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Abstract: An adaptive treatment strategy is a set of rules for choosing effective medical
treatments for individual patients. In the statistical literature, methods for optimal dynamic
treatment (ODT) include Q-learning and A-learning methods, which are linked to machine
learning in engineering and computer science. The research project behind this article aims
to develop new methodology for both ODT and engineering control, through the integration of
techniques and approaches that have been developed in both fields, with a particular focus on the
problem of robustness. The methodological framework is based on a regret-regression approach
from the statistical literature and non-minimal state-space methods from control. This article
provides an introduction to some of these concepts and presents preliminary novel contributions
based on the application of robust H∞ methods to ODT problems.

Keywords: Linear control systems (TC2.2); optimal control (TC2.4); control of physiological
and clinical variables (TC8.2)

1. INTRODUCTION

There is growing interest in the use of control for biomed-
ical applications. These typically have greater stochastic
uncertainty and weaker repeatability than found in classi-
cal engineering application areas. Although control theory
has been connected to biological systems for decades (see
e.g. Doyle III et al., 2011, for a review), developments in
sensor technology mean that it is now possible to measure
physiological variables such as the heart rate of animals
on–line. Selected examples include the real–time control of
heart rate (Taylor and Aerts, 2014) and targeted growth
curves in poultry farming (Cangar et al., 2007). Such
control problems are stimulating links to related challenges
in biostatistics, particularly in personalised medicine. One
example is warfarin dosing strategies for long-term anti-
coagulation, in which the output is blood clotting speed
and the control input is the dose (Henderson et al., 2011;
Rich et al., 2016). Another is maintenance chemotherapy
for childhood leukaemia, in which the input is doseage
of cytostatics and the output is white blood cell count,
measured weekly (Rosthoj et al., 2012).

In the statistical literature, research in optimal dynamic
treatment, ODT, has developed rapidly since the seminal
papers of Murphy (2003) and Robins (2004). Approaches
include Q- and A-learning (Chakraborty and Moodie,
2013; Schulte et al., 2014), which are linked to machine
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learning in engineering and computer science. The aim is
to derive adaptive decision rules for medical treatments
or other interventions. In many applications there are few
decision times, a low number of possible treatments and a
finite follow-up period. However, the methods have begun
to be used for adaptive treatment of chronic conditions,
for dose selection and under infinite horizons (Henderson
et al., 2010; Rosthoj et al., 2012). Consequently there is
clear overlap with the scenarios typically considered in
modern control theory.

In control, a major concern is to ensure satisfactory be-
haviour in the presence of modelling uncertainty, sampling
problems, external disturbances and sensor noise, consid-
erations that have close parallels in ODT regimes. In this
context, the H∞ philosophy is particularly pertinent, since
it complements stochastic approaches, and seeks designs
that minimise the effect of the disturbance that produces
the largest effect on the system output (Mustafa and
Glover, 1990), or that maximises the size of the uncer-
tainty region for which a single controller can guarantee a
satisfactory performance (Zhou et al., 1995).

The present authors are aiming to combine ideas from
well–established approaches in control, including H∞

methods, with the statistical theory of ODT regimes, with
a particular focus on the problems of irregular sampling
and robustness. This article provides a tutorial introduc-
tion to some of the relevant methods and describes prelim-
inary novel contributions in respect to the application of
robust H∞ methods to both ODT and engineering control.
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The article is motivated by the Control and Data Driven
Modelling in Biomedicine open track theme at the IFAC
Congress, and aims to stimulate discussion and research
links under this topic.

Section 2 introduces the problem from a statistical per-
spective, concentrating on the regret version of A-learning
advocated by Murphy (2003). In section 3 we develop a
novel state-space representation of the statistical problem
and in section 4 we recommend a combined approach in
which firmly based statistical estimation methods are used
in modelling but H∞ ideas are used in subsequent control
decisions. The state space model used here is based on a
non-minimal state space (NMSS) form that has previously
been utilised in engineering applications for proportional-
integral-plus (PIP) control (Taylor et al., 2000, 2013). In
section 5, we present an expression for the H∞ norm of
the NMSS/PIP control system and subsequently use this
to evaluate the closed-loop robustness when applied to the
model defined by the earlier regret analysis.

