
Chemical Communications  

COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx Ch em .  Commu n.,  2 017,  00 ,  1 -3  | 1   

Please do not adjust margins 

Please do not adjust margins 

a.
 Department of Chemistry , Un iversity of Cambridge, Lensfield Road, Camb ridge 

CB2 1EW. Email:  reisner@ch.cam .ac.u k, URL: ht tp://www-
reisner.ch.cam .ac.u k/index.h tml  

b.
 WPI Advanced Inst itute for  Mater ials Research (AIMR), Tohoku U niversi ty,  2 –1–1 
Katahira Aoba- ku Sendai , M iyagi  980–8577, Japan . 

Email: ajiri@tagen.tohoku .ac.jp  
‡
Current  address:  Faculty of Texti le Science and Technolog y, Shinshu Universi ty,  

Ueda 386-8567, Japan. 

† Electronic Su pplementary Inf ormation  (ESI) a vailable: Additional F ig.s, tab les,  
and experimental deta ils . See D OI: 10.1039/x0x x00000x. Raw data relating to this  

publicatio n is available at the Cambridge Unive rsity Data Repos itory  
(https://www.repository .cam.ac.u k/handle/xxx x/xxxx xx).  

Received 00th Janu ary 20xx, 

Accepted 00th January  20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/  

Catechol-TiO2 hybrids for photocatalytic H2 production and 

photocathode assembly† 

Katherine L. Orchard,
a,b

 Daisuke Hojo,
b
 Katarzyna P. Sokol,

a 
 Meng-Ju Chan,

b
 Naoki Asao,

b‡
 

Tadafumi Adschiri,
b
* and Erwin Reisner

a
*

Visible-light driven H2 evolution in water is achieved using  

catechol-photosensitised TiO2 nanoparticles with a molecular 

nickel catalyst. Layer-by-layer immobilisation of catechol-TiO2  

onto tin-doped indium oxide electrodes generates photocathodic 

currents in the presence of an electron acceptor. This approach 

represents a new strategy for controlling photocurrent direction in 

dye-sensitised photoelectrochemical applications.  

Immobilising molecular dyes onto wide band- gap metal oxide 

semiconductors is a well-established strategy for preparing 

tuneable, visible-light responsive materials f rom relatively 

inexpensive components. This approach was pioneered for 

solar energy conversion in dye-sensitised solar cells (DSCs)1  

and is  an emerging field in the area of  solar fuels synthesis .2  In 

the majori ty of dye-sensitised systems, photoexci tation occurs  

in the dye (HOMO-LUMO transition) followed by fast charge 

injection into the semiconductor (Type I sensi tisation, Fig. 1a). 

This  approach has been effective in H2  production using dye-

sensi tised photocatalysis  (DSP)2a and in forming photoanodes  

for dye-sensitised photoelectrochemical cells (DSPEC);2b, 2 c 

however, the translation of DSP systems to photocathodes is  

more challenging, often relying on low-performance p- type 

semiconductors (such as NiO)
3
 or molecular engineering

4
 to 

control the direction of electron transfer. 

Charge-transfer sensitisation, in which photoexci tation  

occurs  di rectly f rom a  surface-adsorbed molecule to the 

semiconductor conduction band (Type II, Fig. 1a), has recently 

been explored as  a low-cost alternative in DSCs 5 and solar fuel  

production.6 Type II sensitisation is known to occur in TiO 2  

functionalised with phenol and enediol  groups, such as  

catechols.
5 d

 These groups bind to Ti
4+

 ions on the surface of  

TiO2,  forming complexes  that absorb visible light due to ligand-

to-metal charge- transfer (Fig. 1b).7 This one-step transfer f rom  

dye to TiO 2 results in very fast electron injection (on the order 

of fs),5 b and, importantly, by avoiding excitation into the dye 

LUMO the charge- transfer is inherently di rectional (Fig. 1a and 

S1). Type II sensitisation also occurs between carbon nitride 

and TiO2 , and has been used to enhance solar light-driven H2  

evolution with hydrogenase, 8 and to form photoanodes for 

photoelectrochemical water oxidation.9  

Catechol-containing dyes based on alizarin red have been 

studied for DSP and for photocurrent switching applications;1 0  

however, these dyes are also Type I sensi tisers.5d To our 

knowledge, the only example of purely Type II visible-light 

driven H2 evolution uses phenolic resin-sensiti sed TiO 2  

nanoparticles , with Pt as the H2 evolution catalyst (HEC) in the 

presence of a sacrificial electron donor (SED).6b, 6 c 

Replacing noble metals with inexpensive catalysts and  

moving towards SED-f ree systems are both important goals in  

 

