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Abstract

We show that a unified and maximally generalized approach to spatial transformation design is possible, one that
encompasses all second order waves, rays, and diffusion processes in anisotropic media. Until the final step, it is
unnecessary to specify the physical process for which a specific transformation design is to be implemented. The
principal approximation is the neglect of wave impedance, an attribute that plays no role in ray propagation, and is
therefore irrelevant for pure ray devices; another constraint is that for waves the spatial variation in material parameters
needs to be sufficiently small compared with the wavelength. The key link between our general formulation and a
specific implementation is how the spatial metric relates to the speed of disturbance in a given medium, whether it is
electromagnetic, acoustic, or diffusive. Notably, we show that our generalised ray theory, in allowing for anisotropic
indexes (speeds), generates the same predictions as does a wave theory, and the results are closely related to those for
diffusion processes.

Keywords: propagation, transformation, metric, speed, diffusion, ray

1. Introduction

Transformation design (T-Design) is a way of constructing devices based directly on a mathematical specification.
The essence of the idea is that it lets us shift waves, rays, or other excitations around inside the device, while altering
the way they propagate, so that the outside world sees no changes. Here we make this more mathematically precise
through a two stage process: first by defining a "morphism" picture that applies equally to all cases, and then a second
step that matches the morphism picture to the specific physical system.

The most notable example of T-Design is that of electromagnetic cloaking, which has now been with us for almost
ten years [1, 2]. It has been recently revitalized by the introduction of the concept of space-time cloaking [3, 4, 5]
and its variety of implementations [6, 7, 8, 9] In light of the many variants of spatial cloaking, and of applications
in acoustics [10, 11] and diffusion of heat or light [12, 13], it is worth considering how to combine these different
applications and approaches into a unified T-Design scheme, at least to the extent possible. Some progress has been
made in that regard, but with a firm focus on wave mechanics expressed in a first-order form [14].

Here we take an exclusively second order approach in which a subset of variables satisfying a system of first order
equations are expressed as a single second order equation. For example, instead of examining transformations of
Maxwell’s equations in the field vectors E,B,D and H, we will consider just the simplest (Helmholtz-like) second
order wave equation a single field component, e.g. just E, or just B. Although less detailed than first-order approaches,
notably in the way impedance is ignored, the second-order approach has some significant advantages. In any case,
when it comes to actual Transformation devices (T-devices) – often impedances are ruthlessly ignored or rescaled to
suit the technological demands of the programme. In that sense including impedance could be considered somewhat
over careful. T-devices in which no attempt is made to control scattering or reflections from impedance mismatches
have a performance left hostage to the physics of the wave or ray they attempt to manipulate. Notably, we expect that
in principle electromagnetic (EM) T-devices are less imperfect than acoustic ones [14].
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We start by taking a second order wave equation as describing a given system, and see how it can be modified
to allow for anisotropy. Since, largely, any wave type can be modelled this way, this is not a particularly stringent
restriction. We then show how the equation can be recast into a covariant form, where the covariant derivative is
that associated with the space’s underlying metric, gαβ . Transformation design is then described as a mathematical
morphism between a reference or “design” solution and a T-device application; the extraction of material parameters
from the morphed/transformed metric – for whatever physical system is of interest – is then solely a problem of
calculation.

In section 2 we present the basic wave, ray, and diffusion machinery in the context of our second-order approach,
and how, for a given choice of physical system, the material properties map onto the effective metric. In section 3
we show how the metric morphs under transformation, and in section 4 we give examples. Finally, in section 5 we
summarize our results.

2. Waves, Rays, and Diffusions

In what follows we will generalise the common second order wave equation approach for T-Design to allow for
anisotropy of the propagation in the simplest possible way. We then demonstrate how this generalization allows a
unified process for designing T-devices for almost any sort of wave, ray, or diffusion. This is because all these types
of processes can have their mathematical expression and behaviour mapped on to the metric seen by the process, so
that a transformation of a metric is sufficent to determine the necessary material parameters for the chosen T-device.

2.1. Waves
The most general type of second order wave model is given by the covariant wave equation on a manifold where

the spatial part of the metric gi j has its inverse counterpart gi j. In indexed notation using the Einstein summation
convention, with Greek indices spanning {t,x,y,x} and Latin ones spanning {x,y,z}, and treating the time coordinate
t separately from space, this is

Ψ;µ
;µ = ∇i

(
gi j ∇ j Ψ

)
+gtt∂ 2

t Ψ = 0, (1)

where gµν is inverse to gµν . The separation between space and time is justified when we are only interested in spatial
morphisms. Here both “; µ” and ∇µ denote covariant derivatives, whereas ∂µ are partial derivatives. This equation is
for a scalar field Ψ, but the generalization to other types of waves is straightforward. Note that for wave processes,
we have gtt = gtt =−1.

Equation (1) can be compared to the standard wave equation for a field in a homogeneous isotropic medium (e.g.
consider light travelling in an ordinary block of glass).

[
∑

i
∂i
(
v2∂i

)
−∂ 2

t

]
Ψ(r, t) = 0. (2)

This non-covariant form of the second order wave equation is posed in Euclidean coordinates in which there is no need
to distinguish between co-variant and contra-variant indices. Placing the homogeneous v2 wave property between the
two spatial derivatives facilitates comparison with the covariant form of eqn. (1). The use of a squared property is
also worthy of note – it has also been argued that for electromagnetic waves in media, the refractive index squared
is a much more relevant quantity than index n in optical propagation [15], in particular as to how it affects the best
definition of wavevector in the presence of significant gain or loss.

Comparing eqns. (1) and (2) we see that they have a very similar form – the difference being that the isotropic
and scalar speed squared (v2) has been replaced by the potentially anisotropic inverse spatial metric gi j. Thus the
somewhat abstract notion of the inverse of the metric on a manifold can be replaced by the concrete and intuitive
notion of a speed (squared) matrix (which we will denote using the Fraktur ‘C’ character as Ci j).

Allowing anisotropy by considering materials with a speed matrix Ci j rather than an isotropic v2 is crucial for the
field of Transformation Media: the process of designing T-devices relies on the introduction of material properties that
are both anisotropic and inhomogeneous [16]. Even the simplest possible transformation – a single axis compression
– induces anisotropy, and therefore any general transformation theory must incorporate it. The sole exception is for
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T-devices designed by means of conformal maps [2, 17], that produce, for example, cloaks that work in just two
dimensions for a single specific orientation, and are therefore of limited utility. The covariant wave equation can now
be expressed in terms of Ci j as

[
∇iC

i j ∇ j−∂ 2
t
]

Ψ(r, t) = 0. (3)

To summarize: we assume that any wave-like excitation, appropriately specified, can be described by the second
order wave equation. On this basis we can regard, in well-founded, but somewhat restricted terms, the second order
wave equation as the defining description of wave processes – i.e. any wavelike excitation of a field or material follows
(in some suitable limit) an archetypical Helmholtz-like formula with material properties contained in a speed-squared
matrix Ci j.

