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Abstract

Mutations in the central region of the signalling hub Adenomatous Polyposis Coli (APC) cause colorectal
tumourigenesis. The structure of this region remained unknown. Here, we characterise the Mutation Cluster Region
in APC (APC-MCR) as intrinsically disordered and propose a model how this structural feature may contribute to
regulation of Wnt signalling by phosphorylation. APC-MCR was susceptible to proteolysis, lacked α-helical secondary
structure and did not display thermal unfolding transition. It displayed an extended conformation in size exclusion
chromatography and was accessible for phosphorylation by CK1ε in vitro. The length of disordered regions in APC
increases with species complexity, from C. elegans to H. sapiens. We speculate that the large disordered region
harbouring phosphorylation sites could be a successful strategy to stabilise tight regulation of Wnt signalling against
single missense mutations.
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Introduction

Adenomatous Polyposis Coli (APC) is mutated in around
80% of somatic colorectal cancer patients [1]. APC is one of
the central hubs involved in the spatiotemporal regulation of
key Wnt signalling components [2,3]. It interacts with the Wnt
signalling scaffolds WTX and Axin, which locally concentrate
the kinases GSK3β and CK1 within the destruction complex for
tightly controlled degradation of the proto-oncoprotein β-catenin
[4-16]. APC binding to β-catenin and Axin is essential for
effective downregulation of β-catenin and tumour suppression
[17]. Eleven β-catenin binding repeats are scattered over a
region extending from residue L1021 to D2059, interspersed by
3 Axin binding repeats [18]. Seven β-catenin binding repeats
are tunable in affinity by phosphorylation and are referred to as
20aa repeats, while four 15aa repeats remain
nonphosphorylated [12,19-21].

The structural understanding of APC function is limited. APC
contains three α-helical domains in the N-terminus: a coiled coil

(APC-A2-I55) mediates homodimerisation, APC- G126-H250
binds to Crm1 and APC-R303-N775 constitute an armadillo
fold that binds to the phosphatase PP2A [22-26]. Remarkably,
globular domains are unknown in the 2000 amino acid large C-
terminal region of APC. We previously predicted those 2000
amino acids as largely intrinsically disordered [18].
Interestingly, this segment contains the most frequently
mutated stretch of APC, the mutation cluster region (MCR),
which contains three β-catenin binding 20aa repeats [27,28]. It
is unclear how the structural properties of APC-MCR relate to
β-catenin recognition and regulation by phosphorylation.

Here we characterised structural properties of APC-MCR.
We show that APC-MCR is susceptible to proteolysis, lacks
both α-helical secondary structure and thermal unfolding
transitions. The protein displayed extended shape and was
accessible for phosphorylation. Based on those data, we
propose a mechanism for how large intrinsically disordered
regions in APC and other Wnt signalling scaffolds benefit
robustness of the Wnt signalling cascade.

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77257

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/131381338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.nwo.nl
http://europa.eu/index_en.htm
http://europa.eu/index_en.htm
http://www.uu.nl
http://erc.europa.eu


Results

Charged residues cluster in distinct regions of APC-
MCR

When setting out to characterise the structural features of
APC-MCR (APC-S1202-K1551), we noted that folded domains
are unknown in the C-terminal 2000 amino acids of APC.
Bioinformatic studies predicted a large extent of disorder for
this region [18,29]. We, therefore, first analysed the distribution
of charges, which is a key determinant for appearance of
disordered regions in proteins [30,31] (Figure 1). Surprisingly,
we did not observe a strong enrichment of charges in the
putatively disordered APC-MCR region: Both positive charges
and negative charges (9.7% and 12.2%) were close to the
corresponding averages in the UniProtKB/Swiss-Prot data
base (11.1% and 12.3%).

