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Abstract

In this thesis we develop the theory of quantum Wiener integrals on the bosonic Fock

space. We study multiple quantum Wiener integrals as an algebra of unbounded

operators, investigating its properties, including closedness, common domains and

multiplication formulas. We show the applications of the new formalism by providing

new proofs to the established theory of quantum stochastic calculus and new conditions

for generating quantum stochastic cocycles and quantum stochastic evolutions. The

corresponding quasifree case is also studied and the constructions extended to fit in

that formalism.

We construct the multiple quantum Wiener integral as one operator on a family

of operators which we dub operator kernels. This in particular covers the case of

quantum stochastic cocycles and evolutions. We show that the family of quantum

Wiener integrals forms a WOT-dense algebra of unbounded operators on the bosonic

Fock space. We provide more general conditions for an operator kernel to be multiple

quantum Wiener integrable, which allows us to treat multiple quantum Wiener integrals

as an algebra. We explore the influence of an initial space on the theory. Our setting

gives natural conditions for a product of two cocycles (evolutions) to still be a cocycle

(an evolution). We apply our theory by solving quantum stochastic differential equations

(QSDEs) and by finding more elementary proofs of structure conditions on the generator

of a quantum stochastic evolution and of the fundamental estimate in the proof of

quantum stochastic Lie–Trotter formula. We also show how our theory unifies and

generalises the theory of integral kernels and chaotic representation properties, proving

in particular that every Hilbert–Schmidt operator is a quantum Wiener integral.
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Introduction

The first appearance of polynomial chaos dates back to the 1938 paper of Norbert

Wiener [82]. Its interpretation as multiple Wiener integrals and its applications

outside of Brownian motion are due to Itô [40]. It is defined as follows: consider the

standard Brownian motion B with its canonical probability space (Ω,Σ,P). Then, in

fact, the space of square integrable random variables on Ω consists exactly of limits of

polynomials of Brownian motion, and the polynomials of different orders are orthogonal.

In Wiener’s original work, the polynomials in question were the Hermite polynomials

of Brownian motion. It is worth noting this approach was continued and made more

approachable by Cameron and Martin in [15]. In the language of Itô calculus, the

polynomials are the multiple Wiener integrals of functions defined on the positive real

line. Thus,

L2(Ω) =
⊕
n>0

In(L2
sym(Rn

+)).

Today this property has been dubbed the chaotic representation property (CRP) and

has been extensively studied - work has been done to find wider classes of martingales

with CRP [4], for example, the compensated Poisson process [18] and some of the

Azemá martingales [71]. It implies the predictable representation property and forms

the foundation of the theory of Malliavin calculus, cf. [69].

Applications of the CRP include numerical approximations of stochastic processes,

e.g. [67] for its application to propagators, [62] for the nonlinear filtering problem, [25]
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for its application in solving backward stochastic differential equations and [26] for

solving elliptic equations with random coefficients.

CRP is just one of the many brilliant features of Itô stochastic calculus [39], which

has since found a multitude of applications, including mathematical finance [14], cancer

research [80], climate modelling [34] and molecular biology [74].

What is remarkable as well is the probabilistic connection this theory gives between

martingales with the CRP and the bosonic Fock space. Indeed, since L2
sym(Rn

+) is just

the n-th symmetric tensor power of L2(R+), the CRP can also be stated as

L2(Ω) = F ,

where F denotes the symmetric Fock space over L2(R+). This cements the fundamental

place Fock space plays in quantum probability theory.

The theory of quantum stochastic calculus was started by Hudson and Partasarathy

in the 1970s [36], [37], [70]. It is a natural extension of the Itô stochastic calculus to

the noncommutative setup. Since then, the usual construction of quantum stochastic

integral goes by an appropriate generalisation of the Skorokhod integral [78], [24],

[69], rather than through Riemann-Stieltjes sums [37]. In their foundational papers

Hudson and Parthasarathy established the quantum analogue of a Wiener process

as a combination of the annihilation and creation processes and the (weak version

of) quantum Itô product formula. They also formalised and developed the theory of

quantum stochastic differential equations (QSDEs). Since then, QSDEs have found

applications in, for example, quantum control theory [41] and have been subject to

extensive research [20], [21], [49]. It is worth mentioning the related theory of quantum

Lévy processes [23] and the sister theory of noncommutative stochastic calculus on the

free Fock space [46].
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The idea of making polynomial Wiener chaos noncommutative has appeared in

literature before, with the theme featuring quite prominently in the idea of integral

kernels. Fundamental here is the Guichardet point of view on the Fock space [32]. This

theory was initiated by Maassen [63] and then developed by Meyer [66] and further on

by Lindsay [54]. Dermoune [17] studied the case of Fock space with multiplicities. This

approach sits very strongly in the “coordinate” approach to quantum stochastic calculus,

which has since been superceded by the coordinate-free framework [31]. Quantum

Wiener ideas, although not necessarily named as such, have appeared in e.g. [58] and

[60]. Polynomial chaos has recently met with renewed interest with an appearance

in free probability, cf. [45], in which the prominent integral is, of course, the Wigner

integral, demonstrating how the Wigner process corresponds to the Wiener process in

classical probability. A more complete theory of free Wigner chaos is available in [13].

These ideas follow along the lines of the Itô-Clifford integral [6]. It is important to

note that the noncommutative Wiener chaos in the sense of this thesis is truly different

than free Wigner chaos, as the quantum Brownian motion and free Brownian motion

are not special cases of each other, but genuinely different noncommutative stochastic

processes. The difference will also be exemplified in our convolution formula, in which

the fact that free stochastic calculus utilises noncrossing partitions while we do not

will become very apparent.

In the appendix we also treat the quasifree case. The quasifree case arises from the

different representations of the CCR algebra, in contrast to the usual representation

on the symmetric Fock space. The mathematical formalism of quasifree quantum

stochastic calculus was first established by Lindsay in his PhD thesis [51], and since

then Lindsay and Margetts have written a complete theory of quasifree stochastic

calculus in [55], [56] with a very nice presentation in the latter’s PhD thesis [65]. The
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corresponding theory of quasifree random walks was developed by Belton, Gnacik and

Lindsay in [9], [10], [27].

Description of the contents

The contents of the thesis are presented in four chapters and an appendix. In Chapter

1 we introduce quantum stochastic calculus. We define the bosonic Fock space via

the Guichardet construction and discuss the basic properties of the space and of the

representation. We present the fundamental annihilation, creation and preservation

operators and briefly recall the properties of Weyl operators. Then we construct the

quantum stochastic integrals in the coordinate free setup.

In Chapter 2 we build the multiple quantum Wiener integral theory, starting from

the vector and operator kernels. We develop the language and notations that will be

used throughout the thesis. We study the algebra and measure theory of these kernels

to allow us to study natural conditions for quantum Wiener integrability.

In Chapter 3 we apply the theory from Chapter 2 to construct quantum Wiener in-

tegrals of operator kernels. We study their properties as operators, including conditions

for their closedness and their natural cores. We also present fundamental identities

which will be of use throughout the thesis, with mentions on how they correspond

to the classical quantum stochastic calculus. The chapter ends with a note about

representation of Hilbert-Schmidt operators through quantum Wiener integrals.

In Chapter 4 we apply the quantum Wiener integrals to quantum stochastic calculus.

We start by exploring the special case of quantum Wiener integrals which are formed

from product operator kernels, which correspond to quantum stochastic cocycles and

evolutions. Using our setup we obtain an easy proof of the relation between contractivity

of the process and nonnegativity of the series product of its generator with its adjoint.

This result is known in the cocycle theory, but not in the case of evolutions. We also
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show how our setup allows one to easily prove the quantum cocycle Trotter product.

Next we show how the quantum Wiener integrals descend to the classical probability

theory, in particular how our general product formula gives the Wiener and the Poisson

product. We also show how they generalise the Maassen–Lindsay chaos expansion

kernels.

In the Appendix we explore the quasifree case. We develop the language and

notation needed to construct our multiple quantum Wiener integrals in the quasifree

case, in particular extending the partial transpose to a partial transpose of “column

kernels”. We show how the theory extends to this setup and prove some structure

results.

Notation and conventions

Throughout the thesis the Hilbert spaces are assumed to be separable and all inner

products are linear with respect to second variable. The importance of separability

will become clear upon closer inspection of measurability.

For two sets X, Y the space of all functions between X and Y is denoted by F (X, Y ).

For a Hilbert space k we write k̂ := C ⊕ k and for vectors k ∈ k we put k̂ ∋ k̂ :=
(

1
k

)
.

For a vector k ∈ k the maps ⟨k| : k → C, |k⟩ : C → k,

⟨k|l = ⟨k, l⟩, |k⟩α = αk,

called bra and ket, respectively, play a fundamental role. Upon introducing another

Hilbert space h, these maps will be freely ampliated with identity on the left or right,

giving

Ih ⊗ |k⟩ =: Ek, Ih ⊗ ⟨k| =: Ek.
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No separate notation for the tensoring from either side will be introduced, but it will

always be clear from context.

We extensively use the Guichardet measure space construction. Thus let I ⊂ R+

be measurable and let us denote by Γn(I) the family of all n-element subsets of I

and let Γ(I) = ⋃
n>0 Γn(I). We identify each n-element set {s1 < ... < sn} with the

point (s1, ..., sn) ∈ Rn. This introduces a natural measure on Γ(I), by taking Lebesgue

measure on each Γn(I) and treating the {∅} as an atom of measure 1. If I = R+ we

suppress it in the notation, thus obtaining the sets Γn,Γ. When convenient to do so

we will consider function spaces over Γ(I) as subspaces of similar function spaces over

Γ, obtained via extending the appropriate functions by 0. Similarly, we will sometimes

abuse notation by writing Γt for Γ([0, t)). We trust this will not lead to confustion and

it will always be clear from context if we are slicing “on time” or “on chaos”.

For some elementary properties of Guichardet space calculus, we refer the reader

e.g. to [3]. The most fundamental property is the integral-sum identity, which reads as

follows:

Theorem 1. Let f : Γ × Γ → C be a measurable function. Then its integrable if and

only if the function σ 7→ ∑
α⊂σ f(α, σ \ α) is integrable and the following holds:

∫
Γ

∫
Γ
f(α, β)dαdβ =

∫
Γ

∑
α⊂σ

f(α, σ \ α)dσ.

Due to the amount and volume of calculations involved, the tensor sign ⊗ between

vectors will sometimes be omitted. It will always be clear from context what is meant.

For tensor products of spaces, ⊗ will always denote the algebraic and ⊗ the ultraweak

tensor product.



Chapter 1

Preliminaries

This chapter collects the basics of quantum stochastic calculus on the symmetric Fock

space, along with the Guichardet viewpoint. At the end we also quote facts from the

measure theory of Hilbert- and Banach-space valued functions which will accompany

us throughout the thesis. We do not include the majority of the proofs, however we

provide appropriate references. For more details about quantum stochastics we refer

the Reader to e.g. [48] and for measurability questions to [5].

Firstly, let us recall a well-known inequality for integrals, the generalized Minkowski

inequality, which will be useful in our approximations. We prove it here in the required

generality for the Reader’s convenience. For more information we refer the Reader to

[83], Equation (9.12) and [33], Theorem 202.

Proposition 1.0.1. Let (X,µ), (Y, τ) be two measure spaces and let F : X × Y → R

be measurable (in the product measure). Furthermore, let 1 6 q 6 p < ∞. Then

(∫
X

(∫
Y

|F (x, y)|qτ(dy)
) p

q

µ(dx)
) 1

p

6

(∫
Y

(∫
X

|F (x, y)|pµ(dx)
) q

p

τ(dy)
) 1

q

. (1.1)
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In particular, for q = 1, we get

(∫
X

(∫
Y

|F (x, y)|τ(dy)
)p
µ(dx)

) 1
p

6
∫
Y

(∫
X

|F (x, y)|pµ(dx)
) 1

p

τ(dy). (1.2)

Proof. Note that if p = q then Equation (1.1) is trivial. Assume q < p, in particular

p > 1. We also see that once we prove the case q = 1, q > 1 follows by taking

F0(x, y) = |F (x, y)|q,

p0 = p

q
.

Thus assume that 1 = q < p.

Let J(x) = (
∫
Y |F (x, y)|τ(dy)). Then we have

∫
X

(∫
Y

|F (x, y)|qτ(dy)
) p

q

µ(dx)p =
∫
X
J(x)pµ(dx) =

∫
X
J(x)p−1J(x)µ(dx)

=
∫
X
J(x)p−1

∫
Y

|F (x, y)|τ(dy)µ(dx)

=
∫
Y

∫
X
J(x)p−1|F (x, y)|µ(dx)τ(dy)

by the Fubini’s theorem. Taking r = p
p−1 , we apply Hölder’s inequality to the inner

integral

LHSp 6
∫
Y

(∫
X
J(x)(p−1)rµ(dx)

) 1
r
(∫

X
|F (x, y)|pµ(dx)

) 1
p

τ(dy)

=
∫
Y

(∫
X
J(x)pµ(dx)

) p−1
p
(∫

X
|F (x, y)|pµ(dx)

) 1
p

τ(dy).

Dividing through by (
∫
X J(x)pµ(dx))

p−1
p , we get

(∫
X
J(x)pµ(dx)

) 1
p

6
∫
Y

(∫
X

|F (x, y)|pµ(dx)
) 1

p

τ(dy),
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as required.

Throughout the thesis we will often use the notion of positive operators.

Definition 1.0.2. By a positive operator T on a Hilbert space H we mean a closed

operator satisfying

∀h∈Dom(T )⟨h, Th⟩ > 0

and in that case we write T > 0. Note that in the case of T being bounded with

Dom(T ) = H its closedness is automatic.

We need their following property:

Theorem 1.0.3. Let T ∈ B(H1 ⊕H2). Then T > 0 if and only if it can be represented

in the following form:

T =

 A
√
AV

√
D

√
DV ∗

√
A D

 ,
where A,D > 0, ∥V ∥ 6 1.

A proof of this can be found in e.g. [28] with historical notes in [22].

We also need some results about cores of unbounded operators. The first is a

classical theorem, cf. [81], Theorem 4.11 a.

Lemma 1.0.4. Let T be a closed and densely defined operator on a Hilbert space H.

Then Dom(T ∗T ) is a core for T .

We improve upon this lemma with the following folklore result.

Lemma 1.0.5. Let T be a closed and densely defined operator on a Hilbert space H

and let D be a dense subset of Dom(T ∗T ) (in the norm of H). Then D is a core for T .

Proof. We need to prove that D is dense in Dom(T ) in the graph norm. It suffices to

check it is such in Dom(T ∗T ), as a dense subset of a dense subset is necessarily dense
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in the whole space. Thus let ξ ∈ Dom(T ∗T ) \ D have the property that

⟨ξ, η⟩ + ⟨Tξ, Tη⟩ = 0

for all η ∈ D. Then

⟨(I + T ∗T )ξ, η⟩ = 0.

By density of D in H, this implies (I + T ∗T )ξ = 0. However, injectivity of I + T ∗T

gives ξ = 0.

1.1 Symmetric Fock space

In this section we introduce the Fock space and the Guichardet viewpoint. The material

here is standard - for treatment of Fock spaces we refer the Reader to [48] and for

Guichardet to [3]. Let H be a Hilbert space. The full Fock space over H is defined by

Φ(H) =
⊕
n>0

H⊗n

and the symmetric Fock space by

Γ(H) =
⊕
n>0

H∨n.

where H∨n is the symmetric n-fold tensor product of H, that is,

H∨n = Lin{u⊗ · · · ⊗ u : u ∈ H}.
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A special class of vectors in Γ(H) are the exponential vectors, which, for u ∈ H,

are defined by

ε(u) :=
(

1√
n!
u⊗n

)
n>0

=
(

1, u, u⊗ u√
2
,
u⊗ u⊗ u√

3!
, · · ·

)
∈ Γ(H).

We can normalise them by putting ϖ(u) = 1
∥ε(u)∥ε(u).

Exponential vectors form a linearly independent and total set in Γ(H) and moreover

⟨ε(u), ε(v)⟩ = e⟨u,v⟩ for all u, v ∈ H.

It is also easily seen via

∥ε(u) − ε(v)∥2 = e∥u∥2 − 2 Re e⟨u,v⟩ + e∥v∥2

that the map u 7→ ε(u) is continuous.

As a special case we have the vacuum vector ε(0), which will from now on be

denoted by Ω.

Thus, if for S ⊂ H we denote

E(S) := span{ε(u) : u ∈ S},

then we can see that if S is dense in H, then E(S) is dense in Γ(H).

Fock space also enjoys the exponential property, which means that for any Hilbert

spaces H1, H2 we have

Γ(H1 ⊕H2) = Γ(H1) ⊗ Γ(H2).
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A subset S ⊂ L2(R+; k) is called admissible if E(S) is dense in Γ(L2(R+; k)) and for

f ∈ S, t > 0 f[0,t) ∈ S, where for I ⊂ R+ fI denotes f multiplied by 1I the indicator

function of I. We will also treat fI as an element of L2(I; k) when appropriate.

For us it will be useful to employ the following identification of the symmetric Fock

space in the case when H = L2(R+; k) for k a Hilbert space. We then have

H∨n ∼= L2
sym(Rn

+; k⊗n).

Let Γ denote the space of all finite subsets of R+. We create a measure µ on Γ by

taking {∅} to have measure 1 and identifying each set {s1 < ... < sn} with a point

(s1, ..., sn) ∈ Rn
+ and using Lebesgue measure. Thus, for example,

µ({σ ∈ Γ: σ ⊂ [0, t]}) = et, t ∈ R+.

In this setup we can identify

Fk := Γ(L2(R+; k)) = {f ∈ L2(Γ; Φ(k)) : f(σ) ∈ k⊗#σ}

by

ε(f) ↔ πf ,

where

πf ({s1 < ... < sn}) = f(s1) ⊗ ...⊗ f(sn)

for f ∈ L2(R+; k).

It is also useful to introduce some notations for splitting the Fock space “in time” -

thus, for t > 0, we will denote

Fk
t) := Γ(L2([0, t); k)),Fk

[t = Γ(L2([t,∞); k)),
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Fk
t := Γ(L2([0, t]; k)),Fk

(t = Γ(L2((t,∞); k)).

Let us notice that, due to the exponential property of Fock space, we have

Fk = Fk
t) ⊗ Fk

[t = Fk
t ⊗ Fk

(t.

1.1.1 Fock space operators

In this section we present some important Fock space linear operators.

The two classical operators of annihilation and creation are defined as closed,

mutually self-adjoint operators with a core E(H), on which

a(u)ε(v) = ⟨u, v⟩ ε(v), (1.3)

a†(u)ε(v) = d

dt
ε(v + tu)|t=0, for all u, v ∈ H. (1.4)

For an operator T ∈ B(H) we can define Γ0(T ) on E(H) by

Γ0(T )ε(u) = ε(Tu).

By extending this to a closed operator Γ(T ) we get the second quantisation of T . This

operator is contractive or (co)isometric if and only if T is. However, we can see that in

general Γ(T ) need not be bounded.

In Guichardet language for H = L2(R+; k) we can write the second quantisation as

Γ(T )k(σ) = T⊗#σk(σ).
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If we furthermore assume k = C, annihilation and creation operators become

a(u)k(σ) =
∫
R+
u(s)k(σ ∪ {s})ds,

a†(u)k(σ) =
∑
s∈σ

u(s)k(σ \ s).

We will develop notation and framework to express these operators for nontrivial k in

later chapters.

Another important family of operators is the family of Fock-Weyl operators. Fix

u ∈ H and let W0(u) be defined on E(H) via

W0(u)ε(v) = e− 1
2 ∥u∥2−⟨u,v⟩ε(u+ v).

These operators turn out to be closable - in fact, they extend to a bounded operator

on all of Γ(H), which we denote by W (u). In fact, W (u) are unitary operators. They

possess the important property that

ϖ(u) = W (u)Ω.

The Weyl operators arise naturally in quantum physics through the unitary semi-

groups generated by the position and momentum operators. More precisely, given the

momentum operator p(u),

W (tu) = e−itp(u),

where t > 0. Thus their central position in the mathematics is of no surprise. We will

see the role they play in our research later. For more information on the Fock-Weyl

operators in quantum stochascic calculus see e.g. [70].
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1.2 Quantum stochastics

Let us fix Hilbert spaces h - called the initial space - and k - called the noise dimension

space.

Definition 1.2.1. Let D be a dense subspace of h and S ⊂ L2(R+; k) be admissible.

A family of linear operators X = (Xt)t>0, Xt : D⊗E(S) → h ⊗ Fk is called an operator

process if:

• Xt is weakly measurable, i.e. t 7→ ⟨x,Xty⟩ is measurable for all y ∈ D⊗E(S), x ∈

h ⊗ Fk;

• The process is adapted, i.e. for each t > 0 there exists Xt) : D⊗E(S|[0,t)) → h⊗Fk
t)

such that

Xt = Xt) ⊗ IE(S|(t,∞)).

Such a process is called continuous if the function t 7→ Xtx is continuous and

(weakly) measurable if it is (WOT) measurable for every x ∈ ⋂
t>0

Dom(Xt).

Remark 1.2.2. We will also talk about operator processes defined on k̂ ⊗ D ⊗ E(S)

for another Hilbert space k̂ - in that case one can think of k̂ ⊗ D as the dense subspace

of k̂ ⊗ h and take k̂ ⊗ h as the initial space.

Example 1.2.3. We can construct important examples of operator processes using

the fundamental operators introduced earlier.

1. (Creation and annihilation processes) Recall the annihilation and creation opera-

tors, given in Equations (1.3) and (1.4). Define, for u ∈ L2(R+; k),

At(u) = a(u1[0,t[),

A†
t(u) = a†(u1[0,t[).
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It is easily seen that (At(u))t>0, (A†
t(u))t>0 form continuous operator processes,

called the annihilation process and the creation process, respectively.

2. (Preservation process) For a selfadjoint operator H ∈ B(L2(R+; k)),
(
e−itH

)
t∈R

forms a unitary group of operators. Consider a second quantisation of these, i.e.

the unique bounded operator Γ(e−itH) ∈ B(Fk) such that

Γ(e−itH)ε(u) = ε(e−itHu), u ∈ L2(R+; k).

It is easily seen that (Γ(e−itH))t>0 is a (strongly continuous) unitary group and

thus admits a self adjoint generator, so that

Γ(e−itH) = e−itλ(H)

for a (not necessarily bounded) selfadjoint operator λ(H) on Fk. If we denote

the projection L2(R+; k) → L2([0, t[; k) by Pt and assume that H commutes with

each Pt, then we can form the preservation process:

Λt(H) = λ(HPt),

which is again easily seen to be a continuous operator process. This process is

also called conservation or gauge process in the literature.

3. (Time process) Given a family of operators H(t) ∈ B(Fk
t ) with the property that

t 7→ H(t)ξ is Bochner integrable on some domain D, we can form an operator

process (ξ 7→
∫ t

0 H(s)ξds)t>0, the integral being taken in Bochner sense and ξ ∈ D.

Assuming this domain is dense, this gives us again a continuous operator process.
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4. (Weyl process) In the same manner as before, given f ∈ Fk, we define

Wt(f) = W (f[0,t[),

giving a continuous operator process called the Weyl process.

An important tensor product of operator spaces with applications to quantum

stochastic calculus was constructed by Lindsay and Wills in [60].

Definition 1.2.4. For an operator space V in B(H) and a Hilbert space h, we define

V ⊗M B(h) = {T ∈ B(H ⊗ h) : ExTEy ∈ V for all x, y ∈ h}.

This defines an operator space in B(H ⊗ h) called the h-matrix space over V .

This tensor product will feature prominently in Section 4.4, as it turns out to be a

natural domain for defining mapping quantum stochastic processes.

The noncommutative integrals

In this section we will use the abstract gradient and divergence operators to construct

noncommutative stochastic integrals. We follow the treatment of Lindsay in [48],

originating from his paper [52]. It relies on the noncommutative version of the

Skorokhod integral, as opposed to the original Riemann sum treatment of Hudson

and Parthasarathy [37]. For Hilbert spaces h, k we define the divergence and gradient

operator as closures of the following densely defined operators:

S(g ⊗ u⊗ ε(f)) = u⊗ a†(g)(ε(f)),

∇(u⊗ ε(f)) = f ⊗ u⊗ ε(f),
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where g, f ∈ L2(R+, k) and u ∈ h. (We stress the similarity of ∇ to an ampliation of

the annihilation operator)

We define the local versions of these operators to be

St(g ⊗ u⊗ ε(f)) = S(g1[0,t[ ⊗ u⊗ ε(f)),

∇t(u⊗ ε(f)) = f1[0,t[ ⊗ u⊗ ε(f).

Definition 1.2.5 (Quantum stochastic integral). For an operator process z with noise

dimension space k and initial space k̂ ⊗ h we decompose z as

z(t) =

z00(t) z01(t)

z10(t) z11(t)

 ,

using the decomposition k̂ ⊗ h = h ⊕ (k ⊗ h), and, under the assumption that

t 7→ z00(t), t 7→ z01(t) are locally Bochner integrable, (1.5)

t 7→ z10(t), t 7→ z11(t) are locally square integrable, (1.6)

we define the quantum stochastic integral of z to be the operator process Z with initial

space h given by

Z(t)(u⊗ ε(f)) =St(z10(s)u⊗ ε(f) + z11(s)(f(s) ⊗ u⊗ ε(f)))

+
∫ t

0
(z00(s)(uε(f)) + z01(s)(f(s) ⊗ u⊗ ε(f)))ds.
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Such an integral of the z00 part is known as the time integral, z10 - creation integral,

z01 - annihilation and z11 - preservation integral. When the integrability conditions

(1.5), (1.6) are satisfied, the process z is called QS-integrable.

For a process z we will denote this quantum stochastic integral by Λt(z).

Remark 1.2.6. It is sometimes useful to talk about each of the four integrals separately

and introduce separate notations - in these cases, we would denote them as

∫ t

0
z00(s)ds,

∫ t

0
z01(s)dAs,

∫ t

0
z10(s)dA∗

s,
∫ t

0
z11(s)dΛs,

and call them the time, annihilation, creation and preservation integral, respectively.

Remark 1.2.7 (Coordinate setup). It is important to note that this is the coordinate-

free setup - the dimension of the noise dimension space k does not play a direct role,

as we perform all our operations looking at it as simply a Hilbert space, and changing

the dimension does not modify the formulas. To understand how it corresponds to an

‘annihilation’ or ‘creation’ integral in a more intuitive sense, the following observation

is useful.

On a weak level, an annihilation integral
∫ t

0(·)dAs(h) - with the extra coordinate

h ∈ k identified with the constant h-valued function on k - would be expected to satisfy

the following identity:

⟨u⊗ ε(f),
∫ t

0
XsdAs(h)(v ⊗ ε(g))⟩ =

∫ t

0
⟨u⊗ ε(f), XsAs(h)(v ⊗ ε(g))⟩ds

=
∫ t

0
⟨h(s), g(s)⟩⟨u⊗ ε(f), Xs(v ⊗ ε(g))⟩ds

=
∫ t

0
⟨u⊗ ε(f), (⟨h(s)| ⊗Xs)(g(s) ⊗ v ⊗ ε(s))⟩.

Thus one can see that this expected equality is merely the annihilation integral as we

defined it for an operator process given by ⟨h(t)| ⊗ Xt with initial space k ⊗ h and
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values in h ⊗ Fk. We can see that now taking an arbitrary operator process with this

initial space we get exactly our integral as defined, without the need of specifying a

vector h ∈ L2(R+; k) (which means without having to specify the coordinate we are

working on). By the exact same reasoning we can motivate the names of creation and

preservation integrals.

The original coordinate setup is developed in [70]. The coordinate-free viewpoint

first appeared in [29] and was further elaborated on in [31].

Definition 1.2.8. We define the quantum Itô projection ∆ ∈ B(k̂) via

∆ =

0 0

0 Ik

 .

This operator will play a fundamental role throughout.

Of particular interest to us are the two fundamental formulas of quantum stochastic

calculus.

