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Abstract 

Within the domain of associative learning, there is substantial evidence that people (and other 

animals) select amongst environmental cues on the basis of their reinforcement history. 

Specifically, people preferentially attend to, and learn about, cueing stimuli that have 

previously predicted events of consequence (a predictiveness bias). By contrast, relatively 

little is known about whether people prioritize some (to-be-predicted) outcome events over 

others on the basis of their past experience with those outcomes (a predictability bias). The 

present experiments assessed whether the prior predictability of a stimulus results in a 

learning bias in a contingency learning task, as such effects are not anticipated by formal 

models of associative learning. Previously unpredictable stimuli were less readily learned 

about than previously predictable stimuli. This pattern is unlikely to reflect the use of 

strategic search processes or blocking of learning by the context. Instead we argue that our 

findings are most consistent with the operation of a biased learning mechanism.  

 

Key words: Associative learning, uncertainty, contingency learning, visual search, prediction 

error 
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Encoding predictive (cue-outcome) relationships between mental representations of 

events in the environment is adaptive. It allows a person to predict the future occurrence of a 

stimulus or event (the “outcome”) on the basis of an earlier stimulus or event (the “cue”). For 

example, it has been argued that increases in gold price (the cue) typically precede increases 

in the value of the Australian dollar (the outcome; Aspergis, 2014). If true, learning such a 

relationship would be financially advantageous to the learner. The manner in which such 

cue–outcome beliefs are formed and updated is generally well predicted by formal associative 

learning theories (Pearce & Mackintosh, 2010; Mackintosh, 1975; Rescorla & Wagner, 1972; 

Le Pelley, 2004; Esber & Haselgrove, 2011), and their theoretical descendants in other 

domains (Kruschke, 2006; Dayan, Kakade & Montague, 2000). At their core, these theories 

are accounts of why some experiences of cue-outcome relationships produce stronger 

learning than others; that is, of why some events are prioritized over others for learning. 

Traditional theories posit two primary mechanisms in this regard. The first pertains to prior 

knowledge of cue-outcome relationships, and the second involves prior knowledge about the 

cueing stimulus. These are considered briefly in turn, before we consider a third possible 

source, which provides the focus of the present experiments.  

The first mechanism is quite straightforward: If a cue (A) is already known to precede 

an outcome (X), then when this outcome follows the cue subsequently, learning about the 

cue-outcome relationship is de-prioritized. Formally, this is implemented by having learning 

modulated by prediction error, such that unpredicted (surprising) outcomes generate stronger 

learning than predicted outcomes (e.g., Rescorla & Wagner, 1972). For example, if a person 

already possesses a (perfect) mental representation of the A-X association, then that allows 

them to predict the consequences of cue A occurring (X). Should those predictions be 

confirmed (X actually occurs), then there will be no prediction error and consequently no 

new learning for the A-X association. Although the formal representations of this principle 
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differ between models, the guiding intuition is shared: A person must be surprised by some 

aspect of their experience for learning to take place. There is an abundance of empirical 

evidence to show that a person’s prior knowledge (their A-X mental association, or lack 

thereof) shapes how much they will learn about the relationship between cue A and outcome 

X when these events are later observed (see Glimcher, 2011; Pearce, 2013 for reviews).  

The second class of mechanisms uses prior knowledge specific to the cueing stimuli 

to modulate associative learning. Perhaps the simplest instantiation of this principle is the 

Mackintosh (1975) model, although this principle also underlies more complex, 

contemporary models of learning (Le Pelley, 2004; Esber & Haselgrove, 2011; Pearce & 

Mackintosh, 2011). Within the Mackintosh (1975) model, the cueing stimuli that have been 

shown to consistently predict important outcome events are subsequently prioritized during 

learning. Evidence consistent with this idea in humans comes from the learned predictiveness 

effect (e.g., Le Pelley & McLaren, 2003; Lochman & Wills, 2003; see Le Pelley, Mitchell, 

Beesley, George & Wills, 2016, for a review). In a typical demonstration, people must first 

learn to predict an outcome (X) using two cues (A and B). The task is arranged such that cue 

A reliably predicts outcome X, but cue B is uninformative as to whether outcome X will 

occur. Subsequently (in a second phase), people are found to be faster to learn an association 

between cue A and a novel outcome (Y) than between cue B and this same novel outcome, 

even if cues A and B are (objectively) equally good predictors of outcome Y. This suggests 

that people prioritize learning about cues that have been experienced as predictive (A) 

compared to cues previously experienced as uninformative (B).  

These two mechanisms exploit existing knowledge about (i) cue–outcome 

associations, and (ii) the predictiveness of the cues, to prioritize the allocation of learning 

resources to events that are mostly likely to be related to each other. Yet, as recently argued 
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by Griffiths & Thorwart (2017), a third source of potentially useful information is missed in 

these formal conceptualizations: information about the outcome stimulus or event.  

