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Abstract 
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Nagla AlMasoud 

Doctor of Philosophy 
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2015 

Several traditional methods have been used to characterise bacteria, such as 

biochemical, morphological and molecular tests; however, these methods are time-

consuming and not always reliable. Recently, modern analytical techniques have 

emerged as powerful tools offering high-throughput, reliable and rapid analysis in 

applications, such as clinical and microbiology studies. A variety of modern 

analytical techniques have been employed for bacterial characterisation, including 

matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF-MS), liquid chromatography-mass spectrometry (LC-MS), Fourier 

transform infrared (FT-IR) spectroscopy and Raman spectroscopy. This thesis 

focused on developing a robust MALDI-TOF-MS methodology to generate mass 

spectra profiles for the discrimination of clinically-significant bacteria. 

The data generated from MALDI-TOF-MS analysis are significantly influenced by a 

number of experimental factors, namely instrument settings, sample preparation, the 

choice of matrix, matrix additives and matrix preparation as well as sample-matrix 

deposition methods. The need to optimise experimental variables for bacterial 

analysis using MALDI-TOF-MS was evident despite the increased application of 

this analytical tool for clinical microbiology. Experimental optimisation revealed 

that the choice of matrix is the most important element in MALDI-TOF-MS 

analysis. Based on this study, a number of different matrices were used to obtain 

more reproducible mass spectra to classify bacterial samples using a rapid and 

effective approach. Studies in this thesis indicated that sinapinic acid (SA) is the best 

matrix for the analysis of proteins from intact bacteria, while 6-aza-2-thiothymine 

(ATT) and 2,5-dihydroxybenzoic acid (DHB) produced promising results for the 

analysis of lipid extracts from bacteria. 

Analytical techniques in combination with multivariate analysis, such as principal 

components analysis (PCA) and principal component-discriminant function analysis 

(PC-DFA), were used for bacterial discrimination. Classification was initially 

undertaken using MALDI-TOF-MS analysis, and subsequently FT-IR spectroscopy, 

Raman spectroscopy and LC-MS were performed to confirm the classification 

results. Two main types of bacteria were used for this analysis: 34 strains from seven 

Bacillus and Brevibacillus species and 35 isolates from 12 Enterococcus faecium 

strains. The findings showed that the four analytical techniques provide clear 

discrimination between bacteria at these different levels. Classification of different 

Bacillus and Brevibacillus bacteria using MALDI-TOF-MS analysis of extracted 

lipids was confirmed by LC-MS data. In addition, MALDI-TOF-MS data based on 

extracted lipids and intact bacterial cell proteins were very similar. MALD-TOF-MS 

analysis of intact enterococci cells produced successful classification with 78% 

correct classification rate (CCR) at the strain level. FT-IR and Raman spectroscopic 

data produced very similar bacterial classification with CCR of 89% and 69% at the 

strain level, respectively. However, classification based on MALDI-TOF-MS data 

and that based on spectroscopic data were slightly different (Procrustes distance of 

0.81, p<0.001, at the species level).  

Overall, the findings in this thesis indicate the potential of MALDI-TOF-MS as a 

rapid, robust and reliable method for the classification of bacteria based on different 

bacterial preparations. 
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Preface 

A variety of analytical techniques, such as mass spectrometry and spectroscopy, 

have emerged as robust tools in many research areas, such as medical studies, 

drug development and discovery, environmental research and microorganism 

taxonomy. The studies carried out in this thesis aimed to develop a robust MALDI-

TOF-MS data collection method for analysis of bacteria. The studies focused in 

particular on analysing different types of Bacillus, Brevibacillus and 12 

Enterococcus faecium strains using different analytical techniques in combination 

with chemometrics. The outcomes of this investigation showed that these analytical 

techniques complemented each other for successful classification of bacteria. The 

analytical techniques used in these studies include: matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), liquid 

chromatography in conjunction with mass spectrometry (LC-MS) in the positive 

ionisation mode, Fourier transform infrared (FT-IR) spectroscopy and Raman 

spectroscopy (RS). Data generated from these techniques were used to achieve the 

objectives of this thesis. 

This thesis consists of six chapters. Chapter 1 is a general introduction to bacterial 

characterisation and analytical techniques. This chapter is followed by four results 

chapters and a final chapter on conclusions and future work. Chapter 2 is published 

in Analytica Chimica Acta and reports clear discrimination between 34 strains from 

the Bacillus genus encompassing seven different species based on analytical 

methods supported by multivariate analysis techniques. Chapter 3 is prepared as a 

manuscript to be submitted to Analytical Chemistry. The work therein focused on 

optimising the experimental conditions for detecting five lipids that were mixed 

together using MALDI-TOF-MS in combination with robust chemometrics to 

simplify and significantly reduce the huge number of potential experiments to be 

undertaken. Following on from this study, work in Chapter 4 was carried out using 

these optimum conditions to analyse lipids extracted from Bacillus bacteria using 

two different analytical techniques: MALDI-TOF-MS and LC-MS. Chapters 5 

focused on classifying 35 isolates from Enterococcus faecium using a variety of 

different analytical techniques. Chapters 4 and 5 are prepared as manuscripts to be 
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submitted to Analytical and Bioanalytical Chemistry and Journal of Clinical 

Microbiology, respectively.  

Work carried out in the results chapters was in collaboration with colleagues and 

their work is acknowledged at the beginning of each chapter. These studies were 

challenging yet provided me with most enjoyable experiences. I gained valuable 

technical skills and expertise in scientific research, which will undoubtedly be useful 

in my future work. Last but not least, to my knowledge the findings and outcomes of 

the research carried out in this thesis have contributed useful methods to the 

classification of bacteria using modern analytical techniques. 

Nagla AlMasoud 
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1. Introduction  

1.1. Characterisation of bacteria 

   
Successful bacterial characterisation requires the use of numerous techniques. The 

correct identification of bacteria is one of the fundamental foundations that link the 

fields of microbiology and infectious disease together (Janda and Abbott, 2002; 

Wilkins and Lay, 2005). Humans, animals and plants are in continuous contact with 

both saprophytic bacteria and harmful bacteria in their environmental surroundings, 

and hence the ability to identify and diagnose bacterial infections is absolutely vital 

(Peeling et al., 2008; Sauer and Kliem, 2010). Diagnostics is required in many fields 

such as clinical microbiology, veterinary medicine and environmental studies 

(Coffey et al., 1994; Sauer and Kliem, 2010). The importance of characterising and 

classifying bacteria lies in the ability to differentiate and group similar bacteria with 

each other making it easier for scientists to identify different bacterial types down to 

the species level, which has a particular significance in classification and 

characterisation studies (Yarza et al., 2014; Nester, 2001; Parisi et al., 2008). 

Clinical, veterinary and environmental laboratories are forever striving to develop 

faster, low cost and reliable methods to characterise bacteria. Bacterial 

characterisation traditionally involves dividing and differentiating bacteria into 

groups depending on similarities in their cellular structures (Sintchenko et al., 2007). 

In general, traditional methods, for example bacterial culture followed by staining 

and microscopic observations, are time-consuming and do not always provide 

conclusive findings (Luzzatto-Knaan et al., 2015; Nomura, 2015; Wilkins and Lay, 

2005). Therefore, newer technologies are being developed to reduce time and labour 

and improve classification results, and these methods include phenotypic and 

genotypic analytical techniques (Giebel et al., 2010; Wilkins and Lay, 2005), which 

rely on the analysis of phenotypic markers and genetic materials, respectively.  

Unlike genetic information, phenotypic markers used in bacterial characterisation 

may vary dramatically due to various environmental factors including conditions of 

cell culturing (growth times and medium), storage and sub-culturing. Bacteria can be 

characterised by means of simple methods, which facilitate the study of the different 

characteristics of cells such as their microscopic morphology and metabolic 

differences (Sauer and Kliem, 2010; Nester, 2001; Emerson et al., 2008). An 
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example of a method that relies on microscopic morphology is Gram staining a well-

known simple staining method. The Danish physician, Hans Christian Gram, 

developed this staining method in the late 1800s and it can be used to classify 

bacteria based on their cell wall type into two main categories: Gram-positive and 

Gram-negative bacteria. These two main groups of bacteria are easily identified 

upon visual examination as Gram-positive bacteria stain purple whilst Gram-

negative bacteria are counter-stained red (Beveridge, 2001).  

Further technical developments to characterise bacteria were established due to the 

limitations of the traditional techniques, and these were classified into different 

broad areas, such as: deoxyribonucleic acid (DNA)-based methods (Olive and Bean, 

1999; Olsen, 2000), immunoassay based methods (Emon and Lopez-Avila, 1992) 

and biochemical methods (Nester, 2001; Wilkins and Lay, 2005). DNA-based 

experimental methods usually require 24 hours to generate data since many steps are 

involved including: extraction and amplification of nucleic acid. Amplification is 

performed in vitro and is followed by gel electrophoresis and/or the use of 

hybridisation techniques for identification purposes. This technique is highly 

sensitive and accurate but relatively expensive in terms of equipment, reagents and 

training staff. Immunoassay and biochemical methods require more than 24 hours to 

obtain data and are less sensitive than DNA-based techniques (Nester, 2001; Davis 

and Mauer, 2010). Despite these disadvantages many researchers still find 

biochemical methods attractive due to their lower cost and ease of use.  

In addition, other methods can be used to identify bacteria using nucleic acid based 

molecular techniques, such as polymerase chain reaction (PCR) (Holland et al., 

2000; Emerson et al., 2008; Das and Dash, 2014). This method has frequently been 

used to produce viable and robust data from bacterial samples due to its accuracy 

(Giebel et al., 2010; Wilkins and Lay, 2005). 

Bacterial classification remains challenging due to the limitations of traditional 

techniques, such as staining and biochemical tests (Nomura, 2015; Sauer and Kliem, 

2010), and therefore modern analytical techniques have the potential to provide 

more reliable classification. Further development and optimisation of these 

techniques for the purpose of bacterial classification constituted the motivation of 

this thesis. Modern analytical techniques include mass spectrometry (Gross, 2004; 
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Anhalt and Fenselau, 1975; Sauer and Kliem, 2010; Santos et al. 2105; Schumann et 

al. 2014; Karas an d Hillenkamp, 1988; Tanaka et al., 1988; Claydon et al., 1996) 

and spectroscopic techniques (Helm et al., 1991; Kirschner et al., 2001; Kim et al., 

2005; Baker et al., 2014; López-Díez and Goodacre, 2003; Naumann, 2001). These 

techniques provide powerful tools in the field of bacterial taxonomy due to their high 

specificity, analysis speed and cost effectiveness (Freiwald and Sauer, 2009; Sauer et 

al., 2005; Aebersold and Mann, 2003). Modern analytical techniques such as 

MALDI-TOF-MS, LC-MS, Raman spectroscopy and FT-IR spectroscopy have 

undoubtedly gained importance in many microbiology laboratories including 

diagnostic laboratories due to the advantages that these techniques offer. The 

analytical techniques employed in this study are described in more detail in the 

sections below. 

 

1.2. Analytical techniques 

 

1.2.1. Mass spectrometry  

Mass spectrometry (MS) is a powerful tool for analysing a variety of biological 

samples such as microbiological extracts, biofluids and tissue extracts, providing 

valuable information about the molecular mass of analytes and the contents of 

biological mixtures (Siuzdak, 1996; Sauer and Kliem, 2010; Watson and Sparkman, 

2007). A mass spectrum is a two dimensional plot represented by the peak intensity 

of ions and their mass-to-charge ratio (m/z) (Williams and Fleming, 1995). The 

general concept behind mass spectrometry relies on two steps; analyte molecules are 

transformed into gas phase molecules with a single or multiple charges often at 

atmospheric pressure. Subsequently, the resultant ions travel through the mass 

analyser to the detector under vacuum. Mass spectrometers consist of three key 

parts: an ion source, a mass analyser and a detector (Figure 1.1) (Sauer and Kliem, 

2010; Gross, 2004; de Hoffmann and Stroobant, 2007; Luzzatto-Knaan et al., 2015). 

There are numerous mass spectrometry ionisation techniques with varying 

sensitivities. Examples of such techniques include matrix-assisted laser 

desorption/ionisation (MALDI) (Karas et al., 1985; Krishnamurthy and Ross, 1996), 

electrospray ionisation (ESI) (Fenn et al., 1989) and atmospheric pressure chemical 



Chapter one  

29 
 

ionisation (APCI). MALDI and ESI are the ionisation methods used in the present 

work. 

 

 

A mass analyser is the heart of the mass spectrometer, which separates molecules 

according to their mass-to-charge (m/z) ratios. Mass analysers are known for their 

high sensitivity, accuracy, resolution and a broad mass range. There are many types 

of mass analysers and these include: time-of-flight (TOF) (Stephens, 1953) and 

Orbitrap mass analysers (Makarov, 2000). The TOF analyser has a broad m/z range 

capable of measuring the mass of low to high molecular mass compounds, such as 

peptides and proteins (Siuzdak, 1996; Kafka et al., 2011; Watson and Sparkman, 

2008), while the Orbitrap has a higher resolution (up to 120,000), high mass 

accuracy (less than 2 ppm) and has a wide dynamic range (Scigelova and Makarov, 

2006). 

The third component of a mass spectrometer is the detector, which is used to 

generate a signal from the passage of analyte ions with a specific m/z ratio. 

Microchannel plates (MCP) are the detectors usually used in mass spectrometers. 

Another infrequently used detector is the discrete dynode secondary electron 

multiplier (Siuzdak, 1996). Both detectors convert incoming ions into electrons, 

which are amplified by many orders of magnitude. MCPs are made of glass plates, 

Figure 1.1: A flow diagram showing the principal components of a mass 

spectrometer. 
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which are densely aligned. Once an ion hits the front of the plate, electrons are 

released and cascade down the channels and exit out of the back. The amplified 

signals are then converted into a digital output using a computer. MALDI-TOF mass 

spectrometers use MCP detectors, while the Orbitrap detects the image currents that 

arise from the oscillation frequency of analyte ions as they circulate past the 

detecting electrodes (Scigelova and Makarov, 2006).  

 

1.2.1.1 .Matrix assisted laser desorption/ionisation mass spectrometry 

(MALDI-MS) 

 
Laser desorption ionisation (LDI) is an analytical technique that relies on using a 

laser beam that targets the analytes and generates gas phase ions (de Hoffmann and 

Stroobant, 2007). LDI is a hard ionisation technique (Dreisewerd, 2003) hence it was 

not widely used as analytes degraded due to direct laser exposure. This prompted 

further development by introducing an energy-absorbing matrix, which led to a soft 

ionisation technique, matrix-assisted laser desorption/ionisation (MALDI) (de 

Hoffmann and Stroobant, 2007; Ellis et al., 2007). MALDI-MS is a powerful, robust 

and a sensitive technique, which has routinely been used for the analysis of high 

molecular weight compounds such as proteins (Giebel et al., 2010; Saenz et al., 

1999; Tanaka et al., 1988; Karas and Hillenkamp, 1988; Burlingame et al., 1996). 

This advanced analytical technique was first invented by Karas and co-workers in 

1985 (Karas et al., 1985). Their work was carried out on the analysis of a number of 

amino acids and dipeptides for the purpose of studying laser desorption. The 

developed technique allowed for singly protonated peaks to be observed with little or 

no fragmentation (Karas et al., 1985).  

MALDI-MS works by producing molecular ions when a laser beam is applied to 

analytes which are mixed prior to analysis with a matrix and air dried on a stainless 

steel MALDI plate. The matrix is a highly concentrated solution of low molecular 

weight organic molecules capable of absorbing laser energy. A nitrogen ultraviolet 

(UV) laser at 337 nm is typically used to excite the analyte/matrix mixture. Figure 

1.2 below shows a schematic diagram of the MALDI-MS process (Giebel et al., 

2010; de Hoffmann and Stroobant, 2007; Sauer and Kliem, 2010).  
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MALDI-MS is a soft ionisation method which can be used to analyse intact 

unicellular organisms and their components, such as proteins and lipids, a feature 

which is vital for many biological applications (Cramer et al., 2005; Saenz et al., 

1999; van Baar, 2000; Lasch et al., 2009; Krishnamurthy and Ross, 1996; Sauer and 

Kliem, 2010; Claydon et al., 1996; Liu et al., 2007). MALDI-MS is capable of 

analysing heterogeneous samples without the need for laborious prior preparation 

and only small amounts of sample are required to perform routine analysis (de 

Hoffmann and Stroobant, 2007). 

 

Matrices  
 

In MALDI, sample and matrix molecules co-crystallise on a MALDI target plate, 

which is typically made of metal (Croxatto et al., 2012; Kafka et al., 2011; Nielen, 

1999). The matrix is an essential component of this process as it absorbs UV laser 

energy directly (van Baar, 2000; Dreisewerd, 2003; Giebel et al., 2010) and then 

transfers it to analyte molecules, thereby protecting the analyte from laser-induced 

degradation (Dekker and Branda, 2011; Schumann et al., 2014).  

Generally, matrices are acidic molecules (Lay Jr, 2000) that contain a conjugated 

double bond system capable of absorbing UV laser energy (Giebel et al., 2010; de 

Hoffmann and Stroobant, 2007). Choosing a suitable matrix for a specific 

Figure 1.2:  Schematic of the mechanism of matrix-assisted laser desorption/ionisation.  
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application can be challenging (Marvin et al., 2003). There is no single matrix, 

matrix deposition protocol or set of guidelines in the literature to assist in choosing 

the most compatible matrix and protocol for the analysis of microorganisms or other 

analytes. Hence, the matrix used in different applications is typically chosen on the 

basis of trial and error. The most suitable matrix used in any research study is highly 

dependent on certain factors, including the solubility of the matrix in different 

solvents and its ability to absorb laser energy at the wavelength used in the MALDI-

MS device (Croxatto et al., 2012; Kafka et al., 2011; Ashcroft, 2003; Nielen, 1999).  

