
Efficient Analysis of

Data Streams

Rhian Natalie Davies

Submitted for the degree of Doctor of Philosophy

at Lancaster University.

September 2017

Abstract

Data streams provide a challenging environment for statistical analysis. Data points can

arrive at a high velocity and may need to be deleted once they have been observed. Due to

these restrictions, standard techniques may not be applicable to the data streaming scenario.

This leads to the need for data summaries to represent the data stream. This thesis explores

how data summaries can be used to perform clustering and classification on data streams

across a broad range of applications.

Spectral clustering is one such technique which prior to this work has not been applicable

to the data streaming setting due to the high computation involved. CluStream is an existing

method which uses micro-clusters to summarise data streams. We present two algorithms

which utilise these micro-cluster summaries to enable spectral clustering to be performed

on data streams. The methods were tested on simulated data streams, as well as textured

images and hand-written digits.

Distributed acoustic sensing is used to monitor oil flow at various depths throughout an

oil well. Vibrations are recorded at very high resolutions, up to 10000 observations a second

at each depth. Unfortunately, corruption can occur in the signal and engineers need to know

where corruption occurs. We develop a method which treats the multiple time series as a

I

high-dimensional clustering problem and uses the cluster labels to identify changes within

the signal.

The final piece of work concerns identifying areas of activity within a video stream, in

particular CCTV footage. It is more efficient if this classification stage is performed on a

compressed version of the video stream. In order to reconstruct areas of activity in the

original video a recovery algorithm is needed. We present a comparison of the performance

of two recovery algorithms and identify an ideal range for the compression ratio.

II

Acknowledgements

I would like to thank my supervisors Dr Nicos Pavlidis and Professor Idris Eckley for their

endless support, guidance and patience throughout this project. This final version of the

thesis has been improved thanks to the helpful comments of my viva examiners, Dr Sotirios

Tasoulis and Professor Kevin Glazebrook. Thanks are also due to Professor Lyudmila Mi-

haylova for her help with the conference paper presented in Chapter 4. The data analysed

in Chapter 3 was kindly provided by Shell.

My PhD has been supported by the EPSRC funded Statistics and Operational Research

(STOR-i) Centre for Doctoral Training. The STOR-i CDT has provided an excellent research

environment and many additional training opportunities which have allowed me to develop

my research skills. Particular thanks go to the STOR-i director Professor Jonathan Tawn

for his constant support, especially during the late PhD stages.

I would also like to give special thanks to the ‘11-‘15 cohort of STOR-i: Ben, Dave,

Emma, Hugo, James, Judd, Rob and Tom. My PhD experience was greatly enhanced by

their knowledge, encouragement and friendship.

Finally, I would like to thank my family, Geraint, Joan, Sian and Tom. Dach chi’n werth

y byd.

III

Declaration

I declare that the work in this thesis has been done by myself and has not been submitted

elsewhere for the award of any other degree.

I declare that the word count of this thesis is 23469 words.

Chapter 4 has been accepted for publication as R. Davies, L. Mihaylova, N. Pavlidis, and I.

A. Eckley. The effect of recovery algorithms on compressive sensing background subtraction.

In Sensor Data Fusion: Trends, Solutions, Applications, 1 - 6, 2013.

Rhian Davies

IV

Contents

Abstract I

Acknowledgements III

Declaration IV

Contents VII

1 Introduction 1

1.1 Thesis Outline . 4

2 Spectral Clustering for Data Streams 7

2.1 Introduction . 7

2.2 Spectral Clustering Background . 9

2.2.1 Graph cut problems . 10

2.2.2 Choice of affinity matrix . 16

2.3 Advanced Spectral Clustering . 17

2.3.1 Large-scale Spectral Clustering . 18

2.3.2 Incremental methods for Spectral Clustering 21

V

2.4 CluStream for Spectral Clustering . 23

2.4.1 Data Stream Clustering . 23

2.4.2 Weighting the Micro-Clusters . 33

2.5 Experimentation . 40

2.5.1 Methodology . 42

2.5.2 Performance Measures . 43

2.5.3 Parameter Choices . 46

2.5.4 Simulated Results . 49

2.5.5 Texture data . 54

2.5.6 Pendigit data . 56

2.5.7 Non-stationary data . 58

2.6 Conclusion . 66

3 Identifying corruption within acoustic sensing signals 68

3.1 Introduction . 68

3.2 Motivation . 69

3.2.1 What is Distributed Acoustic Sensing? 69

3.2.2 Relevant literature . 70

3.2.3 Using CluStream to identify boundary locations 71

3.2.4 Stage one: Micro-clustering . 71

3.2.5 Stage two: Identifying corruption . 72

3.3 Results on DAS data . 76

3.4 Conclusion . 81

VI

4 The Effect of Recovery Algorithms on Compressive Sensing Background

Subtraction 83

4.1 Introduction . 84

4.2 Related Works . 86

4.3 Methodology . 88

4.3.1 Sparse and Compressible Signals . 88

4.3.2 Compressive Sensing . 89

4.3.3 Recovery Algorithms . 90

4.3.4 Background Subtraction with Compressive Sensing 94

4.4 Performance Evaluation . 97

4.5 Conclusions and Further Work . 101

5 Conclusion 102

A Supplementary Material on Compressive Sensing 105

A.1 Introduction to Compressive Sensing . 105

A.2 Conditions for a Stable Measurement Matrix 108

A.2.1 Null Space Conditions . 108

A.2.2 The Restricted Isometry Property . 110

A.3 Intuition for Orthogonal Matching Pursuit 111

Bibliography 114

VII

Chapter 1

Introduction

The volume of data collected on a daily basis is staggering. In 2013, IBM stated that over

90% of the world’s data was created in the last two years. This creates a challenge for

researchers and practitioners as computers may not have the memory requirements to deal

with such large quantities of data, and their algorithms may not run fast enough or even

at all. Big data (Buhlmann et al., 2016) is a term used to refer to data sets so huge that

traditional statistical techniques may not be directly applicable.

The challenge of big data can be defined in terms of the three V’s (Laney, 2001); volume,

variety and velocity. Volume refers to the vast amount of data collected. Variety relates to

the many different types of data it is possible to collect from multiple sources such as text,

images, GPS location and tweets. The velocity is the speed at which the data is observed.

Velocity is perhaps the least studied of the three V’s within Statistics and is most commonly

found in the analysis of data streams. A data stream (Aggarwal, 2007; Gama and Gaber,

2007) is data which is observed continuously in an ordered sequence. Data streams arise

in many different applications. Examples include retail, e.g. Macy’s use of advanced data

1

collection (Shankar et al., 2016); oil and gas including the development of the digital oil field

which uses sensors throughout oil wells to monitor flow and other operational characteristics

(Cramer et al., 2008; Patri et al., 2012).

The rate at which data arrives could be as fast as millions of data points each hour such

as in the Macy’s and oil company examples. However, even if the data arrives more slowly,

this can still provide a challenge if the available processing power, storage capabilities or

transmission rates are limited.

It is possible for a data stream to be unbounded in size by which we mean that there is no

time point where the data stream ends. This is common in data streams found in meteorology,

the stock market, online shopping and social media. Since these data streams are potentially

endless in size it is not possible to store the data in its entirety. This means that instead

of performing analysis once the data has been collected, analysis must be performed and

updated in real time as new data points are observed. This leads to another issue sometimes

referred to as the one-pass-access problem. As data streams are processed serially, once a

data point has been seen it is discarded and cannot be accessed again. Some seemingly

trivial analyses such as computing the median of the data become impossible in the data

stream setting because of this one-pass-access issue. In fact, many statistical techniques

make assumptions which do not hold in the data streaming scenario. A summary of the

restrictions imposed by data streams is given below (Silva et al., 2013):

1. Data objects arrive continuously.

2. There is no control over the order in which the data objects should be processed.

3. The size of the stream is potentially unbounded.

2

4. Data objects are discarded after they have been processed.

5. The unknown data generation process is possibly non-stationary.

Given the restrictions above, how can we perform analysis on a data stream? If the issue

was just the size of the data then we could sample and perform analysis on that sample.

However as the data stream cannot be stored, it is not possible to take a sample of the whole

stream. We could sub sample as we go along based on the frequency storing every 100th

data point. However, if the data stream is unbounded then eventually this method will fail.

What is needed is a representative data summary of the data stream that captures the

new data points but still retains some historical information. An ideal representative data

summary will:

1. Be computationally easy to update.

2. Store historical information.

3. Forget historical information if it becomes obsolete.

4. Adapt if the underlying generating process of the data stream changes.

5. Be informative enough to use in statistical analysis.

One possible representative data summary is a window of the most recently observed data

points. A window is computationally easy to update as it uses a one-in-one-out update policy.

However, the way that it deals with historical information is naive. Any data points outside

the window are discarded, which makes the choice of window size particularly important. A

small window will react to new data quickly but will have no older knowledge, whilst a large

3

window will retain historical information but may be slow to update to a change in the data

stream. This will naturally infer a temporal bias and a poorly selected window size may lead

to missing important seasonal trends such as the effect of Christmas on shopping sales.

We discussed above how it is not possible to calculate the median of a data stream. It

is however quite simple to keep a track of the running mean by storing the sum of the data

points and the number of data points observed so far. This is another simple example of a

representative data summary. Again it is computationally easy to update and all historical

information can be retained. However, in order to perform clustering or regression on the

data stream we will need a richer data summary than just a running mean.

Once a suitable representative data summary has been selected, this can then be used to

perform analysis such as clustering. However standard techniques might need to be adapted

to work on these data summaries as opposed to on the raw data. In this thesis we explore

the use of representative data summaries on the analysis of data streams.

1.1 Thesis Outline

In Chapter 2 we consider the problem of identifying groups or clusters in a data stream. Many

different types of clustering algorithms exist however, we restrict our interests to spectral

clustering. Spectral clustering is popular, offers good empirical performance and can handle

tricky, non-Gaussian data sets. However, due to it’s complexity it cannot be performed on

very large data sets and is not suitable for data streams.

CluStream (Aggarwal et al., 2003) is a popular algorithm used to handle data streams by

creating and updating a representative data summary of the stream. We present a new algo-

4

rithm spectral CluStream, which summarises data streams and performs spectral clustering

on those data summaries. A spectral clustering algorithm which can cluster data streams

does not currently exist in the literature. We consider both weighted and un-weighted vari-

ants of online spectral clustering. A number of different data sets are analysed including

handwritten digit data and wavelet based texture features from an image data set.

Chapter 3 uses CluStream to identify corruption within acoustic sensing signals. Dis-

tributed acoustic sensing (DAS) is a modern technique used to monitor oil flow at various

depths throughout an oil well. DAS uses a fibre-optic cable to record vibrations at very high

resolutions, up to 10000 observations a second. DAS is fairly cheap to implement and offers

high frequency data, but unfortunately corruption can occur in the signal. Our challenge is to

identify the locations in the signal where corruption occurs. Existing methods for detecting

and removing interference in DAS signals involve using offline, uni-variate changepoint de-

tection. However DAS signals are multivariate and require online processing. We show that

CluStream provides an alternative approach to changepoints analysis to identify corruption

within DAS signals.

Chapter 4 considers a different challenge, background subtraction, which relates to the

identification of activity (foreground) in surveillance videos. Current methods for this require

storing each pixel of every video frame which can be wasteful as most of this information

relates to the uninteresting background. Compressive sensing, a method for summarising

data, can offer an efficient solution by using the fact that the foreground often only makes

up a small proportion of an image. Using compressive sensing background subtraction it

is possible to identify regions of foreground activity in a compressed image by applying

a recovery algorithm. This chapter presents a study of the performance of two different

5

recovery algorithms on CCTV surveillance footage.

All three chapters are linked by the challenge of gaining insight from data streams by

analysing a simple summary of the stream and extrapolating the analysis to learn something

about the data stream as a whole. Contributions of this thesis and observations on data

stream analysis are gathered in Chapter 5 with suggestions for future areas of research.

In summary, the main contributions of this thesis are:

• A new method, Spectral CluStream that enables Spectral clustering to be performed in

the data streaming environment.

• A study of the weighting micro-clusters in Spectral CluStream.

• A novel application of online clustering to segment Distributed Acoustic Sensing data.

• An empirical comparison of two competing recovery algorithms in the compressive

sensing background subtraction setting.

6

Chapter 2

Spectral Clustering for Data Streams

2.1 Introduction

The goal of clustering algorithms is to separate data into groups or clusters such that data

points within a cluster are similar, and data points in different clusters are dissimilar (Everit

et al., 2001). Many different types of clustering algorithms exist including centroid type

methods such as k-means (MacQueen, 1967; Lloyd, 1982) and density based algorithms like

DB-Scan (Ester et al., 1996). In this chapter, we consider the challenge of data stream

clustering. A data stream (Gama, 2010; Silva et al., 2013) is data which arrives in an ordered

sequence. It is potentially unbounded in length and arrives continuously. Examples can be

found in many applications such as telecommunications, shopping transactions and customer

click data. For example, an insurance company will receive millions of quote requests an

hour, and by clustering these quotes they may be able to better understand their customer

base and adapt their services to meet requirements.

There exist many clustering algorithms for data streams (Yang et al., 2013; Maung and

7

Schweitzer, 2013; Song et al., 2013), which are able to effectively handle a large volume

data stream. However, the performance of these streaming clustering algorithms tends to

diminish when the underlying nature of the data stream is non-Gaussian. For example,

the clusters generated from a streaming k-means algorithm are always convex sets. There

is the need for a clustering algorithm which can handle data streams with less restrictive

assumptions on the form of the clusters. To overcome this problem, we propose a streaming

adaptation of the spectral clustering algorithm. Spectral clustering (von Luxburg et al.,

2008) is a clustering method which uses the eigenvalues of an affinity matrix of the data to

perform dimension reduction and cluster in the lower dimensional space. Spectral clustering is

popular, offers good empirical performance and crucially, can the handle tricky, non-Gaussian

data which other streaming clustering algorithms struggle to cluster. An introduction to

spectral clustering is given in Section 2.2.

There does not exist an algorithm for performing spectral clustering on data streams,

however, advanced spectral clustering techniques exist, which are discussed in Section 2.3.

These algorithms address some of the issues met in data streaming, by working with large

scale data or incremental data sets but do not meet all the challenges of implementing spectral

clustering in data streams. In particular, these algorithms cannot deal with the fact that data

streams can be potentially unbounded in size. The need for a spectral clustering algorithm

which can truly be applied to data streaming is apparent.

An algorithm which can handle general clustering of data streams is the CluStream algo-

rithm (Aggarwal et al., 2003), the details of which are explained in Section 2.4. Combining

CluStream with spectral clustering on data streams has not been explored before. We in-

troduce two spectral CluStream algorithms, weighted and unweighted variants and explore

8

their performance on simulated and real data in Section 2.5. Conclusions and future work

are discussed in Section 2.6.

2.2 Spectral Clustering Background

In this section we motivate spectral clustering and introduce the spectral clustering algorithm

by first noting the link between spectral clustering and graph partitioning problems.

As discussed in Section 2.1 the goal of clustering algorithms is to partition data X =

{x1, . . . , xn}, xi ∈ Rd, into k disjoint clusters such that each xi belongs to exactly one cluster.

Data sets can have underlying true clusters of all shapes and sizes, for example, they can be

spherical and convex as in Figure 2.2.1a or connected but non-convex as in Figure 2.2.1b.

(a) Convex clusters. (b) Non-convex clusters.

Figure 2.2.1: Examples of different types of clustering problems. The clusters in Figure

2.2.1a are generated by a multivariate Gaussian distribution. The clusters in Figure 2.2.1b

are non-convex which makes the clustering problem more difficult.

Simple clustering algorithms such as k-means are good at clustering data in which the

underlying true clusters are convex (Everit et al., 2001). An example of convex clusters is

9

given in Figure 2.2.1a. However k-means can fail when the true clusters are non-convex

like those shown in Figure 2.2.1b. This is because k-means is a centroid based clustering

algorithm that clusters data based on how similar they are to cluster centroids. Spectral

clustering instead clusters data based on how similar they are to all other data points, which

can lead to good quality segmentation on even these difficult cases. We do not formally

address what is meant by similarity here, but will define this fully in Section 2.2.2.

The similarity between data points can be neatly represented in a graph structure. We

can then restate the clustering problem as a graph partitioning problem where we wish to find

a partition of the graph such that the edges between different groups have low weights (which

corresponds to data points being dissimilar) and the edges within a group have high weights

(the data points are similar). In order to introduce spectral clustering we first introduce some

graph notation and discuss graph cut problems. We will then describe the spectral clustering

algorithm, and discuss in more detail the notion of similarity.

2.2.1 Graph cut problems

Data can be represented as a similarity graph, G = (V,E) where each vertex vi ∈ V represents

a data point xi. The graph will be undirected, by which we mean the edges denote a two-way

relationship. The graph can then be described by an adjacency matrix. Adjacency matrices

are a way of depicting the graph structure with binary entries denoting which vertices are

connected by edges and which are not. Figure 2.2.2 depicts two similarity graphs and their

corresponding adjacency matrices. A value of 1 in cell (2,3) implies that vertices v2 and v3

are connected by an edge. Note that both of the example adjacency matrices given below

are symmetric, which can be expected as we are dealing with undirected graphs.

10


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0



Figure 2.2.2: Two example similarity graphs and their corresponding adjacency matrices.

The weighted adjacency matrix (also called an affinity matrix) of a similarity graph is

the matrix W = (wij)i,j=1,...,n. The weight wij is the similarity between vertices vi and vj.

If wij = 0, this means that the vertices vi and vj are not connected by an edge. Again the

affinity matrix will be symmetric, that is wij = wji.

In order to create a graph partition we need to cut the edges in the graph. Non-empty

subsets of V , A and B will form a partition of the graph G if A ∩ B = ∅ and A ∪ B = V .

The weight of the cut can be calculated by summing the weights of the edges which will be

broken when a cut is made. In order to find a good partition of the graph, we wish to choose

A and B such that some cut criterion is minimised. The simplest cut criterion is

cut(A,B) =
∑

i∈A,j∈B

wij, (2.2.1)

where the notation i ∈ A is short hand to mean the set of indices {i|vi ∈ A}.

The Minimum cut (Wu and Leahy, 1993) is the cut which minimises equation (2.2.1). This

can be solved in polynomial time (Stoer and Wagner, 1997) however the minimum cut does

11

not always produce a desirable graph partitioning; it tends to create unbalanced partitions,

separating one vertex from the rest of the graph. To understand why this happens, note for

a fully connected graph where all vertices are joined by an edge, the number of edges cut in

mincut will be |A| × |B| which is minimised by the solutions |A| = 1 or |B| = 1. In order

to avoid this, we can specify that the sets A and B are reasonably large in some way. Two

common objective functions used to avoid this issue are the RatioCut (Hagen and Kahng,

1992) and the normalised cut, Ncut (Shi and Malik, 2000).

Both RatioCut and Ncut attempt to normalise the weight of the cut by introducing the

size of sets A and B. In RatioCut, the size of A is measured by its number of vertices

|A|, while in Ncut the size is measured by the weights of its edges vol(A) =
∑

i∈A di where

di =
∑n

j=1wij is the degree of a vertex vi ∈ V . The definitions of RatioCut and Ncut are as

follows,

RatioCut(A,B) =
cut(A,B)

|A|
+

cut(A,B)

|B|
, (2.2.2)

Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
. (2.2.3)

The main idea in Ncut is that large clusters will increase the denominator vol(A) and thus

decrease Ncut(A,B). This will encourage splitting the data into fairly evenly sized clusters,

and avoid the minimum cut issue of segmented isolated points. This can be seen in Figure

2.2.3 which depicts both the minimum cut and Ncut solutions for a particular graph. The

shaded/non-shaded regions represent the partitioning. The minimum cut isolates one vertex

from the rest of the graph, whilst the Ncut provides a more balanced and sensible partition.

12

(a) Minimising the cut. (b) Minimising the normalised cut.

Figure 2.2.3: Two solutions to the bi-partition problem. The partitioning is indicated by

shading/non-shading of nodes.

Although the partitioning has been improved, the previously easy to solve mincut problem

(equation 2.2.1) has been replaced with minimising the normalised cut (equation 2.2.3) which

is an NP-hard problem (Wagner and Wagner, 1993). Therefore, a continuous relaxation of

the Ncut is solved instead. The solution to the relaxed problem of equation (2.2.3) is given

by the second eigenvector of the symmetric graph Laplacian defined in equation (2.2.5) (von

Luxburg et al., 2008). Similarly, the solution of the relaxed problem the ratio cut (equation

2.2.2) is given by the second eigenvector of the unnormalized Laplacian defined in equation

(2.2.4). Here W is the affinity matrix of the similarity graph and the degree matrix D is

defined as the diagonal matrix with the degrees d1, . . . dn on the diagonal. The relaxation of

these graph cut problems into the eigen-decompostion of Laplacian matrices is the basis of

spectral clustering.

L = D −W. (2.2.4)

Lsymm = D−1/2LD−1/2. (2.2.5)

13

Unfortunately, there is no guarantee on the quality of the solutions of the relaxed problems

compared to the exact solutions (Chung, 1997). Consequently, it has been shown that some

pathological cases exist which are arbitrarily bad. However, several papers which investigate

the quality of the clustering of spectral clustering (Spielman and Teng, 1996; Kannan et al.,

2004) find spectral clustering to provide good solutions.

The spectral clustering algorithm that we use (Ng et al., 2001) uses the symmetric Lapla-

cian Lsymm as defined in equation 2.2.5. The full spectral clustering algorithm is given in

Algorithm 1. Note that the number of clusters is assumed to be known and this will be the

case throughout this chapter.

Algorithm 1 NJW spectral clustering algorithm

Input: Data set X = {x1, . . . , xn}, number of clusters k.

Output: k-way partition of the input data.

1: Construct the affinity matrix W = (wij)i,j=1,...,n.

2: Compute the symmetric Laplacian matrix Lsymm = D−1/2(D−W)D−1/2, where D is the

diagonal matrix with Dii =
∑n

j=1wij.

3: Compute the k eigenvectors of Lsymm, v1, v2, . . . , vk, associated with the k smallest eigen-

values, and form the matrix V = [v1, v2, . . . , vk].

4: Renormalise each row of V to form a new matrix Y .

5: Partition the n rows of Y into k clusters using k-means.

6: Assign the original data point xi to the cluster l if and only if the corresponding row i of

the matrix Y is assigned to the cluster l.

Once the Laplacian has been calculated, one computes the k eigenvectors which corre-

spond to the k smallest eigenvalues of the Laplacian. A matrix Y ∈ Rn×k is created, where

14

each column is an eigenvector of the Laplacian, with length n. We can view this matrix Y as

an embedding of the original data X into a lower dimensional subspace. When represented

in this low subspace the clustering problem is often easier, and can be solved with a simple

clustering algorithm such as k-means. For example, Figure 2.2.4a shows a data set of three

spirals depicted in the original feature space. This is visually quite difficult to cluster. Figure

2.2.4b plots the same data set but embedded in the lower dimension, plotting the first eigen-

vector of the Laplacian against the second eigenvector. Clustering in the embedded space is

easy even for k-means to solve.

(a) Data viewed in the original

feature space.

(b) Data viewed in the 2-dimensional

embedding space.

Figure 2.2.4: Triple spiral data set viewed in feature space (a) and eigenvector space (b).

After the embedding, k-means can be used to cluster the n rows of Y into k clusters.

Finally, assign the cluster label given to each row Yi to the corresponding original data point

xi. Now that we have introduced the general spectral clustering algorithm, we will discuss

the notion of similarity in more detail.