 

Outcome-driven selectivity   

It is also possible that people learn which aspects of the environment tend to be predictable 

(and are thus likely to be the “signal”) and which tend to be unpredictable (and are thus likely 

to be the “noise”), and prioritize their learning resources accordingly. Only one study has 

directly investigated this predictability hypothesis in humans. Griffiths, Mitchell, Bethmont 

& Lovibond (2015) used a causal learning task in which people were asked to learn which 

foods elicited allergic reactions in a fictional patient, Mr Smith. Participants were shown the 

different foods Mr Smith ate (the cues) and the type of allergic reaction that he experienced 

(the outcomes) after eating those foods. There were two stages to the task. Crucially, the cues 

(foods) differed between the two stages, but the outcomes (the allergic reactions) were 

common to both. In both stages, people needed to predict the type of skin reaction Mr Smith 

would have (itchiness, swelling or no reaction) and also the type of stomach reaction he 

would have (bloating, cramping or no reaction). They were given corrective feedback on 

every trial, and thereby learned the food-reaction associations. The task was arranged so that 

one type of reaction (e.g., skin reactions) was predictable during Stage 1, such that each time 

Mr Smith ate a particular food (e.g., lettuce) he would experience a particular symptom on 

the skin dimension (e.g., swelling). The other reaction dimension (stomach reactions) was 

unpredictable on the basis of the food cues shown in Stage 1. For example, after eating a 

second food (e.g., leek), it was equally likely that Mr X would experience any of the three 

values on the stomach reaction dimension (cramping, bloating or no reaction). 

In Stage 2, a new set of foods was introduced (all were fruits, versus vegetables in 

Stage 1). However, the to-be-predicted allergic reactions were retained. People thus needed to 
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learn a new set of food-reaction associations between the novel Stage 2 foods and the existing 

reactions (skin and stomach reactions). Critically, in Stage 2 the foods and reactions were 

arranged so that both types of reaction were perfectly and equally predictable on the basis of 

the novel food cues; objectively, skin reactions could be predicted equally as accurately as 

stomach reactions. However, people more readily learned to predict the previously 

predictable outcome (skin reactions) than the previously unpredictable outcome (stomach 

reactions). This observed prioritization of learning for outcomes that were previously 

predictable, over those that were previously not (termed the Outcome Predictability bias) 

suggests that people do indeed make use of prior knowledge about outcome stimuli when 

selecting which stimuli to prioritize for learning. 

 However, some aspects of Griffiths et al’s (2015) procedure limit the generalizability 

of this conclusion. First, people were required to make predictions about both outcomes (skin 

and stomach reactions) on every trial. This means that the observed bias for the previously 

predictable versus unpredictable outcome may have been a product of a within-trial 

interaction between the outcome stimuli, whereby one outcome event actively inhibited the 

capacity of the concurrent outcome to become associated with the target cue (analogous to 

“lateral inhibition” amongst cues; Kruschke, 2006, Griffiths & Le Pelley, 2009). Thus, it is 

not clear that this bias extends to instances in which outcomes must compete for learning 

across separate trials. If predictability is an encoded feature of the outcome’s mental 

representation, then the Outcome Predictability bias ought not to depend upon both outcomes 

being present at the same time.  

Second, in Griffiths et al.’s (2015) procedure the clearest evidence for learning biases 

was seen in a self-reported test phase that occurred after training, which explicitly asked 

people to judge the likelihood that the outcome would occur given the presence of a cue. This 

raises the possibility that the observed bias in this task was not reflective of a bias in learning 
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per se. Instead, people may have correctly learned all the relevant cue-outcome contingencies 

during training, but causally discounted some of these learned contingencies when forming 

explicit likelihood judgments at test (Baker, Mercier, Vallee-Tourangeau, Frank & Pan, 1993; 

Fugelsang & Thompson, 2001). This method makes it difficult to determine the relative 

contributions of any bias that occurred during learning, as distinct from any bias in causal 

reasoning that may have occurred during the test stage. Thus, the present procedure was 

designed to minimize the requirement to engage in this form of causal reasoning by having 

participants perform a task (visual search) in which perfect response accuracy could be 

achieved with no explicit causal knowledge regarding the cues and outcomes (see also 

Beesley & Le Pelley, 2010). In addition, in contrast to Griffiths et al. (2015), the primary 

dependent variable used in these experiments (trial-by-trial response latency) did not require 

people to explicitly reflect upon their earlier learning.   

 

Experimental series 

The present experiments sought to test whether previously predictable outcomes were more 

readily learned about than previously unpredictable outcomes. For this purpose, a visual 

search task was used in which the location of the target stimulus was predictable when it 

occurred in some locations, but was unpredictable when it occurred in others. Then, in the 

second stage, the target stimulus was rendered predictable both when it was located in a 

previously predictable location, and also when it appeared in a previously unpredictable 

location. The key question, and hypothesis tested in Experiment 1, was whether participants 

would be biased in their capacity to learn to predict the location of the target stimulus when it 

appeared in a previously predictable location, versus a previously unpredictable location. 