2.2. Rays
In the short-wavelength (eikonal) limit the second order wave equation reduces to a ray equation. Rays, in which

all sense of wave amplitude or polarization are lost, and only the direction of propagation retained, are geodesics with
respect to the space in which they travel. Optical rays, for example, traversing an inhomogeneous isotropic medium,
extremize the optical path length (OPL) according to Fermat’s principle

δ (OPL) = δ
∫ B

A

(
gi j

dxi

ds
dx j

ds

)1/2

ds = 0, (4)

where the optical metric gi j is given in Cartesians by gi j = n2δi j. The resulting geodesic equation1 is

d2xi

dλ 2 +Γi
jk

dx j

dλ
dxk

dλ
= 0, (5)

where the connection coefficients in Cartesians are given by

Γi
jk =

(
δ i

j ∂k +δ i
k ∂ j−δ imδ jk∂m

)
[ln(n)] = 0. (6)

It is straightforward to show that eqns. (5) and (6) are equivalent to the standard ray equation2

d
ds

(
n

dxi

ds

)
= ∂in. (7)

A uniform medium, characterised by a homogeneous index n yields the ‘straight lines’ of Cartesian space, xi =
xi

0 + nvi
0s. By identifying rays as geodesics with respect an arbitrary spatial metric ds2 = gi jdxidx j, the ray limit of

the covariant wave equation (1) is again the geodesic equation, eqn. (4), where now the connection coefficients are
just given by the standard formula

Γi
jk =

1
2

gim [∂kg jm +∂ jgkm−∂mg jk
]
. (8)

In fact, by making the usual short-wavelength and ray-limit approximations to eqn. (1) the following covariant ray
equation is obtained as the genereralization of eqn. (7):

d
ds

(
gi j

dx j

ds

)
=

1
2

gmn,i
dxm

ds
dxn

ds
. (9)

This equation can be manipulated to yield eqns. (5) and (8). The crucial thing to note here is that just as for the second
order wave equation, the controlling property for the geodesics – for motion or transport across the manifold – is the
metric.

The key idea in what follows is that morphing geodesics from one space to another amounts to a mapping of the
metric from the design space to the device space. In turn, once the medium parameters are related to the metric in
the design space, they are determined in the device space. A typical progression is to take the scaled Cartesian metric
Ci j = v2δ i j in the design space, and infer the required anisotropic medium parameters Ci j in the device space.

1An alternative expression in terms of two coupled first-order pieces is dvi

dλ =−Γi
jkv jvk, dxi

dλ = vi.
2Using the fact that (dr/ds) · (dr/ds) = 1, eqn. (7) can be straightforwardly manipulated to d2r

ds2 ++
( dr

ds ·∇ lnn
) dr

ds −∇ lnn
( dr

ds

)
·
( dr

ds

)
= 0,

from which Eqs. (5) and (6) follow.
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2.3. Diffusions
We will consider two types of equation under the heading “diffusion”. Firstly, although not usually regarded as a

diffusion equation, we can flip the sign on the time derivative term of the second order wave equation, i.e. set g00 =+1
in eqn. (1). To emphasize that we intend to treat diffusion-like processes, we replace the inverse metric gi j not with a
speed squared matrix Ci j but a diffusion matrix Di j, so that

[
∂iD

i j∂ j +∂ 2
t
]

Ψ(r, t) = 0. (10)

Thus any deductions made on the basis of spatial transformations for eqn. (1), apply also to eqn. (10).
More traditional diffusion equations, or even Schrödinger type equations, which contain only a first order time

derivative can also be treated under the same machinery outlined above. This allows us to bring calculations such as
that of the heat diffusion cloak [12] into the unified picture described in this work.

To demonstrate how the transformation schemes for waves and diffusions follow the same process, and therefore
fit into our generalized scheme, we first define a “shadow” wave equation for a field S, intended to mimic a diffusion
equation in some suitable limit3. For this we require an added α2S source term on the RHS, and to define a new
diffusive field quantity Ψs related to the shadow field S with S = Ψs exp(−ζ t). This means that

[
∂iC

i j∂ j +∂ 2
t
]

S(r, t) = α2S(r, t), (11)
[
∂iC

i j∂ j +ζ 2−2ζ ∂t +∂ 2
t
]

Ψs(r, t) = α2Ψs(r, t). (12)

We then assume that there there exists a value of ζ sufficiently large that Ψs will always vary slowly compared to
exp(−ζ t), i.e.

|ζ | �
∣∣∣∣
∂tΨs

Ψs

∣∣∣∣ . (13)

We can then drop the negligible ∂ 2
t Ψs term from the above equation. If we also match the source-like parameter α to

ζ with α2 = ζ 2, and setting Di j = Ci j/2ζ we obtain
[
∂iD

i j∂ j−∂t
]

Ψs(r, t) = 0, (14)

which has the same form as a diffusion or Schrödinger equation4. Treated as a Schrödinger equation, eqn. (14)
incorporates anisotropic effective mass appropriate for particles in anisotropic periodic potential as found in crystals
[20].

As a result of the above calculation, given any diffusion/ Schrödinger equation of the form eqn. (14) we can
choose a sufficiently large ζ , calculate the effective Ci j = 2ζDi j, transform it in the way described below to get the
desired device’s effective speed squared C̃i j, and then the desired device’s diffusion D̃i j = C̃i j/2ζ .

Note that the properties of field Ψ and parameter ζ are only constrained by the need to satisfy the approximation
of eqn. (13); they are merely used to define a “shadow” wave equation which is not intended to have a direct physical
interpretation. Crucially, since ζ is a simple scalar and Di j is directly proportional to Ci j, we can just transform Di j

directly to determine the necessary T-device diffusion (or potential) properties.

2.4. Making the metric
Although general equations such as eqns. (1), (5), or (14) are invaluable starting points, in general we need to

justify their use based on particular physical models. These models then will show us how constitutive or material
parameters will combine to form the effective metric for that type of wave – at least in the limit where the behaviour
is straightforward enough to be safely characterized in such a way. Here we will do this following our previous work
which attempted a unification of T-optics and T-acoustics [14]; i.e. we derive second order wave equations directly
from a generalization of a p-acoustic model [14], as well as from electromagnetism (EM). We use p-acoustics in place

3This shadow system, if necessary, can be considered to follow the same pair of first order equations as p-acoustics; see sec. 2.4
4Note that there are more systematic ways of converting between second order and Schrödinger equation forms [19].
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of some more specific acoustic model, most notably because in the limits under consideration here, many acoustical
models reduce to a second order form that can be easily represented within the p-acoustic framework. Further, the
formulation of p-acoustics makes it an ideal vehicle for incorporation of compatible acoustic systems within our
generalized transformation design scheme. However, note that when using simplified models such as p-acoustics to
represent mechanical systems under transformation, some caution remains necessary (see e.g. [21]).

One critical point about any derivation that proceeds from the original first order equations for the models given
below is that we assume the underlying constitutive parameters have a limited spatial and temporal dependence and
vary slowly with respect to the wavelength; this constraint is in accordance with that specifying that the determinant
of the metric undergoes negligible change in the simplifed covariant wave equation.

p-Acoustics: In the case of generalized p-acoustics, the equations for velocity field vi, and momentum density V i,
in combination with amplitude P and stress pi j can be written in an indexed form. In the rest frame of the acoustic
medium, we have

∂tP =−∂ivi, ∂tV m =−∂n pmn, (15)

p jk =−κ jkP V m = ρm
i v

i, (16)

where we also need to know that there exist inverses κ̄rs and ρ̄ i′
m such that κrsκ̄rs = 1, and ρ̄ i′

m ρm
i = δ i′

i . As expected,
the momentum density field is related to the velocity field by a matrix of mass-density parameters ρm

i .
For ordinary p-acoustics, P is a scalar field representing the local population, and κ i j = κoδ i j repesents the bulk

modulus; as a result pkl = poδ kl so that po is a pressure field. There is also a version of p-acoustics that mimics
pentamode materials [22], where the modulus κ i j is a symmetric matrix but ρ i j = ρoδ i j. Most generally, p-acoustics
allows the case where κ i j and p jk can be (at least in principle) any symmetric matrix; in this case P represents the
amplitude of an oscillating stress field whose orientation is determined by κ jk, and where the restoring stress is p jk is
proportional to P.

