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1. Introduction 36 
 37 
A popular suggestion is that an evolutionarily grounded analogue magnitude representation, 38 

also called an approximate number system (ANS) or ‘number sense’ underlies human mathematical 39 
knowledge (Dehaene, 1997). During recent years many studies aimed to train the ANS with the 40 
intention of transferring improvements to symbolic arithmetic. It is important to critically evaluate 41 
these studies because experience shows that interpretations are quickly taken up by researchers, 42 
practitioners and parents alike perhaps without much evaluation of how methods, results and study 43 
conclusions relate to each other, whereas usually the devil hides in the details. Unfortunately, many 44 
review papers tend to gloss over critical study details even though experimental design, analysis 45 
and/or inferential logic problems may inhibit clear conclusions or even disqualify results. Hence, in 46 
order to see clearly, here we critically review ANS training studies. We highlight both study-specific 47 
and general problems. We conclude that there is no conclusive evidence that specific ANS training 48 
improves symbolic arithmetic. We suggest ways to run future training studies so that clear evidence 49 
can be collected. We draw attention to the fact that highly controversial results often get cited in 50 
support of very specific claims in the literature without discussion of controversies. We suggest that 51 
this practice may facilitate the creation of a ‘highly cited null field’ which nevertheless gives an 52 
impression of positive results with regard to the ANS training literature. Below we first define 53 
important terms, then review studies one by one (because it is crucial to understand the details of 54 
individual studies so that they can be properly evaluated) and then draw some general conclusions. 55 
We especially point to the importance of bias-free discussion of results and placing them in the 56 
context of contrary as well as supportive literature. 57 

 58 
1.1 What is number sense and the ANS? 59 
 60 
A prerequisite of meaningful scientific debate is that we have a clear definition of what we 61 

wish to discuss. Literature regarding the ANS and number sense is often not up to this expectation as 62 
many researchers use this term in many different ways, and relevant definitions even seem to shift 63 
over time. Such confusions may result in some papers citing other papers as supporting evidence 64 
whereas they may have used completely different and non-compatible theoretical and/or operational 65 
definitions of number sense. 66 

Here we assume that all the following terms mean the same: ‘approximate number system’, 67 
‘ANS’, ‘number sense’, ‘quantity representation’, ‘(approximate) magnitude representation’, 68 
‘(approximate) analogue magnitude representation’. We take that all the above terms in the papers 69 
discussed below refer to the ANS in the sense defined by Dehaene (1997). This concept can be 70 
defined as an ancient, evolutionarily grounded pre-human sense of magnitude which represents 71 
numerosity (the number of items) in a modality-independent and approximate manner and it enables 72 
magnitude discriminations. Consequently, it is often claimed that this ANS is the intuitive pre-cursor 73 
of all human mathematics (Dehaene, 1997). It is to note that previously this concept was mostly called 74 
‘number sense’, but more recently the tendency is to call it ‘ANS’. It is also worth noting that the 75 
above ANS definition is very different from another popular, much broader, definition of ‘number 76 
sense’ which defines the term as a core set of early numerical abilities which are crucial to acquire for 77 
later numerical development to be successful (Jordan et al., 2006; Jordan et al., 2007; Jordan, 78 
Glutting, & Ramineni, 2010; Jordan et al., 2012; Hassinger-Das et al. 2014). This broader definition 79 
of ‘number sense’ includes both non-symbolic manipulation and symbolic counting and arithmetic 80 
principles. It assumes that number sense involves 1) magnitude comparison; 2) object and verbal 81 
counting; 3) number identification and 4) simple arithmetic. Here we only deal with the first 82 
definition of number sense or ANS. However, even a paper discussed here seems to blur the two 83 
definitions of number sense together (Sella et al. 2016). 84 

Table 1 reviews the wide array of often approximate ANS definitions from the papers 85 
discussed here. Notably, several definitions provided do not necessitate an innate ANS and/or any 86 
special primitive representation of number. For example, the definition of Wilson et al. (2006b) could 87 
be satisfied by manipulating symbolic numerical quantities in visuo-spatial working memory by some 88 
spatial addition or subtraction algorithm. However, as far as we understand this would be an 89 
unintended extension of the definition of ‘number sense’ and ANS. Some other definitions are 90 
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similarly imprecise (Wilson et al. 2009; Hyde et al. 2014), with probably DeWind and Brannon 91 
(2012) and Park and Brannon (2013) giving the most clear and specific definitions. 92 

In the following, we will discuss each published study which can be thought of as aiming to 93 
train the ANS with the intention of demonstrating carry over (transfer) effects to other mathematical 94 
abilities beyond non-symbolic number comparison (see Appendix 1 for the method of identifying 95 
these studies). When we refer to tables and figures in the current paper we just give simple table and 96 
figure numbers. In contrast, we will use the ‘#’ symbol when we refer to tables and figures in the 97 
actually discussed paper (e.g. Fig. #7A means Fig. 7A in the paper under discussion and not in this 98 
paper). 99 

 100 
@ Table 1 about here 101 
 102 
2. Training with the the Number Race software 103 
 104 
Some studies used the so-called Number Race (NR) computer programme for training ANS 105 

(called ‘number sense’ or ‘quantity representation’ in these papers). For example, Wilson et al. (2009; 106 
abstract) states that ‘The Number Race is an adaptive game designed to improve number sense.’. 107 
Wilson et al. (2006b) says that they define ‘number sense’ in a narrow way, as the term is usually 108 
used in the cognitive neuroscience literature (p2; bottom right; see Table 1). They justify the creation 109 
of NR by arguing that dyscalculia (‘a disorder in mathematical abilities’, ‘due to specific impairment 110 
in brain function’; p2; top left) is a ‘core deficit in number sense’ (p3.) and argue that NR was 111 
designed with this ‘core deficit in mind’ (p4.). Here, they state that NR aims to provide ‘intensive 112 
training on numerical comparison’ and to emphasize the ‘links between numbers and space’ (p4.). 113 
However, while a focus on a supposedly ‘core deficit’ would assume fairly specific training, NR is a 114 
mixed bag of training interventions which may affect many other cognitive skills and representations 115 
besides the ANS. 116 

NR instruction is built on three domains (Wilson et al. 2006a): First, it trains non-symbolic 117 
number comparison by prompting participants to choose between two groups of objects, one on the 118 
left and the other on the right. One of the two groups will have more objects than the other. For 119 
example, one group may have five objects while the other has three. There is also a timeline on the 120 
bottom of the screen with two characters, one for the player and the other representing the opponent. 121 
Whichever group the player chooses, the player’s character will advance on the timeline the same 122 
number of spots as there were objects chosen and the opponent will automatically get the other group. 123 
So, if the player chooses the group with five objects his player will advance five spaces while the 124 
opponent would advance three. Since the first one to the finish line wins, it behoves the player to 125 
always try to choose the group with the most objects. The to-be-compared object arrays appear with 126 
varying levels of numerical distance between them, adapting to the comparison ability of the child. 127 
NR starts with easier number comparisons where there is large numerical distance between the to-be 128 
compared quantities and proceeds towards harder comparisons. The objects also appear in different 129 
sizes, either between or within groups. As will be shown below NR also aims to strengthen 130 
associations between spatial and numerical information. With regard to this, it is important to note 131 
that the ANS on its own is not supposed to include spatial elements, although this misconception is 132 
prevalent in the literature. In contrast, spatial-numerical associations seem culturally grounded 133 
(Dehaene, 1997), they appear gradually during development (e.g. White et al., 2012; Ebsersbach et al. 134 
2008) and some researchers question whether they reflect properties of mature number representation 135 
at all, or they are rather related to working memory processes operating on representations (van Dijck 136 
& Fias, 2011). 137 

A second domain that NR aims to train are links between various representations of number: 138 
non-symbolic representation, symbolic Arabic digits and aurally heard number words—primarily in 139 
that as the object arrays are shown, digits and aurally heard number words which correspond to the 140 
number of objects are also presented. This training domain goes well beyond the ANS: It constitutes 141 
both associative learning (linking representations) and training comparison operations with symbolic 142 
number representations. NR also presents the opportunity to practice a symbolic counting sequence. 143 
After the objects are transplanted from the top of the screen to the number line below, the narrator will 144 
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name the spot which the player is at and then the avatar will jump a number of spaces to the new spot. 145 
While the spaces in between are not explicitly counted, the opportunity is there for the player to do so.  146 

Third, NR also aims to increase the fluency of access to basic addition and subtraction facts. 147 
One way it does this is by stating the advancement of the player along the number line as an addition 148 
problem. For example, if the player is at spot 3 and chooses 5 objects, the programme will state, 149 
“Eight. Three plus five equals eight”. Sometimes the players will land on a trap. In this situation the 150 
programme will state the number of jumps back as a subtraction problem (e.g. “Oh no, you’ve landed 151 
on a trap. Eight minus two is six”.) Another way that arithmetic facts are reinforced is during the 152 
display of the two groups of objects. Occasionally the digits shown simultaneously with the groups of 153 
objects will be presented as an addition or subtraction problem. So, if the final number of objects is to 154 
be “four”, there might be six objects shown at first with the following symbolic expression: “6 – 2”. 155 
As the arithmetic expression is stated, two objects will simultaneously be separated from the group, 156 
visually showing four remaining. This trained domain may not have to do much with ANS at all as it 157 
is known that basic symbolic arithmetic operations are usually solved by memory retrieval processes 158 
(Ashcraft, 1982). In addition, the above training may also affect general visuo-spatial manipulations 159 
and visuo-spatial WM. While subtraction may rely more on quantity manipulation, NR of course 160 
cannot control whether these manipulations happen symbolically, by the use of a culture-specific 161 
mental number line, by relying on retrieved facts, or otherwise.  162 

In light of the above it is very clear that NR affects much more than a putative core ANS 163 
system. This of course makes it hard to decide what exactly is being trained in studies using NR (as 164 
also acknowledged by Wilson et al. 2009; see later) which in turn makes the interpretation of results 165 
difficult. In fact, it is hard to see how NR is very different from some aspects of usual pre-school or 166 
school instruction which traditionally often uses concrete manipulatives (e.g. wooden blocks, 167 
counters, or Cuisenare rods; Boggan, Harper & Whitmire, 2010; Fuson & Briars, 1990; Hiebert, 1984; 168 
Marzola, 1987) to ground the concept of quantity. In addition, considering all the areas aimed to be 169 
covered by NR it seems that its range of trained activities is closer to the broad alternative definition 170 
of number sense used by Jordan et al. (2006; 2007; 2012) than to any focused definition of ANS. This 171 
ambiguity is also reflected in the fact that while the earliest NR studies exclusively discussed training 172 
as organized about a ‘core number sense’ (Wilson et al. 2006a,b; 2009), the latest NR training study 173 
(Sella et al. 2016) already seemed to define ‘number sense’ as trained by NR citing Jordan et al. 174 
(2012), whereas still citing some ANS studies as well. Hence, it seems that the implied definition of 175 
the core representations claimed to be trained by NR is shifting, converging on to Jordan et al.’s 176 
definition on number sense. Overall, while it is not clear what is being trained by NR we discuss NR 177 
intervention studies below as these are often cited in support of the role of ANS in mathematical 178 
development and symbolic math (see citation bias analysis in Section 6). 179 

 180 
@ Table 2 about here 181 
 182 
2.1 Wilson et al. (2006b)  183 
 184 
Wilson et al. (2006b) used NR to train 9 seven to nine year-old children. There was no control 185 

group which disqualifies the study as a proper training study. The study also had very low power 186 
(Table 2) and one participant was even excluded from some analyses leaving only 8 participants in 187 
these. The training lasted for 5 weeks. Children trained 4 days a week for half an hour each day. Total 188 
training times ranged from 8 to 10 hours. Children were pre- and post-tested on an extended battery. 189 

Comparing pre- and post-training test results showed that dot-enumeration (subitizing) 190 
performance became faster but its accuracy did not change (note that one participant was excluded 191 
from the dot enumeration analysis due to abnormal post-training data pattern). Non-symbolic number 192 
comparison accuracy and reaction time improved but the so-called ‘distance effect’ did not change. 193 
The distance effect (Moyer and Landauer, 1967) is considered one of the signatures of the ANS and it 194 
means that reaction times and error rates are larger in case of comparing closer as opposed to further 195 
away quantities. A change in ANS precision would imply a change in the distance effect. Such change 196 
was not detected by the study, so ANS precision did not change in response to training. 197 

There was some improvement in subtraction performance. However, when the authors tried to 198 
qualify pairwise comparisons, none of the multiple testing uncorrected comparisons were close to the 199 
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significance level (p=0.07 and p=0.08; p9). There was no improvement in symbolic number 200 
comparison and symbolic addition performance. It is interesting to note that the authors suggest that 201 
addition is a priori less related to quantity representation and manipulation than subtraction, so they 202 
state that they expected that addition performance will be unaffected by quantity training. However, 203 
many later ANS studies used non-symbolic addition for ANS training (Park and Brannon, 2013; 2014; 204 
Hyde et al. 2014) which suggests some confusion about this statement in the ANS literature. 205 

The results from Wilson et al. (2006b) are inconclusive. First of all, outcome measures 206 
basically tested whether there was improvement on number skills directly trained by NR. Hence, it 207 
would not be surprising to see improvements. However, results were still inconsistent in that about 208 
half of trained domains did not show any improvement even after a 5-week intervention period, 209 
training 4 days a week. Of course, low power can be an explanation for this but at the same time low 210 
power can also be the reason that the study found relatively large overall improvement in post-training 211 
subtraction performance: It is well known that small, underpowered studies vastly exaggerate effect 212 
sizes because only occasionally atypically large deviations from a null effect are able to cross the 213 
statistical significance threshold when sample size is low (Button et al. 2013; see more on this later). 214 
Consequently, large effect sizes reported from underpowered studies generally cannot be trusted. 215 
Second, and most importantly, results are completely inconsistent with the follow up study’s outcome 216 
discussed below (Wilson et al. 2009). This inconsistency can also be due to the low power of the 2006 217 
study which increases the chances of false positive (random) statistically significant outcomes (Button 218 
et al. 2013). Third, the study was not up to even minimal standards of a training study since it did not 219 
have a control group. So, in principle the study should not be cited in support of any training claims as 220 
without a control group it is impossible to determine whether there were any NR-training specific 221 
effects. On the other hand, even if there were such effects, we could still not be able to determine 222 
what aspect of NR training exactly led to improvements due to the fuzzy nature of NR (see more 223 
below). 224 
 225 