This is distinct from the possibility that people learn to generally orient towards previously 

predictable locations (a biased search), which is addressed in Experiment 2.  
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Experiment 1 

On each trial in Experiment 1, participants were required to respond as rapidly as 

possible according to the orientation of an arrow that could appear in one of eight possible 

locations in a search array. Each array was preceded by a cue stimulus: a line drawing of a 

common object (e.g., a carrot). Some cue stimuli (cues A and B) perfectly predicted the 

location of the target arrow in the upcoming search array (but not its orientation). The 

locations where the target occurred on these trials (e.g., upper and lower locations) are 

referred to as the predictable locations. Some cue stimuli (cues C and D) preceded the target 

arrow appearing in two different locations (e.g., left and right positions), each with 50% 

probability. These were the unpredictable locations, as the exact location of the target arrow 

could not be known in advance. Other filler cues were included to balance various design 

features of the experiment, such as making sure that the target could appear in all possible 

locations in the search array.  

Then in a second stage, a new set of cue images was shown.  Critically, these new 

cueing stimuli allowed the appearance of the target arrow to be reliably predicted during 

Stage 2 in both the previously predictable locations (upper and lower positions), and also in 

the previously unpredictable locations (left and right positions). If people were biased to learn 

about previously predictable locations (over previously unpredictable locations), then they 

ought to learn to locate the target arrow more rapidly when it was cued to appear in a 

previously predictable location, than in a previously unpredictable location. 

 

Method 

Participants, apparatus, and stimuli. Forty-one undergraduate students (mean age = 

19.7 years, 17 were female) participated in exchange for course credit. The study was 

approved by UNSW Human Research Ethics Advisory Panel, and was conducted in 
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accordance with the ethical standards laid down in the Declaration of Helsinki. Stimuli were 

presented on a widescreen monitor (1920 × 1080 resolution, 60 Hz) at a distance of 

approximately 50cm. Stimulus presentation was controlled by MATLAB (Mathworks, 2012) 

using Psychophysics Toolbox extensions (Kleiner, Brainard, Pelli, Ingling, Murray & 

Broussard, 2007). 

All stimuli were presented on a black background. Cue stimuli were ten images taken 

from Snodgrass & Vanderwart’s (1980) database (aeroplane, banana, bell, book, butterfly, 

cake, carrot, cat, chair, and chicken), presented centrally at a size of 7.6° × 8.9° visual angle. 

The coloured shape icons that appeared in the search array each measured 5.4° × 6.3°. The set 

of 60 coloured shapes consisted of every possible combination of 6 colours (red, yellow, 

blue, orange, green, purple) and 10 shapes (squares, circles, vertical ovals, horizontal ovals, 

vertical rectangles, horizontal rectangles, pentagons, hearts, diamonds, and triangles). There 

were four types of arrow-like stimuli that could appear on these shapes: left-facing target 

arrow, right-facing target arrow, horizontal line distractor image, bidirectional arrow 

distractor image (all appear in Figure 1).  

[Figure 1 about here.] 

Design. The design of Experiment 1 is outlined in Figure 2. Every trial began with the 

presentation of a cue stimulus, which was followed after 1.5s by a search array of 8 coloured 

shapes arranged in a ring around the cue stimulus (at 6.5° eccentricity). An arrow-like icon 

was displayed on each of these coloured shapes: one shape contained a target arrow (a single-

headed arrow pointing either left or right); all other shapes contained a distractor icon (a 

horizontal line or a bidirectional arrow, determined randomly for each shape). The critical 

locations throughout the experiment were the cardinal locations (upper, lower, left, right) in 

the search array. These locations were assigned to roles in a counterbalanced fashion. For half 

of participants, appearance of the target arrow in upper and lower locations was predictable 
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(on the basis of the cue stimulus) during Stage 1, but appearance of the target in left and right 

locations was unpredictable. For the remaining participants these assignments were reversed. 

Consider a participant for whom upper/lower locations were predictable and left/right 

locations were unpredictable. For this participant, during Stage 1, one image (cue A) 

predicted the location of the target image in the upper location with 100% probability, and a 

second cueing image (B) predicted the location of the target image in the lower position with 

100% probability. Two further cues, C and D, predicted that the target arrow would appear in 

either the left or right positions, each with 50% probability. On the remaining trials, a fifth 

cue (E) was shown. On these trials the target arrow appeared equally often in each of the four 

diagonal locations (for all participants). Cue E was included so that the target appeared in all 

locations, and thus all locations were task-relevant. This cue was otherwise irrelevant to our 

hypotheses and is not discussed further.  

[Figure 2 about here.] 

In Stage 2, five new cues (F-J) were shown. Cues F-I each reliably indicated that the 

target would appear in a particular cardinal location (upper, lower, left, right). Two of these 

cardinal locations had been well predicted (by cues A and B) in Stage 1 and two of these 

locations had been somewhat unpredictable (following cues C and D) in Stage 1. The final 

cue, cue J, preceded the target appearing in one of the four diagonal locations.  

