independent on LQ. The results from 
the minimization of  with respect to Lc and La are given in 
Table 1 for various values of LQ. They are in good agreement 
with the results of Latimer, Pitzer and Slansky, Lc = 0.85 Å and 70 

La = 0.1 Å, and are almost independent on LQ. The comparison of 
Eq (56) with experimental data is illustrated in Fig. 2. 

Table 1. Values of Lc and La obtained from the fit of the experimental 
data for the hydration energies of various ions with the theoretical 
expression, Eq (56), at three different values of LQ. 75 

f 
 

Lc 

[Å] 
La 

[Å] 
LQ 

[Å] 
 

[kJ/mol] 
2 0.84±0.06 0.15±0.14 2 152.0 
2 0.84±0.06 0.15±0.14 1 151.9 
2 0.83±0.06 0.14±0.14 0 151.9 

 

 

Fig. 2. Molar hydration energy –0i [kJ/mol] vs. bare ion radii Ri [Å]. 
Data for cations (blue) and anions (red) of various valence (circles – 

monovalent, crosses – divalent, stars – trivalent, squares – tetravalent). 80 

The lines are drawn according to the theoretical prediction Eq (56), with 
Lc = 0.84 Å and La = 0.15 Å, as obtained from the minimization of , Eq 

(57), at fixed value of LQ (LQ = 1Å). 

Although Eq (56) is in satisfactory agreement with the 
experimental data, one must keep in mind it is an oversimplified 85 

model of an ion in a medium. The strongest assumption used in 
its derivation is that the continual model neglects the discrete 
nature of the solvent-ion interactions. The expression for the Born 



 
energy was corrected by many authors in order to take an explicit 
account for the discrete structure of matter (cf. Chapter 5.7 of 

Ref. 17 for a summary). The homogeneity condition  = 0 has 

been criticized e.g. by Abe28; the effect of dielectric saturation 
has been analyzed by Laidler and Pegis26. Nonlocal electrostatic 5 

theory was applied to the self-energy problem by Basilevsky and 

Parsons31,32 (note that the presence of Q  E in the definition 

(6) of the displacement field D makes the electrostatic problems 
in quadrupolar media nonlocal13). All these effects contribute to 
the value of 0i, but these corrections will be neglected in the 10 

discussions below. In addition, the validity of Eq (16) for liquids 
is a hypothesis only. Therefore, the comparison of Eq (56) and its 
derivatives (Eqs (58) and (66) below) with the experimental data 
should be considered with caution. 

4.4. Ion partial molecular volume  15 

The models for the partial molecular volume vi of ions are 
reviewed in Ref. 55. We will consider only the values of vi at 
infinite dilutions. The partial molecular volume vi of the ion in 
aqueous solution is calculated by taking the derivative of 0i + 
TlnCi/C0, cf. Eqs (54)-(55), with respect to p: 20 
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(58) 

Here T = -∂lnvw/∂p is the compressibility of water (the term TT 
is relatively small and is usually neglected); vw is water’s molar 25 

volume. In the third term proportional to ∂Rcav/∂p, we neglected 
1/ in comparison with 1/0. If LQ = 0, our expression (58) 
simplifies to the familiar formula55 for vi following from the Born 
energy (52):  
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. (59) 30 

The expression (58) predicts the limiting partial molecular 
volume of an ion at infinite dilutions as a function of the ion 
crystallographic radius Ri.  
 While the hydration energy 0i is virtually independent of LQ, 
the partial molar volume is sensitive to the value of LQ, which 35 

allows us to use Eq (58) to determine LQ from the experimental 
data. We use the data for cations and anions of various valence 
assembled by Marcus54, neglecting ions of complex structure and 
large Ri, cf. Supplementary information C†. The merit function of 
the optimization procedure is defined as: 40 
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; (60) 

the total number of data-points used in the optimization is N = 97. 
 First we need to estimate all parameters in Eq (58). The 
dependence (p) was determined by the direct measurements56 45 

and allows the calculation of ∂/∂p; we use the following value55: 
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.    (61) 