15

2.2.2 Choice of affinity matrix

One of the key factors of spectral clustering is the affinity matrix W = (wij)i,j=1,...,n which

represents the pairwise similarities between all data points xi and xj. A popular choice is to

use the Gaussian kernel,

wi,j = exp

(
−‖xi − xj‖

2

2σ2

)
, i, j = 1, . . . , n, (2.2.6)

where the parameter σ controls the width of the local neighbourhoods which we want to

model. If xi and xj are very close, then wij → 1, and if they are far apart wij → 0. A Gaussian

kernel affinity matrix will have ones along the diagonal and is symmetric (wij = wji).

The scaling parameter σ is usually chosen manually. Ng et al. (2001) automatically

choose σ by running their clustering algorithm repeatedly for a number of values of σ. They

then select the σ which provides least distorted k-means clusters in step 5 of Algorithm 1.

Zelnik-manor and Perona (2004) argue that for data which has a cluttered background, or

multi-scale data, one global parameter choice for σ is not sufficient. They calculate a localised

parameter σi for each data point xi based on its neighbourhood. Using a localised σi can

deal well with multi-scale data, but requires the user to choose the size of the neighbourhood

in order to calculate σi.

If we mainly wish to model the local relationships then using all of the possible pairwise

data similarities may not be necessary. It is possible to use a weighted k-nearest neighbour

structure (von Luxburg et al., 2008) to build the affinity matrix once corrections have been

made to ensure that this matrix is symmetric. Another option is to choose some threshold

ε and only consider connections between data points whose pairwise similarities are greater

16

than this threshold ε. This is an ε-neighbourhood graph as shown in equation (2.2.7).

w∗ij =


1, if wij > ε

0, otherwise.

(2.2.7)

Using this construction will give a sparse affinity matrix instead of a fully connected

graph, which will help lower the computational complexity.

2.3 Advanced Spectral Clustering

In the previous section we introduced spectral clustering via graph partitioning and discussed

options for creating affinity matrices. Our overall aim is to perform spectral clustering on

data streams. First, we consider some of the challenges that make clustering in data streams

so difficult, and look at the approaches that exist to deal with these challenges in the spectral

clustering setting.

The first challenge that is addressed is dealing with big data. One of the main difficulties

in data streaming is the pure volume of data available and the methods discussed in Section

2.3.1 offer methods to perform spectral clustering on big data. Another difficulty that arises

in data streaming is the ability to update the current clustering result as new data arrives.

Incremental spectral clustering is a potential solution to this challenge and is discussed in

Section 2.3.2.

It is stressed that these problems (large data and incremental data) are just sub-problems

of what makes data streaming difficult. In particular, none of the methods described below

are capable of dealing with data streams which are unbounded in length. The solutions

offered in the next section to speed up computation for large data sets cannot update the

17

clustering result if a new data point arrives. The incremental spectral clustering algorithms

can update cluster membership as new data arrives but do not scale as for very large or

possibly infinite n.

2.3.1 Large-scale Spectral Clustering

Spectral clustering can be challenging for very large data sets since constructing the affinity

matrix W and computing the eigenvectors of L have computational complexity O(n2) and

O(n3) respectively. The Nyström method (Williams and Seeger, 2001) is a general method

for generating good quality low rank approximations of large matrices. The Nyström approx-

imation method for spectral clustering (Fowlkes et al., 2004) randomly samples the columns

of the affinity matrix W and approximates the eigen decomposition of the full matrix directly

using correlations between the sampled columns and the remaining columns. Effectively this

can be thought of as a dial which the user has control over, sampling more columns will

provide better results but at a higher computational cost. The downsides with this method

are that the memory requirements can be high and the random sampling of columns may

lead to small clusters being under represented or completely missed in the final clustering.

An alternative to the Nyström method is to use a pre-processing technique to reduce

the size of the data. A natural way to do this is to select certain representative points

to summarise the whole data set. Yan et al. (2009) proposed KASP and RASP, algorithms

which use k-means and random forest methods respectively to select q representative points to

apply spectral clustering on. Similarly Shinnou and Sasaki (2008) also use k-means to identify

representative points, but in addition to using these points, Shinnou and Sasaki (2008) also

include any data points which are deemed to be suitably far from any representative point in

18

the spectral clustering. In both Yan et al. (2009) and Shinnou and Sasaki (2008) the cluster

labels given to the original data points are the same as the label assigned to their nearest

representative point. As an alternative, Chen and Cai (2011) represents the data as a linear

combination of representative points. Random sampling has been applied to reduce the size

of the data points within the eigen-decomposition step. Chen et al. (2006); Liu et al. (2007)

introduce early stopping strategies to speed up eigen-decomposition based on the observation

that well-separated data points will converge more quickly to the final embedding. However

this is only suitable for binary clustering. Other possibilities include random projection with

sampling methods (Sakai and Imiya, 2009) and shortest path methods (Liu et al., 2013).

We discuss the KASP algorithm in more detail as it is the most popular speed up method

for spectral clustering and it inspired our work in online spectral clustering which is intro-

duced in Section 2.4.

In KASP, k-means is applied with q clusters to the data set X, where q is chosen such

that k � q � n. Therefore each point in X belongs to a cluster yj, (j ∈ 1, . . . , q). Let

the centres of these q clusters be ŷ1, . . . , ŷq. These are used as representative points for the

whole data set. Spectral clustering is performed on the representative points, reducing the

complexity of the eigen decomposition from O(n3) to O(q3). Finally, the original data points

are assigned the cluster label that their closest representative point ŷj was assigned in the

spectral clustering. The KASP algorithm is given in Algorithm 2.

Both KASP and RASP have been shown to perform well empirically on large data sets

(Yan et al., 2009), retaining good clustering performance even as the data reduction ratio

increases. We can express the data reduction ratio as γ = n
q
. As in many of the sampling

methods discussed above, in KASP the user has control over the data reduction rate. A

19

Algorithm 2 KASP

Input: Data set X = x1, . . . , xn, number of clusters k, number of representative points q.

Output: k-way partition of the input data.

1: Perform k-means with q clusters on x1, . . . , xn to create clusters y1, . . . yq.

2: Compute the cluster centroids ŷ1, . . . , ŷq as the q representative points.

3: Build a correspondence table to associate each xi with the nearest cluster centroids ŷj.

4: Run a spectral clustering algorithm on ŷ1, . . . , ŷq to obtain an k-way cluster membership

for each of ŷj, (j ∈ 1 . . . q).

5: Recover the cluster membership for each xi by looking up the cluster membership of the

corresponding centroid ŷj in the correspondence table.

larger value of q will give a better performance but at a computational cost. The KASP

authors present an upper bound on the misclustering rate given the perturbation to the

original data. This bound tells us how different the clustering output is if we use the full

data set to cluster compared with if we just use the representative points. However, there

are a number of assumptions required (Huang et al., 2008) relating to the ability for the data

to be separated into clusters. Also, this bound does not inform us about the quality of the

clustering generally, only as a comparison to clustering the full data set. Finally, the method

of assigning data points to clusters based on the cluster label of their representative point can

lead to poor segmentation as shown in Cao et al. (2014). They propose a local interpolation

in their algorithm Local Information-based Fast Approximate spectral clustering (Li-ASP)

to prevent this poor segmentation issue. They achieve this by assigning data points based on

a weighted version of their p closest representative points labels, rather than labelling based

just on the label of the single closest representative point.

20

The methods discussed above only address dealing with large data sets which are static.

Our aim is to investigate methods which can update the spectral clustering partitioning when

new data points arrive.

2.3.2 Incremental methods for Spectral Clustering

Incremental spectral clustering methods are spectral clustering algorithms which are able

to update their cluster partitioning when a new data point or batch of data point arrives.

The term incremental is used here rather than online because although these algorithms can

update when new data points arrive, they are not designed to deal with the full data streaming

scenario. As a reminder, data streams are defined by the constant arrival of data points at

a high velocity relative to the available processing power. On the other hand, incremental

spectral clustering algorithms are designed for the problem of an evolving data set. For

example, lets say we are interested in understanding academic relationships within Lancaster

University. We may first define a similarity score between two academics based on the number

of papers that they have authored together. We could then use this similarity to create an

affinity matrix and perform spectral clustering to discover the academic clustering within the

University. However this affinity matrix will not remain static. A new academic may join

the University, or two existing academics may author a new paper changing their similarity

score. Performing a full re-clustering of the whole University may be costly and potentially

not computationally feasible. Instead, we may wish to update our clustering solution just by

incorporating this new information. This is the type of problem that incremental spectral

clustering algorithms seek to address. So far there have been two different approaches to

this problem (i) updating the cluster membership directly (ii) incrementally updating the

21

eigenvectors.

The first method is described in Valgren and Lilienthal (2008). When new points arrive,

the spectral clustering is updated directly using a similarity threshold to assign points to

clusters. If a new data point is sufficiently far from its closest representative points, it is

considered the start of a new cluster. This means that the number of overall clusters must

always increase. Therefore it is not feasible for data streams. In addition there is no method

for splitting existing clusters as new data points arrive.

An algorithm that incrementally updates the eigenvectors is proposed in Ning et al. (2007)

and Ning et al. (2010). Their algorithm can deal with both additional data points joining the

network and similarity weights changing between existing data points. The algorithm updates

the eigenvectors and eigenvalues directly without performing a full eigen-decomposition. The

addition of a new data point is treated as a series of n weight changes, where is n is the number

of currently observed data points. However the authors recommend a full re-clustering in

batch to minimise cumulative errors. There are some issues with their update method,

mainly that the updating of eigenvectors means that the orthogonality property may be lost

- potentially leading to poor cluster detection. Also if the spatial neighbourhoods of often

changing vertices are large it can still be computationally difficult as the eigenvector update

step involves the inversion of a matrix. Finally the authors recommend a full spectral re-

clustering occasionally to prevent the accumulation of errors in the eigenvectors, this is not

feasible in the streaming setting. Generally this method is not suitable for data streaming,

as the size of the Laplacian can grown unbounded for an infinite data stream. Another

incremental update algorithm is detailed in Dhanjal et al. (2014) which approximates the

eigen decomposition of the Laplacian incrementally but still requires regular full re-clustering.

22

Kong et al. (2011) is a mixture of both Ning and Valgren’s methods, using representative

points like Valgren but the eigen-updating of Ning. Although it can be quicker that Ning

it retains the other issues of Ning’s method discussed above. In addition it has the same

problem of Valgren’s method that the number of clusters increases over time. This makes it

unsuitable for data streams.

Although the methods discussed deal with some aspects of difficulties in data streams,

none of them are suitable for the full problem of clustering a data stream. We introduce

an online spectral clustering algorithm for data streams based on the CluStream model of

Aggarwal et al. (2003) in Section 2.4.

2.4 CluStream for Spectral Clustering

In this section, we first review a number of general methods for data stream clustering,

although none of these offer spectral clustering for data streams. We then discuss the CluS-

tream algorithm in more depth and introduce our algorithm, spectral CluStream. Finally,

we consider whether to weight micro-clusters within the spectral CluStream algorithm.

2.4.1 Data Stream Clustering

Data stream clustering algorithms take classic clustering algorithms such as k-means (Mac-

Queen, 1967) and DBSCAN (Ester et al., 1996) and adapt them to work in the data streaming

environment. In order to do this they need to address the many challenges involving data

streams, such as one-pass access, non-stationarity and the potential for the stream to be

unbounded.

23

One of the first algorithms able to identify clusters in large and incremental data sets

was BIRCH (Zhang et al., 1996). BIRCH achieved this by using cluster feature vectors

to summarise the data stream and perform hierarchical clustering. BIRCH exploits the

observation that the feature space is not usually uniformly occupied, and therefore not every

data point is equally important in terms of clustering. The fact that BIRCH generally only

requires one pass of the data made it faster than existing clustering methods and allowed it

to be used to cluster data streams. However, BIRCH does not perform well if clusters are

not spherical as it uses the cluster radius to define clusters boundaries.

The cluster feature vector concept developed in BIRCH was developed and re-named as a

micro-cluster in the CluStream framework (Aggarwal et al., 2003). CluStream, like BIRCH

separates the clustering process into two stages, referred to in CluStream as a micro-clustering

stage and a macro-clustering stage. The main difference between BIRCH and CluStream is

that CluStream stores temporal as well as spatial statistical summaries in the micro-clusters.

By incorporating temporal information, it is able to handle non-stationarity in data streams.

CluStream has been very influential in the data streaming community; since the paper was

first published in 2003 it has been cited over 1800 times. The CluStream algorithm will

be discussed in more detail in the next section as we use it as the basis for our spectral

CluStream algorithm.

Other methods which has been inspired by BIRCH’s cluster feature vectors include Clus-

Tree (Kranen et al., 2011), a hierarchical method which can adapt its performance depending

on the stream velocity and and scalable k-means (Bradley and Fayyad, 1998).

DenStream (Cao et al., 2006) is a density-based data stream clustering algorithm that

also uses micro-clusters in the online stage. The offline component of DenStream is a varia-

24

tion of DBSCAN, enabling the detection non-linearly separable clusters of arbitrary shape.

However, DBScan cannot cluster data sets well with large differences in densities, due to

global parameterisation. DStream (Chen and Tu, 2007) is similar to DenStream, except that

the data summarisation stage involves partitioning the feature space into dense grid cells

instead of micro-clusters. However, the number of grid cells depends exponentially on the

dimension of the data meaning that this algorithm is not suitable for high-dimensional data.

An extensive review of existing data stream clustering algorithms is provided in Silva

et al. (2013). However, none of the algorithms discussed above or included in Silva’s review

enable spectral clustering to be performed in a data streaming context. Our spectral CluS-

tream algorithm uses the micro-clustering approach of CluStream with a spectral clustering

algorithm for the macro-clustering stage. We chose to use the CluStream micro-clustering

method due to it’s universal popularity, good performance, and ability to handle evolving

data. In the next section we detail how the micro-clustering step in the CluStream algorithm

works as described in Aggarwal et al. (2003).

CluStream: Micro-clustering

CluStream is a framework for clustering data streams which separates the clustering process

into two stages, a micro-clustering stage and a macro-clustering stage. The micro-clustering

stage continuously updates statistical summaries of the data stream, and the macro-clustering

is more computationally intensive and run in batch or on a user request. The micro-clustering

stage is a way of maintaining an active, evolving representative summary of the data, without

storing the absolute values of the data points. To initialise the algorithm a k-means is

performed on a training set with q clusters. The value of q should be chosen to be much

25

larger than the expected number of true macro-clusters k. The aim is to create a fine scale

summary of the data. The value of q should be chosen to be as large as computationally

comfortable. The larger q is, the finer scale that the summaries will be. It is vital to ensure

that the micro-clusters well represent the underlying data set or else the macro-clustering

will under perform. These q clusters are our first micro-clusters. Over time, we will update

these micro-clusters, adding new data points to them, merging them and removing old micro-

clusters, although the number of micro-clusters should stay fixed throughout.

The micro-clusters can then be used on a user request to perform a macro-clustering using

the summarised data rather than the full data set. If the micro-clusters represent the true

underlying data stream well, then the difference between the clustering on the summarised

data and the true full data should be small. However unfortunately this is not guaranteed

by the method.

Assume that we have a data stream S which consists of d-dimensional data xi arriving in

sequence, S = {xi}i∈N,xi ∈ Rd. Each micro-cluster Mj, (j ∈ 1 . . . , q) is stored as a (2 · d+ 3)

tuple (CF1x
j ,CF2x

j , nj, CF1tj, CF2tj). The definitions are given in equation (2.4.1). CF1x
j

is the sum of all observed data in micro-cluster j, CF2x
j is the sum of the squares of the

data and nj is the number of elements assigned to that micro-cluster. CF1tj and CF2tj refer

to the sum of the time stamps, and the sum of squared time stamps respectively. Note that

both CF1x
j and CF2x

j are d-dimensional vectors.

26

Each micro-cluster Mj will have

CF1x
j =

∑
xi∈Mj

xi ,

CF2x
j =

∑
xi∈Mj

(xi)
2 ,

CF1tj =
∑

i|xi∈Mj

ti ,

CF2tj =
∑

i|xi∈Mj

(ti)
2 ,

nj =
∑
xi∈Mj

1 . (2.4.1)

Here the notation (xi)
2 means the vector where each element is the square of the cor-

responding element in xi. If a new data point xnew arrives at time tnew and is assigned to

micro-cluster Mj, the update given in equation (2.4.2) is applied.

CF1x
j ← CF1x

j + xnew ,

CF2x
j ← CF2x

j + (xnew)2 ,

CF1tj ← CF1tj + tnew ,

CF2tj ← CF2tj + (tnew)2 ,

nj ← nj + 1 . (2.4.2)

Note that updating the micro-clusters requires only addition therefore updating is com-

putationally efficient. Critically it is possible to use these summaries to calculate the centre

of each micro-cluster as in equation (2.4.3).

Centre of micro-cluster j = M̄j =
CF1x

j

nj
. (2.4.3)

27

It is these centres which are used as representative points for input into the macro-

clustering. As new points in the data stream arrive, they are either allocated to a micro-

cluster and the update procedure discussed above is carried out, or a new micro-cluster is

created. The decision for a new micro-cluster to be created is based on whether the new data

point is close enough to it’s nearest cluster centre.

When a new data point arrives it’s nearest micro-cluster M∗ is identified using the Eu-

clidean distance metric given in equation (2.4.4).

M∗ = min
Mj ,j∈1:q

‖xi − M̄j‖2. (2.4.4)

To determine whether the new data point is suitably close enough to M∗ we need to

consider the maximum boundary factor (MBF) ofM∗. In CluStream, the maximum boundary

factor is defined as a factor of τ of the root-mean-square deviation of the data points in M∗

from the centroid of M∗. The value of τ should be chosen small enough so that it can

successfully detect most of the points representing new clusters or outliers. At the same

time, it should not generate too many unpromising new micro-clusters. Aggarwal et al.

(2003) compared values of τ ∈ (1, 8) and recommend setting τ = 2.

If the new data point falls within the MBF of it’s nearest micro-cluster M∗ then it is

absorbed as part of that cluster. If not, a new micro-cluster is created. However, as the

number of micro-clusters must remain fixed at all times, if a new micro-cluster is formed,

either an existing micro-cluster must be deleted, or two close micro-clusters should be merged.

The first step is to see if an existing micro-cluster can be deleted to make room for the

new micro-cluster. The criteria for deleting micro-clusters is their relevancy. CluStream

28

approximates the average time stamp of the last m data points of the cluster Mj (where m

is a user chosen parameter) and judges if the cluster is old enough to discard. Let the mean

and standard deviation of the arrival times for a micro-cluster Mj be given by µMj and σMj.

These can easily be calculated as we store CF1t and CF2t. The relevancy stamp r(Mj) is

defined to be the arrival of the (m/2nj)
th percentile of the points in Mj assuming the time

stamps are Normally distributed. We check if the micro-cluster with the smallest relevancy

stamp has r(Mj) < δ, where δ is some user-chosen deletion threshold as given in equation

(2.4.5).

min
Mj ,j∈1:q

(r(Mj)) < δ. (2.4.5)

If the inequality in equation (2.4.5) holds then the micro-cluster with the minimum rele-

vancy stamp is deleted. If not, then no micro-clusters are deleted and instead the two closest

micro-clusters are merged. If two micro-clusters Mr and Ms are to be merged, the updates

given in equation (2.4.6) are used to merge them into Mr, and Ms will be deleted. Again as

all of these updates only involve addition steps, they are fast to implement.

CF1x
r ← CF1x

r +CF1x
s ,

CF2x
r ← CF2x

r +CF2x
s ,

CF1tr ← CF1tr + CF1ts ,

CF2tr ← CF2tr + CF2ts ,

nr ← nr + ns . (2.4.6)

With this online micro-cluster maintenance, the data stream should remain well repre-

sented over time. The micro-clustering update algorithm for CluStream is given in Algorithm

29

3.

Algorithm 3 CluStream Micro-clustering

Input: Data Stream S = {xi}i∈N,xi ∈ Rd, number of micro-clusters q, parameters δ, τ , m.

Output: Micro-clusters M1, . . . ,Mq.

1: Initialise the micro-clusters k-means(x1, . . . xinit, q) and equations (2.4.1).

2: for each new data point xi do

3: Find the closest micro-cluster to xi, M∗ using equation (2.4.4).

4: if xi falls within the maximum boundary for M∗ then

5: absorb xi into micro-cluster M∗ using equations (2.4.2).

6: else

7: Use xi to initialise it’s own new micro-cluster using equations (2.4.1).

8: if any micro-cluster is suitably old according to equation (2.4.5) then

9: Remove the oldest micro-cluster.

10: else

11: Merge the two closest micro-clusters using equation (2.4.6).

12: end if

13: end if

14: end for

The efficiency of updating the micro-clusters

We now consider the computational cost of the micro-clustering update described in the

loop in Algorithm 3. The most computationally expensive step is step 3. This step involves

computing the Euclidean distance which has complexity O(n). Therefore, we would expect

30

the run time to increase linearly as the number of micro-clusters is increased.

We ran an experiment on simulated data to see how the run time scales with the number

of micro-clusters. The time to run one update of the micro-clustering algorithm was recorded

100 times using the microbenchmark package in R. The experiment was run on a ThinkPad

laptop with Intel Core i5-7200U CPU @ 2.50GHz running Ubuntu 16.04. The results are

shown in Figure 2.4.1.

Figure 2.4.1: The effect of the number of micro-clusters on run time for one update.

Each data point represents the median run time in milliseconds over 100 runs. As we can

see, the run time does increase linearly with the number of micro-clusters.

We also investigated the size of dimension of the data set on the run time of one update.

The dimension of the data set had no effect on run time.

Macro-clustering stage

The second stage of clustream is a macro-clustering stage, where we take the current micro-

cluster feature vectors, and use these as input into global clustering algorithm. The macro-

31

clustering step is where the general data summary is transformed into a snapshot of the true

underlying clusters at that point in the stream. The q micro-cluster centres M̄j, (1 ≤ j ≤ q)

are treated as representative points for the data stream S, and a standard clustering algorithm

can be used to determine clusters. By using the micro-clusters to summarise the data, we

can therefore perform spectral clustering on data streams. The full algorithm is given in

Algorithm 4.

Algorithm 4 Spectral CluStream

Input: Data Stream S = {xi}i∈N,xi ∈ Rd, number of clusters k, number of micro-clusters

q, parameters δ, τ , m.

Output: A k way clustering of the micro-clusters M1, . . . ,Mq.

1: Initialise the micro-clusters using k-means(x1, . . . xinit, q) and equations (2.4.1).

2: for each new data point xi do

3: Apply CluStream update as in Algorithm 3.

4: if A Macro-clustering is required then

5: Perform spectral clustering on M1, . . . ,Mq with k clusters.

6: end if

7: end for

The frequency with which the macro-clustering stage is run depends on how often the user

requires a summary of the clusters. This will be determined by the nature of the application.

As the macro-clustering stage is considered an offline step in CluStream (Aggarwal et al.,

2003), the efficiency of the algorithm is not compromised by running the macro-clustering

more frequently.

There are a couple of possible ways to feed the micro-clusters into a spectral clustering

32

algorithm (step 5 of Algorithm 4). Two of the options suggested in Zhang et al. (1996) listed

here.

1. Calculate the centre of each micro-cluster M̄j and use it as an object to be clustered

by the macro-clustering algorithm.

2. Do the same as before, but weighting each micro-cluster centre M̄j proportionally to

nj, the number of points assigned to that micro-cluster, so that micro-clusters with

more objects will have more influence on the final clustering.