The usual process for generating a second order wave equation then leads straightforwardly to

∂ 2
t P = ∂iC

i j∂ jP (17)

with a speed-squared matrix Cis that depends on the bulk modulus κ and the mass density i.e.

Ci j = ρ̄ i
n κn j, (18)

where ρ̄ i
n ρm

i = δ m
n .

Electromagnetism: One approach to wave electromagnetics would be simply to write down a refractive index
matrix, and use this as the basis for a spatial metric. However, in transformation optics this strictly applies only when
transformations of the dielectric tensor εεε are matched to transformations of the permeability tensor µµµ . Here we take
a more basic approach and derive a speed-squared matrix from Maxwell equations in tensor form. The presentation
emphasises the structural similarity between p-acoustics and electromagnetism.

We can rewrite the vector Maxwell equations in an indexed form which incorporates the vector cross product by
turning the electric and magnetic fields E i and H l into antisymmetrized matrices ek j and −hmn; these also match up
with the purely spatial parts of the EM tensors5 ?F and G. The indexed equations, which also can be extracted from a
matrix representation of the covariant tensor Maxwell equations (see e.g. [14]), can be written,

∂tB j =−∂kek j, ∂tDm =−∂nhmn (19)

hmn = ηmn
j B j, Dm = εm

kl ekl , (20)

where η̄ j′
mn ηmn

j = δ j′
j , and ε̄ k′l′

m εm
kl = δ k′

k δ l′
l . To get the speed-squared matrix, we combine the above equations

in the usual way to derive a second order equation. In terms of the B field, and for homogeneous material parameters,

5Here, we use the Hodge dual operator ? (see e.g. [23]) to convert the usual EM F tensor into a more vector-notation friendly ?F .
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this is

∂ 2
t Bm = ∂iC

im j
l∂ jBl . (21)

Here the generalized (four index) speed-squared matrix Cim j
l depends on antisymetrized versions of the permitivitty

εi j and inverse permeability ηkl ; and are segments (blocks) excised from the dual of the constitutive tensor as used by
Kinsler and McCall [14]6. They are

εm
kl = ?χm0

kl , and ηmn
j = ?χmn

0 j. (24)

The multi-polarization speed-squared matrix combines these as

Cklm
j =
[
εn

kl

]−1 ηnm
j = ε̄ kl

n ηnm
j → Ckmδ l

j , (25)

where the simpler form indicated by the arrow assumes the typical case where the constitutive parameters provide
no cross-coupling between polarizations. Although this excludes many more general types of media, it nevertheless
includes most of those of relevance in transformation devices, which almost invariably are single polarization only –
but see [24] for an exception. Further, although anisotropic dielectric media are typically birefringent, those generated
by transformation from (or to) isotropic media are not [25].

As a final emphasis as to the value of the “speed squared” denomination of a T-device, note that a determination of the
water wave speed (squared) profile was the natural one to use when designing and building the Maxwell’s Fishpond
[26].

The above shows us what material parameters will need to be engineered to control either waves or rays for
acoustic-like or EM scenarios. In all these three cases where we generate a speed-squared metric for a physical
system, impedance does not appear in the final result. Impedance is expressed as either the ratio of the two field
components in a propagating wave (but only one field appears in a second order wave equation), or is the ratio of two
constitutive quantities (but which only appear as a product).

The next piece of the puzzle is to show what material parameters need to be manipulated to control diffusion pro-
cesses. Since an important case of diffusion is defined by the heat diffusion equation, and it is one already considered
by the T-Design community [12], we will start there.

Heat diffusion: The diffusion equation for a temperature distribution u(r, t), is often written in ordinary vector
calculus notation as ρcp∂tu=∇ ·K ·∇u for density ρ , specific heat cp, and potentially anisotropic thermal conductivity
matrix with components Ki j. The positioning of K in this equation is the “natural” one, and has not required any
approximation involving slow/negligible spatial variation.

Here we first take a step back and write two first order equations in a style reminiscent of both p-acoustics and the
presentation of EM as above. Such rewriting is an important step in matching the heat equation theory to the others,
and as an enabler of our generalization approach. Although in the following we examine heat diffusion in particular,
the equations are equally applicable to other diffusion processes, as long as the appropriate reinterpretations of the

6However, note that although that paper used χµν
γδ for the dual of the usual EM constitutive tensor χµνγδ , it denoted this only by the alternate

indexing, not (as would often be done) by ?χµν
γδ . Also, it is helpful to note that if the vector components of the usual electric displacement D are

denoted Di for i ∈ {x,y,z} and are related to E (or Ei) by the usual vector-calculus style expression

Di = εixEx + εiyEy + εizEz, (22)

then the components of the j-th slice of ε j
kl in eqn. (24) are

[
ε j

kl

]
=

1
2




0 −ε jz +ε jy
+ε jz 0 −ε jx
−ε jy +ε jx 0


 . (23)

A similar expression can be found for the j-slices of ηkl
j .
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physical variables are made. We therefore start with a conservation equation relating an energy density h and an
energy flux vi which is

∂th =−∇i vi. (26)

We then rewrite the usual expression relating heat flux V i to temperature profile u which is V i = Ki j ∇ j u using a
‘temperature impulse’ W i as

∂tW k =−∇i ui j. (27)

Here the temperature profile is allowed to be anisotropic, which does not necessarily have a clear physical meaning;
typically we will expect ui j to be diagonal.

With the assumption that ui j is proportional to h, but W i and v j are related by a first order differential equation,
we (can) write the following constitutive relations (equations of state),

ui j = σ i jh, (28)

∂tW k =−γβ k
j v j. (29)

Here σ i j plays the role of the inverse of the product ρcp. Note that we will also need β k
j β̄ j

l = δ k
l . Substitution of eqn.

(27) into eqn. (26) then gives us

∂th = ∇l

(
γ−1β̄ l

j

)
∇i ui j = ∇l

(
γ−1β̄ l

j

)
∇i σ i jh (30)

This is just a diffusion equation for h, and if σ i j is homogeneous (or has negligible spatial variation), then

∂th = ∇l

(
γ−1β̄ l

j

)
σ i j ∇i h = ∇iD

i j ∇ j h, (31)

where in comparison to the original Ki j, ρ , cp quantities,

Di j = Gl
jσ

i j ⇔ Di j = Ki j/(ρcp) . (32)

Following this, we now know how to relate the heat equation parameters to the diffusion, and hence to the trans-
formed metric, just as for the wave and ray theories already described. Note that other diffusion equations can also
easily be recast into the form used above.

3. Transformations

From the preceeding section, we can see that both (second order) wave and ray propagation, and even diffusion
processes can be packaged in a way dependent on the same mathematics; and that how that mathematics describes
propagation depends intimately on the metric. We must emphasize, however, that the significant gain in generalizing
transformation design which we achieve here is not without cost – being that we neglect details present in more exact
physical models. But under appropriate approximations, we simply need to determine – for a chosen transformation
(deformation) – the new metric, given that we insist that energy transport and ray trajectories (geodesics), are shifted
only by that deformation.