The value of the compressibility is55 T = 4.57×10-10 Pa-1 and it 
corresponds to a partial molar volume NATT = 1.13 mL/mol. The 

values of 1/×∂/∂p and T are very close to each other since  is 50 

almost linear function of the water concentration – compare to Eq 
(22) for Q. Using Eqs (61) and (22) we can estimate ∂LQ/∂p: 
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This value is quite small and therefore the last term in the 
brackets of Eq (58) plays little role for the partial molar volume vi 55 

of an ion in water and can even be neglected. For the geometry 
factor gV we can use the value 1.33, cf. the discussion following 
Eq (55). In all cases, we used the values Lc = 0.84 Å and La = 
0.15 Å obtained in the previous section, cf. Table 1, when 
calculating Rcav = Ri + Lc,a. The value of ∂Rcav/∂p is in general 60 

different for cations and anions, ∂Rcav/∂p = ∂Lc/∂p or ∂La/∂p. We 
tested against the experimental data two simplifying assumptions 
regarding the two derivatives ∂La,c/∂p in order to decrease the 
number of free parameters. The first possibility investigated is 
that they are equal, 65 

 c a/ /L p L p     .    (63) 

The second one is that the quantity 1/La,c×∂La,c/∂p is the same for 
both cations and anions: 

 c a

c a

1 1L L

L p L p

 


 
.    (64) 

We tested both assumptions and Eq (64) was found to be in much 70 

better agreement with the experimental data, cf. Table 2.  
 We tested various combinations of fixed and free parameters 
for the optimization procedure (Table 2), in order to test the 
sensitivity of v to the parameters and the assumed 
approximations for gV, ∂Rcav/∂p, ∂LQ/∂p. In summary, the results 75 

are: 
(i) v has a shallow minimum and the uncertainty of the values of 
the fitting parameters is high. This is illustrated in Fig. S1 in 
Supplementary material B†. 
(ii) The assumption Eq (64) yield lower dispersion than Eq (63) 80 

(compare rows c2 and d2 in Table 2). If both ∂Lc/∂p and ∂Lc/∂p 
are used as free parameters, we obtain values which agree within 
the uncertainty with Eq (64) (cf. rows b2, g3 and i4). The 
derivative Lc

-1∂Lc/∂p is found to be negative and has a value of 
the order of 0.1×10-10 Pa. This value can be compared to the 85 

pressure dependence of the distance Lw between two water 
molecules; since vw ~ Lw

3, 
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 

  
.   (65) 

Therefore, Lw
-1∂Lw/∂p = –T/3 = -1.5×10-10 Pa. Thus Lw

-1∂Lw/∂p 
is one order of magnitude larger than Lc

-1∂Lc/∂p, which suggests 90 

that the structure of the hydration shell of an ion is far more 
incompressible than the structure of water itself. 
(iii) We tested whether the assumed value gV = 1.33 of the 
packing factor gives good results by allowing gV to be a free 
parameter.  This yielded a better dispersion and a slightly higher 95 

value: gV ~1.4-1.5 (cf. rows a2, f3 and i4 in Table 2). This 
suggests that the packing of the hydration shell around the ion is 
less dense than dodecahedral (gV = 1.33) but denser than cubic 
(gV = 1.6). 
(iv) We tested whether the approximate value LQ

-1∂LQ/∂p = -100 

0.095×10-10 Pa-1, (62), yields good results by considering it as a 
free parameter. Unfortunately, this returned almost the same 
dispersion and unrealistic values of LQ

-1∂LQ/∂p and LQ, since v is 
almost independent on this quantity. Therefore, we consider the 
results in rows e2 and h3 in Table 2 inadequate and use LQ

-
105 

1∂LQ/∂p = -0.095×10-10 Pa-1. 
(v) When one accounts for the effect of LQ on vi, this yields only 
slightly lower dispersion (compare rows a2 and f3 or b2 and g3 in 