2.2 Wilson et al. (2009) 226 
 227 
Wilson et al. (2009) divided 53 four to six year-old children into two groups. The paper does 228 

not say how many children were in each group but we may guess from the degrees of freedom (also 229 
note that t tests are communicated with 2 degrees of freedom, e.g. t[1,26]; which is incorrect). The 230 
‘math then reading’ group (n = probably 27) was first trained with NR and afterwards with a reading 231 
training package, the other group vice versa (‘reading then math’ group; n = probably 26). There were 232 
pre-, mid and post-tests of number skills (time points T1-T3). The intervention happened during 14 233 
weeks in 20-minute training sessions. NR training happened during 6 sessions, reading training 234 
happened during 4 sessions. This 6 vs. 4 session asymmetry was left unexplained. While the authors 235 
note in their Discussion that the mathematics and reading intervention time differed ‘slightly’ (p232; 236 
top left) the math intervention time was 150% expressed in the duration of reading intervention time 237 
which is more than a ‘slight’ difference. This discrepancy strongly biases the study for detecting a 238 
stronger effect of NR than reading training. 239 

The statistical question was whether there would be a cross-over interaction of improved math 240 
performance between the ‘math then reading’ and ‘reading then math’ groups. To see this, separate 241 
pairwise comparisons for each group were also of interest between the T1-T2 and T2-T3 time points. 242 
These comparisons were multiple testing uncorrected t-tests. 243 

While Wilson et al. (2006b) found that that NR improved non-symbolic comparison but not 244 
symbolic number comparison, Wilson et al. (2009) found just the opposite. This leads to questioning 245 
the results of both studies. In detail, Wilson et al. (2009) suggested that symbolic digit comparison 246 
improved specifically in response to NR training (although the T2-T3 contrast was n.s.; t(25)=1.69; 247 
p=0.1; which is equivalent to a small effect size: D=t/sqrt(26)=0.33; Fritz et al. 2012). In addition, NR 248 
also improved verbal symbolic numerical comparison. However, NR did not specifically affect the 249 
numerical distance effect, a marker of the ANS. Adding more negative findings, addition performance 250 
did not improve specifically in response to NR. Counting improved more in response to the control 251 
reading training than to NR. The authors note that this could be expected as counting is a more verbal 252 
operation and NR is not intended to train these. However, as noted above, NR may provide 253 
opportunities for counting as well (also see Räsänen et al. 2009; p.467; for a similar comment). 254 
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Strikingly, non-symbolic comparison performance also did not improve specifically in 255 
response to NR training and there was no change in the size of the numerical distance effect which is 256 
considered an important marker of the ANS. The lack of impact on non-symbolic comparison 257 
performance suggests that NR training does not affect at all the supposed core number sense skills it 258 
claims to improve—that is, its construct validity may be poor. Rather, thinking about the mixed nature 259 
of the NR package and the fact that in Wilson et al. (2009) NR improved symbolic number skills we 260 
may assume that it primarily trains general symbolic number comparison skills [Wilson et al. (2009) 261 
seems to have more credible findings as they had more power than Wilson et al. (2006b)]. 262 

The fact that symbolic number comparison performance improved but non-symbolic 263 
comparison performance has not is explained by assuming that NR improved ‘number sense access’ 264 
rather than ‘number sense’ per se. However, all we can observe is that accuracy and speed have 265 
improved on symbolic comparison tasks and the distance effect, an important marker of number sense 266 
has not changed in any tasks. So, actually nothing suggests that number sense played any role in 267 
improved performance. Rather, children just seemed to become faster and less error prone in working 268 
with Arabic digits and number words. A simple explanation would be that simply their symbol 269 
recognition and/or access to symbols per se has improved. There is no need to assume that number 270 
sense was involved in the observed findings. Rather, if number sense is important than we could also 271 
assume that its links with symbols were already strong enough before the intervention started and the 272 
intervention merely trained symbol access further. This is also likely because there was no change in 273 
the distance effect. For example, if the number/symbol links had become stronger due to training than 274 
we could have expected stronger activation of number sense, a consequence of which would most 275 
probably be a change in the distance effect. Such change was not observed. Hence, the authors’ 276 
relatively ad hoc ‘number sense access’ improvement hypothesis is unnecessarily complicated and 277 
does not seem justified. Rather, it expresses interpretation bias for the number sense theory. 278 

The authors provide a fairly unlikely explanation for some observed data, namely for the fact 279 
that NR specifically improved symbolic number comparison but it did not improve non-symbolic 280 
number comparison. They state that this would be so because their low socio-economic status 281 
participants’ numerical problems were more related to access to number sense than to deficiency in 282 
number sense per se. That is, they post-hoc assume that their participants’ number sense had no room 283 
for improvement while access to their number sense had room for improvement. In other words, the 284 
authors explain the null effect with regards to their most important training outcome by claiming that 285 
their participants had no need for this training but that the training was still efficient. This also implies 286 
that the authors take it for granted that NR has construct validity (trains what it claims to train) and 287 
rather conclude that their participants’ otherwise unconfirmed internal properties explain their results. 288 
This inference interestingly combines tautology with a circular argument: If NR improves ANS we 289 
could assume that NR was successful. If NR does not improve ANS we assume that participants were 290 
in no need of improvement because otherwise ANS would have improved. That is, irrespective 291 
whether NR actually improved ANS or not, the authors always seem to be able to conclude that NR 292 
improves ANS by relying on some ad-hoc assumptions. 293 

The authors also support their above argument by referring to their previous study (Wilson et 294 
al. 2006b) saying that it is unlikely that NR only improves ‘access’ to number sense (but not number 295 
sense per se) ‘given previous results with the software in dyscalculic children… which showed 296 
improvement on non-symbolic as well as symbolic tasks’ (Wilson et al. 2009; p.231). However, in 297 
Wilson et al. (2006b) the improvement was detected in a subtraction task but in that study (as noted 298 
above) symbolic number comparison did not show any improvement in response to NR whereas non-299 
symbolic comparison did. That is, the pattern of results regarding symbolic and non-symbolic number 300 
comparison was exactly the opposite between Wilson et al. (2006b) and Wilson et al. (2009) which 301 
obviously raises questions about the reliability of both findings. Simply put, first the authors first find 302 
‘A’ but not ‘B’. After this they find ‘B’ but not ‘A’. Finally, they conclude that both findings ‘A’ and 303 
‘B’ are valid. However, what they detected was a contradiction, or at least an inconsistency, rather 304 
than a confirmation of both ‘A’ and ‘B’ (because they failed to replicate their findings). The paper’s 305 
argument is misleading because there is no mention of this crucial inconsistency. In addition, the 306 
power of Wilson et al. (2009) was much higher than that of Wilson et al. (2006b). Because small 307 
studies are likely to produce false positive findings with large effect sizes (Schmidt 1992) it is likely 308 
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that the findings of Wilson et al. (2009) are to be trusted more than the findings of the earlier study. 309 
This would mean that the authors’ explanation can be discarded to start with. 310 

Finally, as discussed above, NR aggregates non-symbolic and symbolic numerical training, 311 
fact retrieval training, developing spatial-numerical associations, and even offers counting 312 
opportunities (Räsänen et al. 2009). Hence, it would be unjustified to state that any improvements 313 
would be related to training number sense (ANS) or ‘number sense access’. The authors are conscious 314 
of this as they say: ‘The present work… suffers from the difficulty of pinpointing precisely which 315 
instructional feature is responsible for the effect found.’ (Wilson et al. 2009; p232; top right). Then 316 
they also note that they think that the ‘improvement is in number sense access rather than in number 317 
sense per se’ and just above they conclude that NR ‘can be used for targeted instruction of number 318 
sense’ (p232; bottom right). The authors finally conclude that ‘although a targeted cognitive 319 
intervention such as our software is not intended to replace large-scale curricular interventions, it 320 
carries several benefits’ (p233). This is an unjustified statement after not being able to show 321 
improvement—neither on the supposedly most important ‘core component’ of the tasks nor in 322 
addition, as well as delivering inconsistent results with their own previous study. Moreover, counting, 323 
an important school instruction outcome improved more in response to the control intervention with 324 
50% less training time than NR training. 325 

So, while the statement above is technically correct (NR ‘can be used for instruction’) it 326 
would also imply that this instruction would be specific and successful. However, the study provides 327 
evidence of neither of these claims/implications: 1) Non-symbolic and symbolic comparison results 328 
are inconsistent across Wilson et al. (2006b) and Wilson et al. (2009). 2) There has been no change in 329 
the distance effect, an important marker of the ANS. 3) The studies cannot determine what exactly 330 
was trained because of the fuzzy nature of NR. 331 

 332 
2.3 Räsänen et al. (2009) 333 
 334 

Räsänen et al. (2009) chose a more optimal design than the above studies. They had two training 335 
groups each consisting of 15 mathematically underachieving 6.5 year-old children and an unseen 336 
control group of 29 children. One training group used NR, the other used another game aiming to 337 
improve mathematical skills, called GraphoGame-Math (GG) (Mönkkönen et al. in preparation). The 338 
two games have different approaches to improving early math skills. NR was built with the ANS in 339 
mind and therefore it starts with emphasizing approximate comparisons of relatively distant 340 
numerosities (note, however, that NR also verbally reads numbers while showing objects and visual 341 
digits from the early stages of the game). GG aims to start in the opposite way, emphasizing small sets 342 
of similar numerosities and to build more on verbal mediation. The main question was which game 343 
would improve math outcomes more. Children trained for 10-15 minutes per session, once a day for 3 344 
weeks. 345 

GG training lowered children’s reaction time in symbolic number comparison in a larger 346 
extent than the improvement measured in the control group. NR training also seemed to have similar 347 
impact but none of the pairwise comparisons were significant (p=0.069 and p=0.061). None of the 348 
games resulted in any improvement in any other areas of number skills tested (verbal counting, object 349 
counting, 3-minute paper and pencil addition and subtraction test). These results are in conflict with 350 
Wilson et al. (2006b; 2009). 351 

First, it is worthwhile to mention that even the unseen control group showed steadily 352 
decreasing reaction times from the pre- through the post-test and a delayed post-test. Hedges’ G 353 
(hereafter ‘D’) can be computed from data in Table #3 for within-group differences (see Appendix 1). 354 
The improvement of the unseen control group from pre to post-test was D=0.13 and from pre to 355 
delayed post-test was D=0.26 even if this group did not have any intervention. These data have 356 
general significance and strongly suggest that noticeable improvement can happen with the passing of 357 
time in young children even when they do not have any targeted instruction. 358 

Second, we can also compute within-group pre to post and pre to delayed post-test 359 
improvement for GG and NR. These values are D=0.64 (pre to post) and D=0.88 (pre to delayed post) 360 
for GG and D=0.31 and D=0.45 for NR. The picture is similar when effect sizes are computed 361 
comparatively between intervention and control groups (see Table #4). At both post-test and at 362 
delayed post-test GG achieved about 40% larger effect size compared to NR (0.52/0.36 and 363 
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0.53/0.38). Hence, GG achieved much larger speed improvement in terms of standardized effect sizes 364 
than NR (also, and as noted above, NR time contrasts were n.s.). This strongly suggests that GG was 365 
superior to NR when it comes to training number comparison reaction time. 366 

 367 
2.4 Obersteiner et al. (2013) 368 
 369 
Obersteiner et al. (2013) had a similar goal to Räsänen et al. (2009) and aimed to compare the 370 

impact of ANS-based approximate training with more exact number training. They developed two 371 
versions of NR. The approximate training focused on approximate number comparison, estimation 372 
and calculation. Time pressure in the game aimed to make sure that participants rely on approximate 373 
strategies. In the exact game version participants had to match numbers exactly. This was achieved by 374 
presenting alternatives differing only by 1 unit. 375 

147 children were divided into 4 training groups. One group received approximate training 376 
(n=35); one exact training (n=39), one mixed training alternating session by session (n=39). A control 377 
group used a language training software (n=34). Each child in each group took part in 10 training 378 
sessions for a duration of 30 minutes over a period of 4 weeks. 379 

Reaction time served as the outcome measure. Approximate training improved speed in non-380 
symbolic and symbolic magnitude comparison and in approximate calculation. Exact training 381 
improved speed on a canonical subitizing task where dots were arranged in patterns. Subitizing with 382 
random dot patterns was not improved by any of the trainings. Both the exact and approximate 383 
training seemed equally effective in improving math test outcomes, both overperforming the 384 
combined training. However, effect sizes seemed very small in relation to standard errors (see Table 385 
#4). Indeed, relevant post-hoc comparisons contrasting the control group with the approximate and 386 
exact training groups were not significant (p=0.059; p=0.057). The authors opined that the observed 387 
improvements were small (p.133), there was only about a 2 score range of math outcome scores 388 
across the 4 groups (see Table #4) whereas the full range of scores was 0-45. Overall, the authors 389 
concluded that both exact and approximate tasks only improved performance on tasks which included 390 
exact and approximate components and both generated small gains on the mathematical test. 391 

The original paper only communicated post-test scores from ANCOVAs where pre-test scores 392 
were taken as covariates. Therefore, we reanalysed post-test minus pre-test score differences by 393 
means of computing bias corrected and accelerated 95% bootstrap confidence intervals (100,000 394 
permutations) for score changes from pre to post-test (We are grateful for the generosity of Andreas 395 
Obersteiner for providing us the data.). Consistent with the original report we found that 95% 396 
confidence intervals strongly overlapped for the approximate (2.91 – 6.14) and exact (1.77 – 5.74) 397 
groups and the mixed (1.13 – 3.72) group also had overlapping intervals with the above two groups. 398 
The no training group (-0.26 – 3.44) was also close to not having zero value in the confidence interval 399 
and showed definite overlaps with all training groups (this is consistent with the fact that the original 400 
paper only found marginally significant differences between the training groups and the control 401 
group). Hence, in line with the authors we conclude that there were no clear differential effects of the 402 
interventions and any training effects were small. In addition, similarly to the data of Räsänen et al. 403 
(2009) there were indications that even the unseen control group may have improved somewhat which 404 
again directs attention to the fact that children’s performance may improve even if they are not 405 
trained. 406 