Commonly employed matrices for the analysis of proteins and peptides are α-cyano-

4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) and ferulic acid (FA) (Giebel 

et al., 2010; Fenselau and Demirev, 2001). On the other hand, 2,5-dihydroxybenzoic 

acid (DHB), 2,4,6-thirhydroxacetophenone (THAP) and 6-aza-2-thiothymine (ATT) 

work well for the detection of low molecular weight compounds (Griffiths et al., 

2012; Giebel et al., 2010; Stübiger  et al., 2007; Shanta et al., 2012). Figure 1.3 

shows the distribution of two different matrices, SA and THAP with sample.   

  

 

 

 

 

 

Figure 1.3: Distribution of two different matrices with sample: (A) THAP and (B) SA on 

MALDI stainless plate examined using scanning electron microscopy. 
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Table 1.1: Some of the commonly used matrices with their molecular formulae 

 
Abbreviation 

 
Structure 

 
Name of Matrix 

DHB 

 

2,5 dihydroxybenzoic acid 

CHCA 

 

 

α-cyano-4-hydroxycinnamic acid 

 

DHAP 

 

2,6 dihydroxyacatophenone 

THAP 

 

2,4,6-thirhydroxacetophenone 

HABA 

 

2-4 (hydroxphenylaze) benzoic 

acid 

INN 

 

 

1,8,9-trihydroxy-anthracene, 

dithranol 

 

9-AA 

 
 

9-aminoacridine 

 

FA 

 
 

ferulic acid 

CA 

 

 

caffeic acid 

SA 

 

sinapinic  acid 
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Sample deposition methods 

 
There are several sample deposition methods that can be used for MALDI-MS 

analysis (Kussmann et al., 1997). Co-crystallisation occurs when the matrix and 

analyte are homogenised causing the formation of what are known as sweet or hot 

spots (Zenobi and Knochenmuss, 1998). Sample deposition methods are usually easy 

to follow. The most common methods used for sample preparation include mix, 

overlay, underlay and sandwich methods. The mix method involves mixing the 

matrix and the analyte on the MALDI plate, the overlay method involves spotting 

the analyte first followed by the matrix, the underlay method is the opposite of the 

overlay method and the sandwich method involves sandwiching the sample between 

two layers of the matrix (Giebel et al., 2010; Kafka et al., 2011; Nielen, 1999; Liu et 

al., 2007). 

 

Time of flight (TOF) mass analyser 

One of the most commonly used mass analysers with MALDI-MS is the time-of-

flight (TOF) mass analyser (Ashcroft, 1997; El-Aneed et al., 2009). Stephens was 

the first to publish the principles of TOF (Stephens, 1953). Briefly, the ions 

generated using the MALDI ion source are accelerated by means of high voltage and 

then travel along the flight tube to the detector (Ekman et al., 2008; de Hoffmann 

and Stroobant, 2007). The ions are separated in the flight tube and reach the detector 

at different times; smaller ions are detected first followed by larger ones, which have 

lower velocity and therefore need more time to traverse the length of the flight tube. 

The time required for an ion to arrive at the detector is measured and its value is 

proportional to the m/z and kinetic energy (KE) of ions (Watson and Sparkman, 

2008). A schematic diagram of the TOF method is shown in Figure 1.4 (Ekman et 

al., 2008; de Hoffmann and Stroobant, 2007). The time of flight can be calculated by 

using Equation 1.1:  

tTOF  
 

 
                

(1.1)  
  √

 

    
  𝜶 √                                                 
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where tTOF represents the travel time (t) needed for an ion to fly from the ion source 

to the detector, L represents the flight tube length, v denotes the ion velocity after 

acceleration, m/z denotes the mass-to-charge ratio of the ion, Ua is the electric 

potential difference that causes the ion to accelerate after leaving the ion source, and 

q corresponds to the charge on the ion (de Hoffmann and Stroobant, 2007; Ekman et 

al., 2008).   

 

There are several advantages of using TOF as a mass analyser including having the 

highest mass range in comparison to other mass analysers (Cotter, 2013; El-Aneed et 

al., 2009), having a very fast scan speed (Siuzdak, 1996), its simple design, being 

relatively inexpensive and being easy to use in conjunction with MALDI. However, 

despite the many advantages offered by TOF analysers, the main disadvantage of 

using this technique is its low mass resolution. The reflectron technique was 

developed to overcome this problem.  

                                 

 

 

 

 

 

 

The reflectron 

The reflectron and reflector refer to the same technology (Hillenkamp and Peter-

Katalinic, 2013). Mamyrin and colleagues (1973) were the first to describe the use of 

A2 

A1 

A2 A2 

A1 A1 
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Figure 1.4: Schematic of a time-of-flight mass analyser, where A1 and A2 are ions of 

different m/z values, with A2 having the smaller m/z. The larger molecule (A1) requires 

longer time to reach the detector. 
 

Detector  
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this technique. Briefly, a series of grids and ring electrodes are placed after the field 

free region and act as an ion mirror, leading to increased length of the flight path and 

a decrease in variations in the kinetic energy of ions with the same m/z value (de 

Hoffmann and Stroobant, 2007; Siuzdak, 1996). Ions with higher KE travel more 

deeply into the opposing electrical field since they have higher velocities and they 

continue travelling until their KE reaches zero (Ekman et al., 2008). Conversely, 

ions with lower KE are reflected more quickly towards the detector. Hence, ions 

with the same m/z but different initial KE reach the detector at the same time and are 

assigned the same m/z value. Using the reflectron results in increased resolution and 

prevents peak broadening due to the increased length of the flight path (Ekman et al., 

2008; de Hoffmann and Stroobant, 2007). The mechanism of this technique is 

summarised in Figure 1.5. 

 

Figure 1.5: Schematic diagram of MALDI-TOF-MS reflectron mode: A1 and A2 correspond 

to ions with the same m/z but different kinetic energies (KE) making A1 travel faster than 

A2. The reflectron reduces variations in initial KE between ions of the same m/z. A1 and A2 

arrive at the detector simultaneously.  

  

MALDI-TOF-MS applications 

Due to its many advantages, MALDI-TOF-MS has been applied in a number of 

research fields including cell biology, proteomics, lipidomics, medical research, 

health and safety and the food industry (Croxatto et al., 2012; Cobo, 2013; Lay, 
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2001; Schiller et al., 2004; Fuchs and Schiller, 2009; Stults, 1995; Santos et al. 

2105). Despite the popularity of this technique, there are several factors that need to 

be taken into consideration for the successful application of MALDI-TOF-MS: these 

include sample concentration, the matrix, matrix solvent, deposition method and 

ionisation mode (Giebel et al., 2010; Kafka et al., 2011; Šedo et al., 2011). 

One of the earliest studies that used MALDI-TOF-MS for the analysis of bacterial 

samples was carried out by Cain and colleague who reported that MALDI-TOF-MS 

can be used to distinguish between bacterial samples based on the proteins extracted 

from disrupted cells, leading to successful discrimination between Gram-positive 

and Gram-negative bacteria (Cain and Lubman, 1994). MALDI-TOF-MS was also 

used directly to analyse bacterial samples by Claydon and co-workers (1996) who 

examined 10 different bacterial species. Subsequently, other research groups used 

MALDI-TOF-MS for the analysis of different microbiological samples, such as 

whole cell analysis of different types of bacteria (Holland et al. 1996; Saenz et al., 

1999; Lasch et al., 2009; Krishnamurthy and Ross, 1996; Williams et al., 2003) and 

analysis of bacterial lipid and protein extracts (Gidden et al., 2009; Santos et al. 

2105; Lasch et al., 2014). One of the most recent studies that reported the 

application of this technique to microbiological research involved the use of 

MALDI-TOF-MS to optimise bacterial sample preparation and analysis protocols 

(Šedo et al., 2011).  

It is evident from the literature on MALDI-TOF-MS applications in different 

research fields, including microbiological research that this analytical tool can be 

used successfully to investigate a variety of biological processes at different cellular 

levels (van Baar, 2000; Santos et al. 2105; Gidden et al., 2009; Kafka et al., 2011). 

1.2.1.2 Liquid chromatography-mass spectrometry (LC-MS)  

 
Liquid chromatography (LC) can be used to separate compounds in complex 

mixtures. Separation is based on the affinity of molecules between two phases: a 

stationary phase and a mobile phase. Compounds that are attracted to the stationary 

phase will elute slowly, resulting in longer retention times, whereas compounds that 

are attracted to the mobile phase will elute quickly and hence have shorter retention 

times (Waston, 1999; Allwood and Goodacre, 2010). 
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LC has been widely used for analysing many low molecular mass compounds such 

as lipids, sugars and bile acids (Dunn, 2008). LC comes in different forms with the 

most common type used in lipidomics being reserved phase high performance liquid 

chromatography (RP-HPLC). Recent studies, however, have suggested the utility of 

hydrophilic interaction liquid chromatography (HILIC) (Buszewski and Noga, 

2012), commonly used for the analysis of small polar molecules. The field of 

lipidomics takes advantage of the use of RP-HPLC in conjunction with MS (LC-MS) 

allowing lipids to be both separated then resolved based on their mass-to-charge 

ratio for better characterisation. In addition, advances in column chemistries and 

bonded phases make HPLC one of the best separation options for the analysis of 

various hydrophobic and hydrophilic compounds. The added bonus of using HPLC 

over gas chromatography (GC), for example, is that GC can only be used for volatile 

compounds whereas HPLC only requires the compounds to dissolve in a liquid 

medium (Iseman, 1993).  

 

For many research fields such as lipidomics, there is a need to use a gradient of 

mobile phase for LC analysis. In RP-HPLC, for example, this phase starts with a 

high proportion of an aqueous phase and terminates with a high proportion of an 

organic solvent, such as methanol or acetonitrile. Polar compounds are eluted rapidly 

in this mobile phase followed by the elution of non-polar compounds (Allwood and 

Goodacre, 2010; Waston, 1999). 

 

Finally, one of the most common soft ionisation techniques used in conjunction with 

LC is electrospray ionisation (ESI). This ion source is best used for analysed 

different types of metabolites such as amino acid (Tolstikov and Fiehn, 2002) and 

phospholipids (Allwood et al., 2006). In general, there are different mass analysers 

that can be used with LC such as quadrupoles, TOF mass analysers and the Orbitrap 

(Allwood and Goodacre, 2010).  

Electrospray ionisation (ESI) 

 

Electrospray ionisation (ESI) was pioneered by Dole and co-workers in 1968 (Dole 

et al., 1968), and was first coupled to a mass spectrometer in 1984 by Yamashita and 

Fenn. This technique is used as a soft ionisation method to generate ions from 
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biological samples (de Hoffmann and Stroobant, 2007). The sample ions are 

transferred from a liquid solution to the gas phase by ion evaporation with little 

fragmentation (Ekman et al., 2008). This is accomplished by generating a fine spray 

of highly charged droplets in an electric field, allowing analytes of high molecular 

mass to have the desired mass-to-charge ratio for the MS range of analysis (Gaskell, 

1997). In this technique, a solution of the sample is allowed to pass through a 

stainless steel capillary (typical internal diameter of 75-100 μm) upon which a high 

voltage (3-6 kV) is applied to form a continuous spray of charged droplets in the 

form of a Taylor cone (Ashcroft, 1997). These charged droplets are subjected to 

either a drying inert gas (usually nitrogen) or heat to evaporate the solvent, resulting 

in the release of highly charged ions of the analyte (Watson and Sparkman, 2007; 

Siuzdak, 1996, Ekman et al., 2008). 

 

ESI has been used in the analysis of many biological samples including detection of 

proteins (Fenn et al., 1989; Vaidyanathan et al., 2004; Yates et al., 2009), lipid 

characterisation (Brugger, 2014; Eberlin et al., 2011) and analysis of intact 

microorganisms (Goodacre et al., 1999). This is due to several advantages associated 

with this technique including its wide mass range (100 Da to 100 MDa) in both 

negative and positive ionisation modes, good sensitivity and the formation of 

multiple ions needed for the analysis of high molecular mass analytes such as 

proteins. Moreover, ESI is a soft ionisation technique with limited fragmentation of 

molecules under analysis (Sauer and Kliem, 2010; Ekman et al., 2008). On the other 

hand, ESI also has a few disadvantages. For example, the signal of the analyte can be 

supressed because of competition between analytes for ionisation (ion suppression). 

Another complication associated with this technique is adduct formation, which 

renders ESI difficult to use with complex mixtures (Ekman et al., 2008).  

 

1.2.2. Vibrational spectroscopy 

Vibrational spectroscopy involves the use of several methods to measure the 

vibrations and rotations of functional groups within a molecule. These vibrations are 

due to an exchange in energy as a result of the radiation interacting with the sample. 

As a result of this interaction, molecular energy is increased which can lead to the 

predication of three various transitions including: electronic excitation, vibrational 



Chapter one  

40 
 

change and rotational change (Dunn et al., 2005). The incident radiation wavelength 

determines the type of event that will occur. Infrared (IR) spectroscopy and Raman 

spectroscopy are examples of vibrational spectroscopic techniques (Ellis et al., 2007; 

Dunn et al., 2005). These techniques can be used in many applications, such as the 

identification and characterisation of many biological samples including bacteria 

(Kirschner et al., 2001; López-Díez and Goodacre, 2003; Guibet et al., 2003). These 

two techniques are discussed in more detail below. 

 

1.2.2.1. Fourier-transform infrared spectroscopy  

Infrared (IR) spectroscopy is a very powerful tool that has been used for decades for 

the analysis of many biological molecules. This technique was first made available 

commercially in the 1940s, in which prisms were used to disperse infrared light. 

However, many medical and biological researchers avoided using this technology 

due to its low sensitivity, reproducibility and the prolonged periods of time required 

for the analysis of biological samples (Stuart, 1996; Dunn et al., 2005). 

Developments in this field are largely due to the introduction of mathematical 

processes, which led to improvements in the quality of the IR spectra and 

significantly reduced the time of analysis. This improved type of IR spectroscopy is 

referred to Fourier transform infrared (FT-IR) spectroscopy (Stuart, 1996). FT-IR 

spectroscopy has become a popular method used for screening many biological and 

medical samples due to the many advantages that this technique offers, including the 

possibility of high throughput (fast analysis time) and most importantly its non-

destructive effect on samples (Davis and Mauer, 2010). 

In FT-IR spectroscopy, the samples of interest are subjected to an infrared beam, 

which allows the functional groups and polar bonds to absorb light in a specific 

region of the spectrum. A change in the dipole moment is observed as a result of this 

absorption by different bonds, for example C=O, O-H and N-H, leading to various 

vibrational characteristics such as bending, stretching and rotating (Stuart, 1996; 

Ellis et al., 2007). On the other hand, some molecules such as O2 and N2 are not 

detected as there is no change in the dipole moment of their bonds (Stuart, 1996; 

Harrigan and Goodacre, 2003). 

Infrared spectra are divided into three main regions; the far (less than 400 cm
-1

), the 

mid (MIR) (4000-400 cm
-1

), and the near-infrared (NIR) (14285-4000 cm
-1

) regions. 
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Many applications employ the use of the mid-IR region area of the infrared spectrum 

since it provides rich information about the biochemical structure of compounds and 

the most fundamental vibrations are observed as sharp peaks in this region (Stuart 

1996; Lu et al., 2011; Dunn et al., 2005; Ellis et al., 2007; Harrigan and Goodacre, 

2003; Lasch et al., 2002). Figure 1.6 shows a spectrum produced by FT-IR 

spectroscopy. FT-IR spectroscopy is known to be a relatively inexpensive, rapid, 

reproducible, and sensitive method that can be used for fingerprinting purposes 

(Stuart, 1996; Baker et al., 2014). Moreover, FT-IR spectroscopy has the extremely 

useful advantage of high-throughput screening analysis of a large number of samples 

(hundreds/thousands per day). Due to these advantages, FT-IR spectroscopy has 

been used extensively in many research applications such as biological studies 

including identification of microorganisms (Naumann et al., 1991; Helm et al., 

1991; Mariey et al., 2001; Kirschner et al., 2001). However, the two main 

disadvantages of using this spectroscopy technique are: (1) water is absorbed in the 

MIR however; this drawback can be avoided by drying the samples before analysis 

is carried out; (2) its limited specificity and sensitivity compared to other techniques 

available such as mass spectrometry coupled with chromatography or stand-alone 

high resolution mass spectrometry (Dunn et al., 2005). 

 

Figure 1.6: A typical Fourier transform infrared (FT-IR) spectrum obtained from a bacterial 

sample. Highlighted are the main characterisation regions, where A= fatty acids, B= amide 

region attributed to peptides and proteins, C= carboxylic group vibrations of 

polysaccharides, proteins and free amino acids, D= polysaccharides, and E= the fingerprint 

region.  
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1.2.2.2 . Raman spectroscopy  

Raman spectroscopy is an important technique as it provides detailed information 

due to its sensitivity to chemical structure. Its use in biological studies has increased 

significantly due to the availability of modern lasers, allowing this spectroscopy 

technique to provide information on the structures of biological molecules including 

proteins, carbohydrates and lipids (Lu et al., 2011; Huang et al., 2010; Wen, 2007). 

The phenomenon of change in wavelength as a result of inelastic scattering of light 

by molecules was first observed by the Indian physicist and Noble Prize winner C.V. 

Raman in 1928 (Raman and Krishnan, 1928; Rajinder and Falk, 1998). Rayleigh 

scattering occurs when the energy remains constant on collision of a molecule or an 

atom with a photon. However, if nuclear motion is induced during the scattering 

process, a change in the wavelength of a scattered photon will occur resulting in 

inelastic scattering. In the process of inelastic scattering, the energy of the scattered 

photon is different from that of the incident photon, which results in the Raman 

effect (Raman, 1953; Tu and Chang, 2012). The term Raman scattering is used to 

refer to specific frequencies that are above or below the frequency that causes the 

incident beam to scatter. These features result in energy exchange due to photon-

molecule collision, allowing molecules to either gain or lose the minimal amount of 

energy which is emitted from radiation at various frequencies. A lower scattering 

radiation frequency is linked to an increase in molecular energy, known as Stokes 

radiation. By contrast, anti-Stokes radiation results from the loss of molecular energy 

associated with the molecule being excited at a higher frequency. In general, Raman 

scattering has a weak effect such that typically only one in 10
6
-10

8
 photons scatter 

inelastically (Smith and Dent, 2013; Ellis et al., 2013; Banwell, 1966). 