 

  

Table 2). LQ affects the data for the smallest ions only (Li+, Be2+, 
Al3+) and it explains why their partial molar volumes are more 
positive than the ones predicted from the classical model with LQ 
= 0. For example, the partial molar volume calculated for Al3+ (Ri 
= 0.53Å) with the parameters in row f3 is -70 mL/mol, and if one 5 

sets LQ = 0, the result will be -85 mL/mol. The experimental 
value is54 -59 mL/mol. The value of LQ obtained from the various 
variants of the optimization procedure varies between 1 and 2Å. 
From the estimation of Q in Section 2, we can predict that LQ is 
few times larger than 0.2Å. Still, a difference of one order of 10 

magnitude between the value of LQ estimated from Eqs (17) and 
(27) and the experimental one is unexpected. Nevertheless, the 
value of LQ will be confirmed with independent data for the 
partial molar entropy of various ions and data for the activity 
coefficient in the following two sections. 15 

The comparison between Eq (58) and the experimental data is 
illustrated in Fig. 3 (parameters from row c2). 

Table 2. Results from the optimization of v, Eq (60), with respect to 
various parameters. Blue fields indicate fixed values of the respective 
parameters.
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gV 
v 

[mL/mol] 

a2 0 0 -10.1 Eq (64) 1.43 12.4 
b2 0 0 -9.8 -8.2 1.33 12.7 
c2 1.1 -0.095 -11.3 Eq (64) 1.33 12.7 
d2 ~0 -0.095 -2.5 Eq (63) 1.33 17.9 
e2 2.1 32.3 0 0 1.33 12.7 
f3 2.1 -0.095 -13.1 Eq (64) 1.45 12.2 
g3 2.0 -0.095 -12.7 -10.2 1.33 12.6 
h3 -0.3 -0.11 -11.0 Eq (64) 1.33 12.7 
i4 2.1 -0.095 -13.0 -15.0 1.48 12.1 

 

 
Fig. 3. Partial molar volumes vi [mL/mol] of ions of various valencies in 

infinitely diluted aqueous solutions as functions of the ionic 
crystallographic radii Ri. Solid circles: monovalent ions; crosses: divalent; 25 

stars: trivalent; boxes: tetravalent; blue and red – cations and anions. Data 
assembled by Marcus54. Lines: Eq (58) with Z = 1, 2, 3, 4 and Rcav = Ri + 

Lc or Ri + La; the values for the parameters were obtained from the 
optimization of v, Eq (60), with respect to two fitting parameters, LQ = 

1.1 Å and Lc
-1∂Lc/∂p = -11.3 10-12 Pa-1, for all 8 curves. 30 

4.5. Standard entropy of hydration 

The partial molar entropy si of the ion in water can be calculated 
by taking minus the derivative of 0i + TlnCi/C0, cf. Eqs (54)-(55)
, with respect to T. The molar entropy for hydration, si, is 
calculated analogously as –∂( 0i + TlnCi/C0 – Tlnp/p0 )/∂T, cf. 35 

Eq (56) for 0i. The standard molar entropy for hydration s0i is 
obtained2,54 by setting p = p0 and Ci = C0 in si. Using Eq (56), 
one finds the following expression for (the dimensionless) s0i: 
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. (66) 

In Eq (66), all quantities except for LQ, ∂LQ/∂T and ∂Rcav/∂T = 
∂Lc,a/∂T are known.  
 The hydration entropy s0i has been measured with reasonable 
accuracy for a large number of ions54. The experimental data 45 

assembled by Marcus54 can be used to obtain a second estimation 
of LQ from an independent set of data (besides the partial 
volumes), by comparing Eq (66) to them. To do so, we define the 
merit function: 
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       (67) 
Data for N = 68 ions of valence Z = 1÷4 are analyzed (cf. 
Supplementary material C). 
 The following values are used for the parameters in Eqs (66)-55 