 407 
2.5 Sella et al. (2016) 408 
 409 
Sella et al. (2016) tested 5-year-old children and in principle assigned 23 children to NR 410 

training and 22 children to a control training. However, less (sometimes many less) children’s data 411 
were analysed, so power varied greatly (Table 2). Children had at most two 20 minute-long activity 412 
sessions per week for 10 weeks (on average 16.9 NR sessions vs. 16 control sessions). The main flaw 413 
of the study is that the control training was not a properly designed training activity but an 414 
unstructured drawing program where ‘kids [were] presented with a blank canvas and a variety of 415 
drawing tools to help them be creative’ (www.tuxapaint.org; quote from the website; retrieved 27 416 
June 2016). So, first, the control activity did not provide the same level of intellectual enhancement: 417 
As the authors themselves note ‘NR was a more meaningful activity’ than the control activity (p.27).  418 
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Second, the control activity was not a well-matched control training if mathematical improvement 419 
was of any interest because no impact of it can be expected on mathematics a priori (see more below). 420 

The consequence of the above design problems is that there was a huge imbalance in 421 
mathematical instruction received by the training and the control groups. The authors note that the 422 
‘regular scholastic program’ received by both groups ‘entailed numerical activities for half an hour 423 
once a week’ (p.23). That is 30 mins per week for 10 weeks, 10×30=300 minutes of regular 424 
mathematics instruction for both groups.  On top of this the training group received about 16.9 425 
sessions × 20 minutes = extra 338 minutes of extracurricular targeted mathematics instruction through 426 
NR while the control group was taking part in unstructured drawing. So, the training group received 427 
more than twice as much mathematics instruction than the control group (638/300 = 2.13). 428 

Results were in-line with the huge discrepancy in mathematics instruction levels received by 429 
the groups even at the level of specific curriculum content. Regular scholastic activities included the 430 
comparison of numbers of objects and ‘the implementation of counting routine’ (p.23.). Indeed, 431 
counting improved in a similar extent at a statistically significant level in both groups. (Note that this 432 
also means that the extra 338 minutes of NR instruction did not improve counting beyond regular 433 
instruction.) In contrast, the groups differed from each other in number line performance and in 434 
calculation where the training group did but the control group did not receive instruction. As the 435 
authors note ‘in the advanced levels of the [NR] game children had to solve summation and 436 
subtraction problems’ (p.27.). So, while the NR group received fairly advanced instruction, for 5 year-437 
olds, the control group was drawing. This instructional discrepancy is well reflected by the data: 438 
calculation performance improved a lot in the training group while the performance of the control 439 
group stayed level. This is not surprising because the control group did not receive any extra targeted 440 
instruction on calculation. 441 

The above makes it clear that the study design is biased towards showing any improvements 442 
caused by NR. However, rather than any specific effects of NR the study design is merely able to 443 
demonstrate the trivial finding that if we train a group on some specific task, that group will likely 444 
improve more than another group which we do not train on that task. With regard to this, it is 445 
interesting to observe that unlike in other NR studies, non-symbolic comparison was not reported to 446 
be determined by pre- and post-tests, whereas it would have been interesting to see this measure as 447 
even the control group received (regular) instruction on number comparison. It is also worth noting 448 
that the most crucial training vs. control comparison had extreme low power (see Table 2) because 449 
only 9 vs. 9 children were compared, for some reason. In addition, from the very wide confidence 450 
intervals it is obvious that there was high individual variability (e.g. 52.5% and 39.4% interval width 451 
for the control and training group calculation post-tests, respectively).  452 

The paper reaches an unjustified conclusion: ‘The present RCT demonstrated the efficacy of 453 
NR for enhancing numerical skills in preschool children..’; ‘NR is an effective and versatile tool for 454 
enhancing both basic and advanced numerical skills in a wide range of children’ (p.27). The 455 
conclusions are unjustified because the referent of demonstrating efficacy is inadequate: The referent 456 
was practically zero level of training, a kind of activity (drawing) which cannot a priori be expected to 457 
improve mathematics skills. In other words, putative improvements were tested by essentially 458 
comparing something (NR training) to nothing (unstructured drawing activity as ‘training’). Would 459 
such a comparison really justify the specific use of NR to train children on mathematics? Obviously 460 
not. Of course, such specific usefulness is not claimed in the paper but it is hard to imagine that this is 461 
not implied in a paper published on NR training with no other plausible training program included in 462 
comparisons. Inadequate designs will be discussed further in Section 5. 463 

 464 
3. Focused ANS training studies 465 
 466 
While the above studies used the NR software for fairly ‘fuzzy training’, Brannon and 467 

colleagues ran three studies to determine the outcome of much better controlled (more specific) ANS 468 
training. We discuss these studies in this section. 469 

 470 
3.1 Dewind and Brannon (2012) 471 
 472 
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Dewind and Brannon (2012) addressed three questions: 1) can ANS precision be improved 473 
through training? 2) Does ANS training also improve the discrimination of other magnitudes as 474 
predicted by the so-called ATOM theory, which assumes that time, space and number are all 475 
coded/processed by the same mental representation? (Walsh, 2003)? 3) Is ANS acuity related to self-476 
reported math performance? Twenty young adults completed 6 training sessions within 2 weeks. In 477 
session 1 they had a non-symbolic number comparison and a line-length comparison task. In each of 478 
sessions 2-5 they had 648 trials of the number comparison task and received trial-by-trial feedback. In 479 
session 6, number and line-length comparison was tested again and participants self-reported their 480 
SAT (Educational Testing Service, 2016; Zwick & Sklar, 2005) and Graduate Record Exam 481 
(Educational Testing Service, 2016; Kuncel, Hezlett, & Ones, 2001) scores. 482 

First, a couple of words are necessary about an often used measure of ANS precision, the so-483 
called ‘w’. W is often perceived as some privileged measure characterizing the precision of the 484 
internal number representation. However, it is important to see that w simply characterizes the shape 485 
of the accuracy data arranged in a specific way across various comparison ratio conditions (see 486 
Figure 1 and Szűcs et al. 2013 for detailed analysis). The computation of w assumes that the ANS 487 
model is valid and w characterizes the pattern of accuracy data according to the ANS model. Hence, 488 
w is entirely dependent on the accuracy data and it simply expresses the overall pattern of the 489 
accuracy data. The higher is accuracy the smaller is w and the lower is accuracy the larger is w. 490 
Hence, w is simply an alternative, model-based measure of accuracy. 491 

 492 
@ Figure 1 about here 493 
 494 
DeWind and Brannon (2012) posed their main question as ‘the malleability of the Weber 495 

fraction in response to extended training’ (p6). However, as noted above, w is a derived measure 496 
depending entirely on accuracy. So, if we train people on an ANS task and the training increases 497 
(improves) their accuracy that will inevitably lower (improve) their w. Conversely, a lower w always 498 
means higher accuracy. Hence, the question of DeWind and Brannon (2012) can be restated in a more 499 
straightforward manner as ‘the malleability of accuracy in response to extended training’. Or, in an 500 
even more straightforward way as: ‘Is accuracy improving on the trained task?’ Likely yes, usually 501 
we would not be very surprised by such a finding. Indeed, DeWind and Brannon (2012) found that w 502 
decreased due to training. In other words this finding can be sumarized as: ‘If we train people on an 503 
ANS task their accuracy will improve on the trained task.’ 504 

On another note, DeWind and Brannon (2012) conclude that there was a negative correlation 505 
between w and symbolic math test outcomes (r2=0.28; r=-0.53) but not between w and verbal test 506 
scores (r2=0.08; r=-0.28). However, this correlation was not robust, it dropped to practically zero 507 
when some outliers were excluded by the authors (p6; left bottom). In addition, from Fig. #7A. it 508 
seems that the significant correlation was entirely driven by a single outlier in the top left corner of 509 
the figure who had an especially large w (w=0.757; see Fig. #7A). In fact, w of this size is associated 510 
with close to chance task performance (Szűcs et al. 2013). Our impression about the correlation was 511 
confirmed when we reanalysed the original data for Fig. #7A. (We express our gratitude for the 512 
generosity of Nicholas DeWind who supplied the data). When this single outlier was removed, the w 513 
vs. math score correlation dropped to a lower level than the above noted correlation between w and 514 
verbal test scores (r=-0.21; r2=0.044; Bca bootstrap 95% confidence interval with the single outlier 515 
removed (100,000 permutations); r= [-0.580;+0.179]. The very wide confidence interval for the 516 
original full data dataset also signals the highly unstable nature of the w vs. math score correlation; r= 517 
[-0.90; -0.04]. So, it seems that the reported correlation entirely depended on a single outlier with 518 
large w. However, because high w means poor fit to the ANS model we can also say that actually the 519 
whole correlation was driven by a participant who did not really fit the ANS model under 520 
investigation and had very low task performance. The clear instability of the effect is in sharp contrast 521 
with the conclusion of the paper which suggests that ‘even in our relatively small sample of 20 522 
subjects, acuity of the ANS was positively correlated with standardized tests of mathematical but not 523 
verbal proficiency.’ As we have just demonstrated, this claim does not seem tenable even in light of 524 
analyses included in the paper which laudably reported that the correlations did not survive removing 525 
three outlier sessions. 526 
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Another point worth noting is that the study computed w based on the original ANS model 527 
which is highly imperfect because it does not factor in the impact of visual confounding parameters 528 
(see Szűcs, Nobes, Devine, Gabriel, and Gebuis, 2013; for detailed analysis of confounds; see 529 
DeWind and Brannon, 2015 for demonstrating the imperfect nature of the original ANS model; also 530 
see Fuhs et al. 2013; Gebuis and Gevers, 2011; Gebuis and Reynvoet, 2012). Hence, any (very mild) 531 
correlations between w and math scores can also be attributed to the impact of exposure and/or coping 532 
with confounding parameters: w is larger in participants who are more sensitive to visual confounds 533 
because their accuracy is typically lower. So, from this point of view it is also unclear what w exactly 534 
measured in this experiment. 535 

 536 
3.2 Park and Brannon (2013) and Park and Brannon (2014) 537 
 538 
Park and Brannon (2013; 2014) ran 3 training studies to determine whether an approximate 539 

arithmetic (AA) addition and subtraction task transfers to multi-digit symbolic arithmetic in adults. 540 
First, participants had a pre-test on multi-digit addition and subtraction tasks, then underwent training 541 
and then had a post-test. In the AA task participants saw animations of two dots arrays with 9 to 36 542 
dots in each array. In one trial type participants had to decide whether the sum or the difference of the 543 
two arrays was more or less than the number of dots in a third, novel, array. In another type of trials 544 
participants decided whether the sum or the difference of the two original arrays matched the number 545 
of dots in one of two novel arrays. Trial types were mixed and they merely served to assure that 546 
participants do not develop task-specific strategies unrelated to approximate arithmetic. 547 

Park and Brannon (2013; Exp. 1; n=52 adults) had an AA group and an unseen control group. 548 
This design cannot deliver clear data due to possible Hawthorne effects (Parsons, 1974) and due to the 549 
fact that the performance of the AA group was not contrasted with any meaningful alternative 550 
training. Exp. 2 in Park and Brannon (2013; n=46 adults) remedied these problems and had 1) an AA 551 
group, 2) a numeral ordering training group (trained to arrange triads of numbers in order) and 3) a 552 
general world knowledge training group. Only the AA group showed post-training improvement on 553 
symbolic arithmetic. Post-hoc contrasts were tested by multiple-testing uncorrected t tests.  554 

Park and Brannon (2014; Exp 1.; n=88 adults) had 4 training groups: 1) an AA group (as in 555 
their previous study; n=18); 2) a group trained on approximate non-symbolic dot comparison 556 
(choosing the more numerous one out of two dot patterns; n=18) which is thought to improve the 557 
precision of the ANS; 3) a group trained on a Corsi-blocks type visuo-spatial short-term memory task 558 
(n=18); and 4) a group trained on number symbol ordering (n=17; as in Exp. 2 of Park and Brannon, 559 
2013). Park and Brannon (2014) also ran an Exp. 1B with 17 participants in addition to the above 71 560 
participants. In this experiment the appearance of the training task closely matched that of the AA 561 
condition of Exp. 1. but without the addition/subtraction requirements. Instead, participants were 562 
trained to compare and match the numerosity of dot patterns. From all the above conditions only the 563 
AA task of Exp. 1. improved post-training symbolic arithmetic performance. Ultimately, Park and 564 
Brannon (2014) concluded that training on the manipulation of non-symbolic quantity information led 565 
to improvements in symbolic arithmetic and hence, such manipulation may be a worthy training 566 
method for young children (p.199; however, note that their participants were adults; they connect their 567 
adult data with the controversial study of Hyde et al. 2014, discussed below). 568 

From the critical perspective, first note that the training method used by Park and Brannon 569 
(2014) has been criticized before and it was suggested that it produced data similar to those we could 570 
expect from a non-learning observer (Lindskog and Winman, 2014). Besides this there are still two 571 
major flaws in the conclusions. First, it is clear that only the AA task led to transfer to symbolic 572 
arithmetic. However, from the design and the results it does not follow at all that the non-symbolic 573 
nature of the AA task is a necessary1 component of successful transfer. Second, from Park and 574 
Brannon (2014; Exp. 1 and Exp. 1B) it is also clear that a non-symbolic arithmetic comparison task on 575 
its own is in fact insufficient to generate transfer to symbolic addition and subtraction tasks. However, 576 
the non-symbolic comparison task serves as the most important measure of the precision of the ANS. 577 
                                                           