3.1. Metrics and coordinate transformations
If we adhere to the traditional coordinate-based interpretation of T-Design, then we can transform the metric

simply with the notional coordinate transform that we use to define our desired T-device. Coordinate transformations
of representations of tensors depend on the differential relationships between the old and new coordinates, i.e.

xα ′ = f (xα) then Λα ′
α =

∂ f (xα)

∂xα . (33)
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ξ̃

R3

ϕ
ϕ(P)

R3

P

ξ̂

M̃ M̂

ξ̂ ◦ϕ ◦ ξ̃−1

Figure 1: (Diffeo)-morphism. Points P in the device manifold M̃ are mapped to points ϕ(P) in the design manifold M̂ by the morphism
(mapping) ϕ . The R3 coordinate representation of the morphism, is Λ−1 = ξ̂ ◦ϕ ◦ ξ̃−1 : R3 → R3. This means that the design of the T-device is
specified by ϕ , but that expression of that design in coordinate terms – the “blueprint” – is Λ.

So a metric g and its inverse re-represented in new primed coordinates would be

gα ′β ′ = Λα
α ′gαβ Λβ

β ′ , (34)

gα ′β ′ = Λα ′
α gαβ Λβ ′

β . (35)

In the standard T-Design paradigm the coordinate transformation has the effect of changing our reference case
geodesics into new, useful, device geodesics; then we need to adapt our material parameters from the reference values
to those that give rise to the T-device metric gα ′β ′ .

We have already seen that an expression of a metric gαβ can be inverted to give speed-squared matrix Ci j; thus
the inverted T-device metric gα ′β ′ tells us what the T-device speed-squared matrix C′i j must be. Our knowledge of
whatever chosen physical system we want to build the device using then tells us what material properties are needed
to achieve the necessary C′i j and hence implement the T-device.

However, if any physical idea must be expressible in a way that is independent of coordinates; how can any
claimed “coordinate transformation” hope to represent the design or specification of a new device? Although the
coordinate transformation paradigm works from a purely practical standpoint, some coordinate transformations cannot
be represented as a diffeomorphism – the transform from cartesian to polar coordinates is one such example. In
what follows we present a more general and mathematically formal method which encapsulates the steps needed to
rigorously implement the process of T-Design.

3.2. Metric induced by a diffeomorphism

The mathematical underpinning of all transformation theories is in fact not that of coordinate transformation,
but that of a morphism ϕ that maps a point P on a “device” manifold M̃ , to another point ϕ(P) on a reference
(“design”) manifold M̂ , as seen in Fig. 1. A coordinate chart ξ̂ : Û → R3 maps a point P ∈ Û ⊂ M̂ to Euclidean
space. Mappings exist from the manifolds M̃ and M̂ into charts on R3, these are ξ̂ : M̂ →R3 at P , and ξ̃ : M̃ →R3
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at ϕ(P). However, in T-Optics, ϕ enables us to prescribe the electromagnetic medium in the device manifold M̃ for
(typically) a vacuum-like manifold M̂ , before any discussion of coordinates [27, 28].

Our primary task here is to work out how to specify7 the device metric g̃i j, as induced by ϕ , in terms of the
reference/design metric ĝi j. Often ĝi j will just be a flat Minkowski metric ηi j, but not always. The device metric g̃ is
related to the design metric ĝ by

g̃P(XP ,YP) = [ϕ∗ĝ] (XP ,YP) = ĝ(ϕ∗XP ,ϕ∗YP), (36)

where we have to (either) pullback the metric ĝ, or pushforward its arguments XP , YP using the diffeomorphism ϕ .
With some thought, we can see that this should be the expected behaviour: what we usually are typically trying to
achieve is to make interesting trajectories into the “new normal”. E.g. we make a cloak-like device structure in the
laboratory, with specified cloak-like wave or ray paths, into an actual cloak by insisting its properties are such that
those paths look to the outside world as if they were in an unremarkable piece of vacuum. I.e., we are trying to make
a device (cloak) manifold M̃ look like the design (vacuum) manifold M̂ , and not the other way around. In contrast,
the traditional transformation proceedure acts like an active transformation, and in our morphism picture is from the
design space to the device space. As a consequence the traditional picture’s basic operation is specified by ϕ−1 rather
than ϕ , and in our notation would be written

Λ = ξ̃ ◦ϕ−1 ◦ ξ̂−1 : R3→ R3. (37)

This makes it clear that the traditional picture is an active transformation8.
As we saw in the previous section, for our purposes the inverse of the metric, which is related to our speed squared

matrix C, is more useful. In mathematical terminology, this is known as the co-metric, which we will denote g. The
co-metric version of eqn. (36) uses the pushforward rather than the pullback, and is

ĝϕ∗P(ϕ∗XP ,ϕ∗YP) = [ϕ∗g̃] (ϕ∗XP ,ϕ∗YP) = g̃(XP ,YP), (38)

Although in a mathematical sense, this has defined everything we need, for practical calculations a matrix notation
is more convenient. The first step in achieving this is to write down eqns. (36) and (38) in an indexed notation; after
which a choice of coordinates leads us to the relevant matrix form. Notably, eqn. (36) can be written

g̃µ̃ ν̃ = (ϕ∗)α̂
µ̃(ϕ

∗)β̂
ν̃ ĝα̂β̂ , (39)

where

(ϕ∗)β̂
ν̃ =

∂yβ̂

∂xν̃

∣∣∣∣∣
P

. (40)

Similarly, we can do the same for the co-metric g. Since it has raised (and not lowered) indices, this distinguishes
the the co-metric from the metric, and so we can replace the g with an ordinary g, which matches with the notation
used for the inverse metric in previous sections. We then can write

ĝα̂β̂ = (ϕ∗)α̂
µ̃(ϕ∗)

β̂
ν̃ g̃µ̃ ν̃ , (41)

g̃µ̃ ν̃ = ((ϕ−1)∗)
µ̃

α̂((ϕ
−1)∗)ν̃

β̂ ĝα̂β̂ , (42)

where

((ϕ−1)∗)ν̃
β̂ =

∂xν̃

∂yβ̂

∣∣∣∣∣
ϕ∗P

. (43)

7A summary of the mathematical details associated with the transformation of metrics can be seen in the appendix of [29].
8Note the distinction between an active transformation which changes the system, and therefore cannot be considered as a coordinate transfor-

mation; and a passive transformation which only changes the coordinate representation, i.e. which can be considered as a coordinate transformation.
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Notably, if we were to replace the “(ϕ)” notation with a coordinate-transform mimicking “Λ”, then the operations
done here, in this more sophisticated pushforward/ pullback would match the use in the so-called “coordinate trans-
form” approach (see e.g. [14]); albeit with the significant advantage of being better mathematically and physically
motivated. Moreover, there is a further distinction to be emphasised. In two dimensions, for example, one can have
charts φ1 : M →R and φ2 : M →R⊗S and the transition map φ2 ◦φ−1

1 describing the transformation from Cartesian
to polar coordinates. This coordinate transformation and the associated Λ matrices can be readily inserted into (34)
or (35) but this does not produce a T-device. Morphing points on a manifold, on the other hand, one can use a single
coordinate chart ξ̂ : M →U and the transition function ξ̂ ◦ϕ ◦ ξ̂−1 (cf. Fig. 1) to reach a well-defined, and useful,
T-device, by morphing the metric according to (39). Also note that if the ‘morphism’ is to leave points on the manifold
unchanged, then the ϕ matrices are the identity, whereas the Λ matrices associated with coordinate transformations
need not be.

3.3. Transformations, Morphisms

It is critical to notice at this point that if we specify the morphism in terms of how one coordinate point is moved
to another, then we are only adjusting distances; i.e. only adjusting the effective metric. This is because we have
explicitly separated the general step of specifying the device by means of a morphism, from its chosen implementation
in a particular physical system. As a result our design/morphism is only targetted at the speed-squared matrix Ci j (i.e.
the inverse metric), and nothing else. It cannot directly specify how physical properties such as field values, material
parameters, ratios, or impedances have been affected, since they are still undecided.