2. ADAPTIVE TREATMENT AND A-LEARNING

In biostatistical applications, data will be available in the
form of short and noisy sequences of observations on many
subjects, and there will be no opportunity to collect repeat
data. Most of the emphasis in the statistical literature has
been on parameter estimation, the properties of estimators
and the assumptions required for causal inference (Zhang
et al., 2013). By contrast, in engineering, usually a single
subject is under study but it is closely monitored, with
frequent observations and the emphasis is on performance
and robustness of the controller. Nonetheless the generic
problem is the same and can be described as follows.
At time k an output sk is observed and an input uk
is determined. The input is directly controllable by an
experimenter but the output is not. The output can be
a vector or functional response. Given the history of all
previous inputs, outputs and other information leading up
to time k, the purpose is to choose uk so as to achieve
some objective measured in terms of future outputs. The
same problem of course is of interest in a large number
of other areas, including machine learning, scheduling and
other sequential decision problems in operational research.

In the statistical literature there is usually a fixed number
K of decision times and the objective is to maximise some
quantity Y (u) whose properties depend on the vector u
of potential inputs. For chronic conditions the objective
function might accrue over time, such as the proportion of
time the biomarker is within a target range, whereas for
acute conditions it may not be available until after the Kth
input, for example the health of a patient at the end of a
course of treatment. We will concentrate on the chronic,
accruing information, situation in this note.

Two main strategies are available: Q-learning and A-
learning (Chakraborty and Moodie, 2013; Schulte et al.,
2014). The former, quality learning, attempts to relate
directly the objective function to the inputs and outputs,
either nonparametrically or through a statistical model.
Recursive procedures akin to dynamic programming are
then used to determine the optimal input at each deci-
sion time. Such an approach has the advantage that any
modelling assumptions can in principle be checked against

the data, but the disadvantage that the method is highly
computationally expensive for large K. We concentrate
therefore on advantage learning which is based on con-
trasts between outcomes under different decision rules, and
specifically on the regret function approach (Moodie et al.,
2007; Henderson et al., 2010; Barrett et al., 2014; Robins,
2004; Rosthoj et al., 2006).

We begin with notation. Data will be available from a
cohort of patients but, unless necessary, we consider a
single patient to illustrate the ideas. The patient acts
as the plant in engineering terminology. We use sk and
uk as general outputs and inputs at time k and Sk and
Uk to denote the actual values observed on the patient.
An overbar implies current and previous values: thus
S̄k = (S1, S2, . . . , Sk) and Ūk = (U1, U2, . . . , Uk). The
information available to the controller at time k is thus
(S̄k, Ūk−1). We use uopt

k as the unknown sequence of
optimum inputs from time k to K. The regret function
is defined as:

µk
(
uk | S̄k, Ūk−1, ψ

)
=

E
[
Y | S̄k, Ūk−1,u

opt
k

]
− E

[
Y | S̄k, Ūk−1, uk,u

opt
k+1

]
We will take these terms in sequence.

(1) µk(.) is a function which can change over k. It has an
argument uk which is the potential input at time k.

(2) At that time (S̄k, Ūk−1) have been observed and will
influence the choice of the next input.

(3) We will assume a parametric model for µk(.) which
can depend on a vector parameter ψ.

(4) The first term on the right is the expected response,
given the information to hand, and assuming we
follow optimal rules in the future. Thus it represents
the best we can expect to do.

(5) The next term on the right is similar, but assumes
the input at time k is uk, the function argument, and
that subsequently the optimal rules are followed.

Since the aim is to maximise the expected Y , the right-
hand side can never be negative. It measures the loss or
regret caused by choosing input uk rather than the optimal
and will be zero if, indeed, optimal input is selected.

The statistical algorithm then has three steps.

(1) A parametric model is assumed for µk(.).

(2) A parameter estimator ψ̂ is constructed from the
data: see e.g. Murphy (2003); Moodie et al. (2007);
Henderson et al. (2010).

(3) An estimator of the optimal treatment strategy value

ûoptk

(
S̄k, Ūk−1

)
is derived by solving the equation:

µk

(
uk | S̄k, Ūk−1, ψ̂

)
= 0 (1)

There is thus no attempt to describe the dynamics of
the underlying biological processes: our assumptions are
on the contrast given above. A disadvantage of this ap-
proach is that there is no way directly to check the mod-
elling assumptions at the first step, though it is expected
to be more robust to model misspecification than Q-
learning (Schulte et al., 2014). An advantage is that the
optimal input can usually be obtained very easily at the
third step, without recursive procedures. Attempts have
been made recently to develop robust procedures (Zhang



et al., 2013; Barrett et al., 2014; Wallace and Moodie, 2015;
Wallace et al., 2016) but to our knowledge there have been
no attempts to date to adapt to this setting any of the
robust methods developed for control engineering.