Fig. 1 (a)  En ergy t ransfer  in Typ e I  (two-step) and  Typ e II  (one-step) dye-sensitised  TiO2  

systems; (b) Diffuse reflectanc e absorption sp ectrum of catechol-modified TiO2  

compared to bare TiO2 and the transmission spectrum of catechol in water (catechol  

shown is DHCA); (c) Solar H2 production in DSP system (AA = ascorbic acid); (d) Layer-

by-layer photocathod e incorporating c atechol- TiO2 ( A = accep tor).  
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achieving sustainable fuel synthesis. Here we take steps  

towards addressing these challenges by developing a new  

route for assembling noble metal-free photocathodes. Firs t,  

we demonstrate that Pt can be replaced by a 3d transition 

metal catalyst to form an active Type II DSP system (Fig. 1c).  

We then develop a SED-f ree photoelectrochemical system, 

using the directionali ty of the cha rge-transfer complex to form  

photocathodes on a conductive electrode support (Fig. 1d).  

For the DSP system, a  range of charge-transfer dye-

sensi tised TiO2 powders were prepared by mixing simple 

catechol derivatives  (Fig. 2a) with commercial P25 TiO 2  

nanoparticles  (average crystalli te size 21 nm, 8:2 mixture of  

anatase:rutile). The resulting coloured powders  exhibi ted  

broad light absorption over the visible range (Fig. S2). The dye 

loadings ranged f rom 75 – 172 nmol (mg TiO 2)‒1 (Table S1).  

These loadings  correspond to an estimated footprint of  0.5 – 

1.1 nm
2
 molecule

‒1
, consistent with reported ranges for sub-

monolayer to monolayer coverage of catechols on TiO 2.1 1  

Photocatalysis solutions were prepared by suspending the 

dye-P25 powders (2.5 mg) in aqueous SED solution (ascorbic 

acid, AA, 0.1 M, 2.25 mL). We selected the HEC 

[Ni (PPh
2NC6H4 CH 2P(O)(OH )2

2)2]Br2, NiP (Fig 1c), as it has previously 

been shown to be highly active in aqueous DSP1 2 and DSPEC.3 a,  

4b
 NiP (50 nmol) was added to the dye-P25 suspension as  a  

solution in methanol (1 mM) before the photoreactors were 

purged with N2 and irradiated with simulated solar light (λ > 

420 nm, AM 1.5 G, 100 mW cm‒2). The formation of the hybrid 

DSP system (Fig 1c) is supported by FTIR and UV-vis  

spectroscopy (Fig S3), with an estimated NiP loading of 38 

nmol mg‒1  for CA-P25 (calculated using the difference in 

absorption at 450 nm of a NiP solution before and af ter 

exposure to TiO 2). No H2 was detected in control experiments  

without AA, TiO2 or NiP, or with NiCl2 in place of NiP.  

 AA can also sensitise TiO2  through charge-transfer 

interactions, resulting in small amounts of H2 evolution in the 

absence of additional catechol during visible light irradiation 

(Fig. 2b, “None”); however, all  ex situ functionalised powders  

enhanced the activi ty compared to bare P25 (Fig. 2b and S4a).  

The highest activity was obtained with caffeic acid (CA; Fig. 2),  

with a turnover number with respect to the powder (TONg ) of  

273 ± 29 µmol H2 g‒1 after 4 h. The turnover f requency (TOFg ) 

of 73 ± 3 µmol H2 (g TiO 2)‒1 h‒1 was maintained over the fi rst 4 

h, equivalent to a TOF per Ni catalyst (TOFNi ) of 3.6 ± 0.2 µmol  

H2 (µmol NiP)‒1 h‒1 and TOF per catechol of 0.6 ± 0.2 µmol H2  

(µmol CA)
‒1

 h
‒1

. This result is comparable to that reported for 

the phenolic resin system with Pt (105 µmol g‒1 h‒1).6b The 

TOFNi  is an order of  magnitude lower than previously reported 

for the equivalent system with a  Ru tris (bipyridine) dye, RuP,1 2  

but RuP can directly reduce NiP in solution, whereas the 

catechol derivatives cannot. The lower extinction coefficient  

and faster recombination rate of the charge-transfer band 

relative to that of  metal-based dyes (ps
1 3

 vs. ns  – µs
2a

) are also 

expected to contribute to the difference in activity.  

