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PROPERNESS AND SIMPLICIAL RESOLUTIONS
FOR THE MODEL CATEGORY dgCat

JULIAN V. S. HOLSTEIN

Abstract. We give an elementary proof that the model category of
dg-categories over a ring of flat dimension 0 is left proper and we
provide a construction of simplicial resolutions in dg-categories, given
by categories of Maurer-Cartan elements.

1. Introduction

We provide proofs of the following properties of the model category
dgCatk of dg-categories (with the Morita or Dwyer-Kan model structure)
over a ringk.

• Whenk has flat dimension 0, the categorydgCatk is left proper.
• Natural simplicial resolutions indgCat are given by dg-categories

of Maurer-Cartan elements.

Left properness is essential to show the existence of Bousfield
localizations of dg-categories. (Under stronger assumptions on k left
properness also follows from [7].) We also remark thatdgCat is cellular
and there is a Quillen equivalent combinatorial subcategory (without
assumptions on the existence of large cardinals).

Simplicial resolutions allow for constructions of explicit mapping spaces
and simplicial actions. These play a crucial role in categorifying
cohomology to Morita cohomology, see [4]. We construct simplicial
resolutions by an explicit if somewhat lengthy computationmotivated by
the Čech globalization in [10]. Note that the explicit combinatorics of
this construction have appeared in other contexts: IfK is the nerve of
a category this is the data of anA∞-functor, see for example [5]. If
K is any simplicial set one recovers the∞-local systems defined in [1].
We feel that the interpretation here as the cotensor action of simplicial
sets ondgCat, computed via simplicial resolutions, provides a satisfying
conceptual viewpoint.

These results are taken from the author’s thesis. Thanks aredue to
Ian Grojnowski and Jon Pridham for helpful discussions as well as to
Zhaoting Wei and the anonymous referee for useful questions, corrections
and suggestions.
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2 JULIAN V. S. HOLSTEIN

1.1. Conventions. We assume the reader is familiar with the theory of dg-
categories. Basic references are [6] and [16].

Recall in particular that there are two model structures ondgCatk, the
category of differential graded categories over a ringk. These are the
Dwyer-Kan model structure, constructed in [12], and the Morita model
structure [13] which is its left Bousfield localization, cf.[14]. We will
often not distinguish between them as our results will applyto both model
categories.

We use homological grading conventions, all differentials decrease the
degree. The degree is indicated by a subscript or the inverseof a superscript,
Ci = C−i .

2. Dg-categories over a ring of flat dimension 0 form a left proper,
cellular, combinatorial model category

2.1. Left properness. In this section we will show that the model category
of dg-categories over a fieldk is left proper. Recall that a model category is
left properif any pushout of a weak equivalence along a cofibration is again
a weak equivalence.

Remark2.1. Recall thatdgCat with the Dwyer-Kan model structure is right
proper since every object is fibrant, and it is not right proper with the Morita
model structure, as is shown explicitly by Example 4.10 in [15].

Before proceeding to the proof we mention two closely related results
from the literature. Dwyer and Kan prove left properness forsimplicial
categories on a fixed set of objects in [2].

If we strengthen our assumption and letk have global dimension 0, then it
follows from Corollary 1.3 in [7] thatdgCatk is left proper. To see this, note
that in this case all chain complexes overk are cofibrant in the projective
model structure, so the results in [7] apply. Indeed, any chain complex is
a direct limit of its canonical filtration by bounded below subcomplexes. If
all k-modules are projective this is a special direct limit in thesense of [11],
hence the limit is a K-projective object and hence cofibrant.

Theorem 2.2. If k has flat dimension 0 the model categorydgCatk is left
proper.

Proof. Left Bousfield localization preserves left properness, seeProposition
3.4.4 of [3], so it is enough to showdgCat with the Dwyer-Kan model
structure is left proper.

The main work is in showing that pushout along the generating
cofibrations preserves quasi-equivalences.

To see this suffices note first that transfinite compositions are just filtered
colimits, and filtered colimits preserve quasi-equivalences as follows: A
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filtered colimit of categories can be computed set-theoretically on objects
and morphisms. Now filtered colimits preserve weak equivalences of
simplicial sets and hence of mapping spaces. They also preserve the
homotopy category since a filtered colimit of equivalences of categories is
an equivalence of categories and taking the homotopy category commutes
with filtered colimits. Second, if pushout along some map preserves
weak equivalences then so does pushout along a retract by functoriality
of colimits. Since all cofibrations are retracts of transfinite compositions
of generating cofibrations, it does indeed suffice to check generating
cofibrations.