(67). For the temperature dependence of , we use the 
experimental data for (T) from Refs. 2 and 46, which gives: 

 1.35
T

T






 


.     (68) 

For the coefficient of thermal expansion, we take46 Tp
v = 0.0763, 

corresponding to entropy of kBNA×0.0763 = 0.63 J/Kmol. We can 60 

also estimate ∂LQ/∂T from Eqs (27), (24) and (68): 

 0.18
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 
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.   (69) 

Since this value is quite small, the term proportional to ∂LQ/∂T 
will have insignificant contribution to the value of s0i. The 
derivative ∂Rcav/∂T has different values for cations and anions, 65 

∂Lc/∂T and ∂La/∂T respectively. In order to decrease the number 
of free parameters, we tested again two possible approximations, 
a first one that ∂Lc/∂T = ∂La/∂T (which was found to be in 
disagreement with the experimental data), and a second one, that 

 c a

c a

1 1L L

L T L T

 
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 
;    (70) 70 

compare to the assumptions (63)-(64) for ∂Lc/∂p and ∂La/∂p. 
 We again attempted various combinations of fixed and free 
parameters in the optimization procedure (Table 3), in order to 
analyze the sensitivity of s to ∂Rcav/∂T, ∂LQ/∂T and LQ. The 
results are: 75 

(i) s has a shallow minimum and does not allow for a very 
precise determination of the parameters involved. The 
dependence of s on LQ and T/Lc×∂Lc/∂T (cf. row d2 of Table 3) is 



 
illustrated in Fig. S2 in Supplementary material B†. 
(ii) The experimental data agree well with Eq (70). If both ∂Lc/∂T 
and ∂La/∂T are used as free parameters, close values of T/Lc,a × 
∂Lc,a/∂T are obtained, cf. rows c2 and f3 in Table 3. The value of 
T/Lc×∂Lc/∂T is positive and has a value of the order of 0.02. This 5 

value can be compared to the temperature dependence of the 
distance Lw between two water molecules; from the relation 

 w w

w w

1 3v L

v T L T

 


 
    (71) 

we find that T/Lw×∂Lw/∂T = 3 v
pT  = 0.23. Similarly to the 

pressure dependence, cf. Eq. (65), water expansion coefficient is 10 

higher by an order of magnitude compared to the respective 
dependence of Rcav on T. This is another proof that the structure 
of water is more labile than the structure of the hydration shell of 
an ion. 
(iii) The approximate value T/LQ×∂LQ/∂T = 0.18 yield results 15 

which does not differ in comparison to the model with neglected 
∂LQ/∂T (rows b2 and d2). If ∂LQ/∂T is left as a free parameter, the 
optimization procedure returns the same dispersion but unrealistic 
large negative values of ∂LQ/∂T (row e3). Therefore, we consider 
the results in row e3 unrealistic and we use the value 20 

T/LQ×∂LQ/∂T = 0.18. In fact, T/LQ×∂LQ/∂T can be safely 
neglected. 
(iv) The effect of LQ on s0i, and respectively, on the dispersion 
s, is not very large. It mainly affects s0i of very small ions, by 
decreasing the absolute value of their entropies by 10-20%. For 25 

example, the entropy of Al3+ calculated from Eq (66) with the 
parameters given in row d2 in Table 3 for LQ and ∂Lc/∂T is -597 
J/Kmol, while with LQ = 0 it is -678 J/Kmol (the experimental 
s0i of Al3+ is54 -538 J/Kmol). The results for the value of LQ does 
not depend strongly on the optimization procedure, and give 30 

values in the range LQ = 0.3-0.9Å, somewhat smaller but of the 
same order as the prediction from the partial molar volume data. 
The value of Q corresponding to LQ = 0.80Å (row d2) is Q = 
3LQ

2 = 13×10-30 Fm, or about 13 times higher than the prediction 
from the ideal gas formula (17). 35 

 
Fig. 4. Negative entropies of hydration s0i [J/Kmol] for mono, di, tri and 

tetravalent ions as functions of the crystallographic ionic radii Ri [Å]. 
Data assembled by Marcus54. Lines: Eq (66) with two fitting parameters: 
LQ = 0.8 Å and T/Lc×∂Lc/∂T = 0.025, obtained from the minimization of 40 

s, Eq (67). Solid circles: monovalent ions; crosses: divalent; stars: 
trivalent; boxes: tetravalent; blue and red – cations and anions. 