1 Note the difference between sufficient and necessary: A sufficient condition is one which is enough to lead to 
an outcome on its own. A necessary condition may not be enough to lead to an outcome on its own (ie. it may 
not be sufficient) but it must be one condition to fulfil perhaps together with other conditions to achieve the 
outcome. 
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Hence, it seems that training the ANS on its own was not able to improve arithmetic performance at 578 
all. 579 

Let’s evaluate the above statements in detail. First, is improving the ANS a sufficient 580 
condition to have transfer? Put otherwise, if we solely sharpen the precision of the ANS without any 581 
other training will that improve symbolic addition/subtraction performance? A strong interpretation of 582 
the ANS theory would surely predict this and this is in fact implied in many papers which claim to 583 
have demonstrated correlations between the ANS and symbolic arithmetic (see Szűcs et al. 2013 for a 584 
critical review). Park and Brannon tested this question in 2 experiments (Park and Brannon, 2014; 585 
Exp. 1 and Exp. 1B). Both experiments returned negative findings on more than one level. First, ANS 586 
training operationalized as non-symbolic dot comparison training did not lead to transfer in any of the 587 
experiments. Second, the effect size of the correlation between w and addition/subtraction 588 
performance was practically zero (r=-0.07; r2=0.005; p=0.509; see top left panel in Fig. #7 of Park and 589 
Brannon, 2014) also adding to numerous negative findings (see Szűcs et al. [2014] for review). To put 590 
it clearly: w was unrelated to math outcomes and ANS training did not improve symbolic outcome 591 
measures. So, ANS training is not a sufficient condition to have transfer. This conclusion poses a 592 
serious challenge to claims that ANS is (causally) related to math performance. 593 

Further, is ANS training a necessary condition to have transfer? That is, must ANS training 594 
be a component of a successful training programme? The interpretation of Park and Brannon (2014) is 595 
ambiguous and reflects a strong bias towards the ANS theory. First they say: ‘the more active process 596 
of manipulation of mental representations is the critical mechanism underlying the observed transfer 597 
effect’ (p198.). In fact, the authors seem to be conscious of this option already in Park and Brannon 598 
(2013; p6) which says: ‘Another possibility… is that the training and transfer effects in the current 599 
study reflect facilitations in cognitive processes related to addition and subtraction’. However, testing 600 
this option was not built into the design of Park and Brannon (2014) whereas it would have been 601 
fairly straightforward (see later). Clearly, the results do not provide any evidence that a key element 602 
of the studies was training the ANS in any way. As noted above, ANS training on its own did not lead 603 
to transfer and w was unrelated to math. So, the authors themselves note (see the preceding quote) that 604 
the most likely explanation for the data is that training on addition and subtraction per se led to 605 
transfer. However, Park and Brannon (2014) finally conclude: ‘our study demonstrates that providing 606 
… multiple sessions of approximate arithmetic training improves exact symbolic arithmetic’ (p199.). 607 
So, while they recognize that the manipulations in the task were key, they then blur this interpretation 608 
together with the fact that the stimulus material happened to be dot patterns. Note that their statement 609 
can be accepted to be literally true: their training was approximate arithmetic training. What causes 610 
the problem is the implied necessary nature of the ANS element of this training whereas no data 611 
supports this implication. It is much more likely that the crucial element of the training was practicing 612 
addition and subtraction irrespective of the ANS element. A straightforward explanation for the 613 
authors’ explanation is bias towards interpreting the outcomes from the view of the ANS theory rather 614 
than considering alternatives. We suggest that a simple summary explanation for the findings is that 615 
the non-symbolic nature of the AA task was irrelevant, what mattered was the operations trained. In 616 
other words, the AA task led to transfer because it implicitly trained addition and subtraction and not 617 
because it had any connection with the ANS. This conclusion is line with the results from the non-618 
symbolic number comparison training tasks of Park and Brannon (2014).  619 

An additional result from Park and Brannon (2014) supporting our above conclusion is that w, 620 
the most important marker of the ANS (see above on the nature of w), did not improve in response to 621 
AA and number comparison training (F(3,62)=1.352; p=0.266; p.195; right bottom). The authors’ 622 
presentation of these statistics reflects strong bias for the ANS theory. After they communicate the 623 
above non-significant ANOVA outcome they go on and collapse the AA and the number comparison 624 
groups (note that such ‘flexible analysis’ is likely to generate false positives; see e.g. Simmons et al. 625 
2011) and the other two groups and then compare the former to the latter two groups with a most 626 
probably ad-hoc uncorrected t test (t(59)=1.984; p=0.052). They then interpret this test outcome 627 
calling it a ‘strong trend’ and also put emphasis on it in the Discussion (p197) saying that ‘numerical 628 
comparison training showed some evidence of improved w … suggesting a near transfer effect’. It is 629 
clearly an overstretch to interpret the outcome of a non-significant F test and a most probably 630 
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unplanned non-significant t-test in such clear terms2. This over-interpretation suggests strong bias to 631 
support the ANS theory. 632 

Park and Brannon (2014) ran their Exp. 2. to exclude the possibility that participants used 633 
verbal addition/subtraction strategies in their non-symbolic training task. In this experiment they show 634 
that verbal interference decreased exact symbolic arithmetic performance but not non-symbolic 635 
arithmetic performance. So, they conclude that the non-symbolic training task engaged non-verbal 636 
processes. While the literal interpretation of this conclusion is fine, it is important to realize that a 637 
‘nonverbal’ training element does not automatically mean that the crucial non-verbal element has any 638 
relation to the ANS. Making such a connection is another unjustified implication. In fact, as other 639 
results show, the ANS training was ineffective. So, the ‘nonverbal’ nature of the task may mean that, 640 
for example, visuo-spatial or attention processes rather than the ANS was improved by the task. For 641 
example, we found that ANS task performance was related to sustained attention rather than to 642 
numeracy (Szűcs et al. 2014). So it follows that Exp. 2. does not affect the critical points noted above 643 
regarding the interpretation of the data. Also, it is important to notice that there was strong asymmetry 644 
between the stimulus material used in the symbolic and non-symbolic conditions in Exp. 2. While 645 
hundreds of symbolic arithmetic problems were used, only three log differences were used in the non-646 
symbolic task. In addition (or, perhaps for this reason), the symbolic task was more difficult reflected 647 
in much longer reaction times than in the non-symbolic task (6.57 and 6.09 seconds in the symbolic 648 
task vs. 0.879 and 0.913 seconds in the non-symbolic task). Such large task difficulty discrepancy can 649 
easily impact on the data. It may make much more sense to revert to verbal strategies in the more 650 
difficult task.  651 

 652 
4. Brief exposure to ANS tasks which do not qualify as training studies 653 
 654 
Two further studies are important to discuss even if they are not proper training studies 655 

because they make very strong claims about the usefulness of ANS exposure for mathematical 656 
improvement in children (Hyde et al. 2014; Wang et al. 2016). These studies provided a brief single 657 
session exposure to ANS tasks and concluded that this exposure improved symbolic math 658 
performance right afterwards. Results are clearly overinterpreted in both papers suggesting that they 659 
found it a ‘fact that a single session of practice on an approximate number task can improve’ symbolic 660 
math performance (Hyde et al. 2014; p105) and that ‘there is a causal link from ANS precision to 661 
symbolic math performance’ (Wang et al. 2016; p95). These overinterpretations from brief single 662 
session data with a few practice trials (72 training trials with 8 practice trials in Hyde et al. 2014; 30 663 
training trials with 4 practice trials in Wang et al. 2016) are even more surprising in the context of the 664 
many inconclusive and negative results from more appropriate training studies published before and 665 
discussed above. 666 

 667 
4.1 Hyde et al. (2014) 668 
 669 
Hyde et al. (2014; Exp. 1.) trained 4 groups of 24 grade one children (96 in total). Groups 670 

received one of four kinds of training: 1) non-symbolic number addition, 2) line-length addition, 3) 671 
non-symbolic number comparison and 4) brightness comparison. Children had 50 training trials 672 
followed by 10 easy and 10 moderately easy symbolic arithmetic test items. Then children had 10 673 
more training trials and 20 moderately difficult symbolic test items. In the non-symbolic addition task 674 
children saw dots for 1 second, dots moved out of view in half a second, there was a pause for half a 675 
second and then another dot pattern for 1 second. After this, children decided whether a third dot 676 
pattern had more or less dots than the sum of the two previous dot patterns.  677 

The question concerning whether the 4 training tasks improved subsequent symbolic math 678 
performance was evaluated by two F tests and subsequent multiple testing uncorrected two-tailed t-679 
tests. A simple Bonferroni correction for the 6 relevant comparisons per F test (4 × 4 table with 6 680 
unique pairwise comparisons) would require α=0.05/6=0.0083. None of the reported t-tests reached 681 
                                                           
2 Note that the degrees of freedoms for the t test does not seem to fit as the collapsed groups should have had 
n=18+18=36 and n=18+17=35. So we could expect degrees of freedom of 36+35-2=69. However, most 
probably t(69) was mistyped as t(59) in which case t(69)=1.984 should be associated with p=0.0512 (reported as 
t(59)=1.984). 
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this significance level (uncorrected p value range for significant tests: 0.0133 – 0.0482). Hence, the 682 
robustness of results is dubious as most comparisons are likely to be n.s. even if less conservative 683 
methods than the Bonferroni correction were used. 684 

The authors reported that symbolic math performance was faster and less error prone after 685 
both kinds of ANS training than after line addition and brightness comparison training (Fig. #4). The 686 
authors suggested that these results ‘provide evidence that the ANS plays a functional role in 687 
symbolic arithmetic’ (p99.). However, a very simple alternative explanation is that the numerical 688 
(ANS) tasks simply primed attention to numerical information and activated general number 689 
knowledge related to addition and comparison while this was not the case for the other training tasks 690 
which did not share any component with the test task. That is, the results provide absolutely no 691 
evidence that the ANS is functionally related to symbolic math (the paper implies that this relation in 692 
inherent). However, it is strongly implied that the presence of the ANS element is a necessary cause 693 
of the observed improvement. 694 

An unlikely explanation is given about why the results cannot simply reflect practice with 695 
addition and comparison processes. First, similarly to DeWind and Brannon (2012), the authors argue 696 
that the data is in disagreement with the strong version of a generalized magnitude system posed by 697 
the ATOM (Walsh 2003) theory (p100, top) because the number line addition and the brightness 698 
comparison task did not improve symbolic math performance. So, they argue that the physical 699 
magnitude system is distinct from the number magnitude system. Right after this, the next argument is 700 
that the data cannot reflect general practice with number comparison/addition processes because there 701 
was no symbolic math improvement after line summing and brightness comparison training whereas 702 
these tasks involved ‘the same cognitive operations (ordering, comparison and/or addition)’ (p100, 703 
top) as the numerical conditions. However, right before this argument, the authors had just concluded 704 
that the physical magnitude system is not overlapping with the number magnitude system. So, there is 705 
absolutely no reason to assume that the ‘addition’ and comparison processes operating on these 706 
representations are ‘the same’. However, if they are not the same then the unique training of number 707 
addition and number comparison processes (rather than ANS) training can still be contributing to 708 
improved symbolic math performance. In summary, the authors first discard the ATOM theory 709 
(Walsh 2003) and then they use an assumption of the discarded theory to justify their next argument. 710 

Hyde et al. (2014; Exp. 2.) went on to test whether any performance improvement after brief 711 
ANS exposure was specific to mathematics. They used exposure to 1) non-symbolic numerical 712 
addition and 2) non-symbolic brightness comparison in Exp. 2. To this end the post-exposure 713 
performance on a symbolic math test and on a sentence comparison test was compared across the two 714 
conditions. Unsurprisingly, it was found that only symbolic addition performance but not sentence 715 
comparison performance improved after the non-symbolic addition exposure. Performance did not 716 
change after exposure to the brightness task. Note that this outcome can also be explained by the 717 
above two alternative explanations: attention was directed to number in the non-symbolic addition 718 
training but not in the brightness training and addition was trained in the ANS addition task but not in 719 
the other task. So, there are at least two reasons for the pattern of results which have nothing to do 720 
with the ANS element of the exposure. Whereas these alternative explanations were clear even after 721 
Exp. 1., the first one was never considered and the second one was discarded based on an inconsistent 722 
argument (described above). So, rather than testing any of the above very likely alternative 723 
hypotheses, Exp. 2. tested a fairly unlikely null hypothesis based on an already discarded theory. This 724 
is exactly the design approach criticised by Meehl (1967) in his classical article (see more on this 725 
later). The uncertain results are highly over-interpreted, the paper concluding that there exists ‘a 726 
causal relationship between non-symbolic approximate number and exact, symbolic arithmetic by 727 
children.’ (p105). 728 

 729 
4.2 Wang et al. (2016) 730 
 731 
Wang et al. (2016) claim to demonstrate that ‘temporary modulation of ANS precision 732 

changes symbolic math performance’. First, this claim seems somewhat of an oxymoron: if ANS is a 733 
relatively stable representation in the mind how can we ‘temporarily’ modulate it? At least, the same 734 
research group’s previous papers suggest that the ANS is a robust enough representation so that we 735 
can base mathematical disability diagnoses on its status. So, would it not be much more likely that, 736 
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rather than temporarily improving a supposedly stable representation we can rather improve access to 737 
it perhaps by directing attention to it?  738 

In the study the authors replicated the non-symbolic numerical comparison condition of Hyde 739 
et al. (2014) using only 30 training trials with 40 five year 4-month-old participants. 20 children 740 
proceeded from easy to hard ANS comparisons (easy-first group) while 20 children proceeded from 741 
hard to easy comparisons (hard-first group). Half of the children in each group had a symbolic math 742 
test after training while the other half had a vocabulary test. This design step is hard to justify as it 743 
deprived the researchers from potentially important within-subject data. All 20 children should have 744 
had both tests in counterbalanced order, this is well possible at the age group tested. A second crucial 745 
design problem is that there was no pre-exposure symbolic math and vocabulary test to measure 746 
baseline performance. Hence, it cannot be determined whether children in different groups had very 747 
different symbolic math levels to start with. This omission is makes it questionable whether the results 748 
of the experiment can be interpreted at all. Third, it is to note that the study did not seem to correct for 749 
multiple comparisons. 750 