Recall the generating cofibrations ofdgCat [15]. We writek for the dg-
category with one object with endomorphismsk concentrated in degree 0.
Also let S (n − 1) have two objectsa andb and End(a) � End(b) � k[0]
while Hom(a, b) = k.g with g in degreen−1 and Hom(b, a) = 0. Finally let
D(n) be obtained byS (n−1) by adding a generating morphismf of degree
n to S (n− 1) with d f = g. Then the generating cofibrations ofdgCat are
given by∅ → k and byS (n− 1)→ D(n) for all n ∈ Z.

It is clear that pushout along∅ → k preserves quasi-equivalences.
So consider the generating cofibrationS (n − 1) → D(n) with a map

j : S (n − 1) → C and a quasi-equivalenceF : C → E . In forming the
pushforward we adjoin a new mapf with d f = j(g). We call the resulting
categoryC ′. Then letE ′ be the pushout ofS (n− 1)→ D(n) alongF ◦ j.

The pushout alongj has the same objects asC . The morphism space is
obtained by collecting maps fromC to D, graded by how often they factor
through f : j(a) → j(b). Write C (A, B) etc. for the enriched hom-spaces
Hom

C
(A, B) etc. Then the hom-spaces inC ′ are given as follows:

(1) C
′(C,D) = Tot⊕

(
C (C,D) ⊕

(
C ( j(b),D) ⊗ k. f ⊗ T ⊗ C (C, j(a))

))

HereT =
∑

n≥0(C ( j(b), j(a)) ⊗ k. f )⊗n and we introduce a horizontal degree
n with C (C,D) in degree−1. The right hand side has a vertical differential
dv given by the internal differential and a horizontal differentialdh given by
f 7→ j(g) ∈ Hom(j(b), j(a)) composed with the necessary compositions.

If the functorF is not the identity on objects fromC to E we factor

F = Q ◦ H : C → D → E

whereD has as objects the objects ofC but HomD (A, B) = HomE (FA, FB).
ThenH is identity on objects andQ is an isomorphism on hom-spaces. We
form the pushforward and obtain the factorizationF′ = Q′ ◦H′ throughD ′.

So it suffices to prove the following two lemmas. �

Lemma 2.3. The functor Q′ defined as above is a quasi-equivalence if Q
is.
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Proof. Note thatQ′ is quasi-essentially surjective ifQ is since bothD →
D ′ and E → E ′ are essentially surjective as pushout alongj does not
change the set of objects.

Next we use a spectral sequence to compute the hom-spaces inD ′ andE ′.
To construct the spectral sequence we filter the right-hand side of Equation 1
(with D respectivelyE in place ofC ) by columns, i.e. byn. Let (V, dh+ dv)
denote any Hom space inD ′ or E ′. The filtration is bounded below and
exhaustive for the direct sum total complexV and hence the associated
spectral sequence

E1
pq = Hp+q(GrpV)⇒ E∞pq = Hp+q(V)

converges. Now Gr(V) = (V, dv) and the map induced byQ′ is given byQ
on all the hom-spaces making up the right-hand side of Equation 1. Since
Q induces isomorphisms on hom-spaces, it induces isomorphisms on their
direct sums and tensor products and thusQ′ induces an isomorphisms on
the E1-page of the spectral sequences computing hom-spaces inD ′ and
E ′. HenceQ′ induces an isomorphism on theE∞-page. For any pair of
objectsC,D in D ′ this gives an isomorphismD ′(C,D) � E ′(QC,QD), so
Q′ induces quasi-isomorphisms on hom-spaces.

Note that sinceS (n − 1) maps toE via D all the hom-spaces involved
in computingE ′(QC,QD) are indeed images of hom-spaces inD . �

Lemma 2.4. The functor H′ defined as above is a quasi-equivalence if H
is.

Proof. Note thatH′ is quasi-essentially surjective ifH is for the same reason
thatQ′ is.