3. STATE-SPACE MODEL

Our aim is to design a treatment strategy which is robust
to the presence of model misspecification and measure-
ment noise. We restrict to the case of chronic conditions
where the aim is to find the optimal treatment strategy
uopt which makes the patient state as close as possible to
a sequence of targets wn = (w∗1 , . . . w

∗
n). The objective can

then be formalised as a tracking problem:

Y (u) =

K∑
k=1

− (Sk (u)− w∗k)
2

(2)

In the statistical literature, the presence of uncertainty is
usually only taken into account in parameter estimation.
Yet in practice we face three sources of uncertainty which
can affect the optimal strategy:

(1) Dynamic uncertainty. Stochastic or deterministic ele-
ments acting on the system dynamic may have been
omitted during regret function parametrisation.

(2) Measurement uncertainty. We do not have access to

Sk but only to noisy observations S̃k = Sk + εmk with
εmk representing measurement noise.

(3) Parametric uncertainty. Error due to parametric es-
timation in the assumed parameter value i.e we took

ψ̂ = ψ+4ψ, with4ψ an unknown error term, instead
of ψ.

In terms of control theory (Sontag, 1998; Clarke, 2013;
Taylor et al., 2013; Ljung, 1999), this problem can be
restated as:

Claim 1. ODT estimation methods use only the nominal
plant without taking into account model uncertainty to
determine the feedback control.

Our aim here is to take advantage of existing firmly-based
statistical methods to estimate the parameter ψ, but to use
results from control theory in order to design a treatment
strategy which is robust to both model misspecification
and noise measurement. In order to do so, we need to
formulate our ODT problem in a framework compatible
with control theory. The next proposition makes the con-
nection between regret functions and a state-space repre-
sentation required to apply control theory methods. Here
we assume the system evolution between Sk and Sk+1 can
be described by the following state-space model:

Sk+1 = fk(Sk, Uk) + εdk (3)

with εdk a random variable independent of (Sk, Uk) repre-
senting stochastic elements acting on the system dynamic.
Then, we have the following result.

Proposition 2. Assume that at each k ≤ n−1, there exists
uk such that: −fk(Sk, uk) + w∗k+1 = E

[
εdk
]

Then the optimal strategy uopt at each time step is:

uopt
k (sk, uk−1) = arg minuk

E
[(
Sk+1

(
uk
(
Sk, Uk−1

))
− w∗k+1

)2 | Sk = sk, Uk−1 = uk−1

]

and

µk
(
uk | Sk, Uk−1

)
=
(
fk(Sk, uk)− w∗k+1 + E

[
εdk
])2

Thus, when we assume a parametric formulation for the re-
gret function µk

(
uk | Sk, Uk−1

)
' µk

(
uk | Sk, Uk−1, ψ

)
,

we automatically have a parametric form for fk(Sk, uk) '
fk (Sk, uk, ψ). In particular we have access to the estimator

f̂k(Sk, uk) = fk

(
Sk, uk, ψ̂

)
with ψ̂ an estimator of ψ

obtained by any of the available methods.

We now formulate a control problem to obtain the optimal
treatment strategy sequence uk−1:

min
ūk−1

λ
∥∥Sn − wn∥∥+ ‖uK−1‖

under constraint Sk+1 = fk(Sk, uk, ψ̂) + εglobk

(4)

with access to the noisy observations: S̃k = Sk + εmk .

Here εglobk represents the whole committed misspecification

error made by choosing fk(Sk, uk, ψ̂) as the model. This

uncertainty term can be written εglobk = εdk + 4det +

4ψ, where εdk is the stochastic disturbance, 4det the
uncertainty term due to deterministic misspecification
in µk

(
uk | Sk, Uk−1, ψ

)
and 4ψ the term due to error

made during ψ estimation. Solving (4) means driving Sk
toward w∗k while ensuring the dose sequence uK−1 takes
reasonable values. The balance between these somewhat
opposite objectives is made through the selection of the
hyper-parameter λ. The norm ‖.‖ in (4) is left unspecified
because it depends on the method used to solve the
problem. In the following, we use H∞ (Doyle et al.,
1989; Glover and Doyle, 1988; Iwasaki and Skelton, 1994;
Francis, 1987), whilst we base our control framework on
NMSS design, as discussed below.