No guidance is given in Zhang et al. (1996) to how these two different approaches might

affect the final clustering result. Next, in Section 2.4.2 we describe how to weight the micro-

cluster centers. Later in Section 2.5 we will analyse the performance of both unweighted and

weighted online spectral clustering.

2.4.2 Weighting the Micro-Clusters

In this section, we discuss how to create a weighted affinity matrix, look at the effect this

has on the Laplacians and note a spectral link between weighting in this manner and using

larger affinity consisting of repeated points. Weighting the micro-clusters is suggested in

Zhang et al. (1996) but why might it be beneficial to weight the micro-clusters? The first

thing to note is that the number of data points assigned to micro-clusters is not uniform

across the micro-clusters, and this distribution will change as the stream progresses. For

example, Figure 2.4.2a shows a histogram of the number of points assigned to micro-clusters

at the start of a data stream, Figure 2.4.2b shows the middle of the stream, and Figure 2.4.2c

33

shows the end of the stream. We can see that the distribution is not uniform. Therefore

some information is contained in the number of points assigned to a micro-cluster.

(a) Start of the stream. (b) Middle of the stream. (c) End of the stream.

Figure 2.4.2: Histograms showing the number of points assigned to micro-clusters.

Secondly, imagine the scenario pictured in Figure 2.4.3 where we have two clusters, one

much more dense that then other. In the example, many micro-clusters are used to represent

the cluster on the right, although each micro-cluster only has a few data points assigned to it.

The more dense cluster in the bottom left of the plot has only 3 micro-clusters representing it,

but each micro-cluster has hundreds of data points assigned to it. Weighting by the number

of points assigned to a micro-cluster may help balance out this scenario for the spectral

clustering stage.

In order to weight the micro-clusters, we simply construct an affinity matrix as described.

Let W ∈ Rq×q be the affinity matrix of the micro-cluster centres with i, j-th element equal

to the similarity between micro-cluster Mi and Mj,

Wi,j = exp

(
−‖M̄i − M̄j‖2

2σ2

)
, i, j = 1, . . . , q.

34

Figure 2.4.3: Possible micro-cluster locations in a toy example.

Define the weighted affinity matrix to be W̃ ∈ Rq×q where W̃ij = ninjWij. We can see that

W̃ is a valid affinity matrix since it is symmetric with non-negative entries. If we wish to

have W̃ij ≤ 1 then simply divide W̃ by maxi n
2
i , but this makes no difference to the spectral

decomposition (von Luxburg et al., 2008).

There exists a link between the spectral decomposition of the Laplacian generated by W̃

and the Laplacian arising from a data set of repeated points, which we define as follows. Let

W ∗ ∈ Rn×n be the repeated affinity matrix with the micro-cluster centres repeated based on

the number of points assigned to them. Assume that the columns (and therefore rows) of

W ∗ are ordered such that the first n1 are associated with the data assigned to micro-cluster

1, which has size n1 and the next n2 with those assigned to micro-cluster 2, and so on. Let

D, D̃,D∗, be the corresponding degree matrices and L, L̃, L∗ be the corresponding normalised

symmetric Laplacians.

Let us consider the affinity and Laplacian matrices more closely for a very simple case.

Assume that we have two micro-clusters, M1 and M2, which have n1 and n2 points assigned to

35

them respectively. Let the similarity between the two micro-cluster centres be s, and assume

that we are using the standard Gaussian kernel to generate affinity matrices, so therefore the

diagonal elements will be equal to 1. The affinity, degree and Laplacian matrices (W , D and

L) for the two micro-cluster centres are given in equation (2.4.7).

W =

 1 s

s 1

 , D =

 1 + s 0

0 1 + s

 , L =

 1
1+s

s
1+s

s
1+s

1
1+s

 . (2.4.7)

In order to create a weighted version of the affinity matrix, we simply multiply through by

n1 and n2. The weighted affinity matrix W̃ and related degree and Laplacians (D̃ and L̃)

are given in equation (2.4.8).

W̃ =

 n2
1 sn1n2

sn1n2 n2
2

 , D̃ =

 n2
1 + sn1n2 0

0 n2
2 + sn1n2

 ,

L̃ =


n2
1

n2
1+sn1n2

sn1n2√
(n2

1+sn1n2)(n2
2+sn1n2)

sn1n2√
(n2

1+sn1n2)(n2
2+sn1n2)

n2
2

n2
2+sn1n2

 .

(2.4.8)

Finally we observe the construction of the repeated affinity matrix given in equation (2.4.9).

Here the block nature in W ∗, D∗ and L∗ is clear. The first n1 rows of W ∗ relate to the centre

of micro-cluster 1, and the bottom n2 rows relate to the centre of micro-cluster 2.

36

W ∗ =



1 . . . 1 s . . . s

...
. . .

...
...

. . .
...

1 . . . 1 s . . . s

s . . . s 1 . . . 1

...
. . .

...
...

. . .
...

s . . . s 1 . . . 1



, D∗ =



? 0 0 0 . . . 0

0
. . . 0

...
. . .

...

0 0 ? 0 . . . 0

0 . . . 0 4 0 0

...
. . .

... 0
. . . 0

0 . . . 0 0 0 4



,

L∗ =



1
?

. . . 1
?

s√
?4 . . . s√

?4

...
. . .

...
...

. . .
...

1
?

. . . 1
?

s√
?4 . . . s√

?4

s√
?4 . . . s√

?4
1
4 . . . 1

4

...
. . .

...
...

. . .
...

s√
?4 . . . s√

?4
1
4 . . . 1

4



,

where ? = n1 + n2s and 4 = n1s+ n2.

(2.4.9)

If we evaluate these expressions for a particular numerical case, we can see how the

spectral decomposition of the matrices L̃ and L∗ are linked. Let s = 0.5, n1 = 3, n2 = 2.

The 2nd smallest eigenvector of L∗ is

e∗2 =

[
−0.350 −0.350 −0.350 0.562 0.562

]
. (2.4.10)

The 2nd smallest eigenvector of L̃ is

ẽ2 =

[
0.607 −0.795

]
. (2.4.11)

37

If we expand the eigenvector ẽ2 by expanding it’s elements and block dividing by
√
n1

and
√
n2 respectively, we get the following,

n1︷ ︸︸ ︷
0.607√

3

0.607√
3

0.607√
3

n2︷ ︸︸ ︷
−0.795√

2

−0.795√
2

 =

[
0.350 0.350 0.350 −0.562 −0.562

]
.

(2.4.12)

We can see that the right hand vector in equation (2.4.12) is the negative of the 2nd

smallest eigenvector of L∗, e∗2 given in equation (2.4.10).

In fact, we have seen empirically that the expanded repeated eigenvector of the weighted

Laplacian is always either equal to e∗k or−e∗k for all k. This means that the partition generated

by performing spectral clustering on the weighted micro-cluster centers will be the same as

the partition generated by performing spectral clustering on a set of repeated micro-cluster

centers.

Proposition 2.4.1 proves that the second smallest eigenvectors of spectral decomposition

of L∗ and L̃ are linked in this way.

Proposition 2.4.1. Let L be a symmetric Laplacian matrix. Define L̃ and L∗ to be the

corresponding weighted and expanded Laplacians respectively. Let ũ be the second smallest

eigenvector of L̃. Then u∗ is the second smallest eigenvector of L∗, where u∗ is defined as

u∗ =


n1︷ ︸︸ ︷

ũ1√
n1

,
ũ1√
n1

,
ũ1√
n1

, . . . ,

nk︷ ︸︸ ︷
ũk√
nk
,
ũk√
nk

.

Proof. We wish to show that u∗ is the second smallest eigenvector of L∗. First we will show

that u∗ is an eigenvector of L∗ which is orthogonal to the smallest eigenvector of L∗. Then

we will show by proof by contradiction that u∗ must be the second smallest eigenvector of

L∗.

38

i) ‖u∗‖ = 1.

‖u∗‖2 =
n∑
i=1

u∗2i ,

=
k∑
i=1

ni
ũ2i
ni
,

=
k∑
i=1

ũ2i = 1,

since ũ is an eigenvector. Therefore ‖u∗‖ = 1.

ii) u∗ ⊥ D∗1/21.

n∑
i=1

u∗iD
∗1/2
ii =

k∑
i=1

ni
ũi√
ni

D̃
1/2
ii√
ni
,

=
k∑
i=1

ũiD̃
1/2
ii = 0,

since ũ ⊥ D̃1/21, therefore u∗ ⊥ D∗1/21.

iii) u∗>L∗u∗ = ũ>L̃ũ.

First we state the general property given in von Luxburg et al. (2008) for the normalised

Laplacian. For every f ∈ Rn we have,

f ′Lf =
1

2

n∑
i,j=1

wij

(
fi√
di
− fj√

dj

)2

. (2.4.13)

Using this property,

ũ>L̃ũ =
1

2

k∑
i=1

k∑
j=1

 ũi√
D̃ii

− ũj√
D̃jj

2

W̃ij,

=
1

2

k∑
i=1

k∑
j=1

(
ũi/
√
ni√

Dii

−
ũj/
√
nj√

Djj

)2

ninjWij,

39

which we can see is equal to u∗>L∗u∗ by observing that W ∗ has repeated elements from W .

Now that all of the above criteria have been satisfied, we know that u∗ is an eigenvector

of L∗ and is orthogonal to the smallest eigenvector. Assume there exists some v∗ such that

v∗ ⊥ D∗1/21 with ‖v∗‖ = 1 and v∗>L∗v∗ < u∗>L∗u∗. Then ∃ ṽ with ṽ> ⊥ D̃1/21 and

ṽT L̃ṽ < ũ>L̃ũ. This contradicts the fact that ũ is the second smallest eigenvector of L̃.

Therefore u∗ is the second smallest eigenvector of L∗.

2.5 Experimentation

In this section, we investigate the performance of both unweighted and weighted spectral

CluStream and a simple windowed approach to spectral clustering. We intended to compare

against the incremental spectral clustering method of Ning et al. (2010) discussed in Section

2.3.2 however due to the computational cost of the method this was not possible. This

underlines the point made previously that incremental methods struggle in streaming settings.

First the algorithms and methodology are introduced and the performance metrics defined.

Then the algorithms are compared on simulated data, two image based data sets and an

evolving data set.

The Algorithms

Spectral CluStream is given in Algorithm 4. As described in Section 2.4, there are two ways

that we can incorporate the micro-cluster centres into the macro-clustering; not weighting,

or weighting. Unweighted clustream takes the micro-cluster centres as direct input into the

40

spectral clustering algorithm. Weighted clustream weights the micro-cluster centres by the

number of data points assigned to that micro-cluster. In both spectral CluStream algorithms

we use q = 150 micro-clusters to summarise the data stream. This value of q was chosen as

initial experiments showed that 150 micro-clusters was sufficient to represent the underlying

data stream without being computationally expensive to update. This is demonstrated in

Section 2.5.3. In Section 2.5.7 we compare results for varying values of q.

Windowed approaches are often used in data streaming as a computationally simple way

to monitor a data stream. A window of the w most recently observed data points is retained.

When a new data point is observed, the oldest data point in the window is discarded to

make room for the new data point. Windowed spectral clustering uses the data points in

the current window as input into the spectral clustering algorithm given in Algorithm 1.

Choosing a suitable window size w can be difficult. A large window size will contain lots of

historical information but will be slow to adapt to changes in the data stream, whilst a small

window can update quickly but may not be informative enough. There do exist methods

for adaptive window sizes but we decided to fix the window size. This was decided for two

reasons, it is computationally more efficient and it makes a fairer comparison with CluStream

which uses a fixed number of micro-clusters. The window size selected was w = 150 as it is

provides a good trade off between retaining information and adapting to changes in the data

stream. In Section 2.5.7 we compare results for different values of w.

The data sets

The data sets used in this section are the S sets (Fränti and Virmajoki, 2006), a texture data

set (Kylberg, 2011) and the UCI Pendigits (Lichman, 2013). The full details of these will be

41

introduced when we come to them. However, these data sets exist in a static form. In order

to use these data sets as data streams we use the following online generating mechanism.

For each data set, ten data streams are generated by randomly sampling from the data set

without replacement.

2.5.1 Methodology

A data stream S = {xi}i∈N is observed sequentially, with one data point xt observed at each

time point. The order in which the data stream is observed is randomised to generate 10

different runs. Results are averaged out over these runs.

Each run consists of four stages; initialisation, updating, generating cluster labels and

evaluation. Spectral CluStream is initialised by applying k-means with 150 clusters to the

first 500 data points and applying equations (2.4.1). When a new data point xt is observed

the streaming algorithms are updated. In spectral CluStream this is achieved by applying

Algorithm 3. Windowed spectral clustering shifts the window along by one, discarding the

oldest data point x(t−150) and including xt. Every ten times steps we generate cluster

labels for the data stream by applying spectral clustering on the representative points of the

data stream. In spectral CluStream the representative points are the micro-clusters (weight

adjusted or not). In windowed spectral clustering the representative points are the w data

points currently in the window. We then evaluate the spectral clustering performance on a

test set defined to be the next 200 data points in the data stream (xt+1 , . . .xt+200). The

test data points are first assigned to their nearest representative point using the Euclidean

distance metric and then take on the cluster label of that representative point. Performance

is measured in terms of purity and V-measure of the test data using the known true clusters.

42

Purity and V-measure are defined in Section 2.5.2.

The parameter settings throughout are as follows. In spectral CluStream algorithms we

set δ = 0.1, m = 1 and τ = 2 as suggested in Aggarwal et al. (2003). For the first three

experiments we use q = 150 micro-clusters. In Section 2.5.7 we compare results for a number

of different values of q. Similarly, in the first three experiments we use a window size of

w = 150 for windowed spectral clustering, but investigate varying w in the final experiment.

In all experiments, we set the number of clusters k to be equal to the known true number of

classes for the data set.

2.5.2 Performance Measures

The two measures that are used to quantify cluster performance are purity and V-measure,

both of which are well used in the clustering literature. Both measures require knowledge of

the “true class” of the data points, which may not always be available for real data sets. Both

purity and V-measure are bound between 0 and 1, where 1 indicates perfect performance.

Let n be the number of data points, U = {ui|1, . . . , k} be the set of true classes and

V = {vj|1, . . . , k} be the set of clusters assigned by the clustering algorithm. Define A to

be the contingency table produced by the clustering algorithm representing the clustering

solution such that aij is the number of points that are members of class ui and assigned to

cluster vj.

A cluster which only contains data points associated with one true class will be given a

high purity value. A cluster which consists of data points from many different true classes

will receive a low purity value. Purity is calculated as follows. For each cluster find the true

class which is most prevalent in that cluster and count how many data points of that class

43

there are in that cluster. Repeat this for all clusters, sum these counts and divide by the

total number of data points. This is shown mathematically in equation (2.5.1).

Purity =
1

n

k∑
j=1

max
i

(aij). (2.5.1)

Generally this is a useful measure, however if we had a data set where each data point was

assigned to a different cluster then the purity would be perfect even though this isn’t a

particularly good clustering of the data. Purity can be unreliable if the number of clusters

is much larger than the number of true classes.

To account for this we also use the V-measure (Rosenberg and Hirschberg, 2007) which

takes the harmonic mean of two other performance measures, homogeneity and completeness.

Homogeneity assesses if each cluster contains members of only a single class (in a similar way

to purity), whilst completeness checks that all members of the same class are assigned to the

same cluster. This is shown in equation (2.5.2):

V-measure = 2
h× c
h+ c

, (2.5.2)

where h and c are homogeneity and completeness measures as defined below in equation

(2.5.3) and equation (2.5.6) respectively.

44

For homogeneity to be perfect, the clustering algorithm must assign only those data points

that are members of a single class to a single cluster.

h =


1 if H(U |V) = 0

1− H(U |V)
H(U)

, otherwise.

(2.5.3)

H(U |V) = −
k∑
j=1

k∑
i=1

aij
N

log
aij∑k
i=1 aij

. (2.5.4)

H(U) = −
k∑
i=1

∑k
j=1 aij

N
log

∑k
j=1 aij

N
. (2.5.5)

For perfect completeness the clustering must assign all data points which are members of

a single class to a single cluster.

c =


1 if H(V |U) = 0

1− H(V |U)
H(V)

, otherwise.

(2.5.6)

H(V |U) = −
k∑
i=1

k∑
j=1

aij
N

log
aij∑k
j=1 aij

. (2.5.7)

H(V) = −
k∑
j=1

∑k
i=1 aij
N

log

∑k
i=1 aij
N

. (2.5.8)

45

2.5.3 Parameter Choices

For the experiments in which the number of micro-clusters (q) and window size (w) is fixed,

the value of the parameters must be selected. A brief computational study was carried out on

a selection of simulated data sets for the purpose of parameter selection. Table 2.5.1 shows

the Unweighted CluStream algorithm performance in terms of purity and V-measure for a

number of parameter choices. The results are averaged over 10 runs. We can see that the

performance improves as the number of micro-clusters increases, however, the performance

seems to plateau above q = 150. Given that the computationally time increases linearly (see

Section 2.4.1) q = 150 is a sensible parameter choice for the purposes of our study.

Now, we consider the choice of window size (w). Table 2.5.1 shows the windowed algorithm

performance in terms of purity and V-measure for a number of parameter choices. Again,the

results are averaged over 10 runs. We see that the performance improves marginally as

the window size increases, however, the performance appears to be flat around w = 150 to

w = 200. As there is no advantage to using a window size greater than 150 we choose to set

w = 150. Using the same value for both q and w has the added advantage that the memory

requirements for both algorithms will be comparable.

46

Table 2.5.1: Select of nMicro parameter for CluStream.

nMicro Data set Purity Vmeasure

50 S1 0.935 0.955

100 S1 0.955 0.969

150 S1 0.957 0.972

200 S1 0.944 0.969

50 S2 0.870 0.891

100 S2 0.888 0.903

150 S2 0.894 0.907

200 S2 0.910 0.924

50 S3 0.705 0.760

100 S3 0.723 0.762

150 S3 0.747 0.776

200 S3 0.746 0.775

50 S4 0.649 0.704

100 S4 0.671 0.711

150 S4 0.677 0.712

200 S4 0.698 0.723

47

Table 2.5.2: Selection of window size parameter for windowed algorithm.

Window Size Data set Purity Vmeasure

50 S1 0.928 0.957

100 S1 0.912 0.952

150 S1 0.922 0.959

200 S1 0.916 0.955

50 S2 0.872 0.903

100 S2 0.889 0.912

150 S2 0.898 0.918

200 S2 0.897 0.918

50 S3 0.741 0.779

100 S3 0.777 0.793

150 S3 0.794 0.804

200 S3 0.787 0.796

50 S4 0.69 0.723

100 S4 0.713 0.735

150 S4 0.726 0.738

200 S4 0.725 0.739

48

2.5.4 Simulated Results

The first data sets tested are the popular S-sets, first introduced in Fränti and Virmajoki

(2006). The four data sets are shown in Figure 2.5.1.

(a) S1. (b) S2.

(c) S3. (d) S4.

Figure 2.5.1: The S sets (Fränti and Virmajoki, 2006), two-dimensional data sets with varying

degrees of overlap. The true clusters labels are shown.

Each set consists of synthetic two-dimensional data with n=5000 data points and k=15

Gaussian clusters with different degrees of cluster overlapping. Data set S1 should be the

easiest to cluster as all 15 clusters are well fairly separated. The sets become increasingly

more challenging and S4 can be difficult even for humans to separate correctly. We treated

each of these data sets as a data stream and used spectral CluStream and windowed spectral

49

clustering to assign data points to clusters. Performance is evaluated in batch every 10th

time point. The results are shown in Figures 2.5.2 and 2.5.3.

(a) S1. (b) S2.

(c) S3. (d) S4.

Figure 2.5.2: Purity for the S data sets.

Figure 2.5.2 plots the performance in terms of purity on the y-axis and the batch number

is given on the x-axis. The average performance for each algorithm over the multiple runs is

given by the thick solid lines and the shaded area depicts the inter-quartile range. Figure 2.5.3

50

shows the performance in terms of V-measure. Both figures show the algorithm performance

at each batch step, meaning that we can see how performance changes as the data stream

progresses. However, these data sets are stationary in distribution and therefore we would

not expect to see algorithm performance vary dramatically with time.

(a) S1. (b) S2.

(c) S3. (d) S4.

Figure 2.5.3: V-measure for the S data sets.

Both unweighted spectral CluStream (green) and windowed spectral clustering (blue)

51

perform similarly for all sets. They both perform well on set S1 and set S2 but they struggle

with the more challenging sets S3 and S4. The weighted spectral CluStream (red) initially

starts with performance on par with the competing algorithms, but quickly drops to poor

performance and does not recover as the stream progresses. Given that the underlying

distributions for the S sets are stationary, this behaviour is unusual.

In order to discover why weighted spectral CluStream is performing poorly, lets look

at the micro-clusters more closely. Figure 2.5.4 shows a snapshot of the weighted spectral

CluStream algorithm on the S1 data set in the middle of the stream.

Figure 2.5.4: Snapshot from weighted spectral CluStream on S1.

The grey points are the data points observed so far, the location of the letters represent

micro-cluster centres which are labelled with the results of the weighted spectral clustering.

This is not a good clustering of the data. We can see that one cluster (letter N) is dominating

and many of the outliers of the other clusters have been represented by the N cluster label.

52

This implies that the affinities between the micro-cluster centres on the outskirts of the

cluster C are more similar to the outliers of other clusters (such as cluster I) than to the

micro-cluster centres at C. This behaviour is very odd and implies that there might be an

issue with the affinity matrix.

We can observe the affinity matrix by plotting it as an image, where bright values imply an

affinity value close to one and red means the value is close to zero. Figure 2.5.5 shows an image

of both the unweighted and weighted affinity for the example shown in Figure 2.5.4. The

affinity matrix has dimension 150× 150, with each row representing the similarities between

one micro-cluster centre and the other 149. The rows and columns have been grouped so

that micro-cluster centres from the same true underlying clusters are next to each other.

(a) Unweighted affinity matrix. (b) Weighted affinity matrix.

Figure 2.5.5: Affinity matrices for S set 1.

We can see that in Figure 2.5.5a the block nature of the unweighted affinity is clear.

There are strong affinities between close micro-clusters, and weak affinities between distant

53

micro-clusters making this an informative affinity matrix to use with spectral clustering.

However in the weighted affinity matrix (Figure 2.5.5b) the block nature is not visible. Most

of the values are close to zero, with only a few strong affinities. The weighting seems to have

dampened the affinity matrix, incorrectly reducing the affinity of close micro-clusters. It is

possible that the use of the localised scaling parameter (see Section 2.2.2) in the spectral

clustering step may be interfering with the weighting of micro-clusters. We did attempt to

use a global scaling parameter instead of the localised one, however this then brought up the

issue of tuning the σ parameter, which is known to be very sensitive and is a difficulty for

spectral clustering algorithms in general (von Luxburg et al., 2008). Although performance

did seem to improve with the global scaling parameter when chosen carefully, the performance

was still very poor compared to windowed spectral clustering and spectral CluStream.

2.5.5 Texture data

We now investigate the performance of the clustering algorithms features extracted from

textured images. The Kylberg texture data set (Kylberg, 2011) consists of 28 texture classes

with 160 unique texture patches per class. The patches consist of 576 × 576 pixel images.

Features for clustering were extracted using the LS2W method (Eckley and Nason, 2011)

which creates 27 wavelet features from the textured images.

54

Figure 2.5.6: Three examples from each of the 6 different texture tiles. The texture classes

are (L-R) Blanket 1, Blanket 2, Canvas, Ceiling, Lentils and Screen.