APC-MCR is susceptible to proteolysis
As accessibility of hydrophobic amino acids is crucial for

protein interactions and structure formation, we went on to
probe the accessibility of the hydrophobic residues in APC-
MCR by titrating the protease Thermolysin (TL), which
preferentially cleaves near exposed hydrophobic amino acids
in unfolded protein regions [32-36]. To estimate the degree of
globular structure in APC-MCR, we compared the extent of
cleavage at 4°C for APC-MCR along with controls that are
known to be fully folded (MBP), fully unfolded (Axin-CR, β-
caseine) or partly folded (NusA-β-catenin) [37]. For each of
these proteins, we compared the remaining protein after
incubation at 4°C in the absence or in the presence of 0.001
g/L TL or 0.1 g/L TL. The folded core of MBP was resistant
against proteolysis even at the highest TL concentration
(Figure 2). The two intrinsically disordered proteins (IDPs)
AxinCR and β-caseine, however, were entirely digested at low
TL concentration (0.001 g/L). Likewise, the band of APC-MCR
disappeared at this TL concentration. We conclude that
protease susceptibility of APC-MCR is similar to that of the
IDPs Axin-CR and β-caseine.

APC-MCR lacks secondary structure in non-denaturing
buffer

We now set out to analyse secondary structure of APC-MCR
by circular dichroism (CD) spectroscopy. We varied the content
of TFE to investigate if α-helical structure can be induced by
this co-solvent, which is frequently used to induce or stabilise
α-helical secondary structure [38-40]. In non-denaturing buffer
and absence of TFE, we observed a minimum near 200 nm
and absence of a negative peak at 220 nm indicating low α-
helical structure content (Figure 3) [41]. With addition of TFE to
20 or 80 %, increasing content of α-helix was induced. At 80%
TFE, a concentration known to stabilise α-helical structure in
peptides and proteins, APC-MCR showed a predominantly α-

Figure 2.  MCR is susceptible to TL digestion.  Resistance
of well-characterised folded and unfolded proteins is compared
with MCR by using TL concentrations of 0 g/L, 0.001 g/L and
0.1 g/L. Folded protein MBP (diamond), is resistant against the
highest protease concentration while β-caseine and Axin CR
are already cleaved at low protease concentration (0.001g/L).
A fusion construct of NusA and β-catenin gives several high
molecular weight bands, likely due to the presence of at least
one large protease susceptible internal linker segment [65].
doi: 10.1371/journal.pone.0077257.g002

Figure 1.  Charge distribution of APC-MCR.  Charges present in the primary structure, putative phosphorylation sites and
regulatory important motifs are indicated. A large number of putative phosphorylation sites scatter over the entire MCR (Phosida
predictor for S/T phosphorylation). Two of the three 20 amino acid repeats (blue), bind to β-catenin (β). A short peptide stretch
called “CID” (yellow) was recently implicated in Wnt/β-catenin downregulation [4,70].
doi: 10.1371/journal.pone.0077257.g001

Disordered APC-MCR
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helical spectrum with negative peaks at 208 and 220 nm [39].
Compared to the intrinsically disordered Axin-CR, APC-MCR
has a lower content of α-helicity at TFE concentrations up to
20% [37]. We conclude that APC-MCR is devoid of α-helical
secondary structure in non-denaturing buffer, although TFE
can induce α-helicity.

APC-MCR does not fold or unfold upon heating
To investigate tertiary structure of APC-MCR, we monitored

the temperature dependence of its intrinsic protein
fluorescence. We heated the APC-MCR sample in steps of 1°C
from 20°C to 70°C and acquired fluorescence emission spectra
at each temperature. We observed a linear decrease of
fluorescence emission with increasing temperature, as it is
typical for protein in the absence of global conformational
changes (Figure 4A,B,C) [42]. We neither detected any
thermally induced transition nor temperature-dependent
changes in the spectral shape (Figure 4A, B). We conclude that
temperature increase does not induce a structural transition
that changes the environment of the intrinsic fluorescence
probes in APC-MCR.