To consider the effect of H′ on mapping spaces we follow the same
argument as in the previous lemma. NowH only induces weak
equivalences on hom-spaces, but we know all hom-spaces are flat overk
by assumption. Hence the tensor product in Equation 1 preserves quasi-
isomorphisms. So we have a quasi-isomorphism between theE1 pages of
the spectral sequences and hence betweenE∞ pages andH′ induces quasi-
isomorphisms on hom-spaces. �

Remark2.5. If k does not have flat dimension 0 then the conclusion is false.
We can adapt Example 2.7 in [9] to the case of dg-categories. Let k have
positive flat dimension, then there exists a pair ofk-modulesM,N with
Tork1(M,N) , 0. We will consider thek-algebraA = k⊕ M ⊕ N with trivial
productM ⊕ N. Then Tork1(A,A) , 0. View A as a dg-algebra concentrated
in degree 0 and take a free resolutionB of A. Next consider bothA andB
as dg-categories with one object. They are quasi-equivalent. Now attach
a free generator toA and toB by pushout along the generating cofibration
S (−1) → D(0). We then haveA〈x〉 ≃

⊕
n≥1 A⊗n and B〈y〉 ≃

⊕
n≥1 Bn
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(note that the tensor product here is the underived tensor product overk).
But sinceH1(B⊗ B) = Tork1(A,A) , 0 andA〈x〉 is concentrated in degree 0
the two pushouts are not quasi-equivalent, anddgCatk is not left proper.

Hence the model category of dg-categories is left proper if and only if all
dg-categories arek-flat, i.e. if and only ifk has flat dimension 0, equivalently
if k is von Neumann regular.

In [9] the existence of a proper model for simplicialk-algebras is proven.
A similar result for dg-categories is beyond the scope of this work.

2.2. Cellularity and combinatoriality. One of the main uses of proper-
ness is in constructing left Bousfield localizations. The only additional
assumption needed is that the model category is either cellular or combi-
natorial. We now show that both are satisfied fordgCat.

Proposition 2.6. The two model category structures ondgCat are cellular.

Proof. Recall that a model category is cellular if it is cofibrantly generated
with generating cofibrationsI and generating trivial cofibrationsJ such that
the domains and codomains of the elements ofI are compact, the domains
of the elements ofJ are small relative toI and the cofibrations are effective
monomorphisms. See Chapter 10 of [3] for more details.

Left Bousfield localization preserves being cellular see Theorem 4.1.1
of [3]. So it is enough to showdgCat with the Dwyer-Kan model structure
is cellular.

The domains and codomains of elements ofI are categories with at
most two objects and perfect hom-spaces, so maps from these objects to
relative I -complexes factor through small subcomplexes. So domains and
codomains ofI are compact.

Similarly the domains of the elements ofJ have two objects and perfect
hom-spaces. Hence taking maps from a domain ofJ commutes with filtered
colimits. So domains ofJ are small relative toI .

We are left to check that relativeI -cell complexes, i.e. transfinite com-
positions of pushouts of generating cofibrations, are effective monomor-
phisms, i.e. any relativeI -cell complex f : X → Y is the equalizer of
Y⇒ Y∐X Y. Note that we form the pushout along a generating cofibration
by attaching maps freely. If we formC ′ andC ′′ from C by attaching maps
freely then the equalizer will have the same objects and the hom-spaces are
given by considering morphisms of the pushout that are in theimage of both
C ′ andC ′′. But these are precisely the hom-spaces ofC . �

Definition 2.7. Let λ be a regular cardinal. An objectA in a categoryD is
λ-presentableif it is small with respect toλ-filtered colimits, i.e. if for every
λ-filtered colimit colimBi the map colim Hom(A, Bi) → Hom(A, colimBi)
is an isomorphism. We sayA is presentableif it is λ-presentable for someλ.
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A cocomplete category islocally presentableif for some regular cardinalλ
it has a setS of λ-presentable objects such that every object is aλ-directed
colimit of objects inS.

Definition 2.8. A model category iscombinatorial if the underlying
category is locally presentable.

It is known that there exist combinatorial models for all cofibrantly
generated model categories under a large cardinal assumption, cf. [8]. We
notice that this assumption is not necessary fordgCat.

Proposition 2.9. The categorydgCat is Quillen equivalent to a combina-
torial subcategory.

Proof. This follows immediately from the proof of the main theorem of [8].
Let D denote either of the two model structures ondgCat. Let S be
the collection of objects that are domains or codomains of the generating
cofibrations and generating trivial cofibrations. (See [15]for an explicit
description.) ClearlyS is a set. LetS denote the full subcategory ofD
with objectsS. DefineηS(X) to be the colimit of the forgetful diagram
(s→ A) 7→ s indexed by the overcategoryS ↓ A. Then an objectA ∈ D is
S -generatedif it is isomorphic toηS(X).