A subset of 6 classes was selected, examples of which are shown in Figure 2.5.6. The

classes selected are images of two types of blanket, some canvas, a ceiling, some lentils and a

screen. The performance plots for the texture data are shown in Figure 2.5.7. Here we do see

a difference between windowed spectral clustering and unweighted spectral CluStream, the

windowed approach is generally performing better. Once again weighted spectral CluStream

does not perform well, and performance declines as the stream progresses.

The poor performance of weighted spectral CluStream was observed on all other data sets

investigated and therefore the results from this algorithm will be dropped from any further

performance plots in order to focus more on the behaviour of the other two algorithms. From

now on, we will refer to unweighted spectral CluStream simply as spectral CluStream.

55

(a) Texture Purity. (b) Texture V-measure.

Figure 2.5.7: Texture Results.

2.5.6 Pendigit data

This section and the next will use the UCI Pendigit data set which was introduced in Alimoglu

and Alpaydin (1996) and is available is for download (Lichman, 2013). The data set consists

of 250 samples of hand drawn digits of the numbers 0-9 taken from 44 writers. The data

was collected using a pressure sensitive tablet. There are 16 features each relating to the

co-ordinate information taken from the input tablet. We restrict our analysis to pairwise

comparison of digits. For example we attempt to cluster the digits 0 and 1, and treat the

data as if it is arriving in a constant data stream.

56

(a) PCA of digits 1 and 6.

(b) Purity digits 1 and 6. (c) V-measure digits 1 and 6.

(d) PCA of digits 4 and 7.

(e) Purity digits 4 and 7. (f) V-measure digits 4 and 7.

Figure 2.5.8: Pendigits Pairwise - spectral CluStream and windowed spectral clustering.

The results for a selection of the pairwise digits are shown in Figure 2.5.8. The first

column displays the digit data in PCA space, the second column shows the purity, and the

third column shows the V-measure. Both algorithms show similar performance in the plots

shown (and in all the other pairwise combinations which were run). It can be noted that V-

measure is lower than purity, which might imply that the resulting clusters are homogeneous

but not complete (see Section 2.5.2).

57

2.5.7 Non-stationary data

So far we have considered only stationary data streams. The main challenge for clustering

algorithms for data streams is adapting to changes in the data stream. In order to create

data streams with a non stationary distribution we introduce a change into the data stream.

To construct a data stream we choose three digits in the Pendigits data set (for example 4,

8 and 9). The start of the data stream consists only of 2 digits (4 and 8). Half way through

the stream, we replace the second digit with the third digits (so now we observe values 4

and 9 rather than 4 and 8). By swapping the digits in this manner we can avoid the difficult

issue of having to select a number of clusters, as we always observe only two clusters.

Figure 2.5.9: PCA plot for the Pendigits 4, 8 and 9.

The example set is “Pendigits 48 49” - first we observe features from digits 4 and 8, and

we switch to observing features from digits 4 and 9 half way through the stream. Figure 2.5.9

shows the PCA space for all three digits. There is quite a bit of overlap between digits 4

and 9, which makes the data stream quite tricky to cluster. We ran spectral CluStream and

windowed spectral clustering on this data stream. We have included a number of different

58

values for the number of micro-clusters q ∈ (50, 100, 150, 200) and also ran windowed spectral

with window sizes w ∈ (50, 100, 150, 200). The results in terms of purity and V-measure

are shown in Figure 2.5.10. In Figure 2.5.10 the dashed lines show the windowed spectral

clustering and the full lines are unweighted spectral CluStream. The colours indicate different

values for the number of micro-clusters/window size.

(a) Purity. (b) V-measure.

Figure 2.5.10: Purity and V-measure for Pendigits 48-49.

The initial results show that spectral CluStream does not perform well after the change

is observed. Both purity and V-measure drop dramatically low and do not recover. A fix

is required in order for spectral CluStream to deal with the change in the data stream. In

order to understand why performance drops at the change and discover how to fix this we

need to look closely at the behaviour of the micro-clusters. Figure 2.5.11a shows the micro-

clusters for spectral CluStream at the start of the stream (directly after initialisation). The

grey points show all data seen up until this time and the blue points indicate the next 200

59

points to be observed (the test set used for our performance measures.) The crosses indicate

locations of micro-cluster centres, and their colour indicates which overall cluster they have

been assigned to using the spectral clustering algorithm.

(a) Stream at time t = 1. (b) Stream at time t = 1000.

Figure 2.5.11: Micro-cluster centres for the Pendigits 48, 49.

In Figure 2.5.11a, at time step 1, the micro-cluster centres are well distributed over the

grey data points and also the blue test points. The spectral clustering mostly segments the

micro-cluster centres correctly into the left and right clusters.

At time step 1000 (Figure 2.5.11b), we have begun observing the new cluster (digit 9 in

the top left corner) and are no longer receiving data points from digit 8. This is shown as all

of the test data points (light blue) are in either the bottom left corner (digit 4) and top left

corner (digit 9). We see that the micro-cluster centres (crosses) are spread out over all the

data including the defunct cluster of digit 8 (the grey data points on the right hand side of

the plot). The reason that there are still micro-cluster centres located in the cluster 8 region

60

is because of the deletion policy that CluStream uses.

CluStream requires the number of micro-clusters to remain fixed for the duration of the

stream. As discussed in Section 2.4, if an arriving data point does not have a suitable micro-

cluster to merge into, a new micro-cluster is formed. However, since the total number of

micro-clusters is fixed, this means that we need to either delete an old micro-cluster if it

is suitably old, or combine two close ones. This is the only way that micro-clusters can be

deleted in CluStream. A micro-cluster i is defined to be suitably old if it’s relevancy r(Mi)

is less than the relevancy threshold δ, as defined and discussed in equation (2.4.5).

In practice it is difficult to select the best value of δ. If δ is set too high, CluStream will

delete too often and therefore emerging new micro-clusters may not be allowed to develop

fully. If δ is set too small then old clusters will stay in the system much longer than required.

This is an example of when δ is possibly too small, as the algorithm seems unwilling to

discard old micro-clusters.

Often, storing old micro-cluster centres isn’t a problem. Keeping old micro-cluster centres

is a useful way to retain some historical data about the data stream. Also, in the case where

a cluster disappears for some time and then re-emerges later in the stream, retaining old

micro-cluster centres may speed up the learning when the old cluster re-emerges. These type

of scenarios can occur regularly in any sort of cyclic data, such as any shopping data which

has seasonality.

The problem arises when the old micro-cluster centres are used in the spectral clustering

step. By including these old centres in the spectral clustering, the algorithm technically has

centres from three clusters (digits 4, 8 and 9), but we have asked the spectral clustering

algorithm to find two clusters. In the example above in Figure 2.5.11b, we see that the two

61

clusters on the left that we are trying to separate are grouped together as one, because of

the inclusion of the old micro-cluster centres on the right of the plot.

The proposed solution to deal with these micro-cluster centres is as follows. Before the

macro-clustering step is complete, identify the micro-clusters of interest. In this setting,

we find the micro-clusters which the test data are closest to. Then use only these relevant

micro-cluster centres to perform the spectral clustering. Figure 2.5.12 compares the previous

method with the proposed alteration. Figure 2.5.12a shows the standard algorithm at t =

1000 (this is a duplicate of Figure 2.5.11b repeated for comparison purposes). Figure 2.5.12b

shows the clustering of the micro-cluster centres when the alternative spectral CluStream is

used.

(a) Standard spectral CluStream Algorithm. (b) Alternative spectral CluStream Algorithm.

Figure 2.5.12: Micro-cluster centres for the Evolving Pendigits 48, 49 at t = 1000.

We can see that the older micro-cluster centres are no longer used in the spectral clus-

tering, and therefore the algorithm is better able to distinguish between the digit 4 and the

62

digit 9. Note that although the old micro-cluster centres are not shown in the figure, they

are technically still stored, but since they are not used in the macro-clustering stage they do

not receive a cluster label therefore are not shown on the plot.

Once obvious issue with this amendment is there may be fewer input data points into the

spectral clustering algorithm - this means that the number of micro-clusters used becomes

more important. In the toy example above we used 50 micro-clusters to represent the stream.

This is already fairly small, but given that some centres are now not used in the spectral

clustering step, this can be an issue. In fact at time step 1000 (Figure 2.5.12b), we can see

that only 19 of the 50 micro-clusters are being used in the spectral clustering algorithm.

Therefore there may be a need when using this alternative method to select the number of

micro-clusters to be larger then required.

Figures 2.5.13 and 2.5.14 show the alternative spectral CluStream performance with the

standard spectral CluStream performance. In the plots the dashed lines show the windowed

spectral clustering and the full lines are unweighted spectral CluStream. The colours indicate

different values for the number of micro-clusters/window size. The plots on the left show

the performance for the standard unweighted spectral clustering, and the plots on the right

show the proposed alternative unweighted spectral clustering. The performance of windowed

spectral clustering is repeated in both left and right plots for comparison purposes.

63

(a) Purity - standard. (b) Purity - alternative.

(c) V-measure - standard. (d) V-measure - alternative.

Figure 2.5.13: Standard vs alternative CluStream on Pendigits 48 49.

64

(a) Purity - standard. (b) Purity - alternative.

(c) V-measure - standard. (d) V-measure - alternative.

Figure 2.5.14: Standard vs alternative CluStream on Pendigits 34 37.

The plots show that although unweighted spectral CluStream was performing poorly when

using the standard approach, using the alternative method has brought performance back

up to being as good as windowed spectral clustering. In fact in both examples all spectral

65

CluStream algorithms outperforms windowed spectral clustering as it recovers faster after

the change. This can be seen for example in Figure 2.5.14b where, after then change, the

purity for all the spectral CluStream algorithms recovers almost immediately to 0.8 whilst

the windowed algorithms take longer to reach that level of purity. The importance of the

number of micro-clusters is evident in this data set. In Figure 2.5.13d we can clearly see the

number of micro-clusters affects the performance of the algorithm. Initially the number of

micro-clusters doesn’t have a large effect on performance but after the change occurs, using

50 micro-clusters was not sufficient for the algorithm to adapt. However using 200 micro-

clusters brought performance up to a reasonable level. We also observe the effect of window

size on performance. In Figure 2.5.14b it is clear at the point of change that the window

with the smallest size (50) recovers first, with the largest window size taking the longest to

adapt to the change.

2.6 Conclusion

In this chapter we have presented spectral CluStream, a clustering method capable of per-

forming spectral clustering on data streams. Under the suggestion from Zhang et al. (1996),

we considered two variations of this algorithm, a weighted and an unweighted algorithm.

Despite having a mathematically valid affinity matrix, the weighted spectral CluStream was

found to have very poor performance and fundamental difficulties clustering even simple sim-

ulated data. The unweighted spectral CluStream was shown to have good performance on

par with a windowed approach to spectral clustering. An issue with the unweighted spec-

tral CluStream deletion policy was highlighted for non-stationary data streams where we

66

saw historic micro-clusters being retained causing to the spectral clustering to fail. A fix

was suggested in order to retain the good performance, but at the cost of using additional

micro-clusters to track the stream.

The key difference between spectral CluStream and windowed spectral clustering is that

the data summaries kept by CluStream can include historic information. We found that this

could be a disadvantage in the non-stationary setting. However, this might not always be the

case, for example, in cases where the non-stationarity is seasonal in nature, such as shopping

transactions. In this situation, retaining historical information may improve performance.

The effect of storing historic micro-clusters is worth investigating for a range of types of

non-stationary data streams across different applications.

67

Chapter 3

Identifying corruption within acoustic

sensing signals

3.1 Introduction

In Chapter 2 we introduced the CluStream (Aggarwal et al., 2003) algorithm and demon-

strated how it could be used to create an online spectral clustering algorithm. In this chapter

we apply CluStream to identify corruption within acoustic sensing signals. Distributed acous-

tic sensing (DAS) is a modern technique used to monitor oil flow at various depths throughout

an oil well. DAS uses a fibre-optic cable to record vibrations at very high resolutions, up

to 10000 observations a second. DAS is fairly cheap to implement and offers high frequency

data, but unfortunately corruption can occur in the signal. Our challenge is to identify the

locations in the signal where corruption occurs. Existing methods for detecting and removing

interference in DAS signals involve using offline, univariate changepoint detection. However

DAS signals are multivariate and require online processing. In this chapter we show that

68

CluStream provides an alternative approach to changepoints analysis to identify corruption

within DAS signals.

3.2 Motivation

3.2.1 What is Distributed Acoustic Sensing?

Distributed Acoustic Sensing (DAS) is a technique which uses fibre-optic cables to measure

vibrations travelling through the ground. DAS systems have recently become popular in the

oil and gas industry and are used to monitor oil flow (Silkina, 2014; van der Horst et al.,

2014) and to detect leaks in abandoned gas wells (Boone et al., 2014). When vibrations

pass through the fibre-optic cable, they induce a change in the intensity of the reflection

of the pulses of light being passed through the cable. This provides very high frequency

data, potentially as high as 10kHz. It is also possible to collect this data at many different

depths in the well simultaneously. Therefore DAS data has both high frequency and high

dimensionality.

An example of DAS signal data is given in Figure 3.2.1. In the figure, each plot is a series

obtained at a different depth within the oil well. We can see that there are some disturbances

in the signal. Engineers refer to these disturbances as corrupted data and the challenge of

this application is to locate where the data is corrupted. We are told that if corruption is

observed at one depth then the effect is also likely to be observed at multiple other depths

simultaneously. This is visible in Figure 3.2.1, particularly at time point t = 3750, where

there is a big drop in the signal which occurs in all ten series.

69

-2750
-2500
-2250
-2000

0 2500 5000 7500 10000
Time

Se
rie

s
1

-2800
-2600
-2400
-2200

0 2500 5000 7500 10000
Time

Se
rie

s
2

-3000
-2800
-2600

0 2500 5000 7500 10000
Time

Se
rie

s
3

-3200
-3000
-2800
-2600

0 2500 5000 7500 10000
Time

Se
rie

s
4

-2800
-2600
-2400
-2200

0 2500 5000 7500 10000
Time

Se
rie

s
5

-2600
-2400
-2200

0 2500 5000 7500 10000
Time

Se
rie

s
6

-2800
-2600
-2400

0 2500 5000 7500 10000
Time

Se
rie

s
7

-2800
-2600
-2400
-2200
-2000

0 2500 5000 7500 10000
Time

Se
rie

s
8

-2500
-2250
-2000

0 2500 5000 7500 10000
Time

Se
rie

s
9

-2400
-2200
-2000
-1800
-1600
-1400

0 2500 5000 7500 10000
Time

Se
rie

s
10

Figure 3.2.1: An example of acoustic sensing data observed at various depths in an oil well.

3.2.2 Relevant literature

Detecting corruption within a time series is usually framed as a changepoint detection prob-

lem. A changepoint is defined as a time-point at which a change occurs in one or more of the

statistical properties of a time series. The first published article concerning changepoints was

in Page (1954) which considered testing for a potential single changepoint and was motivated

by a quality control setting in manufacturing. Over the decades, changepoint analysis has

developed rapidly with multiple changepoints, different types of data and other assumptions

being considered. Many methods for detecting changepoints exist ranging from approximate

(heuristic) fast methods, to exact methods which take longer to run. A review of recent

changepoint methods can be found in Chen and Gupta (2012); Eckley et al. (2011).

70

Much of the work in changepoint detection has focused on the scenario where the obser-

vations are univariate, although some extensions have been developed for the multivariate

setting. The available changepoint algorithms which are multivariate cannot currently deal

with the online scenario due to computational restraints. However due to the high frequency

and dimensionality of DAS data, an online method is required.

3.2.3 Using CluStream to identify boundary locations

We consider the problem of identifying corruption within a DAS data stream as a two-stage

clustering problem. The first stage is purely online, and consists of updating micro-clusters

as a way of storing information about the data stream without storing all of the data points.

The second stage is applied on a small, recent section of the data stream, and allows the

user to request a segmentation of that section of the stream to look for where the signal is

corrupted.

3.2.4 Stage one: Micro-clustering

Stage one is essentially the micro-clustering step of CluStream introduced in Section 2.4.

CluStream is a method of clustering data streams, based on the concept of micro-clusters.

Micro-clusters are data structures which summarise a set of instances from the stream, and

are composed of a set of statistics which are easily updated and allow fast analysis. The

number of micro-clusters used is a user chosen parameter. Using a large number of micro-

clusters will represent the data stream better than a smaller number, at the cost of increased

computation. We found using 250 micro-clusters to be sufficient for this application.

71

3.2.5 Stage two: Identifying corruption

Stage two is an offline procedure which is performed in batch on a recent section of the signal.

This step uses the micro-cluster summaries to identify a set B of boundary locations, points

in the signal where there is a change in the signal. First the k-means algorithm is applied

on the micro-cluster centres. The clusters generated by the k-means step are referred to as

macro-clusters. Then we consider the N most recently observed data points in the signal,

{x1, ..., xN}. Each of these N points is assigned to a k-means macro-cluster using the nearest

neighbour algorithm. We can now plot the signal coloured by the macro-cluster assignments.

An example of this is given in Figure 3.2.2.