Proposition 1.2.9 (First fundamental formula). Let X be an operator process with

domain k̂⊗D ⊗E(S) which is QS-integrable on R+ and let Λ(X) be the operator process

on D ⊗ E(S) which is the quantum stochastic integral of X. Then for u ∈ h, v ∈ D, g ∈

K, f ∈ S we have

⟨u⊗ ε(g),Λ(X)(v ⊗ ε(f))⟩

=
∫
ds⟨ĝ(s) ⊗ u⊗ ε(g), Xs(f̂(s) ⊗ v ⊗ ε(f))⟩

and

∥Λ(X)(u⊗ ε(f))∥

6
∫
ds∥∆⊥Xs(f̂(s) ⊗ u⊗ ε(f))∥ + Cf (

∫
ds∥∆Xs(f̂(s) ⊗ u⊗ ε(f)))∥2) 1

2 ,
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where Cf is a constant depending on f .

Proposition 1.2.10 (Second Fundamental formula). Let X and Y be QS-integrable

processes with domains k̂ ⊗D ⊗E(S),k̂ ⊗D′ ⊗E(S ′), respectively. Then, for u ∈ D, u′ ∈

D′, f ∈ S, g ∈ S ′ we have

⟨Λ(X)(u⊗ε(f)),Λ(Y )(v ⊗ ε(g))⟩

=
∫
dt
(〈
f̂(t) ⊗ Λt(X)u⊗ ε(f)), Yt(ĝ(t) ⊗ v ⊗ ε(g))

〉
+
〈
Xt(f̂(t) ⊗ u⊗ ε(f)), ĝ(t) ⊗ Λt(Y )t(v ⊗ ε(g))

〉
+
〈
Xt(f̂(t) ⊗ u⊗ ε(f)),∆Yt(ĝ(t) ⊗ v ⊗ ε(g))

〉)
.

Remark 1.2.11. We should keep in mind the classical probability picture here, in

which the Itô formula is intuitively understood as

( dWt)2 = dt,

i.e. the “multiplication table” of time and Wiener integral is:

dWt dt

dWt dt 0

dt 0 0

In a similar manner, the quantum Itô formula can be summarised by the following

table:
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dt dAt dA∗
t dNt

dt 0 0 0 0

dAt 0 0 dt dAt

dA∗t 0 0 0 0

dNt 0 0 dA∗
t dNt

.

Here we need to remember that order of integration matters - we consider the columns

to be on the left of our multiplication, i.e. dNt dA∗
t = dA∗

t .

In other words, if integration happens in the following order:

dA∗, dN, dA,

then no extra correction terms appear. This is sometimes referred to as the Wick

ordering.

1.3 Maassen–Meyer–Lindsay kernels

Let us recall the theory of integral kernels. This theory was initiated by Maassen

[63], who introduced two argument kernels to represent the creation and annihilation

integrals. Meyer (cf. [66]) observed that the addition of a third argument takes care of

the preservation integral and Lindsay added the fourth to represent the time integral.

In this presentation we rely primarily on Lindsay’s paper [53]. All the integrals are

taken over the whole Guichardet space, but one could just as well restrict oneself to

local integrals by restricting ourselves to Γt for some positive t. Our noise dimension

space is, for now, taken to be k = C.

The main idea guiding us in this section is the following. By the chaos completeness

property of Brownian motion, all L2 functions on the Wiener space can be expressed as
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multiple Wiener integrals. In particular, products of those functions which remain in

L2 are again multiple Wiener integrals. The work of Lindsay and Maassen shows how

to express the integrand of the product by appropriately convolving the integrands of

the terms. To express this, Guichardet presentation is essential.

Any function in L2(Γ) can be represented as

f =
∫

Γ
f(σ) dWσ,

where Wσ denotes the multiple Wiener integral. Then, multiplication of functions

corresponds to the following convolution, called the Wiener product:

(f ⋆ g)(γ) =
∑
α⊂γ

∫
dωf(α ∪ ω)g(ω ∪ (γ \ α)),

i.e. f(σ)g(σ) =
∫
(f ⋆ g)(γ)dWγ.

Let us go quantum and try to similarly define operators. First, we need to split the

Wiener integration into an annihilation and creation integral. Second, we need to add

a number integral. Thus we seek to define an operator on L2(Γ) given by

X =
∫∫∫

x(α, β, γ)dA∗
αdNβdAγ.

Here x(α, β, γ) is a complex number and α, β, γ are pairwise disjoint (!). This particular

order of integration operations is a consequence of the Wick ordering - cf. Remark

1.2.11.

By the Itô relations, without worrying about the analytical assumptions for now,

we can define this operator by its action on a vector:

(Xf)(σ) =
∑

α1⊔α2⊔α3=σ

∫
dωx(α1, α2, ω)f(ω ∪ α2 ∪ α3).
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We also have a corresponding convolution for the product of operators X, Y with

kernels x, y:

(x ⋆ y)(α, β, γ) =
∑∫

dωx(α2, β1 ∪ β2 ∪α3, γ1 ∪ω ∪ γ3)y(α1 ∪α3 ∪ω, γ1 ∪ β2 ∪ β3, γ2),

where the sum is over all partitions α = α1 ⊔α2 ⊔α3, β = β1 ⊔ β2 ⊔ β3, γ = γ1 ⊔ γ2 ⊔ γ3.

One can also define operators via kernels with four arguments, adding in the time

integral. Thus now our operator is (formally) defined as

X =
∫∫∫∫

x(α, β, γ, δ)dA∗
αdNβdAγdδ.

The corresponding convolution is then given by a purely combinatorial formula

(x⋆y)(α, β, γ, δ) =
∑

x(α2, β1 ∪β2 ∪α3, γ1 ∪δ2 ∪γ3, δ1)y(α1 ∪δ2 ∪α3, γ1 ∪β2 ∪β3, γ2, δ3)

with analogous notation to the one before.

This theory can then be lifted to a Fock space with finite multiplicity d > 1.

This was done by Dermoune in [17] - cf. also [66]. In his work, he makes use of the

isomorphism

FCd = (F)⊗d = L2(Γ)⊗d = L2(Γd).

The fact that our domain is now Γd rather than Γ necessitates our four argument

kernels not to take sets as arguments anymore - now the correct expression for a kernel

is

x((Aα0 ), (Aαβ), (Aα0 ), (A0
0)) ∈ C,

where α, β ∈ {1, ..., d}. A way of understanding this is that now a kernel takes as an

argument a (d+1)×(d+1) matrix of sets A = [Aαβ ]06α,β6d, with A0
0 term corresponding
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to the time integral, the Ai0 terms to the creation integral, A0
j to annihilation and the

d × d block Aij to the number and exchange integrals (for i, j > 0). Again, in this

presentation, Aβα are assumed to be pairwise disjoint. The action of the kernel on the

vector is given as follows. Let α1 . . . , αd be pairwise disjoint finite subsets of R+. We

take:

Xξ(α1, · · · , αd) =
∫
dα0

∑
α0= ⊔

j=0,...,d
α0j

∑
αi= ⊔

j=0,...,d+1
αij ,16i6d

x((αi0), (αij), (α0j), α00)

ξ(( ∪
j=1,··· ,d

αji ∪ α(d+1)i)di=1).

We stress that this sum is taken over disjoin partitions of each αi. In conclusion,

our matrix A from the previous page takes the form of [αij]06i,j6d, where ∪jαij = αi

for 0 6 i 6 d. The notation here aims to help us keep track of the dimension within

Cd - sets α0i correspond to the dimension we integrate out, while αij are at the j-th

coordinate of Cd. Thus we see that the i-th dimension of our vector ξ is dependent

upon the sets ( ∪
j=1,··· ,d

αji ∪ α(d+1)i) - i.e. all the αji sets where we act on ξ with the

exchange and creation integrals and α(d+1)i which is the set where ξ is not acted upon.

This point of view will be elaborated upon in Chapter 4.

In Dermoune’s presentation, it is assumed that both the kernel and the vectors

from the domain of the integral kernel operator have compact support and satisfy the

geometric condition:

|x((αij)di,j=0)| 6 C1M
∑

#αij

1 , |ξ((αi)di=1)| 6 C2M
∑

#αi

2 .

We will see that, in fact, we can slightly improve upon these assumptions.
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For completeness sake, we cite Dermoune’s kernel convolution formula:

(x ⋆ y)((Tα0 ), (Tαβ ), (Tα0 ), (T 0
0 ))

=
∑

T ρ
σ =Aρ

σ⊔
⊔

γ∈{0,...,d} B
ρ,γ
γ,σ⊔Cρ

σ

x

(Aα0 ), (Aβα ⊔
⊔
γ>0

Bβ,α
α,γ ), (A0

α ⊔
⊔
γ

B0,α
α,γ), A0

0



· y

(
⊔
γ

Bγ,α
α,0 ⊔ Cα

0 ), (
⊔
γ>0

Bγ,α
α,0 ⊔ Cβ

α), (C0
α), C0

0

 . (1.7)

In simplest terms, this expression tells us that the intuition of arranging the (d+ 1)2

sets into a (d+ 1) × (d+ 1) matrix is the correct one - a closer inspection of each term

will readily show that the way of modifying each argument is exactly that of matrix

multiplication, with a twist which, as it turns out, is just the Itô projection. In our

work we will prove that our kernel framework is a more general case of this formula,

extending it to infinite d and recovering the above identity as a special case. As we

will not be using the isomorphism

L2(Γ)⊗d = L2(Γd),

we will be able to express our formula without resorting to (possibly infinite) matrices

of sets. Finally, our work will endeavor to package Equation (1.7) into a more pleasing

and easier to apply form.
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1.4 Measurability of vector and operator valued

functions

1.4.1 Classical measurability

As we are interested in integrating families of operators and vectors on Hilbert space,

it is important to revisit some results about measurability of Hilbert and Banach-space

valued functions. We will apply the results presented here to the particular case of

vector and operator kernels on the Guichardet space in Chapter 2. In this presentation

we rely primarily on the papers of Johnson [42], Badrikian, Johnson and Yoo [5] and

Schlüchtermann [76].

Before we start, let us recall some classical definitions from topology.

Definition 1.4.1. A linear, locally convex topological space E is called a Fréchet space

if its topology is induced by a complete, translation invariant metric. Equivalently, E

is Hausdorff and there is a countable family of seminorms on E inducing the topology

with respect to which E is complete.

Definition 1.4.2. A Hausdorff topological space Z is called a Lusin space if and only

if it is the image of a Polish space under a continuous bijection.

In the realm of non-scalar valued functions, there are many notions of measurability

and different authors have different naming conventions. We will go through the

different notions carefully.

Definition 1.4.3. Let (S,Σ), (S ′,Σ′) be measurable spaces, T, T ′ be topological spaces

Then:

(a) f : S → S ′ is measurable if ∀A∈Σ′ f−1(A) ∈ Σ;

(b) g : S → T ′ is measurable if ∀A∈Borel(T ′) g
−1(A) ∈ Σ;
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(c) h : T → T ′ is Borel if ∀A∈Borel(T ′) h
−1(A) ∈ Borel(T ).

Remark 1.4.4. (i) Some authors use “Borel” for (b) too.

(ii) For (b) the following suffices:

∀A⊂T ′, open g−1(A) ∈ Σ.

(iii) Let T ′ be second countable. Then, for (b), by Lindelöf’s theorem (cf. [44]) the

following suffices:

∀A∈S′ g−1(A) ∈ Σ,

where S ′ is any subbase for the topology of T ′.

(iv) (cf. [5]) Let F be a family of Borel maps from T to C where T is Lusin. If F is

countable and separates the points of T , then

σ(F) = Borel(T ).

(v) (cf. [5]) Let F be a family of continuous functions from T to T ′, where T is Lusin

and T ′ is Hausdorff. If F separates the points of T , then so does some countable

subset F0 of F , so that

Borel(T ) = σ(F0) = σ(F).

Moving on to the case of Fréchet spaces, let us introduce two more definitions of

measurability:

Definition 1.4.5. Let (S,Σ) be a measurable space and E a Fréchet space. Then:
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(a) f : S → E is scalarly or weakly measurable if

∀ϕ′∈E∗ ϕ ◦ f : S → C

is measurable;

(b) g : S → E is Bochner measurable if ∃fn : S→E fn simple, measurable and fn → f

pointwise.

These two notions turn out to coincide if E is separable:

Proposition 1.4.6. Let f : S → E for (S,Σ) a measurable space and E a separable

Fréchet space. Then the following are equivalent:

(i) f is weakly measurable;

(ii) f is Bochner measurable.

Proof. (ii) ⇒ (i) is trivial. Let us consider the opposite direction. As E is a separable

Fréchet space, it is trivially Lusin. Thus part (v) of Remark 1.4.4 applies. As E∗

obviously separates points of E, this means that

Borel(E) = σ(E∗). (1.8)

Weak measurability of f means that for every ϕ ∈ E∗ and U ∈ Borel(C) we have

f−1(ϕ−1(U)) ∈ Σ.

But by Equation (1.8), sets of the form ϕ−1(U) generate Borel(E), so in fact weak

measurability can be equivalently stated as

f−1(V ) ∈ Σ
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whenever V ∈ Borel(E).

Now, let {xk}k∈N be a countable dense subset of E. For n, k ∈ N, we denote:

Ank =


B 1

n
(x1) for k = 1

B 1
n
(xk) \ ∪k−1

l=1 B 1
n
(xl) for k > 1.

,

where B 1
n
(xk) is the open ball of radius 1

n
around xk in the Fréchet metric d of E. We

see that for each fixed n ∈ N (Ank)k∈N are pairwise disjoint, Borel and E = ∪k∈NA
n
k by

density of {xk}k∈N in E. Thus

∀n,k∈Nf
−1(Ank) ∈ Σ.

Therefore the functions

fn,k =
k∑
l=1

1f−1(An
l

)xl

are simple, measurable functions and their pointwise limits

fn = lim
k→∞

fn,k =
∞∑
k=1

1f−1(An
k

)xk

are thus well-defined (as all Ank are disjoint) and Bochner measurable.

It is easily seen that fn → f pointwise. Indeed, for s ∈ Σ, ε > 0 we can find n ∈ N

such that 1
n
< ε. By density of {xk}k∈N,

d(xk0 , f(s)) < 1
n

for some k0 ∈ N, so f(s) ∈ Ank for some k 6 k0 and in particular

d(xk, f(s)) < 1
n
.
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But this means that fn(s) = xk and thus

d(fn(s), f(s)) < 1
n
< ε,

as required.

But now, applying a simple diagonalization procedure, it is easily seen that gn = fn,n

is a sequence of simple functions which tend pointwise to f . Thus f is Bochner

measurable, which ends the proof.

We introduce a helplful bit of notation for the rest of this section.

Definition 1.4.7. For Fréchet spaces E and F , set

CL(E;F ) = {T : E → F | T is continuous and linear},

CLst(E;F ) = (CL(E;F ), SOT ).

The following fact is fundamental:

Theorem 1.4.8 (Theorem 7 in [77] along with Theorem 1 in [5]). Let E,F be separable

Fréchet spaces. Then CLst(E;F ) is a Lusin space.

The following application is due to Badrikian et al [5]:

Theorem 1.4.9. Let E and F be separable Fréchet spaces. Then

Borel(CLst(E;F )) = σ{ϕ ◦ εx : x ∈ E,ϕ ∈ F ∗},

where εx : CL(E;F ) → F is the evaluation on x mapping, given by

εx(T ) = Tx.
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Proof. One can see that this follows from Remark 1.4.4. Indeed, as, by Theorem 1.4.8

CLst(E;F ) is a Lusin space and maps ϕ ◦ εx obviously separate points in CL(E;F ),

we immediately get the conclusion by part (v) of Remark 1.4.4.

We can apply the machinery we have developed so far to obtain the following

measurability result:

Theorem 1.4.10 (cf. [5]). Let fi : S → CLst(Ei, Ei+1) for i = 1, 2 for a measurable

space (S,Σ) and separable Fréchet spaces E1, E2 and E3. If f1 and f2 are measurable

(in the topological sense - that is, in line with (b) in Definition 1.4.3), then so is

f2(·)f1(·).

Proof. Set f = f2(·)f1(·). Let x ∈ E1 and ϕ ∈ E∗
3 . Then

(ϕ ◦ εx ◦ f)(s) = ϕ(f2(s)f1(s)x) = (f2(s)∗ϕ)(f1(s)x),

where f2(s)∗ ∈ CL(E∗
3 ;E∗

2) denotes the Fréchet dual of f2(s). By Proposition 1.4.6

applied to the function s 7→ f1(s)x, there is a sequence of simple measurable functions

ψn : S → E2

such that ψn → f1(·)x pointwise. For each n ∈ N,

ϕ(f2(·)ψn(·)) : S → C

is a simple measurable function and

ϕ(f2(·)ψn(·)) → ϕ ◦ εx ◦ F
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pointwise. Therefore ϕ◦εx◦f is measurable. The result therefore follows from Theorem

1.4.9.

1.4.2 µ measurability

The previous section merely used the σ-algebra of the space S, with no mention of

the actual measure on it. With the measure in play, we can define new notions of

measurability. These will be more useful when working with measure equivalence

classes of functions, rather than functions themselves.

Definition 1.4.11. Let f : S → X for a complete σ-finite measure space (S,Σ, µ) and

a separable Banach space X.

• f is µ-measurable if there is a sequence

fn : S → X, countably valued and measurable

such that fn → f µ-a.e.

• f is weakly µ-measurable if

∀ϕ∈X∗ ϕ ◦ f : S → C is µ-measurable.

Remark 1.4.12. (i) (cf. Section 3.5 in [35]) If (S,Σ, µ) is finite then µ-measurability

of f is equivalent to the existence of a sequence

fn : S → X, simple and measurable,

such that fn → f µ-a.e.
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(ii) µ-measurability is often called strong µ-measurability or strong measurability in

the literature.

Finiteness of µ, in fact, allows us to say even more:

Theorem 1.4.13 (cf.Theorem IV.22 in [75]). If µ is finite, then the following are

equivalent:

• f is µ-measurable,

• f is measurable,

• f is weakly µ-measurable.

Let us now move to the case when our f takes values in a space of bounded operators

on Banach spaces. Let f : S → B(X;Y ) for a complete σ-finite measure space (S,Σ, µ)

and separable Banach spaces X and Y . Again, we denote B(X;Y ) with the strong

operator topology by Bst(X;Y ).

Definition 1.4.14. • f is strong operator µ-measurable if

∀x∈X f(·)x : S → Y is µ-measurable,

• f is weak operator µ-measurable if

∀x∈X f(·)x : S → Y is weakly µ-measurable,

in other words,

∀x∈X∀ϕ∈Y ∗ ϕ(f(·)x) : S → C is measurable.

The connection between this notion and ours is the following (again, the finiteness

of µ playing a crucial role):
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Theorem 1.4.15. If µ is finite, then f is strongly operator µ-measurable if and only

if f is measurable as a function

f : (S,Σ) → Bst(X;Y ).

Proof. The last assertion means that

∀U∈Borel(Bst(X;Y )) f
−1(U) ∈ Σ.

By Theorem 1.4.9, this is equivalent to saying that

∀x∈X,ϕ∈Y ∗,U∈Borel(C) f
−1ε−1

x ϕ−1(U) ∈ Σ,

or in other words that

∀x∈X,ϕ∈Y ∗,U∈Borel(C) {s ∈ S : ϕ(f(s)x) ∈ U} ∈ Σ.

But that is equivalent to saying that f is weak operator µ-measurable, i.e. each f(·)x

is weakly µ-measurable. However, since µ is finite, Theorem 1.4.13 tells us that that is

equivalent to strong µ-measurability, which in turn is equivalent to strong operator

µ-measurability of f .

Corollary 1.4.16. If µ is finite and f : S → B(X;Y ) and g : S → B(Y ;Z) are strong

operator µ-measurable, then so is

g ◦ f : g(·)f(·) : S → B(X;Z).

Proof. By Theorem 1.4.15 we can treat f, g as measurable functions with values

in Bst(X;Y ), Bst(Y ;Z), respectively - however, we know by Theorem 1.4.10 that
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compositions of such functions remain measurable when the measure in question is

finite.

It is worth noting that these final theorems assume finiteness of µ. In other

words, when one works with measure equivalences of operators, in order to ensure that

composition of measurable operator-valued functions yields a measurable operator-

valued function one has to make sure that the measure spaces one considers are all

finite.



Chapter 2

Vector quantum Wiener integrals

In this chapter we develop the language of vector and operator kernels. In the first

section we consider their algebra, to move on to their measurability in the second

section. Finally, we consider only their measure equivalence classes and finish this

chapter by constructing a vector version of a quantum Wiener integral. The product

quantum Wiener integral will be constructed in the following chapter.

2.1 Algebra of kernels

2.1.1 Kernels and placement

This work is inspired by results of Maassen and Lindsay ([54]). At the end of the next

Chapter we present the exact correspondence between the kernels constructed by us

and the original integral kernels from the aforementioned authors and e.g. Dermoune

([17]). In this we focus on constructing the kernel framework which will serve us for

the rest of this thesis.

We require both vector kernels and operator kernels. The former are needed for

amalgamating multiple Wiener integrals and multiple time integrals; the latter for
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directly defining QS Wiener integrals. Thus let h,H be Hilbert spaces and let K(h,H)

denote the linear space of families

ζ = (ζ(σ) ∈ h ⊗ H⊗#σ)σ∈Γ .

When it is convenient to do so, we may regard K(h,H) as a subspace of F (Γ; h ⊗ Φ(H)),

where we recall that Φ(H) denotes the full Fock space over H : Φ(H) = ⊕
n≥0 H⊗n.

The subspace of constant vector kernels Kconst(h,H) consists of those vector kernels

ζ satisfying

ζ = (ζ#σ)σ∈Γ for some family (ζn ∈ h ⊗ H⊗n)n∈Z+ .

This class is more relevant on Γ[0,T ](T ∈ R+) than on Γ itself. In Section 4 we identify

further relevant subspaces.

Product vector kernels v⊗ πϕ (v ∈ h, ϕ ∈ F (R+; H)) form a very important class of

kernels. These are defined by

(v ⊗ πϕ)(σ) =


v if σ = ∅;

v ⊗ ϕ(s1) ⊗ ...⊗ ϕ(sn) if σ = {s1 < ... < sn} ∈ Γ \ {∅}
.

The elementary properties contained in the lemma below are useful.

Lemma 2.1.1. Given Hilbert spaces h,H, the following hold:

1. For T ⊂ h and F0 a subspace of F (R+; H) the set

{(v ⊗ πϕ)(σ) : v ∈ T, ϕ ∈ F0}

is total in h⊗H⊗#σ for all σ ∈ Γ, provided that T is total in h and {ϕ(s) : ϕ ∈ F0}

is total in H for all s ∈ R+.
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2. In the notation ϕ̂(s) = ϕ̂(s) for ϕ ∈ F (R+; H), the set

{ϕ̂(s) : ϕ ∈ F (R+; H)}

is total in Ĥ.

3. For ϕ, ψ ∈ L2(R+; H) and u, v ∈ h, u⊗ πϕ, v ⊗ πψ ∈ h ⊗ FH and

⟨u⊗ πϕ, v ⊗ πψ⟩ = ⟨u, v⟩e⟨ϕ,ψ⟩.

Definition 2.1.2 (Placement - vectors). For a unit vector e0 ∈ H, element σ ∈ Γ and

α ⊂ σ, the prescription

πϕ(α) 7→ πψ(σ), ψ = 1αϕ+ e01R+\α, ϕ ∈ F (R+,H)

(in which 1S denotes the indicator function of S) uniquely determines a linear isometry

Je0
α;σ ∈ B(H⊗#α; H⊗#σ). Thus, for example

Je0
∅;∅ = IC, J

e0
∅;σ = |e0⟩⊗#σ and Je0

σ;σ = IH⊗#σ (σ ∈ Γ),

and if s = max σ we get

Je0
{s};σ = I|e0⟩⊗(#σ−1) ⊗ Ih.

For ζ ∈ K(h,H) and sets σ ∈ Γ, α ⊂ σ set

ζ(α;σ, e0) = (Ih ⊗ Je0
α;σ)ζ(α) ∈ h ⊗ H⊗#σ.



40 Vector quantum Wiener integrals

For an operator space V ⊂ B(h1; h2) and an ultraweakly closed operator space

Z ⊂ B(H1; H2) let OK(V, Z) denote the linear space of families

x = (x(σ) ∈ V⊗Z⊗#σ)σ∈Γ.

For the majority of the thesis, V will be taken to be B(h) and Z = B(k̂) for fixed

Hilbert spaces h, k. For example

πF (σ) =


IC if σ = ∅

F (s1) ⊗ · · · ⊗ F (sn) if σ = {s1 < ... < sn} ∈ Γ \ {∅}

defines an operator kernel πF ∈ OK(C, B(H1; H2)) whenever F ∈ F (R+;B(H1; H2)).

In the case when F is a constant function (i.e. F ∈ B(H1; H2)) we will write F⊗ := πF .

The subclass of constant operator kernels OKconst(V, Z) consists of these kernels x

which satisfy

x = (x#σ)σ∈Γ for a family (xn ∈ V⊗Z⊗n)n∈Z+ .

This class has already found applications in QS analysis, cf. [60].

Note that corresponding to Lemma 2.1.1, the set

{πF (σ) : F ∈ F (R+, B(H1; H2))}

is ultraweakly total in B(H1; H2)⊗#σ = B(H⊗#σ
1 ; H⊗#σ

2 ).

Remark 2.1.3. For present purposes we are restricting to bounded operator valued

kernels; for some applications one needs unbounded operator valued kernels. These can

be handled with modifications which are reasonably straightforward, but are somewhat

cumbersome.
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Definition 2.1.4 (Placement - operators). Let F : R+ → B(H1; H2), σ ∈ Γ and α ⊂ σ.

Moreover, let Q ∈ B(H1; H2) be such that ∥Q∥ = 1 and define

πF (α) 7→ πG(σ), G = F1α +Q1R+\α, F ∈ F (R+;B(H1; H2)).

This determines an ultraweakly continuous complete isometry

ιQα;σ : B(H⊗#α
1 ; H⊗#α

2 ) → B(H⊗#σ
1 ; H⊗#σ

2 ).

For x ∈ OK(B(h1; h2), B(H1; H2)), set

x(α;σ,Q) := (idB(h1;h2) ⊗ιQα;σ)(x(α)) (σ ∈ Γ, α ⊂ σ).

When H2 = H1 and Q = I we abbreviate

x(α;σ) := x(α;σ, I).

Remark 2.1.5. Each operator kernel x ∈ OK(V, Z) has an adjoint kernel

x∗ ∈ OK(V ∗, Z∗) defined pointwise: x∗(σ) = x(σ)∗(σ ∈ Γ). Each vector kernel

ζ ∈ K(h,H) determines mutually adjoint operator kernels |ζ(·)⟩ ∈ OK(|h⟩, |H⟩) and

⟨ζ(·)| ∈ OK(⟨h|, ⟨H|). The map

K(h,H) → OK(|h⟩, |H⟩), ζ 7→ |ζ(·)⟩

is manifestly a linear isomorphism. Moreover, when H = k̂ the placing notations enjoy

the consistency

|ζ(·)⟩(α, σ, e0) = |ζ(α;σ,∆⊥)⟩.

In practice the ordered pairs (k1, k2) take one of the forms (k, k), (k,C), (C, k).
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Earlier we defined πF for F ∈ F (R+;B(H1; H2).

Example 2.1.6 (Product operator kernels with initial space). Let F ∈ F (R+;B(h⊗H)).

Its associated product operator kernel πF ∈ OK(B(h), B(H)) is defined by

πF (σ) =


Ih if σ = ∅;

F (s1;σ) · · ·F (sn;σ) if σ = {s1 < ... < sn} ∈ Γ \ {∅},

where for σ ∈ Γ, s ∈ σ, F (s;σ) := F (s;σ, IH). Sometimes we will want to apply the

operators F in the reverse order, i.e. consider the product

F (sn;σ) · · ·F (s1;σ).

This product operator kernel will be denoted by πF . It is important to note it only

changes the order in which our operators F operate on the initial space h and not

how the placement is performed on the noise dimension space. Thus πF = πF e.g.

whenever F (s) = A ⊗ Bs for some A ∈ B(h), B : R+ → B(H). It is not true that

πF = πF whenever F is a constant function, however.