After exposure, children in the easy-first group showed much higher symbolic math 751 
performance than children in the hard-first condition (percent correct: 82.78% vs 60.56%). Because 752 
there was no pre-exposure test, we cannot conclude about any within-group performance change. 753 
However, the post-exposure symbolic math performance in the hard-first condition was even worse 754 
than the post-exposure performance of the other children in the vocabulary test (67.50% and 67.91%). 755 
The very low performance of the hard-first group on the symbolic math test (if it is not attributable to 756 
a large pre-exposure between-group difference) may mean that the children 1) had no idea what they 757 
had to do because the task was initially so difficult and/or 2) their performance did not improve 758 
because they did not pay attention to number due to the initially large task difficulty. 759 

In fact, we argue that the observed very low performance is incompatible with any ANS 760 
activation account because the ANS is supposed to be activated by the mere presentation of non-761 
symbolic numerals. Rather, it seems that because children found the initial discriminations too 762 
difficult, they were guessing in many trials which is reflected in their extremely low accuracy rate: 763 
60.56% (first paragraph in p89). Regarding this, it is important that surprisingly, this is one of the few 764 
papers where the authors do not use w to characterize number comparison performance; however, it is 765 
possible to estimate it from the accuracy data. In our previous investigation (Szűcs et al. 2013) we 766 
tested twenty 7-year 5-month-old children in an approximate number comparison task and found an 767 
accuracy level of 62.5% which corresponded to a w value of 0.77. Hence, we can expect an even 768 
larger w value for the children tested by Wang et al. (2016; lower accuracy means a larger w value). 769 
However, even a w value of 0.77 is already much higher than w ≈ 0.4 which was thought to 770 
characterize dyscalculia by the same group of authors (Mazocco, Feigenson, & Halberda, 2011). So, 771 
based on the authors’ previous papers, we could assume that perhaps all the children in the hard-first 772 
condition had very severe dyscalculia. Henceforth, it would not be surprising that their performance 773 
did not improve. Alternatively, it is much more likely that the children were confused about the task, 774 
they were not doing it properly in many trials and thus that they ended up with very low accuracy. 775 
This reasonable assumption would of course disqualify all findings because it would mean that in one 776 
of the conditions children were not doing the intended task properly. Further, at this low accuracy 777 
level individual variability is also of great concern: in a study of 7-year-olds and adults we found large 778 
individual differences in non-symbolic number comparison performance (Szűcs et al., 2013). This has 779 
not been considered here, either. 780 

The authors stated that they chose a group size of 10 based on a power analysis which assured 781 
80% power taking into account the results of Hyde et al. (2014). However, in their Exp. 2 Hyde et al. 782 
(2014) reported t(46)=2.814 with 24 participants in each of two groups. This translates into an effect 783 
size of D=2×t/sqrt(48) = 0.8123 (Fritz et al. 2012; see derivations in Szucs and Ioannidis 2016). First, 784 
such high effect size is clearly inflated: it is well known that small scale studies vastly overestimate 785 
effect sizes (Schmidt, 1992; Button et al. 013). However, even if we consider this inflated effect size 786 
of 0.81 and that Wang et al. (2016) only had 10 participants in a group (which is small by usual 787 
standards), then we can compute power = 0.4051 for an independent sample t-test (α=0.05). Such 788 
pairwise tests would have been necessary to determine whether important contrasts were statistically 789 
significant (note that they were never reported numerically just in the form of asterisks in Fig. #2.). 790 
Further, if we compute power for a fixed effects ANOVA with df = 1,36 for a large effect size (f=0.4 791 
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in GPower which is about equivalent to D=0.8; see Cohen (1988)) then we still only get power = 792 
0.692. However, as noted, it is well known that published studies overestimate effect sizes (Schmidt, 793 
1992). So, it is more realistic to compute power for small, medium and large effect sizes rather than 794 
for an effect size of 0.81 (Sedlmeyer and Gigerenzer (1989; Szucs and Ioannidis, 2016). For these 795 
effect sizes the power of the independent t-test ranged between 0.1-0.4 (Table 2). Power for similar 796 
small and medium effect sizes for F tests (df=1,36) are power = 0.152 (f=0.15; D=0.3); power=0.455 797 
(f=0.3; D=0.6). Hence, the power of the study was much lower than declared. 798 

The main conclusion of the study, similarly to Hyde et al. (2014) is that brief exposure to an 799 
ANS number comparison task improves symbolic math performance. However, the data of both Hyde 800 
et al. (2014) and Wang et al (2016) can be explained by the same alternative explanations: Both 801 
studies may well just have primed attention to numerical information. Hence, we suggest that a 802 
succinct summary of the most likely explanation of the findings of Hyde et al. (2014) and Wang et al. 803 
(2016) is: If we direct attention to number that will boost performance on tasks involving number but 804 
not on other tasks.  805 

A note is that the low number of trials and training trials is clearly a problem in the brief ANS 806 
exposure experiments. It is a trivial fact that initial task performance improves quickly in nearly 807 
anything we can test. This is exactly the treason that good quality experiments have many training 808 
trials if this is possible. For example, if brief ANS exposure experiments simply measure the impact 809 
of directing attention to numerical information in general than such attentional effects can be expected 810 
to be particularly strong in the beginning of experiments, especially with few training trials. 811 

 812 
5. Some general points 813 
 814 
Below we highlight some major problems which recur in studies. 815 
 816 
5.1 Low power, high false report probability, exaggerated effect sizes 817 
 818 
Table 2 shows power to detect small, medium and large effect sizes as defined by Sedlmeyer 819 

and Gigerenzer (1989; Power calculation parameters are presented in the caption of Table 2. For a 820 
detailed exposition on power, effect size and false report probability see Szucs and Ioannidis, 2016). 821 
Only Wilson et al. (2009) and Obersteiner et al. (2013) had power > 0.5 to show medium sized effects 822 
(power range: 0.17 – 0.69) and studies had very low power to show small effects (power range: 0.1 – 823 
0.3). The consequence of low power is not only that real effects may be missed but also very high 824 
false report probability and exaggeration of effect sizes measured in studies (Szűcs and Ioannidis 825 
2016; Button et al. 2013).  826 

It is important to point to two frequent misconceptions: First, it is often thought that a large 827 
(statistically significant) effect size in a study with low power means that a finding can be particularly 828 
trusted because ‘if even a small study could detect an effect it must be really robust’. However, 829 
(perhaps counterintuitively) low power is inevitably associated with large effect sizes because with 830 
low degrees of freedom only large deviations from the value associated with the null hypothesis can 831 
reach statistical significance. The key test of these detected effects is not whether they look large in a 832 
single study but whether they are replicable. Second, it is often thought that if a study has detected a 833 
statistically significant finding then that finding must be accepted as a ‘fact’, or that at least that 834 
particular finding is highly robust even if it comes from an underpowered study. These are wrong 835 
assumptions: Any findings from underpowered studies have high false report probability irrespective 836 
of whether the findings are statistically significant or not (Button et al. 2013; see detailed modelling in 837 
Szucs and Ioannidis, 2016). In fact, usual power limitations in psychology and neuroscience mean that 838 
most publications report exaggerated effect sizes and have high false report probability (Button et al. 839 
2013). 840 

Overall, low power can result in widely varying statistically significant findings as one 841 
underpowered study may find a large effect size into one direction while another underpowered study 842 
may just find a large effect size into the opposite direction. The lesser is power across studies the 843 
more variable findings will become. These problems are of particular concern regarding the very 844 
small scale study of Wilson et al. (2006b) which has nevertheless been cited 50 times with 25 845 
citations claiming that training improved arithmetic (Table 3; see analysis later). Such citations are 846 
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clearly unjustified not only in light of the very low power of the study but also because it did not have 847 
a control group. Most other studies discussed here also had modest power to detect small and medium 848 
effects (Table 2) In general, especially in light of the current replication crisis of psychology and 849 
neuroscience (Nosek et al. 2015) it is extremely important to interpret findings from low powered and 850 
inconclusive studies very cautiously (Button et al. 2013). 851 

 852 
5.2 Endemic lack of multiple testing correction 853 
 854 
Surprisingly, with the sole exception of Obersteiner et al. (2013), who used multiple-testing 855 

corrected Scheffe tests, none of the studies noted that they used any multiple testing correction for 856 
pairwise comparisons following ANOVAs. In fact, they explicitly seem to suggest that they relied on 857 
simple t-tests in pairwise comparisons. One study even lacked any clear reporting of pairwise 858 
comparisons relying only on an asterisks notation (Wang et al. 2016). The lack of multiple testing 859 
correction is further exacerbated by the fact that sometimes non-significant ANOVA outcomes were 860 
followed up by such t-tests (Park and Brannon, 2014) and/or sometimes marginally non-significant, 861 
uncorrected t-tests were treated as statistically significant outcomes and interpreted in discussions 862 
(Wilson et al. 2006b; Wilson et al. 2009; Park and Brannon, 2014). However, multiple testing 863 
correction is necessary when qualifying several pairwise comparisons from ANOVAs and uncorrected 864 
tests should not be interpreted. Regular reliance on the above mistaken statistical inferential 865 
approaches can largely inflate the number of false positive findings. 866 

 867 
5.3 The use of ANCOVA 868 
 869 
It is invalid to use ANCOVA to ‘correct for’ pre-study group differences. Put otherwise, 870 

ANCOVA cannot be used with a covariate which is significantly different along the grouping 871 
variable(s) of interest (see Miller and Chapman, 2001; Porter and Raudenbush, 1987; Evans and 872 
Anastasio, 1968; Lord, 1969; Lord 1967). Such use of ANCOVA can substantially distort the data, 873 
render grouping variables meaningless and can result in entirely spurious statistically significant 874 
analysis outcomes. Yet, ANCOVA is frequently used in this incorrect manner, exactly with the 875 
intention of treating pronounced and perhaps statistically significant pre-intervention mathematical 876 
score group differences as non-significant (Sella et al. 2016; Park and Brannon, 2013; Park and 877 
Brannnon, 2014; Obersteiner et al. 2013). For example, Sella et al. (2016) based their whole analysis 878 
on ANCOVA even when they seemed conscious of the above problem because Footnote #3 (p.23.) 879 
communicates that pre-test scores did not differ between training and control groups. However, this 880 
contradicts the authors’ justification of using ANCOVA on the same page where they noted that they 881 
used ANCOVA because the two groups ‘substantially differed before training’ (p.23. bottom right; 882 
and this is indeed the case for most variables by looking at their Table #1). 883 

In general, if experimental and control groups are substantially different from each other on 884 
some pre-test variable then there is no method which could achieve that we would be sure to know 885 
how the groups would perform were they not different from each other (Miller and Chapman, 2001; 886 
Porter and Raudenbush, 1987). First, a strong pre-study difference may be avoided by proper 887 
individual randomization of training assignments and having large sample sizes which allow for more 888 
adequate randomization. So, besides low power the expected lack of adequate randomization and 889 
consequent large pre-study group differences is another problem of small scale intervention studies. 890 
Second, if pre-study training group differences exist then they simply cannot be ‘corrected for’. 891 
Rather, differences along important variables must explicitly be factored into analyses, for example 892 
through regression models (Miller and Chapman, 2001). The predictive value of these pre-study 893 
differences must then be communicated rather than just noting that ‘they were controlled for’ as lack 894 
of appropriate detail renders analyses meaningless. In addition, calculating effect sizes and confidence 895 
intervals for between/within group differences can also be very informative (see the analyses of 896 
Räsänen et al. 2009 and Obersteiner et al. 2013 and the additions to them in this paper). Third, if large 897 
pre-study group differences are unavoidable then the study should be replicated with a different pre-898 
study pattern of training and control group participant assignment before any conclusions can be 899 
drawn. This is especially so if researchers wish to make strong statements like for example, ‘we found 900 
it a fact’. 901 
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 902 
5.4 Design: Good and bad choice of control activities and time on tasks 903 
 904 
Three NR studies have clearly inadequate design: Wilson et al. (2006b) did not have a control 905 

group at all, Wilson et al. (2009) contrasted NR training with reading training and Sella et al. (2016) 906 
contrasted NR training with unstructured drawing activity. In contrast, Räsänen et al. (2009) and 907 
Obersteiner et al. (2013) had much more meaningful designs and contrasted alternative forms of math 908 
trainings rather than math training and non-math training or nothing. Notably, Räsänen et al. (2009) 909 
found that GraphoGame-Math was superior to NR and Obersteiner et al. (2013) found no difference 910 
between ANS based approximate and exact numerical training. 911 

The important general conclusion to draw is that it does not make sense to contrast target-912 
related interventions with completely target-irrelevant ones (as in Wilson et al. 2009; Sella et al. 913 
2016). Such designs may also largely exaggerate group differences in the amount of mathematics 914 
instruction received by groups adding another confounding factor as in Sella et al. (2016; 638 vs. 300 915 
minutes). In other studies the problem is exacerbated by deliberately adding more mathematics 916 
instruction than control instruction as in Wilson et al. (2009; 4:6 reading vs. mathematics training 917 
ratio). Such designs strongly bias studies to detect larger effects of one than the other intervention. 918 

Overall, if our objective is to claim that our intervention is especially useful for improving 919 
mathematics than it does not make much sense to contrast our math-related intervention with some 920 
non-math related intervention. For analogy, if we want to claim that our method is especially useful 921 
for teaching children to swim than it is not fair to first test children on swimming and then contrast 922 
our swimming training method with a running, or casual walking training method. Could we declare 923 
surprise (significance) when we find that all children who took our (perhaps amateurish) swimming 924 
class can at least stay afloat just coughing up a bit of water but all the children from the running group 925 
sank? Could we then market our swimming training method to parents as a worthy method to try with 926 
their children? Rather, a fair comparison is to contrast alternative proposed interventions (as in 927 
Räsänen et al. 2009; Obersteiner et al. 2013) and/or to contrast our favoured intervention with an 928 
already established and well-working target-related intervention (e.g. traditional math-education) with 929 
our favourite intervention. After all, why bother with introducing our new method if another, already 930 
established method works perfectly well, and perhaps much better than our method? 931 