However, once we have taken the additional step of specifying the physical system (e.g. EM), we can use the
morphism to tell us how physical properties will be changed, and how much freedom there might be. For exam-
ple, choosing the usual kappa medium assumption of “ε = µ” in an electromagnetic scenario has implications for
impedance [34], but such an identification has nothing to do with the morphism itself, which says nothing about the
ε : µ ratio. Of course, given a specified physical system, it is possible to apply T-design techniques to transform fields
and/or other properties independently [30, 31].

As described above, here we make an identification between the metric and the material properties, in the same
way as introduced to T-Optics by Leonhardt and Philbin [32]. This is essentially a “coordinate redefinition” step,
which results from the choosing of a secondary map [33].

4. Examples

As noted above, typically T-devices are described with a “transformation” narrative, where we talk of transform-
ing an unremarkable reference space into an interesting device space. Hence the typical description of a cloaking
transformation being that of a point in a flat space being expanded and pushed outwards to form a disk, and where
(outwardly) the inside of that disk (“core”) region is invisible.

In the more rigorous morphism language we instead represent the deformation that takes the device (or “labora-
tory”) space manifold (M̃ ), with its missing disk, and alters the metric on that manifold so as to “pull it inwards’. As
a result M̃ then acts as if it were like a design (i.e. apparent, or “reference”) manifold (M̂ ) only missing a single
point. This is the reverse narrative of the (usual) transformation one, and the mathematical and physical reasons for
this were described in the previous section.

However, the reason why the usual transformation narrative is not without its uses is that non-trival reference
manifolds might have metrics and geodesics with all kinds of interesting properties, involving ones that have foci,
caustics, or that form loops. And whatever the exotic properties of our T-device might be in re-presenting the physical
reality to an observer, it must be capable of being mapped onto that apparent manifold. By starting a design process
with the intended (design) behaviour, and morphing (by pullback) to the device behaviour, we can guarantee that our
aim is achievable, at least in principle. This specification means that the morphism should also have differentiable
inverse, i.e. be a diffeomorphism.

In the examples below, the necessary device metric g̃i j can be calculated from the design metric ĝi j using the
components (ϕ)i

l of the design morphism ϕ . Using square brackets to indicate a matrix-like representation, we find
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that
[
g̃i j
]
=
[
(ϕ∗)l

i
][

ĝlm
][
(ϕ∗)m

j
]T

, (44)
[
g̃i j]=

[
((ϕ−1)∗)i

l

][
ĝlm
][
((ϕ−1)∗)

j
m

]T
=
[
C̃i j
]
. (45)

Here the second line represents the next, more pragmatic step, where the inverse device metric is used to generate
the speed-squared matrix [C̃i j] that we need to engineer using the relevant material properties. Note that this transfor-
mation also uses the ϕ∗ pushforward form of the inverseof the morphism, i.e. ϕ−1. In the examples that follow, we
will use the phrase “non-trivial” to describe any diffeomorphism components ((ϕ−1)∗)i

l that differ from the identity
transformation value of δ i

l . For example, if we chose to restrict ourselves to a cylindrical geometry, with only radial
transformations, the only non-trival components will be radial ones.

Further, we also show only ray examples, because strictly speaking only in the ray limit is the metric approach
exact. In any case, the literature is already full of wave-cloak pictures for various degrees of approximation in the
underlying model. A careful analysis demonstrating the effects of the neglected impedance terms and possibly non-
trivial properties of the underlying space is no simple matter, and will be addressed elsewhere [34, 35].

4.1. Cylindrical cloak
The cylindrical cloak first introduced by Pendry et al [1] is the most famous T-device. Its design is usually

expressed as expanding a central point into a disk (or “core”) r = R in diameter, while compressing its “halo” – the
space between the point and the outer rim at r = S accordingly. It therefore preserves the effective distance between
inner and outer radii as being the same as (just) the outer radius. It is usually written in cylindrical coordinates, and a
general form allowing for a variety of radial transformations is

r̂ = f (r̃), θ̂ = θ̃ , ẑ = z̃, (46)

where f (r̃) is some suitably well behaved function increasing from f (R) = 0 to f (S) = S; it is the derivative of this f
which specifies the only non-trivial morphism component (ϕ∗)r

r.
In the original proposal [1], f was simply the linear

f (r̃) =
S

S−R
(r̃−R) . (47)

Here r̃, θ̃ , z̃ are the device coordinates where waves or rays are confined to r̃ > R, and so hiding points where r̃ < R.
Otherwise, the coordinates r̂, θ̂ , ẑ span the design space where waves or rays are allowed at any r̂ > 0.

Let us assume for additional generality that we want the design spatial metric (i.e. the apparent metric of our
device) to have independent radial, angular, and axial refractive index profiles n(r̂), m(θ̂), s(ẑ). This allows us,
for example, to consider adding a cloak to a 2D Maxwell’s fisheye device [17, 36], where m(θ̂) = 1, s(ẑ) = 1 and
n(r̂) = n0/[1+(r/r0)

2]. Our design metric is then

dŜ
2
= n2(r̂)dr̂2 +m2(θ̂)r̂2dθ̂ 2

+ s2(ẑ)dẑ2, (48)

or ĝi j =




n2 0 0
0 m2 0
0 0 s2


 . (49)

This means that whilst an outside observer with no reason to make complicating assumptions would presume geodesics
which match those in the design spatial metric, that region can have properties that differ according to some mor-
phism ϕ . A morphism ϕ based on the transformation f from eqn. (46) has the important (non trivial) component
(ϕA)

r
r = f ′ = ∂ f/∂ r̃. With this, it hides the core region as a result of generating the required device spatial metric of

dS̃2
= n2( f (r̃))

[
d f (r̃)

dr̃

]2

dr̃2 +m2(θ̃)
[

f (r̃)
r̃

]2

r̃2dθ̃ 2

+ s2(z̃)dz̃2, (50)
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Figure 2: Radial cloak based on the logarithmic function given in eqn. (53). One nice feature of this cloaking function is that it has both index and
gradient matching at the outer boundary S = eR of the halo.

which, as should be expected, looks like (is) the same result as that obtained by the misleadingly named “coordinate
transformation” approaches [37, 38] based on equations like eqn. (46). This interval-style dS2 metric can also be
written in a matrix-like form, with n≡ n( f (r̃)), m≡ m(θ̃), s≡ s(z̃), i.e.

g̃i j =




n2 f ′2 0 0
0 m2 f 2/r̃2 0
0 0 s2


 (51)

As described above we can convert – by a simple inversion – this T-device metric into the corresponding speed-
squared matrix, i.e.

C̃i j = g̃i j =
[
g̃i j
]−1 (52)

We might, for example, use an alternate radial cloak using the logarithm function [39] so that it could be more
smoothly matched than the original (linear) radial cloak [1], at its outer boundary. The log radial cloak is designed
using

F(r̃) = S log [r̃/R] , so that F ′(r̃) = S/r̃. (53)

To work, this log radial cloak requires a fixed core-to-halo ratio so that S = eR. The mapping between r̃ and r̂ is
shown on fig. 2. The disadvantage of this design is that there is a stronger gradient at its interface with the core

12



Figure 3: Comparison of the linear-radial [1] and log-radial cloaking transforms designed to match a flat space. Sample of ray trajectories and
refractive index ellipses are shown. Figures provided by R.D. Topf.

than with the original; for particular experimental implementations, this disadvantage may outweigh the benefits of
its smoother matching at the outer boundary. This is because cloak performance can be strongly affected by imperfect
implementation of the inner (core) boundary, although this would not be relevant in the near-miss case of a narrow
beam that only passes through the outer part of the cloak halo.