It is also worth noting that (πF )∗ ⊃ πF ∗ . This will be important in our analysis of

dual processes later.

For the majority of the thesis we are interested in the case where H = k̂ and

e0 =
(

1
0

)
∈ k̂, for some Hilbert space k, for which we abbreviate ζ(α;σ, e0) to ζ(α;σ).

Thus, for example,

ζ(∅;σ) = ζ(∅) ⊗ e⊗#σ
0 and ζ(σ;σ) = ζ(σ) (σ ∈ Γ),
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and for v ∈ h, ψ ∈ F (R+; H), σ ∈ Γ, α ⊂ σ

(v ⊗ πψ)(α;σ) = (v ⊗ πχ)(σ), where χ(s) =


ψ(s) if s ∈ α,

e0 if s ∈ σ \ α
.

For this case we also introduce a modification of the Je0 isometry, namely the

isometry

Jα;σ : k⊗#α → k̂⊗#σ.

Thus it acts like J(1
0) with the exception that its domain is actually the natural

isomorphic copy of k inside k̂.

In the case of operator kernels, we abbreviate as follows:

x(α;σ,∆⊥) := x(α;σ, |e0⟩⟨e0|).

Recall that the ∆ here is just the quantum Itô projection, which we defined in Definition

1.2.8.

Note here that |e0⟩⟨e0| is versatile enough to be viewed as an operator in B(k̂1; k̂2);

we occasionally write |e0⟩⟨e0|̂k1 ;̂k2
when it might be helpful.

We introduce a special piece of notation for the case when domains and codomains

differ and H = k̂. For α ⊂ σ or α ⊃ σ and β disjoint from the two, consider

T (α) : k̂⊗#α → k̂⊗#σ . We will write

[T (α);α ∪ β] : k̂⊗#(α∪β) → k̂⊗#(σ∪β)

for the ampliation of T , with the placement to be understood as before. Thus the set

after the semicolon always signifies the tensor power of the domain of the operator in
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question. The fact that α ⊂ σ or α ⊃ σ here guarantees that there is no ambiguity in

the notation.

Example 2.1.7 (Itô projection). An important constant operator kernel is the one

obtained from the constant function ∆ = Ih ⊗

0

Ik

 ∈ B(h ⊗ k̂). Due to its

ubiquitousness in the paper, we abbreviate for clarity

∆(α;σ) := π∆(α;σ) σ ∈ Γ, α ⊂ σ.

Thus

∆(∅;σ) = Ih⊗k̂⊗#σ ,∆(σ;σ) = Ih ⊗

0

Ik


⊗#σ

.

The space k that ∆ operates on will always be clear from context and thus we do not

introduce a dependence on k in the notation for ∆.

∆⊥ will denote Ik̂ − ∆ and will be ampliated without change of notation similarly

to ∆.

We introduce an easy lemma to support our placement notation.

Lemma 2.1.8. Let α, β, δ ⊂ σ ∈ Γ, x(β) ∈ B(k̂⊗#β). Then the following identities

hold:

1. J∗
α;σx(β;σ) = [J∗

α∩β;βx(β);σ][J∗
α\β;σ\β;σ]

2. x(β;σ)Jδ;σ = [Jδ\β;σ; δ][x(β)Jδ∩β;β; δ]

3. If α, β, δ are disjoint and α ∪ β ∪ δ = σ, then, for α = α0 ∪ α1 and β = β0 ∪ β1

with α0, α1, β0, β1 disjoint,

[J∗
α0;α;σ]∆(δ;σ)[Jβ0;β;σ \ β1] = [Jβ0∪δ;β∪δ;σ \ (α1 ∪ β1)][J∗

α0∪δ;α∪δ;σ \ β1].
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Thus in particular, for ξ(β) ∈ k⊗#α,

∥J∗
δ;σx(β;σ)ξ(α;σ)∥ 6 ∥J∗

δ∩β;βx(β)Jβ∩α;β∥∥ξ(α)∥.

Proof. We only need to check the identities for x being a simple tensor. Thus let

x(β) = ⊗
s∈β xs and consider ξ = ⊗

s∈σ ξs ∈ k̂⊗#σ. It is now easy to verify that

J∗
α;σx(β;σ)ξ =

∏
t∈σ\α

vt
⊗
s∈α

us,

where

us =


J∗
s;sxsξs s ∈ α ∩ β

J∗
s;sξs s ∈ α \ β

,

vt =


⟨e0, xtξt⟩ t ∈ β \ α

⟨e0, ξt⟩ t ∈ σ \ (α ∪ β)
.

A straightforward calculation reveals the right hand side to be equal to this expression.

The next two identities are checked analogously. For the last one, it suffices to

notice that each element of σ belongs to precisely one of the sets: α0, α1, β0, β1, δ, on

which one operator, the same on both sides of the equation, operates, as the action of

Jα;σ coincides with the action of ∆ on the tensor components corresponding to α.

Finally, the following operation will turn out to be very useful in our considerations.

Definition 2.1.9 (Series product). For functions F,G ∈ F (R+;B(k̂)) we define the

series product F ✁G by

F ✁G = F +G+ F∆G,
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where ∆ is the Itô projection. This product occurs naturally in the second fundamental

formula of quantum stochastic calculus and it will play a fundamental role in the

algebra of quantum Wiener integrals.

2.1.2 Convolutions

We next define the convolutions; first operator-vector convolutions.

Definition 2.1.10. Consider kernels x ∈ OK(B(h1; h2), B(k̂1; k̂2)) and ζ ∈ K(h1, k̂1)

and let Q ∈ B(k̂1; k̂2) be a projection, ampliated to h as needed. Recall that e0 =
(

1
0

)
as an element of k̂1. We define x ⋆Q ζ ∈ K(h2; k̂2) by

(x ⋆Q ζ)(σ) =
∑

α∪β=σ
x(α;σ,Q)∆(α ∩ β;σ)ζ(β;σ, e0),

the sum being over all 3#σ internal covers of σ by subsets α, β. For operator ker-

nels x ∈ OK(B(h2; h3), B(k̂2; k̂3)) and z ∈ OK(B(h1; h2), B(k̂1; k̂2)), we fix opera-

tors Q ∈ B(k̂1, k̂2) and Q′ ∈ B(k̂2, k̂3). We define the operator kernel x ⋆
Q′ Q

z ∈

OK(B(h1; h3), B(k̂1; k̂3)) by

(x ⋆Q′ Q z)(σ) =
∑

α∪β=σ
x(α;σ,Q′)∆(α ∩ β;σ)z(β;σ,Q).

In practice, those operators Q,Q′ will practically always be of norm one, but that

assumption is not necessary for next several results. In fact, in most future applications

and next few results the operator Q in question will usually be the identity on the

space of the argument, in which case we will omit it in the notation, writing ⋆ rather

than ⋆I .



2.1 Algebra of kernels 47

Convolutions may also usefully be expressed in terms of partitions, rather than

internal covers, as follows:

(x ⋆Q′ Q z)(σ) =
∑

σ1⊔σ2⊔σ3=σ
x(σ1 ∪ σ2;σ,Q′)∆(σ2;σ)z(σ2 ∪ σ3;σ,Q)

=
∑

α⊔β=σ

∑
α1⊔α2=α

x(α1 ∪ β;σ,Q′)∆(β;σ)z(β ∪ α2;σ,Q).

We notice the following simple property for product kernels:

Lemma 2.1.11. For product operator kernels x = πF , y = πG ∈ OK(B(h), B(k̂)) we

have

x ⋆ y = πF+G+F∆G

if either h = C or, more generally, if F and G commute on the initial space, in the

sense that for all s1, s2 ∈ R+, s1 ̸= s2, σ = {s1, s2}:

F (s1;σ)G(s2;σ) = G(s2;σ)F (s1;σ).

Proof. We use the fact that

πF+G(σ) =
∑
α⊂σ

πF (α;σ)πG(σ \ α;σ).

Let us notice that here we use the commutativity on the initial space.

Then, we have that

πF ⋆ πG(σ) =
∑

β0⊔β2⊔β2=σ
πF (β0 ∪ β1;σ)∆(β1;σ)πG(β1 ∪ β2;σ)

=
∑

β0⊔β2⊔β2=σ
πF (β0;σ)πF∆G(β1;σ)πG(β2;σ)

= πF✁G(σ),
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as required.

Remark 2.1.12. Let us notice that a possible case where F and G commute on the

initial space is when

F ∈ A ⊗M B(k̂),

G ∈ B ⊗M B(k̂),

where A,B ⊂ B(h) are operator spaces such that AB = BA for every A ∈ A, B ∈ B.

Taking ζ to be the kernel u⊗ δ∅(u ∈ h),

(x ⋆Q (u⊗ δ∅))(σ) = x(σ)u⊗ e⊗#σ
0 (σ ∈ Γ)

for any bounded operator Q and kernel x ∈ OK(B(h; h′);B(k̂, k̂′)). Thus any vector

kernel ζ ∈ K(h, k̂) may be obtained from one of the form u⊗ δ∅, u ̸= 0 by convolving

with a suitable operator kernel x ∈ OK(B(h), B(k̂)):

ζ = x ⋆Q (u⊗ δ∅), where x := 1
∥u∥2 (|ζ(σ)⟩⟨u⊗ e⊗#σ

0 |)σ∈Γ.

In view of an earlier identity, the operator kernel Ih ⊗ δ∅ ∈ OK(B(h);B(k̂, k̂′)) acts

as follows under convolution:

x ⋆Q′ Q (Ih ⊗ δ∅) = xπQ

for bounded operators Q,Q′ and compatible kernel x ∈ OK(B(h; h′);B(k̂′, k̂′′)) (the

product on the right being pointwise defined) and so also

Ih ⊗ δ∅ ⋆Q′ Q z = πQ′z,

Ih ⊗ δ∅ ⋆Q′ 0 ζ = πQ′ζ
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for kernels z ∈ OK(B(h′; h);B(k̂′, k̂)) and ζ ∈ K(h, k̂). In particular, Ih ⊗ δ∅ is an

identity for the convolution ⋆ on OK(B(h), B(k̂)) and for the convolution ⋆ on K(h, k̂)

(when the appropriate Q = I).

Note the consistency of the notations:

|(x ⋆Q ζ)(·)⟩ = x ⋆Q |ζ(·)⟩,

the adjoint relations for compatible kernels:

(x ⋆Q′ Q z)∗ = z∗ ⋆Q∗ Q′∗ x∗,

and the following identities for ζ, η ∈ K(h, k̂):

(⟨ζ(·)| ⋆ |η(·)⟩)(σ) =
∑

α∪β=σ
⟨ζ(α;σ)|∆(α ∩ β;σ)|η(β;σ)⟩

=
∑

σ1⊔σ2⊔σ3=σ
⟨ζ(σ1 ∪ σ2;σ)|∆(σ2;σ)|η(σ2 ∪ σ3;σ)⟩.

Introduce the notations

c̃ = J̃kc :=
(

0
c

)
, g̃(s) = g̃(s) and k̃(σ) = (Ih ⊗ (J̃k)⊗#σ)k(σ)

for c ∈ k, g ∈ F (R+; k), k ∈ K(h, k) and σ ∈ Γ. Then the above identities specialise as

follows:

(⟨ζ(·)| ⋆ |k̃(·)⟩)(σ) =
∑
α⊂σ

⟨ζ(σ), k̃(α;σ)⟩;

(⟨k̃1(·)| ⋆ |k̃2(·)⟩)(σ) = ⟨k1(σ), k2(σ)⟩IB(C)

for ζ ∈ K(h, k̂), k, k1, k2 ∈ K(h, k).

The composition of convolutions is then applied by multiplication of operators.
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The generalised form of associativity enjoyed by these convolutions is given next.

Theorem 2.1.13 (General associativity). For projections Q,R, T with RT = R =

QR,R∆ = ∆R and operator kernels x, y, z we have

x ⋆Q R (y ⋆R T z) = (x ⋆Q R y) ⋆R T z. (2.1)

The common value of these kernels at σ ∈ Γ is

∑
α∪β∪γ=σ

x(α;σ,Q)∆(α ∩ (β ∪ γ);σ)y(β;σ,R)∆((α ∪ β) ∩ γ;σ)z(γ;σ, T ).

Proof. Set w1 := x ⋆Q R (y ⋆R T z) and w2 = (x ⋆Q R y) ⋆R T z. Let σ ∈ Γ. Then, for δ ⊂ σ,

(y ⋆R T z)(δ;σ,R) =
∑

β∪γ=δ
(((y(β; δ, R))∆(β ∩ γ; δ)(z(γ; δ, T )));σ,R)

=
∑

β∪γ=δ
y(β;σ,R)∆(β ∩ γ;σ)z(γ;σ, T ),

as RT = R. Therefore, since ∆((α∩γ)\β;σ) ⌣ y(β;σ,R)η and ((α∩γ)\β)∪(β∩γ) =

(α ∪ β) ∩ γ,

w1(σ) =
∑

α∪δ=σ
x(α;σ,Q)∆(α ∩ δ;σ)(y ⋆R T z)(δ;σ,R)

=
∑

α∪β∪γ=σ
x(α;σ,Q)∆(α ∩ (β ∪ γ);σ)y(β;σ,R)∆(β ∩ γ;σ)z(γ;σ, T )

=: w(σ).

By the symmetry of the formula for w and the fact that QR = R, this also implies that

w∗ = z∗ ⋆T R (y∗ ⋆R Q x
∗)
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and so, using the adjoint relation,

w = (y∗ ⋆R Q x
∗)∗ ⋆R T z = (x ⋆Q R y) ⋆R T z = w2.

Remark 2.1.14. As a sum over partitions of σ, rather than internal covers, the

common value of these kernels at σ ∈ Γ is:

∑
σ=ω1⊔...⊔ω7

x(ω1467;σ,Q)∆(ω467;σ)y(ω2457;σ,R)∆(ω567;σ)z(ω3567;σ, T ),

where ωijkl = ωi ∪ ωj ∪ ωk ∪ ωl, or

∑
σ=α⊔β⊔γ

∑
α=α1⊔...⊔α5

x(α1 ∪ α4 ∪ β ∪ γ;σ,Q)∆(α4 ∪ β ∪ γ;σ)

y(α2 ∪ α4 ∪ α5 ∪ γ;σ,R)∆(α5 ∪ β ∪ γ;σ)z(α3 ∪ α5 ∪ β ∪ γ;σ, T ).

Corollary 2.1.15. Let Q,R, T be projections.

• For operator kernels x, y and z bracketing is superfluous in the following cases:

x ⋆ y ⋆ z and x ⋆Q R y ⋆R T z

when QR = R = RT and R∆ = ∆R, so e.g. when Q = T = I;

• For kernels ζ1 ∈ K(h1; k̂1), x ∈ OK(B(h1; h2);B(k̂1, k̂2)) and ζ2 ∈ K(h2; k̂2),

taking Q = ∆⊥, we have

⟨ζ1(·)| ⋆Q |(x ⋆ ζ2)(·)⟩ = ⟨(x∗ ⋆ ζ1)(·)| ⋆Q |ζ2(·)⟩.

Moreover,
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1. their common value at σ ∈ Γ is

∑
α∪β∪γ=σ

⟨ζ1(α;σ)|∆(α ∩ (β ∪ γ);σ)x(β;σ)

∆((α ∪ β) ∩ γ;σ)|ζ2(γ;σ)⟩

=
∑

σ=σ1⊔...⊔σ7

⟨∆(σ467;σ)ζ1(σ1467;σ)|

x(σ2457;σ)|∆(σ567;σ)ζ2(σ3567;σ)⟩;

2. If ζi = k̃i for ki ∈ K(hi; ki)(i = 1, 2) then the common value at σ ∈ Γ is

∑
α∪β∪γ=σ

⟨k̃2(α;σ)|x(β;σ)|k̃1(γ;σ)⟩,

in particular,

(⟨k̃2(·)| ⋆ |(x ⋆ k̃2)(·)⟩)(σ)

=
∑

σ=σ1⊔...⊔σ4

⟨k̃2(σ1 ∪ σ2;σ)|x(σ)|k̃1(σ2 ∪ σ3;σ)⟩.

We finish this section with an interesting bound on the norms of convolutions of

kernels.

Proposition 2.1.16. Let x, y be two operator kernels on a Hilbert space B(k̂) which

are product bounded, i.e. there exist functions ϕ, ψ : R+ → R+ such that

∥x(σ)∥ 6 πϕ(σ), ∥y(σ)∥ 6 πψ(σ)

for all σ ∈ Γ. Then (x ⋆ y) is also product bounded and the bounding function is given

by the series product of ϕ and ψ, namely ϕ✁ ψ = ϕ+ ψ + ϕψ.
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Proof. Let σ ∈ Γ. We have that

∥(x ⋆ y)(σ)∥ 6
∑

σ0⊔σ1⊔σ2=σ
∥x(σ0 ∪ σ1;σ)∆(σ1;σ)y(σ1 ∪ σ2;σ)∥

6
∑

σ0⊔σ1⊔σ2=σ
πϕ(σ0 ∪ σ1)πψ(σ1 ∪ σ2)

=
∑

σ0⊔σ1⊔σ2=σ
πϕ(σ0) · πϕψ(σ1) · πψ(σ2)

= πϕ+ψ+ϕψ(σ).

2.2 Measurability

Here we will consider the measurability of our kernels. We do it here so that in the

forthcoming chapters we can consider our kernels to be measurable and be secure in

the knowledge that all operations we do on them preserve that measurability. We

will denote the n-th Cartesian product of Γ by Γn. We also introduce the following

notation:

Γ(n) = {(σ1, · · · , σn) ∈ Γn : σi ∩ σj = ∅ for i ̸= j},

We may also write Γt rather than Γ when we are interested in subsets of [0, t) instead

of R+. The set {1, · · · , n} will be denoted by n and we will write Pn(m) for the family

of n-element subsets of an m element set (m > n). We will write [j, k] for the subset

{j, j + 1, · · · , k} of n. For a set σ ∈ Γ we write [σ]i for its i-th element, when its

elements are written in increasing order. In other words, if σ = {s1 < · · · < sn}, then

[σ]i = si.

For S ∈ Pn(n+m) we write

ϕ(S) = {(α, β) ∈ Γn×Γm : S = {i ∈ n+m : [α∪β]i ∈ α} = {i ∈ n+m : [α∪β]i /∈ β}}.
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Let us notice that requiring both of those equalities to hold in particular implies

α ∩ β = ∅. Also, it is useful to note that

ϕ(S) = {(α, β) ∈ Γn × Γm : v1 < · · · < vn+m} ∩ Γ(2), (2.2)

where vi’s are uniquely determined by requiring that vi ∈ α for i ∈ S and vi ∈ β

otherwise.

Proposition 2.2.1. For any S ∈ Pn(n+m) ϕ(S) is measurable.

Proof. Looking at Equation (2.2) as a subset of Rn+m
+ , it is clear that ϕ(S) is open, so

measurable.

We also write χS for the permutation of n+m which acts as follows:

χS(i) =


[s]i if i 6 n

[n+m \ S]j if i = n+ j

.

Thus, for example, for n = 2,m = 3 and S = {2, 4}, χS is the following permutation:

χS =

1 2 3 4 5

2 4 1 3 5

 .

The n,m in question will be clear from context, so we believe there is no need of

introducing them in the notation for χ.

It is worth noting that a subset A ⊂ Γ is measurable in the Guichardet measure if

and only if each A∩Γn is measurable in the n-dimensional complete Lebesgue σ-algebra

- in other words, a set is measurable if and only if it is measurable on each chaos. Also,

Γn \ Γ(n) has measure zero for each n ∈ N.

To start off, we investigate the union operation:
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Lemma 2.2.2. Let N ⊂ Γ be a null set. Then the following sets are null too:

• N ′ = {α ∈ Γ: β ⊂ α for some β ∈ N }.

• N ′′ = {(α, β) ∈ Γ × Γ: α ∪ β ∈ N }

Proof. Denote the Guichardet measure by µ. We have:

µ(N ′) =
∫

Γ
1N ′(α)dα =

∫
Γ

min{1,
∑
β⊂α

1N (β)}dα

6
∫

Γ

∑
β⊂α

1N (β)dα 6
∫

Γ
1N (β)dβ

∫
Γ

1dα = 0.

Reading from right to left, this implies that 1N ′ is measurable of integral 0, so N ′ is

null. Analogously,

µ(N ′′) =
∫

Γ

∫
Γ

1N ′′(α, β)dα =
∫

Γ

∑
α⊂σ

1N (σ)dσ

=
∫

Γ
2#σ1N (σ)dσ = 0.

By an analogous reasoning, N ′′ is of measure zero.

Proposition 2.2.3. Let U : Γ2 → Γ be the union operator, i.e. (α, β) 7→ α ∪ β. Then

U is measurable.

Proof. Let U ⊂ Γn be measurable. Without loss of generality, U = ((U1 × · · · × Um) ∩

Γn) ∪ N for measurable Uj ⊂ R+ and a null set N . We are interested in U−1(U).

We have the following string of identities, with M denoting another null set and N ′′

coming from Lemma 2.2.2:

U−1(U) = {(α, β) ∈ Γ(2) : α ∪ β ∈ U} ∪ M

{(α, β) ∈ Γ(2) : α ∪ β ∈ U} ∪ M

= ∪n
k=0{(α, β) ∈ Γk × Γn−k : α ∪ β ∈ U} ∪ M



56 Vector quantum Wiener integrals

= ∪n
k=0 ∪S∈Pk(m) {(α, β) ∈ Γk × Γn−k : α ∈ ×

i∈S
Ui, β ∈ ×

i/∈S
Ui} ∪ M ∪ N ′′,

which is easily seen to be Lebesgue measurable as a finite union of measurable sets

and a null set.

We notice a following property of the integral-sum identity, with its proof adapted

from [57].

Proposition 2.2.4. Consider functions f : Γn → H, g : Γ → H such that

g(σ) =
∑

σ1⊔···⊔σn=σ
f(σ1, · · · , σn).

Then g is measurable if f is.

Proof. Let us notice we only need to prove it for n = 2. Thus we need to prove that

if Γ(2) ∋ (α, β) 7→ f(α, β) is measurable, then so is σ 7→ ∑
α⊂σ f(α, σ \ α). Consider

particular σ,#σ = N . Let fk : Rk
+ × RN−k

+ → H be the function which is symmetric

with respect to its first k coordinates and its second N − k coordinates and coincides

with f on Γk × ΓN−k. We consider it as a function on RN
+ . Then fk is obviously

Lebesgue measurable and we see that

g(σ) =
∑
α⊂σ

f(α, σ \ α)

=
N∑
k=0

∑
α⊂σ

#α=k

f(α, σ \ α)

=
N∑
k=0

∑
S∈Pk(n)

fk(χS(σ)),

where we use the identification of a set σ with the point in RN
+ and the permutation

χS defined earlier.
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Now, as the map σ → χS(σ) is Lebesgue measurable for any S ∈ Pk(n) and each

fk is measurable, we see that g is measurable as a finite combination of measurable

functions.

Remark 2.2.5. It is important to note that the reverse is not true. Indeed, let

f0 : {(s1, s2) ∈ R2
+ : s1 < s2} → H be any non-measurable function. We can then define

a function f1 : R2
+ → H by the antisymmetric extension and 0 on the diagonal - and it

is easily seen this function is still non-measurable. We then define f via

f({s1}, {s2}) = f1(s1, s2).

We see as a function f : Γ2 → R+ f is supported on Γ1 × Γ1. Then f is non-measurable

(as the Guichardet space inherits the measure structure from R2
+), but it is easily seen

that ∑
σ1⊔σ2=σ

f(σ1, σ2) = 0

for every σ. Indeed, the only case when it might not be zero is when σ = {s1, s2}, but

then the sum is equal to

f({s1}, {s2}) + f({s2}, {s1}) = f1(s1, s2) − f1(s1, s2) = 0

by the antisymmetry of f1.

We are interested in exploring the measurability of vector and operator kernels.

For operator kernels we mean strong operator measurability, i.e. if, given ξ ∈ h ⊗ Φ(k̂),

the mapping

Γ ∋ σ 7→ x(σ)ξ
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is measurable. Let us notice that this is equivalent to saying: for every n ∈ N, ξ ∈

h ⊗ Φ(k̂) supported on the n-th chaos, the mapping

Γn = {σ ∈ Γ: #σ = n} ∋ σ 7→ x(σ)ξ

is measurable.

The following notation for tensor flips will be useful:

For n ∈ N, Hilbert space H and a permutation τ ∈ Sn, we write Πτ for the unitary

operator on H⊗n which implements this permutation, i.e.

Πτξ1 ⊗ · · · ⊗ ξn = ξτ(1) ⊗ · · · ξτ(n).

For α ⊂ σ ∈ Γ, #α = k,#σ = n let Sα;σ := {i ∈ n : [σ]i ∈ α}. Then we define Πα;σ

to be the tensor flip implemented by permutation χ(Sα;σ).

We recall Corollary 1.4.16 from Chapter 1.

Now, we can build up the repertoire of results which ensure that if we start with a

measure equivalence class of a measurable operator kernel, then its quantum Wiener

integral, which we will define in the next chapter, will also be measurable.

We will very often use the isometry J and its adjoint, along with our general

placement notation. The forthcoming three results ensure that these operations do not

violate measurability.

Lemma 2.2.6. Let F : R+ → B(k̂) be strongly measurable. Then the product kernel

πF is measurable.

Proof. We see that for a product vector ξ = ξ1 ⊗ · · · ξn ∈ k̂⊗n and a Borel set

U = U1 × · · ·Un ⊂ k̂⊗n we have

(πF (·)ξ)−1(U) = ×n
k=1(F (·)ξk)−1(Uk) ∩ Γn,



2.2 Measurability 59

which is measurable by strong measurability of F .

Lemma 2.2.7. The prescription

Π: (α, β) 7→ Πα;α∪β1α∩β=∅

is strongly measurable.

Proof. Let ξ ∈ H⊗n. We see that for any U ∈ Borel(H⊗n),

(Π(·, ·)ξ)−1(U) = ∪n
k=0 ∪S∈Pk(n) Φ(S)1Πχ(S)ξ∈U ,

where the indicator signifies that we take the Φ(S) summand if the proposition is true

and we do not otherwise.

In any case, we see that Π−1(U) is a finite sum of sets of the form Φ(S), which are

measurable by Proposition 2.2.1

Lemma 2.2.8. Let x be a measurable operator kernel and ξ ∈ h ⊗ Φ(k̂) with both

having compact support and let Q ∈ B(k̂), e ∈ B(k̂) with ∥Q∥ = 1 = ∥e∥. Then

(α, β) 7→ x(α;α ∪ β,Q) is strongly measurable and ξ(α;α ∪ β, e) is measurable.

Proof. Since

x(α;α ∪ β) = Π∗
α;α∪βx(α) ⊗Q⊗#(β\α)Πα;α∪β,

ξ(α;α ∪ β, e) = Π∗
α;α∪βξ(α) ⊗ e⊗#(β\α)Πα;α∪β,

we see that both of them are measurable as compositions of measurable maps on a

finite measure space.

Lemma 2.2.9. Let t > 0. Then

Γt ∋ (α, β) 7→ J∗
α;α∪β
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is measurable as an operator on ∪n>0H
⊗n for a Hilbert space H.

Proof.

J∗
α;α∪β = Π∗

α;α∪β∆(α;α ∪ β)∆⊥(β;α ∪ β)Πα;α∪β,

where ∆,∆⊥ denotes ∆,∆⊥ composed with the the projections k̂ → k and k̂ → C,

respectively. Thus, as a composition of product kernels (of constant maps!) on a finite

measure space, it is measurable.

This allows us to strengthen the statement of Lemma 2.2.6:

Lemma 2.2.10. Let F : R+ → B(h ⊗ k̂) be measurable and compactly supported. Then

the product kernel πF is measurable.

Proof. It is easily seen that for n ∈ N, k ∈ {1, · · · , n} and σ ∈ Γ, σ = {s1, · · · , sn} the

function σ 7→ F (sk;σ) is measurable as a composition of a tensor product of F with

Ik̂ with a fixed tensor flip. But then πF (σ) is measurable as a product of measurable

operators. Thus for every n ∈ N

πF |Γ(n) is measurable,

so by our discussion earlier πF is measurable.