The high activity of  CA relative to the unconjugated  

analogue 3,4-dihydroxyhydrocinnamic acid (DHCA) is  

consis tent with the red-shift in the absorption spectrum and 

increase in both the catechol bindi ng constant and the  

 

Fig. 2 (a)  Chemical  structures of  charge-transfer  dyes us ed in th is study (cat echol = 1,2-

dihydroxybenzen e, DHBA = 3,4-dihydroxyb enzoic acid, DHCA = 3,4-

dihydroxyhydrocinnamic acid , CA = caff eic acid , DHBT = 2-(3,4-

dihydroxybenzen e)thiophen e, ND = 2,3-naphthalenediol , AA = ascorbic acid) ; (b) 

Comparison of visible-light driven H2 evolution with charge-transf er dye-functional ised  

P25 TiO2 powd ers in  the pres ence of  a molecular  Ni c atalyst , NiP  (0.1 M AA, pH 4 .5, 2.5  

mg powd er, 50 nmol NiP , 2.25 mL, λ > 420 nm, AM 1.5 G, 100 mW cm
‒2

, 25 °C).  

electron injection efficiency associated with greater 

conjugation.5 b The activity per dye molecule also reflects  this  

trend for 2- (3,4- dihydroxybenzene)thiophene (DHBT; Fig. S4b); 

however, the lower loading of DHBT on TiO2 compared to CA 

(Table S1) resulted in a lower TONg (Fig 2b). Ring conjugation 

(2,3-naphthalenediol, ND) did not enhance activity (Fig. 2b and 

S4b), which is likely due to the comparatively low visible light 

absorption of ND-P25 (Fig. S1).  

TONNi increased with decreasing NiP loading (Fig. S5a) and 

increasing CA-P25 powder loading (Fig. S6a). However, the 

corresponding TONg decreased with decreasing NiP loading 

(Fig. S5b) and reached a  maximum at  a  CA-P25 loading of  1.25 

mg (Fig. S6b). Since increasing the powder loading increases  

both the dye loading and the particle:Ni  ratio, it  can be 

inferred that the H2 production rate is limited by the 

generation and supply of electrons to NiP. This conclusion is  

supported by the decrease in activity of the system on 

decreasing the light intensity (Fig S7). The external quantum  

efficiency (EQE) of the most active system (5 mg CA-P25, 50 

nmol NiP) was measured to be 0.09 ± 0.01 %. 

Since light absorption is related to the number of catechol-

TiO2 surface interactions, light absorption per g can be  

enhanced by using smaller nanoparticles  to increase the 

surface area. We synthesised TiO2 nanoparticles by a  

previously reported method (pure anatase, average diameter 

~7 nm, AN7-TiO2 , see Fig. S8 for TEM)14 and tested both these 

and commercial pure anatase nanoparticles (10 nm, AN10-

TiO2,  Fig. S7) under the standard DSP conditions (CA-TiO2, 2.5 

mg, 50 nmol NiP). However, despite the increase in catechol  

loading (505 nmol (mg TiO2)‒1 ; Table S1) and light absorption 

(Fig S9) compared to P25, these particles displayed less  

photocatalytic activity (Fig. S10). The lower performance was  

not found to be due to a difference in binding of NiP to the 

particles (48 and 51 nmol mg‒1 for AN10-TiO2 and AN7-TiO2,  
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respectively). However, i t is  likely that the smaller, pure 

anatase particles suffer f rom less efficient charge separation 

compared to the larger, mixed-phase (anatase/rutile) P25.
1 5

 

Pure rutile phase TiO2 nanoparticles (R-TiO2, 10 – 30 nm)  

displayed lower activity than P25, AN10, and AN7-TiO2  (4.9 ± 

0.3 after 3 h, Table S2, Fig. S10).  