APC-MCR samples an extended conformational
ensemble

Next, we analysed the global shape of APC-MCR by Size-
Exclusion Chromatography (SEC). For size comparison, we
calibrated the column with an established range of globular
proteins of known mass from 17 kDa (myoglobin) to 670 kDa
(thyroglobulin). The elution time of APC-MCR corresponded to
an apparent molecular weight of 200 kDa, 5-fold larger than
expected based on its molecular weight of 40 kDa (Figure
5A,B). We conclude that APC-MCR is either predominantly

Figure 3.  MCR lacks secondary structure.  Far-UV CD
spectra of APC-MCR in the absence (black) and presence of
TFE (dark grey, 20%; light grey, 80%) in 10 mM Na-phosphate
buffer (pH 7.2), 50 mM NaF, and 0.5 mM TCEP.
doi: 10.1371/journal.pone.0077257.g003

Figure 4.  APC-MCR lacks a cooperative unfolding
transition.  A, Intrinsic protein fluorescence spectra of APC-
MCR measured in 1°C steps from 20°C to 70°C, indicated by a
greyscale gradient from black to light grey. B, Comparison of
intrinsic tyrosine fluorescence spectra normalised to the
maxima. Experiment and colour code as in A. C Temperature
dependence of intrinsic tyrosine fluorescence emission of MCR
upon stepwise increase of temperature at 340 nm (black) and
304 nm (grey) normalised on maxima of emission.
doi: 10.1371/journal.pone.0077257.g004

Disordered APC-MCR
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extended or oligomeric. To determine the oligomeric propensity
of APC-MCR, we determined the molecular weight of the
ySUMO-APC-MCR fusion protein by Size Exclusion
Chromatography – Multi-Angle Laser Light Scattering (SEC-
MALLS) (Figure 5C). The protein eluted as a single monomeric
peak with a molecular mass of 44.4 ± 4.0 kDa. We conclude
that APC-MCR is an extended intrinsically disordered region.

APC-MCR is accessible for phosphorylation by CK1ε
The extended nature of APC-MCR may facilitate

posttranslational modifications such as phosphorylation. We
predicted potential phosphorylation sites using algorithm
PHOSIDA, identifying 69 possible sites [43]. Phosphorylation of
just eight (12%) of the 69 predicted sites in APC-MCR would
already revert the net charge of APC-MCR (Figure 1). We,
therefore, investigated whether the Wnt pathway kinase CK1ε
would phosphorylate APC-MCR, as it would be expected if the
structure was extended.

In the presence of ATP and CK1ε, we incubated APC-MCR
for up to 16 h and subsequently probed for an eventual change
in migration pattern on SDS-PAGE. Additional negative
charges locally prevent binding of SDS and, therefore, reduce
mobility of the phosphorylated protein in the gel [21,44-47]. We
observed a significant decrease in electrophoretic mobility of
phosphorylated APC-MCR already after 1 h and a more
pronounced shift upon further incubation, as it would be
expected upon addition of additional negative charge (Figure
6). After 16 h exposure to the kinase, the unphosphorylated
APC-MCR band disappeared, indicating that no
unphosphorylated APC-MCR was left. This effect on
electrophoretic mobility was reversed upon subsequent
addition of a phosphatase to phosphorylated samples after
thermal inactivation of CK1ε Figure 6). Our results demonstrate
that APC-MCR can be phosphorylated by CK1ε. Our finding
are consistent with previous reports that a short peptide of the
third 20aa repeat of APC (APC-D1498-F1517) can indeed be
phosphorylated on up to six sites, one more than predicted by
PHOSIDA [21].

The Wnt signalling scaffolds WTX, APC, Axin contain
large disordered regions

We wondered whether the high degree of intrinsic disorder is
unique to APC-MCR. Therefore, we compared the disorder
tendency of APC-MCR to that of other members of the Wnt
signalling cascade (WTX, APC, Axin, β-catenin, GSK3β, CK1ε)
as well as unrelated hubs and scaffold proteins (Hsp90, p53,
BRCA1, CREB-binding Protein (CBP), Nup358) using the
metaprediction algorithm PONDR-FIT [48-56]. We confirmed
the presence of a large intrinsically disordered central region in
Axin and large parts of APC (Figure 7A) [10,37,57].
Interestingly, also the third scaffold of the Wnt destruction
complex, WTX, was predicted to exhibit an unusual high
degree of disorder (87%; Figure 7A). Indeed, we noticed typical
features of an intrinsically disordered protein in WTX: low
sequence complexity, two-fold enriched content of the disorder
promoting residues Glu, Pro, Ser, accounting for 31.1 % of all
residues (compared to 15.2% in the average of UniProt), and
several repeats of single amino acids, e.g. in patches of (Glu)7,