Raman spectroscopy has been known and used in many different fields for the 

detection and characterisation of biological samples (Gaus et al., 2006; Ashton et al., 

2011; López-Díez and Goodacre, 2003; Meisel et al., 2014; Bocklitz et al., 2009). In 

biological studies, the application of Raman spectroscopy has increased extensively 

from the late 1960s to the early 1970s for the determination of the structure of 

molecules. Raman spectroscopy has a significant advantage over FT-IR 

spectroscopy for studying biological analytes in aqueous solution since less 

interference occurs from water in this technique (Ellis et al., 2007; Smith and Dent, 

2013). Although Raman spectroscopy a great deal of useful information, however it 
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has several limitations including its weak effect, highly focussed beams, which may 

damage sensitive samples, and interference with fluorescence in biological samples 

(Schie and Huser, 2013; Ashton and Goodacre, 2011). 

 

1.2.3. Advantages and disadvantages of vibrational spectroscopy and 

mass spectrometry techniques 

Vibrational spectroscopies, such as FT-IR and Raman spectroscopy, and mass 

spectrometry techniques, such as MALDI-TOF-MS and LC-MS, have a number of 

advantages and disadvantages in studying biological samples such as bacteria. These 

are summarised in Table 1.2 below. 
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Table1.2: Advantage and disadvantages of FT-IR spectroscopy, Raman spectroscopy,  

MALDI-TOF-MS and LC-MS techniques 

 

Analytical technique Advantages Disadvantages 

FT-IR spectroscopy 

 Easy sample preparation  May need expertise in 

chemometric analysis of 

data

 Simple to use  Water band is very strong 

 Sensitive technique  Different conditions (e.g. 

growth time and culture 

medium) can cause 

variations in spectra 

 FT-IR spectra provide 

general information about 

bacteria

 Inexpensive compared to 

several commonly used 

techniques

 Rapid analysis  

Raman spectroscopy 

 Provides information on 

biological structures

 Raman effect is weak 

 Water band is negligible  Interference with 

fluorescence 

 Rapid 

 Reliable  

 Able to analysis small 

quantities of samples

 

MALDI-TOF-MS 

 Rapid and specific 

detection of whole bacteria

 MALDI matrix cluster 

ions obscure low m/z 

species (< 600) leading to 

matrix interference with 

small molecules 

 Gentle ionisation 

technique

 Ability to analyse high 

molecular weight 

compounds (e.g. protein) 

using a wide mass range

 Homogeneity from spot to 

spot is variable 

 Sub-picomole sensitivity  Adduct formation

 Wide array of matrices  

LC-MS 

 Separation and 

identification of any types 

of compounds present in 

bacteria

 Requirement of solvents 

for extraction

 Gentle ionisation  Time-consuming

 Excellent detection  Generation of complex 

data 

 Reproducible  Adduct formation 

 Quantitative  Ion suppression and 

competition for ionisation 

 Information coolected from (Sauer and Kliem, 2010; Siuzdak, 1996; Lartigue, 2013; Lay, 2001; 

Davis and Mauer, 2010; Naumann, 2001; Ferraro et al., 2003; Huang et al., 2010; Huang et al. 

2004; van Baar, 2000).  
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1.3. Data analysis  

Multivariate analysis (MVA) includes statistical methods which are used when 

visualising and analysing different variables in data obtained from more than one 

sample.  In addition, relationships between various independent variables can be 

measured using these statistical techniques with initial assumption that all variables 

are equivalent in importance. Numerous MVA techniques have been used to analyse 

spectra generated from mass spectrometry (MS) and vibrational spectroscopy 

instruments. MVA is needed to simplify these data because MS and spectroscopy 

instruments generate complex data for analytes from various samples which are rich 

in information. For example, a spectrum that is generated from MALDI-TOF-MS 

consists of hundreds of m/z peaks which can be simplified using MVA (Manly, 

1994; Goodacre, 2007). Therefore, MVA has been used for analysing data obtained 

from the analysis of bacterial samples using analytical techniques described in 

Section 1.2.  

In general, MVA can be divided into two types of analysis: supervised and 

unsupervised analyses (Duda et al., 2012; Goodacre, 2007). The data generated from 

the analytical techniques used in the studies described in this thesis fall into a 

number of categories, an example of each category will be discussed in more detail 

below. 

 

1.3.1  Unsupervised techniques 

Unsupervised techniques are generally employed without the need for prior 

information regarding the classification and relationships between samples of 

interest. This technique describes the similarities and differences between the data 

generated using the analytical techniques. The data are subjected to a chemometric 

analysis algorithm used to analyse the data followed by visualisation of relationship 

patterns. Principal components analysis (PCA) is one of the most commonly used 

unsupervised techniques, which is discussed below (Goodacre et al., 2007; Manly, 

1994). 

1.3.1.1  Principal Components Analysis (PCA) 

 
In general, multivariate analysis starts with applying PCA to identify patterns in the 

data matrix obtained from MS and spectroscopy data (Goodacre, 2003; Boccard et 
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al., 2010). PCA can be used to simplify the collected spectral data (referred to as X 

data) by reducing the number of dimensions into smaller numbers known as 

principal components (PCs), (Jolliffe, 2014) while variability in the original data is 

represented by the PC indices. The first few PCs can often account for more than 

90% of the total explained variance (TEV), where the first PC contains a large 

amount of data, which is subsequently reduced in successive PCs. The differences 

and similarities can be visualised and categorised rapidly by plotting the data in 

space either in 2D or 3D, which is defined by the PC scores (Manly, 1994; 

Goodacre, 200; Murtagh et al., 2012). Figure 1.7 represents a schematic of a PCA 

plot.  

 

 

Figure 1.7: A schematic of a typical principal components analysis (PCA) plot. PCA reduces 

the number of variables by forming a new set of data called PCs. Three different groups are 

shown using different symbols for different classes. 

 

1.3.2 Supervised techniques 

Supervised techniques are also powerful tools for the analysis of complex data, but 

can only be used when the classes or values of responses are predictable (this 

information is also known as Y data), which are linked with sample input (also 

known as X data). The idea behind using supervised techniques is to construct a 

model that will show the association between the X and Y data. Discriminant 

function analysis (DFA) is one of many supervised methods that can be used to 

analyse data when prior biochemical information is known. Statistical algorithms 
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obtained from supervised methods usually require a priori knowledge with regards 

to class structure. Hence, the statistical algorithms will be able to distinguish 

between samples based on these classes (Goodacre, 2007). However, validation of 

these supervised techniques is required in order to minimise any bias and over fitting 

of the data. The bootstrapping method is one of the tools that can be applied to 

validate the results that are generated from analytical methods that generate lots of 

information per sample. This method can be carried out by separating the samples 

into two different sets: a training set (used to generate the model) and a test set (used 

to validate the model). This process is repeated many times (hence the term 

bootstrap) so that the data are resample to allow statistical validation (Efron and 

Tibshirani, 1994; Mariey et al., 2001). 

1.3.2.1  Discriminant Function Analysis (DFA)  

 
DFA is used to minimize within group variance from a group of samples from the 

same sample class and maximise between group variance of different classes. This 

chemometric technique is based on the true representation of the mean vectors of the 

PCs of the sample of interest, and it calculates the distance between the centres of 

each PC for grouping purposes (Johnson et al., 2003; Kaderbhai et al., 2003). Higher 

percentages of PCs that are correctly allocated to each group indicate better 

separation, which means that groups are different from each other (Manly, 1994). By 

contrast, closer distances between the centres of the vectors of each PC indicate 

more similarities identified between the groups. Figure 1.8 represents a schematic of 

a DFA plot. 

 Figure 1.8: A schematic of a discriminant function analysis (DFA) plot; a 

supervised method that allows the reduction of intra- group variances and increases 

inter-group variances. 
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In addition, other chemometric analysis methods have been utilised in the present 

work including: partial least squares discriminant analysis (PLS-DA), 

hierarchical cluster analysis (HCA), Pareto optimality (PO), fraction factorial 

design (FFD) and Procrustes distance analysis as described in the relevant 

chapters to each of these methods. 

 

 

1.4 Aims and Objectives  

 

In response to the needs of clinicians and microbiologists, the main aim of this PhD 

research project was to develop research methods that can be used to classify and 

characterise a variety of bacteria including Bacillus spp. and Enterococcus faecium. 

To achieve this aim, a number of analytical techniques were used in combination 

with multivariate analysis (MVA). Specifically, the objectives of this research were: 

 

(i) Assessment of various matrices and deposition methods to determine the 

optimal conditions for protein analysis using MALDI-TOF-MS. The 

optimised methods could then be applied to the analysis of proteins in 

intact bacteria from 34 Bacillus strains. 

(ii) Assessment and exploratory analysis of experimental factors, including: 

choice of matrix, matrix additives, additive concentration, matrix 

preparation methods and matrix deposition methods, in order to find the 

optimal condition for the analysis of complex lipid mixture using 

MALDI-TOF-MS in combination with advanced chemometrics. 

(iii) Analysis of lipids extracted from 33 strains of Bacillus bacteria to 

classify bacteria using MALDI-TO-MS and LC-MS in combination with 

advanced chemometrics. 

(iv) Application of the optimised MALDI-TOF-MS protocols in (i) to analyse 

35 isolates from Enterococcus faecium. FT-IR and Raman spectroscopies 

were also used as complementary analytical tools to confirm 

classification of enterococci.  



Chapter one  

49 
 

1.5 References  

Abersold, R. and Mann, M. 2003. Mass spectrometry-based proteomics. Nature, 

422, 198-207 

 

Allwood, J. W. and Goodacre, R. 2010. An introduction to liquid chromatography 

mass spectrometry instrumentation applied in plant metabolomic analyses. 

Phytochemical Analysis, 21, 33-47 

 

Allwood W., J., Ellis, D. I., Heald, J. K., Goodacre, R. and Mur, L. A. J. 2006. 

Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol 

phospholipids are major discriminatory non-polar metabolites in responses 

by Brachypodium distachyon to challenge by Magnaporthe grisea. The Plant 

Journal, 46, 351-368 

 

Anhalt, J. P. and Fenselau, C. 1975. Identification of bacteria using mass 

spectrometry. Analytical Chemistry, 47, 219-225 

 

Ashcroft, A. E. 1997. Ionisation methods in organic mass spectrometry, Chapter 1-

Cambridge, Royal Society of Chemistry, pp.15–16 

 

Ashcroft, A. E. 2003. Protein and peptide identification: the role of mass 

spectrometry in proteomics. Natural Product Reports, 20, 202-215 

 

Ashton, L., Lau, K., Winder, C. L. and Goodacre, R. 2011. Raman spectroscopy: 

lighting up the future of microbial identification. Future Microbiology, 6, 

991-997 

 

Ashton, L. and Goodacre, R., 2011. Application of deep UV resonanace Raman 

spectroscopy to bioprocessing, Raman Spectroscopy-European 

Pharmaceutical Review, 16, 46-49   

 

Baker, M. J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H. J., Dorling, K. M., 

Fielden, P. R., Fogarty, S. W., Fullwood, N. J., Heys, K. A., Hughes, C., 

Lasch, P., Martin-Hirsch, P. L., Obinaju, B., Sockalingum, G. D., Sulé-Suso, 

J., Strong, R. J., Walsh, M. J., Wood, B. R., Gardner, P. and Martin, F. L. 

2014. Using Fourier transform IR spectroscopy to analyse biological 

materials. Nature Protocols, 9, 1771-1791 

 

Banwell, C. N. 1966. Fundamentals of molecular spectroscopy, London, McGraw-

Hill  

 

Beveridge, T. J. 2001. Use of the Gram stain in microbiology. Biotechnic and 

Histochemistry, 76, 111-118 

 

Boccard, J., Veuthey, J.-L. and Rudaz, S. 2010. Knowledge discovery in 

metabolomics: An overview of MS data handling. Journal of Separation 

Science, 33, 290-304 

 



Chapter one  

50 
 

Bocklitz, T., Putsche, M., Stüber, C., Käs, J., Niendorf, A., Rösch, P. and Popp, J. 

2009. A comprehensive study of classification methods for medical 

diagnosis. Journal of Raman Spectroscopy, 40, 1759-1765 

 

Brugger, B., 2014. Lipidomics: Analysis of the Lipid Composition of Cells and 

Subcellular Organelles by Electrospray Ionization Mass Spectrometry. 

Annual Review of Biochemistry, 83, 79-98 

 

Burlingame, A. L., Boyd, R. K. and Gaskell, S. J. 1996. Mass Spectrometry. 

Analytical Chemistry, 68, 599-652 

 

Buszewski, B. and Noga, S. 2012. Hydrophilic interaction liquid chromatography 

(HILIC) a powerful separation technique. Analytical and Bioanalytical 

Chemistry, 402, 231-247 

 

Cain, T. C. and Lubman, W. J., 1994, Differentiation of bacteria using protein 

profiles from matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry, Rapid Communication Mass Spectrometry, 8, 1026-1030 

 

Claydon, M. A., Davey, S. N., Edwards-Jones, V. and Gordon, D. B. 1996. The 

rapid identification of intact microorganisms using mass spectrometry. 

Nature Biotechnology, 14, 1584-1586 

 

Cobo, F. 2013. Application of MALDI-TOF mass spectrometry in clinical virology: 

a review. The Open Virology Journal, 7, 84 

 

Coffey, A. G., Daly, C. and Fitzgerald, G. 1994. The impact of biotechnology on the 

dairy industry. Biotechnology Advances, 12, 625-633 

 

Cotter, R. 2013. High Energy Collisions on tandem time-of-flight mass 

spectrometers. Journal of the American Society for Mass Spectrometry, 24, 

657-674 

 

Croxatto, A., Prod'hom, G. and Greub, G. 2012. Applications of MALDI-TOF mass 

spectrometry in clinical diagnostic microbiology. Federation of European 

Microbiological Societies Microbiology Reviews, 36, 380-407 

 

Cramer, R., Gobom, J. and Nordhoff, E. 2005. High-throughput proteomics using 

matrix-assisted laser desorption/ionization mass spectrometry. Expert Review 

of Proteomics, 2, 407-420 

Das, S. and Dash, H. R. 2014. Microbial Biotechnology-A Laboratory Manual for 

Bacterial Systems, India, Springer 

 

de Hoffmann, E. and Stroobant, V. 2007. Mass Spectrometry: Principles and 

Applications, Chichester, John Wiley and Sons, pp.15-131 

 

Dekker, J. P. and Branda, J. A. 2011. MALDI-TOF Mass Spectrometry in the 

Clinical Microbiology Laboratory. Clinical Microbiology Newsletter, 33, 87-

93 



Chapter one  

51 
 

 

Dole, M., Mack, L., Hines, R., Mobley, R., Ferguson, L. and Alice, M. D. 1968. 

Molecular beams of macroions. The Journal of Chemical Physics, 49, 2240-

2249 

 

Davis, R. and Mauer, L. 2010. Fourier transform infrared (FT-IR) spectroscopy: a 

rapid tool for detection and analysis of foodborne pathogenic bacteria. In: 

Méndez-Vilas A. (Ed.), Current research, technology and education topics in 

applied microbiology and microbial biotechnology, Volume II. pp.1582-

1594. Formatex Research Center: Badajoz, Spain.  

 

Dunn, W. B. 2008. Current trends and future requirements for the mass 

spectrometric investigation of microbial, mammalian and plant metabolomes. 

Physical Biology, 5, 011001 

 

Dunn, W. B., Bailey, N. J. C. and Johnson, H. E. 2005. Measuring the metabolome: 

current analytical technologies. Analyst, 130, 606-625 

 

Duda, R. O., Hart, P. E. and Stork, D. G. 2012. Pattern classification, New York, 

John Wiley and Sons, pp.16-17 

 

Dreisewerd, K. 2003. The desorption process in MALDI. Chemical Reviews, 103, 

395-426 

Eberlin, L. S., Ferreira, C. R., Dill, A. L., Ifa, D. R. and Cooks, R. G. 2011. 

Desorption electrospray ionisation mass spectrometry for lipid 

characterisation and biological tissue imaging. Biochimica et Biophysica 

Acta (BBA) Molecular and Cell Biology of Lipids, 1811, 946-960 

 

Efron, B. and Tibshirani, R. J. 1994. An introduction to the bootstrap, Chapman and 

Hall/CRC press. 

 

Ekman, R., Silberring, J., Westman-Brinkmalm, A. and Kraj, A. 2008. Mass 

Spectrometry: Instrumentation, Interpretation, and Applications, New Jersey, 

John Wiley and Sons, pp.26-69 

 

El-Aneed, A., Cohen, A. and Banoub, J. 2009. Mass spectrometry, review of the 

basics: Electrospray, MALDI, and commonly used mass analysers. Applied 

Spectroscopy Reviews, 44, 210-230 

 

Ellis, D. I., Cowcher, D. P., Ashton, L., O'hagan, S. and Goodacre, R. 2013. 

Illuminating disease and enlightening biomedicine: Raman spectroscopy as a 

diagnostic tool. Analyst, 138, 3871-3884 

Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. and Goodacre, R. 2007. 

Metabolic fingerprinting as a diagnostic tool, Pharmacogenomics, 8, 1243-66 

   

Olsen, J. E. 2000. DNA-based methods for detection of food-borne bacterial 

pathogens. Food Research International, 33, 257-266 

 



Chapter one  

52 
 

Emerson, D., Agulto, L., Liu, H. and Liu, L. 2008. Identifying and characterising 

bacteria in an era of genomics and proteomics. BioScience, 58, 925-936 

 

Emon, J. M. V. and Lopez-Avila, V. 1992. Immunochemical methods for 

environmental analysis. Analytical Chemistry, 64, 78A-88A 

 

Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. and Whitehouse, C. M. 1989. 