●
●●●●

●
●

●

●
●
●
●●●●●●●●●●
●
●
●
●
●
●
●

●
●
●
●

●●●
●●
●
●
●●
●
●●●
●
●●●●●●●
●●

●
●
●
●●●
●
●

●
●●●
●●●●
●●
●●●●
●
●
●

●●●●
●●●●
●
●●

●

●

●●
●
●
●
●●
●●
●●●
●
●
●
●●
●

●

●
●●●
●
●
●●●
●

●

●
●

●

●
●
●

●

●●
●●●●●

●
●
●

●
●
●
●●

●
●

●
●

●
●●

●

●●●
●●
●●●
●●●●
●

●

●●
●

●
●●●

●

●●

●
●●

●

●●
●●●●●●●●●

●

●●●
●●
●
●

●

●

●●
●

●

●
●

●
●
●
●

●●
●
●●●

●

●

●

●●●●
●
●
●

●

●
●
●●
●
●●
●

●
●●
●●●●
●
●

●

●●●●
●

●

●●
●
●
●●●●

●
●
●●●
●
●●●

●
●●

●
●
●
●

●●●
●

●●
●
●

●

●●
●

●
●●
●●

●

●

●

●

●●

●●
●
●

●
●●●
●●●
●●●●
●
●●●
●●

●
●
●
●
●
●
●

●

●
●●●
●●●

●
●

●
●●
●
●●

●
●●
●
●
●●
●
●
●●
●●
●

●●
●

●

●●
●●
●●●
●
●

●
●●●●●

●
●●●●●
●●
●
●

●

●
●●
●

●

●●●●
●●
●●
●
●
●
●
●●●

●●
●
●●●
●●
●

●

●●
●
●
●●●●●
●●

●●
●
●
●●●●
●
●
●

●

●●●
●
●●●●●
●●●
●

●●●
●
●
●●●
●●
●
●
●●
●●●
●●●
●
●
●
●●
●●

●●
●
●
●
●●
●●●
●●●●

●

●

●
●

●

●

●

●●
●●
●
●●
●
●

●

●●●
●●●●●●
●●

●●

●●
●●●
●●
●
●●

●
●
●

●

●●●●
●
●●●●●

●
●●●
●
●●
●●●
●
●●

●
●●●
●●
●

●
●●
●
●
●

●

●
●●
●

●
●●
●
●
●

●●

●●
●●
●

●

●●●●

●
●●

●

●
●●●●
●

●

●●●
●●●●
●
●●●
●

●

●
●●
●

●

●●
●
●●●●●●
●
●
●

●
●
●

●
●
●●

●

●
●●●
●
●●●●
●

●●●●●●

●
●
●
●
●
●
●●
●●●
●
●●●
●●●●●

●
●●●●
●●●

●
●
●

●●●●

●

●●●●●●●

●

●

●

●●●●●●●●●
●

●

●●
●●●
●●
●

●
●
●●●
●●
●●

●●

●
●
●
●
●
●
●

●
●
●●
●●

●

●
●
●

●
●
●●
●
●●●
●●
●●●
●●
●
●

●
●
●
●●
●
●
●
●●
●
●
●

●

●●●●●●

●
●●●
●
●●●
●
●●
●
●●●●●

●

●●
●●
●
●
●
●

●●●●●●●
●
●●●●
●●
●●●
●●
●●
●

●●
●
●●●●●●●
●●
●
●●●●●●
●
●

●

●●●
●●
●
●●●●●●

●
●
●●
●
●

●

●●●
●●●
●
●

●

●

●

●●

●

●
●●●●

●
●

●
●●●
●●
●●

●
●
●

●●
●
●●
●●
●●
●●●
●
●

●

●

●
●●●●
●●●
●●
●

●●
●
●
●
●●
●●●●●●
●
●●
●●
●
●
●
●
●●●●
●
●
●●●●
●

●●●
●●
●

●●
●●
●
●●
●●
●●

●

●
●
●●
●

●
●●
●●
●

●●●
●
●

●

●
●
●
●
●●

●●

●

●

●●●●
●
●●●●
●
●●
●
●
●
●
●
●
●
●

●
●
●
●●
●●
●
●●●●●●
●

●●
●●●●●

●

●
●●
●
●
●●

●
●

●

●
●●
●

●
●

●

●
●

●
●

●

●
●
●

●

●
●
●●●●●●●●
●●●
●

●

●
●●
●●●●
●
●
●
●

●

●●

●●
●
●●●
●

●
●
●
●●●●●
●●●●
●

●●●●
●●●
●●●

●
●
●●●
●

●●●

●●
●
●●
●●
●
●
●
●
●
●●●
●●●●●
●

●●
●
●
●●●
●●●
●●●
●

●●

●
●

●
●

●

●●
●●●●
●●●●●●●●
●●
●●●●●
●●●
●●

●●
●●●

●
●●●●
●●
●
●
●
●

●

●

●
●●
●●●●

●
●

●
●●●●
●
●
●
●●

●
●
●●
●
●●●●

●●●
●

●
●●
●
●

●
●
●●
●
●

●
●●
●●●

●●●

●

●
●

●

●●
●
●

●●
●
●●●●●●
●
●●●●●
●
●●●●

●

●

●
●●●●●●●●●
●
●
●●●●●●●

●●
●
●
●●●
●

●
●●●
●
●●
●
●
●

●
●●
●
●
●
●

●

●
●

●●
●●●●
●

●
●

●
●
●
●●●●

●

●
●●
●
●
●●

●

●
●●

●

●●

●
●
●
●●●●●
●
●●●
●
●
●●●

●

●●●
●●
●●
●
●
●●
●
●

●
●
●
●●●

●

●
●
●●
●
●
●●●
●

●●●●
●
●●
●
●●
●●●●●
●
●●

●

●●●
●●●
●●●●
●●●
●
●
●

●●
●

●
●

●

●

●

●
●●●●

●
●

●
●●
●●

●
●●
●
●
●●
●
●
●●
●●●
●

●
●●
●

●●

●
●
●●●
●
●
●
●●
●

●●
●●
●
●
●●●●
●
●

●

●

●
●
●●●●●
●●
●●●
●●●

●

●
●●
●

●●

●
●
●●
●
●
●

●
●
●
●●●
●
●●●●

●●●
●●
●●
●●
●
●●
●
●

●●

●

●

●

●
●●
●
●
●
●
●

●
●●
●
●
●●●●

●

●●●●●●
●
●●●●
●
●

●

●
●●●

●●●
●●●●●●
●●
●

●
●●●

●
●
●●
●●
●
●
●
●●●●●
●●
●●●
●
●

●●
●
●

●
●●
●●●●
●
●
●●●●
●
●●
●●●
●●●●●●
●●●
●
●●●●
●●●
●

●

●
●●●
●
●
●

●●

●

●●●●●●●
●●●

●

●
●
●●●
●
●●
●●
●
●
●

●

●
●
●●●
●

●

●●●
●●
●

●
●●
●●
●

●●

●

●

●●
●●

●

●●
●
●

●●
●●●●

●
●
●
●

●

●
●
●●
●●●

●

●

●●●●●
●
●

●
●●●
●●●●●
●
●
●
●
●●
●●●●
●
●
●●●●
●●
●

●

●
●
●
●

●
●
●

●

●
●
●●
●

●

●
●●●●

●●
●●●
●●
●●
●

●
●
●

●
●
●●

●●●
●

●●●●●●●

●
●●●
●

●

●●●●●
●
●
●●●●
●●●

●●

●
●●
●
●●●●●
●●

●
●●
●
●

●●

●

●
●

●
●●
●

●

●

●●
●●●
●
●●●●
●
●●
●●●●
●
●
●

●

●

●

●
●
●
●
●●●●

●
●
●

●

●●●●●
●

●●
●

●●
●
●

●
●●
●
●●

●
●●●
●●●

●
●

●

●●●●
●
●●

●

●
●
●●●
●
●

●
●●●●

●

●●
●●

●
●
●
●
●●●
●
●

●●●

●●●
●
●

●
●
●●

●
●●●●●
●

●
●●●●●●●●
●●●
●
●
●●
●
●●●
●
●
●●
●
●●
●
●
●●●
●●●●●
●
●

●

●●
●●
●●●●
●

●
●●

●
●
●●●

●
●●
●
●
●●●
●●
●
●

●●
●●
●●
●●
●
●
●
●

●

●

●

●

●
●
●

●

●●
●
●●●

●

●●●
●
●●
●●●

●●●

●
●
●

●

●
●●

●●●
●●
●

●
●●
●
●●

●
●●
●●●●●
●●●●

●

●
●●

●
●●●●
●●●
●
●

●

●
●●
●●
●
●●●●●
●
●●
●
●●

●

●
●●
●
●●

●

●
●
●
●●●
●●●●

●
●
●●●
●

●●
●
●●

●

●

●
●
●

●●
●●

●

●
●

●
●●

●●●
●●●
●●●

●
●●●
●
●
●●●●
●●

●

●●
●●●
●
●

●

●●
●
●
●
●
●●●
●
●●●●●
●

●
●
●

●

●
●

●
●
●
●●●●

●
●
●
●●●
●●●
●
●●

●●●
●

●

●
●
●

●

●●

●

●●●
●
●

●
●
●
●●●
●●

●

●●
●
●●
●●

●
●
●●

●
●
●
●●●●

●

●●●

●●●●
●

●
●

●
●
●●
●●
●

●
●

●

●

●

●
●

●
●
●
●●●
●
●●
●●●●●
●
●
●

●
●●●●

●
●
●●●
●
●

●
●
●
●
●
●●
●
●
●●●
●●
●
●●
●
●●●
●
●
●●
●●●
●●
●●
●

●
●
●

●
●
●
●●
●
●
●●●●●●●

●●
●
●

●●
●●
●●●
●
●
●
●●
●●
●

●
●

●

●
●
●
●●●●

●
●●●
●●

●

●●●
●●

●
●●
●●
●●
●

●

●

●
●
●●
●●●●
●
●●
●
●

●●

●●

●
●●
●
●●
●
●●
●
●●
●

●

●
●
●
●
●
●

●

●
●

●
●●
●●
●

●
●
●●

●

●

●

●●●●
●●
●
●
●●●●●

●

●
●
●
●●●●
●●

●
●
●

●●
●
●
●●

●
●
●●●
●
●
●

●

●
●●●●●●
●●●●●
●●
●●●●
●

●
●
●●

●●●●
●
●●●

●

●

●●
●
●

●●●●
●
●

●●

●●●●●
●
●●
●
●

●
●●

●

●●
●
●

●●
●
●●●●●
●●
●●●
●
●
●

●

●
●

●

●
●

●

●●●
●●
●●●●
●●●
●
●
●
●
●
●
●
●
●
●
●
●●●
●

●

●

●
●●●●●●
●●
●
●
●
●●
●

●
●●●
●

●
●●

●
●●
●●
●●●●●
●
●●
●●
●●
●
●
●●●
●

●
●●
●●
●●
●
●●●

●
●
●●
●
●

●
●●
●●●
●
●

●●
●
●●●
●●●●●●

●

●●
●
●
●
●●●

●

●
●●
●
●●●

●

●●
●
●

●●●●
●
●
●

●

●

●
●

●●●●

●
●

●●●

●
●
●
●●
●

●

●
●●●●

●
●

●
●●
●
●
●
●
●
●
●

●
●
●
●●
●
●
●●
●●
●●●

●

●●

●
●
●●●
●

●

●
●
●●●
●
●
●●●●
●
●
●●

●

●
●
●●●
●●
●
●

●

●

●●●●●
●
●
●
●

●
●●
●
●●●
●
●●●
●●●●
●

●

●

●
●●●

●●
●
●●●

●●●
●●●
●
●
●●
●

●
●
●
●
●●
●
●
●●

●●●
●

●●

●

●

●

●●●
●
●●
●●

●

●●
●
●●
●
●

●

●
●

●●
●

●

●●
●●
●
●

●●
●
●
●

●

●●
●
●
●●●

●●
●●●
●
●
●
●●

●●
●●●

●●●
●●●
●●
●●●●●●
●

●●

●

●●●
●
●●●●
●

●
●●●

●●
●●●●

●
●
●●
●●●●●
●●
●

●●
●●●
●●

●
●
●

●

●●
●
●

●●●

●
●
●
●●
●●
●●
●
●●●●●
●●●●
●●
●
●
●
●
●●
●

●

●●
●
●●●●●
●
●
●●
●
●
●

●

●
●●●●
●
●●
●

●
●
●●
●●
●●●●●●
●●●
●

●
●●●
●●

●

●●●●●
●
●

●
●●

●

●

●

●
●
●●
●
●●
●

●

●

●●●
●
●●●●
●

●●
●
●

●
●●●●
●
●●
●
●
●
●
●

●

●●

●

●

●●

●●●●●

●
●●●●●●●●●
●
●●

●

●
●

●
●●

●

●

●●●●

●

●●

●●●●
●

●
●
●
●

●
●

●●
●
●●●●●
●
●●
●

●
●

●
●
●
●
●●
●

●
●
●●

●
●
●●●●

●

●●
●
●

●
●●
●●
●●●●
●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●●●●●
●●●●●

●●●●●●●●
●
●●

●
●

●
●●●
●●
●●●
●●●●●
●
●
●●
●
●●●●●

●●●
●●
●

●

●

●
●
●
●

●
●●●
●●
●●●

●

●
●●
●●●

●●
●

●

●

●
●

●

●●

●
●
●●●●
●●●●
●
●
●

●●

●

●
●
●●●
●
●●●●●●●●

●●●
●●
●●
●

●
●

●
●
●
●●●
●●

●

●

●●
●●
●●●

●
●

●

●●●●●
●
●●●
●
●●
●●
●
●
●
●●
●

●●
●●
●●
●
●
●
●
●●
●
●
●
●

●
●●

●
●●
●
●
●●●
●
●
●
●

●
●

●
●
●●●
●●
●

●

●
●●
●
●●●
●
●
●

●
●●●●●
●●●
●

●
●●
●
●

●
●●●
●●
●●●
●
●
●
●●●●●●
●
●●
●●
●

●
●
●

●

●

●●

●
●
●●●●
●
●
●
●●
●
●●
●
●
●●
●●

●

●●

●

●●
●●●●

●●●
●
●
●●

●
●
●
●
●●
●

●
●
●
●●●
●●●●
●●
●
●
●●
●
●
●●

●

●

●

●

●●

●
●
●
●

●●●

●●

●

●

●
●

●●

●

●

●

●
●
●
●
●●
●
●●●
●●●●
●●●

●

●●●●
●
●
●

●

●●
●●
●
●●
●
●

●
●●
●●●

●
●●
●●●
●●
●●●●
●
●

●
●
●
●●●●●
●
●
●

●
●
●●●●
●
●●
●
●
●●
●
●●●●●●
●
●
●●●●●●
●●●
●●
●●●
●
●●
●
●●
●
●●●
●
●●●●●●●●●●
●●●
●

●●●●
●●●●●
●●
●●●●
●
●

●●
●●

●

●
●
●●●
●
●●●
●
●
●●●●●
●●
●
●●●
●
●●●●
●
●
●●●●
●
●●●●●●●
●●●●
●●●●
●

●
●●
●●●●
●
●
●●
●
●●

●
●●●
●●
●
●●
●●●
●●
●
●●●●
●
●●
●
●●
●
●

●
●

●

●●
●●
●
●●
●

●

●
●●
●●
●
●●
●●●●
●●

●
●
●●●●
●
●
●

●●
●●●●●
●●●

●
●●●
●

●●
●●●●●
●
●

●
●●
●
●●
●
●
●
●
●●●●●●●●●
●●●●
●
●

●

●
●●●●

●

●
●
●
●
●
●
●●
●●●●
●
●●
●
●
●●●
●●●●●
●
●●●
●●
●●
●●●●
●●●●
●●●●●●●●●
●●
●●
●

●●●
●●●
●●●

●

●

●
●●●●
●●
●●●●●●
●
●
●
●●
●●●
●
●

●

●

●
●
●

●
●

●
●●●

●
●
●

●

●●

●

●●

●
●
●●
●●●
●●●

●●●
●
●

●

●●

●
●
●●
●

●

●
●

●

●●

●
●

●●●
●
●
●

●

●
●

●
●●●●
●

●
●●
●
●

●

●
●
●

●

●●
●

●

●

●

●
●●●
●
●
●●●●
●

●●
●

●
●●

●
●●
●●
●

●
●●
●
●●●
●
●●●●●
●
●
●

●
●
●
●●
●●●●●

●
●

●

●
●●●●●

●
●●●
●●●
●
●●
●
●
●

●

●

●●
●
●
●
●
●●●

●
●
●
●
●

●
●

●
●●
●●

●

●
●●●●
●
●●●●
●●

●●●

●●●●●●
●
●●●
●

●
●●●●●●
●●

●
●●●●
●
●

●
●
●
●
●
●●●●●
●
●

●
●
●
●
●●●

●
●●

●

●

●●●●●
●

●
●
●
●

●●●●●●
●●
●●
●●●
●
●
●
●
●

●

●

●

●●
●
●●
●●
●●
●
●
●
●●●●
●
●●●
●
●

●
●●

●
●

●
●●●●●
●●
●
●

●
●●
●●
●●
●●
●●●

●

●●
●

●●
●●
●●
●●●
●
●
●●●
●●
●●●
●
●●●●●
●
●●●●
●

●
●●
●
●
●
●●
●
●●
●●●

●

●
●
●●●●●●●
●
●

●
●
●
●●
●

●

●
●

●●

●

●

●
●●●●●●
●●●
●
●

●
●

●●●●
●
●
●

●●
●
●●●●
●●●●●●
●

●
●
●●●
●
●
●

●
●
●

●
●●
●
●●
●
●●●●

●

●
●
●

●

●●●
●●●

●

●●
●
●

●
●●

●

●
●
●●●
●●●
●●
●
●

●
●●●
●●
●

●
●
●
●●●
●●●●
●
●●●
●
●●●
●●●
●
●●
●
●
●
●
●
●
●
●●
●●

●

●
●

●
●
●●
●●●
●

●●●●●●
●

●●●
●

●

●
●●●●
●

●
●

●
●●●
●

●●
●
●●●

●
●
●
●●●
●●●●●

●
●
●
●
●●●
●

●

●
●
●

●●●
●
●●●●
●

●
●
●●●●
●
●

●
●
●●
●
●

●

●
●

●●
●●
●●
●
●
●
●
●

●
●
●●●●
●
●●

●

●●●●
●●
●●●
●●●
●
●
●

●
●●●●
●●
●●
●
●

●●
●●●
●
●
●
●
●●
●
●
●●

●

●
●

●
●●
●
●

●●●
●

●
●

●

●

●
●●●●
●
●

●
●
●
●●●
●
●
●

●

●
●
●●
●
●●
●●●
●
●●●●●
●
●

●
●
●
●●
●

●

●●
●

●●●
●

●
●

●
●●●●●●●●

●
●
●
●

●●●
●
●
●

●
●
●
●
●
●●●●
●
●●
●
●

●●
●

●●
●

●

●●
●
●

●
●
●

●

●

●

●●●●●

●

●
●●
●
●●
●
●
●●
●●
●●
●
●
●●

●
●

●●
●

●
●
●●●●●●
●

●
●●●
●
●●●●
●
●

●

●

●●●●●
●
●●
●●
●
●●●
●
●●●●●
●●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●●
●
●