Having established that catechol-TiO2 hybrids are effective 

light absorbers for (UV-fil tered) solar H2 evolution with NiP, we 

sought to transfer the DSP system onto photoelectrodes.  We 

designed a layer-by-layer route to immobilise the TiO2  

nanoparticles onto a degenerately doped n-type metal oxide 

support (indium tin oxide, ITO) in a directed, sequential  

fashion (Fig. 1d). In order to maximise the deposition of the 

TiO2 nanoparticles in our system, we used hierarchical inverse 

opal mesoporous ITO electrodes (IO-ITO; Fig. S11a). IO-ITO is  

an effective support for nanoscale adsorbates such as enzymes  

(e.g. Photosystem II, 10.5 x 20.5 x 11.0 nm
3
), owing to their 

open, macroporous structure (750 nm pores with 150 nm  

interconnecting chambers) and high surface area mesoporous  

scaffold (formed from <50 nm ITO nanoparticles ).1 6  

Mesoporous ITO (mesoITO) electrodes (1 µm thickness, Fig. 

S11b) were also prepared for comparison. 17  

By studying the attachment of DHCA to IO-ITO in the 

presence or absence of one equivalent of  propylphosphonic 

acid by UV-vis spectroscopy, we found that ITO binds  

preferentially to phosphonate groups over catechol gr oups  

(83% of DHCA is displaced; Fig S12a). We therefore synthesised 

(E )- (3,4-dihydroxystyryl )phosphonic acid (DHSP; see ESI for 

synthetic details ) as a bifunctional, phosphonated catechol  

that is expected to bind to ITO in the correct orientation for 

subsequent formation of the charge-transfer interaction with 

TiO2 . In contrast to ITO, TiO2 has an approximately equal  

binding affinity for catechol and phosphonic acid groups (45%  

of DHCA was displaced in the presence of propylphosphonic 

acid; Fig S12b). Therefore, f ormation of the charge-transfer 

complex was only effective if DHSP was anchored to ITO 

before adding TiO2; ex situ-prepared DHSP-sensi tised P25 

powders did not absorb appreciably in the visible-light region.  

DHSP was anchored onto ITO by incubating the electrodes  

in an aqueous stock solution (1mM, 2 – 8 °C, 16 h). Cyclic 

voltammetry (CV) of DHSP-functionalised flat ITO shows a  

quasi-reversible wave (E 1/2 = 0.84 V vs . RHE), which can be 

assigned to the catechol/semiquinone redox couple (Fig. S13). 

By monitoring the change in absorbance of a stock solution of  

DHSP (1 mM) at 280 nm af ter incubation with IO-ITO 

electrodes , the loading of DHSP was  estimated to be 64.0 ± 

10.9 nmol  cm‒ 2, which matches the loading estimated f rom  

the charge passed during CV (55.5 nmol cm‒2 , see ESI).  

The final charge-transfer complexes were formed by 

depositing TiO2 nanoparticles onto the DHSP-functionalised 

ITO. In contrast to the photocatalysis results,  the electrodes  

with the highest photocurrent in the presence of an acceptor 

(O2) were those prepared with AN7-TiO2 nanoparticles  (Fig. 

S14). The nanoparticles were deposi ted by immersion of the 

ITO|DHSP electrodes in a stock solution of oleic acid-capped 

AN7-TiO2,1 8 followed by treatment with NEt3 (10 vol% i n 

ethanol ) to remove surface oleic acid, as  confirmed by FTIR 

spectroscopy (Fig. S15). The formation of the charge-transfer 

complex was evidenced by a change in colour of the electrodes  

from pale yellow/green to peach (Fig. S16). The loading of  TiO 2  

was measured to be 212.4 µg cm– 2 for 12 µm thick IO-ITO (Ti  

content; Inductively Coupled Plasma-Optical Emission 

Spectroscopy, ICP-OES), which corresponds to approximately 

83 nmol of nanoparticles per cm2.  

Scanning electron microscopy (SEM) of AN7-TiO2 on DHSP-

functionalised flat ITO showed that an even monolayer of  

particles is  formed (Fig.  S17),  and energy- dispersive X- ray 

spectroscopy (EDX) of the fully assembled IO-ITO|DHSP|AN7-

TiO2 electrodes showed that the particles are evenly 

distributed throughout the IO-ITO structure (Ti content of  

11.8, 11.4, and 10.7 at% for the top, middle, and bottom part 

of the IO-ITO structure respectively; Fig. S18a). In contrast, EDX 

analysis of equivalent electrodes prepared with P25 TiO2  

showed that these nanoparticles  do not penetrate beyond the 

surface (10 – 12 at% Ti detected only on the top surface and 

none at lower layers ; Fig. S18b). The difference in particle 

distribution, and subsequent performance, is attributed to the 

better size match of the macro- and mesopores of the IO-ITO 

structure to the small, well-dispersed AN7-TiO2 compared to 

the larger, aggregated P25 particles (close to micron-sized 

aggregates of 20 nm particles; see Fig. S8 for TEM). AN10-TiO2  

nanoparticles  also form aggregates (Fig. S8), res ulting in low  

performance (Fig. S14). 