The assignment of each image (e.g., carrot, plane) to each cue role (e.g., A, B) was 

randomly determined for every individual. The particular coloured shape (e.g., blue square 

for cue A) upon which the target arrow appeared was randomly determined for each 

participant, with the constraint that both the shape and colour of each stimulus differed 

between trial-types (e.g., if the blue square appeared on cue A trials, the shape that appeared 

on cue B trials could neither be blue nor a square). Within each trial, the colours and shapes 

of the irrelevant distractor stimuli were randomly determined, with the caveat that no 
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distractor image could be identical to the coloured shape in which the target arrow appeared 

(e.g. there were no blue square distractors on cue A trials). 

Procedure. People were instructed that their task was to find a unidirectional arrow in 

the search array, and to press either the left (“1” key) or right (“9” key) button, to indicate the 

orientation of that arrow, as rapidly as possible. They were also told that the arrow would 

appear in an array of similar-looking icons, and that the pictures shown in the middle of the 

screen (i.e. the cueing images) would “help you find the target arrow faster.”  

The procedure of each trial is summarized in Figure 1. Each trial commenced with the 

presentation of a white fixation cross for 1s. The cross was then replaced by the cue image. 

After 1.5s, the search array appeared, and participants could make their response. If the 

response was correct, a chime sounded and the word “CORRECT” appeared for 0.5s. If the 

response was incorrect, a buzzer sounded and “INCORRECT” appeared for 2.5s. The screen 

then blanked, and the next trial began after 1s.  

The five trial-types (indicated by letters A-E in Figure 2) were arranged into blocks of 

twenty trials (four per trial-type), and the trial order was randomized within each of these 

blocks. People completed 5 such training blocks (100 trials in total) in Stage 1, and then 

proceeded to Stage 2. The transition between stages was not signalled. The five trial-types 

shown in Stage 2 (indicated by letters F-J) were arranged into blocks of twenty trials (four per 

trial-type), and the trial order was randomized within each of these blocks. People completed 

5 such training blocks (100 trials in total) in Stage 2. 

 

Results 

Trials with erroneous responses were excluded (2.07% of all trials), as were trials with 

exceptionally long response latencies that were indicative of distraction from the task; any 

latencies more than 5 standard deviations from the overall mean were removed (0.33%). All 
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data from one participant were excluded as this participant achieved only 53% accuracy on 

the task. The average error rate for the remaining participants was 2.07% (SD = 1.71).  

Mean response latencies were separated according to the location of the target on that 

trial: locations that were 100% predictable in Stage 1 (termed predictable), locations that 

were 50% predictable in Stage 1 (termed unpredictable). The mean response latencies for 

targets appearing in each of these locations across Stages 1 and 2 are shown in Figure 3. The 

response latency data were analysed separately for each Stage using a 2 × 2 ANOVA, with 

factors of predictability (predictable versus unpredictable in Stage 1) and training (first half, 

second half). Familywise error rates were controlled at .05. 

[Figure 3 about here.] 

 Stage 1. A main effect of training was observed, F(1,40) = 58.73, p < .001, η2
P = 

0.59, with response times decreasing across training. Importantly, there was a main effect of 

predictability, F(1,40) = 20.38, p < .001, η2
P = 0.34, with faster responses when the target 

location was predictable (cue A and B trials) than when it was unpredictable (cue C and D 

trials). While there appeared to be a trend towards the effect of predictability increasing 

across training, predictability did not significantly interact with the training factor, F(1,40) = 

3.68, p = .06, η2
P = 0.08.  

 Stage 2. A main effect of training, F(1, 40) = 83.93, p < .001, η2
P = 0.68, was 

observed. Response times decreased across training. Most importantly the main effect of 

prior predictability was significant, F(1,40) = 6.84, p = .01, η2
P = 0.15, such that people 

responded more rapidly to the target in the previously predictable locations than in the 

previously unpredictable locations. Although the effect of prior predictability appeared to 

increase across training, the training × prior predictability interaction was not significant, F(1, 

40) = 3.76, p = .06, η2
P = 0.09.  
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Discussion 

People readily learned to predict the location of the target outcome during Stage 1, and 

(unsurprisingly) were able to do so more readily when that location was completely 

predictable than when the location was somewhat unpredictable. Crucially, this difference in 

the probability of target location had an effect on responses in Stage 2, which used a new and 

independent set of cueing images. That is, even though the new cues F-I each perfectly (i.e. 

with 100% conditional probability) predicted the location of the target stimulus on each trial, 

people more rapidly located the target arrow when it appeared in a location that was 

previously predictable than when it appeared in a location that was previously unpredictable. 

This difference suggests that people were biased to learn more readily about the new cueing 

relationships that involved locations that were previously predictable than those that were 

previously unpredictable.  