Finally, we are ready to talk about measurability of operator-operator and operator-

vector convolutions.

Proposition 2.2.11. Let x, y be measurable, compactly supported operator kernels.

Then x ⋆ y is measurable and for any compactly supported, measurable ξ ∈ h ⊗ Φ(k̂)

x ⋆ ξ is measurable.

Proof. We will only prove the measurability of x ⋆ ξ. Measurability of x ⋆ y is proven

analogously.
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We have that:

x ⋆ ξ(σ) =
∑

α∪β=σ
x(α;σ)∆(β;σ)ξ(β;σ).

By integral-sum identity, this is measurable if

(α, β, γ) 7→ x(α ∪ β;σ)∆(β;σ)ξ(β ∪ γ;σ)

is measurable, where σ = α ∪ β ∪ γ.

We know that the function (α, β) 7→ (α∪β) is measurable, so obviously (α, β, γ) 7→

(α ∪ β, γ) is. Thus, by the previous lemma,

(α, β, γ) 7→ x(α ∪ β;σ)

is measurable. Analogously, we see that

(α, β, γ) 7→ ∆(β;σ), (α, β, γ) 7→ ξ(β ∪ γ;σ)

are measurable. Thus the result is measurable as a composition of measurable maps

on a finite measure space.

Corollary 2.2.12. Let x be a measurable operator kernel. Then, for ξ ∈ h ⊗ Fk and

t > 0 the function

(x ⋆ ξ)′(α, β) := J∗
α;α∪β(x1Γt ⋆ ξ̃)(α ∪ β)

is measurable. Thus in particular we can talk about (x ⋆ ξ)′ integrability. If (x ⋆ ξ)′ is

integrable over β, then
∫
(x ⋆ ξ)′(·, b)dβ is measurable with respect to α.

This operation will lie at the centre of our definition of quantum Wiener integral.
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2.3 Multiple Wiener-time integrals

The aim of this section is to amalgamate multiple ‘Wiener’ integrals and multiple ‘time’

integrals, both in a common setting suitable for quantum stochastic generalisation.

Our goal then is to realise the square-norm of the resulting hybrid Wiener-time integral

as an integral of the convolution of bra and ket forms of the Wiener-time integrand.

To this end define isometries

Jα;σ := Je0
α;σJ̃

⊗#α ∈ B(k⊗#α; k̂⊗#σ),

for σ ∈ Γ and α ⊂ σ, where J̃ : k 7→ k̂ denotes the isometry c 7→ c̃ :=
(

0
c

)
and Je0

α;σ is

the placing notation introduced in Subsection 2.1.1. Thus

Jα;σπϕ(α) = πϕ̃(α;σ) = πψ(σ) for ϕ ∈ F (R+; k), (2.3)

where ψ = ϕ̃1α + e01R+\α. In particular,

J∅,∅ = IC, J∅,σ = |e0⟩⊗#σ and Jσ;σ = J̃⊗#σ; J{s1},{s1<s2}k =
(

0
k

)
⊗ e0. (2.4)

From now on, and for the rest of the thesis, we will consider our kernels (both

vector and operator) to be measure equivalence classes of kernels.

Lemma 2.3.1. The collection of isometries {Jα;σ : σ ∈ Γ, α ⊂ σ} satisfy the orthogo-

nality relations

k̂⊗#σ =
⊕
α⊂σ

Jα;σk⊗#α (σ ∈ Γ).

Proof. The mutual orthogonality of the ranges of the isometries {Jα;σ : α ⊂ σ} follows

from the fact that e0 ⊥ Ran J̃ . The fact that their orthogonal sum equals k̂⊗#σ follows
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from the binomial-type identity

πχ̂(σ) =
∑
α⊂σ

Jα;σπχ(α) (χ ∈ F (R+; k))

and the totality of {πχ̂(σ) : χ ∈ F (R+; k)} in k̂⊗#σ.

From now on we freely ampliate, so that

Jα;σ ∈ B(h ⊗ k⊗#α; h ⊗ k̂⊗#σ).

The lemma above remains valid with obvious adjustments.

We define the following operator which, as it will turn out, is naturally dual to our

integration.

Proposition 2.3.2. Let t ≥ s ≥ 0 and k ∈ Fk. The prescription

(D̂tk)(σ) = 1Γ[0,t[(σ)
∑
α⊂σ

Jα;σk(α)

when ampliated defines an operator D̂t ∈ B(h ⊗ Fk; h ⊗ F k̂) satisfying the following

properties:

1. D̂tv ⊗ ε(g) = v ⊗ ε(ĝ[0,t[) for g ∈ L2(R+; k);

2. e− t
2 D̂t is a partial isometry with initial space h ⊗ Fk

t and final space

Lin{v ⊗ ε(1[0,t[ĝ) : g ∈ L2(R+; k), v ∈ h};

3. (et − er)− 1
2 (D̂t − D̂r) is a partial isometry with initial space h ⊗ (Fk

t ⊖ Fk
r ) and

final space

Lin{v ⊗ (ε(1[0,t[ĝ) − ε(1[0,r[ĝ)) : g ∈ L2(R+; k), v ∈ h}.
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Here H ⊖ K for a Hilbert space H and its subspace K denotes the orthogonal complement

of K in H.

Proof. Let g ∈ L2(R+; k). Then, in view of the identity ĉ = e0 + c̃ = e0 + J̃c(c ∈ k),

πĝ(σ) =
∑
α⊂σ

Je0
α;σπg̃(α) =

∑
α⊂σ

Je0
α;σJ̃

⊗#απg(α) =
∑
α⊂σ

πg(α)

for σ ∈ Γ. (1) follows.

Let k ∈ h ⊗ Fk. Then, by the orthogonality relations

∥
∑
α⊂σ

Jα;σk(α)∥2 =
∑
α⊂σ

∥k(α)∥2.

Set S = Γ[0,t[ \ Γ[0,r[. By the integral-sum identity

∥(D̂t − D̂r)k∥2 =
∫
S
dσ∥

∑
α⊂σ

Jα;σk(α)∥2 =
∫
S

∑
α⊂σ

∥k(α)∥2

=
∫
S
dα
∫
S
dβ∥k(α)∥2 = |S|

∫
dα∥1sk(α)∥2.

Since |S| = et−er and {1Sk : k ∈ Fk} = Fk
t ⊖Fk

r , (3) follows. (2) follows similarly.

Remark 2.3.3. Note that the operators D̂t are ampliations of multiples of partial

isometries in B(Fk; F k̂).

For a vector kernel ζ ∈ K(h, k̂) define an associated function

ζ ′ : Γ × Γ → h ⊗ Φk, (α, β) 7→ J∗
α;α∪βζ(α ∪ β).

Lemma 2.3.4. Let ζ ∈ K(h, k̂).

1. For S ⊂ Γ, (1Sζ)′ = 1S′ζ ′, where

S ′ = {(α, β) ∈ Γ × Γ|α ∪ β ∈ S}.
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2. If ζ is measurable as a function Γ → h⊗ Φk̂, then ζ ′ is measurable too.

3. If ζ is almost everywhere zero, then ζ ′ is too.

Proof. (1) follows from the identity 1S(α ∪ β) = 1S′(α, β) for α, β ∈ Γ. (2) follows

from the fact that if ζ is measurable, then so is (α, β) 7→ ζ(α ∪ β). At the same time,

(α, β) 7→ J∗
α;α∪β is obviously measurable by treating it as a product function of two

variables (the product in one variable being the projection k̂ → k and in the other

k̂ → k⊥. Thus the result is measurable as a product of two measurable functions.

(3) follows from the integral-sum identity: for S ⊂ Γ measurable,

|S ′| =
∫
dα
∫
dβ1S′(α, β) =

∫
dα
∫
dβ1S(α ∪ β)

=
∫
dσ

∑
α⊂σ

1S(σ) =
∫
S
dσ2#σ,

so |S ′| = 0 if |S| = 0.

Note that

h ⊗ Fk = L2(Γ, h ⊗ Φk) ∩K(h, k).

Definition 2.3.5. Let p, q ∈ [1,∞], X, Y be measure spaces and H be a Hilbert space.

We define Lp,q(X × Y ;H) to be:

Lp,q(X × Y ;H) := {f : X × Y → H|f measurable,

∥f∥p,q = (
∫
X

(
∫
Y

∥f(x, y)∥qdy)
p
q dx)

1
p < ∞}.

If X = Y = Γ and a, b > 0, we introduce weighted spaces as follows:

Lp,qa.b(Γ × Γ;H) := {f : Γ × Γ → H|
∫

Γ
(b#β

∫
Γ

∥a#αf(β, α)∥qdα)
p
q dβ < ∞}.

Let us notice that if a > c, b > d then L2,1
a,b(Γ × Γ; Φk) ⊂ L2,1

c,d(Γ × Γ; Φk).
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Definition 2.3.6. A kernel ζ ∈ K(h, k̂) is Wiener-time integrable if ζ ′ ∈ L2,1(Γ ×

Γ;h⊗ Φk), in which case its multiple Wiener-time integral Ŵζ is the element of h ⊗ Fk

defined almost everywhere by

(Ŵζ)(σ) =
∫

Γ
dαζ ′(α, σ).

The kernel ζ is locally Wiener time integrable if 1Γ[0,t[ζ is Wiener time integrable for

all t ∈ R+, in which case we set Ŵtζ = Ŵ(1Γ[0,t[ζ). We denote these two classes of

kernels by ÎW (h, k) and ÎWloc(h, k), respectively.

Thus if ζ ∈ ÎW (h, k) then Ŵζ ∈ h ⊗ Fk and

∥Ŵζ∥ ≤ ∥ζ ′∥1,2.

It is easily observed that

Proposition 2.3.7. If ξ′ ∈ L2,1
a,1(Γ × Γ; Φk) for a > 1, then Ŵ(ξ) ∈ Dom(

√
a
N).

Proof. We evaluate:

√∫
Γ
dαa

#α
2 ∥Ŵ(ξ)(α)∥2 6

∫
Γ
dβ

√∫
dα∥a#αξ′(α, β)∥2 = ∥ξ′∥a,12,1.

Remark 2.3.8. The Wiener-time integral is a hybrid of its two extreme cases, the

Wiener and time integrals:

• If ζ = k̃ for some k ∈ h ⊗ Fk, then

ζ ′(α, β) = 1∅(α)k(β), so ζ ∈ ÎW (h, k) and Ŵζ = k,

in particular, ∥Ŵζ∥ = ∥k∥ = ∥ζ ′∥1,2.
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• If ζ(σ) = a(σ) ⊗ e⊗#σ
0 for some a ∈ L1(Γ; h) then

ζ ′(α, β) = 1∅(β)a(α),

so ζ ∈ ÎW (h, k) and

Ŵζ =
(∫

Γ
dαa(α)

)
δ∅,

in particular,

∥Ŵζ∥ = ∥
∫

Γ
dαa(α)∥ ≤ ∥a∥1 = ∥ζ ′∥1,2.

Proposition 2.3.9. Let ξ, η ∈ ÎW (h, k). Then the function

Γ × Γ × Γ → C, (σ1, σ2, σ3) 7→ ⟨ζ ′(σ1, σ3), η′(σ2, σ3)⟩

is integrable and

⟨Ŵζ, Ŵη⟩ =
∫
dσ1

∫
dσ2

∫
dσ3⟨ζ ′(σ1, σ3), η′(σ2, σ3)⟩.

Proof. Since ζ ′(σ1, σ3), η′(σ2, σ3) ∈ h ⊗ k⊗#σ3 for all σ1, σ2, σ3 ∈ Γ, the function is

well-defined; its integrability follows from the fact that ζ ′, η′ ∈ L2,1(Γ × Γ; h ⊗ Φk). On

the other hand,

⟨(Ŵζ)(σ3), (Ŵη)(σ3)⟩ =
∫
dσ1

∫
dσ2⟨ζ ′(σ1, σ3), η′(σ2, σ3)⟩

for a.a. σ3 ∈ Γ and so the identity follows by integration, courtesy of Fubini’s

theorem.
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Remark 2.3.10. Again this is consistent with Wiener–Itô isometry, since if ζ = η = k̃

for some k ∈ h ⊗ Fk then

⟨ζ ′(σ1, σ3), ζ ′(σ2, σ3)⟩ = δ∅(σ1)δ∅(σ2)∥k(σ3)∥2,

so ∫
dσ1

∫
dσ2

∫
dσ3⟨ζ ′(σ1, σ3), ζ ′(σ2, σ3)⟩ =

∫
dσ3∥k(σ3)∥2 = ∥k∥2.

Lemma 2.3.11. Let ζ ∈ K(h, k̂) and t ≥ r ≥ 0. Then

∥(1Γ[0,t[\Γ[0,r[ζ)∥1,2 ≤
√
et − er

(∫
Γ[0,t[\Γ[0,r[

dσ2#σ∥ζ(σ)∥2
) 1

2

.

Proof. Set S = Γ[0,t[ \ Γ[0,r[ and note that

1S(α ∪ β) = 1S(α)1S(β) for all α, β ∈ Γ.

Therefore, by the Cauchy-Schwarz inequality and integral-sum identity,

∫
dβ
(∫

dα∥(1Sζ)′(α, β)∥
)2

=
∫
dβ
(∫

dα1S(α ∪ β)∥ζ(α ∪ β)∥
)2

=
∫
S
dβ
(∫

S
dα∥ζ(α ∪ β)∥

)2

≤
∫
S
dβ|S|

∫
S
dα∥ζ(α ∪ β)∥2

= |S|
∫
S
dσ

∑
α⊂σ

∥ζ(σ)∥2

= |S|
∫
S
dσ2#σ∥ζ(σ)∥2.

Proposition 2.3.12. Let ζ ∈ Dom(Ih ⊗
√

2N). Then

1. ζ ∈ ÎWloc(h, k) and



2.3 Multiple Wiener-time integrals 69

2. ⟨k, Ŵtζ⟩ = ⟨D̂tk, ζ⟩ for all t ∈ R+ and k ∈ h ⊗ Fk.

Proof. 1. follows from Lemma 2.3.11.

2. Let k ∈ h ⊗ Fk and t ∈ R+. In view of the previous part, the left hand side is

well-defined. By the integral-sum identity it equals

∫
Γ[0,t[

dβ⟨k(β),
∫

Γ[0,t[

dαJ∗
β,α∪βζ(α ∪ β)⟩

=
∫

Γ[0,t[

∫
Γ[0,t[

dα⟨Jβ;α∪βk(β), ζ(α ∪ β)⟩

=
∫

Γ[0,t[

dσ
∑
β⊂σ

⟨Jβ;σk(β), ζ(σ)⟩,

which coincides with the right hand side as required.

Thus, as Hilbert space operators,

Ŵt|Dom(Ih⊗
√

2N ) = D̂∗
t |Dom(Ih⊗

√
2N ).

In particular, this gives the estimate

∥Ŵtζ∥ ≤ e
t
2 ∥ζ∥ (ζ ∈ Dom(Ih ⊗

√
2N)),

improving on that of Remark 2.3.8.

Lemma 2.3.13. Let Φ ∈ F (R+; k). Then, for σ ∈ Γ and α ⊂ σ,

Jα,σπΦ(α) = πΦ̃(α;σ)0 and J∗
α;σπΦ̂(σ) = πΦ(α).
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Proof. The first identity was noted earlier, in (2.3). Let ψ ∈ F (R+; k) and note that,

applying the first identity with ψ in place of Φ,

⟨πψ(α), J∗
α;σπΦ̂(σ)⟩ = ⟨πψ̃(α;σ)0, πΦ̂(σ)⟩

= ⟨πψ̃(α), πΦ̃(σ)⟩ = ⟨πψ(α), πΦ(α)⟩.

Since {πψ(α) : ψ ∈ F (R+; k)} is total in k⊗#α, the second identity follows.

Theorem 2.3.14. Let ζ, η ∈ ÎW (h, k). Then

1. ⟨ζ(·)| ⋆0 0 |η(·)⟩ ∈ L1(Γ;B(C)), and

2. ⟨Ŵζ, Ŵη⟩ = T (⟨ζ(·)| ⋆∆⊥ ∆⊥ |η(·)⟩), where

T : L1(Γ;B(C)) → C

denotes the integral functional

a 7→
∫

Γ
a(α)dα.

Proof. Let σ ∈ Γ. Then, by Lemma 2.1.8, for any partition σ = α ⊔ β ⊔ γ,

⟨ζ(α ∪ β;σ),∆(β;σ)η(β ∪ γ;σ)⟩

=⟨ζ(α ∪ β), (Je0
α∪β;σ)∗∆(β;σ)Je0

β∪γ;ση(β ∪ γ)⟩

=⟨J∗
β;α∪βζ(α ∪ β), J∗

β;β∪γη(β ∪ γ)⟩ = ⟨ζ ′(α, β), η′(γ, β)⟩.

Thus, by (2.1.8),

(⟨ζ(·)| ⋆ |η(·)⟩)(σ) =
∑

σ=σ1⊔σ2⊔σ3

⟨ζ ′(σ2, σ3), η′(σ2, σ3)⟩,
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and so the result follows from Corollary 2.1.15 and the integral-sum identity.





Chapter 3

Quantum Wiener Integrals

3.1 Kernel conditions

We are now ready to define a multiple Wiener-time integral of an operator and thus to

make our theory fully noncommutative. We will need corresponding conditions to L2,1

from the previous section. Also quantum integrals may be unbounded operators and

thus we will need to be careful with our domain considerations.

Definition 3.1.1. For a Hilbert space k we define the following subspaces of the

symmetric Fock space Fk:

Exp = Lin{πf : f ∈ L2(R+; k)};

Geom = {ξ ∈ Fk : ∃a,C>0∀σ∈Γ∥ξ(σ)∥ 6 aC#σ};

Num =
⋂
a>0

Dom(aN);

Fin = {ξ ∈ Fk : ∃N∈N∀σ∈Γ,#σ>Nξ(σ) = 0}.

Definition 3.1.2. Let p, q, r, s ∈ [1,∞]. We will say that an operator kernel x satisfies

the (local) Lp,q,r,s condition if there exist nonnegative functions k ∈ Lp(loc)(R+), l ∈
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Lq(loc)(R+),m ∈ Lr(loc)(R+), n ∈ Ls(loc)(R+) such that for every α, β ∈ Γ, α ∩ β = ∅, δ ⊂

α ∪ β we have

∥J∗
α;α∪βx(α ∪ β)Jδ;α∪β∥ 6 πk(β \ δ)πl(α \ δ)πm(β ∩ δ)πn(α ∩ δ).

We also introduce an auxiliary function c such that n = c− 1.

In applications the most important case is p = 1, q = r = 2, s = ∞.

Proposition 3.1.3. Let x ∈ OK((B(h2; h3);B(k̂)), y ∈ OK(B(h1; h2);B(k̂)) satisfy

the (local) L1,2,2,∞ condition. Then so does x ⋆ y.

Proof. Let α, β ⊂ σ ∈ Γ. Let the appropriate functions from the (local) L1,2,2,∞

property of x, y be denoted by kx, lx,mx, nx, ky, ly,my, ny, respectively, with nx =

cx − 1, ny = cy − 1. We calculate, using Lemma 2.1.8:

∥J∗
α;σ(x ⋆ y)(σ)Jβ;σ∥ 6

∑
δ1⊔δ2⊔δ3=σ

∥J∗
α;σx(δ1 ∪ δ2;σ)∆(δ2;σ)y(δ2 ∪ δ3;σ)Jβ;σ∥

=
∑

δ1⊔δ2⊔δ3=σ
∥[J∗

α∩(δ1∪δ2);δ1∪δ2x(δ1 ∪ δ2); (α ∩ δ3) ∪ δ1 ∪ δ2][J∗
α∩δ3;δ3 ;σ]∆(δ2;σ)

[Jβ∩δ1;δ1 ; (β ∩ δ1) ∪ δ2 ∪ δ3][y(δ2 ∪ δ3)Jβ∩(δ2∪δ3);δ2∪δ3 ; β]∥

=
∑

δ1⊔δ2⊔δ3=σ
∥J∗

α∩(δ1∪δ2);δ1∪δ2x(δ1 ∪ δ2); (α ∩ δ3) ∪ δ1 ∪ δ2]

[Jδ2∪(β∩δ1);δ1∪δ2 ; (β ∩ δ1) ∪ δ2 ∪ (α ∩ δ3)][J∗
δ2∪(α∩δ3);δ2∪δ3 ; (β ∩ δ1) ∪ δ2 ∪ δ3]

[y(δ2 ∪ δ3)Jβ∩(δ2∪δ3);δ2∪δ3 ; β]∥

6
∑

δ1⊔δ2⊔δ3=σ
∥J∗

α∩(δ1∪δ2);δ1∪δ2x(δ1 ∪ δ2)J(δ1∩β)∪δ2;δ1∪δ2∥

∥J∗
(δ3∩α)∪δ2;δ2∪δ3y(δ2 ∪ δ3)Jβ∩(δ2∪δ3);δ2∪δ3∥.
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Applying the L1,2,2,∞ properties of x, y we now obtain estimates as follows:

∥J∗
α∩(δ1∪δ2);δ1∪δ2x(δ1 ∪ δ2)J(δ1∩β)∪δ2;δ1∪δ2∥ 6 |πkx(δ1 \ (α ∪ β))|

|πlx((α \ β) ∩ δ1)||πmx((δ1 ∩ (β \ α)) ∪ (δ2 \ α))||πnx((α ∩ δ2) ∪ (α ∩ β ∩ δ1))|;

∥J∗
(δ3∩α)∪δ2y(δ2 ∪ δ3)Jβ∩(δ2∪δ3)∥ 6 |πky(δ3 \ (α ∪ β))|

|πly(((α \ β) ∩ δ3) ∪ (δ2 \ β))||πmy(δ3 ∩ (β \ α))||πny((α ∩ β ∩ δ3) ∪ (δ2 ∩ β))|.

Thus, seeing that:

σ \ (α ∪ β) = (δ1 ∪ δ2 ∪ δ3) \ (α ∪ β)

= (δ1 \ (α ∪ β)) ∪ (δ3 \ (α ∪ β)) ∪ ((δ2 \ α) ∩ (δ2 \ β))

α \ β = ((α \ β) ∩ δ1) ∪ ((α \ β) ∩ δ3) ∪ ((α ∩ δ2) ∩ (δ2 \ β))

β \ α = ((β \ α) ∩ δ1) ∪ ((β \ α) ∩ δ3) ∪ ((δ2 \ α) ∩ (δ2 ∩ β))

α ∩ β = (δ1 ∩ α ∩ β) ∪ (δ3 ∩ α ∩ β) ∪ (δ2 ∩ α ∩ β),

referring to Lemma 2.1.11 and using nonnegativity of k, l,m, n, it is now easily seen

that the appropriate functions to approximate z = x ⋆ y are:

kz = kx + ky +mxly ∈ L1
(loc)(R+;R+);

lz = lx + ly + nxly ∈ L2
(loc)(R+;R+);

mz = mx +my +mxny ∈ L2
(loc)(R+;R+);

nz = nx + ny + nxny ∈ L∞
(loc)(R+;R+),
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or, using c:

kz = kx + ky +mxly ∈ L1
(loc)(R+;R+);

lz = lx + cxly ∈ L2
(loc)(R+;R+);

mz = my +mxcy ∈ L2
(loc)(R+;R+);

cz = cxcy ∈ L∞
(loc)(R+;R+).

Remark 3.1.4. As we see later, the local L1,2,2,∞ condition is a natural condition to

ensure that the domains of our quantum Wiener integrals are big enough. We could

instead require the following to hold:

∥J∗
α;σx(σ)Jβ;σ∥ 6 f(σ \ (α ∪ β))g(β \ α)h(α \ β)k(α ∩ β)

for some functions f ∈ L1
loc(Γ), g, h ∈ L2

loc(Γ), k ∈ L∞
loc(Γ) (thus forgoing the assumption

of them being product functions). However, while this does guarantee our domain

to contain, for example, exponential vectors, this condition is not closed under the

convolution action. Thus in our context it is more natural to assume the condition

with product functions.

The non-product version of this condition will make an appearance in Theorem

3.4.3. Let us recall the ∼ notation from Section 2.3.

Definition 3.1.5. Let x ∈ OK(B(h), k̂) be measurable. We define the quantum

time-Wiener integral of x to be the operator on h ⊗ ΦL2(R+;k) with domain

Dom(Qt(x)) = {ξ ∈ h ⊗ ΦL2(R+;k) : (x1Γt ⋆ ξ̃) ∈ IW},

given by the formula

Qt(x)(ξ) = Ŵ(x1Γt ⋆ ξ).
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We also define the global quantum time-Wiener integral by putting

Dom(Q(x)) = {ξ ∈ h ⊗ ΦL2(R+;k) : (x ⋆ ξ) ∈ IW},

Q(x)(ξ) = Ŵ(x ⋆ ξ̃)

and a two-parameter family, which will come into play in the next chapter, via

Dom(Qs,t(x)) = {ξ ∈ h ⊗ ΦL2(R+;k) : (x1Γs,t ⋆ ξ) ∈ IW}, s < t,

Qs,t(x)(ξ) = Ŵ(x1Γs,t ⋆ ξ̃) s < t

Remark 3.1.6. We note that by Corollary 2.2.12 and the locality of definition of

Qt(x) and Qs,t(x), this indeed gives a well-defined operator.

Example 3.1.7. Let f ∈ L2(R+; k). Define the product operator kernel xf = πF by

F (s) =

−1
2∥f(s)∥2 −⟨f(s)|

|f(s)⟩ 0

 .

Then it is easily seen that Qt(xf ) is just the Weyl process W (f[0,t[).

Proof. For simplicity of notation, let us consider functions f, g ∈ L2(R+; k) supported

on the interval [0, t[ and let F (s) be as in the example. To show that Qt(xf ) = W (f),

it suffices to show that:

Qt(xf )ϖ(g) = e−Im⟨f,g⟩ϖ(f + g).

To make the following calculations easier, let us write out the result of applying function

F (s) to g(s) and 0̂:

F (s)g(s) =
(

−⟨f(s), g(s)⟩
0

)
=: ξs,
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F (s)0̂ =
(

−1
2 ||f(s)||2
f(s)

)
=: ζs.

Now, for α ∈ Γt, we calculate:

Qt(xf )ϖ(g)(α) = e− ∥g∥2
2

∫
Γt

J∗
α;α∪β(xf ⋆ ε(g))(α ∪ β)

= e− ∥g∥2
2

∫
Γt

J∗
α;α∪β

∑
γ0∪γ1=α∪β

xf (γ0;α ∪ β)ε(g)(γ1;α ∪ β)

= e− ∥g∥2
2

∫
Γt

J∗
α;α∪β

∑
γ0∪γ1=α∪β

⊗
s∈α∪β

η(s),

where

η(s) =



ξs s ∈ γ1 ∩ γ0,

ζs s ∈ γ0 \ γ1,

g(s) s ∈ γ1 \ γ0.

This lets us split the summation into sums over disjoint unions:

J∗
α;α∪β

∑
γ0∪γ1=α∪β

⊗s∈α∪βη(s) =
∑

α0⊔α1=α

∑
β0⊔β1=β

ε(f)(α0;α, ε(g))

·
∏
s∈β0

(−⟨f(s), g(s)⟩)
∏
s∈β1

(
−1

2∥f(s)∥2
)
,

= ε(f + g)(α)
∑

β0⊔β1=β

∏
s∈β0

(−⟨f(s), g(s)⟩)
∏
s∈β1

(
−1

2∥f(s)∥2
)

Upon integrating, this becomes:

Qt(xf )ϖ(g) = e− ∥g∥2
2 −⟨f,g⟩− ∥f∥2

2 ε(f + g)

= e− ∥g∥2
2 −⟨f,g⟩− ∥f∥2

2 + ∥f+g∥2
2 ϖ(f + g)

= e−Im⟨f,g⟩ϖ(f + g),

which ends the proof.
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Remark 3.1.8. It might seem like a more natural way of defining the quantum Wiener

integral would be by putting

Qt(x)(ξ) = Ŵt(x ⋆ ξ)

(with the appropriate domain adjustment). However, such an operator is vacuum-

adapted, while we work in the identity-adapted setup. This requires the move of the

indicator function. We do not treat the vacuum-adapted case here. We refer the Reader

to [7] and [8].