Now by the proof of Theorem 1.1 in [8] the subcategory ofS-generated
objects ofD is a model categoryDS which is Quillen equivalent to the
original one. Moreover, by Proposition 3.1 of [8],DS is locally presentable
if every object inS is presentable. But this is clear since the objects inS
have finitely many objects and generating morphisms. �

Remark2.10. Note that Vop̌enka’s principle is not needed here since the
objects ofS are presentable.

3. Simplicial resolutions of dg-categories

In this section we will construct explicit simplicial functorial resolutions
C 7→ C• in dgCat. Again, we can consider either model structure on
dgCat.

We first recall the basic definitions. Let∆ be the simplex category and
consider the constant diagram functorc: M → M ∆op

. Then asimplicial
resolution M• for M ∈ M is a fibrant replacement forcM in the Reedy
model structure onM ∆op

. (For a definition of the Reedy model structure
see for example Chapter 15 of [3].) The dual notion is acosimplicial
resolution M•.

We recall two applications:
By using simplicial resolutions one can define mapping spaces with

values inHo(sSet) for every model category, even if it is not a simplicial
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model category. IfcB → B̃ is a simplicial resolution inM ∆op
and

QA a cofibrant replacement inM then Map(A, B) ≃ Hom•(QA, B̃) ≃
R(Hom•(−, c−)), where the right-hand side uses the bifunctor Hom• : M op×

M ∆op
→ Set∆

op
that is defined levelwise.

Moreover, every homotopy category of a model category is tensored and
cotensored inHo(sSet). In fact,M can be turned into a simplicial category
in the sense that there is an enrichment given by the bifunctor Map and
there is a tensor functor as well as a cotensor or power functor, which
can be constructed from the simplicial and cosimplicial resolutions. The
cotensor is constructed using the simplicial resolution asfollows: Let a
simplicial resolutionA• ∈ M ∆op

and a simplicial setK be given. Consider
∆Kop, the opposite of the category of simplices ofK, with the natural map
v: ∆Kop → ∆op sending∆[n] 7→ K to [n]. We defineAK

• = lim∆Kop An to
be the image ofA• under lim◦ v∗ : C ∆

op
→ C ∆Kop

→ C . This can also be
written asAK = limn(

∏
Kn

An).

3.1. The construction. Our construction is directly motivated by Simp-
son’s construction of the globalization of a presheaf of dg-categories as a
dg-category of Maurer–Cartan elements, cf. section 5.4 of [10].

Remark 3.1. In fact, the construction ofCn below corresponds to
considering the constant presheaf of dg-categories on a covering of |∆n| by
n+ 1 open sets (corresponding to leaving out one of the faces).

Definition 3.2. AssumeC is fibrant, replace fibrantly otherwise. ThenCn

is a dg-category with objects given by pairs (E, η) whereE is a collection
E0, . . . ,En ∈ ObC andη is a collection ofηI = η(I ) ∈ Homk−1(Ei0,Eik)
for all multi-indicesI = (i0, . . . , ik) with 1 < k < n. The casek = 0 is
subsumed by the differential onE. (We interpretη(i) = 0 where it comes
up in computation.) These pairs must satisfy the Maurer–Cartan condition:
δη + η2 = 0, explained below. We also demand that allηi j ∈ Hom(Ei,E j)
are weak equivalences inC .

Remark 3.3. If we do not fibrantly replace the construction gives a
simplicial framingondgCat, see for example [3]. The simplicial resolution
can then be viewed as composing functorial fibrant replacement with the
simplicial framing.

Let us spell out the Maurer–Cartan condition. Intuitively,η provides
all the comparison maps as well as homotopies between the different
compositions. We define the differential

(δη)(i0, . . . , ik) ≔ d(η(i0, . . . , ik)) + (−1)|η|
k−1∑

j=1

(−1)jη(i0, . . . , î j, . . . , ik)
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which lives in Homk(Ei0,Eik). We writeδ = d + ∆. Here we define|η| = 1.
The product is:

(φ ◦ η)(i0, . . . , ik) ≔
k∑

j=0

(−1)|φ| jφ(i j , . . . , ik) ◦ η(i0, . . . , i j)

Both definitions follow section 5.2 of [10], with some corrections to the
signs. We leave out the terms inδη corresponding to leaving outi0 andik as
they do not live in the correct hom-spaces.