3.1 Non-minimal state space representation

Problem (4) only involves the input and observed output
because regret models only involve observations and treat-
ment values. In linear control system design, such models
are typically expressed in Transfer Function form:

sk =
B
(
z−1
)

A (z−1)
uk (5)

where sk is the output and uk the input, while B(z−1)
and A(z−1) are polynomials in z−1, the backward shift
operator i.e. z−1uk = uk−1. For example, section 4 utilises
an illustrative model in which B(z−1) = ψ2z

−1 + ψ4z
−2

and A(z−1) = ψ1z
−1 + ψ3z

−2. More generally, denoting
the highest power of z−i in B(z−1) and A(z−1) as m and
n respectively, the non-minimal state vector is defined:

xk = [sk sk−1 · · · sk−n+1 uk−1 · · · uk−m+1]T (6)

and the NMSS representation of the TF model (5) is:

xk = Fxk−1 + guk−1 ; sk = hxk (7)

where F , g and h are defined in e.g. Taylor et al. (2013)
and the example below. Equations (7) provide ready access
to standard control design techniques such as pole assign-
ment or H∞ design. Note that the order of this NMSS
model is n+m− 1, rather than n as would be the case for
a minimal state space model based on a standard canonical
form. However, we are motivated to use the NMSS form
for the following reasons: (i) state variable feedback control



can be implemented directly rather than relying upon any
form of state reconstruction; (ii) the non-minimal state
vector (6) provides the most straightforward way of rep-
resenting the engineering model (5) and yet also mirrors
the regret formulation based on S̄k = (S1, S2, . . . , Sk)
and Ūk = (U1, U2, . . . , Uk); and (iii) in comparison to the
minimal case, the NMSS approach provides more design
freedom as required here for ODT.

In particular, the basic NMSS form above can be extended
to include other elements and can be constrained and
used to mimic exactly other control approaches (Taylor
et al., 2000, 2013). This is illustrated in section 5, when
an integral–of–error state variable is appended to the state
vector so that the control system tracks the target w∗k
(target tracking is initially addressed through eqn. (2) in
the present work, hence the NMSS model (7) represents
the ‘regulator’ form that would not normally be utilised
in engineering applications).

4. COMBINED REGRET AND H∞ APPROACH

We proceed to Monte-Carlo simulation to investigate the
difference between the treatment policy defined by the
classic regret approach and the one developed here. We
compare these treatment policies in terms of robustness
with respect to presence of parameter, dynamic and noise
uncertainties. In each simulation run, 100 longitudinal
data sequences of length K = 15 were generated (the
training data sets) by using the state-space representation:

fk(sk, uk, ψ) = f∗k (sk, sk−1, uk, uk−1, ψ)+g
(j)
k (sk−1, uk−1)

with

f∗k (sk, sk−1, uk, uk−1, ψ) = ψ1sk+ψ2uk+ψ3sk−1+ψ4uk−1

and
g

(j)
k (sk−1, uk−1) = 0.01× j × sk−1uk−1

The equivalent NMSS representation (7) is based on:

xk = [sk sk−1 uk−1]
T

F =

[
ψ1 ψ3 ψ4

1 0 0
0 0 0

] g = [ψ2 0 1]
T

h = [1 0 0]
(8)

The true parameter values (ψ1, ψ2, ψ3, ψ4) were taken
to be (0.6, 0.2, 0.15, 0.25) respectively and the targets
w∗k were all set to zero. The regret function model

µk
(
uk | Sk, Uk−1, ψ

)
was specified as in Section 3, and the

parameters estimated from the training data set by using
the regret regression approach developed by Henderson
et al. (2010). Two treatment policies were considered: the
classic one denoted unom based on (1); and u∞ derived
through H∞ control design on (8) with ψ replaced by

ψ̂, and implemented using the Matlab Robust Control
toolbox. Each strategy was tested by generating new longi-
tudinal data sequences (the tested data sets) with the same
state-space model as the training data set. We generated
the different kinds of uncertainty as follows.

(1) Dynamic uncertainty. To add stochastic disturbance
at each time k, we took εdk ∼ N(0, σ2

d). In order to
imitate misspecification, we took as regret functions
µk
(
uk | Sk, Uk−1, ψ

)
=(

f∗k (Sk, Sk−1, uk, Uk−1, ψ)− w∗k+1

)2
i.e the interactions terms g

(j)
k are mistakenly omitted.