Table 3. Results from the optimization of s, Eq (67), with respect to 
various parameters. Blue fields indicate fixed values of the respective 

parameters. 45 
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s 
[J/molK] 

a1 0 0 2.0 Eq (70) 53.5 
b2 0.91 0 2.5 Eq (70) 53.4 
c2 0 0 2.0 2.4 53.2 
d2 0.80 0.18 2.5 Eq (70) 53.4 
e3 1.7 -17.0 -3.8 Eq (70) 53.3 
f3 0.34 0.18 2.2 2.5 53.2 

5. Quadrupolarizability in the Debye-Hückel 
theory 

The model of Debye-Hückel1 of the electric double layer of a 
dissolved ion is a basic concept in electrolyte chemistry2,17. It has 
been corrected at least as many times as the Poisson-Boltzmann 50 

equation (4), but to our knowledge the corrections involved either 

the Boltzmann distribution or the homogeneity condition  = 0. 

We are modifying the Poisson equation itself by accounting for 

the quadrupole term :Q, Eq (7), and in this Section the effect 

of this term on the structure of the ionic atmosphere around an 55 

ion is investigated. 

5.1. Point charge in conducting media 

We solve Eq (28) with  being given by the sum of a point charge 
and Boltzmann-distributed free charges, Eq (5): 
 ( ) δ( ) exp( / )i j j je e C e T    r .  (72) 60 

Following Debye and Hückel1, we expand the Boltzmann 
distribution in series at low potentials, 

 2
D( ) δ( ) /ie L   r ;    (73) 

here the Debye length LD is defined with the expression 
 2 2

D / j jL T e C  .    (74) 65 

The solution of Eq (28) with  given by Eq (73) is: 
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where we used again the condition (0) < ∞ to determine one 
integration constant, cf. Sections 4.1-4.2. In Eq (75), we 
introduced he characteristic lengths lD and lQ defined as 70 
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The inverse relations defining LD and LQ with lD and lQ are: 

 2 2 2
D D QL l l  ;   2 2 2

DQ QL l l    .   (77) 

In dilute solutions, LD >> LQ and both lD and lQ are real; lD is 75 

about equal to LD and lQ is about equal to LQ, which is the reason 
for the choice of indices. At a certain critical value of the Debye 
length, LD = 2LQ (if LQ = 2 Å, this correspond to ionic strength of 
0.6 M), the lengths lD and lQ become equal (Fig. 5). At higher 
ionic strengths and smaller LD, the lengths become complex 80 

conjugates, i.e., the potential (75) while diminishing with distance 
exhibits an oscillatory behavior. When LD < 2LQ, Eq (75) can be 
represented as: 
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where lRe = RelD and lIm = ImlD; it is easy to show that lIm = 85 



 

  

(2LDLQ –LD
2)1/2/2 and lRe = (2LDLQ +LD

2)1/2/2. We will leave the 
deeper analysis for a future paper, since the oscillations of the 
potential are relatively unimportant for our current problem. 

 

Fig. 5. Dimensionless characteristic lengths lD/LQ and lQ/LQ as functions 5 

of the dimensionless Debye length LD/LQ, Eqs (76). Red solid line: 
Re(lD/LQ); red dashed line: Re(lD/LQ); blue lines: Im(lQ/LQ) and Im(lD/LQ). 

