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para-Aminosalicylic acid (PAS) is a group 4 antituberculosis
agent (1). It targets folate metabolism as shown in Fig. S1 in

the supplemental material, which also summarizes the known
mechanisms of resistance to this prodrug (2). Recently, we re-
ported a multidrug-resistant (MDR) Mycobacterium tuberculosis
Beijing strain harboring a deletion of both dfrA and thyA from
Australia (Fig. 1A and Table S1) (3). Since then, we have found
deletions affecting both genes in five further MDR Beijing strains
(two isolated in Australia and three from Peru) and one exten-
sively drug-resistant (XDR) Beijing strain from China. The Aus-
tralian MDR strains were recovered from three patients with no
apparent epidemiological links who were likely infected in their
country of origin (Table S1). The three Peruvian isolates were
closely related and consequently shared the same deletion,
whereas the remaining strains were distantly related and had de-
letions that differed in size (Fig. 1A). Consequently, these five
distinct deletions were acquired independently, which can be a
signal for positive selection of resistance mechanisms. In line with
this hypothesis, the strains from Australia and China were found
to be PAS resistant when tested with the Bactec MGIT 960 system
and on Löwenstein-Jensen medium, respectively (see Supplemen-
tal methods). Two out of the three Peruvian deletion mutants
were also found to be PAS resistant on 7H10 medium at 8 �g/ml,
whereas the two closely related ancestral wild-type strains were
found to be susceptible (Fig. 1B). We were unable to retest the
strains at 2 �g/ml, the critical concentration recommended by the
Clinical and Laboratory Standards Institute and the World Health
Organization, which would have clarified whether the result for
the third deletion mutant as susceptible was an artifact (1, 4).

The observation that dfrA could be deleted was remarkable in
light of our current understanding of folate metabolism in M.
tuberculosis. Two studies suggested that dfrA is essential in vitro in
the H37Rv laboratory strain (5, 6). More recently, it was shown
that dfrA is conditionally essential and can be knocked out in
H37Rv only if Rv2671 is overexpressed in trans, presumably due to
its greatly reduced dihydrofolate reductase activity compared to
that of DfrA (7, 8). Our in silico analysis of the seven dfrA thyA
double deletion mutants did not reveal any known Rv2671 muta-
tions (Table S1), such as the G-to-A upstream mutation at posi-
tion �12 that results in its overexpression and consequently con-

fers PAS resistance (this mutation was incorrectly referred to as
affecting position �11 in two of our prior studies [7, 9]). Assum-
ing that no other pertinent differences that are specific to the Bei-
jing genotype relative to H37Rv exist or that a yet-unknown ac-
quired mutation elsewhere in the genome that resulted in the
overexpression of Rv2671 was present, we propose that this appar-
ent contradiction can be reconciled if the essentiality of dfrA was
dependent not only on the expression level of Rv2671 but also on
the presence of wild-type thyA. The fact that thyA was deleted in all
seven dfrA mutants meant that only the second thymidylate syn-
thase, encoded by the essential thyX gene, was active in these
strains (Fig. S1). Contrary to ThyA, ThyX generates tetrahydrofo-
late rather than dihydrofolate upon catalysis and therefore does
not require high dihydrofolate reductase activity to provide suffi-
cient levels of tetrahydrofolate (2). This is in line with the fact that
dfrA is not required in bacterial species that lack thyA (10). Con-
sequently, Rv2671 appeared to be sufficient to sustain growth,
even without being overexpressed in these deletion mutants. It
should therefore be possible to knock out dfrA in strains of M.
tuberculosis with inactive thyA. Moreover, the adjacent locations
of thyA and dfrA in the genome should make their simultaneous
deletion possible (Fig. 1A).

Interestingly, all but one of the deletion mutants also conver-
gently acquired mutations upstream of thyX compared to what
was observed for the two closely related Peruvian control strains
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(Fig. 1B and Table S1) (11). In fact, the cluster of three Peruvian
strains and two of the unrelated Australian strains shared the same
C-to-T upstream mutation at position �16 that has previously
been found to be associated with resistance to several drugs and
experimentally shown to result in the overexpression of thyX (12).
It is therefore plausible that these changes compensated for the
reduced expression levels and enzymatic activity of ThyX com-
pared to those of ThyA (11, 13). Based on our data, however, it was
not possible to deduce whether the thyX mutations were acquired

after the deletions of thyA and dfrA in each strain, as would be
expected with compensatory mutations (11).

In summary, these data demonstrated that the folate metabo-
lism and the genetic basis of PAS resistance are more complex than
previously appreciated, which is relevant for the development of
novel DfrA and ThyX inhibitors and potentially the use of trim-
ethoprim-sulfamethoxazole to treat drug-resistant tuberculosis
(Fig. S1) (14–25). Although deletions are often excluded from
large-scale whole-genome studies, owing to the limited read
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FIG 1 Analysis of dfrA and thyA deletion strains, all of which tested PAS resistant, with the exception of PH107_CA033M_1. (A) Diagram of deletions in seven
clinical strains compared with the wild-type H37Rv laboratory strain. The scale at the top corresponds to the genome position in H37Rv. The letter in parentheses
denotes the country of isolation (Australia [A], China [C], and Peru [P]). Mtb97 was reported previously (3). (B) Maximum likelihood tree based on whole-
genome data of the three Peruvian deletion mutants, which also share a mutation upstream of thyX that is also present in Mtb97 and Mtb78 (Table S1), and two
closely related wild-type strains, which were PAS susceptible.
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lengths of next-generation sequencers and the fact that algorithms
are optimized for single-nucleotide polymorphism (SNP) calling,
this study highlighted that deletions can no longer be ignored
(3, 26).
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