One can now check that∆d = −d∆ (and henceδ2 = 0) and we have the
following Leibniz rule:

δ(φ ◦ η) = (−1)|η|(δφ) ◦ η + φ ◦ (δη)

The same equation holds for the summandsd and∆. (The unusual sign
appears because of the backward notation for compositions.)

example3.4. Forn = 1 we have (δη+ η2)01 = d(η01)+0, the expected cycle
condition. Forn = 2 we have for example

(δη + η2)012 = d(η012) + η02 − η12 ◦ η01 ∈ Hom1(E0,E2)

So an element ofD2 is of the form (E, η) whereE = (E0,E1,E2) and
η = (η01, η02, η12; η013) satisfiesdη + η2 = 0, which comes out todηi j = 0
anddη012 = −η02 + η12 ◦ η01. This agrees with our intuition thatη012 is a
homotopy fromη12 ◦ η01 to η02.

Morphisms from (E, η) to (F, φ) are given as follows.

Hom−m
Cn

((E, η), (F, φ)) = {a(i0, . . . , ik)}

wherea(i0, . . . , ik) ∈ Homm−k(Ei0, Fik). We writem= |a| for the degree of a
morphism. We have a differentialdη,φ defined by

(dη,φ(a))(i0, . . . , ik) = δ(a) + φ ◦ a− (−1)|a|a ◦ η

where composition and differential are defined as above. The Maurer–
Cartan condition onη and φ together with the Leibniz rule ensures
(dη,φ)2 = 0.

example3.5. For exampleC1 agrees with the path object indgCat as
constructed in section 3 of [15]. Indeed, objects are homotopy invertible
morphismsη : A → B and morphisms fromη to φ are given by triples
(a0, a1, a01) with differential

δ : (a0, a1, a01) 7→ (da0, da1, da01+ φ ◦ a0 − (−1)|a1|a1 ◦ η)

Note that there are induced face and degeneracy maps. The maps in the
simplex category induce restriction functors∂i : Cn → Cn−1 and inclusions
σi : Cn → Cn+1 that add an extra copy ofEi, connected by the identity
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map toEi. We then define the mapsη by pullback, with the extra rule that
(σ j(η))i0,...,im = 0 if σ j(ik) = σ j(im) for somek , m.

The replacement mapι : cC → Cn is given by (σ0)n in degreen.
Before we embark on the somewhat technical proof thatC• is a

simplicial resolution, we note the following application.We can extend
the definitions of the differentials and composition to functions defined on
general simplices. (That is, we replace “leaving out thei-th term” by the
map induced by∂i etc.)

Proposition 3.6. Given a simplicial set K we can constructC K as the dg-
category with objects(E, η) where E∈ (ObC )K0 andη assigns to every k-
simplex in K≥1 a map in Homk−1(E(∂k

0σ),E(∂k
maxσ)) satisfying the Maurer–

Cartan equations. Hom-spaces are defined similarly to hom-spaces inC•.

Proof. This follows from the construction ofC K = lim∆Kop C•. All
the copies ofCn corresponding to degenerate simplices are themselves
degenerate. �

Remark 3.7. Note that this shows that the construction of Morita
cohomology in [4] asK 7→ C K corresponds to∞-local systems as defined
in [1].

Notation 3.8. Given an object or morphismα and a positive integerk we
write α[k] for the collection of allαi0...ik.

Proposition 3.9.The inclusion from the constant simplicial dg-category cC

to C• is a levelwise weak equivalence.

Proof. We have to check that the inclusion mapι : cC → Cn is a quasi-
equivalence.

Let us first show thatι induces weak equivalences on hom-complexes.
We have to show that Hom

C ∆
n ((E, η), (F, φ)) ≃ Hom

C
(E, F) when bothη

andφ are of the form (1, 0), i.e. the constituent morphisms in degree 0 are
the identity and all others are 0.