Figure 5.  APC-MCR runs at a higher apparent molecular
weight upon size exclusion chromatography.  A, APC-MCR
was applied to analytical size exclusion chromatography. MCR
eluted after 8.36 min between the indicated globular size
standards. By semilogarithmic fitting to the molecular weights
of the standards, an apparent molecular weight of 220 kDa has
been determined for APC-MCR. B, The straight line indicates a
semilogarithmic fit to the known stokes radii of the indicated
standard proteins. According to this analysis, MCR has a
stokes radius of 5.9 nm. C, SEC-MALLS reveals that the
ySUMO-APC-MCR fusion protein is monomeric. ySUMO-APC-
MCR eluted as a single peak with a mass of 44.4 ± 4.0 kDa
(UV absorption at 220 nm, black, arbitrary units; differential
refractive index, red, arbitrary units; Molecular mass, blue,
kDa).
doi: 10.1371/journal.pone.0077257.g005

Disordered APC-MCR
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(Asp)4, (Pro)3 and (Ser)4 [58]. In comparison to other Wnt
signalling proteins and several hubs or scaffolds, we noticed
that the Wnt signalling scaffolds WTX (87%), APC (76%) and
Axin (67%) exhibit a higher degree of disorder than most of the
control proteins (average 38% (similar to the predicted fraction
of disorder in most multicellular proteomes of around 40 %);
only CBP shows a similar extent of disorder (67%) [59]. We
conclude that in agreement with previous bioinformatic and
experimental work, disorder is a key feature in scaffolding
complex protein interaction networks [60,61].

We now wondered how the fraction, distribution and absolute
amount of disordered residues in Axin and APC vary among
evolutionary distant orthologues from species with low (C.
elegans) to high (H.sapiens) biological complexity. Our
comparison of disorder predictions showed for five orthologues
of APC and Axin a significant increase in disorder along with
species complexity (Figure 7B, C). For APC, the total number
of predicted disordered residues increased from 761 in C.
elegans to 2165 in H. sapiens, while the relative disorder
content remained considerably higher than the
(bioinformatically characterised) eukaryotic proteome average
of around 40% (64% in C. elegans and 76% in H. sapiens) [59].
This increase in disorder tendency is remarkable because
random mutations would have been expected to reduce both
the fraction and absolute length of disordered regions during
evolution [62,63] This implies that extended disordered regions
in APC convey a selective advantage for complex organisms.

Figure 6.  MCR can be phosphorylated by CK1ε.  ySUMO-
MCR was incubated for the times indicated with CK1ε. The
bandshift of phosphorylated ySUMO-MCR after 16 h
phosphorylation was fully reversed by heat inactivation of CK1ε
followed by dephosphorylation with CIP for 30 min (last lane).
doi: 10.1371/journal.pone.0077257.g006

Discussion

Our results established that APC-MCR is extended and
intrinsically disordered. High susceptibility to cleavage by TL,
absence of α-helicity, lack of intrinsic fluorescence temperature
transitions and aberrantly fast SEC elution support this
conclusion. Our data are largely consistent with previous
studies on short APC-MCR peptides of all isolated β-catenin
binding repeats and a larger fragment (APC-S1362-K1745)
downstream of APC-MCR [12,19,20,64,65]. A 21 kDa APC
fragment containing the second and third 20aa repeats (APC-
S1340-E1536) has aberrant mobility in SEC, resulting in an
apparent weight of 70 kDa, which supports our findings [64].
Similarly, mixing this 21 kDa fragment with an 83 kDa β-
catenin-GST (apparent weight on SEC 120 kDa), yields a
complex of 190 kDa apparent weight [64]. This is consistent
with assuming extended structure of APC-S1340-E1536,
similar to our findings for APC-S1202-K1551.