There is an alternative interpretation of these data. In the prior analysis, it was 

assumed that prior learning about the predictability of a target location allows the participant 

to more readily associate that location with a novel cue in Stage 2. An alternative possibility 

is that people learned which locations were predictable during Stage 1, and then preferentially 

searched those locations in the future irrespective of the cue shown on that trial (see also 

effects of “search history” on visual search, Awh, Beloposky & Theeuwues, 2012). Such an 

effect could result in faster responding to the previously predictable outcome locations (than 

the previously unpredictable outcome locations), in the absence of any cue-location learning 

during Stage 2, and thereby undermines any conclusions drawn about the influence of prior 

predictability on differential learning rates. This is because it is possible that the observed 

differential response latencies between locations in Experiment 1 did not reflect cue-location 

learning during Stage 2, but instead reflected a cue-independent general bias to preferentially 
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look for the target in some locations over others. This possibility is addressed in Experiment 

2.  

 

Experiment 2 

The key point of difference between a biased learning versus biased search account is the 

dependence of the bias on the cue shown prior to the search array. This is because the biased 

search hypothesis predicts that people will search previously predictable locations first, 

irrespective of the cue shown on that trial: it does not depend on new cue-outcome learning. 

Thus, it predicts that the bias will be just as evident on trials in which a completely 

uninformative (or invalid) cue is shown, as when an informative (or valid) cue is shown. By 

contrast, under a biased learning account, people would more readily learn to associate novel 

cues with previously predictable (as opposed to previously unpredictable) locations. That is, 

this account relies on a difference in the rate at which people learn cue–location associations 

during Stage 2, with these associations allowing them to form expectations about the likely 

location of the target. Therefore this account states that the predictability bias (faster 

responding to the target when it appears in a previously predictable location) should manifest 

only when the target is preceded by a valid cue – since it is only under these circumstances 

that participants can generate the appropriate expectations. In contrast, no bias should be 

observed on trials in which the cueing stimulus is absent or uninformative (i.e. those trials 

with an invalid cue).  

To discriminate between these accounts, Experiment 2 replicated Experiment 1, but 

now included an invalid cue in each stage (cue E in Stage 1, cue J in Stage 2). This cue was 

uninformative as to where the target would appear, because it preceded the target appearing 

equally often in all of the 8 possible locations (with each occurring 12.5% of the time). If 

people biased their search for the previously predictable locations in general in Stage 2, then 
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people should more readily find the target when it appeared in a previously predictable 

location (than in a previously unpredictable location) both on validly cued trials (i.e. after 

cues F-I) and also following the non-informative invalid cue J. By contrast, if people’s cue-

location learning was biased in Stage 2, then the facilitated detection of the target arrow 

should occur only on validly cued trials (F-I), and not following the non-informative cue J.  

 

Method 

Participants. Sixty-five undergraduate students (mean age = 19.1 years, 49 were 

female) participated in exchange for course credit. 

Design. The design was similar to Experiment 1, but with one change. The target 

arrow could appear in any of the eight locations (each with equal probability: 12.5%) 

following presentation of cue E (in Stage 1) and cue J (in Stage 2).  

Procedure. The procedure was similar to that of Experiment 1. In order to improve 

learning of the Stage 1 contingencies, the trial-types were initially clustered (see Mitchell, 

Griffiths, Seetoo & Lovibond, 2012) such that 8 trials involving cues A and B were shown in 

one block, then 8 trials involving cues C and D were shown in a second block, and then a 

third block consisted of 8 trials involving cue E. These 3 blocks (one with cues A and B, one 

with cues C and D, and one with cue E) were each repeated four times, for a total 96 trials. 

Whether participants received blocks of predictable (cues A and B) or unpredictable (cues C 

and D) trials first in this sequence was counterbalanced across individuals. Once these 

clustered blocks were completed, participants were given a further 144 trials of Stage 1 

training in which all of the trial-types were randomly intermixed. These Stage 1 trials were 

organized into blocks of 12 trials: Two repetitions each of trial-types A-D (which each used a 

valid cue) and four repetitions of the invalidly cued trial-type (cue E). In Stage 2, 20 blocks 

of six trials each were presented, for a total of 120 trials. Each block consisted of one 
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repetition of each trial-type involving a valid cue (F-I), and two repetitions of the invalidly 

cued trial-type (cue J). The trials were randomized within each block, for both Stage 1 and 2.  

Results 

As in Experiment 1, response latencies for incorrect responses were omitted, as were any 

response latencies that were more than 5 standard deviations from the individuals’ overall 

mean. This resulted in the removal of 1.98% of the data.  

Mean response latencies were separated into four trial-types that were demarcated by 

(i) whether the target appeared in one of the predictable locations versus one of the 

unpredictable locations, and (ii) whether that trial featured a ‘valid’ cue stimulus (cues A-D 

in Stage 1, cues F-I in Stage 2) or an ‘invalid’ cue stimulus (cue E in Stage 1, cue J in Stage 

2). The mean response latencies for each of these trial-types across Stages 1 and 2 are shown 

in Figure 4. The response latency data were analysed separately for each Stage using a 2 × 2 

× 2 ANOVA, with factors of predictability (predictable versus unpredictable location in Stage 

1), cue (validly or invalidly cued), and block (first half of training versus second half of 

training stage).  