Write (H, dH) ≔ Hom(E, F) and note that from the definitions we can
write

Hom((E, 0), (F, 0)) ≃ (H[1] ⊗
∧
〈e0, . . . , en〉,D)

Here theei all have degree 1 and we identifyH.ei0 ∧ · · · ∧ eik with the
a(i0, . . . , ik). The differentialD is dH + ι

∑
ei where the second term denotes

contraction. This complex is a resolution of (H, dH).
Next we showι is quasi-essentially surjective, i.e. show that any object

(E, η) is equivalent to an object (F0, (1, 0)) where F0 is of the form
(F0, . . . , F0).

We can deduce this if we can show that every (E, η) is equivalent to
some (F, φ) such that all compositions which agree up to homotopy by
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δφ + φ2 = 0 agree strictly, i.e.φ = (φ[0] , 0), and that any such (F, (φ[0] , 0))
is equivalent to (F0, (1, 0)). The second part of this is immediate: We
define a map from (F0, (1, 0)) to (F, (φ[0] , 0)) by sendingF0 to Fi via
φ(0, i) = φ(i − 1, i) · · ·φ(0, 1). Since allφ( j, j + 1) are homotopy invertible
there is a homotopy inverse.

We will now show that any (E, η) is equivalent to (F, φ) whereφ has no
higher homotopies. LetF = E and letφ(i, j) = η( j − 1, j) · · · η(i, i + 1). We
may assume by induction onn that allη(i0, . . . ik) with ik < n are 0. Let us
now factor the map from (E, η) to (E, φ) as (E, η) → (E, θ) → (E, φ) where
θ is defined likeφ on indices not including n and likeη otherwise. We first
show the first map is a homotopy equivalence. By induction assumption
we know this holds forn − 1. So there is a homotopy equivalenceH′

between the restrictions of (E, η) and (E, θ) to the index set 0, · · · , n − 1.
We now extend this to homotopy equivalenceH by definingH(n) = 1 and
H(i0, . . . , ik, n) = 0. This still has a homotopy inverse, defined in the same
way but starting with the homotopy inverse ofH′. MoreoverdH = dH′ = 0.

Now we show the second map is an equivalence as well. We define the
homotopy equivalenceH : (E, η)→ (E, φ) as follows:

H(i) = 1

H(i0, . . . , ik) = (−1)k−1η(i0, . . . , ik−1, n− 1, n) if ik = n andin−1 , n− 1

H(i0, . . . , ik) = 0 otherwise

And defineH− to be equal toH in degree 0 and−H in degree> 0.
Then it is clear thatH andH− are inverses. SinceH(i0, . . . , in) is zero

unlessin = n there are no nontrivial compositions and the compositions
1 ◦ H(. . . ) andH−(. . . ) ◦ 1 cancel in degrees greater than 0.

So it remains to show thatdH = dH− = 0 to show we have a genuine
homotopy equivalence.

We considerH first.
Putting together our definitions we find the following. Let usfirst assume

ik−1 , n − 1 andik = n. To obtain the correct signs recall that|H| = 0 and
|η| = |φ| = 1.

(dH)(i0, . . . , ik) = d(H(i0, . . . , ik)) +
k−1∑

j=1

(−1)jH(i0, . . . , î j, . . . , in)

+

k∑

j=0

(−1)jφ(i j . . . in) ◦ H(i0, . . . , i j) −
k∑

j=0

H(i j , . . . , ik) ◦ η(i0, . . . , i j)



PROPERNESS AND SIMPLICAL RESOLUTIONS FORdgCat 11

This simplifies to:

(dH)(i0, . . . , ik) = (−1)k−1dη(i0, . . . , n− 1, n)

+ (−1)k−2
∑

j

(−1)jη(i0, . . . , î j, . . . , n− 1, n)

+ 0− (−1)k−2η(i1, . . . , n− 1, n) ◦ η(i0, i1) − 1 ◦ η(i0, . . . , ik)

= 0

The last equality holds since the penultimate term is of the form

(−1)k−1(δη + η2)(i0, . . . , ik−1, n− 1, n)

This becomes clear if we writeη(i0, . . . , ik) = η(i0, . . . , n̂− 1, n) and observe
that all the other terms we expect inδη + η2 are 0.

The other cases are easier. Ifik , n all terms in the differential are 0 and
if ik−1 = n− 1 andik = n there are only two nonzero terms, which cancel.

When we considerdH− the sign of the termη(i0, . . . , ik) changes, as it
now comes fromη ◦ H and notH ◦ η. This cancels the effect of the sign of
H(i) also changing by a factor of−1. There are no other occurrences of the
sign of H(i) unlessk = 1 when all but the last two terms are zero and the
last two terms cancel. �

Proposition 3.10.The simplicial dg-categoryC• is Reedy fibrant.