 The potential (75) is finite and its value at r = 0 is  
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The respective energy uel = ei0/2 of the ion in the medium is 
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This expression can be expanded in series when LD → ∞ to 
obtain the limiting law for the energy uel in dilute solutions: 15 
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The first term in Eq (81) is the quadrupolar self-energy of a point 
charge, cf. Eq (44). The presence of the diffuse electric double 
layer decreases this energy with the Debye-Hückel energy DH: 
 DH ≡ T lnDH = –ei

2/8LD.   (82) 20 

Eq (82) is the well-known limiting Debye-Hückel law; DH is the 
activity coefficient of an ion in diluted electrolyte solution. The 
third term in Eq (81) represents the leading correction of the 
limiting Debye-Hückel law for a solution of point charges in a 
quadrupolar medium. It is positive, which means that the limiting 25 

law underestimates the activity coefficient DH at high 
concentration, which is indeed the case2. The correction for LQ is 
of the same order (Cel

1) as the correction for the finite ion size Ri, 
therefore, in order to compare the predicted effect of the 
quadrupolarizability on the activity coefficient with the 30 

experimental data, we need to generalize the extended Debye-
Hückel model (the generalization of the limiting Debye-Hückel 
model for spherical instead of point charges). 

5.2. Finite-size charge in conducting media 

As was the case with the Born energy, the extended Debye-35 

Hückel model can also be derived by various models of the ion 
and its cavity. The simplest one which yields the correct results 
assumes instead of Eq (73) the charge density: 
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This equation reflects that the ions from the Debye atmosphere 40 

cannot approach the central ion to a distance smaller than R, 
which must be the sum of the two crystallographic radii R+ and R– 
of the anion and the cation: 
 R = R+ + R–.     (84) 
Eq (83) neglects the fact that two ions of the same sign can 45 

approach each other to distances 2R+ or 2R- different from R; this 
is relatively unimportant since the repulsive electrostatic force 
decrease the co-ion concentration in the vicinity of the central ion 
to values close to 0. Also, the model assumes that  is the same 
inside the “cavity” and in the solution. 50 

 If Eq (83) is substituted into the Poisson equation (4), and this 
equation is solved, it will give for the activity coefficient the 
famous result, known as the extended Debye-Hückel theory1: 
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This equation has much wider applicability than the limiting law 55 

(82). However, instead of using Eq (84), the distance R is always 
used as a fitting parameter and its value is generally higher than 
Eq (84) would predict – as pointed out by Israelashvilli22, “to 
obtain agreement with measured solubility and other 
thermodynamic data, it has been found necessary to “correct” 60 

the crystal lattice radii of ions by increasing them by 0.02 to 0.10 
nm when the ions are in water”. The hypothesis that we 
investigate here is that this discrepancy reflects the neglected 
effect of the quadrupolar terms in Poisson equation. 

 65 

Fig. 6. Electrostatic potential  of Na+ ion in quadrupolar medium (LQ = 2 
Å) containing free charges (NaF of concentration Cel = 0.01 and 1 M). 

The minimal distance between Na+ and F- is R = 2.35 Å (the sum of the 
crystallographic radii of Na+ and F-). The solution for  at Cel = 1 M is 

oscillating-decaying and has shallow extrema (the first is  = -0.0005 mV 70 

at r = 24.7 Å). 

 To introduce Q in the extended Debye-Hückel model, we 
substitute Eq (83) into the generalization (28) of the Poisson 
equation of electrostatics (no jump of  or Q occurs at r = R). 



 
The general solution of this problem is: 
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       (86) 
The five integration constants A0, A+, A-, BD and BQ are 5 

determined by four conditions for continuity of  and its 
derivatives (first, second and third) at r = R and the 
electroneutrality condition: 

  2 2
D/ 4π d 0i

R

e L r r


   .   (87) 

The solution of these 5 conditions is trivial but lengthy. The 10 

solution is given in Supplementary information D† (executable 
Maple 17 code). The final result for  according to Eq (86) is 
illustrated in Fig. 6 at two concentrations of the electrolyte with 
LQ = 2Å and R = 2.35 Å. 