[Figure 4 about here.] 

Stage 1.  A main effect of training was observed, F(1,64) = 18.74, p < .001, η2
P = 

0.23, with faster responses in the second half of Stage 1 than in the first half. Similarly, 

responses were faster when the target arrow was preceded by a valid cue (A-D) than when it 

was preceded by the invalid cue (E), F(1,64) = 85.24, p < .001, η2
P = 0.57. Averaged across 

validly and invalidly cued trials, there was a numeric benefit for the predictable locations, but 

this did not reach significance, F(1,64) = 3.67, p = .06 η2
P = 0.05. However, there was a cue × 

predictability interaction, F(1,64) = 21.48, p < .001 η2
P = 0.25. Simple effect analyses 

revealed that responses were faster when the target appeared in a predictable location than an 

unpredictable location following a valid cue, F(1,64) = 29.05, p < .001 η2
P = .31, but the 
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trend towards faster responses to the unpredictable locations than the predictable locations 

following the uninformative cue (E) did not reach significance, F(1,64) = 3.14, p = .08, η2
P = 

.05. There was no significant three-way interaction, F(1,64) = 3.90, p = .05, η2
P = 0.06.  

Stage 2. There was a main effect of training, F(1,64) = 5.23, p = .03, η2
P = 0.08, with 

response latencies generally decreasing over the course of Stage 2. There was also a main 

effect of cue, F(1,64) = 45.47, p < .001, η2
P = 0.42, with faster responses when the target was 

preceded by a valid cue than an invalid cue. There was no significant main effect of prior 

predictability, F < 1, but as in Stage 1, there was a significant cue × predictability interaction, 

F(1,64) = 6.50, p = .01, η2
P = 0.09. There was also a three-way interaction, F(1,64) = 4.11, p 

= .047, η2
P = 0.06. Simple effect analyses found no significant differences between the 

predictable and unpredictable locations (either when validly cued or when preceded by an 

uninformative cue) during the first half of Stage 2, all Fs < 1. However, response latencies to 

these locations did differ in the second half of training. Specifically, responses were faster for 

previously predictable locations than previously unpredictable locations following a valid cue 

(cues F-I), F(1,64) = 6.04, p = .02, η2
P = .09, but were faster for previously unpredictable 

locations than previously predictable locations following the invalid cue J, F(1,64) = 4.44, p 

= .04, η2
P = .06.  

 

Discussion  

The primary finding of Experiment 1 was replicated: participants responded more rapidly to 

the previously predictable locations, than to the previously unpredictable locations during 

Stage 2. However, this bias in responding was only obtained when a valid cueing stimulus 

preceded the presentation of the target. On trials that included an invalid cue (J) there was no 

benefit in detection of the target stimulus in the previously predictable location over the 

previously unpredictable location. In fact, there was a significant effect in the opposite 
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direction, whereby responses to the target were faster when it appeared in previously 

unpredictable locations after the uninformative cue. This effect was not anticipated, and 

possible explanations are discussed in the General Discussion. Overall, however, these data 

strongly suggest that biased cue-outcome learning is the cause of the Outcome Predictability 

bias in the present task, rather than adoption of a preferential search strategy that favoured 

previously predictive locations irrespective of the cue that was presented prior to the target. 

 

General Discussion 

 Across two experiments, participants more readily learned to detect a target stimulus 

in previously predictable locations than in previously unpredictable locations. This Outcome 

Predictability bias was not a direct product of previously learned cue-location associations, as 

the crucial second stage of the procedure used novel cues, so any associations between the 

cues shown in Stage 1 and the target locations would not have aided performance in Stage 2. 

Instead, people had to learn new cue-location associations in Stage 2, and this process was 

reliably biased towards learning about the locations that were previously predictable.  

Notably, our study extends previous work on the Outcome Predictability bias 

(Griffiths et al, 2015) by demonstrating this effect in a procedure in which participants were 

not required to learn cue–outcome associations at all. In Griffiths et al.’s (2015) study, 

participants were required to make an explicit outcome prediction on every trial; in contrast, 

in the current study participants could achieve perfect response accuracy without learning 

anything about the predictive status of the cue stimuli. The observation of an Outcome 

Predictability bias under these conditions of ‘incidental’ learning suggests a more general 

influence of this bias that operates even when there is no explicit requirement to learn. 

Perhaps more importantly, our studies demonstrate an influence of the Outcome 

Predictability bias during the process of learning (i.e., on participants’ responding during the 

focal task), rather than in a distinct test of explicit knowledge that occurred only once 
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learning was complete (as used by Griffiths et al., 2015). This shows that the Outcome 

Predictability bias has an ‘online’ effect on the formation of cue–outcome beliefs, rather than 

merely influencing the way in which these beliefs are translated into explicit judgments on 

test (e.g., through differences in causal discounting). 