Electrospray ionisation for mass spectrometry of large biomolecules. Science, 

246, 64-71 

 

Ferraro, J. R., Nakamoto, K. and Brown, C. W. 2003. Introductory raman 

spectroscopy, 2
nd

 Ed., Academic Press: London, pp.1-27 

Fenselau, C. and Demirev, P. A. 2001. Characterisation of intact microorganisms by 

MALDI mass spectrometry. Mass Spectrometry Reviews, 20, 157-171 

 

Freiwald, A. and Sauer, S. 2009. Phylogenetic classification and identification of 

bacteria by mass spectrometry. Nature Protocols, 4, 732-742 

 

Fuchs, B. and Schiller, J. 2009. Application of MALDI-TOF mass spectrometry in 

lipidomics. European Journal of Lipid Science and Technology, 111, 83-98 

 

Gaskell, S. J. 1997. Electrospray: principles and practice. Journal of Mass 

Spectrometry, 32, 677-688 

 

Gaus, K., Rösch, P., Petry, R., Peschke, K. D., Ronneberger, O., Burkhardt, H., 

Baumann, K. and Popp, J. 2006. Classification of lactic acid bacteria with 

UV-resonance Raman spectroscopy. Biopolymers, 82, 286-290 

 

Gidden, J., Denson, J., Liyanage, R., Ivey, D. M. and Lay Jr, J. O. 2009. Lipid 

compositions in Escherichia coli and Bacillus subtilis during growth as 

determined by MALDI-TOF and TOF/TOF mass spectrometry. International 

Journal of Mass Spectrometry, 283, 178-184 

 

Giebel, R., Worden, C., Rust, S. M., Kleinheinz, G. T., Robbins, M. and Sandrin, T. 

R. 2010. Microbial fingerprinting using matrix-assisted laser desorption 

ionisation time-of-flight mass spectrometry (MALDI-TOF MS): applications 

and challenges. Advances in Applied Microbiology, 71, 149-84 

 

Goodacre, R. 2007. Metabolomics of a superorganism. The Journal of Nutrition, 

137, 259S-266S 

 

Goodacre, R., Broadhurst, D., Smilde, A., Kristal, B., Baker, J., Beger, R., Bessant, 

C., Connor, S., Capuani, G., Craig, A., Ebbels, T., Kell, D., Manetti, C., 

Newton, J., Paternostro, G., Somorjai, R., Sjöström, M., Trygg, J. and 

Wulfert, F. 2007. Proposed minimum reporting standards for data analysis in 

metabolomics. Metabolomics, 3, 231-241 

 



Chapter one  

53 
 

Goodacre, R., Heald, J. K. and Kell, D. B. 1999. Characterisation of intact 

microorganisms using electrospray ionisation mass spectrometry. FEMS 

Microbiology Letters, 176, 17-24 

 

Goodacre, R. 2003. Explanatory analysis of spectroscopic data using machine 

learning of simple interpretable rules. Vibrational Spectroscopic, 32, 33-45  

 

Gross, J. H. 2004. Mass spectrometry: a textbook, Germany, Springer, pp.2-5 

 

Harrigan, G. G. and Goodacre, R. 2003. Metabolic Profiling: its role in biomarker 

discovery and gene function analysis, Norwell, Springer 

 

Helm, D., Labischinski, H., Schallehn, G. and Naumann, D. 1991. Classification and 

identification of bacteria by Fourier-transform infrared spectroscopy. Journal 

of General Microbiology, 137, 69-79 

 

Hillenkamp, F. and Peter-Katalinic, J. 2013. MALDI MS: a practical guide to 

instrumentation, methods and applications, Weinheim, John Wiley and Sons 

 

Holland, R. D., Rafii, F., Heinze, T. M., Sutherland, J. B., Voorhees, K. J. And Lay, 

J. O. 2000. Matrix‐assisted laser desorption/ionization time‐of‐flight mass 

spectrometric detection of bacterial biomarker proteins isolated from 

contaminated water, lettuce and cotton cloth. Rapid Communications in Mass 

Spectrometry, 14, 911-917 

Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, 

K. J. and Lay, J. O. 1996. Rapid Identification of Intact Whole Bacteria Based 

on Spectral Patterns using Matrix-assisted Laser Desorption/Ionisation with 

Time-of-flight Mass Spectrometry. Rapid Communications in Mass 

Spectrometry, 10, 1227-1232 

 

Huang, W. E., Griffiths, R. I., Thompson, I. P., Bailey, M. J. and Whiteley, A. S. 

2004. Raman Microscopic Analysis of Single Microbial Cells. Analytical 

Chemistry, 76, 4452-4458 

Huang, W. E., Li, M., Jarvis, R. M., Goodacre, R. and Banwart, S. A. 2010. Shining 

Light on the Microbial World: The Application of Raman 

Microspectroscopy, Advances in Applied Microbiology. 70,153-186  

 

Iseman, M. D. 1993. Treatment of Multidrug-Resistant Tuberculosis. New England 

Journal of Medicine, 329, 784-791 

 

Janda, J. M. and Abbott, S. L. 2002. Bacterial identification for publication: when is 

enough enough? Journal of Clinical Microbiology, 40, 1887-1891 

 

Johnson, H. E., Broadhurst, D., Goodacre, R. and Smith, A. R. 2003. Metabolic 

fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919-928 

 

Jolliffe, I. 2014. Principal Component Analysis. Wiley StatsRef: Statistics Reference 

Online. John Wiley and Sons, pp.1-2 



Chapter one  

54 
 

 

Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R. and Kell, D. B. 2003. 

Functional genomics via metabolic footprinting: monitoring metabolite 

secretion by Escherichia coli tryptophan metabolism mutants using FT–IR 

and direct injection electrospray mass spectrometry. Comparative and 

Functional Genomics, 4, 376-391 

 

Kafka, A. P., Kleffmann, T., Rades, T. and Mcdowell, A. 2011. The application of 

MALDI TOF MS in biopharmaceutical research. International Journal of 

Pharmaceutics, 417, 70-82 

 

Karas, M., Bachmann, D. and Hillenkamp, F. 1985. Influence of the wavelength in 

high-irradiance ultraviolet laser desorption mass spectrometry of organic 

molecules. Analytical Chemistry, 57, 2935-2939 

 

Karas, M. and Hillenkamp, F. 1988. Laser desorption ionisation of proteins with 

molecular masses exceeding 10,000 daltons. Analytical Chemistry, 60, 2299-

2301 

 

Kim, S., Reuhs, B. L. and Mauer, L. J. 2005. Use of Fourier transform infrared 

spectra of crude bacterial lipopolysaccharides and chemometrics for 

differentiation of Salmonella enterica serotypes. Journal of Applied 

Microbiology, 99, 411-417 

 

Kirschner, C., Maquelin, K., Pina, P., Thi, N. N., Choo-Smith, L.-P., Sockalingum, 

G., Sandt, C., Ami, D., Orsini, F. and Doglia, S. 2001. Classification and 

identification of enterococci: a comparative phenotypic, genotypic, and 

vibrational spectroscopic study. Journal of Clinical Microbiology, 39, 1763-

1770 

 

Krishnamurthy, T. and Ross, P. L. 1996. Rapid Identification of Bacteria by Direct 

Matrix-assisted Laser Desorption/Ionisation Mass Spectrometric Analysis of 

Whole Cells. Rapid Communications in Mass Spectrometry, 10, 1992-1996 

 

Kussmann, M., Nordhoff, E., Rahbek-Nielsen, H., Haebel, S., Rossel-Larsen, M., 

Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll-Kristensen, A., Palm‖, L. 

and Roepstorff, P. 1997. Matrix-assisted laser desorption/ionisation mass 

spectrometry sample preparation techniques designed for various peptide and 

protein analytes. Journal of Mass Spectrometry, 32, 593-601 

 

Lasch, P., Beyer, W., Nattermann, H., Staemmler, M., Siegbrecht, E., Grunow, R. 

and Naumann, D. 2009. Identification of Bacillus anthracis by using matrix-

assisted laser desorption ionisation-time of flight mass spectrometry and 

artificial neural networks. Applied and Environmental Microbiology, 75, 

7229-7242 

Lasch, P., Haensch, W., Lewis, E. N., Kidder, L. H. and Naumann, D. 2002. 

Characterisation of colourectal adenocarcinoma sections by spatially resolved 

FT-IR microspectroscopy. Applied Spectroscopy, 56, 1-9 

 



Chapter one  

55 
 

Lasch, P., Fleige, C., Stammler, M., Layer, F., Nubel, U., Witte, W. and Werner, G. 

2014. Insufficient discriminatory power of MALDI-TOF mass spectrometry 

for typing of Enterococcus francium and Staphylococcus aureus strains. 

Journal of Microbiology Methods, 100, 58-69 

 

Lay Jr, J. O. 2001. MALDI-TOF mass spectrometry of bacteria. Mass Spectrometry 

Reviews, 20, 172-194 

 

Lay Jr, J. O. 2000. MALDI-TOF mass spectrometry and bacterial taxonomy. Trac 

Trend Analytical Chemistry, 19, 507-516 

 

Lartigue, M.-F. 2013. Matrix-assisted laser desorption ionization time-of-flight mass 

spectrometry for bacterial strain characterisation. Infection, Genetics and 

Evolution, 13, 230-235 

Liu, H., Du, Z., Wang, J. and Yang, R. 2007. Universal sample preparation method 

for characterisation of bacteria by matrix-assisted laser desorption ionization-

time of flight mass spectrometry. Applied and environmental microbiology, 

73, 1899-1907 

López-Díez, E. C. and Goodacre, R. 2003. Characterisation of microorganisms using 

UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry, 

76, 585-591 

 

Luzzatto-Knaan, T., Melnik, A. V. and Dorrestein, P. C. 2015. Mass spectrometry 

tools and workflows for revealing microbial chemistry. Analyst, 140, 4949-

4966 

 

Makarov, A. 2000. Electrostatic axially harmonic orbital trapping:  a high-

performance technique of mass analysis. Analytical Chemistry, 72, 1156-

1162 

 

Manly, B. F. J. 1994. Multivariate Statistical Methods: A Primer, London, Chapman 

and Hall, pp. 12-17 

 

Mariey, L., Signolle, J. P., Amiel, C. and Travert, J. 2001. Discrimination, 

classification, identification of microorganisms using FTIR spectroscopy and 

chemometrics. Vibrational Spectroscopy, 26, 151-159 

 

Marvin, L. F., Roberts, M. A. and Fay, L. B. 2003. Matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry in clinical chemistry. 

Clinica Chimica Acta, 337, 11-21 

 

Meisel, S., Stöckel, S., Rösch, P. and Popp, J. 2014. Identification of meat-

associated pathogens via Raman microspectroscopy. Food Microbiology, 38, 

36-43 

 

Murtagh, F. and Heck, A. 2012. Multivariate data analysis, Springier and Business 

Media, PP.17-19 

 



Chapter one  

56 
 

Naumann, D., Helm, D. and Labischinski, H. 1991. Microbiological 

characterisations by FT-IR Spectroscopy. Nature, 351, 81-82 

 

Naumann, D. 2001. FT-infrared and FT-Raman spectroscopy in biomedical research. 

Applied Spectroscopy Reviews, 36, 239-298 

Nester, E. W. 2001. Microbiology: a Human Perspective, 3
rd

 Edition, the University 

of Michigan, McGraw-Hill 

 

Nicolaou, N., Xu, Y. and Goodacre, R. 2011. MALDI-MS and multivariate analysis 

for the detection and quantification of different milk species. Analytical and 

Bioanalytical Chemistry, 399, 3491-3502 

 

Nielen, M. W., 1999. MALDI time-of-flight mass spectrometry of synthetic 

polymer. Mass Spectrometry Reviews, 19, 309-344 

 

Nomura, F. 2015. Proteome-based bacterial identification using matrix-assisted laser 

desorption ionization–time of flight mass spectrometry (MALDI-TOF MS): 

A revolutionary shift in clinical diagnostic microbiology. Biochimica et 

Biophysica Acta (BBA), 1854, 528-537 

Olive, D. M. and Bean, P. 1999. Principles and applications of methods for DNA-

based typing of microbial organisms. Journal of Clinical Microbiology, 37, 

1661-1669 

 

Parisi, D., Magliulo, M., Nanni, P., Casale, M., Forina, M. and Roda, A. 2008. 

Analysis and classification of bacteria by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry and a chemometric 

approach. Analytical and Bioanalytical Chemistry, 391, 2127-2134 

 

Peeling, R. W., Smith, P. G. and Bossuyt, P. M. 2008. A guide for diagnostic 

evaluations. Nature Reviews Microbiology, 8, S2-S6 

 

Rajinder, S. and Falk, R. 1998. Sir CV Raman and the Story of the Nobel Prize. 

Current Science Bangalore, 75, 965-971 

 

Raman, C. V. 1953. A new radiation. Proceedings of the Indian Academy of 

Sciences Section A, 37, 333-341 

 

Raman, C. V. and Krishnan, K. S. 1928. A new type of secondary radiation. Nature, 

121, 501-502 

Lu, X., Al-Qadiri, H. M., Lin, M. and Rasco B. A., 2011. Application of mid-

inferred and Raaman spectroscopy to the study of bacteria. Food Bioprocess 

Technology, 4, 919-935  

 

Saenz, A. J., Petersen, C. E., Valentine, N. B., Gantt, S. L., Jarman, K. H., Kingsley, 

M. T. and Wahl, K. L. 1999. Reproducibility of matrix‐assisted laser 

desorption/ionization time‐of‐flight mass spectrometry for replicate bacterial 

culture analysis. Rapid Communications in Mass Spectrometry, 13, 1580-

1585 



Chapter one  

57 
 

Sauer, S. and Kliem, M. 2010. Mass spectrometry tools for the classification and 

identification of bacteria. Nature Reviews Microbiology, 8, 74-82 

 

Sauer, S., Lange, B. M. H., Gobom, J., Nyarsik, L., Seitz, H. and Lehrach, H. 2005. 

Miniaturization in functional genomics and proteomics. Nature Reviews 

Genetics, 6, 465-476 

 

Santos, T., Capelo, J., Santos, H. M., Olverira, I., Mainho, C., Goncalves, A., 

Araujo, J. E. Poeta, P. and Igerjas, G. 2015. Use of MALDI-TOF mass 

spectrometry fingerprinting to characterise Enterococcus spp. and 

Escherichia coli strains. Journal of Proteomics, Epub ahead of print, 127, 

321-331 

   

Schiller, J., Süß, R., Arnhold, J., Fuchs, B., Leßig, J., Müller, M., Petković, M., 

Spalteholz, H., Zschörnig, O. and Arnold, K. 2004. Matrix-assisted laser 

desorption and ionisation time-of-flight (MALDI-TOF) mass spectrometry in 

lipid and phospholipid research. Progress in Lipid Research, 43, 449-488 

 

Schumann, P. and Maier, T. 2014. Chapter 13 - MALDI-TOF mass spectrometry 

applied to classification and identification of bacteria. Methods in 

Microbiology. 41, 275-306 

 

Scigelova, M. and Makarov, A. 2006. Orbitrap mass analyser – overview and 

applications in proteomics. Proteomics, 6, 16-21 

 

Schie, I. W. and Huser, T., 2013, Methods and applications of Raman 

Microspectroscopy to single-cell analysis, Applied Spectroscopy, 67, 813-829  

 

Šedo, O., Sedláček, I. and Zdráhal, Z. 2011. Sample preparation methods for 

MALDI-MS profiling of bacteria. Mass Spectrometry Reviews, 30, 417-434 

 

Sintchenko, V., Iredell, J. R. and Gilbert, G. L. 2007. Pathogen profiling for disease 

management and surveillance. Nature Reviews Microbiology, 5, 464-470 

 

Siuzdak, G. 1996. Mass spectrometry for biotechnology, Elsevier Science, San 

Diego, CA, Academic Press, pp.4-54  

 

Smith, E. and Dent, G. 2013. Modern Raman spectroscopy: a practical approach, 

John Wiley and Son, pp.1-80 

 

Spengler, B. and Kaufmann, R. 1992. Gentle probe for tough molecules: matrix-

assisted laser desorption mass spectrometry. Analysis, 20, 91-101 

 

Stübiger, G. and Belgacem, O. 2007. Analysis of lipids using 2, 4, 6-

trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Analytical 

Chemistry, 79, 3206-3213 

 

Shanta, S. R., Kim, T. Y., Hong, J. H., Lee, J. H., Shin, C. Y., Kim, K.-H., Kim, Y. 

H., Kim, S. K. and Kim, K. P. 2012. A new combination MALDI matrix for 



Chapter one  

58 
 

small molecule analysis: application to imaging mass spectrometry for drugs 

and metabolites. Analyst, 137, 5757-5762 

 

Stuart, B. 1996. Modern infrared spectroscopy, Chichester, John Wiley and Sons 

Ltd, pp.1-24 

 

Stults, J. T. 1995. Matrix-assisted laser desorption/ionisation mass spectrometry 

(MALDI-MS). Current Opinion in Structural Biology, 5, 691-698 

 

Wolff, M. M. and Stephens, W. 1953. A pulsed mass spectrometer with time 

dispersion. The Review of Scientific Instruments, 24, 616 

 

Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. and Matsuo, T. 

1988. Protein and polymer analyses up to m/z 100 000 by laser ionisation 

time-of-flight mass spectrometry. Rapid Communications in Mass 

Spectrometry, 2, 151-153  

 

Tolstikov, V. V. and Fiehn, O. 2002. Analysis of highly polar compounds of plant 

origin: combination of hydrophilic interaction chromatography and 

electrospray ion trap mass spectrometry. Analytical Biochemistry, 301, 298-

307 

 

Tu, Q. and Chang, C. 2012. Diagnostic applications of Raman spectroscopy. 