Overall, any meaningful qualification of a training programme should compare the 932 
programme to another training programme which is either used, or can be expected to be used. Such 933 
correct designs were chosen by Räsänen et al. (2009) and Obersteiner et al. (2013). Overall, the real 934 
question is not whether we should use a training programme which is perhaps providing marginally 935 
better improvements than zero but rather, which successful targeted training programme should we 936 
use? 937 

 938 
5.5 Not following up the most important alternative hypotheses 939 
 940 
Choosing suboptimal alternative trainings is also a problem in studies with more focussed 941 

ANS tasks. As we discussed, while Park and Brannon (2013) did consider that perhaps general 942 
practice with addition and subtraction processes rather than ANS experience explains their data they 943 
chose not to test this very likely alternative hypothesis in Park and Brannon (2014). Similarly, Hyde et 944 
al. (2014) discarded the ATOM theory in Exp. 1. but then they still based their null hypothesis in Exp. 945 
2 on the predictions of an already discarded theory rather than testing two very likely alternative 946 
hypotheses. 947 

The above examples seem similar to those discussed by Meehl (1967). Meehl suggested that 948 
studies strongly biased towards some theoretical explanations typically choose to test very unlikely 949 
null hypotheses rather than contrasting their favourite ideas with more likely alternative hypotheses. 950 
He also directed attention to the ‘liberal use of ad-hoc explanations’, ‘use of complex and rather 951 
dubious auxiliary assumptions which are required to mediate the original prediction and are therefore 952 
readily available as (genuinely) plausible “outs” when the prediction fails’. Such problems are very 953 
evident in Wilson et al. (2009) who explained the lack of an expected finding by reverting to 954 
tautologic and circular ad hoc explanations about their participants assumed unmeasured internal 955 
characteristics and selective citing of positive evidence only (se discussion above). Again, considering 956 
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the current replication crisis of psychology it is more important than ever to refrain from such 957 
unjustified ad hoc arguments and to test the most important alternative hypotheses rather than less 958 
likely and less important ones. 959 

 960 
6. Citation bias in the ANS training literature 961 
 962 
Table 3. summarizes citations to the papers discussed (see Methods in Appendix 2 and the 963 

collection of citations and references to citing articles in Supplementary Material; date of study: 964 
May 2016). We identified 85 citing articles making 285 citations to the papers discussed here. 965 

Strikingly, in contrast to the serious problems with most papers discussed above only 13 966 
citations from 9 papers made a critical comment about the papers and/or noted the lack of training 967 
effects in at least one of the ANS intervention studies (Chen, Q. & Li, J., 2014; Jang, S., Cho, S., 968 
2016; LeFevre, J., 2016 ; Leibovich, T. & Ansari, D., 2016; 5:Lindskog, M., Winman, A. & Juslin, P., 969 
2013; Lindskog, M. & Winman, A., 2016; Räsänena, P., Salminena, J., Wilson, A., Aunioa, P., & 970 
Dehaene, D., 2009; Salminen, J., Koponen, T., Leskinen, M., Poikkeus, A., Aro, M., 2015; Torbeyns, 971 
J., Gilmore, C. & Verschaffel, L., 2015). * OBERSTEINER REMOVED 972 

Nine citations (a subset of the 13 citations mentioned above) from 6 papers offered more 973 
specific critical comments. Two of these critical comments regarded the lack of control group in 974 
Wilson et al. (2006b; Lindskog et al. 2013; Räsänen et al., 2010). Torbeyns et al. (2015) notes that 975 
most of the ANS intervention studies have serious methodological flaws, specifically citing not 976 
having proper control groups (p 106). Another paper suggests that the arithmetic training imbedded in 977 
the approximate arithmetic task of Park and Brannon (2014) rather than the ANS acuity training is 978 
likely responsible for reported improvements (Leibovich & Ansari, 2016). One paper (described 979 
above) was entirely devoted to the critique of Park and Brannon (2014; Lindskog and Winman, 2016). 980 
Another paper by Lindskog et al. (2013) reported their own attempt to replicate the results of DeWind 981 
and Brannon (2012). After controlling for perceptual cues, Lindskog et al. (2013) found no effect for 982 
learning transfer from ANS to symbolic math. With regards to DeWind and Brannon (2012), Jang and 983 
Cho (2016) point out that the inconsistencies in results between this study and others with similar 984 
designs may be due to differences in the dimensions used for visual stimuli and in the visual 985 
complexity of the tasks. Without citing specifics, LeFevre (2016) reports that the studies were not 986 
‘uniformly’ successful in showing transfer between ANS training and symbolic math performance. 987 

Considering all 50 citations to Wilson et al. (2006b) we can observe that only 4% of citations 988 
identified at least one problem in the study. Moreover, considering that all discussed papers together 989 
received 253 citations, only 6% of all citations raised any problems and 4% discussed problems in 990 
more specific terms. Considering that science is supposed to progress based on challenging 991 
controversies, the lack of critical comments is highly notable because several problems can be raised 992 
with regards to most studies (except Räsänen et al. 2009 and Obersteiner et al. 2013). 993 

Half of the 50 citations to Wilson et al. (2006) cited it claiming that NR training improves 994 
arithmetic performance and 14% of citations suggested ANS plays a causal role in arithmetic 995 
improvement. These claims are clearly unfounded in specific terms considering the small size of the 996 
study and that it did not have a control group. Nearly all papers citing Hyde et al. (2014) and Park and 997 
Brannon (2013) made the same claims. Notably, even Räsänen et al. (2009) was cited once stating the 998 
very general sounding claim that they demonstrated ‘a link between training on approximate 999 
arithmetic and symbolic math ability’ (Park and Brannon, 2013; p. 5). However, Räsänen et al. (2009) 1000 
merely found that NR training improved speed on symbolic number comparison while training did not 1001 
affect any other symbolic task. So, the overgeneralization of the citation is clearly unfounded.  1002 

Overall, 55% of the 253 citations suggested that ANS training improves arithmetic and 38% 1003 
of citations suggested that ANS plays causal role in this improvement. It is also notable that while we 1004 
counted 30 citations from 22 review articles in our sample only 2 such citations from 2 review articles 1005 
noted any critical comments about the papers discussed here (Leibovich and Ansari, 2016; LeFevre, 1006 
2016). Considering the serious controversies we analysed before we conclude that several citing 1007 
studies demonstrate a strong bias favouring the idea that the ANS is causally related to symbolic 1008 
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mathematics. Clearly, studies must take a more critical approach to evaluating evidence rather than 1009 
just restating conclusions from highly controversial papers. 1010 

 1011 
@ Table 3 about here 1012 
 1013 
7. Recommendations 1014 
 1015 
7.1 Design 1016 

 1017 
Measured training transfer effects are the consequence of the overlap between the mental 1018 

representations and processes affected by training and the representations and processes necessary to 1019 
carry out the tasks used as outcome measures (Fig. 2A.). It is important that the training can have 1020 
impact on representations and processes not intended to be affected, so we have to be careful when 1021 
evaluating what exactly was trained and what exactly outcome measures represent. For example, a 1022 
researcher may expect that NR training only sharpens ANS precision and hence, may conclude that 1023 
any post-training improvement in mathematics performance is due to improved ANS precision. 1024 
However, as discussed above, it is clear that NR affects many more representations and processes 1025 
beyond the ANS. Or, another researcher may assume that a non-symbolic dot addition task sharpens 1026 
ANS precision only whereas the key impact of the training may be general addition practice and some 1027 
attention training irrespective of the non-symbolic material used. In both above cases, it is hard to 1028 
decide what exactly potential transfer effects may be related to without further qualifying 1029 
experiments. As we suggested, several studies seem to have avoided to address the most important 1030 
questions regarding ANS training whereas it would be straightforward to set up tests. Here we 1031 
recommend clear designs.  1032 

The crucial operational design question regards task and stimulus specificity. Stimulus 1033 
specificity may be more related to the question of representations used to code information (e.g. 1034 
symbolic or non-symbolic representation) while task-specificity may be more related to the processes 1035 
run on representations (e.g. addition, subtraction, comparison). Naturally, representations and 1036 
processes may interact, for example, some processes (e.g. some visual addition or subtraction 1037 
algorithms) may be available for symbolic but not for non-symbolic stimuli. Systematic design 1038 
focussed on stimulus and task specificity may also be able to uncover such interactions. 1039 

A simple design suggestion is given in Fig. 2B. Initially we assume that participants would be 1040 
primary school children. Optimally, outcome measures should be taken before the study, right after 1041 
the study and a longer time period after the study. It is also beneficial to take outcome measures 1042 
during the study more than once to track the rate of change in outcome measures. The design (Fig. 1043 
2B.) considers the stimulus and task specificity of the training task along two levels. The trained 1044 
stimulus material can be non-symbolic and symbolic and the trained task can be addition or 1045 
comparison. The outcome measures are symbolic addition and comparison (shaded area in Fig. 2B2.). 1046 
We hypothesize that that symbolic addition outcome will improve more in any conditions involving 1047 
addition than in conditions with comparison. We also predict that the best training results will be 1048 
achieved in the ‘symbolic training material with addition’ condition because this has the most overlap 1049 
with the symbolic addition outcome task. 1050 

More complex designs could add more levels to both the trained operations (addition, 1051 
comparison, subtraction, number ordering) and to outcome measures. We predict that a given 1052 
outcome measure will improve when a particular operation is trained irrespective of the stimulus 1053 
material. We also predict that symbolic training will provide better results than non-symbolic training 1054 
due to the enhanced precision of symbolic representations.  1055 

It can be raised that the symbolic stimulus / symbolic test outcome measure option is too 1056 
direct and of course the best improvement can be expected when symbolic material is used to train 1057 
symbolic operations. However, in relation to school arithmetic we expect children to work with 1058 
symbolic numbers and the human specific mathematics they have to learn is based on symbolic 1059 
numbers. (Would we be happy if children only learn to pay an approximate sum in the shop, or get 1060 
approximately home after school?). Moreover, we know from the regular school curriculum that 1061 
training with symbolic operations leads to improvement in symbolic operations. So, what is the point 1062 
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of training symbolic operations indirectly (through the ANS, by using dot patterns) when in fact we 1063 
can train them directly probably with better outcome? 1064 

Naturally, it could be argued that non-symbolic training may be better for 1) small children 1065 
and 2) for people with poor mathematics. However, in that case studies should still contrast whether 1066 
the proposed alternative indirect training provides better outcomes than the more direct training with 1067 
symbolic numerals in certain groups and certain age ranges. E.g. it may happen that training small 1068 
children with non-symbolic addition before they learn numbers is beneficial. However, will this 1069 
intervention deliver any specific long-term improvement once children start symbolic learning besides 1070 
an initial (perhaps irrelevant) boost? In order to test such questions, designs can be complicated by 1071 
testing various age groups, including kindergarten children. In such case the crucial question would be 1072 
whether using non-symbolic material has any benefit over symbolic material at an earlier age than 1073 
primary school. 1074 

 1075 
@ Figure 2 about here 1076 
 1077 
7.2 Recommendations: reporting 1078 
 1079 
Several good general recommendations for improved reporting are given by Simmons et al. 1080 

(2011) and specifically for training studies recently by Moreau et al. (2016) and Green et al. (2014). 1081 
We recommend pre-study power calculation for small, medium and large effect sizes (see e.g. Szucs 1082 
and Ioannidis, 2016). We recommend pre-registering all studies before they start and publishing all 1083 
raw data with the primary publication from the intervention study (obviously, a pre-requisite of using 1084 
this data must be citing the publishing article). It is essential to determine and publish pre-study group 1085 
differences in important variables. Relying solely on gain scores is inadequate and their use can be 1086 
misleading (see for example Moreau et al. 2016). Tests should be corrected for multiple comparisons 1087 
to avoid the inflation of Type I error. Rather than relying on point estimates of parameters, it is more 1088 
informative to provide interval estimates such as confidence intervals. If normality is not achieved 1089 
than bootstrap methods could be used. Effect sizes need to be calculated. Confidence intervals should 1090 
not be confused with Bayesian credible intervals which provide more useful information than 1091 
confidence intervals (Hoekstra et al. 2014).  1092 

Studies should state participant numbers clearly upfront; for example it may happen that a 1093 
study states that 22 children were recruited (Wilson et al. 2006b), then goes on to say that 13 of these 1094 
children were selected for the study and ultimately says that the ‘final sample’ of the study was 9 1095 
children. Such descriptions are unfortunately fairly typical in the developmental literature. However, 1096 
rather than describing the process of losing participants it is much more straightforward and 1097 
informative to state final participant numbers to start with and describe details afterwards. 1098 

Discussions must avoid post-hoc theorizing and unnecessarily complicated arguments perhaps 1099 
taking a biased view of evidence. A related simple fact is that low power leads to highly variable 1100 
results in studies. This will facilitate looking for alternative mediating explanations and starting 1101 
theorizing about these (Schmidt, 1992). However, variability in findings may entirely be due to low 1102 
power. So, our primary job is to increase power and report findings clearly rather than unnecessary 1103 
(and often confusing) theorizing.  1104 

 1105 
7.3 Overcoming the citation bias: Critical analysis is needed 1106 
 1107 
Our citation analysis demonstrates the lack of critical comments regarding the studies 1108 

discussed and that many claims supported by citations were unfounded. It is important that we break 1109 
with the ‘business as usual’ tradition and take a more critical stance when evaluating evidence. This 1110 
will not only result in more efficient use of research funds but will also speed up scientific progress. 1111 

 1112 
8. We do like non-symbolic math training 1113 
 1114 
It is important to caution that we are not against the use of non-symbolic information and 1115 

manipulatives. We are confident that manipulatives, concrete countable objects, and other forms of 1116 
learning which focus on general counting, comparing, and manipulation skills can be useful in early 1117 
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number training (Dyson, Jordan, & Glutting, 2013; Fennema, 1972; Suydam & Higins, 1977). In fact, 1118 
they have been used for hundreds of years (Froebel, 1899; Montessori, 1882) and are still currently 1119 
used with positive effect in many formal kindergartens and school systems (Carbonneau, Marley, & 1120 
Selig, 2013; Sowell, E. J., 1989). As Dyson, Jordan, and Glutting (2013) show, counting, comparing 1121 
and manipulating sets can help children improve their sense of number (number sense here defined as 1122 
in Jordan et al., 2012, p. 2), which can lead to improved performance in the classroom. In fact, our 1123 
own research also confirms that concrete three-dimensional spatial building ability is related to 1124 
numerical understanding in 7-year-old children (Nath and Szűcs, 2014). 1125 