We will be mainly studying the properties of the local-time quantum Wiener integral.

Most of the results hold in the global case by dropping the subscripts t and the locality

conditions.

Remark 3.1.9. Let us write out the definition of Qt(x)ξ to notice a helpful algebraic

identity. By the definition of our convolution, we have:

Qt(x)ξ(α) =
∫

Γt

dβJ∗
α;α∪β

∑
β0∪β1=α∪β

x(β0;α ∪ β)1Γt(β0)∆(β0 ∩ β1;α ∪ β)ξ(β1;α ∪ β).

Assume that β1 \ β0 ∩ β ̸= ∅. Then that means that a part of ξ which is not being

acted on by x is on the tensor component corresponding to β. But by the action of

J∗
α;α∪β we see that such terms would be made equal to 0. Thus in further calculations

we can, in fact, always assume that the partition of α ∪ β enjoys the property

β1 \ β0 ∩ β = ∅.

The first important and surprising property of our Qt(x) is its closedness.
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Theorem 3.1.10. Let x satisfy the L1,2,2,∞ condition locally and t > 0. Then Qt(x),

treated as an operator with the domain

{ξ ∈ Fk : (x1Γt ⋆ ξ) is time-Wiener integrable}

is a closed operator.

Proof. Assume ξn → ξ,Qt(x)ξn → y, ξn ∈ Dom(Qt(x)). Firstly, let us notice that

upon passing to a subsequence we can assume these convergences hold almost surely,

which in particular implies the measurability of the function

α 7→ J∗
α;α∪β(x1Γt ⋆ ξ)(α ∪ β).

Let us notice that if we prove that

∫
Γt

dβ∥J∗
α;α∪β(x ⋆ (ξ − ξn))(α ∪ β)∥ → 0 (3.1)

outside a null set, then we will be done. Indeed, that would mean that for almost all α

β 7→ J∗
α;α∪β(x ⋆ ξ)(α ∪ β) is an integrable function and its integral by the convergence

assumption must be equal to y(α) for almost all α. Thus indeed Qt(x) = y. Therefore,

the only thing to show is Equation 3.1 for sets α ⊂ Γt, as our operator is identity

adapted.

Let ξ − ξn = ηn. We perform the following calculation:

∫
Γt

dβ∥J∗
α;α∪β(x ⋆ (ηn))(α ∪ β)∥ 6

∫
Γt

∑
β0∪β1=α∪β

∥J∗
α;α∪βx(β0;α ∪ β)Jβ1;α∪βηn(β1)∥dβ

6
∫

Γt

∑
β0∪β1=α∪β

∥J∗
α∩β0;β0x(β0)Jβ1∩β0;β0∥∥ηN(β1)∥dβ

6
∑

α0⊔α1⊔α2=α

∫
Γt

∑
β0⊔β1=β

|πk(β0)||πl(β1)||πm(α0)|
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· |πw(α1)|∥ηn(α1 ∪ α2 ∪ β1)∥dβ

6
∑

α0⊔α1⊔α2=α
C(k)|πm(α0)||πw(α1)|)

∫
Γt

|πl(β1)|∥ηn(α1 ∪ α2 ∪ β1)∥dβ.

Here C(k) = exp
∫ t

0 |k(s)|ds. Our expression is a finite sum over subsets of α involving

constants independent of β, so we merely need to prove that

∫
Γt

|πl(β)|∥ηn(α ∪ β)∥dβ → 0

for almost all α ∈ Γt. We have:

∫
Γt

∫
Γt

|πl(β)|∥ηn(α ∪ β)∥dβdα =
∫

Γt

∑
β⊂α

|πl(β)|∥ηn(α)∥dα

=
∫

Γt

|π1+l(α)|∥ηn(α)∥dα 6 exp ∥(1 + l)t∥2

2 ∥ηn1[0,t[∥ → 0.

Since the double integral is tending to 0, the inner integral - as a function of α - is

tending to 0 almost everywhere, say outside of a set N . We then see that 3.1 holds for

α outside of the set

{α ∈ Γt : ∃β∈Nβ ⊂ α},

which is a null set by Lemma 2.2.2.

The following is a norm estimate for our quantum Wiener integrals which we will

use many times throughout this paper.

Lemma 3.1.11. If x satisfies the L1,2,2,∞ condition locally, with the positive coefficient

functions k, l,m, n = c− 1, respectively, and ξ ∈ Dom(Qt(x)) ∩ Num, then we have

∥Qt(x)ξ∥ 6 e
√

2∥kt∥1+∥lt∥2
2+ 3

2 ∥mt∥2
2∥
(√

1 + 3ct
)N

ξ∥,
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where kt, lt,mt, ct denote the respective functions cut at time t. Moreover, in fact

Num ⊂ Dom(Qt(x)).

Proof. Let us notice that proving that Qt(x)ξ ∈ h ⊗ Fk is sufficient to prove that

Num ⊂ Dom(Qt(x)).

We have that

∥Qt(x)ξ∥ =
√∫

Γ
dα∥

∫
Γt

dβJ∗
α;α∪β(x1Γt ⋆ ξ)(α ∪ β)∥2.

By the generalized Minkowski’s inequality (1.1), this is less than or equal to

∫
Γt

dβ

√∫
Γ
dα∥J∗

α;α∪β(x1Γt ⋆ ξ)(α ∪ β)∥2.

By writing out the convolution, applying Lemma 2.1.8 and taking the sum out of the

square norm, we get an upper estimate

∫
Γt

dβ
√

2#β ∑
β0⊔β1=β

√√√√√
∫

Γ
dα3#α

∑
α0⊔α1⊔α2=α
α0,α1⊂Γt

(|πk(β0)||πl(β1)||πm(α0)||πn(α1)|∥ξ(α1 ∪ α2 ∪ β)∥)2.

Using the integral-sum identity and the fact that the integrand function is positive

(being a norm), we continue:

∥Qt(x)ξ∥ 6
∫

Γt

dβ0
√

2#β0|πk(β0)|
∫

Γt

dβ1
√

2#β1 |πl(β1)|
√∫

Γ
dα03#α0 |πm(α0)|2

·
√∫

Γt

dα13#α1|πn(α1)|2
∫

Γ
dα23#α2∥ξ(α1 ∪ α2 ∪ β1)∥2

= e
∫ t

0

√
2k(s)dse

3
2

∫ t

0 |m(s)|2ds
∫

Γt

dβ|π√
2l(β)|

√√√√√
∫

Γ
dα3#α

∑
α1⊂α
α1⊂[0,t[

|πn2(α1)|∥ξ(α ∪ β)∥2

6 e
∫ t

0

√
2k(s)dse

3
2

∫ t

0 |m(s)|2dse
∫ t

0 |l(s)|2ds
√∫

Γ
dβ
∫

Γ
dα3#απ1+n2

t
(α)∥ξ(α ∪ β)∥2

6 e
√

2∥kt∥1+∥lt∥2
2+ 3

2 ∥mt∥2
2

√∫
Γ
dαπ4+3∗n2

t
(α)∥ξ(α)∥2
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= e
√

2∥kt∥1+∥lt∥2
2+ 3

2 ∥mt∥2
2∥
(√

1 + 3ct
)N

ξ∥,

as required.

3.2 Closedness and core of Wiener integral

Using the findings from the previous Section, we can now prove the following theorem:

Theorem 3.2.1. Qt(x) has the following properties:

1. Qt(x) is a closed operator.

2. If x satisfies the L1,2,2,∞ condition locally, then

Exp ∪ Num ⊂ Dom(Qt(x))

for all t > 0.

3. If x satisfies the L1,2,2,2 condition locally, then Geom ⊂ Dom(Qt(x)).

4. If x satisfies the L1,2,2,∞ condition locally and ξ ∈ Num, then Qt(x)ξ ∈ Num.

5. If ξ ∈ ÎWloc(h, k) and Ŵt(ξ) ∈ Dom(Qt(x)), then x⋆0ξ ∈ ÎWloc(h, k) and Qt(x)Ŵt(ξ) =

Ŵt(x ⋆0 ξ).

Proof. For the second part we need to check that if ξ ∈ Exp, then x ⋆0 ξ ∈ ÎWloc(h, k), i.e.

that (x ⋆0 ξ)′ ∈ L2,1
loc. Let ξ = uε(f), u ∈ h, f ∈ L2(R+; k). For x ∈ L1,2,2,∞

loc let k, l,m, n

be the corresponding locally L1, L2, L2, L∞ functions. By Lemma 3.1.11:

(∫
Γt

dα
(∫

Γt

dβ∥J∗
α;α∪β(x ⋆0 ξ)(α ∪ β)∥

)2
) 1

2

6 C(k, l,m, t)∥
(√

4 + 3nt
)N

uε(f)∥ = C(k, l,m, t)∥uε((
√

4 + 3nt)f)∥ < ∞,
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as nt is an essentially bounded function, so that (
√

4 + 3nt)f ∈ L2(R+; k).

The fact that Num ⊂ Dom(Qt(x)) is an immediate consequence of Lemma 3.1.11.

The calculation for ξ ∈ Geom is very similar, but rather than using Lemma 3.1.11

we twist it to flip the roles of ξ and w.

To prove that Qt(x)ξ ∈ Num, we notice that the estimates in aNQt(x)ξ will be

exactly the estimates from 3.1.11, with m,n, ξ substituted with am, an, aNξ. Since

ξ ∈ Num, the result follows.

For the last part of the lemma, let α ⊂ [0, t[ and calculate:

Qt(x)Ŵt(ξ)(α) = Ŵt(x1[0,t[ ⋆ Ŵt(ξ))(α)

=
∫

Γt

dβJ∗
α;α∪β

∑
δ0∪δ1=α∪β

x(δ0;α ∪ β)
(∫

Γt

dγJ∗
δ1;δ1∪γξ(δ1 ∪ γ);α ∪ β ∪ γ

)

=
∫

Γt

dβ
∫

Γt

dγ
∑

δ0∪δ1=α∪β
J∗
α;α∪β∪γx(δ0;α ∪ β ∪ γ)∆(δ1;α ∪ β ∪ γ)ξ(δ1 ∪ γ;α ∪ β ∪ γ)

=
∫

Γt

dβ
∫

Γt

dγ
∑

δ0∪δ1=α∪β
δ1\δ0⊂α

J∗
α;α∪β∪γx(δ0;α ∪ β ∪ γ)∆(δ1;α ∪ β ∪ γ)ξ(δ1 ∪ γ;α ∪ β ∪ γ).

On the other hand, we have:

Ŵ(x ⋆0 ξ) =
∫

Γt

dβ
∑

δ0∪δ1=α∪β
J∗
α;α∪βx(δ0;α ∪ β)∆(δ0 ∩ δ1;α ∪ β)ξ(δ1;α ∪ β).

We see that the two sums coincide by the integral-sum identity and substituting

δ1 ∪ γ for δ1. This in particular implies that one sum is convergent if and only if the

other is, thus proving the last part of the lemma.

Remark 3.2.2. A natural condition for 5. from the preceding theorem to be satisfied

is for ξ to be in appropriately modified Num, i.e. for the following to hold:

∀a>0

∫
Γ
dαa#α∥ξ(α)∥2 < ∞.
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Indeed, on one hand this condition easily implies time-Wiener integrability and on

the other, it follows from the generalized Minkowski inequality (Equation 1.2 in the

Introduction) that then, for an arbitrary a > 0,

∥
√
a
NŴt(ξ)∥ =

√∫
Γ
dαa#α∥

∫
Γt

dβJ∗
α;α∪βξ(α ∪ β)∥2

6
∫

Γt

dβ

√∫
Γ
dαa#α∥J∗

α;α∪βξ(α ∪ β)∥2

6
∫

Γt

dβ

√∫
Γ
dαa#α∥ξ(α ∪ β)∥2.

Now, let us denote ξa,β(α) := a#α∥ξ(α ∪ β)∥2. We see that then

∥
√
a
NŴt(ξ)∥ 6

∫
Γt

dβ
√
ξa,β(α).

However,

∫
Γ
dβξa,β(α) =

∫
Γ
dβ
∫

Γ
dαa#α∥ξ(α ∪ β)∥2

=
∫

Γ
dσ(1 + a)#σ∥ξ(σ)∥2 = ∥

√
1 + a

N
ξ∥2 < ∞,

which we can then use, along with Cauchy-Schwarz, to conclude that

∫
Γt

dβ
√
ξa,β(α) 6 e

t
2

∫
Γ
dβξa,β(α)

6 e
t
2 ∥

√
1 + a

N
ξ∥2 < ∞.

This shows Ŵt(ξ) ∈ Num, which implies Ŵt(ξ) ∈ Dom(Qt(x)).

There is another natural domain to consider, the domain of finite particle vectors:

Fin = {ξ ∈ Fk : suppξ ⊂ Γ6n for some n ∈ N}.
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Let us introduce a notation for the vectors of at most n particles:

Finn = {ξ ∈ Fin : suppξ ⊂ Γ6n}.

We prove the following:

Lemma 3.2.3. Let x satisfy the L1,2,2,∞ condition locally and let t > 0. Then we have:

(i) Finn ⊂ Dom(Qt(x)) and Qt(x)|Finn is a bounded operator for every n ∈ N,

(ii) Fin ⊂ Dom(Qt(x)),

Proof. (i) Let k, l,m,w be the L1, L2, L2, L∞ functions witnessing the L1,2,2,∞ prop-

erty of x and let ξ ∈ Finn for a fixed n ∈ N. Using 3.1.11 and the fact that

ξ ∈ Finn, we calculate:

∥Qt(x)ξ∥ 6 e
√

2∥kt∥1+∥lt∥2
2+ 3

2 ∥mt∥2
2∥

√
4 + 3wt

N
ξ∥

6 e
√

2∥kt∥1+∥lt∥2
2+ 3

2 ∥mt∥2
2
√

4 + 3∥wt∥
n

∥ξ∥ = C(k, l,m,w, n, t)∥ξ∥,

where C(k, l,m,w, n, t) is a finite constant depending on these arguments. Thus

in particular the required integral is finite, thus ξ ∈ Dom(Qt(x)), and ∥Qt(x)∥ is

bounded.

(Alternatively, we can observe that this is a restriction of a closed operator to a

complete space, thus necessarily bounded.)

(ii) Follows immediately from (i).

We would like to state some results about the cores and adjoints of our quantum

Wiener integrals. For this we invoke the Lemmas 1.0.4, 1.0.5. They lead us to a family

of results about cores:
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Theorem 3.2.4. Let x satisfy the L1,2,2,∞ condition locally and let t > 0. Then any

subset D of Num which is dense in Fock space is a core for Qt(x). In particular,

Exp,Fin,Geom,Num are cores. We can form a core sitting inside all of these, by fixing

an admissible subset D of k and taking

E(Fin)∞ = {ξ ∈ Fin : ∃f∈S(D)∀σ∈supp(ξ)ξ(σ) = ε(f)σ},

where S(D) denotes the family of D-valued step functions.

Proof. It is well known all of these sets are dense subsets of the Fock space, included

in Num. By Lemma 3.2.1 we know that Qt(x) Num ⊂ Num ⊂ Dom(Qt(x)∗), thus in

fact Num ⊂ Dom(Qt(x)∗Qt(x)).

This easily leads to a theorem about the structure of adjoints of our multiple Wiener

integrals:

Theorem 3.2.5. Let x satisfy the L1,2,2,∞ condition locally and let t > 0. Then

Qt(x)∗ = Qt(x∗).

Proof. It is easily seen that Qt(x∗) ⊂ Qt(x)∗. Indeed, for ξ ∈ Dom Qt(x), η ∈

Dom Qt(x∗) we have the following, where for simplicity αijk... = αi ∪ αj ∪ αk ∪ . . . et

caetera and α = ∪iαi:

⟨Qt(x)ξ, η⟩ =
∫

Γ
dα
∫

Γt

dβ⟨(x1Γt ⋆ ξ)(α ∪ β), Jα;α∪βη(α)⟩

=
∫

Γ3
t

dα0dα1dα2

∫
Γ>t

dα3

∫
Γ2

t

dβ0dβ1

⟨x(α01 ∪ β01;α ∪ β)ξ(α123 ∪ β1;α ∪ β), Jα;α∪βη(α)⟩

=
∫

Γ3
t

dα0dα1dα2

∫
Γ>t

dα3

∫
Γ2

t

dβ0dβ1

⟨ξ(α123 ∪ β1), J∗
α123∪β1;α∪βx

∗(α01β01;α ∪ β)η(α;α ∪ β)⟩
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=
∫

Γ3
t

dγ0dγ1dγ2

∫
Γ>t

dγ3

∫
Γ2

t

dδ0dδ1

⟨ξ(γ), J∗
γ;γ∪δx

∗(γ01 ∪ δ01; γ ∪ δ)η(γ123 ∪ δ1; γ ∪ δ)⟩

=
∫

Γ
dγ
∫

Γt

dδ⟨ξ(γ), J∗
γ;γ∪δ(x∗ ⋆ η)(γ ∪ δ)⟩

= ⟨ξ,Qt(x∗)η⟩.

To see that in fact we have the reverse inclusion as well, let η ∈ Dom(Qt(x)∗) and

let ηn be its projection onto the n particle space. Then ηn → η and ηn ∈ Dom(Qt(x∗));

what’s more, it is easily seen that Qt(x∗)ηn → Qt(x)∗η weakly. Indeed, for ξ ∈

Dom(Qt(x)),

⟨ξ,Qt(x)∗η⟩ = ⟨Qt(x)ξ, η⟩

= lim
n→∞

⟨Qt(x)ξ, ηn⟩

= lim
n→∞

⟨ξ,Qt(x∗)ηn⟩.

As Dom(Qt(x)) is dense in Fock space, this implies the weak convergence. By Banach-

Saks theorem, we can extract a subsequence (nk)k∈N such that in fact

Qt(x∗) 1
nk

nk∑
n=1

ζn → Qt(x)∗η

as k → ∞ strongly. But, since ∑nk
n=1

1
nk
ζn → ζ, closedness of Qt(x∗) yields that in fact

η ∈ Dom(Qt(x∗) and Qt(x)∗η = Qt(x∗)η. This ends the proof.

3.3 Fundamental formulas and examples

The First Fundamental Formula of quantum stochastic calculus is well-known. We

adapt it to our setting as follows:
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Proposition 3.3.1. If x ∈ OK(B(h), B(k̂)), u, v ∈ h, f, g ∈ L2(R+, k), t > 0, then

⟨uε(f),Qt(x)(vε(g))⟩ = e⟨f,g⟩⟨uε(f̂1[0,t[), x(vε(ĝ1[0,t[))⟩.

Proof.

⟨uε(f),Qt(x)(vε(g))⟩ = e⟨f[t,∞[,g[t,∞[⟩
∫

Γt

dα
∫

Γt

dβ
∑

β0⊔β1⊔β2=α∪β

⟨uε(f)(α), J∗
α;α∪βx(β0 ∪ β1;α ∪ β)vε(g)(β1 ∪ β2;α ∪ β)⟩

= e⟨f[t,∞[,g[t,∞[⟩
∫

Γt

dα
∫

Γt

dβ
∑

β0⊔β1⊔β2=α∪β

⟨uε(f)(α;α ∪ β), x(β0 ∪ β1;α ∪ β)vε(g)(β1 ∪ β2;α ∪ β)⟩

= e⟨f,g⟩
∫

Γt

dα
∑

β0,β1⊂α
⟨uε(f)(β1;α), x(α)vε(g)(β0;α)⟩

= e⟨f,g⟩
∫

Γt

dα⟨uε(f̂)(α), x(α)vε(ĝ)(α)⟩

= e⟨f,g⟩⟨uε(f̂1[0,t[), x(vε(ĝ1[0,t[))⟩.

We can take quantum integrals - in the sense of Hudson and Parthasarathy - of

operator kernels ampliated to the Fock space (or rather, of their values on the first

chaos). By iteration we obtain multiple quantum stochastic integrals of operator

kernels. It is natural to ask whether the operator obtained in this way coincides with

our quantum Wiener integral. The next corollary answers this question.

Corollary 3.3.2. x(·) ⊗ IFk is a locally integrable quantum stochastic process. In

particular, for ξ ∈ Exp we have Qt(x)ξ(σ) = ∑
n>0 Λn

t (x(·) ⊗ IFk
)ξ(σ). Thus also the

following equations hold:

Qt(x1Γ(n)
t

) = Λn
t (x(σ) ⊗ IFk

),
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Qt(x1Γ(n)
t

) = Λt( ˜Q·(x1[Γ(n−1)
t

)),

where ỹ(s)(σ) = y(σ ∪ {s})1σ⊂[0,s].

Proof. Immediate by comparing the formula from above with the first fundamental

formula of quantum stochastic calculus (cf. [48]).

Theorem 3.3.3 (Second fundamental formula). Let x, y ∈ L1,2,2,∞ and u, v ∈ h, f, g ∈

L2(R+; k), t > 0. Then we have:

⟨Qt(x)u⊗ ε(f),Qt(y)v ⊗ ε(g)⟩ = ⟨u⊗ ε(f),Qt((x∗) ⋆ y)v ⊗ ε(g)⟩.

Proof. Let us first notice that if x ∈ L1,2,2,∞, then so does x∗. Moreover, if y ∈ L1,2,2,∞

and ξ ∈ Exp, then (Qt(y)ξ)′ ∈ L2,1. Thus in particular Qt(y)ξ ∈ Dom(Qt(x∗)).

Therefore we can interpret the above theorem as:

Qt(x)Qt(y) = Qt(x ⋆ y) on Exp .

It is, however, a direct corollary from royal associativity (Theorem 2.1.13) and

Lemma 3.2.1.

Remark 3.3.4. There is a simple algebraic way to convince oneself of the truth of the

formula Qt(x)Qt(y)ξ = Qt(x ⋆ y)ξ (assuming everything is in the relevant domains).

Namely, let η be an arbitrary vector and let us denote

zγ(α) = J∗
α;α∪γ(y ⋆ ξ)(α ∪ γ)

for α, γ ∈ Γ. Consider the following formula:

⟨η,Qt(x)Qt(y)ξ⟩ =
∫

Γt

dα
∫

Γt

dβ
∫

Γt

dγ⟨η(α), J∗
α;α∪β(x ⋆ zγ)(α ∪ β)⟩
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=
∫

Γt

dα
∫

Γt

dβ
∫

Γt

dγ
∑

β0∪β1=α∪β

∑
γ0∪γ1=β1∪γ

⟨η(α), J∗
α;α∪βx(β0;α ∪ β)∆(β0 ∩ β1;α ∪ β)J∗

β1;β1∪γy(γ0; β1 ∪ γ)ξ(γ1; β1 ∪ γ)⟩.

Via integral sum identity, we can see that this formula is a sum over various partitions

of α ∪ β. For each fixed partition, we can see what is happening on each tensor

coordinate via the following diagram:

α βγ

⟨η, x0̂⟩

⟨η, x∆yξ⟩⟨η, x∆y0̂⟩ ⟨η, xξ⟩

⟨η, yξ⟩⟨η, y0̂⟩ ⟨η, ξ⟩

⟨0̂, y0̂⟩ ⟨0̂, yξ⟩

⟨0̂, x0̂⟩

⟨0̂, xξ⟩

⟨0̂, x∆yξ⟩

⟨0̂, x∆y0̂⟩

In an analogous manner, we can write out the right hand side of our equation:

⟨η,Qt(x ⋆ y)ξ⟩ =
∫

Γt

dα
∫

Γt

dβ
∑

β0∪β1=α∪β

∑
γ0∪γ1=β1

⟨η(α), J∗
α;α∪βx(γ0;α ∪ β)∆(γ0 ∩ γ1;α ∪ β)y(γ1;α ∪ β)ξ(β1;α ∪ β)⟩.

The corresponding diagram looks as follows:
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α β

⟨η, x0̂⟩

⟨η, x∆yξ⟩⟨η, x∆y0̂⟩ ⟨η, xξ⟩

⟨η, yξ⟩⟨η, y0̂⟩ ⟨η, ξ⟩

⟨0̂, x0̂⟩

⟨0̂, x∆yξ⟩⟨0̂, x∆y0̂⟩ ⟨0̂, xξ⟩

⟨0̂, yξ⟩⟨0̂, y0̂⟩ 0

It is now clear from inspection that in fact the sums over all partitions yield the

same result - in one case splitting the overarching set into three sets we integrate over

(α, β, γ) and in the other into two (α, β).

Below we list some estimates for our multiple quantum stochastic integrals:

Proposition 3.3.5. 1. If x(σ) = |ξ(σ)⟩⟨0̂| for ξ ∈ Dom(
√

2N ), then Dom(
√

2N ) ⊂

Dom(Q(x)) and for η ∈ Dom(
√

2N)

∥Q(x)η∥ 6 ∥
√

2Nξ∥∥
√

2Nη∥.

2. If x(σ) = |0̂⟩⟨ξ(σ)| for ξ ∈ Fk, then Dom(
√

2N) ⊂ Dom(Q(x)) and for η ∈

Dom(
√

2N)

∥Q(x)η∥ 6 ∥ξ∥∥
√

2Nη∥.
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3. By combining the previous two cases, when x(σ) = |ξ(σ)⟩⟨0̂| + |0̂⟩⟨ξ(σ)| for

ξ ∈ Dom((1 +
√

2N)), then Dom(
√

2N) ⊂ Dom(Q(x)) and for η ∈ Dom(
√

2N)

∥Q(x)η∥ 6 ∥(1 +
√

2N)ξ∥∥
√

2Nη∥.

4. If x(σ) = ∆W (σ)∆ with W ∈ L∞
loc(Γ;B(h ⊗ k)) f ∈ L1

loc(Γ;B(h)), then Qs,t(x)

is a bounded operator and

∥Qs,t(x)(k)∥ = ∥W∥∞∥k∥.

5. If x(σ) =

f(σ) 0

0 0

 with f ∈ L1
loc(Γ;B(h)), then Qs,t(x) is a bounded operator

and

∥Qs,t(x)(k)∥ = ∥f∥1∥k∥.

6. If x(σ) = 0 for #σ > N , then for any finite particle k ∈ Dom(Qs,t(x))

Qs,t(x)k ∈ Fin .

In other words, if x is a finitely supported kernel, then the domain of finite

particles is stable under quantum Wiener integration.

7. In fact, more can be said. If x(σ)|0̂(σ)⟩ = 0 for σ > N , then the same conclusion

holds:

Qs,t(x) Fin ⊂ Fin .

In other words, x merely needs to be finitely supported "in its time and creation

part".
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Remark 3.3.6. If our kernel is a sum of the kernels from the first four cases of the

above lemma, then it in particular satisfies the local L1,2,2,∞ condition.

Example 3.3.7. It is useful to give an example of an operator which is NOT a quantum

Wiener integral. For that, consider the shift operator.

Proposition 3.3.8. Let t > 0 and T be the operator T = Tt ⊗ I[t on Guichardet space,

where I[t is the identity on Γ[t and Tt is given by

Ttξ(σ) = ξ(σ + 1),

where σ + 1 = {s + 1: s ∈ σ}, for σ ∈ Γt. Then T is not of the form Qt(x) for any

operator kernel x.

Proof. For ease of calculations, let us assume t > 3.

Suppose x is an operator kernel such that Tt = Qt(x) (we ignore the identity part, as

by assumption all the operators are identity adapted). Consider the following functions

fi ∈ L2(R+):

f0 = 1[0,1[,

f1 = 1[1,2[,

f2 = 1[2,3[.

We have the following:

⟨ε(f0), Ttε(f1)⟩ = e,

⟨ε(f0), Ttε(f2)⟩ = 0.