Nanomedicine: Nanotechnology, Biology and Medicine, 8, 545-558 

 

Vaidyanathan, S., Kell, D. B. and Goodacre, R. 2004. Selective detection of proteins 

in mixtures using electrospray ionisation mass spectrometry:  influence of 

instrumental settings and implications for proteomics. Analytical Chemistry, 

76, 5024-5032 

 

Vaidyanathan, S., Rowland, J. J., Kell, D. B. and Goodacre, R. 2001. Discrimination 

of Aerobic Endospore-forming Bacteria via Electrospray-Ionisation Mass 

Spectrometry of Whole Cell Suspensions. Analytical Chemistry, 73, 4134-

4144 

 

Van Baar, B. L. M. 2000. Characterisation of bacteria by matrix-assisted laser 

desorption/ionisation and electrospray mass spectrometry. FEMS 

Microbiology Reviews, 24, 193-219 

 

Watson, J. T. and Sparkman, O. D. 2008. Mass spectrometry/mass spectrometry. 

Introduction to Mass Spectrometry. John Wiley and Sons, pp.53-69 

 

Wen, Z. Q. 2007. Raman spectroscopy of protein pharmaceuticals. Journal of 

pharmaceutical sciences, 96, 2861-2878 

 

Wilkins, C. L. and Lay, J. O. 2005. Identification of microorganisms by mass 

spectrometry, John Wiley and Sons, pp.303 

 

Williams, D. H. and Fleming, I. 1995. Spectroscopic methods in organic chemistry, 

London, McGraw-Hill 



Chapter one  

59 
 

Williams, T. L., Andrzejewski, D., Lay Jr, J. O. and Musser, S. M. 2003. 

Experimental factors affecting the quality and reproducibility of MALDI 

TOF mass spectra obtained from whole bacteria cells. Journal of the 

American Society for Mass Spectrometry, 14, 342-351 

 

Yamashita, M. and Fenn, J. B. 1984. Electrospray ion-source - another variation on 

the free-jet theme. Journal of Physical Chemistry, 88, 4451-4459 

 

Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K.-H., 

Whitman, W. B., Euzeby, J., Amann, R. and Rossello-Mora, R. 2014. 

Uniting the classification of cultured and uncultured bacteria and archaea 

using 16S rRNA gene sequences. Nature Reviews Microbiology, 12, 635-645 

 

Yates, J. R., Ruse, C. I. and Nakorchevsky, A. 2009. Proteomics by mass 

spectrometry: approaches, advances, and applications. Annual Review of 

Biomedical Engineering, 11, 49-79 

 

Zenobi, R. and Knochenmuss, R. 1998. Ion formation in MALDI mass spectrometry. 

Mass Spectrometry Reviews, 17, 337-366



Chapter Two 
 

60 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Two 



Chapter Two 
 

61 
 

 

Optimisation of matrix assisted 

desorption/ionisation time of flight mass 

spectrometry (MALDI-TOF-MS) for the 

characterisation of Bacillus and Brevibacillus 

species 

 

Najla AlMasoud,
a
 Yun Xu,

a
 Nicoletta Nicolaou

a
 and Royston Goodacre

 a
 

a
School of Chemistry and Manchester Institute of Biotechnology, University of 

Manchester, 131 Princess Street, Manchester, M1 7DN, UK. 

Correspondence to Roy Goodacre: roy.goodacre@manchester.ac.uk 

 

This work has been published as:  

AlMasoud, N., Xu, Y., Nicolaou, N. and Goodacre, R. 2014. Optimisation of matrix 

assisted desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS) 

for the characterisation of Bacillus and Brevibacillus species. Analytica Chimica 

Acta, 840, 49-57 

 

 

Yun Xu contributed to this work by creating the alingment and carrying out the 

associated data analysis. Nicoletta Nicolaou participated in optimising the operation 

of the MALDI-TOF-MS.
 

Roy Goodacre contributed to this study with his 

supervision and guidance.  

  

mailto:roy.goodacre@manchester.ac.uk


Chapter Two 
 

62 
 

Abstract 

Over the past few decades there has been an increased interest in using various 

analytical techniques for detecting and identifying microorganisms. More recently 

there has been an explosion in the application of matrix assisted laser desorption 

ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) for bacterial 

characterisation, and here we optimise this approach in order to generate 

reproducible MS data from bacteria belonging to the genera Bacillus and 

Brevibacillus. Unfortunately MALDI-TOF-MS generates large amounts of data and 

is prone to instrumental drift. To overcome these challenges we have developed a 

pre-processing pipeline that includes baseline correction, peak alignment followed by 

peak picking that in combination significantly reduces the dimensionality of the MS 

spectra and corrects for instrument drift. Following this two different prediction 

models were used which are based on support vector machines and these generated 

satisfactory prediction accuracies of approximately 90%.  
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2.1 Introduction  

Bacillus are rod-shaped aerobic Gram-positive bacteria that are able to sporulate. 

These bacteria are normally found in the soil, plants, and can be transferred to meat 

and dairy products where they can spoil food making them unfit for human 

consumption (Granum, 1997). Even though most of these bacteria are harmless 

saphrophytes there still remains a few toxic members of this genus, such as B. 

subtilis and B. cereus, which are often associated with food-borne infections, 

(Drobniewski, 1993) along with the more notorious B. anthracis the casual agent of 

anthrax. Whilst B. sphaericus is toxic to insects and is used for biocontrol of 

mosquitoes (Singer, 1991). B. subtilis is the most scientifically defined member of 

the Bacillus genus and has thus been used as a model organism in many genetic 

research studies. Other members of this B. subtilis group are less defined and are 

harder to identify such as B. licheniformis and B. amyloliquefaciens, because they are 

very similar microorganisms (Fritze, 2004; Granum, 1997). The B. cereus group 

contains a number of different bacteria, with some leading to negative health 

implications in humans, and as discussed above have sometimes been linked to food 

poisoning (Granum and Lund, 1997; Priest et al., 2004; Ghelardi et al., 2002). 

The unequivocal identification is vital steps in medical therapy and the food industry 

and this is usually performed at the genotypic or phenotypic level. A number of 

traditional methods have so far been used to identify microorganisms, such as cell 

culturing with differential staining (Wilkins and Lay, 2005), polymerase chain 

reaction (PCR) (Hill and Wachsmuth, 1996; Gulledge et al., 2010; Zara et al., 2006, 

Vidal-Quist et al., 2009) and enzyme linked immunosorbent assays (ELISA) 

(Engvall, 1977). Whilst these approaches formed the foundations of knowledge and 

understanding in microorganism research, these methods are very time consuming, 

costly and labour intensive, hence more rapid detection methods are continually 

needed (Sauer and Kliem, 2010). In addition to rapid testing, methods that provide 

molecular-specific information are also preferred as these may allow one to relate 

any markers to specific microbiological function. 

Modern methods for the identification of microorganisms have recently focussed on 

mass spectrometry as these are rapid and provide molecular information on the 

bacteria under investigation. Whilst pyrolysis mass spectrometry was used for 
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bacterial analysis in the past (Goodacre and Kell, 1996), current methods are based 

on electrospray-ionisation (ESI-MS) (Goodacre et al., 1999; Vaidyanathan et al., 

2001) and the more popular method of matrix-assisted laser desorption ionisation 

(MALDI-MS) (Sauer and Kliem, 2010; Lay Jr, 2000; Claydon et al., 1996; 

Krishnamurthy et al., 2000). MALDI-TOF-MS is easy to use, provides rapid results, 

and has been used for identification and taxonomy of microorganisms (Welham et 

al., 1998; Fenselau and Demirev, 2001; Lay Jr, 2000). The maturity of this analytical 

technique has benefitted its application to a wide range of areas such as proteomics 

(Demirev et al., 1999; Ryzhov and Fenselau; 2001), intact-cell mass spectrometry 

(ICMS) (Holland et al., 1996; Claydon et al., 1996; Krishnamurthy and Ross, 1996; 

Lasch et al., 2008) and in the area of lipidomics (Schiller et al., 2004; Gidden et al., 

2009; Fuchs and Schiller, 2009).  

MALDI-TOF-MS on bacteria (and indeed other complex samples) results in a 

multivariate spectral pattern, which usually provides information on the protein 

content of the bacterium under analysis. This protein profile or barcode can be 

matched against MALDI-TOF-MS profiles/barcodes that have been previously 

collected under identical conditions and stored within (usually) organism specific 

databases (Lasch et al., 2009; Freiwald and Sauer, 2009; Demirev et al., 1999; 

Fenselau and Demirev, 2001). This matching may involve the generation of 

dendrograms from hierarchical cluster analyses (HCA) (Lasch et al., 2009; Vargha et 

al., 2006) or ordination plots from principal component analysis (PCA) (Toh-Boyo 

et al., 2012; Goodacre, 2003) or discriminant analysis (DA) (Nicolaou et al., 2012; 

Lopez-Diez and Goodacre, 2004).  

The aim of this study was to generate a reproducible MALDI-TOF-MS protocol for 

measuring the protein spectra from bacteria. In order to establish this we used a set 

of 34 well-characterised bacteria belonging to the genus Bacillus. In a series of 

experiments we optimised the matrix and the sample preparation method used using 

first a mixture of pure proteins followed by the analysis of a subset of these bacilli, 

before the optimised method was used on the full set of 34 bacteria. 
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2.2 Materials and Methods  

2.2.1 Compounds 

Trifluoroacetic acid (TFA), acetonitrile (ACN), sinapinic acid (SA), caffeic acid 

(CA), 2,5 dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), 

ferulic acid (FA), 2,4,6-trihydroxyacetophenone monohydrate (THAP), 2-4 

hydroxphenylaze benzoic acid (HABA), 2,6 dihydroxyacatophenone (DHAP), 9-

aminoacridine (9-AA) and dithranol (INN) from Sigma Aldrich (Dorset, UK) were 

used.  

14 g of nutrient agar (Fisher Scientific Ltd., Loughborough, UK) was dissolved and 

mixed thoroughly in a bottle containing 500 mL of water. This bottle was then 

autoclaved at 121
o
C for 15 min and subsequently used for the bacterial cultures. 

2.2.2 Standard protein samples for MALDI-TOF-MS  

Five different proteins were mixed together at the same concentration (20 μM) to 

find the optimum matrix and deposition method for pure protein analysis. These 

proteins (molecular weight provided in parentheses) included: insulin (5,735), 

cytochrome c (12,362), apomyoglobin (16,952), aldolase (39,212) and Albumin 

(66,437) were acquired from Sigma Aldrich.  

2.2.3 Bacterial culturing 

General information of the 34 strains of Bacillus is provided in Table 2.1 and these 

belonged to two genera (Bacillus and Brevibacillus) and seven different species. The 

cells were cultured on nutrient agar and were incubated at 37
o
C for 24 h. Bacterial 

strains were cultivated aerobically three times under these conditions to makes sure 

that the cultures were axenic, and to maintain a stable phenotype. After this was 

established single bacterial colonies were then cultured on nutrient agar and also 

incubated at 37
o
C for 24 h. Five biological replicates were prepared for each strains. 

After growth the biomass of each sample was carefully collected using two full 

sterilised plastic loops (equivalent to about 20 µL). This biomass was then 

centrifuged for 3 min at 13000 × g. The pellets containing the bacteria were then 

washed twice with 1 mL of sterile distilled water to remove residual culture media, 

centrifuged again to remove the supernatant, and the pellet was then stored at -80
o
C 

until further analysis.   
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Table 2.1: The 34 Bacillus species and strains used in this work 

 

Sample no. 

 
Species Strain no. 

Key colour used in 

figures 

1 

2 

3 

4 

5 

B. sphaericus 

 

7134
T
 

B0408
*
 

B0219 

B0769 

B1147 

Yellow 

6 

7 
Br. laterosporus 

B0043 

B0262 
Blue 

8 

9 

10 

11 

12 

13 

14 

B. subtilis 

B0014
T*

 

B0044 

B0098 

B0099 

B0410 

B0501 

B1382 

Black 

15 

16 

17 

18 

19 

B. cereus 

 

B0002
T*

 

B0550 

B0702 

B0712 

B0851 

Green 

20 

21 

22 

23 

24 

B. amyloliquefaciens 

B0177
T
 

B0168
*
 

B0175 

B0251 

B0620 

Red 

25 

26 

27 

28 

29 

B. megaterium 

B0010
T*

 

B0056 

B0057 

B0076 

B0621 

Pink 

30 

31 

32 

33 

34 

B. licheniformis 

B0252
T*

 

B0242 

B0755 

B1081 

B1379 

Cyan 

T
 indicates the type strain; 

*
indicates strains used for preliminary optimisation 

experiments. 
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2.2.4 Optimisation of MALDI-TOF-MS 

Optimisation of sample preparation was carried out in order to identify the most 

appropriate matrix preparation and deposition method for the analysis of bacteria. 

Initial experiments optimised the matrix and deposition method on mixtures of pure 

proteins (Supplementary Information Table S2.1 illustrates the four different sample 

preparation methods for MALDI-TOF-MS). Briefly, 10 different matrices were used 

to find the most compatible matrix for MALDI-TOF-MS analysis and these included 

DHB, CHCA, SA, FA, THAP, CA, HABA, DHAP, 9-AA and INN. At the same 

time four different depositions methods (mix, overlay, underlay and sandwich) were 

investigated for protein sample preparation. The optimised conditions involved using 

SA as the matrix and the mix method for sample deposition and this was 

subsequently used for bacterial analysis.  We note of course that the five proteins 

chosen are a substitute for bacterial analysis and we did not assume that the best 

protein preparation method would be the optimal method for bacteria so we tested 

the top three matrices and preparation methods on a small subset of bacteria (the 

strains used for preliminary optimisation experiments were marked with * in Table 

2.1); SA with the mix method was indeed the best method (data not shown for this 

optimisation). 

2.2.5 Bacterial sample preparation  

Preliminary experiments also suggested that it was important to optimise the 

appropriate amount of biomass for MALDI-TOF-MS. The defrosted pellet from 

above was diluted at various levels in water containing 0.1% TFA (250, 500, 1000, 

1500, 4000 µL; data not shown except for 1000 µL water containing 0.1% TFA). 

The optimum pellet dilution was established at 1000 µL and this was subsequently 

used. 

For MALDI-TOF-MS analysis of the bacteria 10 mg SA was dissolved in 500 µL of 

ACN and 500 µL of water containing 2 % TFA. 10 μL from the above bacterial 

sample and 10 μL of matrix were mixed together (Table S2.1) and vortexed for 10 s 

before. 2 μL from the resultant mixture was spotted on a MALDI-TOF-MS stainless 

steel target plate. This was allowed to dry at room temperature (ca. 22
 o
C) for 1 h. 
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2.2.6 MALDI-TOF-MS 

Samples were analysed in batches using an AXIMA-Confidence (Shimadzu Biotech, 

Manchester, U.K) mass spectrometer. This MALDI-TOF-MS device contained a 

nitrogen pulsed UV laser with a wavelength of 337 nm as described previously 

(Nicolaou et al., 2011). The power of the laser at the laser head used was set to 140 

mV. Each profile contained 20 shots, and 100 profiles were collected using a circular 

raster pattern. The MS was operated in positive ion source and linear TOF was used 

over the range from 1000-80,000 m/z. The collection time for each sample was ~2 

min and each biological sample was analysed four times (technical replicates). A 

single biological replicate for each of the 34 bacteria was analysed each day, and the 

analysis time took 5 days of machine time during a 2 week period. The result of this 

analysis generated 680 MALDI-TOF-MS spectra: 34 bacteria × 5 biological 

replicates × 4 technical replicates. The MALDI device was calibrated using the 

protein mixture mentioned above. 

 

2.2.7 Data analysis 

 . .7.1 Pre-processing 

MATLAB 2010a (The Math Works, Natick, MA, USA) was used for pre-processing 

and data analysis. Baseline corrections were first performed on the spectra by using 

asymmetric least squares (AsLS) (Eilers, 2004). In addition, the interpolation and 

alignment of MALDI-TOF-MS spectra in the m/z axis were required in order to 

integrate all the spectra in a unified coordinate system and also reduce the amount of 

ambiguities of assigning peaks from different samples collected over the 2 week 

period (see below). This was achieved by firstly interpolating all the spectra into a 

common m/z domain which is from 1,000 to 13,000 m/z with an interval of 0.1078 

m/z and then an algorithm named interval correlation optimised shifting (icoshift) 

(Tomasi et al., 2011) was used to correct m/z drifting across different samples. Peak 

picking was then performed on the aligned spectra to detect mass peaks in each 

spectrum and this was performed using intensity weighted variance (IWV) algorithm 

as described by Jarman (Jarman et al., 2003). The detected peaks of all the samples 

were then aligned together with a drift tolerance threshold of ±1 m/z. After this peak 

picking and alignment process, a total number of 243 unique mass peaks were 
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detected and resulted in a peak table matrix of dimensions 680 × 243 which was used 

for further data analysis. The peak intensities were firstly log10-scaled and then 

normalised so that the sum of squares of each row (i.e. a sample) equals 1.  

 

2.2.7.2 Multivariate analysis  

Two different types of analysis were performed on the data: one was a semi-

quantitative analysis and the other a qualitative analysis.  

The semi-quantitative analysis was performed on the log10-scaled and normalised 

peak intensity table matrix. Principal component analysis (PCA) was performed first 

to reveal the “natural” pattern of the data and then support vector machines (SVM), 

with a linear kernel, was used for supervised classification. The SVM models were 

validated by using a bootstrap replacement procedure coupled with cross-validation 

for the model parameter selection (see below). In this process the data were first split 

into a training set and a test set via a bootstrapping resampling based on the 

biological replicates; i.e., all the samples from the same biological replicates were 

considered as one during the resampling. Considering the random nature of this 

bootstrapping process, the number of samples selected in the training and test sets 

varied between the different 1000 iterations, on average 63.3% of the samples would 

be in the training set and 36.7% in the test. Next a k-fold cross-validation was 

performed on the training set where k is the number of unique biological replicates in 

the training set, the error penalty parameter C within the SVM varied from 1 to 10
6
 

and the one which yielded the lowest cross-validation error was chosen to build the 

SVM model. The model was then applied to the test set generated via the 

bootstrapping selection in order to calculate the predictive accuracy of the test set. 