In the presence of the electron acceptor O2 , cathodic 

photocurrents were obtained under visible light i rradiation (λ > 

400 nm, 100 mw cm– 2) with IO-ITO|DHSP|AN7-TiO2 electrodes  

below the redox potential of DHSP (Ea pplie d = 0.3 V vs. RHE, Fig. 

3a). Initial current spikes were observed in the photocurrent 

curves of these electrodes (Fig 3a), which likely occur due to 

rapid polarisation and charge accumulation of the electrode.1 9  

A switch to anodic photocurrent was observed at potentials  

where DHSP is oxidised (Eapplie d > ~0.7 V vs. RHE, Fig. S19). The 

photocurrent is attributed to the formation of the charge-

transfer complex since little photocurrent is  obtained in the 

absence of the catechol and/or TiO 2 (Fig. 3a). The magnitude of  

the photocurrent scales with the thickness of the ITO scaffold, 

reflecting the increase in loading of  the dye-TiO2 complex with 

increasing ITO surface area (Fig. 3b). The photocurrents  

obtained with 12 µm thick IO-ITO (70 µA cm–2) are comparable 

to those obtained with Ru-based Type I dyes  in the presence of  

an acceptor,20  demonstrating the promise of employing metal-

free  Type II dyes .  

In the absence of O 2 (N2 purged solution), small cathodic 

currents were maintained for the bare IO- ITO|DHSP|AN7-TiO2  

electrodes (Fig. S20). Although NiP could be immobilised onto 

the electrodes (maximum loading of 28.9 ± 2.9 nmol per cm2; 

UV-vis spectroscopy), photo- driven H2 evolution was not 

achieved with these electrodes. It is possible that the  

phosphonate groups in NiP may displace either the some or all  

of the DHSP groups from the surface of the TiO2. NiP can also 

bind directly to ITO, by-passing the dye-TiO2 construct. 

Therefore, although the layer-by-layer design successfully 

generates a directional , dye-sensitised electrode, further  

catalyst design is required in order to fully translate the DSP  
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Fig. 3 (a) Chronoamperograms under chopped irradiation of (i) IO- ITO |DHSP, (ii) IO- ITO , 

(iii) IO-ITO|AN7- TiO2 and (iv) IO-ITO|DHSP|AN7-TiO2  electrod es. (b) Eff ect of ITO  

morphology and thickn ess on visible-light photocurrent of ITO|DHSP|AN7-TiO2  

elec trodes. Due to th e hierarchic al structure consisting of macro- and mesopores, th e 

effective surfac e area of IO-2 µm ITO is lower than 1 µm mesoITO. Conditions: Na2 SO4  

(0.1 M), pH 4.5, 0.3 V vs. RHE, 100 mW cm
–2

, λ > 400 nm, roo m temperature. 

system to DSPEC.  

In conclusion, we have demonstrated for the firs t time that 

catechol-TiO2 complexes are effective photosensitisers for 

driving sacrificial H2 evolution with a n earth-abundant 

molecular catalyst,  forming a  fully noble metal-free Type II DSP 

system. Using a layer-by-layer method, we have transferred 

the dye-sensitised TiO 2 to an electrode to form a Type II  

photocathode. The excellent size match between the 

hierarchical  IO- ITO support and the TiO2 nanoparticles is  

critical for high dye-TiO2 loading.  The obtained photocurrents  

with a  sacrificial  electron acceptor are comparable to those 

obtained with Type I dyes , indicating that this is a promising 

means to control photocurrent di rection and allow the use of  

n-type metal oxide supports (such as ITO) in DSPEC 

applications . This  work represents an important firs t step in 

translating functional DSP systems to DSPEC; however, 

challenges  in coupling these electrodes to a H2 evolution 

catalyst  will need to be overcome in order to apply them for 

fully sustainable solar fuels synthesis .  
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