 15 

 From Eq (86) and the values of A0, A+, A-, BD and BQ, one can 
calculate the potential 0 = (r=0) acting upon the central ion. It 
is simply related to the activity coefficient: 
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where the self-energy –ei
2/8LQ in the absence of other ions is 20 

subtracted, Eq (44). Here, we have introduced the function F: 
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       (89) 
where the dimensionless lengths l and d are defined as l = lD/LQ 25 

and d = R/LQ. In diluted solutions, Eq (88) can be expanded in 
series and the result is: 

 Dln LT    
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       (90) 30 

which can be used at low electrolyte concentration. However, in 
the most interesting for our consideration region of 
concentrations, Cel~1M, where the effect of LQ is most important, 
Eqs (88)-(89) must be used without simplifications. 
 The comparison of Eq (88) to the experimental data for the 35 

activity coefficient  allows the determination of the single 
unknown parameter in it, the quadrupolar length LQ, provided that 
our model is suitable for the electrolyte under investigation. The 
effect of LQ is commeasurable with several other effects, e.g., the 

specific dispersion ion-ion interactions, correlation effects 40 

etc.2,17. In the case of small ions, direct electrostatic interaction 
will prevail over these effects. NaF is especially suitable for the 
comparison with Eq (88) since F- is the smallest anion, it has low 
polarizability and minimizes the non-electrostatic terms that are 
not included in the Boltzmann distribution (5) used in our 45 

derivation. Besides, Na+ and F- have similar radii, which 
minimizes the error from the approximation that the double layer 
starts from R+ + R- (instead of using 3 lengths, R+ + R- for 
counter-ions and 2R+ or 2R- for co-ions). The experimental data 
for the mean activity coefficient ± of NaF is well-described by 50 

the formula2,57: 

 D m
m

m

lg
1

A C
C

B C
    


,   (91) 

where AD is the Debye-Hückel coefficient (-0.5108 kg1/2/mol1/2 at 
25˚), and the semi-empirical parameters B and b have the values57 
B = 1.28 kg1/2/mol1/2 and  = -0.018 kg/mol. Eq (91) is valid up to 55 

molal concentration Cm = 1 mol/kg. Since the partial molar 
volume of NaF is very small54, the relation between molarity and 
molality is simply Cel [mol/L] = Cmm, where m = 0.997 kg/L. 

 
Fig. 7. Mean ion activity coefficient ± vs. molality Cm. Comparison 60 

between the experimental interpolation formula Eq (91) (green dotted 
line) of the NaF data57 and the generalized Debye-Hückel model which 

takes into account quadrupolarizability, Eqs (88)-(89), with R = RNa + RF 
= 2.35 Å following from the ionic crystallographic radii54 and quadrupolar 

length LQ = 2.1 Å obtained as a fitting parameter. For comparison, the 65 

limiting Debye-Hückel model (R = LQ = 0), Eq (82), and the extended 
Debye-Hückel equation, Eq (85), with R = 2.35 Å are given. 

 The comparison between the experimental dependence (91) for 
NaF and Eqs (88)-(89) is shown in Fig. 7. To determine the best 
value of LQ, we optimized the merit function 70 

 
1 mol/kg

m m m

0

( ) ln ( ; ) ln ( ) dQ QL C L C C     ,  (92) 

with ± being the experimental mean activity coefficient given by 
Eq (91) and  is the theoretical activity coefficient from Eqs (88)-
(89). The best value of LQ is 2.11±0.06 Å, in good agreement 
with the values found from the partial volume data and larger 75 

than those following from the entropy data. The agreement 
between theory and experiment is excellent (Fig. 7). For 
comparison, the extended Debye-Hückel model is also shown in 
Fig. 7, with R = 2.35 Å as predicted by Eq (84) (instead of using 
it as a fitting parameter). The limiting Debye-Hückel law (LQ = R 80 

= 0) is also given for comparison. Note that the effect of LQ is 
quite significant – it is of the same order as the effect of R. 