●●●
●
●
●●
●●●

●●●●
●
●
●●
●
●●●●●

●
●
●
●
●
●
●
●
●●●●●●●●●●●

●

●●●

●
●

●

●●
●

●
●

●●

●

●●
●
●
●
●
●●
●
●
●
●

●

●
●

●
●
●

●●
●

●
●
●
●
●
●●
●●●
●
●●
●
●●●●

●

●●
●
●
●
●

●●●●●
●
●
●

●

●
●●
●

●

●
●●
●●●●

●
●
●
●●
●●●●●●●●●●
●
●
●

●

●●
●●●●●●
●
●

●

●

●●●●

●

●
●●●
●●
●

●
●
●●
●●

●●
●

●
●
●●●
●
●●
●●
●
●●●●

●
●●●
●●
●●●●●●
●
●
●
●●●
●
●
●●
●●

●●
●
●●●
●●
●
●

●●
●●●●
●●
●
●●
●
●
●●
●
●●
●●●
●●
●

●

●
●●●●

●●

●●●
●●●
●●●●
●
●

●

●

●
●●

●
●
●
●
●
●●●
●

●
●
●
●●
●●

●●●
●
●
●●
●
●●
●●●●
●●
●

●

●

●●●
●

●●

●

●
●●

●●
●●●
●●
●
●●●
●
●●●

●

●
●
●
●●
●●
●

●
●●●●
●

●●

●
●●
●
●
●
●●

●●
●●

●
●●●●●●●●●●●●●
●
●
●
●
●
●
●●●
●
●

●
●●
●●●

●●

●●
●●●●
●●
●
●
●
●

●

●●

●

●●●
●
●●●
●
●●●
●●●
●●●
●●
●●●

●

●●
●
●
●
●
●
●●
●●

●
●●●
●●
●

●●
●●●●
●●●●●●●

●

●●●
●

●●
●●●
●

●

●

●

●●●●●●●
●
●●
●
●●
●●
●●
●
●
●●
●
●●●●

●

●

●●●
●

●
●
●●
●●

●

●●
●
●●
●

●

●
●
●●
●●●
●

●
●
●●
●●

●

●
●
●
●●
●●●

●

●
●●●●●●
●
●

●●
●
●●
●●●

●

●
●●●●●
●
●
●
●●
●
●
●●●
●
●●●

●
●
●

●

●

●

●

●
●●●
●●●●●
●
●●●
●

●

●●
●
●
●

●
●●

●
●●
●●
●
●●

●

●
●
●●●
●
●●●●●
●●

●

●
●
●●
●
●
●
●
●●
●

●
●
●
●

●●●●
●
●
●●●●●
●●●●
●
●
●

●

●
●●●
●●
●
●
●

●
●●●●●●

●
●
●

●●●
●
●
●
●

●

●●●●
●

●

●
●●
●●●●●
●●

●

●●●
●
●
●●●●●
●
●●●
●

●
●
●
●
●
●
●
●
●
●●

●
●●●●●
●●

●

●

●●
●

●●●●●●●
●●
●

●

●●●●●

●

●

●
●●●
●●
●
●

●

●

●
●

●

●

●●
●

●

●
●
●
●●
●

●
●●●
●●
●●●●●●●
●●●●●●
●●
●●●●●●
●

●●
●●
●●●
●●

●
●
●
●●●●
●●●
●●
●
●●
●

●
●
●●●●
●
●

●●●
●
●●

●
●
●
●
●

●●●
●●●●●
●
●●●
●

●

●
●

●●●
●●
●
●
●
●

●●●
●●
●
●
●
●
●
●
●
●●●●●●
●

●
●●
●●●●●●
●●●●
●
●●
●●
●

●●
●
●●
●●●
●●●
●●
●

●●
●
●
●
●
●
●

●●
●●

●

●●
●
●●●●●●●●
●●●●●
●
●
●
●●●
●
●
●

●

●

●●
●
●
●
●
●
●●●
●
●

●
●●●●
●●
●●
●●●
●
●
●
●●●
●●
●
●
●
●●
●

●
●●●
●
●

●●
●
●

●
●
●

●

●

●●
●
●●●
●
●
●
●
●●
●
●●●●
●
●

●
●●
●
●
●

●

●
●●●
●●
●
●
●●●

●
●●●●●●
●

●

●
●
●
●
●●●●
●●
●●●●●
●●●

●

●●
●●
●
●●
●
●
●
●●
●●

●●●
●
●

●
●
●
●●

●

●●
●

●
●●
●●●●
●●●●
●
●

●●●●●
●

●
●●●
●
●
●

●

●
●

●

●

●

●

●

●
●●
●
●
●
●●●
●

●

●
●●●●
●
●
●●

●

●●●●
●

●●
●●●
●

●
●

●●

●●
●

●●

●

●●●
●

●●●
●●●●
●
●

●

●
●
●●●●●●●●
●
●

●

●

●

●

●

●

●

●●
●
●
●
●●
●
●●●
●

●●
●
●
●
●●
●●
●

●

●●

●●●
●●

●

●
●

●●
●●●●
●●

●
●●●●●●●●●
●

●●●
●●●●●
●
●

●●

●
●●
●
●

●●

●

●

●●

●

●●
●●●●

●
●
●
●
●
●
●
●
●●
●
●

●
●

●

●
●●●●●●
●
●●●●
●
●●●●●
●

●
●●
●●
●
●●●●●●
●●●●
●
●

●

●●●
●●●●●
●●●
●●●●
●
●

●
●●●
●●●●●
●
●
●
●
●
●●
●
●●
●
●
●●●
●

●

●●●●●
●

●●

●
●●●
●
●

●
●
●

●

●

●
●
●
●
●
●●●
●
●
●
●●●●●●●●●

●●●

●
●

●
●
●

●●
●

●
●●
●
●
●●
●
●●●●
●
●●
●
●
●
●●●●

●

●

●●
●●
●
●●●●●●
●●

●
●

●

●
●●
●

●
●
●●
●

●
●●
●
●●●●●
●

●
●
●●
●●●
●
●
●●
●●

●

●

●●●
●●●●
●
●●
●●

●●
●●

●●
●●●●●●●
●●
●
●●

●

●

●
●
●

●
●●
●●
●
●
●
●
●●●
●●

●

●
●
●

●
●●●

●
●●●●
●

●
●●

●

●
●●
●
●●●●

●
●●
●●

●

●●
●

●

●
●
●
●●
●

●●●
●●●
●
●●●●●●●
●●●
●
●
●●●
●●
●●
●

●
●
●●●●●

●
●
●●
●●●●

●

●●●

●●●
●
●

●

●

●

●

●

●●●
●●●●●●
●●
●
●
●

●

●●
●
●
●
●●
●●●●
●
●
●
●●●
●
●●
●

●

●
●●

●
●●●●●●●●

●●

●●

●●
●
●●

●

●●

●
●

●

●●

●

●●●

●
●●●
●
●
●●●●●

●

●●●
●●●●
●

●
●
●●●
●

●●
●

●
●●●●●●●●
●
●●●●●

●

●●●
●
●
●●●●
●●●

●
●
●

●●
●

●

●
●
●●●
●●
●

●
●

●
●
●●
●
●
●●

●

●●●●
●●●
●●●
●
●
●
●●●
●
●●●●
●

●●

●
●●
●●●

●

●
●
●
●●●

●

●
●●●
●●
●
●

●

●
●
●
●●●●

●

●●●●
●●●

●●
●●●

●
●●●●
●
●●

●

●●
●

●●

●

●
●
●
●
●●●●
●●●●

●

●
●

●●

●

●
●
●
●
●
●
●●●●●
●

●
●●
●●
●

●
●●●
●●

●●●
●
●

●
●
●
●
●
●
●
●
●●
●●
●
●
●●
●
●●
●
●●
●

●●●●●
●●●
●

●●

●

●

●
●
●

●

●●●
●●
●●●●●●
●
●
●●●●●
●
●
●

●

●●
●
●●
●
●

●
●●
●

●●
●

●●●●●●●
●●

●
●
●●
●●●●●
●●●●
●●●●●●●●

●●
●●●●
●
●●

●
●
●
●●

●●
●
●●●
●
●●●
●
●

●
●●
●
●●●
●
●
●
●

●●●
●●
●
●
●●●●
●●●●●●●●
●●
●
●
●●●●
●
●

●
●●
●
●
●
●
●

●●

●●
●
●●
●●
●

●●●●
●
●●
●
●
●●
●
●●

●
●
●●
●●

●

●●●
●
●●●

●
●
●

●
●

●

●

●

●
●

●●

●

●
●
●●
●●●
●●
●
●
●●●
●●●
●

●●●

●

●●

●

●

●

●●●●●●
●●

●

●

●●
●

●

●●●
●

●

●
●

●
●●
●●●●●
●●●
●

●

●
●●
●●●●●
●●
●

●
●

●●●

●

●

●●●
●●
●●
●
●
●
●
●●●
●●

●
●●●●●
●
●●
●
●
●●
●
●

●
●●●
●●
●●●
●
●
●●

●
●

●
●
●

●●●●●●●●

●

●
●
●
●●●●●

●●
●
●
●●●
●
●
●
●
●
●
●

●

●
●●●●●●●●

●
●
●●

●
●
●●
●●

●
●
●●
●●
●
●
●●●
●●●
●
●●●
●●●

●
●
●

●
●
●
●●●●●●

●●
●

●

●
●●
●
●
●
●●●

●

●●
●
●
●●
●●●
●●
●
●
●
●●●●●●●●●●
●●
●●
●●●●
●
●●
●
●
●●

●
●●●●●
●
●●
●

●

●

●●
●
●●●
●
●●
●
●●
●
●●●●●●

●

●

●●
●

●

●
●●●●
●●●●●●●●●●

●
●●
●
●
●●
●
●
●●●●
●●

●

●

●
●●●●●●●

●●
●
●

●

●●●

●

●●
●
●●●
●
●●●●●
●

●●●
●
●
●
●●●
●●
●●●
●
●
●
●
●●●●
●●●
●

●

●
●●
●
●
●

●
●●
●

●●●●
●
●

●●

●●●●
●

●
●

●

●
●●●●
●

●

●
●●
●

●●
●●●●
●
●●●

●

●●●

●

●●
●●
●●●●
●●
●
●
●

●
●●
●

●

●
●●●
●
●
●
●
●
●●
●

●

●
●●

●●

●
●
●

●
●
●
●
●
●
●
●
●

●

●

●●

●

●●

●
●●
●

●
●●
●
●●●●
●

●

●
●●●
●●●
●●●

●●●

●●●●●

●

●●

●

●

●
●
●
●
●●

●
●●●●
●
●
●●
●
●●●●
●

●●
●●●●
●
●
●
●

●●●
●
●
●

●●●●
●
●●●
●●●
●●●
●

●
●●

●●
●●
●
●
●●
●
●
●
●
●
●
●●
●●
●
●●
●
●●

●
●●

●
●●
●●

●
●●●●●●●
●●
●●

●
●
●●
●●●●●
●
●
●●

●●●
●●●●●●
●●
●
●●●●●
●●

●

●

●
●●
●●●
●
●●●●
●
●
●●●
●
●
●
●●
●

●
●
●

●
●●
●

●

●●●●
●
●●●
●●●
●

●
●
●●●
●
●●

●
●
●●●●●
●
●
●
●

●
●
●
●●
●●

●

●
●●●
●●●●●
●●
●●●
●●

●
●●●

●●

●
●●
●●

●

●
●●

●●
●●

●

●
●
●
●●
●
●

●

●
●●

●●
●
●●●●
●
●●●
●●●
●
●
●●●
●●
●●

●●
●
●
●●

●

●
●
●●●●
●
●●
●
●
●●●
●●
●
●●
●

●●

●●
●
●
●●
●●
●
●
●●●

●●●
●
●●●●
●
●

●●

●
●●
●●

●
●
●
●●
●
●

●

●●●

●
●
●●

●
●●●
●

●●

●
●
●
●
●●
●
●

●
●●

●

●

●

●
●●●●

●●●

●

●

●
●●
●
●
●
●●●●

●

●●●●
●●

●●
●

●

●
●
●
●●
●
●
●
●
●●●●
●
●

●

●
●●
●●●
●
●●
●●

●

●
●●●●●
●●●●●
●
●

●●

●
●

●

●
●

●
●
●●
●●
●
●
●
●●

●

●
●
●●
●
●
●
●●●
●

●

●●

●●●
●●
●●
●
●
●●●
●

●

●

●●●●

●●

●
●
●

●

●●
●●●
●
●●●
●●

●●

●
●●●
●
●

●

●
●
●

●
●●

●
●
●

●

●

●

●●
●

●

●●
●●
●●●

●
●
●

●
●●
●

●

●

●●

●

●
●
●

●●
●
●

●
●●●●

●●●●●●
●
●
●
●

●●●●
●●●●
●●

●

●

●

●●
●

●
●

●

●

●

●●

●●

●
●

●●
●
●
●●
●●●

●

●

●
●
●●●●●●●
●●●
●

●
●
●

●
●
●
●
●●●
●●
●
●

●
●
●●●●●●
●●●●●●
●

●

●
●
●●

●

●
●

●

●
●
●

●

●

●
●●●●

●

●

●
●●●
●
●●●
●●
●●●
●
●
●

●
●●●
●●●●●
●●●
●

●
●
●●

●
●●●●
●●
●

●
●

●
●●
●

●●

●

●●●
●
●
●
●●

●

●

●
●
●●●
●
●
●

●●
●

●

●●

●

●●●
●

●

●
●●
●●
●●●
●
●

●
●
●
●
●●●●

●

●

●
●●
●
●
●
●
●●●
●●●
●●

●
●●●●
●

●●●
●
●
●
●●●●
●●●●●●●
●●
●●●●
●

●
●
●

●
●●●●
●

●
●●
●●●
●
●
●
●
●●
●●●
●

●●

●

●
●
●●●
●●
●
●
●●●
●
●

●
●
●
●●●
●●
●●●●●●●
●●●●
●●
●
●●●

●●
●●
●●●●
●●●●●●●●●
●
●●
●●●

●
●

●

●●●
●●

●●●●●●●
●

●
●
●
●
●●
●

●

●

●
●
●●●●●

●
●
●
●
●

●

●●

●

●●

●●●●

●●
●●●●●
●

●

●

●

●

●●●
●●●●
●
●●

●●

●

●

●
●●●●●
●●●●●●●●●●

●●

●
●
●

●
●●●
●
●

●

●●●
●●
●●
●
●●●
●
●●
●●

●
●●
●●
●

●
●●
●
●●
●
●
●
●
●
●●
●

●
●
●●
●●

●
●●●●●
●

●

●●●●●●●

●

●
●●
●
●●●●●

●

●
●●●

●
●●
●●
●

●●
●

●
●
●
●

●●

●
●●

●

●

●
●●●●
●●
●
●
●
●
●●
●

●●
●●
●
●
●
●●●
●
●
●

●

●
●●
●
●●
●
●●●●●●●●
●●
●
●●
●

●
●●

●●●
●●●

●●

●

●
●●●●●●●●

●●●●
●

●

●●
●

●

●
●●●
●

●
●●●
●●●
●●
●●
●
●

●
●

●●

●●
●

●
●●●●●
●
●
●
●

●●
●

●
●●●
●●
●

●●●
●●
●
●●
●●
●
●

●

●●
●

●
●●●●

●

●
●

●
●

●●●
●
●●

●

●

●

●

●●
●●
●
●●

●
●●

●
●
●
●
●
●●
●

●●●●●●
●●●
●
●●●

●
●●●●●●●●●●
●
●●

●●●

●
●●●

●

●

●●
●
●●

●
●
●

●

●
●●●●

●

●
●

●

●

●●●●
●●●
●●

●

●
●●
●●
●●●
●
●●
●●
●

●

●
●
●●●
●
●●●●
●
●●●
●
●
●

●

●
●●

●

●

●●●

●

●●●●●●
●

●
●
●●●
●

●●
●
●
●

●
●

●●●●

●
●

●●
●●
●
●
●
●●
●
●
●●●

●
●●●●
●

●●●
●●
●●
●●
●
●
●●
●●
●●●
●

●
●
●

●●
●●
●

●●

●
●●
●
●●
●●
●

●●
●
●●●●●●●
●●●
●
●
●
●●
●

●

●
●
●

●

●
●●
●
●●●
●

●

●
●●●
●
●●●●●●●●
●●●●

●
●●
●●●●●●●
●

●●
●
●
●●

●

●

●
●●
●

●

●
●

●
●
●

●●
●●
●

●

●●
●●●
●

●
●
●●
●●

●

●

●

●●
●
●
●●●●●●
●●
●
●
●
●●●
●●●
●●
●

●●

●

●
●●
●●
●●●●●●
●
●●
●
●●●●
●
●●
●
●●●
●

●
●
●
●
●

●

●●
●
●●
●
●
●
●●
●
●
●●
●
●●
●
●●●
●

●●
●
●
●●●

●
●

●●

●
●●
●
●

●

●●
●●
●

●
●●●●
●
●
●
●

●
●●

●●●

●
●●

●
●●
●
●●
●
●

●●
●
●
●●
●
●●●
●

●
●
●●
●
●●
●

●
●
●
●●●
●●●●●

●
●●●
●●●
●●
●
●
●●●
●●●●
●

●
●

●
●

●

●

●

●
●●
●●

●●
●●
●●
●●●
●

●
●
●
●
●●
●
●
●
●●●●●●

●
●
●
●●

●
●
●
●

●

●●
●

●●

●●
●
●
●
●●●●
●

●
●●●
●●
●
●●
●●

●●
●●
●

●

●●●●
●

●●●
●
●●
●●
●●●

●
●●
●
●

●

●
●●
●●●●●
●●

●
●

●●●●

●
●●
●●

●
●●●
●●●

●●
●●

●●●
●
●

●
●●
●
●●●●●●●●
●
●

●
●
●●
●●●●
●●●●●
●
●
●●
●
●●

●

●●
●
●●●●
●●●●●
●
●

●
●●●●
●
●
●●●●●
●●●
●●●●
●●●●●●●●●
●

●
●●●
●
●
●
●●
●
●
●
●
●
●

●

●

●●●●●●●
●●

●●●●

●●

●
●
●

●

●
●
●●●
●●
●
●●
●
●●●●●●●
●●●

●
●●●●●●●
●●●●
●●●
●

●

●

●●

●
●●●
●●●●
●
●

●

●●●
●●●
●●

●●●●
●●
●
●
●
●●

●

●
●
●
●

●●

●
●●
●●●
●●
●
●
●●●
●●
●

●
●●
●

●

●
●●●
●●●
●
●
●
●

●●
●●

●●
●●●
●
●
●
●●●
●●
●●

●
●●
●
●
●
●
●
●●●
●
●
●●
●
●
●

●
●
●●●

●

●

●
●
●●●●●●
●●
●
●●
●
●●●
●
●
●

●●●
●
●●
●●●

●
●●

●

●

●

●
●
●

●

●

●●●
●
●●●●
●
●●●

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

Figure 3.2.2: Series one of the DAS data coloured by macro-cluster assignments.

Informally, it appears that we can visualise where a change in structure occurs as indicated

by the change in cluster assignment. In Figure 3.2.2 this is shown as a change in the colour

of the signal. However, we would like to output a set of locations in time where change

occurs. Note that during the clustering steps, we do not use the timestamps as input to the

clustering. This means that we do not specifically tell the clustering to consider points closer

in time as more similar. As a result, there is not necessarily a clear change in the cluster

assignments. The method that we use to convert the clustering of assignments into a set of

72

boundary locations is as follows. Consider a data point in {x1, ..., xN}, lets call it τ . In order

to decide whether it is likely to be a boundary point we consider the k-means assignments of

the data points directly before τ and directly after τ . If the assignments of those points are

different, τ is likely to be a boundary location, if the assignments either side of τ are similar

then τ is not likely to be a boundary location. The number of data points we look either

side of τ is given by the search parameter γ. A simple example is shown in Figure 3.2.3.

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●
●●
●

●

●
●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●
●●
●

●

●

●●
●

●
●●

●

●●
●

●

●

●
●
●

●●
●

●

●

●

●

●●
●

●

●●

●

●
●●●●

●
●
●

●

●●●

●

●●
●
●
●
●

●

●

●

●

●●●
●

●

●

●

●
●
●

●

●

●
●

●
●
●
●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●
●
●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●●
●

●

●●●●

●
●

●

●●

●

●

●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●
●

●

●●

●

●

●
●●

●●

●

●

●

●

●●

●
●

●

●
●

●
●●
●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●●●●●
●

●

●
●

●
●

●●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●●
●

●
●

●●

●

●●
●

●

●

●●

●

●●●

●

●

●●

●

●●

●
●

●
●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●●●
●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●●●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●
●●

●

●

●

●

●●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●●
●●

●●

●
●
●

●

●

●

●
●

●

●

●●●
●●

●
●
●
●

●
●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●
●
●
●

●●
●

●

●

●●

●●

●
●

●
●
●
●

●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●
●
●

●●

●

●

●●●
●

●●

●

●

●

●●●
●

●
●
●

●

●

●
●●

●●

●

●●
●
●
●●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●
●
●

●

●
●●

●
●

●

●
●●●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●
●●

●●

●
●
●
●
●●

●

●

●
●
●

●

●
●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●●
●●

●
●

●

●●

●
●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●
●●●
●
●
●

●
●

●
●
●

●

●

●

●

●
●
●●

●

●

●●

●●●

●
●

●
●

●
●
●

●

●
●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●
●

●

●

●●

●

●●

●
●●

●
●
●

●
●

●
●
●

●

●

●
●

●

●●
●●
●

●

●
●●

●●
●
●

●●
●

●

●

●

●

●
●
●
●●

●
●
●●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●
●●●

●

●●

●

●

●
●

●

●●
●

●●●●
●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●
●●
●●●
●

●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●●

●●

●

●

●
●

●●

●
●

●●

●

●●

●
●

●

●
●
●

●

●

●
●
●
●●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●●
●
●●

●

●

●
●

●

●

●

●
●
●

●

●
●

●
●
●
●●
●

●

●

●

●

●

●
●
●

●

●●
●●
●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●
●●
●●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●●
●
●

●

●●●

●

●●

●

●

●
●●

●

●

●●●

●

●
●
●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●
●

●
●●
●

●

●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●
●

●
●
●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●●
●
●

●●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●

●●

●●●●●

●

●
●

●
●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

0

10

20

0 500 1000 1500 2000

Time

S
ig

na
l

(a) τ = 700, γ = 50.

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●
●●
●

●

●
●●

●

●

●

●

●
●
●

●

●●
●

●
●

●●

●●

●●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●
●●
●

●

●

●●
●

●
●●

●

●●
●

●

●

●
●
●

●●
●

●

●

●

●

●●
●

●

●●

●

●
●●●●

●
●
●

●

●●●

●

●●
●
●
●
●

●

●

●

●

●●●
●

●

●

●

●
●
●

●

●

●
●

●
●
●
●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●
●
●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●

●

●●
●

●

●●●●

●
●

●

●●

●

●

●●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●
●
●

●

●●

●

●

●
●●

●●

●

●

●

●

●●

●
●

●

●
●

●
●●
●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●●●●●
●

●

●
●

●
●

●●

●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●●

●●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●●
●

●
●

●●

●

●●
●

●

●

●●

●

●●●

●

●

●●

●

●●

●
●

●
●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●
●

●
●

●

●

●●●
●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●●●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●
●

●

●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●
●●

●

●

●

●

●●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●●
●●

●●

●
●
●

●

●

●

●
●

●

●

●●●
●●

●
●
●
●

●
●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●
●
●
●

●●
●

●

●

●●

●●

●
●

●
●
●
●

●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●
●
●

●●

●

●

●●●
●

●●

●

●

●

●●●
●

●
●
●

●

●

●
●●

●●

●

●●
●
●
●●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●
●
●

●

●
●●

●
●

●

●
●●●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●
●●

●●

●
●
●
●
●●

●

●

●
●
●

●

●
●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●●

●●

●●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●●
●●

●
●

●

●●

●
●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●
●●●
●
●
●

●
●

●
●
●

●

●

●

●

●
●
●●

●

●

●●

●●●

●
●

●
●

●
●
●

●

●
●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●
●

●

●

●●

●

●●

●
●●

●
●
●

●
●

●
●
●

●

●

●
●

●

●●
●●
●

●

●
●●

●●
●
●

●●
●

●

●

●

●

●
●
●
●●

●
●
●●

●

●

●

●
●

●

●●

●

●
●
●

●

●
●
●●●

●

●●

●

●

●
●

●

●●
●

●●●●
●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●●
●●
●●●
●

●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●●

●●

●

●

●
●

●●

●
●

●●

●

●●

●
●

●

●
●
●

●

●

●
●
●
●●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●●
●
●●

●

●

●
●

●

●

●

●
●
●

●

●
●

●
●
●
●●
●

●

●

●

●

●

●
●
●

●

●●
●●
●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●
●●
●●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●●
●
●

●

●●●

●

●●

●

●

●
●●

●

●

●●●

●

●
●
●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●
●

●
●●
●

●

●

●●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●
●

●
●
●●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●●
●
●

●●●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●●

●

●
●
●●

●

●●

●

●

●

●●

●●●●●

●

●
●

●
●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

0

10

20

0 500 1000 1500 2000

Time

S
ig

na
l

(b) τ = 1000, γ = 50.

Figure 3.2.3: Example of searching for boundary locations on a simple change in mean

example. The value of τ is given by the vertical red line, and the green lines show τ − γ and

τ + γ − 1.

In Figure 3.2.3a, τ = 700 and we can see that the 50 points before τ are assigned to the

same cluster as the 50 points after τ . This implies that τ is not a likely to be a boundary

location. In Figure 3.2.3b, τ = 1000 and we can see that the 50 points before τ are mostly

different in colour to the 50 points after τ . This implies that τ is likely to be a good boundary

location. In order to quantify this, we use a categorical similarity measure. To this end, we

define the set L to be the set of points to the left of τ given by L = {xτ−γ, . . . , xτ−1}. Similarly,

we define the set R to be the set of points to the right of τ given by R = {xτ , . . . , xτ+γ−1}.

In order to calculate how similar the cluster assignments of sets L and R are we calculate the

73

following similarity metric. Let nL,j be the number of data points in set L assigned to cluster

j, where j ∈ 1, . . . , k and similarly for nR,j. The categorical similarity metric is defined in

equation (3.2.1). This metric was inspired by the χ2 test statistic, although since the size of

sets L and R are equal we can use a related, more intuitive comparison.

sim(τ, γ) =

∑k
j=1 min(nL,j, nR,j)

γ
. (3.2.1)

Note that this categorical similarity measure will be bound between 0 and 1, where 0

indicates perfect dissimilarity and 1 indicates that the distribution of the sets is identical.

We can think of this similarity measure as an indicator of how likely τ is to be a boundary

location. If sim(τ, γ) = 0 then τ is very likely to be a boundary location. We search over

all values of τ ∈ {γ + 1 : N − γ + 1} and define the set of boundary locations B to be the

values of τ which satisfy sim(τ, γ) = 0. The whole procedure for Stage 2 is summarised in

Algorithm 5.

The number of boundary locations identified given by |B| will depend on the choice of

k in the k-means clustering and the value of γ selected. Generally, the smaller the value of

γ, the more boundary locations will be identified. By searching over a range of values of γ

and k this will give engineers a number of possible options of boundary locations for their

consideration. The effect of these parameters on performance is explored in the next section.

74

Algorithm 5 Stage Two: Identifying Boundary Locations

Input: Data points = x1 . . .xN , micro-cluster centres, number of macro-clusters k, search

parameter γ.

Output: A set of boundary locations B.

1: Set B = ∅.

2: Apply k-means on the micro-cluster centres.

3: Assign each data point in {x1 . . .xN} to a k-means macro-cluster.

4: for τ ∈ {γ + 1 : N − γ + 1} do

5: Calculate nL,j and nR,j for all j ∈ {1, . . . , k}.

6: Calculate sim(τ, γ) =
∑k

j=1 min(nL,j ,nR,j)

γ
.

7: if sim(τ, γ) = 0 then

8: B = B ∪ τ .

9: end if

10: end for

75

3.3 Results on DAS data

We now explore the use of CluStream with Algorithm 5 to identify the location of corrupted

data within acoustic sensing data. The data stream we consider consists of 10000 data points

(one second of data) and ten different series relating to different depths within the oil well.

In order to compare performance of our algorithm we compare against a ground truth. The

ground truth is shown in Figure 3.3.1 and consists of six manually chosen boundary locations.

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

1

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

2

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

3

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

4

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

5

−6
−4
−2

0

0 2500 5000 7500 10000

Time
S

er
ie

s
6

−6
−4
−2

0

0 2500 5000 7500 10000

Time

S
er

ie
s

7

−6
−4
−2

0

0 2500 5000 7500 10000

Time

S
er

ie
s

8

−4
−2

0

0 2500 5000 7500 10000

Time

S
er

ie
s

9

−4
−2

0
2

0 2500 5000 7500 10000

Time

S
er

ie
s

10

Figure 3.3.1: Ground truth for the DAS data shown for all ten series. The six true boundary

locations are shown with coloured vertical lines.

We compare the boundary locations found by Algorithm 5 against the ground truth by

using the V-measure. The V-measure (Rosenberg and Hirschberg, 2007) is a performance

measure which rates the quality of a given segmentation compared to the ground truth

76

segmentation. V-measure rates the segmentation by balancing both homogeneity and com-

pleteness. A larger V-Measure value indicates higher accuracy, with a value of 1 indicating

a perfect segmentation. For full details, see in Section 2.5.2.

CluStream was applied on the DAS data stream using 250 micro-clusters. At t = 10000

we applied Algorithm 5 on the signal for a range of values of k and γ to identify boundary

locations. Due to the randomness induced by the k-means step, the results for each experi-

mental setting are averaged out over 10 runs. The variation between runs was minimal. The

average V-measure for each setting is presented in Table 3.3.1.

k
γ

5 10 15 20 25 30 35 40 45 50

2 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742 0.742

3 0.967 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828 0.828

4 0.956 0.88 0.88 0.88 0.88 0.829 0.829 0.829 0.829 0.828

5 0.937 0.946 0.961 0.961 0.961 0.931 0.931 0.931 0.931 0.828

6 0.798 0.935 0.961 0.961 0.961 0.93 0.93 0.93 0.931 0.828

7 0.802 0.935 0.952 0.952 0.961 0.942 0.942 0.93 0.93 0.868

8 0.805 0.936 0.944 0.944 0.961 0.955 0.955 0.93 0.93 0.93

Table 3.3.1: V-measure results on the DAS data for a range of k and γ. The best performance

for each value of k is highlighted in bold.

77

The best performance in terms of V-measure is given by k = 3, γ = 5 however, good

performance is found across the settings. The choice of γ had no effect for the experiments

where k = 2. Generally as k increases, the ideal choice of γ for that value of k also increases.

This makes sense as when k increases, sim(τ, γ) is more likely to take values of 0, resulting in

more boundary locations being identified. By choosing a larger γ for larger values of k, this

prevents the number of boundary locations chosen by the algorithm from growing too large.

The average number of boundary location identified by the algorithm under the different

scenarios is given in Table 3.3.2.

k
γ

5 10 15 20 25 30 35 40 45 50

2 2 2 2 2 2 2 2 2 2 2

3 6 3 3 3 3 3 3 3 3 3

4 8 5 5 5 5 4 4 4 4 3

5 11 8 7 7 7 6 6 6 6 5

6 19 11 9 8 8 7 7 7 6 5

7 18.8 11.6 9.6 9 8.6 8 8 7.6 7 6.4

8 18.4 11.6 9.6 9.4 8.6 8.4 8.4 7.6 7.4 7.4

Table 3.3.2: Average number of boundary locations identified on the DAS data for a range of

k and γ. The number of boundary locations corresponding to the best performing V-measure

for each value of k is highlighted in bold. The ground truth has |B| = 6.

78

In Table 3.3.2 we can see that the the number of boundary locations found does vary with

k and γ. However, the actual boundary locations identified are similar across the different

parameter settings. In order to demonstrate this, Figure 3.3.2 plots the boundary locations

identified using the most suitable value of γ for each value of k.

79

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(a) k = 2, γ = 5, |B| = 2.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(b) k = 3, γ = 5, |B| = 6.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(c) k = 4, γ = 5, |B| = 8.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(d) k = 5, γ = 20, |B| = 7.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(e) k = 6, γ = 20, |B| = 8.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(f) k = 7, γ = 25, |B| = 9.

−2750

−2500

−2250

−2000

0 2500 5000 7500 10000

Time

S
er

ie
s

1

(g) k = 8, γ = 25, |B| = 9.

Figure 3.3.2: Each plot shows the boundary locations (coloured lines) identified under differ-

ent parameter settings. We show one plot for each value of k, and use the most appropriate

value of γ in each setting. The number of boundary locations identified is given by |B|.

80

Only plots for Series 1 are shown in Figure 3.3.2 here but similar performance was observed

across all ten series. We can see that in Figure 3.3.2a, for k = 2 only two boundary locations

are found but these manage to pick out the most obvious data corruption. As k increases,

the number of boundary locations increases, but boundary locations only occur in places of

change within the signal. For example, in Figure 3.3.2g we can see that |B| = 9 although

we can only visibly see five red lines in the plot. This means that some of the boundary

locations will be very close together, perhaps even neighbouring time points.

3.4 Conclusion

In this chapter we have demonstrated that data summaries constructed by CluStream can

help provide an alternative to changepoint detection methods for identifying corruption in

digital acoustic sensing signals. The fact that CluStream can be run efficiently online means

that it can cope well with the high frequency and high dimensionality data created by digital

acoustic sensing.

In order to frame the time-series as a clustering problem, we treated each time-series

as a different data dimension. Interestingly the initial k-means clustering assignments look

visually sensible in a temporal sense, despite no temporal information being given to the

k-means algorithm.

We have developed an algorithm which uses a change in cluster assignments to identify

boundary locations within the DAS signal. This algorithm was tested on the DAS data set

for a range of values of k and γ and the results were found to be robust. As engineers are not

clear exactly what defines a corrupted signal, offering a range of potential boundary locations

81

by varying γ and k allows a set of solutions to be considered.