Proof. Write

η<n ≔ (η0, . . . , η̂0...n) = (η[0] , . . . , η[n−1])

ThenMn(C ) is a subcategory ofCn whose objects are of the form (E, η<n).
In particular note that the Maurer–Cartan condition holds on all indexing
sets except on (0, . . . , n). Similarly, morphisms are of the forms<n where
s is a morphism inCn. This is easily seen to be the correct limit, see
Proposition 3.6. We writeπ : Cn → MnC for the functor forgettingη[n] .

It is immediate from the definition that there is a surjectionon hom-
spaces. So it remains to check the lifting property for homotopy invertible
maps. We will first reduce to lifting contractions, as is donein the case of
path objects in section 3 of [15].

Note that by assumption the dg-categoryC is fibrant and hence has
cones, cf. section 2 of [15]. Then to see if a maph is homotopy invertible it
suffices to check thatcone(h) is contractible.

So assumeh: (E, η<n) → (F, φ<n) is homotopy invertible inMnC with
homotopy inverseg and that (E, η<n) is in the image ofCn underπ. First we
need to check that (F, φ<n) is also in the image ofCn. It is enough to find
φ[n] such thatδφ+φ2 = 0 while we know thatδφ<n+φ

2
<n = 0. In other words

we are looking forφ[n] such thatdφ[n] = (∆φ + φ2)[n] .
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We will first considerg(n) · (∆φ + φ2)(0 . . .n). Defineρ ◦′ σ to beρ ◦ σ
minus the termρ(n) · σ(· · ·n). Then− ◦′ σ = − ◦ σ if σ is η or φ. Note that
d and∆ are compatible with◦′ just as with the usual product.

Theng(n) · φ(i . . .n) = (−g ◦′ φ + η ◦ g− δg)(i . . .n) and we can perform
the following computation, where we deduce the Maurer–Cartan condition
in degreen from the Maurer–Cartan conditions in lower degrees.

g(n) · (∆φ + φ ◦ φ) = −∆(g ◦′ φ) + ∆(η ◦ g) − ∆δg

+ (−g ◦′ φ + η ◦ g− δg) ◦ φ

= −g ◦′ (∆φ + φ ◦ φ) + η ◦ (∆g+ g ◦ φ)

− dg◦′ φ + ∆η ◦ g+ d∆g

≃ g ◦′ dφ − dg◦′ φ + η ◦ η ◦ g− η ◦ dg+ ∆η ◦ g

= d(g ◦′ φ) − dη ◦ g− η ◦ dg

≃ −d(η ◦ g)

≃ 0

Sincedh(n) = 0 we deduce thath(n)g(n)(∆φ + φ2) ≃ 0 and it suffices
to show (h(n)g(n) − 1) · (∆φ + φ2) ≃ 0. We know there existsK with
dK = h(n)g(n) − 1 so the desired homotopy follows if we can show that
d(∆φ + φ2) = 0. One may check explicitly thatd(∆φ) = −∆φ ◦ φ + φ ◦ ∆φ,
using the fact thatdφ = −∆φ − φ2 in degree less thann. Then we can use
Maurer–Cartan in lower degrees again to deduce:

d(∆φ + φ2) = d(∆φ) − (−∆φ − φ2) ◦ φ + φ ◦ (−∆φ − φ2)

= 0

Thus we know the domain and codomain ofh are in the image ofπ and
we can use surjectivity of hom-spaces to writeh = π(H). Now it suffices to
show that the contraction ofh lifts.

Let us assume we are given a contractions<n of cone(h) = (G, γ<n),
we have to find a contractions of (G, γ). By assumption we can write
dγ(s<n) = (1, 0, . . . , 0, t[n]) for somet[n]. Now consider 0= dγdγ(s<n) =
(0, . . . , 0, dt[n] + 0). This forcesδt[n] = dt[n] = 0. But now we know
that ds[0] = 1 and henced : s[0] t[n] 7→ t[n] and (s[0] , . . . , s[n−1], s[0]t[n]) is a
contraction of (G, γ).

We deduce thatH is contractible and the preimages of (E, η<n) and
(F, φ<n) are indeed homotopy equivalent. �
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