This bootstrap procedure was repeated 1,000 times and the collected predictive 

accuracies for the test set only were then averaged. This can be considered as an 

unbiased estimation of the generalisation performance of the SVM model. Two types 

of classification were carried out: one was to classify the samples on species level (7 

classes); and the other was to classify the samples on strain level (34 classes). Both 

types of classification followed the same validation procedure as described above.  

The qualitative analysis on the data focused on the presence/absence of certain 

feature (i.e. mass peaks) while ignoring the intensities of the peaks. The peak table 
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matrix was converted into a binary format: if a peak had been detected in one 

particular sample the corresponding element in the matrix was set to 1 and 0 if 

otherwise; the threshold for presence/absence was set to be 3× standard deviation of 

baseline signals. Principal coordinate analysis (PCoA) was used as a counterpart of 

PCA in the qualitative analysis and the Jaccard distance was used to measure the 

dissimilarity between the samples. A distance matrix D was calculated which 

contains the Jaccard distance between every pair of samples. PCoA was then applied 

to D to obtain a scores matrix and this scores matrix can be interpreted in the same 

way as the scores matrix obtained from PCA. For supervised classification, a naïve 

Bayesian classifier and SVM with a Jaccard kernel (Nemmour and Chibani, 2008) 

were applied to the data. Both classifiers were validated using exactly the same 

bootstrapping procedure as described above and the classifications were again 

performed on both species and strain level. 
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2.3 Results and discussion  

2.3.1 MALDI-TOF-MS optimisation   

Initially a mixture contain five different proteins was used to obtain the optimum 

conditions for protein analysis using MALDI-TOF-MS. At this stage 10 matrices 

were used to determine the most suitable matrix and four sample preparations 

procedure when performed. Good protein detection was seen for SA, CA and FA, 

whilst others such as DHAP and 9-AA were not suitable matrices for protein 

analysis. Results obtained from this study showed that SA was the most suitable 

matrix for protein analysis (Tables S2.2-S2.5). This finding was supported by other 

workers analysis (Beavis et al., 1989; Giebel et al., 2010; Gantt et al., 1999; Toh-

Boyo et al., 2012; Pineda et al., 2003; Smole et al., 2002), and this may be due its 

classification as a hot matrix, (Zenobi and Knochenmuss, 1998). In addition, as 

discussed by Vaidyanathan (Vaidyanathan et al., 2002), the reason behind SA’s 

compatibility coud be its high level of homogeneity and crystallisation with the 

solvent when SA is mixed with bacteria.  

During the matrix optimisation the most appropriate sample deposition method for 

protein analysis was also assessed. Four methods were used (see Table S2.1 for 

details) and it was found that the ‘mix method’ where sample and matrix are pre-

mixed prior to spotting on the MALDI target plate was best. This deposition method 

was very reproducible and caused improved desorption and ionisation in comparison 

with other deposition methods. Tables S2.2-S2.5 (see SI) summarises the data 

obtained from analysing the 5-way protein mixture using the 10 different matrices 

and the 4 different deposition methods.  

After this the top 3 matrices (SA, CA and FA) were assessed on a subset of 6 bacteria 

comprising the type strain from each species. SA with the mix method was also the 

best method in terms of the number of protein peaks routinely detected in replicate 

analyses and in terms of the reproducibility of signal (as judged by PCA; data not 

shown). Thus SA with the mix method was used for all bacterial analyses. 
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2.3.2 Bacillus MALDI-TOF-MS spectra 

Typical MALDI-TOF-MS spectra of B. cereus B0712 obtained SA with the mix 

method for both the raw MS data and after baseline correction and alignment are 

shown in Figure 2.1. It is clear from the raw data from this bacterium (and indeed all 

the bacteria analysed; data not shown) that significant baseline artefacts are observed 

which were unavoidable. Spectra were therefore pre-processed using the following 

routine: (i) baseline correction was performed using AsLS on the raw MS profiles; 

(ii) this was followed by spectral alignment using icoshift; (iii) finally, following this 

step these spectra were scaled so that the sum of square of each spectrum equals to 1. 

Typical normalised and scaled spectra of all 7 type species from these bacilli are 

shown in Figure 2.2A-G.  
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Figure 2.1: Differences between MALDI mass spectra obtained from the analysis of B. 

cereus B0712 (A) before and (B) after baseline correction. 
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Figure 2.2: Typical MALDI-TOF-MS spectra of (A) B. amyloliquefaciens B0177, (B) B. 

sphaericus B0769, (C) B. megaterium B0010
T
, (D) B. cereus B0002, (E) B. licheniformis 

B1379,  (F) B. subtilus B1382 and (G) Br. laterosporus B0034.  The panel to the right of (G) 

is a zoomed in region (highlighted with an ellipse) of the MALDI-TOF-MS spectrum from 

Br. laterosporus B0034. These spectra have been baseline corrected and normalised. 
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It is known that sample preparation for bacterial analysis is important and this has 

been discussed before for the analysis of Bacillus species (Lasch et al., 2009; Lasch 

et al., 2008). It can be seen that these MALDI-TOF-MS spectra are generally distinct 

from one another and possess good signal-to-noise in the m/z 1000-13,000 range 

used. Whilst some spectra are clearly very different, Br. laterosporus (which belongs 

to a different genera) compared with the other Bacillus species, it is very difficult to 

use only visual inspection to identify these different bacteria.  Therefore 

chemometric methods are needed for spectral analysis. 

The spectra that were generated from MALDI-TOF-MS are very high dimensional 

nature and each spectrum contains 0.1078 m/z intervals after interpolation with ion 

counts at each value. It is clear from the spectra (Figure 2.2) that much of this 

information is redundant (i.e. noise), such that direct computation using PCA would 

be both puerile, as many spurious correlations may be found, as well as being 

computational intense. 

Therefore we used peak picking to select only those m/z which had arisen from real 

signals. In this process the intensity weighted variance (IWV) algorithm was used 

and resulted in a peak table comprising 243 features from the bacteria analysis of 680 

samples. This matrix was of dimensions 680 × 243 and significantly reduced from 

the full spectra (680 × 111,339) and was used for further data analysis. 

The scores plots of the first 3 PCs from PCA performed on the peak table matrix are 

provided in Figure 2.3 and the loadings plot of the first 2 PCs are provided in Figure 

2.4. The variables with their absolute loadings (either PC 1 or PC 2) greater than 0.1 

are labelled in Figure 2.4 along with their corresponding m/z.  Four main clusters 

(Figure 2.3) can be observed: (1) the first contained B.megaterium and B. cereus; (2) 

comprised B. subtilus, B. amyloliquefaciens and B. licheniformis; (3) contained only 

B. sphaericus; and (4) was also a single member cluster of Br. laterosporus (see 

Figure 2.3A for an annotated 3-D representation). The MALDI-TOF-MS spectra 

obtained from the analysis of Br. laterosporus (Figure 2.2G) were very different to 

the spectra from the other Bacillus species and this was reflected in PCA clusters 

(Figure 2.3). As can be seen Br. laterosporus strains were significantly different in 

PC2 (Figure 2.3B and 2.3D) which is why when PC2 versus PC3 were plotted the 
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groupings of the other 3 clusters were revealed. This was perhaps not surprising as 

this species belonged to a different bacilli genus, namely Brevibacillus. 

 

 

Figure 2.3: PCA scores plots from the peak table matrix after pre-processing the MS 

data. Multiple principal components are plotted: (A) PC1 vs. PC2 vs. PC3, (B) PC1 vs. 

PC2, (C) PC1 vs. PC3, and (D) PC2 vs. PC3. The colours represent the different species 

see Table 2.1 for annotations.  TEV = total explained variance for the PC score plotted. 
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Figure 2.4:  PCA loadings plots from the peak table matrix after pre-processing the MS data. 

 

The reason for choosing this set of bacilli is that these species have previously been 

analysed using a range of classification approaches including miniaturised 

biochemical test Analytical Profile Index (API), genotyping using 16S rDNA 

sequencing and an alternative physciochemical methods to MALDI-MS called 

Raman spectroscopy that measures molecular vibrations of functional groups. Based 

on the API tests these bacteria have been placed into four different groups (Logan 

and Berkeley, 1984) consisting of: (I) B. cereus, (II) Br. laterosporus, (III) B. 

sphaericus, (IV) B. megaterium, B. subtilis, B. licheniformis, and B. 

amyloliquefaciens. Slightly different clusters were also previously found from 16S 

rDNA analysis: clusters (I), (II) and (III) from the API were also seen, but the B. 

subtilis group (comprising B. subtilis, B. licheniformis, and B. amyloliquefaciens) 

was split from B. megaterium; in addition, although clustered separated B. cereus 

and B. megaterium were relatively close relatives at the genetic level (Goodacre et 

al., 2000; Lopez-Diez and Goodacre, 2004). The clusters generated from our 

MALDI-TOF-MS analysis is therefore highly congruent with both phenotypic (API) 

and phylogenetic markers (16S rDNA), as well as other biophysical characterisation 

methods based on UV resonance Raman spectroscopy (Lopez-Diez and Goodacre, 

2004). 

The results above used the quantitative data from the peak intensities, or at least the 

log10 of the signal to try and make the data appear normally distributed. In 
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preliminary analyses we also attempted square root scaling and this produced similar 

results; for brevity we report only log10 here. As detailed in the materials and 

methods we also processed the data so that they were considered qualitative in 

nature; that is to say, we encoded the mass ions as being present (1) or absent (0). 

The purpose of employing such a strategy is to test whether such greatly simplified 

information is still sufficient to discriminate different types of bacteria, either on 

species level or strain level. Moreover, this would compensate for the fact that 

MALDI-TOF-MS is not considered truly quantitative. We, and others, have observed 

differences in the ion intensities of proteins from intact bacteria (Holland et al., 

1996) and this significant variation in the peak intensities can be due to various 

analytical reasons. These are most likely due to small changes in bacteria growth, 

sample handling and the formation of different co-crystals with the matrix ‘spot’ 

(Ellis et al., 2007; Cohen and Gusev, 2002). If this qualitative approach were 

successful, it would suggest that the characterisation of the bacteria based on the 

MALDI-TOF-MS spectra is in fact not sensitive to such variations and would 

suggest that MALDI-TOF-MS, as an analytical platform, is robust for bacterial 

analyses. Moreover, those features which had high probabilities of occurrence in 

some types of bacteria while absent or much rarer in other types could have 

significant biological implications and perhaps worth further investigation. Therefore 

PCoA was performed on the binary peak table matrix and resulted in a highly similar 

pattern (Figure 2.5) to the one showed in the PCA scores plot (Figure 2.3). This had 

suggested that based on the information of presence/absence of the features, it was 

indeed possible to discriminate bacteria on species level.  
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Figure 2.5: PCoA scores plots of the data obtained to show clusters of present and absent 

peaks using the Jaccard distance model. Multiple principal components are plotted: (A) PC1 

vs. PC2 vs. PC3, (B) PC1 vs. PC2, (C) PC1 vs. PC3, and (D) PC2 vs. PC3. The colours 

represent the different species see Table 2.1 for annotations.  TEV = total explained variance 

for the PC score plotted. 
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2.3.3 Automated identification of Bacillus from their MALDI-TOF-MS 

spectra 

The next stage was to assess whether the information from the MALDI-TOF-MS 

data were discriminative enough to allow identification using supervised learning 

methods. The results of these classifications performed at the species level (i.e., 7 

classes to be predicted) are given in Tables 2.2 and 2.3 using support vector 

machines (SVM) for the semi-quantitative and qualitative data, respectively.  While 

prediction accuracies at the strain level (i.e., 34 classes prediction) are provided in SI 

Tables S2.6 and S2.7. It is very interesting to see that the SVM with Jaccard kernel 

(i.e., the SVM model based on the presence/absence information) and the SVM with 

linear kernel gave almost identical prediction accuracies. This suggests that the 

qualitative information on protein content is sufficient to effect accurate 

classification, rather than the level of the proteins in the bacterial cells. 

 

Table 2.2: Prediction accuracies of the seven species from Bacillus using DAG-SVM with 

the linear kernel model 

 

 

 

 

 

 

 

 

 

B. am: B. amyloliquefaciens, B. ce: B. cereus, Br. la: Br. laterosporus, B. li: B. 

licheniformis, B. me: B. megaterium, B. sp: B. sphaericus and B. su: B. subtilis. 

  

  

B. am 

 

B. ce 

 

Br. la 

 

B. li 

 

B. me 

 

B. sp 

 

B. su 

B. am 92.56% 0.13% 0.00% 0.11% 0.58% 0.95% 5.68% 

B. ce 3.37% 83.37% 0.00% 0.12% 11.27% 1.82% 0.05% 

Br. la 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 

B. li 5.28% 1.41% 0.00% 80.26% 2.65% 3.93% 6.47% 

B. me 0.10% 9.22% 0.00% 0.00% 90.67% 0.01% 0.00% 

B. sp 1.37% 1.91% 0.00% 2.41% 0.09% 94.23% 0.01% 

B. su 
6.46% 0.00% 0.00% 2.13% 0.00% 0.00% 91.42% 
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Table 2.3: Prediction accuracies of the seven species from Bacillus using DAG-SVM 

with the Jaccard kernel model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. am: B. amyloliquefaciens, B. ce: B. cereus, Br. la: Br. laterosporus, B. li: B. 

licheniformis, B. me: B. megaterium, B. sp: B. sphaericus and B. su: B. subtilis. 

 

For the species classification models, the SVM with a linear kernel had an average 

correct classification rate (CCR) of 89.27% and the SVM with the Jaccard kernel 

providing 88.92% average CCR. The naïve Bayesian classifier accuracy was slightly 

worse (77.69% average CCR). For all classification models Br. laterosporus was 

never mis-classified which is perhaps unsurprising as it is a difference genus. B. 

cereus and B. megaterium were sometimes misclassified as each other, which was 

also to be expected as these are phylogenetically similar (Logan and Berkeley, 1984). 

Finally, the B. subtilis group comprising B. amyloliquefaciens, B. licheniformis and 

B. subtilis which are similar at the biochemical and genetic level (Wang et al., 2007) 

were also occasionally misclassified as each other.  If these were taken as a single 

group the classification for these three species (e.g. in Table 2.3) would increase 

from 91.29%, 78.64%, 94.31% to 97.57%, 92.10% and 100% for B. 

amyloliquefaciens, B. licheniformis and B. subtilis, respectively.  The fact that such 

observations were consistent across all the classification models indicates this is a 

model independent general trend and a reflection of the phenotypic characteristics 

being measured using MALDI-TOF-MS. 

The CCRs of the classification models for strain (n=34) classification is as expected 

much worse than those at the species level. The average CCR for these models 

ranged from 45.88% to 54.04% (SI Tables S2.7 and S2.6) for the qualitative and 

  

B. am 

 

B. ce 

 

Br. la 

 

B. li 

 

B. me 

 

B. sp 

 

B. su 

B. am 91.29% 0.23% 0.00% 0.14% 0.85% 1.36% 6.14% 

B. ce 3.09% 81.75% 0.00% 0.02% 12.26% 2.67% 0.22% 

Br. la 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 

B. li 5.67% 2.57% 0.00% 78.64% 1.62% 3.71% 7.79% 

B. me 0.04% 8.79% 0.00% 0.01% 91.12% 0.04% 0.00% 

B. sp 1.06% 4.17% 0.00% 1.98% 0.30% 92.45% 0.05% 

B. su 4.23% 0.00% 0.00% 1.46% 0.00% 0.00% 94.31% 
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semi-quantitative models. As expected the misclassification of these bacterial strains 

usually occurred within the same species but to different strains. These may seem 

poor but considering the fact that there were 34 strains analysed this is a large 

number of classes and the expected CCR from a random classification model would 

be only 2.9%. Therefore the prediction accuracies of these models were still very 

impressive. It was also notable that the semi-quantitative classifier was ~9% better 

than the qualitative model which suggests that unlike the species classification the 

information on the peak intensities might also be required to achieve better 

discrimination between the strains. 
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2.4 Concluding remarks 

 MALDI-TOF-MS is gaining popularity for microbial classification and 

identification (Patel, 2013; Croxatto et al., 2012; Marvin et al., 2003; Wieser et al., 

2012). These results in information on the protein content of the organism under 

study and this proteomic barcode can be used to characterise the bacteria under 

investigation. However, in order to generate a consistent barcode, the analytical 

approach must be optimised and tested. In this study we assessed 10 different 

matrices with 4 different sample preparation approaches. These 40 conditions were 

first applied to protein mixtures and the top 3 matrices-preparation methods were 

then assessed for reproducibility and for the generation of information rich protein 

profiles on 6 bacteria. This established that sinapinic acid with the mixed sample 

preparation approach was the preferred method, which is in agreement with other 

studies (Ryzhov et al., 2000; Gantt et al., 1999). 

This matrix was then used on all 34 bacilli and each bacteria was grown 5 times and 

each of these biological replicates were analysed 4 times (technical replicates). These 

680 MALDI-TOF-MS spectra were collected over a period of 2 weeks. Due to the 

extended mass range over which the spectra were collected (1000-13,000 m/z) a drift 

in the m/z X-axis was observed which if not corrected would adversely affect 

bacterial characterisation. This was successfully overcome by aligning the peaks 

using interval correlation optimised shifting. Preprocessing also involved using 

asymmetric least squares for baseline removal. Chemometric classifiers were then 

used on these data and the same data after peak picking using intensity weighted 

variance. This peak picking reduced the dimensionality of the MS data from a 

massive 680 samples × 111,339 m/z channels (75,710,520 data points) to a mere 680 

× 243 (165240 data points) and this process did not negatively affect classification. 