On the other hand, if Tt = Qt(x), by the first fundamental formula we get:

⟨ε(f0), Ttε(f1)⟩ = e
∫

Γt

dσ⟨ε(f̂0)(σ), x(σ)ε(f̂1)(σ)⟩ = e
∫

Γ[0,1[

dσ⟨ε(1̂)(σ), x(σ)ε(0̂)(σ)⟩,
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so
∫

Γ[0,1[
dσ⟨ε(1̂)(σ), x(σ)ε(0̂)(σ)⟩ = 1; on the other hand,

⟨ε(f0), Ttε(f2)⟩ = e
∫

Γt

dσ⟨ε(f̂0)(σ), x(σ)ε(f̂2)(σ)⟩ = e
∫

Γ[0,1[

dσ⟨ε(1̂)(σ), x(σ)ε(0̂)(σ)⟩,

implying
∫

Γ[0,1[
dσ⟨ε(1̂)(σ), x(σ)ε(0̂)(σ)⟩ = 0. This contradiction proves that Tt is not

of the form Qt(x) for any x.

3.4 Hilbert–Schmidt operator representation

We close this chapter with a theorem saying that every Hilbert–Schmidt operator is, in

fact, a multiple quantum Wiener integral. For this we need a classical lemma about

the representation of Hilbert–Schmidt operators.

Lemma 3.4.1. Let T be a Hilbert–Schmidt operator on the space L2(Γt;H) for some

separable Hilbert space H and t > 0. Then there exists a function k ∈ L2(Γt ×

Γt;HS(H)) such that

(Tf)(σ) =
∫

Γt

dβk(σ, β)f(β).

Proof. As H is separable and the measure on Γ is σ-finite and countably generated,

L2(Γt;H) is separable. Let us fix an orthonormal basis (en)n∈N of L2(Γt;H). By

Parseval’s identity, we have:

(Tf)(σ) =
∑
n∈N

⟨en, f⟩(Ten)(σ) =
∑
n∈N

∫
Γ
dβ⟨en(β)|f(β)(Ten)(σ).

Now, by the fact that T is Hilbert–Schmidt, we know that in fact

∑
n∈N

∥Ten∥2 < ∞,
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so that the series ∑n∈N Ten converges in L2(Γt;H). Thus in particular, for almost all

σ, β ∈ Γt the series

k(σ, β) :=
∑
n∈N

|Ten(σ)⟩⟨en(β)

is convergent; what’s more, thus defined function k is measurable and square-integrable

by Fubini’s theorem. We see it is Hilbert–Schmidt valued via the isomorphism

HS(H) = H ⊗H

and the fact that the series in question is square summable by the fact that T is

Hilbert–Schmidt. This ends the proof.

Remark 3.4.2. 1. This lemma is usually stated for L2(X,µ) spaces. The proof

however holds with no significant changes upon introducing a separable Hilbert

space as the space of values.

2. In symbols, the isometric isomorphism invoked by the lemma is well known:

HS(L2(Γ ;H)) = L2(Γ ;H) ⊗ L2(Γ ;H) = L2(Γ ) ⊗H ⊗ L2(Γ ) ⊗H

= L2(Γ × Γ ) ⊗H ⊗H = L2(Γ × Γ ) ⊗HS(H)

= L2(Γ × Γ ;HS(H)),

but in the sequel we will need the explicit form of the function k.

3. Let T be an operator on h ⊗ Fk = {f ∈ L2(Γt; h ⊗ Φ(k) : f(σ) ∈ h ⊗ k⊗#σ}. Then

we see that in fact

k(α; β) : h ⊗ k⊗#β → h ⊗ k⊗#α.

Theorem 3.4.3. Let T be an operator on h ⊗ Fk such that T = Tt ⊗ IFk
[t,∞[

for some

Hilbert–Schmidt operator Tt on h ⊗ Fk
t . Then T = Qt(x) for an operator kernel x.
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Proof. We know that Qt(x) is identity adapted, so the only thing to prove is that the

equality holds for vectors f supported on Γt.

Let k be the L2 function representing Tt as an integral operator. We introduce the

placement notation kα;σ = Jα;σk#α ⊂ k̂⊗#σ. We define x as:

x(σ) =
∑

α∪β=σ
([k(α \ β, β \ α); β]π−I(α ∩ β; β)1kβ;σ ;σ).

This should be understood as an operator with domain k⊗#σ, which acts as function k

on the coordinates corresponding to β \ α and as −I on α ∩ β, with the final result

extended by
(

1
0

)
to land in k⊗#σ. Let us notice that the requirement that α ∪ β = σ

guarantees no ambiguity in the coordinate placement. Let us notice that

J∗
α;σx(σ)Jβ;σ = [k(α \ β, β \ α); β]πI(α ∩ β; β)1α∪β=σ,

so that by square-integrability of k x satisfies the L1,2,2,∞ condition (the non-product

L1,2,2,∞ condition, however!), so Qt(x) is a densely defined operator. Also, we use the

fact that ∑
α⊂σ

π−I(α;σ) =
∑
α⊂σ

(−1)#αI = 1σ=∅I. (3.2)

We calculate, for f ∈ h ⊗ Fk
t :

Qt(x)f(α) =
∫

Γt

J∗
α;α∪β(x ⋆ f)(α ∪ β)dβ =

∫
Γt

dβ
∑

β0∪β1=α∪β
J∗
α;α∪βx(β0;α ∪ β)Jβ1;α∪βf(β1)

=
∫

Γt

dβ
∑

β0∪β1=α∪β
(k(β0 ∩ α \ β1, β0 ∩ β1 \ α); β1)

· π−I(α ∩ β1 ∩ β0; β1)f(β1)

We can perform some simplifications now. We see from Remark 3.1.9 that in fact

β1\β0∩β = ∅. It is also easy to see from the definition of our x that also (β0\β1)∩β = ∅.
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Thus in fact β is not partitioned at all. On the other hand, we can write:

∑
α0∪α1=α

(k(α0 \ α1, β);α1 ∪ β)π−I(α0 ∩ α1;α1 ∪ β)f(α1 ∪ β)

=
∑
α0⊂α

∑
α1⊂α\α0

(k(α0, β);α \ α0 ∪ β)π−I(α1;α \ α0 ∪ β)f(α \ α0 ∪ β)

=
∑
α0⊂α

(k(α0, β);α \ α0 ∪ β)1α\α0=∅f(α \ α0 ∪ β) = k(α, β)f(β)

by Equation 3.2. Thus we get:

Qt(x)f(α) =
∫

Γt

dβk(α, β)f(β) = Ttf(α),

as required.



Chapter 4

Applications of quantum Wiener

integrals

4.1 Applications to quantum stochastic calculus

4.1.1 Dual processes

An important role in the sequel will be played by the time reversal process.

Definition 4.1.1. Let t > 0. We define the time reversal process Rt as the second

quantisation of the operator rt : L2(R+; k) → L2(R+; k) given by

rtf(s) =


f(t− s) s 6 t

f(s) s > t

.

Thus

Rtε(f) = ε(rtf).

The operators will be applied in the same manner to f̂ , via rtf̂ = r̂tf .
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For simplicity, for σ ∈ Γt and t > 0 let

t− σ = {t− s : s ∈ σ}.

Lemma 4.1.2. Let F : R+ → B(h ⊗ k̂) satisfy the L1,2,2,∞ condition locally, f, g ∈

L2(R+; k), u, v ∈ h. Then

⟨uε(f), R∗
tQt(πF )Rtvε(g)⟩ = ⟨uε(f),Qt(πG)vε(g)⟩,

where G(s) = G(t− s). In particular, if F is constant, we have

R∗
tQt(πF )Rt = Qt( πF ).

Proof.

⟨uε(f), R∗
tQt(πF )Rtvε(g)⟩ = e⟨f,g⟩

∫
Γt

dσ⟨u⊗s∈σ ̂f(t− s),−→πF (σ)v ⊗s∈σ ̂g(t− s)⟩

= e⟨f,g⟩
∫

Γt

dσ⟨u⊗s∈σ f̂(s),−→πG(σ)v ⊗s∈σ ĝ(s)⟩

= ⟨uε(f),Qt(πG)vε(g)⟩,

where we have performed the substitution s → t−s in the second equality and reversed

the order of integration. It is also seen that since the placement of G is the reverse of

placement of F that for constant F

πG = πF .
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Definition 4.1.3. For a quantum stochastic process Xt, X
♯
t := R∗

tX
∗
tRt will be called

the dual process of Xt.

Our main reasons for studying dual processes are contained in the following lemma:

Lemma 4.1.4. Xt is a (co)isometry if and only if the dual process X†
t is a coisometry

(isometry). If Xt = Qt(πF ), then X♯
t = Qt(πF ∗).

Proof. Assume Xt is an isometry. Then X∗
t is a coisometry. As Rt is a unitary,

this means that X♯
t is a coisometry. This ends the proof. The proof for Xt being a

coisometry is analogous.

For the second part, we know that X∗
t = Qt( πF ∗ ). But we know that conjugating

by the time reversal process reverses the order in the product operator kernel. That

proves the claim.

4.1.2 Quantum stochastic evolutions

In this section we shall focus on multiple quantum Wiener integrals of the form Qt(πF )

for F ∈ L1,2,2,∞
loc . We are particularly interested in them as solutions to natural QSDEs.

Lemma 4.1.5. Let F : R+ → B(h ⊗ k̂), πF ∈ L1,2,2,∞
loc . Then Xt = Qt(πF ) satisfies the

QSDE:

dXt = XsFsdΛs. (4.1)

Proof. We only need to check that

⟨uε(f), (Xt − I)vε(g)⟩ =
∫ t

0
ds⟨f̂(s)uε(f), (Ik̂ ⊗Xs)π(Fs ⊗ IF)(ĝ(s)vε(g))⟩,
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where (Ik̂ ⊗Xs)π denotes (Ik̂ ⊗Xs) after the relevant tensor flip k̂ ⊗ h ⊗ F → h ⊗ k̂ ⊗ F .

We have:

∫ t

0
ds⟨uf̂(s)ε(f), (Ik̂ ⊗Xs)π(Fs ⊗ IF)(vĝ(s)ε(g))⟩ = e⟨f,g⟩

∫ t

0
ds
∫

Γs

dσ⟨uπf̂ (σ)f̂(s),

(Ik̂ ⊗ πF (σ))(Fs ⊗ Ik̂⊗#σ)(vπĝ(σ)ĝ(s))⟩

= e⟨f,g⟩
∫

Γ>1
t

⟨uπf̂ (σ), πF (σ)vπĝ(σ) = ⟨uε(f), (Xt − I)vε(g)⟩.

Definition 4.1.6. A quantum stochastic process V = (Vs,t)06s6t on h ⊗ F is called a

quantum stochastic evolution if it satisfies the following:

1. Vr,sVs,t = Vr,t for 0 6 r 6 s 6 t;

2. V is bi-adapted in the sense that there exist operators V(s,t) ∈ B(h ⊗ F[∫ ,⊔[) such

that

Vs,t = Π−1 ◦ (idF[0,s[ ⊗V(s,t) ⊗ idF[t,∞[) ◦ Π,

where Π: h ⊗ F → F[0,s[ ⊗ h ⊗ F[s,t[ ⊗ F[t,∞[ is the tensor flip operation.

Remark 4.1.7. We notice that thus all processes satisfying QSDE 4.1 are in fact QS

evolutions.

We now address the question of when is a contractive quantum stochastic evolution

(Vs,t)06s6t a solution of a quantum stochastic differential equation. It is well known

that it is the case when the functions (s, t) 7→ Vs,t are continuous in the hybrid norm-

ultraweak topology (cf. e.g. [16]). Here we will present an alternative condition, which

is weaker than Markov regularity, and prove that it is sufficient for a solution of the

appropriate QSDE to exist. This condition is taken from [16], while some ideas for the

proof of its sufficiency are inspired by [61].
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Definition 4.1.8. A quantum stochastic evolution (Vs,t)06s6t on initial space h and

noise dimension space k is called elementary if for each ξ, η ∈ k̂ there exists a function

ϕ)ξ, η ∈ L1(R+;B(h)) with the following property:

For every f, g ∈ L2(R+; k) there is ϕf,g ∈ L1(R+;B(h)) such that

Eε(f[s,t[)V(s,t)Eε(gs,t) =
∫

Γ[s,t[

πphif(·),g(·)(σ)dσ.

If the function k̂ ∋ ξ 7→ ϕξ,η(s)(v) is strongly continuous for all η ∈ k̂, s > 0, v ∈ h,

then we call the evolution strongly elementary.

Remark 4.1.9. It is easily noticed that the function k̂ ∋ ξ 7→ ϕξ,η(s)(v) is always

weakly continuous.

Proposition 4.1.10. Let V = (Vs,t)06s6t be a strongly measurable contractive quantum

stochastic process on h ⊗ F . Then the following are equivalent:

(i) V is a strongly elementary quantum stochastic evolution;

(ii) Vs,t = Qs,t(πF ) for F : R+ → B(h ⊗ k̂), πF quantum Wiener integrable;

(iii) V strongly satisfies the QSDE:

dVt = VtFtdΛt

for some F : R+ → B(h ⊗ k̂) such that πF is quantum Wiener integrable.

Proof. The implications (ii) ⇒ (iii), (iii) ⇒ (i) are obvious, with ϕξ,η(s) = EξFsEη.

Thus we only need to prove (i) ⇒ (ii).
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Now let us fix an orthonormal basis T = {fα : α ∈ I}, 0 /∈ I of k. We will denote

its embedding in k̂ by T̃ . For each of its finite subsets T0 we define

F T0 =
∑
α,β

Eeαϕeα,eβ
Eeβ : R+ → B(h),

where eα =
(

0
fa

)
∈ T̃0 and e0 =

(
1
0

)
. This is a well-defined bounded operator on

h ⊗ Lin(T̃0 ∪ {e0}) (as all the sums in question are finite).

We see that now for each ξ, η ∈ Lin(T̃0 ∪ {e0}), v ∈ h and s > 0 we have

EξF T0(s)vη = ϕ(ξ, η)(s)v. If we take

JT0 : h ⊗ Γ(L2(R+; LinT0)) → h ⊗ F

to be the second quantisation of the inclusion mapping LinT0 ↪→ k and define

V T0 = ((JT0)∗V JT0)

then V T0 is a contraction process which satisfies:

⟨uε(f), (V T0
s,t − I)vε(g)⟩ =

∫ t

s
⟨f̂(r)uε(f), (Ik̂ ⊗ V T0

s,r (F T0
r ⊗ IFT0

)(ĝ(r)vε(g)⟩,

where FT0 denotes the Fock space over L2(R+; LinT0).

As V T0 is contractive and strongly measurable, this in fact means that for each

u ∈ h, f ∈ L2(R+; LinT0) we have

V T0
s,t uε(f) − uε(f) =

∫ t

s
(Ik̂ ⊗ V T0

s,r (F T0
r ⊗ IFT0

)(f̂(r)uε(f)).
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This in turn implies that for almost all s ∈ R+

∥∆F T0
s vη∥2 6 −2ℜ⟨vη, F T0

s vη⟩ = −2ℜ⟨v, ϕη,η(s)v⟩.

Let us now consider an orthonormal basis {e0} ∪ T̃ . For each finite subset T0 of it we

have

∑
eα∈T0

∥ϕeα,η(s)v∥2 = ∥
∑
eα∈T0

EeαE
eαF T0

s vη∥2 6 ∥∆F T0
s vη∥2 6 −2ℜ⟨v, ϕη,η(s)v⟩.

This means that the sum ∑
eα∈{e0}∪T̃

Eeαϕeα,η(s)v

converges for almost all s > 0 and v ∈ h. Thus the operator Fs, given by

Fs(vη) =
∑

eα∈{e0}∪T̃

Eeαϕeα,η(s)v

is well-defined, bounded and

E ξ̂Fs(vη̂) = ϕξ,η(s)v,

so that indeed

E ξ̂FsEη̂ = ϕξ,η(s).

Thus the following QSDE is satisfied weakly (and so strongly because of strong

measurability of Vs,t):

dVt = VtFtdΛt.

This implies that in fact F·Ef̂(·) ∈ L1
loc(R+;B(h; h⊗ k̂)) for all f ∈ L2(R+; k). Therefore

πF is quantum Wiener integrable and it is now easily seen that Qs,t(πF ) = Vs,t on
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exponential domain of locally bounded step functions. But as Vs,t is a contractive

process (so, in particular, a bounded operator) and a solution to QSDE is unique, this

implies that in fact Qs,t(πF ) = Vs,t. This ends the proof.

It is well known that every Markov-regular quantum stochastic cocycles has a

generator F . However, more in fact is true, which is summed up by the following

theorem:

Corollary 4.1.11. Let (Xt)t>0 be a Markov-regular quantum stochastic cocycle on the

space h ⊗ F . Then in fact

Xt = Qt(πF ).

Proof. As Xt is a Markov-regular quantum stochastic cocycle, it has a bounded

generator F . As F is a bounded operator, πF ∈ L1,2,2,∞
loc . Under the above assumptions,

X satisfies QSDE

dXt = XsFdΛt.

Thus the result follows by the above lemma and the uniqueness of a solution of a QSDE

with a bounded constant coefficient (cf. e.g. [48], Theorem 4.2).

As contractivity of the evolution featured prominently, we will now look for proper-

ties of F which allow us to determine the contractivity of Qt(πF ). For this, we recall

the series product:

F ✁G = F +G+ F∆G.

Proposition 4.1.12. Let Xt = Qt(πF ) for F : R+ → B(h ⊗ k̂), πF ∈ L1,2,2,∞
loc . Then

Xt is a (co)isometric process if and only if

F ∗
s ✁ Fs = 0

(Fs ✁ F ∗
s = 0)
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for almost all s ∈ R+.

Proof. Assume first Xt is coisometric, so that XtX
∗
t = I. This implies that Xs,t =

Qs,t(πF ) is coisometric as well for all s, t by bi-adaptedness of the process X. For ease

of notation, for σ ⊂ Γ[s,r[ let σr denote σ ∪ {r}. Then we have

0 = 1
t− s

⟨uε(f), (Xs,tX
∗
s,t − I)vε(g)⟩

= e⟨f,g⟩
∫

Γ>1
[s,t[

⟨uπ
f̂
(σ), (πF ⋆ (πF )∗)(σ)vπĝ(σ)⟩dσ

= 1
t− s

∫
Γ>1

[s,t[

∑
α∪β=σ

⟨uπ
f̂
(σ), πF (α;σ)∆(α ∩ β;σ)(πF )∗(β;σ)vπĝ(σ)⟩dσ

= 1
t− s

∫ t

0

∫
Γ[s,r[

∑
α∪β=σ

⟨uπ
f̂
(σr), πF (αr;σr)∆(α ∩ β;σr)(πF )∗(β;σr)vπĝ(σr)⟩dσdr

+ 1
t− s

∫ t

0

∫
Γ[s,r[

∑
α∪β=σ

⟨uπ
f̂
(σr), πF (α;σr)∆(α ∩ β;σr)(πF )∗(βr;σr)vπĝ(σr)⟩dσdr

+ 1
t− s

∫ t

0

∫
Γ[s,r[

∑
α∪β=σ

⟨uπ
f̂
(σr), πF (αr;σr)∆(α ∩ βr;σr)(πF )∗(βr;σr)vπĝ(σr)⟩dσdr

= 1
t− s

∫ t

0

∫
Γ[s,r[

∑
α∪β=σ

⟨uπ
f̂
(σr),

πF (α;σr)(Fr + F ∗
r + Fr∆F ∗

r ;σr)∆(α ∩ β;σr)(πF )∗(β;σr)vπĝ(σ ∪ r)⟩dσdr.

Now by the properties of the quantum stochastic integrand, if we tend with t to s

we get

0 = ⟨uf̂(s), (Fs + F ∗
s + Fs∆F ∗

s )vĝ(s)⟩.

The first implication then follows by totality.

The other implication is now easily seen by our calculation, as if Fr ✁ F ∗
r = 0,

then the inner product from the first fundamental formula is zero as well and thus our

process is coisometric.
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If Xt is isometric, then its dual process is coisometric by Lemma 4.1.4. But by that

result, X♯
t = Qt(πF ∗). By the previous part, this means

F ∗ + F + F ∗∆F = 0.

Before we proceed, we need the following lemma regarding measurability of operator-

valued functions.

Lemma 4.1.13. Consider measurable functions F : R+ → B(H1,H2), G : R+ → B(H1)

with the property that for each s Ker(G) ⊂ Ker(F ), so that the following function:

Vs(Gu) = Fu

is well-defined (extending by 0 on Ran(G)⊥). Then V is measurable.

Proof. Let ξ ∈ H1. We are interested in seeing whether s 7→ Vsξ is measurable. We

can write ξ as ξ = Gu+ v for some v ∈ Ran(G)⊥. This implies that Vsξ = Fsu. But

we know that that function is measurable. Thus so is V .

The following construction is well known - cf. [28]. We repeat the proof of the

result here for clarity and to show that it can be proven using purely quantum Wiener

methods.

Lemma 4.1.14 (Quantum stochastic dilation). If F : R+ → B(k̂0 ⊗ h) is a measurable

function with the property that

Fs ✁ F ∗
s 6 0,

(F ∗
s ✁ Fs 6 0)
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then there exists a measurable function U : R+ → B(k̂ ⊗ h) with k0 ⊂ k such that U is

a dilation of F , in the sense that, denoting Pk0 to be the projection from k to k0,

Pk0UPk0 = F.

Moreover,

Us ✁ U∗
s = U∗

s ✁ Us = 0.

Thus in particular, for ξ, ζ ∈ Fk0,

∫
Γt

dα⟨ξ̂(α), πU(α)(ζ̂(α)⟩ =
∫

Γt

dα⟨ξ̂(α), πF (α)(ζ̂(α)⟩.

Moreover, if F ∈ L1,2,2,∞
loc , then so is U .

Proof. Without loss of generality, let us consider the case F ∗
s ✁ Fs 6 0. By Theorem

1.0.3, this implies that

F ∗
s ✁ Fs =

 −A2
s AsVsDs

DsV
∗
s As −D2

s



for some contractive Vs and As, Ds > 0. Let us notice that As, Ds are automatically

measurable (as being equal to PFP for fixed projections P ). V is measurable by

Lemma 4.1.13. It is easy to see via simple matrix calculations that this implies F to

have the form:

Fs =

iHs − 1
2(L∗

sLs + A2
s) AsVsSs − L∗

sNs

Ls Ns − I

 ,
where S =

√
I −D2 (and, in particular, ∥D∥ 6 1). Let us put K,M to be operators

such that Ks = AsVsDs + N∗
sSs,M

∗M = As(I − VsV
∗
s )As. If we now consider the
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matrix

Us =



iHs − 1
2(L∗

sLs + A2
s) AsVsSs − L∗

sNs Ks M∗
s

Ls Ns − I Ss 0

−V ∗
s As Ss −N∗

s − I 0

Ms 0 0 0


,

then it is easily seen that each Us is a dilation of Fs and U∗
s ✁ Us = Us ✁ U∗

s = 0.

But by our previous result, this implies that Qt(πU) is unitary - we will defer the

proof that U ∈ L1,2,2,∞
loc for a moment. Considering fi, gi ∈ L2(R+; k), ui, vi ∈ h and

λi, µi ∈ C, i 6 n for some n ∈ N, we see that by the First Fundamental Formula, the

fact that U dilates F and the fact that Qt(πU) is unitary that

|⟨
∑
i

λiuiε(fi),Qt(πF )
∑
i

µiviε(gi)⟩| = |⟨
∑
i

λiuiε(fi),Qt(πU)
∑
i

µiviε(gi)⟩|

6 |⟨
∑
i

λiuiε(fi),
∑
i

µiviε(gi)⟩|,

so that Qt(πF ) gives a bounded sesquilinear form of norm 1. But this means that

Qt(πF ) itself is bounded of norm at most 1, which ends the proof.

For the L1,2,2,∞
loc part, one merely needs to observe that from F ∈ L1,2,2,∞

loc we can

infer the following:

• L ∈ L2
loc, N ∈ L∞

loc (by definition);

• D ∈ L∞
loc, A ∈ L2

loc (by the previous, upon inspecting the upper and lower right

corners of F );

• H ∈ L1
loc (by the previous parts).

Now inspecting each entry in the matrix yields what we require, in that the terms in

the first column and first row (except for the top left one) are in L2
loc and the 3 × 3

bottom-right matrix is in L∞
loc. Thus U ∈ L1,2,2,∞

loc .
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Remark 4.1.15. The proposition above is well known in the case when F is an

operator (rather than a function), but the presented proof is much more elementary,

avoiding the usual mapping processes treatment. Also this proof extends to F being a

function, so to the case of quantum stochastic evolutions, rather than merely quantum

stochastic cocycles. Indeed, we can now say:

Corollary 4.1.16. A Markov-regular quantum stochastic evolution is contractive if

and only if its generator F : R+ → B(h ⊗ k̂) satisfies

Fs ✁ F ∗
s 6 0

for almost all s > 0.

4.1.3 Trotter product

As another application of the quantum Wiener formalism, we show an easy proof of

the Trotter product formula from quantum stochastic calculus:

Corollary 4.1.17. Let x = F⊗, y = G⊗ be the generators of two Markov regular

quantum stochastic cocycles X, Y , respectively, and F,G ∈ B(h ⊗ k̂). Then the Trotter

product:

Zn
t = X t

n
Y t

n
σ t

n
(X t

n
Y t

n
)...σ (n−1)t

n

(X t
n
Y t

n
)

converges in the weak operator topology to Zt = Qt(z), where z = F⊗ ⋆ G⊗, for each

k ∈ {uε(f) : u ∈ h, f ∈ L2(R+; k)}.

Proof. The key element of the proof is proving that

⟨uε(0), (Qt(F⊗ ⋆ G⊗) − Qt((F ✁G)⊗))vε(0)⟩ 6 t2C∥u∥∥v∥, u, v ∈ h



112 Applications of quantum Wiener integrals

(with C depending only on F,G). The rest then follows by standard treatment and

properties of the Weyl process - for details see [50].

Fix u, v ∈ h and let w be a locally quantum Wiener integrable operator kernel with

suppw ⊂ Γ(>2). We have

⟨uε(0), (Qt(w)vε(0)⟩ = ⟨uε(0̂), w(vε(0̂))⟩

=
∫

Γt

dα⟨uε(0̂)(α), w(α)(vε(0̂))⟩

=
∫

Γ>2
t

dα⟨uε(0̂)(α), w(α)(vε(0̂))⟩

6 (et − t− 1)∥w∥∥u∥∥v∥ 6 t2K∥w∥∥u∥∥v∥,

where K is the appropriate constant from the Taylor expansion of the exponential

function. Consider w = (F ✁ G)⊗ − F⊗ ⋆ G⊗. We know that suppw ⊂ Γ(>2). Thus

the key estimate and the rest of the proof follow.

4.2 Applications to duality transforms

It is well-known that Fock space is isomorphic to the L2-spaces of stochastic processes

satisfying the so-called chaotic representation property. This chaotic representation is

given by Wiener integrals and thus it is natural to ask how does this transform behave

in the setup developed so far. As we have uncovered a lot of algebraic structure of

mixed time Wiener integrals, it is natural to expect this algebraic structure to have a

natural manifestation on the level of our stochastic process. This is explored below in

the particular cases of Wiener and Poisson processes.
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4.2.1 Wiener product

To develop the duality transform in multi dimensions, we refer the reader to [69]. Let

H be a Hilbert space and denote by C the Gaussian space over H. For f ∈ H let

πf ∈ Γ(k) be the product function σ 7→ ⊗⃗
s∈σf(s) and let εf ∈ L2(C) be given by

exp(ϕf − 1
2∥f∥2), where {ϕf : f ∈ H} is the Gaussian process indexed by H. The

complex linear spans Ψ, ε of {πf : f ∈ H} and {εf : f ∈ H} are dense respectively in

Γ(k) and L2(C) and it is easily seen that

⟨πf , πg⟩ = exp⟨f, g⟩ = ⟨εf , εg⟩.

Thus the isomorphism Φ: Γ(k) → L2(C) is the continuous linear extension of the map

πf 7→ εf .

Let k̂ = C⊕ k with k being a complexification of a real Hilbert space kR. We would

like to define a time-Wiener product ξ ⋆W η of two time-Wiener integrands ξ, η ∈ Φ(k̂),

which is again a time-Wiener integrand and corresponds to the multiplication of

random variables under the duality transform. Consider the case ξ, η ∈ Φ(k) first, with

ξ supported on Γt. We define

xξ(σ) = |ξ(σ)⟩⟨
(

1
0

)⊗#σ

| + |
(

1
0

)⊗#σ

⟩⟨ξ(σ)|,

ξ ⋆W η = Qt(xξ)η,

where ξ(σ) is the conjugation coming from k = kR ⊕ ikR.