What we argue against is biased designs and interpretations and incorrect use of statistics. For 1126 
example, we do not see much evidence that ANS training specifically improved anything in the 1127 
reviewed studies. This may be because 1) ANS training is already inefficient in the age groups tested 1128 
and/or 2) because dot pattern comparison and/or their mental manipulation is not very useful in 1129 
general. This last statement does not exclude that other non-symbolic math training works. We need 1130 
properly designed studies with balanced interpretations to determine similar questions. 1131 
 1132 

9. Conclusions 1133 
 1134 
Our critical analysis reveals a large number of problems in the ANS training literature. 1135 

Several studies are poorly designed, lack power, use inadequate statistical procedures (e.g. illegitimate 1136 
use of ANCOVA and lack of multiple testing correction) and rely on highly biased inference. We 1137 
conclude that with the exception of Räsänen et al. (2009) and Obersteiner et al. (2013) all other 1138 
studies discussed here had inadequate design and/or inference. The above two studies could not 1139 
determine any specific advantage of ANS based training. Due to their various pitfalls the other studies 1140 
also could not convincingly demonstrate that ANS training had any specific benefits. The lack of clear 1141 
results is in sharp contrast with how ANS studies are uncritically cited in the literature. We conclude 1142 
that citation patterns reflect strong bias towards the ANS theory. Similar bias is reflected in study 1143 
designs which avoid testing plausible and likely null hypotheses challenging the number sense theory 1144 
and rather focus on unlikely or even in principle already rejected hypotheses.  Hence, it is a plausible 1145 
danger that the ANS training literature may develop into a highly cited ‘null field’ where null 1146 
hypotheses are poorly formed and are posed in a way which biases them for rejection. In order to 1147 
avoid this we suggested more optimal design options than used in the past and highlighted current 1148 
errors. We owe delivering clear and unbiased information to children and their parents. 1149 
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Tables 1152 

 1153 
 1154 

Wilson et al. 
(2006b); p2 

‘the ability to represent and manipulate numerical quantities non-
verbally’.  

Wilson et al. (2009); 
p224 

‘the ability to quickly understand, approximate and manipulate numerical 
quantities’ 

Räsänen et al. 
(2009); p452 

‘Sense of approximate magnitudes’ 

Obersteiner et al. 
(2013); p125. 

‘…system represents larger numerosities approximately’ 

Sella et al. (2016) This paper seems to use ‘number sense’ in the sense used by Jordan et al. 
(2012) 

Hyde et al. (2014); 
p92. 

ANS: ‘primitive cognitive system for making quantitative judgements and 
decisions: the … ANS’ 

Dewind and Brannon 
(2012); p1 

‘…approximate number sense that allows us to estimate quantity without 
the use of symbols and language.’ 

Park and Brannon, 
(2013); p1 

‘… an Approximate number system (ANS) that allows them [humans] to 
represent quantities as imprecise, noisy mental magnitudes without verbal 
counting or numerical symbols’ 

Park and Brannon, 
(2014); p188 

‘…an intuitive understanding of number. Without counting or the use of 
symbols, we are able to estimate, compare, and mentally manipulate large 
numerical quantities.’ 

Wang et al. (2016); 
p83 

‘an intuitive, non-symbolic, approximate sense of number that is available 
prior to the onset of schooling… The ANS represents numbers in a noisy 
imprecise fashion…’ 

Table 1. ANS definitions from the papers discussed. The studies are cited in the order of 1155 
discussing them in this paper. 1156 

 1157 
  1158 
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 1159 
Citation Age and Group N Test type (df) Power 

(D=0.3, 0.5, 0.8) 
Wilson et al. 
2006 

7 to 9 year-olds 
N=9 
N=8 (1 excluded) 

 
matched t(8) 
matched t(7) 

 
0.13 
0.11 

 
0.26 
0.23 

 
0.56 
0.50 

Wilson et al. 
2009 

4 to 6-year-olds 
53 = 27+26 

matched t(26) 
matched t(25) 

 
0.31 
0.30 

 
0.69 
0.67 

 
0.97 
0.97 

Räsänen et 
al. 2009 

6.5 year-old 
children 
59 = 2×15+29 

Indep. t(15+29-2); Ratio=29/15  
0.15 

 
0.34 

 
0.69 

Obersteiner 
et al. 2013 

6.9 year-old 
children 
Children 
147=35+39+39+34 

Approximate vs. exact training 
group:  
Indep. t(35+39-2); Ratio = 39/35 

 
0.25 

 
0.56 

 
0.92 

Sella et al. 
2016 

5.1 year-old 
children 
45=23+22 
BUT widely 
varying numbers in 
actual analyses! 

 
Max: Indep. t(2×20-2) 
Min: Indep. t(2×9-2) 

0.15 
0.09 

0.34 
0.17 

0.69 
0.36 

DeWind and 
Brannon 
(2012) 

Adults 
20 

 
Correlation (r=0.148; 0.243; 0.371) 

 
0.10 

 
0.19 

 
0.39 

Park and 
Brannon 
(2013) 

Adults 
Exp. 1: 52=2×26 
Exp. 2: 
46=16+14+16 

 
Indep. t(2×26-2) 
Indep. t(2×16-2) 

 
0.19 
0.13 

 
0.42 
0.28 

 
0.81 
0.59 

Park and 
Brannon 
(2014) 

Adults 
Exp. 1: 
71=3×18+17 

 
Indep. t(2×18-2) 

 
0.14 

 
0.31 

 
0.65 

Hyde et al. 
2014 

Grade 1 children 
Exp. 1: 96 = 4×24 
Exp. 1: 48 = 2×24 

 
Indep. t(2×24-2) 

0.17 0.40 0.77 

Wang et al. 
2016 

5-year-old children 
40 = 4×10  

 
Indep. t-test(2×10-2) 

0.10 0.19 0.40 

 1160 
Table 2. Samples sizes and power of studies. The table presents citations to the studies, 1161 

participant numbers, the test types for which power was computed with degrees of freedom (df) and 1162 
the computed power values in the last three columns. For studies comparing condition and/or group 1163 
means power is computed for matched and/or independent-sample t-tests (α=0.05; two-tailed). This is 1164 
because pairwise comparisons between conditions and/or groups were of interest for all studies. 1165 
Where group sizes in different analyses varied greatly due to exclusions minimum (Min.) and 1166 
maximum (Max.) power values are computed. Otherwise the best possible power or the most relevant 1167 
(Oberteiner et al. 2013) scenarios were computed. In the study with correlations r to D transformation 1168 
was computed as r = d / sqrt(d2 + a) | a=4 (Borenstein et al. 2009). Power for t-tests was computed in 1169 
Matlab using the sampsizepwr function, taking the into account the actual group sizes. Power for 1170 
correlations was computed in GPower 3.1.9.2. (Faul, 2007). Indep. t. = Independent sample t-test. 1171 
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A B C D E F G H I 
Study Math 

Improved 
ANS 
Causal 
 
Subset of B 

ANS Acuity 
Improved 

Vague 
Supportive 
Comments 

Description 
or Similar 
Paradigm 

Critical 
comments or 
‘no effect’ 

Specific 
Critical 
Comments 
Subset of G 

Any citation 

Wilson 
2006b 

29 
58% 

13 
26% 

2 
4% 

3 
6% 

14 
28% 

2 
4% 

2 
4% 

50 

Wilson 
2009 

20 
71% 

7 
25% 

1 
4% 

0 
0% 

3 
11% 

4 
14% 

2 
7% 

28 

Räsänen et 
al. (2009) 

26 
49% 

3 
6% 

3 
6% 

3 
5% 

21 
4% 

0 
0% 

0 
0% 

53 

Obersteiner 
et al. (2013) 

8 
57% 

4 
29% 

2 
15% 

1 
7% 

2 
14% 

1 
7% 

0 
0% 

14 

Sella et al. 
(2016) 

1 
0% 

0 
0% 

0 
0% 

0 
100% 

0 
0% 

0 
0% 

0 
0% 

1 

Hyde et al. 
(2014) 

24 
83% 

25 
87% 

2 
7% 

1 
4% 

1 
3% 

1 
3% 

1 
3% 

29 

Dewind and 
Brannon 
(2012) 

10 
56% 

9 
50% 

5 
28% 

0 
0% 

2 
11% 

1 
5% 

1 
5% 

18 

Park and 
Brannon 
(2013) 

36 
80% 

35 
78% 

3 
7% 

3 
7% 

1 
2% 

2 
4% 

1 
2% 

45 

Park and 
Brannon 
(2014) 

11 
73% 

10 
67% 

1 
7% 

0 
0% 

1 
7% 

2 
13% 

2 
13% 

15 

Wang et al. 
(2016) 

0 
0% 

0 
0% 

0 
0% 

0 
0% 

0 
0% 

0 
0% 

0 
0% 

0 

TOTAL 
% = x/253 

165 
65% 

106 
42% 

19 
8% 

11 
4% 

45 
18% 

13 
5% 

9 
4% 

253 citations 
(85 papers) 

 1173 

Table 3. Summary of citations to the studies discussed. The top numbers in each row show 1174 
the number of citations, the percentages below show the percentage of citations relative to the 1175 
absolute number in Column I. There were 85 articles citing any of the studies discussed. Column I 1176 
(‘Any citation’) states how many of these 85 articles cited a particular study for any reason. Columns 1177 
A-H state how many of the 85 citing articles cited a particular study to support a particular claim. 1178 
Columns C and D are subsets of column B. That is, the numbers in columns B, D-G add up to the 1179 
numbers in column I (e.g. in row one: 25+6+0+2+17=50). The bottom row expresses citations in 1180 
terms of the total number of citations (287). Content of columns A-H: (A) Citation of study. (B) 1181 
Claim: There was improvement (transfer effect) in symbolic math ability. (C) Claim: Symbolic math 1182 
improved and it was implied or stated that the improvement was causally related to ANS training. 1183 
This is a subset of citations given in column B. (D) Claim: There was improvement in approximation 1184 
ability or ANS acuity. (E) Vague positive statements about the cited study. (F) The cited study was 1185 
simply described and/or mentioned for some reason. (G) Claim: Specific or non-specific critical 1186 
comments about the cited study or claiming that there were no effects in the cited study. (D) Highly 1187 
specific critical comments were made about the cited study. This is a subset of citations given in 1188 
column G. (I) Total number of citations (see above). This is the sum of the citations in columns B and 1189 
D-G as noted above. The literature used to locate these studies was conducted in May 2016. 1190 
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Figure captions 1192 

 1193 

Figure 1. Illustration of decision curves and accuracy outcomes for various w values. The 1194 
figure is from Szűcs et al. (2013); author copyright. 1195 
 1196 

Figure 2. Design options. (A) Improvement on an outcome measure depends on the overlap 1197 
between representations and processes (RoPs) affected by training and those required by the outcome 1198 
measure. Squares denote RoPs. The shaded squares mark the RoPs thought to be trained directly. The 1199 
arrows point to other representation somehow also affected by the training. The filled circles mark all 1200 
RoPs affected by the training. The thick dashed borders denote RoPs required by the outcome 1201 
measure. (B) A simple design taking stimulus and task specificity into account. The test phase can test 1202 
outcome measures related to all possible task/stimulus combinations or only select ones, e.g. only 1203 
symbolic comparison and addition denoted by the shaded area in B2. For simplicity the figure does 1204 
not represent pre, mid and post-test and other details explained in the text. 1205 
  1206 
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Finding number sense intervention studies  1207 

In May of 2016 an electronic literature search was conducted utilizing Google Scholar, 1208 
Elsevier, PubMed, Scopus, and Web of Science search engines. Search criteria were that the 1209 
papers should describe interventions studies which aimed to train the ANS with the intention 1210 
of transferring training benefits to symbolic mathematics. Exact search terms used can be 1211 
viewed in Table A1. From the initial hits, the titles were quickly scanned for appropriateness 1212 
leaving 6,030 articles. Note that Google Scholar produced a large number of hits; 1213 
consequently, the titles of the first 20 pages were looked at carefully as they were much more 1214 
likely to be relavant while the subsequent webpages were scanned very quickly. The 6,030 1215 
articles were chosen as the titles seemed to have something to do with improvement in math 1216 
ability or performance. The titles and abstracts of these were read to evaluate fit with the 1217 
selection criterion from which 10 articles were specifically selected as ANS intervention 1218 
studies. Additionally, the Introduction and Discussion sessions and the literature lists of all 10 1219 
articles were checked to see whether they cite other similar articles of interest. No other 1220 
articles of interest were identified besides the initial 10 studies.  1221 

 1222 

 

Search Terms 

mathematics number sense intervention 

mathematics number sense intervention review 

arithmetic number sense intervention 

number race 

math ANS intervention 

mathematics ANS intervention 

math approximate number system intervention 

mathematics approximate number system intervention 

math magnitude representation intervention 

mathematics magnitude representation intervention 
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math number sense training 

mathematics number sense training 

arithmetic number sense training 

geometry number sense training 

math ANS training 

mathematics ANS training 

arithmetic ANS training 

geometry ANS training 

math approximate number system training 

mathematics approximate number system training 

arithmetic approximate number system training 

geometry approximate number system training 

math magnitude representation training 

mathematics magnitude representation training 

arithmetic magnitude representation training 

geometry magnitude representation training 

Table A1. The search terms used in the literature search. 1223 

 1224 

  1225 
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Appendix 2: Methods of the citation analysis 1226 