When detecting boundary locations, we considered only the time points τ where sim(τ, γ) =

0. It would be possible to instead threshold sim(τ, γ) to increase the number of boundary

locations identified by the algorithm. It would also be possible to consider sim(τ, γ) as a

function of τ and treat identifying boundary locations as a local minima problem. However,

we suspect that this would lead to many duplicate boundary locations being identified which

would not be of use to the application.

82

Chapter 4

The Effect of Recovery Algorithms on

Compressive Sensing Background

Subtraction

This chapter appears in the form of a conference paper (Davies et al., 2013). Supplementary

material is provided in Appendix A. This material includes a broader introduction to com-

pressive sensing, a description of the conditions for choosing a stable measurement matrix

and intuition for the orthogonal matching pursuit algorithm.

Background subtraction is a key method required to aid processing surveillance videos.

Current methods require storing each pixel of every video frame, which can be wasteful as

most of this information refers to the uninteresting background.

Compressive sensing can offer an efficient solution by using the fact that foreground is

often sparse in the spatial domain. By making this assumption and applying a specific

83

recovery algorithm to a trained background, it is possible to reconstruct the foreground,

using only a low dimensional representation of the difference between the current frame and

the estimated background scene.

Although new compressive sensing background subtraction algorithms are being created,

no study has been made of the effect of recovery algorithms on performance of background

subtraction. This is considered by applying both basis pursuit and orthogonal matching

pursuit (OMP) to a standard test video, and comparing their accuracy.

4.1 Introduction

Surveillance cameras have become ubiquitous in many countries, constantly collecting a huge

amount of data most of which is stored and never analysed. This is due to the challenge of

converting a large volume of video data into useful information, particularly as several cam-

eras may be acquiring data simultaneously. One of the main aims of collecting surveillance

footage is to track an object or classify its behaviour, therefore the first step in video analysis

is to identify the objects of interest from the background.

Background subtraction (Piccardi, 2004) is a method used to separate the foreground from

the background of a video sequence. This consists of constructing and updating a model of

the background and then subtracting it from the current frame. Background subtraction is

not a new development and many methods for modelling a background scene exist, however

traditional background subtraction methods are not very efficient. Most surveillance footage

consists of a slowly adapting background scene with foreground appearing in a subset of the

frames and when foreground does appear in the footage it usually takes up only a small

84

percentage of the overall frame. Traditional background subtraction methods require that all

pixels are acquired for each frame in order to correctly segment the two layers, however since

foreground is sparse in most surveillance footage this can be seen as a waste of resources.

In order to combat this inefficiency, the single pixel camera (SPC) (Duarte et al., 2008a)

was developed; a camera based on the theory of compressive sensing (Candès and Tao, 2006;

Candès et al., 2006; Donoho, 2006) and designed to acquire images directly in compressed for-

mat. Once surveillance footage is acquired using a camera such as the SPC, background sub-

traction can be performed on this low dimensional representation of the video frames. Later

a recovery algorithm is used to decode a mask of the foreground into the correct dimension.

The reason for using this technique is, due to the natural sparsity property of foreground, a

mask can be reconstructed without ever storing the current frame, or background model in

the full dimensional form. The computational savings available are significant, provided that

the segmentation performed is accurate enough for the purpose of the application.

This paper discusses if the choice of recovery algorithm affects the performance of com-

pressive sensing background subtraction. In particular two algorithms are investigated, ba-

sis pursuit (Candès and Tao, 2005) which is an algorithm based on convex optimisation

(Boyd and Vandenberghe, 2004) and a greedy algorithm called orthogonal matching pursuit

(Tropp, 2004). Results are presented from both algorithms on data which was gathered using

a conventional camera but which have been simulated to mimic the acquisition process of

compressive sensing imaging technology such as the SPC.

The rest of this paper is organised as follows; Section 4.2 discusses the related works in this

area in brief before discussing the methodology behind compressive sensing and its application

to background subtraction in Section 4.3. Experimentation is conducted in Section 4.4 and

85

conclusions are given in Section 4.5.

4.2 Related Works

There is a vast amount of research available in the literature detailing the many techniques

for background subtraction; notable comparative studies include Cheung and Kamath (2004)

and Piccardi (2004). Generally, algorithms for background modelling can be categorised into

pixel based and region based methods (Bouwmans, 2011). The latter may seem more intuitive

as one expects foreground to be clustered and generally not exist as isolated pixels. Using

knowledge of neighbouring pixels should therefore improve the classification of pixels into

foreground or background, and region based techniques such as Elgammal et al. (2000) and

Toyama et al. (1999) do use this knowledge to segment the images into regions and then

create a background model based on these regions. However, there are downsides to region

based techniques, for example they are often a lot more complex to run than pixel based

techniques, and are not generally robust to division of blocks.

Pixel-based methods such as approximate median filtering (McFarlane and Schofield,

1995) assume that the pixels observed are classified as foreground independently of each

other. These methods can often detect the contours of foreground well but may be susceptible

to making false classifications, especially if the background model is not well tuned.

It is also possible to categorise these algorithms as recursive and non-recursive methods

(Bouwmans, 2011). A non-recursive algorithm maintains a buffer or window of N previous

video frames and estimates a background model based on the statistical properties of these

frames. This sliding window is usually required to be fairly large in order to obtain accurate

86

results, and therefore can quickly become computationally intensive. Recursive techniques

update the background subtraction each time a new frame is stored and so there is no need

to buffer previous frames. The method used in Section 4.3.4 to model the background is a

pixel-based, recursive method.

More recently the new technology of compressive sensing (Candès and Tao, 2006; Candès

et al., 2006; Donoho, 2006) has been applied to the background subtraction problem. The

theory of compressed sensing states that an under-sampled signal can be recovered almost

perfectly, given that the signal itself is sparse in some domain (Baraniuk, 2007), i.e. a large

proportion of the signal’s elements are close to zero. In compressive sensing for video, a

random matrix is used to encode a signal efficiently, and then a recovery algorithm is used

to decode the signal and recover the required information fairly accurately.

Most compressed sensing background subtraction methods (Cevher and Duarte, 2008;

Cevher and Sankaranarayanan, 2008; Warnell and Chellappa, 2011; Cossalter et al., 2009)

make the assumption that the majority of the pixels in a video represent the background, and

therefore the foreground is sparse in the spatial domain. This key point allows us to encode

a video into a low dimension and then search for a sparse solution, using the knowledge that

the foreground mask should be suitably sparse.

The background subtraction problem is first expressed as a sparse signal recovery prob-

lem in Cevher and Sankaranarayanan (2008). Their work successfully recovers silhouettes of

foreground activity by modelling a compressed form of the background and recovering a fore-

ground mask directly from compressed measurements. Later Warnell and Chellappa (2011)

builds upon this work by proposing a method that adapts the encoding process between

frames to incorporate the changing size of foreground. Unlike Cevher and Sankaranarayanan

87

(2008), Warnell and Chellappa (2011) choose to use a static model for the background which

could cause problems in the model when applying to real-life video.

More current work has started attempting to incorporate the structure of foreground

into segmentation. It is generally expected that foreground will be clustered into particular

shapes in most frames and does not consist of isolated pixels. Foreground often consists of

humans, animals and vehicles, and so knowledge of this structure could be used to improve

segmentation. Currently many different approaches are being investigated such as applying

particle filters (Cossalter et al., 2009) and lattice based graphical models (Cevher and Duarte,

2008). Although cluster type methods are not attempted in this work, it is a research area

of interest for future investigation.

In this work, two recovery algorithms are compared, one greedy method and one based

on convex optimisation when applied to a background subtraction algorithm.

4.3 Methodology

In this section, the main theory is introduced, starting with the explanation of sparse signals

in Section 4.3.1, progressing to the theory of compressive sensing in Section 4.3.2 with a focus

on the two recovery algorithms of interest in Section 4.3.3 and finally notes on applying this

theory to the background subtraction problem in Section 4.3.4.

4.3.1 Sparse and Compressible Signals

A signal is known as being K-sparse if x ∈ RN can be represented as a linear combination of

K basis vectors (Baraniuk, 2007). The case of interest occurs when K is much smaller than

88

N as this means that most of the coefficients are zero. No signal is ever truly sparse in the

presence of noise and so some signals are described as approximately sparse, or compressible.

If a signal is compressible there exist K large coefficients (with K � N) but the remaining

N − K coefficients are only required to be small and not necessarily zero. Fundamentally

a signal is compressible if most of the information in the signal is represented by a few

coefficients.

4.3.2 Compressive Sensing

According to the framework developed in Candès and Tao (2006), Candès et al. (2006)

and Donoho (2006), the measurement y is a linear function of the signal x as shown in

equation (4.3.1). The number of measurements M in y is chosen to be smaller than N , so a

measurement matrix Φ ∈ RM×N is chosen, with M � N . Although it is known from linear

algebra that there are infinitely many vectors x that can solve equation (4.3.1), the knowledge

that the original signal x was sparse can be used to help the reconstruction process, given

that certain conditions hold for Φ.

y = Φx. (4.3.1)

It is of vital importance that a stable measurement matrix Φ is designed so that the signal

information is not damaged by the dimensional reduction from x ∈ RN to y ∈ RM . In

order for the reconstruction problem to be well-conditioned, it is sufficient that Φ holds the

Restricted Isometry Property (RIP) (Donoho, 2006) of order 2K.

Definition 1. A matrix Φ satisfies the (RIP) of order K if there exists a δK ∈ (0, 1) such

89

that

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22,

for all x ∈
∑

K = {x : ‖x‖0 ≤ K},

where ‖x‖0 is the zero pseudo-norm defined as

‖x‖0 = #(i|xi 6= 0).

If Φ satisfies the RIP with order 2K, then Φ approximately preserves the distance between

any pair of K-sparse vectors. Unfortunately the task of checking that a matrix satisfies the

RIP is a NP-hard problem, but fortunately the RIP will hold true with high probability if Φ

is selected as a random matrix (Candès et al., 2006), and M ≥ cK log N
K

, where c is a small

constant.

4.3.3 Recovery Algorithms

Right at the heart of the compressive sensing theory is the ability for recovery algorithms

to provide accurate signal estimations in an efficient manner. Recovery algorithms generally

fall into two categories, those based on convex optimisation and greedy algorithms. One of

the basic algorithms from each category are considered.

Convex Optimisation

Convex optimisation is a minimisation problem subject to a number of constraints where the

functions involved are convex. According to Baraniuk (2007), optimisation based on the `1

90

norm can exactly recover K-sparse signals and closely approximate compressible signals with

high probability using only M ≥ cK log N
K

iid Gaussian measurements. The `1 norm of a

vector x is the sum of the absolute values of the elements of x and is defined mathematically

in equation (4.3.2).

‖x‖1 =
N∑
i=1

|xi|. (4.3.2)

The use of `1 minimisation to promote sparsity is not a new idea, the links between `1

minimisation and sparsity were first noted in the field of geophysics when it was observed

(Claerbout and Muir, 1973) that minimising the `1 norm could help detect sparse spike trends

in earthquake data. The idea soon caught on, Taylor et al. (1979) utilised `1 methods in their

work on extracting spike trains and eventually in 1996, `1 minimisation was approached in

statistics as Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996).

LASSO is a version of least squares with a constraint that the `1 norm, ‖x‖1 cannot be larger

than some value ε. This penalty encourages more parameters to become zero as it increases,

therefore promoting sparsity. Basis pursuit was developed in Chen et al. (2001) and is a type

of `1 minimisation algorithm defined as

min
x
||x||1 subject to y = Φx. (4.3.3)

This can be viewed as a least squares problem with an `1 regularizer. Basis pursuit is

considered to have polynomial complexity but in reality this is not always true for standard

optimisation packages as they are not tailored for sparse signal recovery.

In Section 4.4 the `l magic (Candès and Tao, 2005) implementation of basis pursuit is

91

applied, which solves equation (4.3.3) by recasting the problem as a primal dual algorithm

based on work by Boyd and Vandenberghe (2004). The Newton-Raphson method is then

applied in order to detect an interior point at which the system is linearised and solved.

Greedy Algorithms

A greedy algorithm iteratively makes decisions based on some locally optimal solution. One

of the simplest greedy algorithms suitable for the sparse signal approximation problem is

orthogonal matching pursuit. Some of the earliest orthogonal matching pursuit algorithms

can be found in Pati et al. (1993); Davis et al. (1997), although notable more recent work

can be found in Tropp (2004) and Tropp and Gilbert (2007). This method can often perform

faster than basis pursuit due to its simplicity. It iteratively computes the local optimum

solutions in the hope that these will lead to the global optimum solution. The algorithm

determines the column of Φ which is most correlated with y, or which contributes to y most.

This is repeated again by comparing the correlation between columns of Φ with the signal

residual, until it reaches some stopping criterion defined by the user. This can be described

algorithmically as in Algorithm 6.

In the algorithm, x̂ is updated for each iteration with the contributions from the columns

of Φ placed in the indexes stored in Λt. So if the algorithm is stopped after the T th iteration

for some positive integer T , x̂ will be a T -sparse vector. This emphasises how important it

is to run the algorithm for the correct number of iterations, although generally this number

is unknown.

Using greedy algorithms can be advantageous for the background subtraction problem as

they can be both flexible and speedy. Greedy algorithms are less restrained to a particular

92

Algorithm 6 Orthogonal Matching Pursuit

Define the columns of Φ to be ϕ1, ϕ2, . . . , ϕN .

Input: r0 = y,Λ0 = ∅ and iteration counter i = 1.

for i < T do

λt = argmax j=1,...,N | < rt−1, ϕj > |.

{Find the index for the column of Φ with the greatest contribution.}

Λt = Λt−1 ∪ λt, Φt = [Φt−1, ϕλt].

{Keeps track of the columns used.}

xt = argminx||y −Φtx||2.

{Updates the signal estimate.}

rt = y −Φtxt.

{Updates the measurement residual.}

end for

return x̂.

93

form than in `1 minimisation, therefore greedy algorithms can incorporate constraints which

do not fit naturally in a convex formulation. Also, when the signal x is exceptionally sparse,

only a few iterations are required, which makes the whole process very fast. Tropp and

Gilbert (2007) claims that OMP can recover a K-sparse signal of size N by making only

O(k lnN) observations of the signal. However, the relationship between the sparsity of the

foreground mask and the choice of the stopping criterion means that unless the stopping

criterion is adaptive, the algorithm may struggle with varying sparsity as discussed in Section

4.4. As the signal length and number of measurements increases, so does the computational

complexity - particularly in the identification stage. In this stage, the algorithm attempts to

find the column ϕ of Φ which is most strongly correlated with the residual. As the number

of iterations increases, the sparsity of the signal estimate x̂ decreases. Therefore iterating for

too long (T � K) not only leads to a poor estimate but unnecessary computational time.

4.3.4 Background Subtraction with Compressive Sensing

A major assumption when applying compressive sensing techniques to foreground segmen-

tation is the assumption that the foreground is sparse in the spatial domain (Cevher and

Sankaranarayanan, 2008). This means that without having to apply any sort of sparsifying

transformation, the foreground only takes up a small percentage of the number of pixels in

the frame. Figure 4.3.1 shows a test frame and the true foreground or “Ground Truth” where

white pixels represent the true foreground and black pixels represent the true background.

The number of white pixels (3862) is much smaller than the number of black pixels (438,506)

therefore indicating that the foreground is indeed sparse in the spatial domain. The precise

sparsity of the foreground will inevitably vary in different videos and even between frames

94

(a) Test frame. (b) Ground truth.

Figure 4.3.1: The spatial sparsity of foreground. A frame from the PETS data set (Univer-

sity of Reading, 2001) and the corresponding foreground in white. In this example, less than

1% of the frame is foreground, as N=442,368 and K=3862.

as discussed in Warnell and Chellappa (2011).

Our method takes a vectorised form of the current frame xt, and acquires compressive

measurements yt of the frame using a Gaussian random matrix Φ. The foreground mask xf
t is

then reconstructed by applying a recovery algorithm to (yt − yb
t), where yb

t is a compressed

model for the background at time t. The silhouette is then thresholded to set any small

values to zero, and the non-zero pixels are classified as foreground.

In order for this method to work well, it is important that a good model of the background

is kept updated. Although a static background could be used for short indoor sequences,

most real-world video sequences require a dynamic background model. Piccardi (2004) sug-

gests that a background model should be able to adapt to deal with illumination changes,

high frequency repetitive background objects and changes in background geometry. Illumi-

nation changes can be separated into gradual changes, or rapid changes. Gradual changes

in illumination are mainly due to the light changing throughout the day. Rapid changes in

95

illumination may occur when clouds cover the sun in outdoor scenes or a light being switched

on or off in interior scenes. High frequency background objects are mainly found in outdoor

footage such as leaves waving in the wind, water rippling or rainy weather. These small

movements are actually part of the background so care should be taken to use an algorithm

which detects them as such. Changes in background geometry refers to when part of the

background begins to move. Examples of this are very common in real videos, such as a

chair being repositioned in a room such as in Toyama et al. (1999) or a car driving into a

car park as foreground, and then parking therefore becoming part of the background. In this

report the background is modelled using an exponentially weighted moving average method

as discussed in Piccardi (2004) and Cossalter et al. (2009). This is calculated as in equation

(4.3.4).

yb
t = αyt + (1− α)yb

t−1. (4.3.4)

where α ∈ (0, 1) is a learning parameter. This background model was chosen, as it is not

computationally heavy, and the single learning parameter α keeps tuning the model simple.

The initial background yb
0 is calculated by taking an average of scenes from a training set. If

this information is not available it is possible to use only the first frame in the data set, but

this may not be as accurate. The background model learning parameter α is tuned so that

it is sensitive to the challenges discussed above, specifically to avoid the change in geometry

problems. This challenge is especially prominent in the experimentation in Section 4.4 as the

video used is CCTV footage from a car park.

96

4.4 Performance Evaluation

The PETS 2001 data set “camera1” University of Reading (2001), is used to compare im-

plementation of the CS`1 and CSOMP algorithms. A quantitative way to characterise the

accuracy of these algorithms is to use two performance metrics; precision and recall. These

measures calculate how accurate the segmentation is for a particular frame by comparing the

estimated foreground and background with the true values calculated by a hand-segmented

ground truth.

In order to quantify how well an algorithm is working, Type I errors and Type II errors

must be considered. A Type I error is a false positive (FP), this is experienced when the

algorithm classifies a pixel as foreground incorrectly. A Type II error is a false negative

(FN), this where the algorithm has neglected to classify a pixel as foreground correctly. If

the algorithm works perfectly there will only be True Positives (TP) which are correctly

identified foreground pixels and True Negatives (TN), correctly identified background pixels.

Recall is defined as the fraction of correctly identified foreground pixels over the number of

ground truth foreground pixels which can be written mathematically as

Recall =
TP

TP + FN
. (4.4.1)

Precision is defined to be the fraction of correctly identified foreground pixels over the number

of detected foreground pixels in total, or when written mathematically

Precision =
TP

TP + FP
. (4.4.2)

When the recovery algorithms provide an estimate of a foreground mask, the output is

not binary but a probabilistic vector. In order to calculate the precision and recall values,

97

a threshold must first be applied to the estimate. Precision-Recall curves can be used to

display information relating to the algorithm’s performance across a number of thresholds.

In order to have a singular metric to rank the algorithms across a number of thresholds

the Area Under Curve (AUC) (Hanley and McNeil, 1983) is used. This is equal to the

probability that an algorithm will rank a randomly chosen positive instance higher than a

randomly chosen negative one.

Table 4.4.1: CS`1 and CSOMP segmentation for 3 test scenes (N = 4096,M = 2048, α = 0.05).

Original frame.

Ground truth.

CS`1 .

CSOMP.

Foreground masks for three test frames can be found in Table 4.4.1. These images have

been thresholded so any value above 0.004 is classed as foreground and everything else is set

98

to background. The performance of both algorithms is very similar, although the Precision-

Recall curves in Figure 4.4.1 imply that CS`1 may be slightly outperforming CSOMP across

the different thresholds.

Figure 4.4.1: Precision-Recall Curves for the 3rd test frame.

The effect of the stopping criterion for the orthogonal matching pursuit can be seen in

Figure 4.4.2.

Figure 4.4.2: Selection of the stopping criterion for OMP.

The stopping criterion is increased between 1 and 400 and the AUC is calculated at

each stage. As discussed in Section 4.3.3, the selection of the stopping criterion can have

99

an impact on the results; too small and it will underestimate the size of the foreground,

too large and computational expense will increase greatly with no noticeable performance

improvement. This can be seen in the steep increase of performance in Figure 4.4.2. Note that

as the number of iterations reaches approximately the “true” sparsity 111 of the foreground,

the performance increases. Ideally, the stopping criterion should be as small as possible to

minimise the computational cost, but not at the expense of poor segmentation.

Another consideration is the effect of the choice of M on recovery accuracy. Ideally

the number of M should be as small as possible in order to keep computations cost low,

whilst still retaining a good enough quality of detection to suit the application, whether it

be tracking, classification etc. Figure 4.4.3 shows the performance of both algorithms as the

compression ratio M
N

increases, with respect to AUC. There is a sharp rise in performance

as the compression ratio increases to 20%, and as we approach a compression rating of 30%,

both algorithms are performing very well. Note that CS`1 is constantly outperforming CSOMP

in this experiment over all compression ratios.

Figure 4.4.3: AUC over Sparsity Ratio.

100

4.5 Conclusions and Further Work

This paper presents results about the effects of different compressive sensing recovery al-

gorithms on background subtraction for surveillance footage. In our experimentation basis

pursuit outperforms orthogonal matching pursuit across the foreground thresholds, although

it is hard to distinguish them from foreground masks alone. The effect of the stopping crite-

rion for OMP was seen to have a large impact on performance, which indicates the necessity

for adaptive iterations in order to cope with varying sparsity in a video. It is also indicated

that ideal boundaries for the compression ratio M
N

are between 25 − 35%. One important

question to address in future is, is it possible to incorporate more prior information about

surveillance footage and use this to aid the recovery process? In current methods, there is

a failure to use the natural structural properties of foreground, such as the expectation of

foreground to take the shape of a person or vehicle. Structured sparsity has not been well

explored in the compressive sensing background subtraction literature although a start in

this area has been made by La and Do (2006) and Duarte et al. (2008b). Future work seeks

to apply a clustering method to these background subtraction algorithms and to build in a

natural way to allow the sparsity constraint in the algorithms to vary between frames.

101

Chapter 5

Conclusion

Data streams provide a challenging environment for statistical analysis. Data points can

arrive at a high velocity and may need to be deleted once they have been observed. Due

to these restrictions, standard techniques are not applicable to the data streaming scenario.

This leads to the need of data summaries to represent the data stream. This thesis has

explored how data summaries can be used to perform clustering or classification on data

streams across a broad range of applications.

In Chapter 2 we introduced an algorithm for performing spectral clustering on data

streams: spectral CluStream. Prior to this work, there did not exist a method for apply-

ing spectral clustering to data streams. We considered two variants of this algorithm, a

weighted and non-weighted version. Despite having a mathematically valid affinity matrix,

the weighted spectral CluStream was found to have poor performance and fundamental dif-

ficulties clustering even simple simulated data. This appears to be caused by the weightings

dominating the scaling parameter which is essential to spectral clustering. However, the un-

weighted spectral CluStream was shown to have good performance on par with a windowed

102

approach to spectral clustering even on tricky image data sets. One issue was identified with

the unweighted spectral CluStream deletion policy. When dealing with non-stationary data

streams, historic micro-clusters could cause poor performance. A correction was proposed

in order to retain the good performance but at the cost of using additional micro-clusters to

track the stream.