Lemma 4.2.1. For a function f : Γ → ⊕
k⊗n and α ∈ Γ let fα denote the function

given by fα(β) = f(α ∪ β). If f ∈ Dom(
√

2N ), then fα is square-integrable for almost

all α ∈ Γ.
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Proof. Applying the integral-sum lemma, we have

∫
Γ
dβ
∫

Γ
dα∥f(α ∪ β)∥2 =

∫
Γ
dσ

∑
α⊂σ

∥f(σ)∥2 =
∫

Γ
dσ2#σ∥f(σ)∥2 < ∞

and the claim follows.

A natural question to ask is which classes of vectors can we Wiener-multiply to

obtain a sensible result. The answer to this question is provided in the following

theorem.

Theorem 4.2.2. If ξ ∈ Dom(
√

3N), then Dom(
√

3N) ⊂ Dom(Qt(xξ)).

Proof. Let us notice that ∥xξ(σ)∥ = ∥ξ(σ)∥. Also, we see that

J∗
α;α∪βxξ(γ;α ∪ β)η(δ;α ∪ β) ̸= 0 ⇔ γ = ω ∪ β, δ = (α \ ω) ∪ β for some ω ⊂ α.

We calculate:

∥ξ ⋆W η∥2 =
∫

Γ
dσ∥Q(xξ)η(σ)∥2 =

∫
Γ
dσ∥

∫
Γ
dβJ∗

σ;σ∪βxξ ⋆ η(α ∪ β)∥2

6
∫

Γ
dσ2#σ ∑

α⊂σ
∥
∫

Γ
dβJ∗

σ;σ∪βxξ(α;σ ∪ β)η((σ \ α) ∪ β;σ ∪ β)∥2

6
∫

Γ
dσ2#σ ∑

α⊂σ
(
∫

Γ
dβ∥J∗

σ;σ∪βxξ(α;σ ∪ β)η((σ \ α) ∪ β;σ ∪ β)∥)2

6
∫

Γ
dσ2#σ ∑

α⊂σ

∫
Γ
dβ1∥xξ(α ∪ β1)∥2

∫
Γ
dβ2∥η((σ \ α) ∪ β2)∥2

=
∫

Γ
dα
∫

Γ
dβ12#α∥ξ(α ∪ β1)∥2

∫
Γ
dσ
∫

Γ
dβ22#σ∥η(α ∪ β2)∥2

= ∥
√

3Nξ∥2∥
√

3Nη∥2 < ∞.
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Remark 4.2.3. 1. Let k = C. Then vectors in Φ(k) are just functions f ∈ L2(Γ).

It is easily seen that then, for real-valued functions f, g ∈ L2(Γ),

Qt(xf )g(σ) =
∑
α⊂σ

∫
Γt

dωf(α ∪ ω)g(ω ∪ (σ \ α),

which is just the Wiener product as defined in e.g. [53].

2. It is easily seen that x∗
ξ = xξ, where ξ(σ) = ξ(σ). As Qt(x∗) ⊂ Qt(x)∗, we can

see that in fact

ξ ⋆W η = η ⋆W ξ, ⟨ξ, η ⋆W ζ⟩ = ⟨η ⋆W ξ, ζ⟩

whenever ξ, η, ζ ∈ Dom(
√

3N).

Corollary 4.2.4. If ξ, η ∈ Dom(
√

3N), then

Φ(ξ ⋆W η) = Φ(ξ)Φ(η).

Proof. The proof follows along similar lines as the proof in [53]. First of all let us

notice that it holds for ξ, η being linear combinations of exponential vectors. Indeed,

for ξ = ε(f), η = ε(g), f, g alued in kR we have

ε(f) ⋆W ε(g)(σ) =
∫

Γ
dβJ∗

σ;σ∪β
∑
α⊂σ

xε(f)(α ∪ β;σ ∪ β)ε(g)((σ \ α) ∪ β;σ ∪ β)

=
∑
α⊂σ

ε(f)(α;σ)ε(g)(σ \ α;σ)
∫

Γ
dβ⟨ε(f)(β), ε(g)(β)⟩

= e⟨f,g⟩ε(f + g),

so

Φ(ε(f))Φ(ε(g)) = εfεg = e⟨f,g⟩εf+g = e⟨f,g⟩Φ(ε(f + g)) = Φ(ε(f) ⋆W ε(g)).
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Now, for η ∈ Dom(
√

3N), ξ, ζ ∈ Ψ we have:

⟨Φ(ξ ⋆W η),Φ(ζ)⟩ = ⟨η, ξ ⋆W ζ⟩ = ⟨Φ(η),Φ(ξ)Φ(ζ)⟩ = ⟨Φ(ξ)Φ(η),Φ(ζ)⟩.

By the density of Ψ and the invariance of ⋆W under conjugation, this implies that

Φ(ξ ⋆W η) = Φ(ξ)Φ(η) whenever at least one of ξ, η is in Ψ. But that means that the

above reasoning remains true or ξ ∈ Dom(
√

3N ), so in fact the claim holds true for all

ξ, η ∈ Dom(
√

3N), which ends the proof.

Finally, we would like to discuss the case when ξ, η are k̂ valued kernels. In this

case we would like to define a ‘hat’-Wiener convolution such that the following holds:

Φ(Ŵ(ξ ⋆Ŵ η)) = Φ(Ŵ(ξ))Φ(Ŵ(η)). (4.2)

Corollary 4.2.5. If ξ, η are time-Wiener integrands such that ξ′, η′ ∈ L2,1
3,1, then (4.2)

holds.

Proof. An immediate corollary from Proposition 2.3.7.

4.2.2 Poisson product

Now let us move to the duality between Fock space and Poisson space. For this let

k = C and let P be the Poisson space. It is known that the Poisson exponential of a

real-valued, locally bounded function f ∈ L2(R+) with compact support is given by

EP(f) = exp{−
∫ ∞

0
f(s)ds}

∏
s>0

(1 + f(s)∆Xs),

where Xs denotes the cádlág version of the compensated Poisson process and ∆Xs =

Xs −Xs−.
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Thus we see that for such functions

EP(f)EP(g) = e⟨f,g⟩EP(f + g + fg).

(cf. [72]).

This gives us a natural candidate for our Poisson multiplication kernel. For

f ∈ L2(R+) real-valued, locally bounded take

xPf (σ) = ⊗s∈σ

 0 ⟨f(s)|

|f(s)⟩ |f(s)⟩⟨1|

 .

Then it is easily seen that for g ∈ L2(R+) locally bounded we have:

(xPf ⋆0 ε(g))(σ) =
∑

α∪β=σ
xPf (α;σ)ε(g)(β;σ)

=
∑

α∪β=σ

⊗
s∈α\β

(
0

f(s)

) ⊗
s∈α∩β

(
f(s)g(s)
f(s)g(s)

) ⊗
s∈β\α

(
0
g(s)

)

= ε

(
fg

f + g + fg

)
(σ),

thus

Qt(xPf )ε(g) = Ŵ(xPf 1Γ[0,t[ ⋆0 ε(g)) = e⟨f1[0,t[,g⟩ε(f + g + fg)

as required.

Corollary 4.2.6. It is easily seen that in fact

Qt(xPf )ε(g)(σ) =
∑

α∪β=σ

∫
Γt

dωf(α ∪ ω)g(ω ∪ β),

which is just the Poisson product as defined in e.g. [53].
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4.3 Maassen–Meyer–Lindsay kernels

We will now show how our theory unifies and extends the theory of Maassen–Meyer–

Lindsay kernels and Dermoune kernels. Let us start by elaborating on the isomorphism

between the Guichardet space and Fock space of finite multiplicity.

Indeed, for k = Cd we can look at the Fock space in the following ways:

Γ(L2(R+;Cd)) = Γ(⊕d
n=1L

2(R+)) = Γ(L2(R+))⊗d = L2(Γ )⊗d = L2(Γ d).

Thus, rather than considering an element of our Fock space as a function of one set

variable with values in an appropriate power of k, we look at it as a function of d set

variables, but with complex values.

The isomorphism between the two spaces is easy to see. Namely, let ei denote

the usual orthonormal basis of Cd. Then an orthonormal basis of (Cd)⊗n consists of

vectors of the form ei1 ⊗ ... ⊗ ein . Given d parwise disjoint sets α1, ..., αd ∈ Γ with

∪d
i=1αi = {s1 < · · · < sn}, we define a vector of this form via

e((αi)di=1) = e(α1, · · · , αd) = ⊗n
j=1e(j), e(j) = ei ⇔ sj ∈ αi.

We map a function f ∈ Γ(L2(R+;Cd)) to ϕ(f) ∈ L2(Γ d) via

ϕ(f)(α1, · · · , αd) = ⟨e(α1, · · · , αd), f(∪d
i=1αi)⟩.

In words, this correspondence puts the i-th basis vector on the tensor components

corresponding to the placement of the elements of αi in ∪d
j=1αj.

With that in mind, it is now easy to see that Dermoune’s formalism is merely

the lifting of this isomorphism into the realm of operator kernels. Indeed, given our

operator kernel x ∈ L1,2,2,∞ let us define (recalling that our kernel in fact operates on



4.3 Maassen–Meyer–Lindsay kernels 119

multiplicity (d+ 1), with the convention that the extra dimension has index 0):

xDer((Aα0 ), (Aαβ), (A0
α), (A0

0)) = ⟨e((∪d
j=0A

j
i ))di=0, x(∪i,jA

j
i )e((∪d

j=0A
i
j))di=0⟩.

Let us notice that, in the other direction, given a disjoint partition of a set σ into

(α0, · · · , αd) and (β0 · · · , βd) we have:

⟨e(α0, · · · , αd), x(σ)e(β0, · · · , βd) = xDer((αi ∩ β0), (αi ∩ βj)i,j>1, (α0 ∩ βi), α0 ∩ β0).

To see that truly this gives a Dermoune kernel, we need to verify its action on a

vector ξ ∈ Γ(L2(R+;Cd)). Namely, we need to verify that:

ϕ(Qt(x)ξ) = Xtϕ(ξ),

where by Xt we mean the kernel operator up to time t with its kernel given by

xDer.

We will utilise the isomorphism between Γ(L2(R+;Cd+1)) and L2(Γ d+1), putting

the extra dimension as the first argument. We will also write α = (α1, · · · , αd),

γ ∩ α = (γ ∩ α1, · · · , γ ∩ αd) and abbreviate (α0, · · · , αd) = (α0, α).

For α ∈ Γt we have:

ϕ(Qt(x)ξ)(α) = ⟨e(α),
∫

Γt

dβJ∗
α;α∪β(x ⋆ ξ)(α ∪ β)⟩

=
∫

Γt

dβ⟨e(β, α), (x ⋆ ξ)(α ∪ β)⟩

=
∫

Γt

dβ
∑

γ0∪γ1=α∪β
⟨e(β, α), x(γ0;α ∪ β); ξ(γ1;α ∪ β)⟩.
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We now use the expression:

ξ(α) =
∑
α=⊔α

ϕ(ξ)(α)e(α),

which is just a special case of Parseval’s identity.

ϕ(Qt(x)ξ)(α) =
∫

Γt

dβ
∑

γ0∪γ1=α∪β
=

∑
γ1=⊔γ1

⟨e((α ∪ β) \ γ1, γ), ξ((α ∪ β) \ γ1, γ)⟩

·⟨e(β, α), x(γ0;α ∪ β)e((α ∪ β) \ γ1, γ)⟩

=
∫

Γt

dβ
∑

γ0∪γ1=α∪β
=

∑
γ1=⊔γ1

⟨e((α ∪ β) \ γ1, γ), ξ(γ1;α ∪ β)⟩

⟨e(β, α ∩ γ0), x(γ0)e(γ0 \ γ1, γ ∩ γ0)⟩

=
∫

Γt

dβ
∑

γ0∪γ1=α∪β
=

∑
γ1=⊔γ1

ϕ(ξ)(γ1)xDer((αij)di=0),

with αij defined as follows:

α00 = β ∩ γ0 \ γ1,

αi0 = α ∩ γ0 \ γ1 for i > 1,

α0i = β ∩ γ1 ∩ γ0 for i > 1,

αij = α ∩ γ1 ∩ γ0 for i, j > 1.

Now it is easily seen that in fact,

ϕ(Qt(x)ξ)(α) = Xtϕ(ξ)(α).

In particular, taking d = 1, we recover Maassen–Meyer–Lindsay kernels:

xM(γ, β, α, δ) = ⟨e(γ ∪ δ, α ∪ β), x(α ∪ β ∪ γ ∪ δ)e(δ ∪ α, γ ∪ β)⟩.
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We can summarise our findings in the following theorem:

Theorem 4.3.1. Let d < ∞ and let xDer : Γ(d+1)×(d+1) → C be a measurable function

satisfying the condition

|x((αij)di,j=0)| 6 C
∑

#αij

M

for some C,M > 0 and let X denote the corresponding integral kernel operator on FCd.

Then there exists an operator kernel x such that

ϕ(Qt(x)ξ) = Xϕ(ξ)

for all ξ ∈ Geom.

Conversely, for a measurable operator kernel x on FCd satisfying the local L1,2,2,∞

condition, defining

Xtϕ(ξ) = ϕ(Qt(x)ξ)

gives an extension of the integral kernel operator in the sense of Dermoune, with the

kernel xDer defined as before. Indeed, the operator is given exactly in the integral kernel

form and it is easily seen that

Dom(Xt) ⊃ ϕ(Geom).

Proof. The only non-trivial part is the fact that the resulting x satisfies the local

L1,2,2,∞ condition. However, it is easily seen that the geometric condition is, in fact,

stronger and, by taking k = l = m = n = max 1, C,M we get that x satisfies a local

L∞,∞,∞,∞ condition with these bounds. The fact that x is reconstructible from xDer

follows from the finiteness of d.
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4.4 Mapping case

Quantum mapping processes correspond to operator processes via a switch from the

Schrödinger picture to Heisenberg picture in quantum mechanics. They were first

studied by Evans and Hudson in [19]. Since then, quantum stochastic flows have met

with considerable interest due to their connection to quantum dynamical semigroups

[47], product systems [12], dilation theory [30] and classical probability [68]. In quantum

stochastic calculus relevant works are [58], [59]. They also form the foundation of the

theory of quantum Lévy processes and are elements of necessary machinery to perform

quantum stochastic calculus on quantum groups [23]. [1] gives a nice overview of this

perspective.

An operator kernel x can be considered as a map

x : Γ → ⊕n>0B(h ⊗ k̂⊗n) ⊃ ⊕n>0B(h)⊗B(k̂⊗n).

For the mapping case, let us instead fix an operator space/algebra/system V ⊂ B(h)

and, recalling Definition 1.2.4, let us define the notion of a mapping kernel as a map

j : V × Γ → ⊕n>0V ⊗M B(k̂⊗n)

such that for each a ∈ V j(a), looked at as a map from Γ to ⊕n>0V⊗B(k̂⊗n), is an

operator kernel.

We define j to satisfy the L1,2,2,∞ condition if each j(a) does.

Example 4.4.1. (i) Let ϕ : V → V ⊗B(k̂) be a completely bounded map and define

its n-fold convolution via:

ϕ◦n : V → V ⊗B(k̂⊗n),
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ϕ◦n(a) = (ϕ⊗ id
B(̂k⊗(n−1))) ◦ · · · ◦ (ϕ⊗ id

B(̂k)) ◦ ϕ(a).

As ϕ is completely bounded, it is easily seen that this defines a mapping kernel

πϕ satisfying the L1,2,2,∞ condition. This generates the mapping cocycle (Evans-

Hudson flow).

(ii) This example can be generalised to families ϕt : V → V ⊗ B(k̂), ϕt : V → B(k̂)

with appropriate assumptions on the corners of ϕ, ϕ.

Remark 4.4.2. Cocycles of the form (i) are considered by Lindsay and Wills in [60]

and they prove that the cocycle is weakly multiplicative if and only if, in our language,

πϕ(ab) = πϕ(a) ⋆ πϕ(b).

It is worth noting that these algebraic identities for mapping cocycles have also been

used in [11], where they have been applied to unbounded maps as well.

In our case we have the power to state the same results for ϕ depending non-trivially

on time.

Remark 4.4.3. The machinery developed in this thesis is very powerful and fits into

the framework of quantum stochastic cocycles and evolutions remarkably well. Further

directions of research include applying it to the fermionic picture via [38] and allowing

for unbounded kernels to allow for a wider family of quantum stochastic processes.

The Hilbert–Schmidt representation theorem (Theorem 3.4.3) gives hope that these

quantum Wiener integrals may also reconstruct more general martingales.





Appendix A

Quasifree Wiener integrals

A.1 Quasifree stochastic calculus

The theory of quasifree quantum stochastic calculus was first started by Lindsay in

his PhD thesis and then continued in his collaboration with Margetts ([55], [56]) and

Gnacik ([27]). We will make heavy use of the machinery they have developed, which

we present here.

A.1.1 The CCR algebra

We begin with a definition of the symplectic space.

Definition A.1.1. A vector space V is called a symplectic space if it is equipped with

an antisymmetric, real-bilinear form σ : V × V → R. We call σ a symplectic form. We

write (V, σ) for a symplectic space with the associated symplectic form.

σ is nondegenerate if

∀u∈V σ(u, v) = 0 ⇒ v = 0

for any v ∈ V . In that case we call V a nondegenerate symplectic space.
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Example A.1.2. Take V to be a complex Hilbert space with inner product ⟨·, ·⟩ and

define σ = Im⟨·, ·⟩. This is a fundamental example that will feature further on in our

research.

Maps between two symplectic spaces which preserve the symplectic form are called

symplectic maps.

Given a symplectic space (V, σ) we write CCR(V, σ) for the C∗-algebra generated

by unitaries {wu : u ∈ V } satisfying the Weyl form of canonical commutation relations:

wuwv = e−iσ(u,v)wu+v.

It turns out (cf. [79], [64]) that these relations define a unique C∗-algebra, which is

simple, central and non-separable.

Proposition A.1.3. For every symplectic map T : V → W between symplectic spaces

(V, σ) and (W, τ) there is a unique C∗-monomorphism ϕT : CCR(V, σ) → CCR(W, τ)

satisfying

ϕT (wu) = wTu, u ∈ V.

In the case when T is a symplectic automorphism, ϕT is known as the Bogoliubov

transformation.

A.1.2 Partial transpose

Before we continue, we need the construction of a partial transpose. We will modify it

for our purposes in the subsequent section. For details and motivations of the results

quoted here we refer the Reader to [55].

We need the following notations and definitions to facilitate our treatment of

unbounded operators.

Definition A.1.4. Let H1,H2 be two Hilbert spaces and D1 be a dense subset of H1.
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1. We denote the family of (unbounded) operators with domain D1 and values in

H2 by O(D1,H2).

2. For a dense subset D2 of H2, we denote by O†(D1,D2) the family of adjointable

operators T with domain D1, values in H2 and such that D2 is in the domain of

T ∗. The restriction of T ∗ to D2 in this case will be denoted by T †.

Definition A.1.5. Let h1, h2,H be Hilbert spaces and M be a von Neumann algebra

in B(H). We say that a (possibly unbounded) operator T from h1 ⊗ H to h2 ⊗ H is

affiliated to M, written TηB(h1, h2)⊗M, if for all unitaries u in M′ we have

(Ih2 ⊗ u∗)T (Ih1 ⊗ u) = T.

In accordance with our previous notation, we define the following families:

OM(h1⊗D; h2 ⊗ H) := {T ∈ O(h1⊗D; h2 ⊗ H) : TηB(h1, h2)⊗M};

O†
M(h1⊗D1; h2 ⊗ D2) := {T ∈ O†(h1⊗D1; h2 ⊗ D2) : TηB(h1, h2)⊗M}

for D,D1,D2 dense subsets of H.

These notations allow us to succinctly state the vector operator correspondence of

Tomita-Takesaki theory. Namely, let now M be a von Neumann algebra with a cyclic

and separating vector ξ and let Eξ be the ampliation of the ket map. In the usual

form, the vector operator correspondence simply states that each operator affiliated

with a von Neumann algebra is uniquely given by its value on the cyclic and separating

vector. Here we need an “ampliated” version of this statement: that an operator

T ∈ OM(h1⊗D; h2 ⊗ H) is uniquely defined, up to its h1 7→ h2 part, by its value on

vectors of the form u⊗ ξ for u ∈ h1.

Let Ξ = M′ξ. We have the following proposition:
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Proposition A.1.6. The map T 7→ TEξ is a linear isomorphism between families

OM(h1⊗Ξ; h2 ⊗ H) and O(h1; h2 ⊗ H), which restricts to an isomorphism between

O†
M(h1⊗D1; h2 ⊗ D2) and

{B ∈ B(h1; h2 ⊗ H) : ∃B†∈B(h2;h1⊗H)∀x′∈M′B∗Ex′ξ = Ex′∗ξB†}.

We will write T ξ for its inverse.

Let us note the surprising appearance of bounded operators. Indeed, for an

unbounded closed operator T with domain h1 ⊗ D1, we have that TEξ is everywhere

defined and closed and thus bounded. Thus upon restricting to adjointable (and thus

closed) operators we can easily see that their slices become automatically bounded.

Definition A.1.7. For a Hilbert space k k denotes its Hilbert space conjugate. We

write j for the map u 7→ u, j : k → k. For an operator T ∈ O(D, k2),D ⊂ k1 we write

T ∈ O(D, k2) for

T = j2Tj
−1
1 , c 7→ Tc,

where j1, j2 are conjugations on k1, k2 respectively.

The transpose map T T is defined as

T T = T ∗.

The transpose map, as a map which is not completely bounded, cannot easily be

“tensored with identity”. To circumvent this trouble, we note that transposition is a

unitary operator between the Hilbert-Schmidt classes of operators, i.e.

U := (·)T : HS(k1; k2) → HS(k2; k1)
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is a unitary map. Thus we can tensor with identity:

I ⊗ U : HS(h1; h2) ⊗HS(k1; k2) = HS(h1 ⊗ k1; h2 ⊗ k2) → HS(h1 ⊗ k2; h2 ⊗ k1).

Currently we are able to partially transpose Hilbert-Schmidt operator. We would

like to be able to do that on a wider class of operators. The right classes are described

by the following:

Definition A.1.8. Let M be a von Neumann algebra on B(H) with a cyclic and

separating vector ξ. For Hilbert spaces k1, k2 we define the (k1, k2)-matrix space via:

Mk1,k2(M, ξ) := {T ∈ OM(k1⊗Ξ; k2 ⊗ H) : TEξ ∈ HS(k1; k2 ⊗ H)}.

More generally, for a subset D ⊂ H we define:

Mk1,k2(M,D) = ∩h∈DMk1,k2(M, h).

In that case, we will denote the mapping D ∋ η → TEη by ED and its inverse by (·)D.

For k1 = C, k2 = k, we will write Mk1,k2(M, ·) as C(M, ·) (for column). Similarly, for

k1 = k, k2 = C, we will write R(M, ·) (for row).

In this class, we can define the partial transpose:

Definition A.1.9. Let T ∈ Mk1,k2(M, ξ). We define:

T T := ((I ⊗ U)(TEξ))ξ.

For T ∈ Mk1,k2(M,D), we define

T t := ((I ⊗ U)(ED(T )))D.
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We note the consistency of notations.

The properties of this map are elaborated in detail in e.g. [65], Chapter 4 and 5.

We will only quote ones we need.

We give a final theorem before diving into the quasifree stochastic calculus proper:

Theorem A.1.10 (cf. [2]). Let H0 be a closed, real subspace of H such that H0 ⊕ iH0

is dense in H and H0 ∩ iH0 = {0}. Then

M′
H0 = MiH⊥

0
,

where MK = CCR(K)′′ for a Hilbert space K.

Moreover, denoting M = CCR(H), if ξ is its cyclic and separating vector, then,

under the natural identifications, ξ is also a cyclic and separating vector for MH0 and

MiH⊥
0

.

This theorem is a special case of the Araki’s Duality Theorem [2]. This form is

taken from [73].

A.1.3 Quasifree stochastic calculus

Fix Hilbert spaces h, k and let k denote the conjugate space to k. Let the conjugation

k → k be denoted by K and let ι : k → k ⊕ k be the operator

ι =
(
I

−K

)

and ι̂ : k → k̂ ⊕ k to be given by ι̂(f) = ι̂(f). Moreover, fix a real subspace X ⊂ k and

an operator Σ0 on the subspace ι(X) ⊂ k ⊕ k with the following properties:

1. X is dense in k;
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2. Σ0 is closable;

3. Σ0 ◦ ι is symplectic;

4. Ran Σ0 is dense in k ⊕ k;

5. Σ0ιX =: H1, H2 := i(H1)ℜ⊥ have the following properties:

• H1 is a real, closed subspace of k ⊕ k;

• H1 ⊕ H2 is dense in k ⊕ k;

• H1 ∩ iH2 = {0}.

Let Σ be the closure of Σ0.

Finally, let A be a von Neumann algebra acting on h with a cyclic and separating

vector υ and NΣ be the von Neumann algebra acting on Fk⊕k generated by the modified

Weyl operators:

W (f) = W0(Σι(f)), f ∈ L2(R+; k).

This noise algebra has, by the properties of Σ, Ω as its cyclic and separating vector,

so the von Neumann algebra A⊗NΣ has a cyclic and separating vector υ ⊗ Ω =: η.

The commutant of the noise algebra can be represented using a conjugate operator Σ′,

obtained from Σ via modular conjugation. Thus

N ′
Σ = NΣ′ .

We denote

MW := {a⊗W (f) : a ∈ A, f ∈ L2(R+; k)}, M ′
W := {a⊗W ′(f) : a ∈ A′, f ∈ L2(R+; k)}.
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A.2 Multiple quasifree Wiener integrals

A.2.1 Quasifree vector kernels

We recall the quasifree setup and notation from Chapter 3. To apply it in our case, we

need some further notation.

Let V (1) denote the inclusion map k ⊕ k −→ Fk⊕k and sΩ = (V (1))∗SΩV
(1), where

SΩ denotes the Tomita-Takesaki sharp operator on NΣ. On k ⊕ k let π denote the sum

flip π : k ⊕ k → k ⊕ k. Recall the following proposition ([55], Thm. 4.2):

Proposition A.2.1.

sΩΣ = ΣKπ.

Corollary A.2.2.

SΩπΣ = πΣKπ .

Proof. Follows from the fact that SΩ = Γ(sΩ) (cf. [55]).

For ease of use, let Sh denote the Tomita-Takesaki sharp operator on A and let S

be the sharp operator on A⊗NΣ, so that S = Sh ⊗ SΩ.

Let K(h, k̂ ⊕ k) denote the family of measure equivalence classes of measurable

k̂ ⊕ k-valued vector kernels. We define

L1,2(K(h, k̂ ⊕ k)) :=
{
ξ ∈ K(h, k̂ ⊕ k) : ∥ξ∥1,2 :=

∫
Γ
dβ

√∫
Γ
dα∥J∗

α;α∪βξ(α ∪ β)∥2 < ∞
}
,

Dom(ŴΣ) :=
{
ξ ∈ K(h, k̂ ⊕ k) : πΣ̂ξ ∈ L1,2(K(h, k̂ ⊕ k)),∀β ∈ ΓJ∗

·;·∪βξ(· ∪ β) ∈ Dom(S)
}
.

Definition A.2.3. For ξ ∈ Dom(ŴΣ) we define

ŴΣ(ξ)(α) =
∫

Γ
dβJ∗

α;α∪β(πΣ̂ξ)(α ∪ β).
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Remark A.2.4. 1. We can see from Corollary A.2.2 that ŴΣ(ξ) is Dom(S)-valued.

2. It is also easily seen that, since Σ is bounded,

ŴΣ(ξ) = πΣ̂Ŵ(ξ).

3. If we assume Σ is a time-independent bounded operator, then we only need to

require ξ ∈ L1,2(K(h, k̂ ⊕ k)).

4. If ξ is Dom(S)-valued, then

ŴΣ(ξ) = πΣξ.