Classification accuracies at Bacillus species level were ~90% for the 7 species under 

analysis and this was robustly tested using bootstrap analysis. The few 

misclassifications that were made could be readily explained by very close species 

similarity of the B. subtilis group (viz. B. amyloliquefaciens, B. licheniformis and B. 

subtilis). In conclusion we have developed a robust MALDI-TOF-MS data collection 

and data analysis pipeline that we shall now expand to the analysis of other bacterial 

groups. 



Chapter Two 
 

84 
 

2.5 References   

Beavis, R. C., Chait, B. T. and Fales, H. M. 1989. Cinnamic acid derivatives as 

matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid 

Communications in Mass Spectrometry, 3, 432-435  

 

Claydon, M. A., Davey, S. N., Edwards-Jones, V. and Gordon, D. B. 1996. The rapid 

identification of intact microorganisms using mass spectrometry. Nature 

Biotechnology, 14, 1584-1586  

 

Cohen, L. and Gusev, A. 2002. Small molecule analysis by MALDI mass 

spectrometry. Analytical and Bioanalytical Chemistry, 373, 571-586 

 

Croxatto, A., Prod'hom, G. and Greub, G. 2012. Applications of MALDI-TOF mass 

spectrometry in clinical diagnostic microbiology. Federation of European 

Microbiological Societies Microbiology Reviews, 36, 380-407  

 

Demirev, P. A., Ho, Y.-P., Ryzhov, V. and Fenselau, C. 1999. Microorganism 

Identification by Mass Spectrometry and Protein Database Searches. 

Analytical Chemistry, 71, 2732-2738 

 

Drobniewski, F. A. 1993. Bacillus cereus and related species. Clinical Microbiology 

Reviews, 6, 324-338 

 

Eilers, P. H. 2004. Parametric time warping. Analytical Chemistry, 76, 404-411 

 

Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. and Goodacre, R. 2007. 

Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243-

1266 

 

Engvall, E. 1977. Quantitative Enzyme Immunoassay (ELISA) In Microbiology. 

Medical Biology, 55, 193-200 

 

Fenselau, C. and Demirev, P. A. 2001. Characterisation of intact microorganisms by 

MALDI mass spectrometry. Mass Spectrometry Reviews, 20, 157-171 

 

Freiwald, A. and Sauer, S. 2009. Phylogenetic classification and identification of 

bacteria by mass spectrometry. Nature Protocols, 4, 732-742 

 

Fritze, D. 2004. Taxonomy of the genus Bacillus and related genera: The aerobic 

endospore-forming bacteria. Phytopathology, 94, 1245-1248 

 

Fuchs, B. and Schiller, J. 2009. Application of MALDI-TOF mass spectrometry in 

lipidomics. European Journal of Lipid Science and Technology, 111, 83-98 

 

Gantt, S. L., Valentine, N. B., Saenz, A. J., Kingsley, M. T. and Wahl, K. L. 1999. 

Use of an internal control for matrix-assisted laser desorption/ionisation time-

of-flight mass spectrometry analysis of bacteria. Journal of the American 

Society for Mass Spectrometry, 10, 1131-1137 

 

http://www.ncbi.nlm.nih.gov/pubmed/17924839


Chapter Two 
 

85 
 

Ghelardi, E., Celandroni, F., Salvetti, S., Barsotti, C., Baggiani, A. and Senesi, S. 

2002. Identification and Characterisation of toxigenic Bacillus cereus strains 

responsible for two food-poisoning outbreaks. FEMS Microbiology Letters, 

208, 129-134 

 

Gidden, J., Denson, J., Liyanage, R., Ivey, D. M. and Lay, J. O. 2009. Lipid 

compositions in Escherichia coli and Bacillus subtilis during growth as 

determined by MALDI-TOF and TOF/TOF mass spectrometry. International 

Journal of Mass Spectrometry, 283, 178-184 

 

Giebel, R., Worden, C., Rust, S. M., Kleinheinz, G. T., Robbins, M. and Sandrin, T. 

R. 2010. Microbial fingerprinting using matrix-assisted laser desorption 

ionisation time-of-flight mass spectrometry (MALDI-TOF MS): applications 

and challenges. Advances in Applied Microbiology, 71, 149-84  

 

Griffiths, R. L. and Bunch, J. 2012. A survey of useful salt additives in matrix-

assisted laser desorption/ionisation mass spectrometry and tandem mass 

spectrometry of lipids: introducing nitrates for improved analysis. Rapid 

Communications in Mass Spectrometry, 26, 1557-1566 

 

Goodacre, R. 2003. Explanatory analysis of spectroscopic data using machine 

learning of simple, interpretable rules. Vibrational Spectroscopy, 32, 33-45 

 

Goodacre, R., Heald, J. K. and Kell, D. B. 1999. Characterisation of intact 

microorganisms using electrospray ionisation mass spectrometry. Federation 

of European Microbiological Societies Microbiology Letters, 176, 17-24 

 

Goodacre, R. and Kell, D. B. 1996. Pyrolysis mass spectrometry and its applications 

in biotechnology. Current Opinion in Biotechnology, 7, 20-28 

 

Goodacre, R., Shann, B., Gilbert, R. J., Timmins, M., Mcgovern, A. C., Alsberg, B. 

K., Logan, N. A. and Kell, D. B. 2000, Detection of the dipicolinic acid 

biomarker in Bacillus spores using Curie point pyrolysis mass spectrometry 

and Fourier transform infrared spectroscopy, Analytical Chemistry, 72, 119-

127 

 

Granum, P. E. 1997. In Food Microbiology: Fundamentals and Frontiers, 

Washington DC, ASM Press, pp. 327-336 

 

Granum, P. E. and Lund, T. 1997. Bacillus cereus and its food poisoning toxins. 

FEMS Microbiology Letters, 157, 223-228 

 

Gulledge, J. S., Luna, V. A., Luna, A. J., Zartman, R. and Cannons, A. C. 2010. 

Detection of low numbers of Bacillus anthracis spores in three soils using five 

commercial DNA extraction methods with and without an enrichment step. 

Journal of Applied Microbiology, 109, 1509-1520 

 

Hill, W. E. and Wachsmuth, K. 1996. The polymerase chain reaction: Applications 

for the detection of foodborne pathogens. Critical Reviews in Food Science 

and Nutrition, 36, 123-173 



Chapter Two 
 

86 
 

Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, 

K. J. and Lay, J. O. 1996. Rapid Identification of Intact Whole Bacteria Based 

on Spectral Patterns using Matrix-assisted Laser Desorption/Ionisation with 

Time-of-flight Mass Spectrometry. Rapid Communications in Mass 

Spectrometry, 10, 1227-1232 

 

Jarman, K. H., Daly, D. S., Anderson, K. K. and Wahl, K. L. 2003. A new approach 

to automated peak detection. Chemometrics and Intelligent Laboratory, 69, 

61-76 

 

Krishnamurthy, T., Rajamani, U., Ross, P. L., Jabhour, R., Nair, H., Eng, J., Yates, 

J., Davis, M. T., Stahl, D. C. and Lee, T. D. 2000. Mass spectral investigations 

on microorganisms. Journal of Toxicology Toxin Reviews, 19, 95-117 

 

Krishnamurthy, T. and Ross, P. L. 1996. Rapid Identification of Bacteria by Direct 

Matrix-assisted Laser Desorption/Ionisation Mass Spectrometric Analysis of 

Whole Cells. Rapid Communications in Mass Spectrometry, 10, 1992-1996 

 

Lasch, P., Beyer, W., Nattermann, H., Stammler, M., Siegbrecht, E., Grunow, R. and 

Naumann, D. 2009. Identification of Bacillus anthracis by Using Matrix-

Assisted Laser Desorption Ionisation-Time of Flight Mass Spectrometry and 

Artificial Neural Networks. Applied Environmental Microbiology journal, 75, 

7229-7242 

 

Lasch, P., Nattermann, H., Erhard, M., Staemmler, M., Grunow, R., Bannert, N., 

Appel, B. and Naumann, D. 2008. MALDI-TOF mass spectrometry 

compatible inactivation method for highly pathogenic microbial cells and 

spores. Analytical Chemistry, 80, 2026-2034 

 

Lay Jr, J. O. 2000. MALDI-TOF mass spectrometry and bacterial taxonomy. Trac 

Trend Analytical Chemistry, 19, 507-516 

 

Logan, N. and Berkeley, R. 1984. Identification of Bacillus strains using the API 

system. Journal of General Microbiology, 130, 1871-1882 

 

Lopez-Diez, E. C. And Goodacre, R. 2004. Characterisation of microorganisms 

using UV resonance Raman spectroscopy and chemometrics. Analytical 

Chemistry, 76, 585-591 

 

Marvin, L. F., Roberts, M. A. and Fay, L. B. 2003. Matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry in clinical chemistry. 

Clinica Chimica Acta, 337, 11-21 

 

Nemmour, H. and Chibani, Y. New jaccard-distance based support vector machine 

kernel for handwritten digit recognition.  ICTTA, 2008. 3rd International 

Conference. IEEE Computer Society, pp.1-4 

 

Nicolaou, N., Xu, Y. and Goodacre, R. 2011. MALDI-MS and multivariate analysis 

for the detection and quantification of different milk species. Analytical and 

Bioanalytical Chemistry, 399, 3491-3502 



Chapter Two 
 

87 
 

Nicolaou, N., Xu, Y. and Goodacre, R. 2012. Detection and quantification of 

bacterial spoilage in milk and pork meat using MALDI-TOF-MS and 

multivariate analysis. Analytical Chemistry, 84, 5951-5958 

 

Patel, R. 2013. Matrix-assisted laser desorption ionisation-time of flight mass 

spectrometry in clinical microbiology. Clinical Infectious Diseases, 57, 564-

572 

 

Pineda, F. J., Antoine, M. D., Demirev, P. A., Feldman, A. B., Jackman, J., 

Longenecker, M. and Lin, J. S. 2003. Microorganism identification by matrix-

assisted laser/desorption ionisation mass spectrometry and model-derived 

ribosomal protein biomarkers. Analytical Chemistry, 75, 3817-3822 

 

Priest, F. G., Barker, M., Baillie, L. W., Holmes, E. C. and Maiden, M. C. 2004. 

Population structure and evolution of the Bacillus cereus group. Journal of 

Bacteriology., 186, 7959-7970 

 

Ryzhov, V. And Fenselau, C. 2001. Characterisation of the protein subset desorbed 

by MALDI from whole bacterial cells. Analytical Chemistry, 73, 746-750 

 

Ryzhov, V., Hathout, Y. and Fenselau, C. 2000. Rapid Characterisation of spores of 

Bacillus cereus group bacteria by matrix-assisted laser desorption-ionisation 

time-of-flight mass spectrometry. Applied Environmental Microbiology, 66, 

3828-3834 

 

Sauer, S. and Kliem, M. 2010. Mass spectrometry tools for the classification and 

identification of bacteria. Nature Reviews Microbiology, 8, 74-82 

 

Schiller, J., Süß, R., Arnhold, J., Fuchs, B., Leßig, J., Müller, M., Petković, M., 

Spalteholz, H., Zschörnig, O. and Arnold, K. 2004. Matrix-assisted laser 

desorption and ionisation time-of-flight (MALDI-TOF) mass spectrometry in 

lipid and phospholipid research. Progress in Lipid Research, 43, 449-488 

 

Singer, S. 1991. Introduction to the study of Bacillus sphaericus as a mosquito 

control agent. Bacterial Control of Mosquitoes and Black Flies. Netherlands, 

Springer, pp. 221-227 

 

Smole, S. C., King, L. A., Leopold, P. E. and Arbeit, R. D. 2002. Sample preparation 

of Gram-positive bacteria for identification by matrix assisted laser 

desorption/ionisation time-of-flight. The Journal of Microbiological Methods, 

48, 107-115 

 

Toh-Boyo, G. M., Wulff, S. S. and Basile, F. 2012. Comparison of sample 

preparation methods and evaluation of intra-and intersample reproducibility in 

bacteria MALDI-MS profiling. Analytical Chemistry, 84, 9971-9980 

 

Tomasi, G., Savorani, F. and Engelsen, S. B. 2011. icoshift: An effective tool for the 

alignment of chromatographic data. Journal of Chromatography A, 1218, 

7832-7840 

 



Chapter Two 
 

88 
 

Vaidyanathan, S., Rowland, J. J., Kell, D. B. and Goodacre, R. 2001. Discrimination 

of aerobic endospore-forming bacteria via electrospray-ionisation mass 

spectrometry of whole cell suspensions. Analytical Chemistry, 73, 4134-4144 

 

Vaidyanathan, S., Winder, C. L., Wade, S. C., Kell, D. B. and Goodacre, R. 2002. 

Sample preparation in matrix-assisted laser desorption/ionisation mass 

spectrometry of whole bacterial cells and the detection of high mass (>20 

kDa) proteins. Rapid Communications in Mass Spectrometry, 16, 1276-1286 

 

Vargha, M., Takáts, Z., Konopka, A. and Nakatsu, C. H. 2006. Optimisation of 

MALDI-TOF MS for strain level differentiation of Arthrobacter strains. 

Journal of Microbiological Methods, 66, 399-409 

 

Vidal-Quist, J. C., Castañera, P. and González-Cabrera, J. 2009. Simple and rapid 

Method for PCR Characterisation of large Bacillus thuringiensis strain 

collections. Current Microbiology, 58, 421-425 

 

Wang, L.-T., Lee, F.-L., Tai, C.-J. and Kasai, H. 2007. Comparison of gyrB gene 

sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the 

Bacillus subtilis group. International Journal of Systematic and Evolutionary 

Microbiology, 57, 1846-1850 

 

Welham, K. J., Domin, M. A., Scannell, D. E., Cohen, E. and Ashton, D. S. 1998. 

The Characterisation of micro-organisms by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry. Rapid 

Communications in Mass Spectrometry, 12, 176-180 

 

Wieser, A., Schneider, L., Jung, J. and Schubert, S. 2012. MALDI-TOF MS in 

microbiological diagnostics/identification of microorganisms and beyond 

(mini review). Applied Microbiology Biotechnology, 93, 965-974 

 

Wilkins, C. L. and Lay, J. O. 2005. Identification of microorganisms by mass 

spectrometry, New Jersey, John Wiley and Sons, pp.303 

 

Zara, G., Zara, S., Mangia, N., Garau, G., Pinna, C., Ladu, G. and Budroni, M. 2006. 

PCR-based methods to discriminate Bacillus thuringiensis strains. Annals of 

Microbiology, 56, 71-76 

 

Zenobi, R. and Knochenmuss, R. 1998. Ion formation in MALDI mass spectrometry. 

Mass Spectrometry Reviews, 17, 337-366 

  



Chapter Two 
 

89 
 

2.6 Supplementary Information 

2.6.1 Data Processing and Peak Picking 

As these data were collected over a relatively long period we also needed to develop 

spectra pre-processing and peak picking algorithms that allowed robust and 

reproducible profiles to be generated. This process is detailed below: 

 

In liquid chromatography mass spectrometry (LC-MS) or gas chromatography mass 

spectrometry (GC-MS) any chromatographic shifts (due to unavoidable changes in 

retention times of analytes that are being separated) can be aligned based on the mass 

spectrum and the results of such alignment checked (indeed guided) using the unique 

fragmentation of the analytes within the aligned spectra. However such orthogonal 

data do not exist in MALDI-TOF-MS as generally no fragmentation is used; indeed 

even with TOF-TOF configurations this would not be possible due to the large m/z 

used. Thus it is not possible analytically to establish if our alignment and peak 

picking process was successful, and excessive misalignment of the peaks could have 

undesired effect on the ability to effect accurate bacterial identification from the 

MALDI-TOF-MS spectra. We therefore performed PCA on both the log10-scaled 

peak table matrix and the log10-scaled raw spectra. The results showed that the scores 

plot obtained from the PCA performed on the peak table matrix were highly similar 

to that obtained from the raw data (data not shown). To quantify the level of 

similarity Procrustes analysis (Gower and Dijksterhuis 2004) was performed on the 

two sets of PC scores using the first 3 PCs and a Procrustes error of 0.2474 was 

obtained. Given there were 680 samples and merely 3 variables (PC scores), such 

Procrustes error is considered very low. For comparison, if the order of the samples 

was randomly permuted the Procrustes error was always greater than 0.99. Thus we 

can conclude that the patterns represented by these two types of data are highly 

comparable and this suggests that the information in the raw data had indeed been 

faithfully translated to the very much smaller peak table matrix. 
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Table S 2.1: Details of the four different sample preparation methods for MALDI-TOF-MS 

(A) Mix, (B) overlay, (C) underlay and (D) sandwich 

Deposition method 
 

Sample preparation 

(A) Mix 

 

10 µL of the prepared protein mixture were added to 10 µL of each 

matrix in an Eppendorf tube. The sample was then mixed by 

vortexing to ensure thorough mixing. 2 µL of the resultant 

matrix/protein mixture was applied to the MALDI plate and 

allowed to dry. Once the liquid had evaporated the plate was then 

ready for analysis. 

(B) Overlay 1 µL of the protein mix sample was applied to the MALDI plate 

and was allowed to dry. Following evaporation, 1 µL of matrix was 

added to the protein sample. 

 

(C) Underlay 1 µL of matrix was applied to the MALDI plate and was allowed to 

dry. Following evaporation, 1 µL of the protein mix sample was 

added to the matrix. 