Chapter 3 was motivated by an application which arises in the oil industry where engineers

wish to identify corruption within an acoustic signal. This is a difficult problem, particularly

as the notion of corruption is not well defined by engineers at present. A common method used

to detect changes in structure would be to use changepoint detection methods. However, due

to the multiple time series of the DAS data, changepoint methods become computationally

in-feasible for large data sets. We re-framed the multiple time series problem as a clustering

problem by treating each time series as a different data dimension. We provided a flexible

solution combining the streaming capabilities of CluStream with k-means and a similarity

metric to detect boundary locations. These boundary locations can be used to isolate sections

of the signal which are corrupted. We tested this method on the DAS data set for a range

of values of k, the number of clusters and γ, the search parameter. The boundary locations

identified by this method were found to be fairly insensitive to the parameter values except

at extremities.

Finally in Chapter 4 we considered the different problem of identifying areas of foreground

activity within a compressed video stream. Two different recovery algorithms had recently

been suggested in the literature. We compared the performance of the two recovery algo-

rithms and showed that Basis Pursuit slightly outperformed Orthogonal Matching Pursuit.

However, the pixels identified as foreground were similar for both algorithms. The effect of

103

the stopping criterion for OMP was seen to have a large impact on performance, with the

best results being observed when the value of stopping criterion was close to the true sparsity

of the current video frame. This reinforces the necessity for adaptive stopping criterion in

order to cope with varying sparsity in a video. We also investigated the performance for

different compression ratios. The best performance was observed at a compression ratio of

between 25− 35%.

Throughout the thesis we assumed that we had access to the true underlying number of

clusters k. This is a common assumption made in clustering, however when dealing with real

data this is not a realistic assumption. This is particularly an issue in the data streaming

setting as the true number of clusters may change as the data stream progresses. Clusters

may become irrelevant and stop being updated and new clusters may join the data stream.

One difficulty that we faced throughout the thesis was evaluating algorithmic performance

on data streams. If the number of true clusters changes but we are constrained to keeping k

fixed this can be an issue. There does not exist an obvious method for evaluating performance

of clustering algorithms in the streaming setting. The current standard performance measures

take into account only how well the current clustering represents the current state of the

stream. It would be useful to develop methods appropriate for evaluating non-stationary

data streams. For example, we might wish to judge how well a clustering algorithm learns

about the historical state of the stream as well its ability to adapt quickly to new information.

104

Appendix A

Supplementary Material on

Compressive Sensing

The purpose of this appendix is to provide supplementary material on compressive sensing.

An introduction to compressive sensing is given in Section A.1. The conditions for choosing

a stable measurement matrix Φ are described in Section A.2 and more intuition is provided

on the orthogonal matching pursuit algorithm in Section A.3.

A.1 Introduction to Compressive Sensing

Compressive sensing (Candès and Tao, 2006; Candès et al., 2006; Donoho, 2006) is based on

the discovery that there is a way to accurately sample a signal at a much lower frequency

than the Nyquist frequency, provided that the signal that you are trying to sample is either

sparse or compressible. The definition of a sparse signal is given below.

Definition 2. A signal x ∈ RN is known as being K-sparse if it can be represented as a

105

linear combination of K basis vectors.

In simpler terms, we can think of a signal being K-sparse if it can transformed so that it

contains at most K non-zero elements, or written mathematically,

‖x‖0 ≤ K.

For notational purposes, we express the set of all K-sparse signals as

ΣK = {x : ‖x‖0 ≤ K}.

Generally the signal of interest is not exactly sparse but approximately sparse, which

is also known as compressible. For a signal to be compressible we still require K large

coefficients (with K << N) but the remaining N − K coefficients are only required to be

small and not necessarily zero.

The compressive sensing theory describes how a finite compressible signal x ∈ RN can

be recovered from a set of M linear, non-adaptive measurements y where M << N . The

measurement y is a linear function of the signal x as shown in equation (A.1.1) or visualised

in Figure A.1.1. The number of measurements M in y is assumed to be smaller than signal

x, so we choose a measurement matrix Φ ∈ RM×N with M << N . It is known from linear

algebra that there are infinitely many vectors x that can solve equation (A.1.1), but usually

x is the only sparse solution, provided that M ≥ 2K, where K is the true sparsity of the

signal. Therefore if x is known in advance to be sparse, it can in theory be reconstructed

exactly from M measurements.

y = Φx. (A.1.1)

106

Figure A.1.1: A visualisation of the signal acquirement process in compressive sensing. A

sparse signal x of length N is under sampled by multiplication of a random measurement

matrix Φ, resulting in the non-sparse measurement vector y of much smaller length M .

Courtesy of Volkan Cevher.

Compressive sensing is different from classical sampling in a number of ways. The two

main differences are the manner in which measurements are acquired, and how the signal is

reconstructed from these measurements.

In classical sampling, measurements are taken at equidistant intervals at a frequency above

the Nyquist frequency. The Shannon-Nyquist theorem (Shannon, 1949) allows analogue

signals to be digitally sampled and later restored back to an analogue signal accurately. In

order for the signal to be reconstructed uniquely from its digital sample, it must be sampled

at a rate above the Nyquist Sampling frequency. This frequency is defined to be twice the

bandwidth of the signal, where the bandwidth refers to the highest frequency present in the

signal. In contrast, in compressive sensing sampling occurs at randomly spaced intervals in

accordance with a measurement matrix Φ, the choice of which is discussed in Section A.2.

107

The method of signal reconstruction also differs between classical and compressive sens-

ing. If the signal has been sampled in accordance with the Shannon-Nyquist theorem, the

Whittaker-Shannon interpolation formula is applied in order to reconstruct the signal accu-

rately. However, when dealing with compressed signals things are not so simple. We need to

be able to determine the significant coefficients of some sparse representation of the signal

and calculate a least squares approximation. This is not straightforward to calculate exactly

in practise and instead a recovery algorithm is used to get an optimal solution. In Section A.3

we introduce one such recovery algorithm and provide intuition on how it is able to recover

sparse signals.

A.2 Conditions for a Stable Measurement Matrix

The matrix Φ represents a dimensionality reduction as it maps the signal from RN to RM . It

is of vital importance that we are able to design a stable measurement matrix Φ so that the

signal information is not damaged by the dimensional reduction from x ∈ RN to y ∈ RM .

In order to guarantee this, a number of conditions must be true for the measurement matrix

Φ.

A.2.1 Null Space Conditions

The first important property that is required is that the signal x can be uniquely recon-

structed. It is possible to show that this will hold true if the null space N (Φ) does not

contain any vectors in Σ2K . The Null space of Φ is defined as follows,

108

N (Φ) = (z : Φz = 0). (A.2.1)

In order to preserve x ∈ ΣK , it is required Φx 6= Φx′ ∀x′ ∈ ΣK , because if Φx = Φx′

it would be impossible to distinguish x from x′ based only on y. Consider the case where

Φx = Φx′.

Φx = Φx′

⇒ Φ(x− x′) = 0

⇒ (x− x′) ∈ Σ2K .

This leads us to the conclusion that Φ uniquely represents all x ∈ ΣK ⇐⇒ v /∈

N (Φ) ∀v ∈ Σ2K . It can be shown that a bound on the spark of Φ can characterise this

property well. The spark of a matrix is defined in equation (A.2.2) as the smallest number

of columns of the matrix that are linearly dependent.

Spark(Φ) = min
a6=0
‖a‖0 : Φa = 0. (A.2.2)

The spark can then be used to give the following guarantee as presented in Eldar and

Kutyniok (2012).

Theorem A.2.1. ∀y ∈ RM ∃ at most one x ∈ ΣK : y = Φx ⇐⇒ spark (Φ) > 2K.

Proof. Assume ∀y ∈ RM ,∃ at most one signal x ∈ ΣK : y = Φx. Assume spark (Φ) ≤ 2K.

Due to the bound on the spark of Φ, there exists a set of at most 2K columns that are

linearly dependent which implies that there exists some v ∈ N (Φ) : v ∈ Σ2K . It is possible

to express v = x− x′ where x,x′ ∈ ΣK . Since v ∈ N (Φ),Φ(x− x′) = 0, this implies that

109

Φx = Φx′. This is a contradiction of the assumption that there is at most one signal x ∈ ΣK

such that y = Φx. Therefore consider spark (Φ) > 2K.

Assume that there exists x,x′ ∈ ΣK such that Φx = Φx′ = y. Therefore it can be seen

that Φ(x − x′) = 0. By letting v = x − x′ it is possible to write Φv = 0. But as the

spark (Φ) > 2K this implies that v = 0⇒ x = x′ as expected.

Since Spark(Φ) ∈ [2,M + 1], in order to preserve x in the dimensionality reduction, we

require M > 2K.

A.2.2 The Restricted Isometry Property

Although null space conditions can accommodate for the uniqueness of reconstruction, they

do not account for noise. It is possible that the measurement vector y may be corrupted by

noise during the measurement process. In order for the reconstruction problem to be well-

conditioned, it is necessary that Φ holds the Restricted Isometry Property (RIP) Donoho

(2006) of order 2K.

Definition 3. A matrix Φ satisfies the (RIP) of order K if there exists a δK ∈ (0, 1) such

that

(1− δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||22,

for all x ∈
∑

K = x : ||x||0 ≤ K.

If Φ satisfies the RIP with order 2K, then Φ preserves the distance between any pair of

K-sparse vectors. It is the preservation of distance which will give a stronger guarantee of

robustness against noise.

110

Unfortunately the task of checking that a matrix satisfies the RIP and null space con-

ditions is an NP-hard problem, but fortunately both of these conditions will hold true with

high probability if Φ is selected as a random matrix (Baraniuk, 2007). In order to construct

Φ as such, the elements φi,j are chosen as independent realisations of some probability dis-

tribution. In Chapter 4, φi,j are independent and identically distributed (i.i.d.) Gaussian

random variables with mean 0 and variance 1
N

, but other distributions can be used.

A.3 Intuition for Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) (Tropp, 2004) is a greedy recovery algorithm which

iteratively computes the local optimum solutions in the hope that these will lead to the

global optimum solution. Orthogonal matching pursuit determines the column of Φ which is

most correlated with y, or which contributes to y most. This is repeated again by comparing

the correlation between columns of Φ with the signal residual, until it reaches some stopping

criterion defined by the user. This is given algorithmically in Chapter 4, Algorithm 6.

In the algorithm, x̂ is updated for each iteration with the contributions from the columns

of Φ placed in the indexes stored in Λt. So if the algorithm is stopped after the Kth iteration

for some positive integer K, x̂ will be a K-sparse vector. This emphasises how important it

is to run the algorithm for the correct number of iterations, although generally this number

is unknown.

The most important and most computationally intensive step in Algorithm 6 is the first

step, solving λt = arg maxj=1,...,N | < rt−1, ϕj > |. It may not be obvious at first why this

step will promote sparsity and therefore help identify the non-zero components of x. A toy

111

example should help explain further.

Example Let x be a 1-sparse vector of length N , therefore there is only one non-zero element

in x. Let this non-zero element occur at the pth location of x, x(p).

We define the measurement matrix Φ ∈ RM×N in the usual manner and define the rows

of Φ as measurement vectors ν1,ν2 . . . ,νM , each with length N . The columns of Φ, defined

to be ϕ1,ϕ2, . . . ,ϕN each of length M , are used to collect observations of our original signal.

So Φ can be visualised as in,

Φ =

ϕ1 ϕ1 . . . ϕN
ν1

l M
ν2
...
νM

↔
N

with the elements of Φ taken from the Gaussian distribution as described in Section A.2.

Measurements y are taken by applying equation (??), and the result can be evaluated in

terms of columns and rows of Φ.

y = Φx

=



ν1(p) x(p)

ν2(p) x(p)

...

νM(p) x(p)


= ϕp x(p).

112

It is now clear that, because x had only one element x(p), than the measurement matrix y

only involves contributions from one column ϕp of Φ. Although this is a toy example and

many signals will not be 1-sparse, the principle idea continues. Many columns of Φ will not

contribute to the measurement vector y as the corresponding elements of x are close to or

equal to 0.

113

Bibliography

C. C. Aggarwal. Data streams : Models and algorithms. Springer, 2007.

C. C. Aggarwal, T. J. Watson, J. Han, J. Wang, and P. S. Yu. A framework for clustering

evolving data streams. Proceedings of the 29th International Conference on Very Large

Data Bases, 81–92, 2003.

F. Alimoglu and E. Alpaydin. Methods of combining multiple classifiers based on differ-

ent representations for pen-based handwritten digit recognition. Proceedings of the Fifth

Turkish Artificial Intelligence and Artificial Neural Networks Symposium, 1996.

R. G. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118–121,

2007.

K. Boone, A. Ridge, R. Crickmore, and D. Onen. Detecting leaks in abandoned gas wells with

fibre-optic distributed acoustic sensing. In International Petroleum Technology Conference,

2014.

T. Bouwmans. Recent advanced statistical background modeling for foreground detection -

a systematic survey. Recent Patents on Computer Science, 4(3):147–176, 2011.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

114

P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In ICML,

volume 98, 91–99, 1998.

P. Buhlmann, P. Drineas, M. Kane, and M. van der Laan. Handbook of Big Data. Springer,

2016.

E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information

Theory, 1–22, 2005.

E. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal

encoding strategies? IEEE Transactions on Information Theory, 52:5406–5425, 2006.

E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruc-

tion from highly incomplete frequency information. IEEE Transactions on Information

Theory, 52(2):489–509, 2006.

F. Cao, M. Estert, W. Qian, and A. Zhou. Density-based clustering over an evolving data

stream with noise. In Proceedings of the 2006 SIAM international conference on data

mining, 328–339. SIAM, 2006.

J. Cao, P. Chen, Q. Dai, and W. K. Ling. Local information-based fast approximate spectral

clustering. Pattern Recognition Letters, 38(1):63–69, 2014.

V. Cevher and M. F. Duarte. Sparse signal recovery using markov random fields. Advances

in Neural Information Processing Systems, 1–8, 2008.

V. Cevher and A. Sankaranarayanan. Compressive sensing for background subtraction. Eu-

ropean Conference on Computer Vision, 155–168, 2008.

115

B. Chen, B. Gao, T.-Y. Liu, Y.-F. Chen, and W.-Y. Ma. Fast spectral clustering of data

using sequential matrix compression. European Conference on Machine Learning, 590–597,

2006.

J. Chen and A. K. Gupta. Parametric Statistical Change Point Analysis. Springer Science

& Business Media, 2012.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.

SIAM Rev., 43(1):129–159, 2001.

X. Chen and D. Cai. Large scale spectral clustering with landmark-based representation.

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 313–318, 2011.

Y. Chen and L. Tu. Density-based clustering for real-time stream data. In Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data mining,

133–142. ACM, 2007.

S.-C. S. Cheung and C. Kamath. Robust techniques for background subtraction in urban

traffic video. In Electronic Imaging, 881–892, 2004.

F. R. K. Chung. Spectral graph theory. American Mathematical Society, 1997.

J. F. Claerbout and F. Muir. Robust modelling with erratic data. Geophysics, 38(5):826–844,

1973.

M. Cossalter, M. Tagliasacchi, and G. Valenzise. Privacy-enabled object tracking in video

sequences using compressive sensing. In Advanced Video and Signal-Based Video Surveil-

lance, 436–441, 2009.

116

R. Cramer, M. Hooimeijer, and A. Franzen. New software moves distributed-temperature

sensing data. Oil & Gas Journal, 106(38):52–52, 2008.

R. Davies, L. Mihaylova, N. Pavlidis, and I. A. Eckley. The effect of recovery algorithms on

compressive sensing background subtraction. In Sensor Data Fusion: Trends, Solutions,

Applications, 1–6, 2013.

G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constructive

Approximation, 13(1):57–98, 1997.

C. Dhanjal, R. Gaudel, and S. Clémençon. Efficient eigen-updating for spectral graph clus-

tering. Neurocomputing, 131:440–452, 2014.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289–

1306, 2006.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, K. F. Kelly, and R. G. Baraniuk.

Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25:

83–91, 2008a.

M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Wavelet-domain compressive signal re-

construction using a hidden markov tree model. Acoustics, Speech and Signal Processing,

5137–5140, 2008b.

I. A. Eckley and G. P. Nason. LS2W: Implementing the locally stationary 2d wavelet process

approach in R. Journal of Statistical Software, 43(3):1–23, 2011.

I. A. Eckley, P. Fearnhead, and R. Killick. Analysis of changepoint models. In D. Barber,

117

A. T. Cemgil, and S. Chiappa, editors, Bayesian Time Series Models, chapter 10, 205–224.

Cambridge University Press, Cambridge, 2011.

Y. C. Eldar and G. Kutyniok. Compressed sensing: theory and applications. Cambridge

University Press, 2012.

A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background subtraction.

European Conference on Computer Vision, 751–767, 2000.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, 1996.

B. Everit, S. Landau, and M. Leese. Cluster analysis. Wiley, 2001.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström

method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 214–225, 2004.

P. Fränti and O. Virmajoki. Iterative shrinking method for clustering problems. Pattern

Recognition, 39(5):761–775, 2006.

J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

J. Gama and M. M. Gaber. Learning from data streams : Processing techniques in sensor

networks. Springer, 2007.

L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning and clustering.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9):

1074–1085, 1992.

118

J. Hanley and B. McNeil. A method of comparing the areas under receiver operating char-

acteristic curves derived from the same cases. Radiology, 148(3):839–843, 1983.

L. Huang, D. Yan, N. Taft, and M. I. Jordan. Spectral clustering with perturbed data.

Advances in Neural Information Processing Systems, 705–712, 2008.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral. Journal of

the ACM, 51(3):497–515, 2004.

T. Kong, Y. Tian, and H. Shen. A fast incremental spectral clustering for large data sets. In

International Conference on Parallel and Distributed Computing, Applications and Tech-

nologies, 1–5, 2011.

P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The clustree: indexing micro-clusters for

anytime stream mining. Knowledge and information systems, 29(2):249–272, 2011.

G. Kylberg. The kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre

for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University,

Uppsala, Sweden, 2011.

C. La and M. Do. Tree-based orthogonal matching pursuit algorithm for signal reconstruction.

In International Conference on Image Processing, 1277–1280, 2006.

D. Laney. 3-d data management: Controlling data volume, velocity and variety. Technical

report, META Group Research Note, 2001.

M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.

119

J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale spectral clustering on graphs. In

IJCAI International Joint Conference on Artificial Intelligence, 1486–1492, 2013.

T.-Y. Liu, H.-Y. Yang, X. Zheng, T. Qin, and W.-Y. Ma. Fast large-scale spectral clustering

by sequential shrinkage optimization. In European Conference on Information Retrieval,

319–330, 2007.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,

28(2):129–137, 1982.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

281–297, 1967.

C. Maung and H. Schweitzer. Pass-Efficient Unsupervised Feature Selection. Proceedings of

the 26th International Conference on Neural Information Processing Systems, 1–9, 2013.

N. J. B. McFarlane and C. P. Schofield. Segmentation and tracking of piglets in images.

Machine Vision and Applications, 8(3):187–193, 1995.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

Advances in Neural Information Processing Systems, 849–856, 2001.

H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang. Incremental spectral clustering with

application to monitoring of evolving blog communities. SIAM International Conference

on Data Mining, 261–272, 2007.

120

H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang. Incremental spectral clustering by

efficiently updating the eigen-system. Pattern Recognition, 43(1):113–127, 2010.

E. Page. Continuous inspection schemes. Biometrika, 41(1):100–115, 1954.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive

function approximation with applications to wavelet decomposition. Signals, Systems and

Computers, 40–44, 1993.

O. P. Patri, V. S. Sorathia, and V. K. Prasanna. Event-driven information integration for

the digital oilfield. In SPE Annual Technical Conference and Exhibition, 3530–3543, 2012.

M. Piccardi. Background subtraction techniques: A review. In Systems, Man and Cybernet-

ics, 3099–3104, 2004.

A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external cluster

evaluation measure. Joint Conference on Empirical Methods in Natural Language Process-

ing and Computational Natural Language Learning, 410–420, 2007.

T. Sakai and A. Imiya. Fast spectral clustering with random projection and sampling. In

International Workshop on Machine Learning and Data Mining in Pattern Recognition,

372–384, 2009.

V. Shankar, M. Kleijnen, S. Ramanathan, R. Rizley, S. Holland, and S. Morrissey. Mobile

shopper marketing: Key issues, current insights, and future research avenues. Journal of

Interactive Marketing, 34:37–48, 2016.

121

C. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,

1949.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(8):888–905, 2000.

H. Shinnou and M. Sasaki. Spectral clustering for a large data set by reducing the similarity

matrix size. In Proceedings of the Sixth International Language Resources and Evaluation),

201–204, 2008.

T. Silkina. Application of Distributed Acoustic Sensing to Flow Regime Classification. Mas-

ter’s thesis, Norwegian University of Science and Technology, 2014.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. de Carvalho, and

J. Gama. Data stream clustering. ACM Computing Surveys, 46(1):1–31, 2013.

Q. Song, J. Ni, and G. Wang. A fast clustering-based feature subset selection algorithm for

high-dimensional data. IEEE Transactions on Knowledge and Data Engineering, 25(1):

1–14, 2013.

D. A. Spielman and S.-H. Teng. Spectral partioning works: planar graphs and finite element

meshes. In Foundations of Computer Science, 96–105, 1996.

M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44(4):585–591,

1997.

H. L. Taylor, S. C. Banks, and J. F. McCoy. Deconvolution with the norm. Geophysics, 44

(1):39–52, 1979.

122

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B, 267–288, 1996.

K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of

background maintenance. Computer Vision, 255–261, 1999.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions

on Information Theory, 50(10):2231–2242, 2004.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal

matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666, 2007.

U. University of Reading. Pets 2001 data sets. http://www.cvg.rdg.ac.uk/slides/pets.

html, 2001.

C. Valgren and A. Lilienthal. Incremental spectral clustering and seasons: Appearance-based

localization in outdoor environments. In IEEE International Conference on Robotics and

Automation, 1856–1861, 2008.

J. van der Horst, H. Den Boer, P. In ’t Panhuis, B. Wyker, R. Kusters, D. Mustafina,

L. Groen, N. Bulushi, R. Mjeni, K. F. Awan, S. M. Rajhi, M. M. Molenaar, A. Reynolds,

R. Paleja, D. Randell, R. Bartlett, and K. Green. Fibre optic sensing for improved wellbore

production surveillance. In International Petroleum Technology Conference, 2014.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. The Annals

of Statistics, 36(2):555–586, 2008.

D. Wagner and F. Wagner. Between min cut and graph bisection. In Proceedings of the 18th

123

International Symposium on Mathematical Foundations of Computer Science, 744–750,

1993.

G. Warnell and R. Chellappa. Compressive sensing in visual tracking. In H. El-Alfy, editor,

Recent Developments in Video Surveillance, chapter 1, 205–224. InTech, 2011.

C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In

Advances in Neural Information Processing Systems, 682–688, 2001.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory and its

application to image segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 15(11):1101–1113, 1993.

D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 907–916, 2009.

H. Yang, M. R. Lyu, and I. King. Efficient online learning for multitask feature selection.

ACM Transactions on Knowledge Discovery from Data, 7(2):1–27, 2013.

L. Zelnik-manor and P. Perona. Self-tuning spectral clustering. Advances in Neural Infor-

mation Processing Systems, 1601–1608, 2004.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for

very large databases. ACM SIGMOD Record, 25(2):103–114, 1996.

124