The current studies also allow us to rule out certain alternative accounts of the 

Outcome Predictability bias. Firstly, Experiment 2 tested whether people favoured previously 

predictable locations during their search in Stage 2 (a biased search account), against the 

possibility that people more readily learned cueing relationships involving previously 

predictable locations (a biased learning account). In this experiment, the Outcome 

Predictability bias occurred only on trials in which a valid cue was shown, suggesting that the 

facilitated responding for some locations over others was conditional on the cue shown on 

that trial. The observation that the bias was conditional on the cue shown on each trial 

strongly suggests that it was the specific learning of cue-outcome relationships during Stage 2 

that facilitated responding for previously predictable locations, rather than a more generalized 

bias to search in these locations first.  

Secondly, in Griffiths et al.’s (2015) study of the Outcome Predictability bias, two 

cues and two outcomes were presented within the same trial. One possible interpretation of 

these experiments was that the concurrent presentation of a previously predictable outcome 

directly inhibited any learning about the previously unpredictable outcome. This explanation 

cannot account for bias observed in the present data, however, as the “outcomes” in this task 

(the location of the target stimulus) were mutually exclusive: the target appeared in only one 

location on each trial. This means that stimulus-specific, direct inhibition from previously 

predictable to previously unpredictable outcomes is unlikely to be the source of the observed 

effects. Similarly, the restriction of one cue and one outcome per trial in the present task also 

excludes a class of explanations (suggested by Griffiths et al.) in which the observed bias in 
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responding is a product of people applying a “rule” whereby each cue can only elicit a single 

outcome. Such a rule is unlikely to be learned or used in the present experiments, because 

several cues (C-E and J) were each unambiguously associated with multiple (2 or more) 

locations across different trials.  

Finally, the current data are also inconsistent with an account of the Outcome 

Predictability bias in terms of ‘blocking’ (Griffiths & Le Pelley, 2009; Kamin, 1969; Shanks, 

1985). This account runs as follows. During Stage 1, the unpredictable outcomes were not 

well predicted by the cues that (inconsistently) preceded them (C and D). Hence these 

outcomes might have formed significant associations with the stimuli representing the 

experimental context: in effect participants learn that these outcomes cannot be accurately 

predicted by the preceding cues, but instead are more generally predicted by the context. In 

contrast, the predictable outcomes were well predicted by the cues that preceded them in 

Stage 1 (A and B), and hence would presumably have formed strong associations with these 

cues and not with the context. Importantly, the contextual stimuli are also present during 

Stage 2. This would mean that—at the start of Stage 2—the previously unpredictable 

outcomes were less surprising (since they were partially expected on the basis of the 

contextual stimuli) than the predictable outcomes (which were not). According to models that 

view surprise as the crucial determinant of learning (e.g. Rescorla & Wagner, 1972; Wagner, 

1981), learning about the new cue–outcome associations for the previously unpredictable 

outcomes would therefore be blocked by this prior learning about the context. This could 

generate the Outcome Predictability bias observed in Experiment 1 (and by Griffiths et al., 

2015). However, this approach has difficulty with the findings of Experiment 2. The blocking 

account anticipates that, since previously unpredictable locations are already expected on the 

basis of contextual stimuli during Stage 2, these locations should be (relatively) blocked from 

forming associations with any novel cues. However, data from the invalid cue trials of 
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Experiment 2 suggest that participants formed stronger associations between this invalid cue 

(J) and previously unpredictable locations, relative to previously predictable locations. This 

finding is therefore inconsistent with the blocking account of the Outcome Predictability bias.  

This finding—that the Outcome Predictability bias was reversed on the trials in which 

the cueing stimulus (the invalid cue) provided no useful information—was unexpected and 

interesting. It is not immediately clear why the bias in responding reversed on these trials. 

One possibility is that people more readily associated a previously unpredictable outcome, 

than a previously predictable outcome, with non-predictive cues (see also Griffiths et al., 

2015, for a similar pattern of results). If so, this suggests the intriguing hypothesis that people 

may seek to “match” the degree of predictiveness of the cueing stimuli with the predictability 

of the outcome stimuli, and thereby facilitate learning for those cue-outcome pairings that 

match in this manner. Such an approach would be consistent with a causal model view of 

cue-outcome learning, whereby people construct a model of the manner in which cues are 

related to outcomes (e.g. Waldmann, 1996; De Houwer, 2009), which includes information 

about the degree of predictiveness/predictability, and then preferentially search for new 

components (new cues or new outcomes) that match the properties of that inferred model. At 

a computational level, this might consist of learning and parameterizing a mental (causal) 

model (Griffiths & Tenenbaum, 2005, 2009; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008) 

which, by the end of Stage 1, would place highest credibility on high values (~1) of the 

“strength” parameter for the predictable outcomes, and most credibility on middling values 

(~0.5) for the unpredictable outcomes. Yet this implementation also requires an assignment 

of parameters that is atypical in the literature. Specifically, because only the outcomes are 

shared between Stages 1 and 2, the relevant parameter shaping belief updating in Stage 2 

cannot refer to a particular cue (its “causal strength” parameter) or a hypotheses relating a 
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particular cue to a particular outcome (i.e. the likelihood of a given causal structure), but must 

instead be associated with the outcome stimulus (akin to a “predictability” parameter).  