5. It is easily seen that the following version of the First Fundamental Formula

holds: 〈
W ′(f)uΩ, ŴΣ(ξ)

〉
=
∫

Γ
dσ
〈
ϖ(Σ̂ ◦ ι̂(f))(σ), πΣ̂(σ)ξ(σ)

〉
,

which for ξ supported only on compact intervals simplifies to

〈
W ′(f)uΩ, ŴΣ(ξ)

〉
=
〈

̂W ′(f)uΩ, πΣ̂ξ
〉
.

6. Since Ŵ(ξ) is Dom(S)-valued, there exists an adjointable operator Xξ affiliated

to M with the property that

Xξη = ŴΣ(ξ).

This operator is closable, adjointable and M ′
Wη is a core for both Xξ and X∗

ξ .

Remark A.2.5. Equivalently, our operator Xξ could be defined on the domain (ANΣ)′.



134 Quasifree Wiener integrals

A.2.2 Operator kernels

Before we define the quantum Wiener operator integral, we need a partial transpose

and convolution for column operators.

Let σ ∈ Γ. Then

x(σ) : h ⊃ D → h ⊗ k̂ ⊕ k
⊗#σ

,

so

(x(σ)) ∈ OM(D ⊗ Fk⊕k;B(C; h ⊗
(

k̂ ⊕ k
)⊗#σ

⊗ Fk⊕k)),

so we can define for α ⊂ σ

xT (α)(σ) := [∆[α;σ]x(σ)]T (α) ∈ OM(D;HS((k ⊕ k)⊗#α; h ⊗ k̂ ⊕ k
⊗#(σ\α)

))

via the column partial transpose of Margetts and Lindsay, where we treat C as k1,

k ⊕ k⊗#α as k2 and the rest as H. Thus for example, if σ = {s1 < s2}, α = {s1}, ξ, η ∈

k ⊕ k, u, v ∈ h, then 〈
vη, xT (α)(σ)uξ

〉
= ⟨vξη, x(σ)u⟩ .

We will need to supercede the convolution notation introduced before. We modify

it as follows.

Definition A.2.6. For two operator kernels x, y and matrices Σ1,Σ2 we define their

convolution by:

x ⋆Σ1 Σ2
y(σ)v :=

∑
α∪β=σ

(
xT (α∩β)(α;σ)Πα∩β

(
(Σ∗

1∆Σ2)[α ∩ β;σ]y(β;σ)v
)

;σ
)
,

where v ∈ D and Πα∩β is the sum flip k ⊕ k → (k ⊕ k) on the tensor components

belonging to α. Similarly we define the convolution for an operator kernel x and vector

kernel ξ:
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x ⋆Σ ξ(σ) :=
∑

α∪β=σ

(
Σ̂(α\β;σ)xT (α∩β)(α;σ)Πα∩β

(
(Σ∗∆)[α ∩ β;σ]ξ(β)

)
;σ
)
.

Definition A.2.7. For a column kernel x coming from a vector kernel ξ ∈ Dom(ŴΣ)

we define the multiple quantum Wiener integral of x at time t > 0 as an unbounded

operator by:

Dom(QΣ
t (x)) = {ζ ∈ h ⊗ Fk⊕k : (x1Γt ⋆Σ ζ) ∈ L1,2(K(h, k̂ ⊕ k))},

QΣ
t (x)ξ(σ) = Ŵ(x1Γt ⋆Σ ξ)(σ).

We note the similarity to Definition 3.1.5.

Definition A.2.8. Let f ∈ L2(R+; k) and Cf =


−1

2∥Σιf(s)∥2

|f(s)⟩

−|f(s)⟩ >

 . Let xf = Ih ⊗ πCf
.

Proposition A.2.9. With above notations, for h = C, an arbitrary operator kernel x

coming from a vector ξ and function f ∈ L2(R+; k) we can extend QΣ(xf ) to a bounded

operator, which is exactly W (f) (thus also QΣ′(xf ) can be extended to W ′(f)), and

x ⋆Σ Σ′ xf = xf ⋆Σ′ Σ x.

Proof. It suffices to show that ϖ(Σι(g)) ∈ Dom(QΣ(xf )) for all g ∈ L2(R+; k) and

QΣ(xf )ϖ(Σι(g)) = e−i Im⟨Σιf,Σιg⟩ϖ(Σι(f + g)).

We will now omit the placement notation - all the following operators or vectors

are placed within α ∪ β as necessary.
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We have:

QΣ(xf )ϖ(Σι(g)) =
∫

Γ
dβJ∗

α;α∪β(xf ⋆Σ ϖ(Σι(g)))(α ∪ β)

=
∫

Γ
dβJ∗

α;α∪β

 ∑
β0⊔β1⊔β2=α∪β

Σ(β0)xT (β1)
f (β0 ∪ β1)Πβ1((Σ∗∆)(β1)ϖ(Σι(g))(β1 ∪ β2)


=
∫

Γ
dβJ∗

α;α∪β

 ∑
β0⊔β1⊔β2=α∪β

⊗
s∈β0

(
−1

2∥Σιf(s)∥2

Σι(f)

) ⊗
s∈β1

(
− ⟨Σι(g(s),Σι(f(s))⟩

0

)

⊗
s∈β2

Σι(g(s))
 ,

where the last equality follows from the fact that

ATEc = EcA.

(cf. [27]) Thus for s ∈ β1 we obtain

xTf (s)Π(Σ∗∆Σι(g(s))) = EKΠ(Σ∗∆Σι(g(s)))xf (s) = EΣ∗∆Σι(g(s))KΠ(xf (s))

= E∆Σι(g(s))(−Σxf (s)) =
(

− ⟨Σι(g(s)),Σι(f(s))⟩
0

)
.

Now, it is easily seen that such a sum over all partitions is just a product vector of

the sum of the components. Applying our J∗ operator, we get

QΣ(xf )ϖ(Σι(g)) =
∫

Γ
dβε

(
−1

2∥Σιf(·)∥2 − ⟨Σι(g(·)),Σι(f(·))⟩ − 1
2∥Σιg(·)∥2

)
(β)

· ε(Σι(f + g))(α) = e− 1
2 (∥Σιf∥2+∥Σιg∥2+2⟨Σιg,Σιf⟩)ε(Σι(f + g))(α)

= e−i Im⟨f,g⟩ε(Σι(f + g))(α),

by the fact that Σι is symplectic.
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Thus QΣ(xf ) = W (f) on exponential vectors and thus W (f) is a bounded extension

of QΣ(xf ).

To show the second part, we will make use of the fact that

KΠ(Σ∗Σ′ι′(g(s))) = −Σ∗Σ′ι′(g(s)) (A.1)

(cf. Lemma 1.2 of [56]). It implies that

KΠ(Σ∗∆Σ′xg(s)) = Σ∗Σ′x−g(s).

Also we see that

Π(xTf (s)) = x∗
−f (s).

We have (again, omitting the placement notation and placing all vectors within σ):

x ⋆Σ Σ′ xf (σ) =
∑

α∪β=σ
xT (α∩β)(α)Πα∩β((Σ∗∆Σ′)(α ∩ β)xf (β))

=
∑

α∪β=σ
EKΠ((Σ∗∆Σ′)(α∩β)xf (α∩β))x(α)xf (β\α)

=
∑

α∪β=σ
E−Σ∗∆Σ′(α∩β)xf (α∩β)xf (β\α)x(α)

=
∑

α∪β=σ
xf (β\α)(−x∗

fΣ′∗∆Σ)(α ∩ β)x(α)

=
∑

α∪β=σ
xf (β\α)(x∗

−fΣ′∗∆Σ)(α ∩ β)x(α)

=
∑

α∪β=σ
xf (β\α)(Π(xTf )Σ′∗∆Σ)(α ∩ β)x(α)

=
∑

α∪β=σ
x
T (α∩β)
f (β)Π(α ∩ β)((Σ′∗∆Σ)(α ∩ β)x(α))

= xf ⋆Σ′ Σ x(σ).
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Corollary A.2.10. For x as above, QΣ(x) is affiliated to M = A ⊗ NΣ and thus in

particular

(A⊗NΣ)′η ⊂ Dom(QΣ(x)).

Proof. Let ζ = (a ⊗ W ′(f))υ ⊗ Ω for some a ∈ A′, f ∈ L2(R+; k). Then we can see

that ζ = QΣ′(a⊗ xf )υ ⊗ Ω, so that

QΣ(x)ζ = Ŵ(x ⋆Σ (πΣ′Ŵ(aυ ⊗ xfΩ))) = Ŵ(x ⋆Σ Σ′ (aυ ⊗ xfΩ))

= Ŵ((a⊗ xf ) ⋆Σ′ Σ x(υ)) = a⊗W ′(f)(x(·)(υ)).

Thus the convergence of right hand side implies convergence of the left hand side and

thus ζ ∈ Dom(QΣ(x)). Since operators of the form a ⊗ W ′(f) ∈ A′ ⊗ N ′
Σ generate

(A⊗NΣ)′, we obtain that QΣ(x) is affiliated to M .

Corollary A.2.11. For x as above and ζ ∈ (A⊗NΣ)′η we have

QΣ(x)ζ = Xξζ.

Proof. That is an immediate corollary from the previous observations and the fact that

QΣ(x)η = Xξη.

To combine column kernels in greater generality we need the following conjugation

operation:

Definition A.2.12. For a column kernel x coming from a vector ξ ∈ Dom(ŴΣ) we

define

x†(σ) := (Π(xT (σ)(σ)))∗.
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Theorem A.2.13. For such column kernels x, we have

QΣ(x†)υΩ = SŴΣ(ξ),

Dom(QΣ(x†) ⊂ Dom((QΣ(x)∗)) and

QΣ(x†)ζ = (QΣ(x))∗ζ

for ζ ∈ Dom(QΣ(x†).

Proof. We omit the placement notation.

〈
QΣ(x†) (A⊗W ′(f))η, η⟩ =

=
∫

Γ
dα
∫

Γ
dβ
〈
J∗
α;α∪βΣ(α ∪ β)(Π(xT (α∪β)(α ∪ β))∗υ, (A∗ ⊗W ′(−f))η

〉
=
∫

Γ
dα
∫

Γ
dβ
〈
υ,Π(xT (α∪β)(α ∪ β))Σ∗(α ∪ β)Jα;α∪β(A∗ ⊗W ′(−f))(η)(α)

〉
=
∫

Γ
dα
∫

Γ
dβ
〈
υ, xT (α∪β)(α ∪ β)Π(Σ∗(α ∪ β)Jα;α∪β(A∗ ⊗W ′(−f))(η)(α))

〉
=
∫

Γ
dα
∫

Γ
dβ ⟨Aυ ⊗ (KΠ(Σ∗(α ∪ β)Jα;α∪βW

′(−f)Ω(α))), x(α ∪ β)υ⟩

=
∫

Γ
dα
∫

Γ
dβ ⟨Aυ ⊗ (Σ∗(α ∪ β)Jα;α∪βW

′(f)Ω(α)), x(α ∪ β)υ⟩

=
∫

Γ
dα
∫

Γ
dβ
〈
Aυ ⊗W ′(f)Ω(α)), J∗

α;α∪βΣ(α ∪ β)x(α ∪ β)υ
〉

=
∫

Γ
dα
〈
(A⊗W ′(f))(η)(α),QΣ(x)η

〉
.

Thus in particular, by definition of the sharp operator and the fact thatQΣ(x†), (QΣ(x))∗

coincide on η, we obtain that

QΣ(x†)υΩ = SŴΣ(ξ).
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Proposition A.2.14. Let vε(Σ′ι(g)) ∈ Dom(QΣ
t (x)), uε(Σ′(ι(f)) ∈ h ⊗ Fk⊕k. Then

we have:

⟨uε(Σ′(ι(f)),QΣ
t (x)vε(Σ′ι(g))⟩ = e⟨Σ′ι(f),Σ′ι(g)⟩

∫
Γt

dσ⟨Ih ⊗ Σ̂′uι̂(f−g)(σ), Ih ⊗Σx(σ)v⟩,

which upon normalisation becomes, by the fact that Σ′ is symplectic:

⟨uW ′(f),QΣ
t (x)vŴ ′(g)⟩ = ei Im⟨f,g⟩

∫
Γt

dσ⟨Ih ⊗ Σ̂′uι̂(f − g)(σ), Ih ⊗ x(σ)v⟩,

Proof. We will again make use of the identity in Equation A.1. We write, omitting

placement notation as usual:

⟨uε(Σ′(ι(f)),QΣ
t (x)vvε(Σ′ι(g))⟩ =

∫
Γ
dα
∫

Γt

dβ
∑

β0⊔β1⊔β2=α∪β

⟨Jα;α∪βuε(Σ′(ι(f)), Σ̂(β0;σ)x1T (β1)
Γt

(β0 ∪ β1;σ)
∏
β1

((Σ∗(β1)vε(Σ′ι(g))(β1 ∪ β2)) .

We see that the β2 part is untouched by either the transposition or sum flip operation.

As we are dealing with product vectors, we can take that out of the equation and it

is easily seen that is where the e⟨Σ′ι(f),Σ′ι(g)⟩ part of our identity will come from (cf.

Proposition 3.3.1 for an example of a similar reasoning). Thus now our sum takes the

form ∑
β0⊔β1=α∪β

=
∑

δ⊂α∪β

with δ taking the role of our β1. But it is easily seen that if δ ∩ α ̸= 0, then on the

right hand side we’ll have an expression in k ⊕ k⊥ (due to the transpose of x), while on

the left we have something in k ⊕ k (as we are in α). Thus in fact, we merely need to

take δ ⊂ β. In this new form, using Equation A.1 and the fact that x1Γt is supported
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on Γt, we obtain

LHS =
∫

Γt

dα
∫

Γt

dβ
∑
δ⊂β

⟨uε(h)(α ∪ β), x(α ∪ β)v⟩,

where

h(s) =



Σ∗Σ′ι(f)(s) s ∈ α

Σ∗
(

1
0

)
s ∈ β \ δ

Σ∗Σ′ι(−g)(s) s ∈ δ.

But by integral-sum identity, this is equal to

∫
Γt

⟨Ih ⊗ Σ̂′uι̂(f − g)(σ), Ih ⊗ Σ(σ)x(σ)v⟩,

as required.

The normalisation part is easily seen by the fact that Σ′ is symplectic.

Theorem A.2.15. Let x, y be column kernels coming from Σ-time-Wiener integrable

vectors ξx, ξy, respectively. If ŴΣ(ξy) ∈ Dom(QΣ(x†))∗, then the vector

(x ⋆Σ Σ y)η

is Σ-time-Wiener integrable and

(QΣ(x†))∗QΣ(y)η = QΣ(x ⋆Σ Σ y)η.

Proof. Let us first expand the left hand side and the right hand side from the respective

definitions.

LHS =
〈
QΣ(x†)(A⊗W ′(f))η,QΣ(y)η

〉
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=
∫

Γ
dα
∫

Γ
dβ
∫

Γ
dγ

〈
J∗
α;α∪β

 ∑
β0∪β1=α∪β

Σ̂(β0\β1;α ∪ β)(Πβ0

(
xT (β0)(β0))∗;α ∪ β

)T (β0∩β1;α∪β)
Πβ0∩β1;α∪β(Σ∗(β0 ∩ β1;α ∪ β)[(A⊗W ′(f))η(β1;α ∪ β)]

)
,

J∗
α;α∪γΣ̂(α ∪ γ)y(α ∪ γ)υ

〉

RHS =
〈
(A⊗W ′(f))η,QΣ(x ⋆Σ Σ)η

〉
=
∫

Γ
dα
∫

Γ
dβ

∑
β0∪β1=α∪β

〈
Aυ ⊗W ′(f)(Ω)(α), J∗

α;α∪βΣ(β0 \ β1;α ∪ β)xT (β0∩β1)(β0 ∩ β1;α ∪ β)

Πβ0∩β1 ((Σ∗∆Σ)(β0 ∩ β1;α ∪ β)Σ(β1 \ β0;α ∪ β)y(β1;α ∪ β))⟩

The main idea of the calculation to follow can be explained via the following pair

of diagrams. The first diagram symbolises the left hand side and how it decomposes

into a sum over different partitions of the set α ∪ β ∪ γ. In each part we write which

operators are acting on the relevant tensor components.

The second diagram analogously portrays the right hand side of the equation.

It is easily seen from the diagrams that the equality holds via a relabeling of

variables. This is, of course, merely a heuristic - in particular, we still need to justify

the form of some of these operations on the relevant tensor components. Thus let us

begin the detailed calculation. Firstly, we use the fact that (A⊗W ′(f))η commutes

with our quantum stochastic integral, and thus we can take it outside and then move it

to the right hand side of the equation. Due to the interaction of Σ∗Σ′ with the partial

transpose, we can write it as follows.
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α βγ

⟨Σπ(xT )∗0̂,Σy⟩

0

⟨ξ,Σy⟩

⟨0̂, Σ̂y⟩

⟨0̂, x0̂⟩

⟨ξ, Σ̂x0̂⟩

α β

⟨ξ, Σ̂x0̂⟩

0

⟨ξ,Σy⟩

⟨0̂, x0̂⟩

⟨Σπ(xT )∗0̂,Σy⟩

⟨0̂, Σ̂y⟩

〈
QΣ(x†) (A⊗W ′(f))η,QΣ(y)η

〉
=
∫

Γ
dα
∫

Γ
dβ
∫

Γ
dγ

〈
J∗
α;α∪β

 ∑
β0∪β1=α∪β

Σ̂(β0\β1;α ∪ β)(Πβ0
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(
xT (β0)(β0))∗;α ∪ β

)T (β0∩β1;α∪β)
Πβ0∩β1;α∪β(Σ∗(β0 ∩ β1;α ∪ β)

[(A⊗W ′(f))η(β1;α ∪ β)]) , J∗
α;α∪γΣ̂(α ∪ γ)y(α ∪ γ)υ

〉
=
∫

Γ
dα
∫

Γ
dβ
∫

Γ
dγ

∑
β0∪β1=α∪β

〈
A⊗W ′(f)η(β1\β0),Π(xT (β0)(β0;α ∪ β))

Σ̂∗(β0\β1;α ∪ β)Jα;α∪βJ
∗
α;α∪γΣ̂(α ∪ γ)y(α ∪ γ)υ ⊗ϖ(Σ∗Σ′ι(−f))(β0 ∩ β1)

〉
.

Continuing, we can now move the x† to the right hand side, using the definition of

the adjoint and partial transpose.

〈
QΣ(x†) (A⊗W ′(f))η,QΣ(y)η

〉
=
∫

Γ
dα
∫

Γ
dβ
∫

Γ
dγ

∑
β0∪β1=α∪β

⟨Aυ ⊗ (Σ∗(β0 ∩ β1; β1)W ′(f)(β1)),

xT (β0\β1)(β0;α ∪ β)Πβ0\β1

(
Σ̂∗(β0\β1;α ∪ β)Jα;α∪βJ

∗
α;α∪γΣ̂(α ∪ γ)y(α ∪ γ)υ

)〉
=
∫

Γ
dα
∫

Γ
dβ
∫

Γ
dγ

∑
β0∪β1=α∪β

⟨Aυ ⊗W ′(f)(Ω)(β1),

Σ(β0 ∩ β1;α ∪ β)xT (β0\β1)(β0;α ∪ β)Πβ0\β1(
Σ̂∗(β0\β1;α ∪ β)Jα;α∪βJ

∗
α;α∪γΣ̂(α ∪ γ)y(α ∪ γ)υ

)〉

Relabeling the variables and using the properties of J , we can now finish the

calculation using only elementary steps.

〈
QΣ(x†) (A⊗W ′(f))η,QΣ(y)η

〉
=
∫

Γ
dσ

∑
α⊔β⊔γ=σ

∑
β0∪β1=α∪β

⟨Aυ ⊗W ′(f)(Ω)(β1),

J∗
β1;σΣ(β0 ∩ β1;σ)xT (β0\β1)(β0;σ)Πβ0\β1

(
Σ̂∗(β0\β1;σ)∆[α;σ]Σ̂(α ∪ γ)y(α ∪ γ)υ

)〉
=
∫

Γ
dσ

∑
δ0⊔...⊔δ4=σ

⟨Aυ ⊗W ′(f)(Ω)(δ0 ∪ δ2),

J∗
δ0∪δ2;σΣ(δ0;σ)xT (δ1∪δ3)(δ0 ∪ δ1 ∪ δ3;σ)Πδ3 ((Σ∗∆Σ)(δ3;σ)y(δ2 ∪ δ3 ∪ δ4;σ)

〉
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=
∫

Γ
dα
∫

Γ
dβ

∑
β0∪β1=α∪β

⟨Aυ ⊗W ′(f)(Ω)(α),

J∗
α;α∪βΣ(β0 \ β1;α ∪ β)xT (β0∩β1)(β0 ∩ β1;α ∪ β)

Πβ0∩β1 ((Σ∗∆Σ)(β0 ∩ β1;α ∪ β)Σ(β1 \ β0;α ∪ β)y(β1;α ∪ β))⟩

=
〈
(A⊗W ′(f))η,QΣ(x ⋆Σ Σ)η

〉

This ends the proof.

A.2.3 Product kernels

In this section we will show how this theory specialises in the case of ’product’ operator

kernels and how that case relates to the classical setup of quantum stochastic calculus,

referring to previous sections of this paper. We fix Hilbert spaces h, k.

Let K : R+ → B(h), L : R+ → C(M, h),M : R+ → Ck(M, h) be measurable with the

property that the partial transposes of L and M are measurable as well. Let

FQf =


K

L

M

 : h → h ⊗ k̂ ⊕ k.

We define the column product kernel xQf via our usual placement notation:

xQf (σ) = F (s1;σ) · · ·F (sn;σ)

for σ = {s1, · · · , sn}. To it, we associate a product kernel x = πF ∈ OK(B(h);B(k̂ ⊕ k))

via

F =

 K (M LT )(Ih ⊗ Σ∗)

(Ih ⊗ Σ)
(
L
M

)
0

 .
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Theorem A.2.16. For ξ ∈ Dom(QΣ
t ), ξ = vε(Σ′ι(g)) for g ∈ L2(R+; k) we have

Qt(x)ξ = QΣ
t (xQf )ξ.

Proof. It suffices to notice that, taking X = (Ih ⊗ Σ)
(
L
M

)
, we have

F =

K ΠX∗

X 0

 .

We now use formulas from Proposition 3.3.1 and Proposition A.2.14. Let η =

uε(Σ′ι(f)). From Proposition A.2.14 we obtain

⟨η,QΣ
t (xQf )ξ⟩ = e⟨Σ′ι(f),Σ′ι(g)⟩

∫
Γt

dσ⟨Ih ⊗ Σ̂′πι̂(f−g)(σ), Ih ⊗ ΣxQf (σ)v⟩.

On the other hand, it is easily seen that in fact

F = Ih ⊗ ΣFQf ⊕ ∆(FQf )TΣ∗

(where by ⊕ we mean a sum upon lifting to h ⊗ k̂ ⊕ k), which implies

⟨uε(ι̂(f))(σ), x(σ)vε(ι̂(g))(σ)⟩ =
∑
α⊂σ

⟨η(σ),Πs∈σy(s)ξ(σ)⟩,

where y(s) = Ih ⊗ ΣFQf (s) for s ∈ α, y(s) = ∆(FQf )TΣ∗ for s ∈ σ \α. This gives But,

using

AEc = EcAT

and Equation A.1, we get

⟨uε(ι̂(f))(σ), x(σ)vε(ι̂(g))(σ)⟩ =
∑
α⊂σ

⟨Σ∗Σ′uε(ι̂′(f − g))(σ), xQf(σ)v⟩,
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so we can apply Proposition 3.3.1 to get:

⟨η,Qt(x)ξ⟩ = e⟨Σ′ι(f),Σ′ι(g)⟩
∫

Γt

dσ⟨uπι̂′(f)(σ), x(σ)vπι̂′(g)(σ)⟩

= e⟨Σ′ι(f),Σ′ι(g)⟩
∫

Γt

dσ⟨Ih ⊗ Σ̂′πι̂(f−g)(σ), Ih ⊗ ΣxQf (σ)v⟩.

The conclusion now follows by density of vectors of the form uε(Σ′ι(f)) in Fk⊕k.





List of Symbols

We add this list of symbols, both those standard in quantum stochastic calculus and

those unique to the thesis, for the convenience of the Reader.

General notation

k̂ For a Hilbert space k, this denotes Hilbert space C ⊕ k

⊗ Ultraweak tensor product

⊗ Algebraic tensor product

k̂ For a vector k from a Hilbert space k, this is the vector
(

1
k

)
∈ k̂

C(X, Y ) Space of continuous functions from X to Y

F (X, Y ) Space of functions from X to Y

Quantum stochastic calculus

∆ Itô projection operator, ∆ ∈ B(k̂)

Γ(I) Guichardet space on interval I

Γn(I) n-th Cartesian product of the Guichardet space on interval I

Γ(n)(I) The subset of Γn(I) consisting of n-tuples of pairwise disjoint sets.

Γn(I) n-th Guichardet space on interval I
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Λt(X) Quantum stochastic integral of X up to time t

Fk Symmetric Fock space over Hilbert space L2(R+; k)

Fk
I Symmetric Fock space over Hilbert space L2(I; k) for I ⊂ R+

Pn(m) Family of n-element subsets of m = {1, · · · m}

Φ(H) Full Fock space on Hilbert space H

a(u), a†(u) Annihilation and creation operators on symmetric Fock space (for a vector

u)

At(u), A∗
t (u) Annihilation and creation processes

F ✁G Series product,

F ✁G = F +G+ F∆G

Jα;σ Linear isometry embedding h ⊗ k⊗#α in h ⊗ k̂⊗#σ for given Hilbert spaces h, k

and finite subsets α ⊂ σ of R+

N The number operator on Fock space

V ⊗M B(h) h-matrix space over V , defined as

{T ∈ B(H ⊗ h) : ExTEy ∈ V for all x, y ∈ h}

W (u) Fock-Weyl operator on symmetric Fock space (for a vector u)

Quantum Wiener chaos

(x ⋆
Q Q′ y) Operator - operator convolution, given by

(x ⋆Q Q′ y)(σ) =
∑

α∪β=σ
x(α;σ,Q)∆(α ∩ β;σ)y(β;σ,Q′)
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(x ⋆Q ζ) Operator - vector convolution, given by

(x ⋆Q ζ)(σ) =
∑

α∪β=σ
x(α;σ,Q)∆(α ∩ β;σ)ζ(β;σ, e0)

Qt(x) Quantum wiener integral of (an appropriate) vector kernel x. Its action is given

by

Qt(x)(ξ) = Ŵ(x1Γt ⋆ ξ)

Ŵ Multiple time-Wiener integral, operating on (an appropriate) kernel ζ ∈ K(h, k̂)

by

(Ŵζ)(σ) =
∫

Γ
J∗
σ;σ∪βζ(σ ∪ β)dβ

ζ(α;σ, e0) Placement notation for ζ(α) ∈ h ⊗ H⊗#α inside h ⊗ H⊗#σ. The e0 is

suppressed in the case H = k̂, e0 =
(

1
0

)

Je0
α;σ Linear isometry in B(H⊗#α;H⊗#σ), given by linear extension of

πϕ(α) 7→ πψ(σ), ψ = 1αϕ+ e01R+\α, ϕ ∈ F (R+, H)

K(h, H) Linear space of families

{ζ = (ζ(σ) ∈ h ⊗H⊗#σ)σ∈Γ}

Kconst(h, H) Linear space of families {ζ ∈ K(h, H) : ζ = (ζ#σ)σ∈Γ} for some ζn ∈

h ⊗H⊗n, n ∈ N

OK(V, Z) Linear space of families

{x = (x(σ) ∈ V⊗Z⊗#σ)σ∈Γ}
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OKconst(V, Z) Linear space of families {x ∈ OK(V, Z) : x = (x#σ)σ∈Γ} for some

xn ∈ V⊗Z⊗n, n ∈ N

v ⊗ πϕ Product vector kernel

x(α;σ,Q) Placement notation for x(α) ∈ B(h1; h2) ⊗B(H1;H2)⊗#α inside B(h1; h2) ⊗

B(H1;H2)⊗#σ. Q suppressed in the case H1 = H2, Q = I
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