 

  

6. Conclusions 

Our work investigates the effects of the quadrupole moment of 
the molecules in a medium on the properties of charged particles 
dissolved in this medium, using a macroscopic approach based on 
the quadrupolar Coulomb-Ampere law (26), generalizing the 5 

classical Poisson equation of electrostatics. 
 (i) We derived a new equation of state, Eq (16), relating the 
macroscopic density of quadrupole moment Q and the field 

gradient E in gas of quadrupoles. The tensor Q has zero trace, 

unlike the one used in Refs. 12 and 13. Our constitutive relation 10 

involves a single scalar coefficient, the quadrupolarizability Q, 
which was estimated to be Q = 1×10-30 Fm or few times larger.  
 (ii) We derived the boundary conditions needed for the fourth-
order quadrupolar Coulomb-Ampere law (26) at a spherical 
surface between two media of different dielectric permittivity  15 

and quadrupolarizability Q, Eqs. (38)-(39). 
 (iii) The potential of a point charge in quadrupolar medium is 
finite even at r = 0, cf. Eq (43). This unexpected result was 
obtained previously by Chitanvis12 with another constitutive 
relation for Q. 20 

 (iv) The classical model for a dissolved ion as a charge in a 
cavity was generalized for the case of quadrupolar medium. It 
was shown that the quadrupolarizability of water affects 
significantly the thermodynamic properties – partial molar 
volume vi and entropy for hydration s0i – of small ions in 25 

aqueous solution. From this effect and the experimental 
thermodynamic data for vi and s0i from Ref. 54, the value of the 
quadrupolar length, LQ = (Q/3)1/2= 1-2 Å, could be estimated. 
 (v) The Debye-Hückel model for the diffuse ionic atmosphere 
of an ion was generalized by including the quadrupolarizability of 30 

the medium in it. Comparison with data for the activity 
coefficient ± of NaF allowed independent determination of the 
value of LQ, which yielded again LQ ~2Å. The minimal distance 
of approach R between ions in the extended Debye-Hückel model 
must not be corrected from the expected value, R = R+ + R-, 35 

where R+ and R- are the crystallographic radii. 
 (vi) The order of magnitude of Q and LQ obtained from these 
3 sets of experimental data (vi, s0i and ±) compares well with 
the order predicted by other authors12,13. 
 (vii) The pressure and temperature derivatives of Q were 40 

estimated theoretically, cf. Eqs (22)-(23). The estimated values of 
∂Q/∂p and ∂Q/∂T show that the effect from these derivatives on 
the partial molar volume and entropy, Eqs (58) and (66), of the 
dissolved ion is negligible. The pressure and temperature 
derivatives of the radius of the cavity Rcav around an ion were 45 

estimated from experimental data.  From their values it can be 
concluded that the structure of the hydration shell of an ion is 
about 10 times stiffer than the structure of water.  
 Although the results obtained here are encouraging, one must 
not forget that our approach uses some strong approximations. 50 

First, the constitutive relation Eq (16) is strictly valid for diluted 
ideal gas only. The assumption that the equation of state keeps 
the same form in dense liquid needs additional justification. Also, 
our model for the dissolved ion (point charge in a cavity) is 
clearly an oversimplification, as discussed in Section 4.2 and 5.2. 55 

Nevertheless, we obtain self-consistent results and we have 
enough proof to assert that quadrupolarizability has measurable 
effect on many thermodynamic characteristics of the dissolved 
ions (vi, s0i and ±). 
 The results obtained here for the equation of state for Q, the 60 

boundary condition for the generalized Maxwell equations of 
electrostatics and the value of the quadrupolarizability Q of 
water will be used in the following study of this series for the 

analysis of several important problems of colloid science. 
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