Our findings that APC-MCR lacks secondary and tertiary
structure are also consistent with crystallographic studies of
APC fragments (APC-S1362-E1540 and APC-D1484-D1498),
in which regions corresponding to individual 20aa repeats lack
unique globular structure and bind to β-catenin in an extended
conformation [12,19]. Also, NMR and CD data revealed that the
APC-S1340-E1536 spanning the 20aa repeats two to four
lacks stable secondary and tertiary structure [20]. We conclude
that, based on a diverse set of complementary experimental
studies, APC-MCR contains large intrinsically disordered
regions. Disordered scaffolds have been recently proposed to
act as stochastic machines [66]. Our study provides evidence
that APC has all features required for a stochastic machine.

Notably, not only the Wnt scaffolds APC and Axin are to a
large extent intrinsically disordered, our bioinformatic analysis
suggested also for WTX a high tendency to disorder (Figures
7) [18,29,37]. Intrinsic disorder, we thus conclude, is a
recurring theme in large regions of three scaffolds in Wnt
signalling, which might facilitate binding to ordered regions in
other Wnt pathway interactors. Common to all three scaffolds is
that they offer redundant binding sites for several folded
proteins. The connection of those sites with disordered
sequences transforms intermolecular reactions into entropically
more effective intramolecular reactions, largely independent of
which binding sites are used.

A particular interesting question is how the disordered nature
of APC-MCR corresponds to colorectal tumourigenesis. Only
few cases are known where a single missense mutation in
APC’s disordered regions has drastic clinical consequences
[18]. This is in marked contrast to point mutations in folded
domains such as the p53 core domain or in the relatively short
disordered N-terminal region of β-catenin [51]. We speculate
that the large extent of disorder in APC regions that host
numerous β-catenin and Axin binding repeats may increase
robustness against single missense mutations [18,29,67]. Due
to the high redundancy of β-catenin binding motifs in APC, a
reduced function of a single repeat is likely to be tolerated in
most cases, in particular when connected with disordered,
dynamic linker segments. This is consistent with a relatively
low prevalence of missense mutant APC in colorectal cancer
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patients [18]. The combination of a redundant set of binding
sites for interactors and extended intrinsic disorder and
presence of multiple potential phosphorylation sites might be
crucial to protect Wnt signalling fidelity against mutational
impact.

Methods

Protein Purification
All used protein production constructs were prepared from

human cDNA. The β-catenin was recloned in a modified
pET50b (Novagen) encoding a TEV cleavage site before the
start of the β-catenin sequence. APC-MCR (S1202-K1551) was

Figure 7.  The three Wnt signalling hubs APC, Axin, WTX contain large intrinsically disordered regions.  A, Meta-predictions
of disorder using the PONDR-FIT algorithm are displayed. (black for scores >= 0.5 and white for scores < 0.5). B, Same as A, for C.
elegans homologues of APC, Axin, Hsp90, CBP.
doi: 10.1371/journal.pone.0077257.g007
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recloned as a Ulp1-cleavable ySUMO fusion. Axin-CR was
prepared as previously described [37]. CK1ε was prepared as
described [68]. The proteins were produced in E. coli
BL21(DE3)Rosetta2* (a strain obtained by cotransformation of
the protein production constructs with the pRARE2 plasmid
from Novagen into the BL21(DE3)* strain from Invitrogen).
Upon production at 15°C, we purified the proteins using
Poros20MC resin for metal affinity purification. Subsequently,
tags were cleaved on ice using TEV or Ulp1 protease using
conditions described earlier [37]. The APC-MCR protein was
further purified by Poros20HQ anion exchange
chromatography for tag removal and polishing. For the SEC-
MALLS experiments, ySUMO-APC-MCR was purified by metal-
chelate affinity chromatography (Poros 20MC) and anion
exchange chromatography (Poros 20HQ and MonoQ (GE
Healthcare)) and concentrated to 50 µM using a Vivaspin 20
concentrator (10,000 MWCO PES, Sartorius Stedim Biotech) in
(20 mM Tris pH 8, 200 mM KCl, 0.8 mM TCEP).