So for an EM wave in this T-device cloak where we choose the case where the electric polarization is not aligned
along θ , we find that εz,εr,µr,µθ are the controlling constitutive parameters. Therefore in cylindrical coordinates we
have

C̃i j =




εzµθ 0 0
0 εzµr 0
0 0 εrµθ



−1

=




1/n2F ′2 0 0
0 r̃2/m2F2 0
0 0 1/s2


 . (54)

Alternatively, we might have chosen the complementary case where the magnetic field is not aligned along θ .
For a scalar p-acoustics wave in the same cloaking T-device there is no scope for a choice of polarizations, unlike

the EM case above. In cylindrical coordinates we have a unique specification for the constitutive parameters that is

C̃i j = κo




ρrr 0 0
0 ρθθ 0
0 0 ρzz



−1

=




1/n2F ′2 0 0
0 r̃2/m2F2 0
0 0 1/s2


 . (55)

A comparison of the EM and scalar p-acoustics cases is instructive. In EM, for each of the two possible field
polarizations we can implement the three necessary cloak parameters C̃rr, C̃θθ , C̃zz using up to six constitutive param-
eters, i.e. we have three “spare” degrees of freedom. In contrast, the p-acoustic version has only four constitutive
parameters with which to make up the three cloak parameters, i.e. only one degree of freedom: we could e.g. leave κo
untouched and engineer each of ρrr,ρθθ ,ρzz. This significantly impacts our ability to fine-tune the p-acoustic cloak in
response to technological constraints.

A pentamode p-acoustics wave has additional constitutive freedom compared to the scalar version, since κ is now
matrix-like. In cylindrical coordinates, the same cloaking T-device has a specification for the constitutive parameters
based on diagonal κ i j and ρk

l properties is

C̃i j =




κrr
ρrr

0 0
0 κθθ

ρθθ
0

0 0 κzz
ρzz


=




1/n2F ′2 0 0
0 r̃2/m2F2 0
0 0 1/s2


 . (56)
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Note that κn j and ρ̄ i
n need not be diagonal as long as their product C̃i j is.

However, despite caveats regarding impedance matching, the wave or ray “steering” performance of these im-
plementations is as identical as the identical metrics upon which they are based; only their scattering properties are
different.

In the case of heat diffusion, we can just implement the C̃i j directly as the diffusion matrix

D̃i j =
1

ρcp

[
Ki j]=




1/n2F ′2 0 0
0 r̃2/m2F2 0
0 0 1/s2


 , (57)

with constant density ρ and specific heat cp, and an anistropic thermal conductivity Ki j.

4.2. Cloak on a sphere
Here our design space is a 2D spherical surface of radius R which is most naturally expressed in spherical polar

coordinates. Allowing for independent angular indices T (θ̂), P(φ̂), this has a design spatial metric which is

dŜ2 =
[
T 2(θ̂)

]
R2dθ̂ 2 +

[
P2(φ̂)

]
R2 sin2(θ̂)dφ̂ 2, (58)

with the variation in polar angle θ̂ denoting lines of “longitude”, and variation in the azimuthal angle φ̂ being latitude.
The sensible choice is to orient the coordinates so that both the missing point in the design (target) space, and the
missing spherical cap in the device (laboratory) space, are centered on the pole. In this case we leave the azimuthal φ
untouched so that φ̃ = φ̂ , but offset and rescale the polar angle θ̂ so that

θ̂ = f (θ̃) and θ̃ = f−1(θ̂) = F(θ̂). (59)

Thus the morphed device metric, with (ϕB)
θ

θ = f ′(θ̃) = d f (θ̃)/dθ̃ , is

dS2 =
[
T ( f (θ̃)) f ′(θ̃)

]2 R2dθ̃ 2

+

[
P(φ̃)

sin
(

f (θ̃)
)

sin(θ̃)

]2

R2 sin2(θ̃)dφ 2. (60)

This has been written so as to separate the part of the new T-device metric which encodes the necessary constitutive
properties, (which have been put in square brackets) from that which encodes the spherical geometry. Our T-device
needs the longitude component of rays (or waves) to see an index a factor of f ′(θ̃) larger than the background; whereas
the latitude component needs to see a different index depending on how close to the cloak core (at θ0) they are.

For example, with a standard linear transformation where θ̃ = αθ̂ + θ0, and with T ≡ T ( f (θ̃)) and P ≡ P(φ̃),
where α = 1−θ0/π , then the device metric must be

dS̃2 =

[
T
α

]2

R2dθ̃ 2 +


P

sin
(

θ̃−θ0
α

)

sin(θ̃)




2

R2 sin2(θ̃)dφ̃ 2. (61)

An alternative cloaking deformation based on the logarithmic one used in subsection 4.1 could be θ̃ = θ0 exp(θ̂/eθ0).
This morphism has taken a partial spherical manifold and morphed it into a (near) full sphere; thus the morphism
applies only over θ̃ ∈ (θ0,eθ0] and (but) mimics the range θ̂ ∈ (0,eθ0]. On the rest of the sphere, i.e. for angles
θ ∈ (eθ0,π], we have that θ̃ = θ̂ . This gives a morphed (T-device) metric

dS̃2 =

[
Teθ0

θ̃

]2

R2dθ̃ 2

+


P

sin
(

eθ0 log
{

θ̃
θ0

})

sin(θ̃)




2

R2 sin2(θ̃)dφ̃ 2, (62)
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Figure 4: Radial cloak on a spherical surface, again based on a logarithmic function. A random selection ray paths are shown, all being forced by
the cloak to avoid the core region which extends up to 20◦ from the north pole, whilst also returning smoothly to their expected “great circle” paths
outside the cloak halo at e×20◦ ' 54◦.

Figure 5: Radial cloak on a spherical surface, again based on a logarithmic function; however unlike fig. 4 the original spherical surface has a
varying instead of a constant background index; this perturbs the ray paths. This figure shows only a long segment taken from a single ray path,
which returns to the vicinity of the north pole to be cloaked (from) over and over again. The thin lines show the path the ray would have taken if
the cloak were not present.
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where since the metric is diagonal, the θθ and φφ components of the inverse-metric g̃i j, speed squared C̃i j, or diffusion
Di j matrices, are just given by the inverse of square bracket terms. These inverses are in essence just rescaling factors
for the speeds cθ and cφ on the sphere in the angular and azimuthal directions. Thus the logarithmically cloaked
sphere, in the transformed region, needs to have its material parameters modified so that

c̃θ
ĉθ

=

√
C̃θθ

Ĉθθ
=

[
θ̃

eθ0

]
, (63)

c̃φ

ĉφ
=

√
C̃φφ

Ĉφφ
=


 sin(θ̃)

sin
(

eθ0 log
{

θ̃
θ0

})


 . (64)

As before, we can choose implement this anisotropic speed profile for either EM or acoustics following a similar
procedure as for the ordinary cylindrical cloak; we might equally as easily follow the rules to work out the material
parameters needed for a heat diffusion cloak.

A depiction of this cloak, implemented on a featureless sphere where T = P = 1, is shown in fig. 4, and showing
a variety of deformed – cloaked – great circle geodesic trajectories. For more complicated spheres, such as ones with
a pre-existing index profiles that vary over the surface, the geodesics will no longer be great circles. Cloaking on such
a sphere is displayed on fig. 5. In this example a single ray trajectory will now travel widely over the surface in a
complicated manner, and so returns again and again to the north pole region to be cloaked and recloaked in different
ways and from different directions.