(2) Measurement uncertainty. At each time k, we took
εmk ∼ N(0, σ2

m).
(3) Parametric uncertainty. Instead of ψ, we used the

estimator ψ̂ obtained from the training data.

To illustrate, we took each of σ2
d and σ2

m to be ei-

ther 0.01 or 0.02 and chose j in g
(j)
k to be either 1

or 2, the latter reflecting stronger missspecification. For
each triplet

(
gk , σ

2
d, σ

2
m

)
we estimated the quantities:

ERR [u] = −Egk ,σ2
d
, σ2

m
[Y (u)], as well as VERR [u] =

Vargk ,σ2
d
, σ2

m
[Y (u)] for both unom and u∞. Results are

presented in Table 1, each based on 100 simulation runs. It
is clear that the new approach based on u∞ is substantially
more robust than unom.

g
(1)
k(

σ2
d × 10−2, σ2

m × 10−2
)

(1, 1) (1, 2) (2, 1) (2, 2)

ERR
[
uinf

]
0.23 0.41 0.31 0.42

ERR [unom] 7.95 7.89 5.43 7.25

VERR
[
uinf

]
× 10−1 0.03 0.10 0.20 0.35

VERR [unom]× 10−1 20.30 42.82 20.89 49.68

g
(2)
k(

σ2
d × 10−2, σ2

m × 10−2
)

(1, 1) (1, 2) (2, 1) (2, 2)

ERR
[
uinf

]
0.89 0.98 0.96 0.96

ERR [unom] 8.57 7.67 4.55 5.65

VERR
[
uinf

]
× 10−1 0.18 0.31 0.75 0.76

VERR [unom]× 10−1 46.85 64.16 36.48 91.88

Table 1. Simulation results

5. H∞ EVALUATION OF NMSS/PIP CONTROL

Whilst the above analysis concerns the design of a regret-
based treatment strategy that takes into account uncer-
tainty, section 5 of the article addresses the robustness of
the engineering-based PIP control algorithm. The robust-
ness of the PIP control elements within a control system
and a design strategy for stabilising the controller have
been considered by other authors (Liu et al., 2001a,b).
However, the overall closed-loop robustness of PIP con-
trol is generally evaluated empirically by Monte Carlo
simulation (Taylor et al., 2013). Here, by contrast, we
evaluate the robustness of the PIP control system using
an appropriately defined H∞ norm.

To obtain the PIP controller, we first introduce an integral-
of-error state variable qk to the NMSS model (7). This
ensures that the control algorithm inherently tracks the
target w∗k i.e. Type 1 servomechanism performance in
control engineering terms. Here, qk = qk−1 + (w∗k − sk)
and the n+m dimensional non-minimal state vector is:

xk = [sk sk−1 ··· sk−n+1 uk−1 ··· uk−m+1 qk ]T (9)

Hence, the model (5) is equivalently represented using the
following NMSS equations:

xk = Fxk−1 + guk−1 + dw∗k ; sk = hxk (10)

and the state variable feedback control law associated with
this NMSS model takes the form uk = −kxk where,

k = [f0 f1 · · · fn−1 g1 · · · gm−1 −kI ] (11)

Fig. 1 shows a block diagram representation of resulting
NMSS/PIP control algorithm, in which,



F (z−1) = f0 + f1z
−1 · · ·+ fn−1z

−n+1

G(z−1) = 1 + g1z
−1 + · · ·+ gm−1z

−m+1

For the preliminary results in the present article, we eval-
uate the robustness when w∗k = 0 for all k and the external
input consists of a load disturbance dk at the plant input
(similar to the random variable εdk described in section 3)
and generalised noise nk at the plant output (equivalent to
the measurement uncertainty εmk ). The corresponding H∞

norm describes the robustness of the closed-loop system
to process uncertainties, hence minimising this norm is
equivalent to increasing the control system robustness.