TL titration
TL was prepared as described [35]. Stock solutions of 5 g/L

were diluted to 0.1 g/L or 0.001 g/L. All reactions were
incubated on ice for 30 min in a buffer containing Hepes 20 mM
pH 7.2, 300 mM KCl, 10 mM CaCl2 and 5 mM DTT as reducing
agent for the cytosolic proteins Axin-CR, APC-MCR, β-catenin.
Subsequent quenching of the reaction was achieved by
addition of a Laemmli sample buffer supplemented with 50 mM
EDTA. All samples were analysed by SDS-PAGE and
subsequent fluorescence-enhanced detection in an Odyssey
scanner (LiCor) [69].

Fluorescence Analysis
Purified APC-MCR (30 μM) in 10 mM sodium phosphate (pH

7.2), 150 mM NaCl, and 1 mM DTT was measured using a
fluorescence spectrophotometer (Perkin-Elmer LS55) with a
1.5-ml cuvette (Hellma) with a magnetic stirrer using the
software Fluo_pe (D. Veprintsev; Paul Scherrer Institute, CH).
Fluorometric analysis was performed at increasing
temperatures ranging from 20°C to 70°C for APC-MCR, with a
1°C step increase. Fluorescence emission was measured from
300 to 400 nm with excitation at 280 nm.

CD spectroscopy
CD spectra were recorded with a J-810 spectropolarimeter

(Jasco). Purified MCR (10 μM) in 10 mM Na-phosphate (pH
7.2), 50 mM NaF, and 0.5 mM TCEP was applied on a 1mm
Quartz cell (Hellma). Far-UV spectra were collected over a
range of 190–260 nm using Jasco software at a scanning
speed of 50 nm/min and at a data pitch of 1 nm, averaged over
10 acquisitions. Spectra were corrected for buffer contributions
by substracting buffer reference spectra. Different
concentrations of TFE were used: 0%, 20% and 80% (vol/vol).

Size Exclusion Chromatography
Analytical gel filtration of purified MCR at a concentration of

50 μM was performed on an Äkta Purifier (GE Healthcare)

using a Bio-Silect SEC 250 analytical column (300 mm×7.8
mm) with a guard column (50 mm×7.8 mm; Bio-Rad)
equilibrated with 25 mM Tris–HCl (pH 7.2), 150 mM NaCl, and
1 mM TCEP. MCR was eluted at a flow rate of 1 ml/min, and
the elution profile was recorded by continuously monitoring UV
absorbance at 280 nm and 220 nm. The calibration curve was
obtained using standards of known size and molecular mass
from a lyophilized protein test mix (Bio-Rad), including
thyroglobulin (670 kDa), γ globulin (158 kDa), ovalbumin (44
kDa), myoglobin (17 kDa), and vitamin B12 (1.3 kDa).

Size Exclusion Chromatography – Multi-Angle Laser
Light Scattering (SEC-MALLS)

SEC-MALLS had been used to determine the oligomerisation
propensity of APC-MCR using the ySUMO-APC-MCR fusion
protein. For each SEC-MALLS run, 10 µl of 50 µM ySUMO-
APC-MCR had been injected into a Superdex 200 5/150 GL gel
filtration column (GE Healthcare) and separated with a flow
rate of 0.2 ml/min in 20 mM Tris pH 8, 200 mM KCl, 0.8 mM
TCEP. For molecular weight characterisation, light scattering
was measured with a miniDAWN TREOS multi-angle light
scattering detector (Wyatt), connected to a differential
refractive index monitor (Shimadzu, RID-10A) for quantitation
of the protein amount. Chromatograms were collected,
analysed and processed by ASTRA6 software (Wyatt, using an
estimated dn/dc value of 0.185 ml/g). The calibration of the
instrument was verified by injection of 10 µl of 3 g/l monomeric
BSA (Sigma-Aldrich).

Phosphorylation assay
ySUMO-APC-MCR was treated with 10 nM CK1ε and 100

μM ATP for up to 16 h. For a dephosphorylation control, we
heat-inactivated the CK1ε after 16 h phosphorylation and used
Calf-intestine Phosphatase (CIP, NEB) according to the
protocol of the manufacturer.
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