4.3. Topographic transformation
Imagine we wish to control our waves or rays so that they appear to be travelling along a designer bumpy three

dimensional landscape, even though they remain confined to a planar device space, albeit a plane with appropriately
modulated properties. If the height of the virtual landscape is defined by the function ẑ = h(x̂, ŷ), then the required 2D
metric that mimics it is based on (ϕ∗C)

z
x = ∂h/∂ x̃ and (ϕ∗C)

z
y = ∂h/∂ ỹ, being

dŜ2 =

[
1+
(

∂h
∂ x̃

)2
]

dx̃2 +

[
1+
(

∂h
∂ ỹ

)2
]

dỹ2

+2
[(

∂h
∂ x̃

)(
∂h
∂ ỹ

)]
dx̃ dỹ. (65)

If, for example we wished to mimic a parabolic or hyperbolic landscape, defined by the height function h1(x̃, ỹ) =
α x̃2 +β ỹ2, then the required device metric is

dŜ2 =
[
1+4α2x̃2]dx̃2 +

[
1+4β 2ỹ2]dỹ2

+2 [4αβ x̃ỹ] dx̃ dỹ. (66)

The metric components gxx, gxy, and gyy can then be read off directly from this result. The components of Ci j or Di j

can then be determined, being given by the inverse of the matrix
[

gxx gxy
gxy gyy

]
=

[
1+4α2x̃2 4αβ x̃ỹ

4αβ x̃ỹ 1+4β 2ỹ2

]
. (67)

Alternatively, if we wished to mimic a landscape with a deep well (or peak) as defined by the height function
h2(x̃, ỹ) = γ/(1+α x̃2 +β ỹ2), then the required device metric is

dŜ2 =

[
1+
(

4α2

γ2

)
x̃2 h2(x̃, ỹ)4

]
dx̃2

+

[
1+
(

4β 2

γ2

)
ỹ2 h2(x̃, ỹ)4

]
dỹ2

+2
[(

4αβ
γ2

)
x̃ỹ h2(x̃, ỹ)4

]
dx̃ dỹ. (68)

16



Figure 6: A 3D depiction of a topographic design manifold (top), given by eqn. (68) with α = β = 20 and γ = 1. The necessary metric properties
of the planar device (manifold), i.e. the x̃x̃, x̃ỹ, and ỹỹ components, are given as color-coded surfaces below. These metric components, in a flat
(planar) device, mimic the distorted design manifold.

Of course, many other landscapes can be imagined, for example those considered when making surface wave cloaks
[40, 41, 42] or geodesic lenses [17, 26, 36].

This kind of landscape T-Design might lead us to consider the reverse case: can we, by transformation, modulate
the properties of a bumpy but locally isotropic (device) sheet embedded in 3D – a pre-existing landscape of the type
discussed above, with height z = h(x,y) – so that it is designed to appear as if it were instead a flat sheet in 2D?
The answer is, in general, an emphatic no; although this can be done in some specific cases: i.e. the geodesic lenses
mentioned above.

Imagine we have waves or rays travelling along some kind of bumpy landscape that we wish to re-map to a flat
space. Crucially, in some places, for example, the local curvature will cause some geodesics to converge at and
through a focus. Now no matter what diffeomorphism we apply, we cannot remove that focus, but only shift its
position. Further, since any collection of geodesics in a flat space can at most all share only a single focus, as soon as
a landscape is such that if anywhere a collection of geodesics share two foci, we cannot (in general) diffeomorphically
transform from one to the other.

4.4. Focus transformation
We can imagine representing device that focuses in the 2D plane as a T-Design by embedding it in 3D and twisting

the space along the focal axis, as depicted in fig. 7. With z chosen as the focal axis, points are twisted off the x-axis
into the xy-plane, using a rotation defined by

ẑ = z̃, x̂ = x̃cos(Φz̃+φ), ŷ = x̃sin(Φz̃+φ). (69)

The device space of z̃, x̃ will then mimic the behaviour design space’s twisted version embedded in ẑ, x̂, ŷ. This will
involve periodic refocusings at Φz̃+φ = (2n+ 1)π/2. This T-Design specification means that the two spaces differ
in a nontrivial way (only) due to (ϕ∗E)x

x, (ϕ∗E)x
z, (ϕ∗E)

y
x, and (ϕ∗E)

y
z. These give

dẑ = dz̃, (70)
dx̂ =−Φx̃sin(Φz̃+φ)dz̃+ cos(Φz̃+φ)dx̃, (71)
dŷ = Φx̃cos(Φz̃+φ)dz̃+ sin(Φz̃+φ)dx̃, (72)
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Figure 7: A 3D depiction of the helical design manifold used in the focus transformation, with a ẑ-dependent colour gradient to aid interpretation,
and the resulting ray trajectories in x̃z̃-plane of the device (manifold).

and so

dŜ
2
= dx̂2 +dŷ2 +dẑ2 (73)

=
(
1+Φ2x̃2)dz̃2 +dx̃2, (74)

so we have (almost) reinvented the parabolic index waveguide; the difference being that only the z-directed index
profile is modulated. The resulting anisotropy means that – as is obvious from the transformation used – the structure
preserves path lengths and will have no spatial dispersion in the ray limit.

The x,z speed squared matrix for the anisotropic material required for this device design when applied to waves
or rays is then

Ci j = c2
[

1 0
0 1+Φ2x̃2

]−1

. (75)

Further, we could note that this transformation acts rather like a 2D projection of the helical transformation dis-
cussed by McCall et al. [25].

Note that at a given focus point z̃i, the transformation projects multiple points (actually the entire ŷ-axis) down to
a single point in the device, namely z̃ = z̃i and x̃ = 0. Indeed, the device manifold consists of the x̃z̃-plane, but with
the set of all points consisting of the lines along z̃ = [(2n+1)π/2−φ ]/Φ except when x̃ = 0 removed. Nevertheless,
rays passing through these foci are still distinguishable from each other by their direction. Remarkably, we can also
see that the device properties are insensitive to the chosen phase offset φ .

18



5. Conclusion

Here we have shown the extent to which all the distinct types of transformation design might be repackaged into a
general formalism. Although this process has necessarily involved approximations, we have shown that it is possible
to make a clear distinction between the mathematical design step and the subsequent choice of which physical model
is used to implement it.

Indeed, from the perspective given here, there is absolutely nothing “magic” about transformation optics, acous-
tics, or any of the other transformation domains – as long as we are prepared to tolerate approximations. If we have a
pre-specified metric, then we can map this directly to a speed-squared matrix and use our knowledge of materials (or
of metamaterials) to work out an implementation. Alternatively, and this is the usual case, if we have a useful scheme
for reconfiguring the flow or location of the light or acoustic waves (or rays), then we can simply transform our design
(“reference”) metric – usually the vacuum, but this is not a requirement – directly into the necessary device met-
ric. This process involves the calculation of only a couple of matrix multiplications at each point in the transformed
domain. Then, as before, the demands of any specific implementation are straightforward to identify.

Notably, we can see that if we eschew issues of impedance handling and changes in volume measure the wave and
ray transformation procedures to be used are the same. This is not to deny the importance of impedance, merely to note
the similarities between transformations of waves and rays. Further, the “obvious” process of matched modulation of
both constitutive parameters – e.g. ε and µ in optics, κ and ρ in acoustics – gives the natural choice of impedance
mismatch, even if the design intent is only for a ray T-device.