If the generalised error is ζ = (s,−u)T and input is
ξ = (n, d)T , the closed loop system is denoted ζ =
HFB(P,C)ξ, where,

ζ =


AG∆

AG∆ +B(F∆ + kI)

BG∆

AG∆ +B(F∆ + kI)
A(F∆ + kI)

AG∆ +B(F∆ + kI)

B(F∆ + kI)

AG∆ +B(F∆ + kI)

 ξ,

in which ∆ = 1− z−1. Here A,B, F,G and B are polyno-
mials in z−1 but the operator notation has been omitted
for brevity, both here and in later equations. The H∞

norm of the closed-loop system thus provides a measure of
robustness of the PIP controller that is dependent upon
the controller parameters and plant model. If the closed-
loop control system is denoted P (z−1), then the H∞ norm
is defined as follows (Stoorvogel A. A., 1994),

‖P (z−1)‖∞ := sup
θ∈(0,π)

σ̄
(
P (e−iθ)

)
(12)

where σ̄(·) denotes the largest singular value of the matrix
P (e−iθ). This relationship can be used to calculate the
H∞ norm of the PIP control system as follows,

‖HFB‖∞ =

sup
θ∈(0,π)

√
Q

(AG∆ +B(F∆ + kI))(AG∆ +B(F∆ + kI))

(13)

where,

Q = AG∆AG∆ +BG∆BG∆

+A(F∆ + kI)A(F∆ + kI) +B(F∆ + kI)B(F∆ + kI)
(14)

and X̄ denotes the complex conjugate of X. This equation
provides a way of evaluating the H∞ norm of a PIP
control system, as well as a method for designing control
parameters F,G, kI to minimise the H∞ norm.

To briefly illustrate, the state vector (8) for the previously
developed regret-based NMSS model is expanded to now
include qk as follows,

xk = [sk sk−1 uk−1 qk]
T

with,

F =

 ψ1 ψ3 ψ4 0
1 0 0 0
0 0 0 0
−ψ1 −ψ3 −ψ4 1


g = [ψ2 0 1 −ψ2]

T
, d = [0 0 0 1]

T
and h = [1 0 0 0].

In Fig. 2 we use pole placement (fully described in Taylor
et al. (2013)) to set F,G, and kI . For the purpose of this

Fig. 1. Block diagram of the PIP control system.

Fig. 2. H∞ norm of NMSS/PIP control system for a range
of (real) pole values.

example, the four desired closed-loop poles are constrained
to the same value on the real axis of the complex z–plane.
Fig.2 shows how the choice of this constrained real pole
position, and so controller parameters, effects the H∞

norm. In further research, we will compare PIP/NMSS
control with the regret-based NMSS approach for both
medical and engineering applications.

6. CONCLUSIONS

The article has proposed a method for designing a medical
treatment strategy that takes into account model and
measurement uncertainty. We have shown how a particular
class of ODT problem can be transformed into an optimal
control problem and have used H∞ synthesis to derive a
treatment (input) policy. The state-space representation
used in problem (4) only involves the input and observed
output, and their past values, hence non-minimal state
space models that are explicitly based on these variables
are particularly apt. Using this formulation, a novel way
of designing a treatment strategy that is robust to model
misspecification and measurement noise is presented. This
involves using statistical methods to estimate the regret
parameters and, by connecting regret functions to the
state-space representation, subsequently using robust H∞

to estimate a treatment (input) policy.

Comparison with classic A-Learning (the nominal method
in this article) shows that the new H∞ approach yields
a better outcome on average when misspecification is
present and is less sensitive to other perturbations. In
other words, the new method is more robust. Currently,
this H∞ design approach is restricted to a particular class
of ODT problems that have linear time invariant state-
space models and so simple quadratic regret functions.
This limitation needs to be overcome by addressing how
to transform other classes of ODT problems into a control
problem and finding a more general way of linking the
regret function and state-space formulation.



Other control methods such as NMSS/PIP design can also
be used to optimise the treatment strategy. A simple PIP
control system is presented in this article for comparison,
and we have shown how the choice of controller param-
eters effects the robustness of the system. Furthermore,
NMSS/PIP control includes an integral-of-error state that
is not considered in conventional A-learning. Including
such action in ODT type methods could improve target
tracking by removing steady state errors.

To summarise, three methods of controlling a simple,
linear system have been presented: i) A-learning; ii) a
novel robust H∞ state-space-regret approach; and iii)
standard NMSS/PIP control. Here, we have compared the
A-learning and robust H∞ state-space-regret approach.
However, we have not compared, or looked at combining
NMSS/PIP (including the integral-of-error state) with
robust state-space-regret methods, and this remains a key
challenge and an area of on-going research by the authors.
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