 

Theoretical implications of the Outcome Predictability bias 

The key finding of the current study—that novel learning is systematically biased by prior 

experience of the predictability of an outcome—is important because this finding lies beyond 

seminal models of associative learning (Rescorla & Wagner, 1972; Mackintosh, 1975; Pearce 

& Hall, 1980) and more contemporary versions (Le Pelley, 2004; Le Pelley et al, 2016; Esber 

& Haselgrove, 2011; Pearce & Mackintosh, 2010). None of these existing models allow for a 

learned property of the outcome stimulus, such as its prior predictability, to affect the rate of 

subsequent learning involving that outcome. Instead these models have historically been cue-

centric, in that they have focused on the degree to which learning about cueing stimuli takes 

place, and the various mechanisms by which cues might compete for formation of 

associations with outcomes. There has been substantially less investigation about the dynamic 

processes involving outcome events, such as how they too might compete for learning (but 

see Rescorla, 1980). The learned helplessness effect (Maier & Seligman, 1976) is one notable 

exception to this trend, whereby it has been shown that repeated failure to predict (or control; 

Burger & Arkin, 1980) an outcome event results in impaired learning in general. An 

important contribution of the present research is to show that this effect can be stimulus-

specific, whereby the experience of unpredictability with a particular outcome stimulus 

results in the de-prioritization of that stimulus (but not all stimuli) during subsequent 

learning. Moreover, Experiment 2 shows that this outcome-specific impairment in learning is 

itself modulated by the predictiveness of the cue shown in conjunction with that outcome 

stimulus. In sum, the present data suggest that the learned helplessness effect may be more 

nuanced than previously thought. More generally, the finding that the training history of an 
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outcome shapes how readily that outcome enters into future associations demonstrates an 

important shortcoming of existing models of associative learning. This could potentially be 

addressed by adding a parameter that tracks the prior predictability of outcome stimuli, 

similar to the α parameter that indexes cue predictiveness in existing models (Mackintosh, 

1976; Le Pelley, 2004). Formal accounts of the outcome predictability bias—perhaps with a 

quantitative model along these lines—will clearly be necessary at some stage. However, more 

empirical data are required before we are in a suitable position to develop such a formal 

model: we need to further probe the empirical parameters of this bias and hence establish 

more precisely the properties that need to be modelled (see also Thorwart, Livesey, Wilhelm, 

Liu & Lachnit, 2017, for initial empirical data).  

 

 

Conclusion  

People more readily learned a contingent relationship between a cue stimulus and a 

target location that was previously predictable, than an otherwise equivalent relationship 

involving a previously unpredictable location. This finding goes beyond prior causal learning 

protocols investigating this phenomenon (Griffiths et al, 2015) by providing evidence that 

this is a learning bias (as distinct from an effect of post-hoc reasoning or biased search), this 

is evident when learning is incidental to the participant’s task. Cumulatively these data show 

an important new means by which people prioritize learning for some stimuli in their 

environment over others, that is yet to be properly accommodated in formal theories in the 

domain. 
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Figure captions. 

Figure 1.  Example sequence of trial events in Experiment 1. After fixation, a cue 

stimulus appeared, followed by a search display. Participants were required to respond 

according to the direction of a single-headed target arrow in this search display. 

Figure 2. The design of Experiment 1, for a participant for whom upper and lower 

locations were predictable, and left and right locations were unpredictable (this assignment 

was counterbalanced across participants). Each line drawing represents a cue (labelled A – J 

in each cell).  The next column depicts the possible locations of the target arrow on each trial 

of that trial-type. The third column notes the conditional probability (in percentage) of the 

target appearing in one of the possible locations, given the presence of the cue shown in that 

row.  

Figure 3. Mean response latencies in Experiment 1, separated by the predictability of 

the location in which the target icon appeared. Data are shown for trials in the 1st and 2nd half 

of each training stage. In Stage 1, some locations were predictable on the basis of the 

preceding cue (“Predictable”) whereas other locations were only 50% predictable 

(“Unpredictable”). In Stage 2 the “Predictable” and “Unpredictable” locations were both 

perfectly predictable on the basis of the preceding cue. Error bars indicate the within-subjects 

standard error of the mean (Cousineau, 2005).  

Figure 4. Mean response latencies in Stages 1 and 2 of Experiment 2. Data are shown 

separately for trials in which the target appeared at a location that was predictable (“Pred”) 

during Stage 1, versus trials in which the target appeared at a location that was unpredictable 

during Stage 1 (“UnPred”), and for trials in which a valid cue preceded the search array (cues 

A-D in Stage 1, cues F-I in Stage 2), versus trials in which an invalid cue preceded the search 

array. Data are shown for trials in the 1st and 2nd half of each training stage. Error bars 

indicate the within-subjects standard error of the mean (Cousineau, 2005).   
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