As it stands here, we only consider purely spatial transformations. However, it has already been shown [3, 4, 14]
that an extension to spacetime transformations can be done in a relatively straightforward way, at least in the 1+1D
case. In contrast, spacetime transforms of dispersive [5] and diffusive systems are more problematic, and is an area
we are actively investigating.

Acknowledgments

We acknowledge valuable discussions with Robert Thompson and David Topf; as well as funding from EPSRC
grant number EP/K003305/1. PK would also like to acknowledge recent support from the EPSRC/Alpha-X grant
EP/J018171/1 and STFC grant G008248/1.

References

[1] J. B. Pendry, D. Schurig, and D. R. Smith. Controlling electromagnetic fields. Science, 312(5781):1780–1782, 2006.
[2] U. Leonhardt. Optical conformal mapping. Science, 312(5781):1777–1780, 2006.
[3] M. W. McCall, A. Favaro, P. Kinsler, and A. Boardman. A spacetime cloak, or a history editor. J. Opt., 13(2):024003, 2011.
[4] P. Kinsler and M. W. McCall. Cloaks, editors, and bubbles: applications of spacetime transformation theory. Ann. Phys. (Berlin), 526:51–62,

January 2014.
[5] J. Gratus, P. Kinsler, M. W. McCall, and R. T. Thompson, On Spacetime Transformation Optics: Temporal and Spatial Dispersion

arXiv:1608.00496, 2016; New. J. Phys., 18:123010 (2016).
[6] Moti Fridman, Alessandro Farsi, Yoshitomo Okawachi, and Alexander L. Gaeta. Demonstration of temporal cloaking. Nature, 481(7379):62–

65, 2012.
[7] J. M. Lukens, A. J. Metcalf, D. E. Leaird, and A. M. Weiner. Temporal cloaking for data suppression and retrieval. Optica, 1(6):372–375,

2014.
[8] I. Chremmos. Temporal cloaking with accelerating wave packets. Opt. Lett., 39(15):4611–4614, 2014.
[9] M. S. Abdul Jabar, Bakht Amin Bacha, and Iftikhar Ahmad. Temporal cloak via doppler broadening. Laser Phys., 25:065405, May 2015.

[10] Shu Zhang, Chunguang Xia, and Nicholas Fang. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett., 106:024301, 2011.
[11] L. Sanchis, V. M. García-Chocano, R. Llopis-Pontiveros, A. Climente, J. Martínez-Pastor, F. Cervera, and J. Sánchez-Dehesa. Three-

dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett., 110:124301, March.
[12] Sebastien Guenneau, Claude Amra, and Denis Veynante. Transformation thermodynamics: cloaking and concentrating heat flux. Opt.

Express, 20(7):8207, March 2012.
[13] Robert Schittny, Andreas Niemeyer, Muamer Kadic, Tiemo Bückmann, Andreas Naber, and Martin Wegener. Transient behavior of invisibil-

ity cloaks for diffusive light propagation. Optica, 2(2):84–87, 2015.
[14] P. Kinsler and M. W. McCall. Transformation devices: carpets in space and time. Phys. Rev. A, 89:063818, 2014.
[15] P. Kinsler. The refractive index and wave vector in passive or active media. Phys. Rev. A, 79:023839, 2009.
[16] P. Kinsler and M. W. McCall. The futures of transformations and metamaterials. Photon. Nanostruct. Fundam. Appl., 15:10–23, June 2015.
[17] Martin Sarbort and Tomas Tyc. Spherical media and geodesic lenses in geometrical optics. J. Opt., 14:075705, 2012.
[18] Bernard F. Schutz. A first course in general relativity. Cambridge University Press, 1986.

19



[19] P. Kinsler. Deriving the time-dependent Schrödinger m- and p-equations from the Klein-Gordon equation. arXiv:1309.2484, 2013.
[20] Charles Kittel. Introduction to Solid State Physics. Wiley, 8th edition, November 2004.
[21] A. N. Norris. Comment on “Design of acoustic devices with isotropic material via conformal transformation” [Appl. Phys. Lett. 97, 044101

(2010)]. Appl. Phys. Lett., 100:066101, 2012.
[22] A. N. Norris. Acoustic cloaking theory. Proc. Royal Soc. A, 464(2097):2411–2434, 2008.
[23] H. Flanders. Differential Forms with Applications to the Physical Sciences Academic Press 1963. Reprinted by Dover, 2003.
[24] Thomas Zentgraf, Jason Valentine, Nicholas Tapia, Jensen Li, Xiang Zhang. An Optical “Janus” Device for Integrated Photonics Adv. Mat.,

22(23):2561-2564, 2010.
[25] Martin W. McCall, Paul Kinsler, and René D. M. Topf. The refractive index of reciprocal electromagnetic media. J. Opt. , 18(4):044017,

2016.
[26] Paul Kinsler, Jiajun Tan, Timothy C. Y. Thio, Claire Trant, and Navin Kandapper. Maxwell’s Fishpond. Eur. J. Phys., 33(6):1737–1750,

2012.
[27] Robert T. Thompson, Steven A. Cummer, and Jörg Frauendiener. A completely covariant approach to transformation optics. J. Opt.,

13(2):024008, 2011.
[28] Robert T. Thompson, Steven A. Cummer, and Jörg Frauendiener. Generalized transformation optics of linear materials. J. Opt., 13(5):055105,

2011.
[29] Paul Kinsler, Martin W. McCall, Generalized Transformation Design: metrics, speeds, and diffusion arXiv:1510.06890, 2015.
[30] Fu Liu and Jensen Li. Gauge field optics with anisotropic media. Phys. Rev. Lett., 114:103902, March 2015.
[31] F. Liu, Z. X. Liang, and Jensen Li. Manipulating polarization and impedance signature: A reciprocal field transformation approach. Phys.

Rev. Lett., 111(3):033901, July 2013.
[32] U. Leonhardt and T. G. Philbin. General relativity in electrical engineering New J. Phys. 8:247, October 2006
[33] M. Fathi and R. T. Thompson. Cartographic distortions make dielectric spacetime analog models imperfect mimickers Phys. Rev. D,

93:124026, June 2016
[34] Paul Kinsler. Cloak imperfect: Impedance. arXiv:1708.01071, 2017.
[35] Paul Kinsler. Cloak imperfect: Determinant. (preprint), 2015.
[36] R. K. Luneburg. Mathematical Theory of Optics. University of California Press, Berkeley, CA, 1964.
[37] Steven A. Cummer, Ruopeng Liu, and Tie Jun Cui. A rigorous and nonsingular two dimensional cloaking coordinate transformation. J. Appl.

Phys., 105:056102, March 2009.
[38] W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton. Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett.,

91:111105, 2007.
[39] J.-J. Ma; X.-Y. Cao; K.-M. Yu; T. Liu. Determination the material parameters for arbitrary cloak based on Poisson’s equation. Prog.

Electromagn. Res. M, 9:177–184, 2009.
[40] R. C. Mitchell-Thomas, T. M. McManus, O. Quevedo-Teruel, S. A. R. Horsley, and Y. Hao. Perfect surface wave cloaks. Phys. Rev. Lett.,

111(21):213901, November 2013.
[41] R. C. Mitchell-Thomas, O. Quevedo-Teruel, T. M. McManus, S. A. R. Horsley, and Y. Hao. Lenses on curved surfaces. Opt. Lett.,

39(12):3551–3554, June 2014.
[42] S. A. R. Horsley, I. R. Hooper, R. C. Mitchell-Thomas, and O. Quevedo-Teruel. Removing singular refractive indices with sculpted surfaces.

Sci. Rep., 4:4876, May 2014.

20