A search was conducted during May 2016 with the Elsevier and Web of Science search 1227 
engines to find articles which cited the 10 ANS intervention studies. Eighty-six total citing 1228 
articles were found. These articles were examined to determine what they concluded about 1229 
the ANS intervention they were citing. First, the direct citations which discussed specific 1230 
ANS intervention studies were found by searching within the document for the first author’s 1231 
last name of the intervention study in question. Second, the titles and abstract of the papers 1232 
were read to see whether they had a critical stance to the papers discuss here. Third, the text 1233 
of the papers was also checked for relevant critical comments. Based upon the text, we scored 1234 
each citation in the citing papers along the criteria laid out in Table 3. The direct citations as 1235 
well as information about what each concluded is available in the  1236 

Supplementary Material.  1237 

The citation data is available as an Microsoft Excel File published as supplementary 1238 
material XX. 1239 

Legend for the supplementary Excel file: The file lists each paper which cites the 10 ANS 1240 
intervention studies discussed here and codes them as follows: 2 = symbolic math 1241 
competency/skills improved or shown to be causally based on ANS training; 1 = ANS acuity 1242 
only improved; 0 = no effects shown or confounds in study; -1 = uses a similar paradigm, 1243 
describes the paradigm, or tells what the study aims to do; -2 = vague supportive comments.  1244 

  1245 
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Appendix 3: Methods of effect size computation 1246 
 1247 
Effect sizes were computed as defined by Hedges (1981): 1248 
 1249 

 =  
−  

 1250 

 1251 
Where m1 stands for the mean performance score of study group 1, m2 stands for the mean 1252 
performance score of study group 2 and SD stands for the pooled standard deviation computed as:  1253 
 1254 

 =  
( − 1) +  ( − 1)

+  − 2
 1255 

 1256 
Where sd1 and sd2 stands for the standard deviations measured in the groups and n1 and n2 denote the 1257 
sample sizes in groups. 1258 
 1259 
 1260 
 1261 
 1262 
  1263 



31 
 

References 1264 
 1265 

Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. 1266 
Developmental Review, 2, 213-36. 1267 

Boggan, M., Harper, S., & Whitmire, A. (2010). Using manipulatives to teach elementary 1268 
mathematics. Journal of Instructional Pedagogies, 3, 1-6. 1269 

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009), Introduction to Meta-analysis. 1270 
Chapter 7. John-Wiley and Sons. Ltd. 1271 

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. 1272 
(2013). Power failure: Why small sample size undermines the reliability of neuroscience. 1273 
Nature Reviews Neuroscience, 14(5), 365-76. doi:10.1038/nrn3475 1274 

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching 1275 
mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380-1276 
400. 1277 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: 1278 
Erlbaum. 1279 

de Castro, M. V., Bissaco, M. A. S., Panccioni, B. M., Rodrigues, S. C. M., & Domingues, A. M. 1280 
(2014). Effect of a virtual environment on the development of mathematical skills in children 1281 
with dyscalculia. PLoS One, 9(7), e103354. 1282 

Dehaene, S. (1997). The number sense. New York: Oxford University Press. 1283 

DeWind, N. K. & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of 1284 
feedback and training. Frontiers in human neuroscience, 6(68), 1-10. 1285 
doi:10.3389/fnhum.2012.00068  1286 

Dyson, N. I., Jordan, N. C., & Glutting, J. (2013). A number sense intervention for low-1287 
income kindergartners at risk for mathematics difficulties. Journal of Learning 1288 
Disabilities, 46(2), 166-81. 1289 

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., and Verschaffel, L. (2008). The 1290 
relationship between the shape of the mental number line and familiarity with 1291 
numbers in 5- to 9-year old children: evidence for a segmented linear model. J. Exp. 1292 
Child Psychol. 99, 1–17 1293 

Educational Testing Service (2016). Graduate Record Exam. 1294 

Educational Testing Service (2016). SAT. 1295 

Evans, S. H. & Anastasio, E. J. (1968). Misuse of analysis of covariance when treatment effect and 1296 
covariate are confounded. Psychological Bulletin, 69(4), 225-34. 1297 

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power 1298 
analysis program for the social, behavioral, and biomedical sciences. Behavior Research 1299 
Methods, 39, 175-191 1300 

Fennema, E. H. (1972). Models and mathematics. The Arithmetic Teacher, 19(8), 635-40. 1301 



32 
 

Fritz, C.,O., Morris, P.,E., Richler, J.,J, Effect size estimates: Current use, calculations and 1302 
interpretation. Journal of Experimental Psychology: General. 141, 2-18 (2012). 1303 

Froebel, F. (1899). Pedagogics of the Kindergarten: Ideas Concerning the Play and Playthings of the 1304 
Child. 1305 

Fuson, K. C. & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first- and 1306 
second-grade place-value and multidigit addition and subtraction. Journal for Research in 1307 
Mathematics Education, 21(3), 180-206. 1308 

Green CS, Strobach T, Schubert T (2014). On methodological standards in training and transfer 1309 
experiments. Psychological Research. 78, 756-772 1310 

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. 1311 
Journal of Educational and Behavioral Statistics, 6(2), 107-28. 1312 

Hassinger-Das, B., Jordan, N. C., Glutting, J., Irwin, C., & Dyson, N. (2014). Domain-general 1313 
mediators of the relation between kindergarten number sense and first-grade mathematics 1314 
achievement. Journal of Experimental Child Psychology, 118, 78-92. 1315 

Hiebert, J. (1984). Why do some children have trouble learning measurement concepts? The 1316 
Artithmetic Teacher, 31(7), 19-24. 1317 

Hoekstra, R. Morey, R.D., Rouder, J.N., Wagenmakers, E.J. (2014). Robust misinterpretation of 1318 
confidence intervals. Psychonomic Bulletin and Review. 21, 1157-1164. 1319 

Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-symbolic approximate number practice 1320 
enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. doi: 1321 
10.1016/j.cognition.2013.12.007 1322 

Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building 1323 
kindergartners’ number sense: A randomized controlled study. Journal of Educational 1324 
Psychology, 104(3), 647-60. 1325 

Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics 1326 
achievement in first and third grades. Learning and Individual Differences, 20, 82-8. 1327 

Jordan, N. C., Kaplan, D., Oláh, L. N., & Locuniak, M. N. (2006). Number sense growth in 1328 
Kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. 1329 
Child Development, 77(1), 153-75. 1330 

Jordan, N. C., Locuniak, M. N., & Ramineni, C. (2007). Predicting first-grade math achievement from 1331 
developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 1332 
37-47. 1333 

Kuhn, J. T. & Holling, H. (2014). Number sense or working memory? The effect of two computer-1334 
based trainings on mathematical skills in elementary school. Advances in Cognitive 1335 
Psychology, 10(2), 59-67. doi:10.5709/acp-0157-2 1336 

Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2001). A comprehensive meta-analysis of the predictive 1337 
validity of the graduate record examinations: Implications for graduate student selection and 1338 
performance. Psychological Bulletin, 127(1), 162-81. 1339 

Lindskog, M., Winman, A., & Juslin, P. (2013). Are there rapid feedback effects on approximate 1340 
number system acuity? Frontiers in Human Neuroscience, 7, 1-8.  1341 



33 
 

Lindskog, M., Winman, A. (2016). No evidence of learning in non-symbolic numerical tasks – A 1342 
comment on Park and Brannon (2014). Cognition. 150, 243-251. 1343 

Lord, F. M. (1967). A paradox in the interpretation of group comparisons. Psychological Bulletin, 1344 
68(5), 304-5.  1345 

Lord, F. M. (1969). Statistical adjustments when comparing preexisting groups. Psychological 1346 
Bulletin, 72(5), 336-37. 1347 

Marzola, E. S. (1987). Using manipulatives in math instruction. Journal of Reading, Writing, and 1348 
Learning Disabilities, 3(1), 3-20. 1349 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate 1350 
number system underlies mathematical learning disability (dyscalculia). Child Development, 1351 
82(4), 1224-37. doi: 10.1111/j.1467-8624.2011.01608.x 1352 

Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. 1353 
Philosophy of Science, 103-15. 1354 

Miller, G. A. & Chapman, G. A. (2001). Misunderstanding analysis of covariance. Journal of 1355 
Abnormal Psychology, 110(1), 40-8. 1356 

Mönkkönen, A., Richardson, U., Räsänen, P., Herrera Montes, A., Kujala, J., Brem, S., et al. (in 1357 
preparation). Graphogame-Math: Using a computer game for training number skills in 1358 
preschool aged children. 1359 

Montessori, M. Translated by Everett, A. (1882). The Montessori Method. New York: Frederick A. 1360 
Stokes Company. 1361 

Moreau D, Kirk IJ, Waldie KE (2016). Seven pervasive statistical flaws in cognitive training 1362 
interventions. Frontiers in Human Neuroscience. 10:153 1363 

Moyer, R. S. & Landauer, T. K. (1967). Time required for judgements of numerical inequality. 1364 
Nature: Letters to Nature, 215, 1519-20. doi:10.1038/2151519a0 1365 

Nath, S. & Szűcs, D. (2014). Construction play and cognitive skills associated with the development 1366 
of mathematical abilities in 7-year-old children. Learning and Instruction, 32, 73-80. 1367 

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler, S. J., Buck, S., 1368 
Chambers, C. D., Chin, G., Christensen, G., Contestabile, M., Dafoe, A., Eich, E., Freese, J., 1369 
Glennerster, R., Goroff, D., Green, D. P., Hesse, B., Humphreys, M., Ishiyama, J., Karlan D., 1370 
Kraut A., Lupia, A., Mabry, P., Madon, T. A., Malhotra, N., Mayo-Wilson, E., McNutt, M., 1371 
Miguel, E., Paluck, E. L., Simonsohn, U., Soderberg, C., Spellman, B. A., Turitto, J., 1372 
VandenBos, G., Vazire, S., Wagenmakers, E. J., Wilson, R., & Yarkoni, T. (2015b), 1373 
Promoting an open research culture. Science, 348(6242), 1422-5. 1374 

Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental 1375 
representations of number can enhance first-grade students’ basic number processing and 1376 
arithmetic skills. Learning and Instruction, 23, 125-35. 1377 
doi:10.1016/j.learninstruc.2012.08.004 1378 

Park, J. & Brannon, E. M. (2013). Training the approximate number system improves math 1379 
proficiency. Psychological Science. doi:10.1177/0956797613482944 1380 



34 
 

Park, J. & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An 1381 
investigation of underlying mechanism. Cognition, 133(1), 188-200. 1382 
doi:10.1016/j.cognition.2014.06.011 1383 

Parsons, H. M. (1974). What happened at Hawthorne? Science, 183(4128), 922-32. 1384 

Porter, A. C. & Raudenbush, S. W. (1987) Analysis of covariance: Its model and use in psychological 1385 
research. Journal of Counseling Psychology, 34(4), 383-92. 1386 

Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted 1387 
intervention for children with low numeracy skills. Cognitive Development, 24(4), 450-72. 1388 
doi:10.1016/j.cogdev.2009.09.003 1389 

Schmidt, F.L. (1992). What do data really mean? Research findings, meta-analysis and cumulative 1390 
knowledge in psychology. American Psychologist, 47, 1173-81. 1391 

Sedlmeyer, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of 1392 
the studies? Psychological Bulletin. 105, 309-16. 1393 

Sella, F., Tressoldi, P., Lucangeli, D., & Zorzi, M. (2016). Training numerical skills with the adaptive 1394 
videogame “The Number Race”: A randomized controlled trial on preschoolers. Trends in 1395 
Neuroscience and Education, 5(1), 20-9. doi: 10.1016/j.tine.2016.02.002 1396 

Simmons, J., Nelson, L., & Simonsohn, U. 2011. False-positive psychology: Undisclosed flexibility 1397 
in data collection and analysis allow presenting anything as significant. Psychological 1398 
Science, 22, 1359-66. 1399 

Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction. Journal for 1400 
Research in Mathematics Education, 20(5), 498-505. 1401 

Suydam, M., & Higins, J. (1977). Activity-based learning in elementary school maththematics: 1402 
Recomendations from research. Columbus, OH:ERIClearinghouse for Science, Mathematics, 1403 
and Environmental Education. (ERICDocument ReproductionServiceNo.ED14840). 1404 

Szűcs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2014). Cognitive components of a 1405 
mathematical processing network in 9-year-old children. Developmental Science, 17(4), 506-1406 
24. 1407 

Szűcs, D., Nobes, A., Devine, A., Gabriel, F. C., & Gebuis, T. ( 2013). Visual stimulus parameters 1408 
seriously compromise the measurement of approximate number system acuity and 1409 
comparative effects between adults and children. frontiers in Psychology, 4, 1-12. doi: 1410 
10.3389/fpsyg.2013.00444 1411 

Van Dijck, J. P. & Fias, W. (2011). A working memory account for spatial-numerical associations. 1412 
Cognition, 119(1), 114-9. 1413 

Wang, J. J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing the precision of preschoolers’ 1414 
approximate number system representations changes their symbolic math performance. 1415 
Journal of Experimental Child Psychology, 147, 82-99. doi:10.1016/j.jecp.2016.03.002 1416 

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space, and quantity. 1417 
TRENDS in Cognitive Sciences, 7(11), 483-8. doi:10.1016/j.tics.2003.09.002 1418 

White, S. L. J., Szűcs, D., & Soltész, F. (2011). Symbolic Number: Spatial representations in children 1419 
aged 6 to 8 years. Frontiers in Psychology, 2(392), 1-11. doi: 10.3389/fpsyg.2011.003922 1420 



35 
 

Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention 1421 
on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, 1422 
and Education, 3(4), 224-34. doi: 10.1111/j.1751-228X.2009.01075.x 1423 

Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., & Cohen, D. (2006a). Principles underlying the 1424 
design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. 1425 
Behavioral and Brain Functions, 2, 19-10.1186/1744-9081-2-19. 1426 

Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006b). An open trial assessment 1427 
of “The Number Race”, an adaptive computer game for remediation of dyscalculia. 1428 
Behavioral and Brain Functions, 2(1), 1-16. doi:10.1186/1744-9081-2-20  1429 

Zwick, R. & Sklar, J. C. (2005). Predicting college grades and degree completion using high school 1430 
grades and SAT scores: The role of student ethnicity and first language. American 1431 
Educational Research Journal, 42(3), 439-64. 1432 