 

(D) Sandwich 
0.5 µL of matrix was applied to the MALDI plate and was then 

removed. 1 µL of the protein sample was subsequently added to the 

plate which was allowed to dry. 1 µL of matrix was finally added 

after evaporation of the protein sample. 
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Table S 2.2: MALDI-TOF-MS sample preparation optimisation results from 10 matrices 

combined with 5 different proteins, using the mix method for preparation 

Matrix\Types of 

protein  Insulin Cytochrome c Apomyoglobin Aldolase Albumin 

SA √ √ √ √ √ 

CA √ √ √ √  

DHB √ √ √   

FA √ √ √   

HABA √  √   
CHCA √ √    
9-AA √     

THAP √     

DHAP √ √ √   

1,8,9Anthractral √     
The “tick” sign indicates the detection of a particular protein 

 

Table S 2.3: MALDI-TOF-MS sample preparation optimisation results from 10 matrices 

combined with 5 different proteins, using the overlay method for preparation 

The “tick” sign indicates the detection of a particular protein 

  

Matrix\Types of 

protein  
Insulin Cytochrome  c Apomyoglobin Aldolase Albumin 

SA √ √ √ √  
CA √ √ √   

DHB √ √ √   
FA √ √ √   

HABA √     
CHCA √     
9-AA √     
THAP √ √ √   
DHAP √     

1,8,9Anthractral      
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Table S 2.4: MALDI-TOF-MS sample preparation optimisation results from 10 matrices 

combined with 5 different proteins, using the underlay method for preparation 

The “tick” sign indicates the detection of a particular protein 

 

Table S 2.5: MALDI-TOF-MS sample preparation optimisation results from 10 matrices 

combined with 5 different proteins, using the sandwich method for preparation 

Matrix\Types of 

protein  Insulin Cytochrome c Apomyoglobin Aldolase Albumin 

SA √ √ √ √  

CA √ √ √   

DHB √ √ √   

FA √ √ √   

HABA      

CHCA √     

9-AA √     

THAP √ √ √  √ 

DHAP      

1,8,9Anthractral      

The “tick” sign indicates the detection of a particular protein 

 

Matrix\Types of 

protein  Insulin Cytochrome  c Apomyoglobin Aldolase Albumin 

SA √     

CA √     

DHB      

FA √ √    

HABA √     

CHCA √     

9-AA √     

THAP √     

DHAP √     

1,8,9Anthractral      
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Table S 2.6: Prediction accuracies of the 34 Bacillus strains using DAG-SVM with Linear kernel models 

The different colours represent the species level identifications 

am1 am2 am3 am4 am5 ce1 ce2 ce3 ce4 ce5 la1 la2 li1 li2 li3 li4 li5 me1 me2 me3 me4 me5 sp1 sp2 sp3 sp4 sp5 su1 su2 su3 su4 su5 su6 su7

am1 15.76% 11.60% 0.24% 49.11% 18.31% 0.00% 1.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.44% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.51% 0.22% 0.00% 0.00% 0.00% 0.00% 1.86% 0.00% 0.01% 0.00% 0.50% 0.03%

am2 16.67% 45.30% 14.40% 9.96% 11.76% 0.01% 0.16% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.12% 0.39% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.00% 0.00% 0.00% 0.00% 0.60% 0.00%

am3 28.37% 15.31% 17.84% 12.93% 9.07% 0.03% 0.23% 0.00% 0.00% 0.39% 0.00% 0.15% 0.87% 0.00% 0.03% 0.43% 4.31% 0.00% 0.00% 0.22% 0.00% 0.00% 0.97% 0.00% 0.00% 0.00% 0.08% 3.13% 0.00% 1.34% 2.30% 0.03% 0.89% 1.10%

am4 29.09% 3.64% 1.09% 53.85% 0.00% 0.20% 0.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 0.61% 0.00% 0.00% 0.00% 0.00% 0.00% 2.48% 0.14% 0.00% 0.05% 0.24% 0.25% 1.70% 0.00% 1.30% 2.26% 2.28% 0.00%

am5 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ce1 0.00% 0.00% 0.28% 0.00% 0.00% 54.15% 0.02% 22.30% 10.22% 1.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.05% 0.00% 0.06% 2.38% 5.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.07% 0.00% 0.00%

ce2 0.32% 1.19% 4.90% 0.03% 0.11% 5.35% 71.31% 0.02% 7.31% 0.00% 0.17% 0.50% 0.00% 0.00% 0.00% 0.10% 0.06% 2.77% 1.45% 0.01% 2.38% 0.13% 0.15% 0.06% 0.25% 0.26% 0.00% 0.85% 0.09% 0.15% 0.00% 0.07% 0.00% 0.01%

ce3 0.03% 0.00% 0.01% 0.00% 0.02% 28.17% 0.06% 31.37% 34.78% 0.03% 0.00% 0.08% 0.00% 0.00% 0.00% 0.03% 0.97% 0.01% 0.01% 0.85% 2.12% 0.00% 0.00% 0.00% 0.24% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 1.17% 0.01% 0.01%

ce4 0.00% 0.00% 0.00% 0.00% 0.00% 6.71% 0.25% 44.58% 42.27% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.52% 0.00% 0.00% 0.02% 2.13% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ce5 0.00% 0.00% 0.13% 0.07% 0.00% 5.13% 5.36% 0.33% 21.81% 54.71% 0.00% 0.00% 0.01% 0.05% 0.00% 0.07% 4.99% 0.01% 2.01% 0.04% 1.18% 0.00% 1.88% 0.03% 0.03% 0.32% 0.80% 0.00% 0.00% 0.00% 0.20% 0.56% 0.30% 0.00%

la1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 65.43% 34.57% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

la2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 55.06% 44.94% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

li1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 89.73% 8.81% 1.06% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

li2 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 19.07% 36.97% 23.56% 0.00% 12.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.41%

li3 0.10% 0.00% 0.00% 0.12% 0.00% 0.03% 0.00% 0.05% 0.01% 0.00% 0.20% 0.00% 7.43% 20.19% 68.73% 2.49% 0.49% 0.00% 0.03% 0.02% 0.00% 0.00% 0.00% 0.01% 0.00% 0.08% 0.00% 0.00% 0.01% 0.00% 0.00% 0.03% 0.00% 0.00%

li4 3.98% 0.06% 0.23% 6.04% 0.00% 0.00% 0.10% 0.00% 0.00% 0.48% 0.00% 0.00% 9.99% 12.25% 14.97% 25.56% 15.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.04% 0.03% 0.00% 0.00% 0.18% 1.89% 0.00% 0.04% 2.83% 6.19% 0.02%

li5 2.36% 7.35% 2.47% 4.72% 0.00% 1.33% 0.00% 1.55% 0.15% 2.56% 0.00% 0.00% 13.64% 11.31% 2.74% 22.69% 23.54% 0.00% 0.00% 0.51% 0.00% 0.00% 0.15% 0.01% 0.00% 0.00% 0.10% 2.03% 0.00% 0.00% 0.09% 0.69% 0.00% 0.00%

me1 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.43% 0.43% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.86% 0.00% 0.00% 0.18% 3.53% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

me2 0.00% 0.00% 0.00% 0.00% 14.48% 4.36% 0.00% 0.14% 0.00% 0.25% 0.00% 0.00% 0.00% 0.01% 0.00% 0.01% 0.00% 0.05% 60.67% 0.78% 18.69% 0.00% 0.00% 0.00% 0.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05%

me3 0.00% 0.00% 0.00% 0.00% 0.03% 0.11% 0.00% 1.06% 0.38% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.23% 0.00% 0.05% 88.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

me4 0.00% 0.00% 0.00% 0.00% 0.00% 2.09% 0.22% 3.42% 3.43% 0.02% 0.00% 0.00% 0.00% 0.45% 0.00% 0.00% 0.00% 25.75% 15.43% 0.00% 49.11% 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.05%

me5 0.03% 5.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.00% 0.00% 0.00% 93.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

sp1 0.00% 0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

sp2 0.63% 0.00% 0.03% 3.62% 0.00% 0.00% 0.06% 1.12% 0.63% 1.42% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 6.50% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 74.11% 0.00% 0.30% 9.53% 0.92% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00%

sp3 0.00% 0.00% 0.27% 0.00% 0.00% 0.11% 0.91% 1.62% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.04% 0.08% 0.00% 8.14% 5.73% 73.94% 0.07% 5.06% 0.08% 0.51% 1.96% 0.72% 0.00% 0.41% 0.00%

sp4 0.08% 0.00% 0.00% 0.00% 0.00% 3.28% 0.13% 0.51% 0.23% 0.33% 0.13% 0.03% 0.00% 0.00% 0.11% 0.01% 0.14% 2.91% 0.02% 0.01% 0.81% 0.00% 8.34% 0.08% 1.96% 74.77% 3.92% 0.00% 0.00% 0.16% 1.93% 0.00% 0.00% 0.10%

sp5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.91% 0.00% 0.00% 97.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

su1 0.04% 0.86% 0.39% 0.06% 0.00% 0.45% 0.01% 0.16% 0.00% 0.00% 0.00% 0.01% 5.62% 0.00% 0.00% 0.46% 0.01% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.20% 70.04% 0.54% 0.00% 0.38% 2.10% 15.97% 2.58%

su2 1.16% 0.00% 0.00% 1.81% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.03% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.26% 0.00% 0.00% 0.00% 10.19% 34.36% 50.98% 0.00% 0.00% 0.53% 0.00%

su3 0.00% 0.00% 1.39% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 39.47% 57.22% 0.32% 0.04% 0.84% 0.37%

su4 0.00% 0.00% 0.58% 0.78% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.05% 0.24% 0.37% 17.54% 0.17% 18.98% 1.20% 0.66% 59.19%

su5 0.17% 8.85% 0.00% 0.23% 0.00% 0.12% 0.00% 0.00% 0.00% 0.27% 0.00% 0.00% 0.56% 0.00% 0.00% 0.48% 2.93% 0.00% 0.00% 0.09% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 1.56% 4.80% 7.84% 0.00% 1.17% 65.33% 5.21% 0.39%

su6 0.78% 0.20% 0.20% 0.33% 0.03% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.12% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.82% 0.00% 0.11% 0.78% 2.39% 80.76% 1.15%

su7 0.00% 0.00% 2.45% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.99% 0.00% 0.26% 52.81% 0.03% 1.24% 39.04%
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Table S 2.7: Prediction accuracies of the 34 Bacillus strains using DAG-SVM with Jaccard kernel model 

The different colours represent the species level identifications 

am1 am2 am3 am4 am5 ce1 ce2 ce3 ce4 ce5 la1 la2 li1 li2 li3 li4 li5 me1 me2 me3 me4 me5 sp1 sp2 sp3 sp4 sp5 su1 su2 su3 su4 su5 su6 su7

am1 15.76% 11.60% 0.24% 49.11% 0.00% 0.00% 1.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.44% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.51% 0.22% 0.00% 0.00% 0.00% 0.00% 1.86% 0.00% 0.01% 18.31% 0.50% 0.03%

am2 16.67% 45.30% 0.32% 9.96% 0.00% 0.01% 0.16% 0.00% 0.00% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.00% 0.12% 0.39% 0.00% 0.00% 0.00% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00% 0.00% 14.40% 0.00% 0.00% 0.00% 11.76% 0.60% 0.00%

am3 9.07% 17.84% 1.10% 12.93% 0.03% 0.03% 0.23% 0.00% 0.00% 0.39% 0.00% 0.15% 0.87% 0.00% 0.03% 0.43% 4.31% 0.00% 0.00% 0.22% 0.00% 0.00% 0.97% 0.00% 0.00% 0.00% 0.08% 3.13% 0.00% 1.34% 2.30% 28.37% 0.89% 15.31%

am4 29.09% 3.64% 1.09% 53.85% 0.00% 0.20% 0.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 0.61% 0.00% 0.00% 0.00% 0.00% 0.00% 2.48% 0.14% 0.00% 0.05% 0.24% 0.25% 1.70% 0.00% 1.30% 2.26% 2.28% 0.00%

am5 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ce1 0.00% 0.00% 0.28% 0.00% 0.00% 54.15% 0.02% 22.30% 10.22% 1.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 4.05% 0.00% 0.06% 2.38% 5.29% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.07% 0.00% 0.00%

ce2 0.32% 1.19% 4.90% 0.03% 0.11% 5.35% 71.31% 0.02% 7.31% 0.00% 0.17% 0.50% 0.00% 0.00% 0.00% 0.10% 0.06% 2.77% 1.45% 0.01% 2.38% 0.13% 0.15% 0.06% 0.25% 0.26% 0.00% 0.85% 0.09% 0.15% 0.00% 0.07% 0.00% 0.01%

ce3 0.03% 0.00% 0.01% 0.00% 0.02% 28.17% 0.06% 31.37% 34.78% 0.03% 0.00% 0.08% 0.00% 0.00% 0.00% 0.03% 0.97% 0.01% 0.01% 0.85% 2.12% 0.00% 0.00% 0.00% 0.24% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 1.17% 0.01% 0.01%

ce4 0.00% 0.00% 0.00% 0.00% 0.00% 6.71% 0.25% 44.58% 42.27% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.52% 0.00% 0.00% 0.02% 2.13% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ce5 0.00% 0.00% 0.13% 0.07% 0.00% 0.07% 1.18% 0.33% 5.36% 54.71% 0.00% 0.00% 8.33E-05 0.05% 0.00% 5.13% 4.99% 0.01% 2.01% 0.04% 21.81% 0.00% 1.88% 0.03% 0.03% 0.32% 0.80% 0.00% 0.00% 0.00% 0.20% 0.56% 0.30% 0.00%

la1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 65.43% 34.57% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

la2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 55.06% 44.94% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

li1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 89.73% 8.81% 1.06% 0.40% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

li2 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 19.07% 36.97% 23.56% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.98% 0.00% 0.00% 7.41%

li3 0.10% 0.00% 0.00% 0.12% 0.00% 0.03% 0.00% 0.05% 8.33E-05 0.00% 0.20% 0.00% 7.43% 20.19% 68.73% 2.49% 0.49% 0.00% 0.03% 0.02% 0.00% 0.00% 0.00% 8.33E-05 0.00% 0.08% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.03% 0.00% 0.00%

li4 3.98% 0.06% 0.23% 6.04% 0.00% 0.00% 0.10% 0.00% 0.00% 0.48% 0.00% 0.00% 6.19% 0.03% 14.97% 25.56% 15.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.04% 12.25% 0.00% 0.00% 0.18% 1.89% 0.00% 0.04% 2.83% 9.99% 0.02%

li5 2.36% 11.31% 2.47% 4.72% 0.00% 1.33% 0.00% 1.55% 13.64% 2.56% 0.00% 0.00% 0.15% 0.00% 2.74% 23.54% 0.69% 0.00% 0.00% 0.51% 0.00% 0.00% 0.15% 0.01% 0.00% 0.00% 0.10% 2.03% 0.00% 0.00% 0.09% 22.69% 7.35% 0.00%

me1 0.00% 0.35% 0.00% 0.00% 0.00% 0.00% 0.43% 0.43% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.86% 0.00% 0.00% 0.18% 3.53% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

me2 0.00% 0.00% 0.00% 0.00% 14.48% 4.36% 0.00% 0.14% 0.00% 0.25% 0.00% 0.00% 0.00% 0.01% 0.00% 8.33E-05 0.00% 0.05% 60.67% 0.78% 18.69% 0.00% 0.00% 0.00% 0.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05%

me3 0.00% 0.00% 0.00% 0.00% 0.03% 0.11% 0.00% 1.06% 0.38% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.23% 0.00% 0.05% 88.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

me4 0.00% 0.00% 0.00% 0.00% 0.00% 2.09% 0.22% 3.42% 3.43% 25.75% 0.00% 0.00% 0.00% 0.45% 0.00% 0.00% 0.00% 0.02% 15.43% 0.00% 49.11% 0.00% 0.00% 0.00% 6.25E-05 0.01% 8.33E-05 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.05%

me5 0.03% 5.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.32% 0.00% 0.00% 0.00% 93.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

sp1 0.00% 0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

sp2 0.63% 0.00% 0.03% 3.62% 0.00% 0.00% 0.06% 1.12% 0.63% 1.42% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 6.50% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 74.11% 0.00% 0.30% 9.53% 0.92% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00%

sp3 0.00% 0.00% 0.27% 0.00% 0.00% 0.11% 0.91% 1.62% 0.00% 0.00% 0.00% 0.00% 0.00% 8.14% 0.00% 0.33% 0.00% 0.00% 5.73% 0.04% 0.08% 0.00% 0.00% 0.00% 73.94% 0.07% 0.00% 0.08% 0.51% 1.96% 0.72% 0.00% 0.41% 5.06%

sp4 0.08% 0.00% 0.00% 3.92% 0.00% 3.28% 0.13% 0.51% 0.23% 0.33% 0.13% 0.03% 0.00% 8.34% 0.11% 0.01% 0.14% 2.91% 0.02% 0.01% 0.81% 0.00% 0.00% 0.08% 1.96% 74.77% 0.00% 0.00% 0.00% 0.16% 1.93% 0.00% 0.00% 0.10%

sp5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.91% 0.00% 0.00% 97.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

su1 0.04% 0.86% 0.39% 0.06% 0.00% 0.45% 6.25E-05 0.16% 0.00% 0.00% 0.00% 8.33E-05 5.62% 0.00% 0.00% 0.46% 0.01% 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 0.00% 0.09% 0.00% 0.20% 70.04% 0.54% 0.00% 0.38% 2.10% 15.97% 2.58%

su2 1.16% 0.00% 0.00% 1.81% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.03% 0.00% 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.50% 0.26% 0.00% 0.00% 0.00% 10.19% 34.36% 50.98% 0.00% 0.00% 0.53% 0.00%

su3 0.00% 0.00% 1.39% 0.04% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 39.47% 57.22% 0.32% 0.04% 0.84% 0.37%

su4 0.00% 0.00% 0.58% 0.78% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 17.54% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00% 0.05% 0.24% 0.37% 0.01% 0.17% 18.98% 1.20% 0.66% 59.19%

su5 0.17% 8.85% 7.84% 0.23% 0.00% 0.12% 0.00% 0.00% 0.00% 0.27% 0.00% 0.00% 0.56% 0.00% 0.00% 0.48% 2.93% 0.00% 0.00% 0.09% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.00% 1.56% 4.80% 0.00% 0.00% 1.17% 65.33% 5.21% 0.39%

su6 0.78% 0.20% 0.20% 0.33% 0.03% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.12% 0.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.82% 0.00% 0.11% 0.78% 2.39% 80.76% 1.15%

su7 0.00% 0.00% 2.45% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.18% 0.00% 0.00% 0.00% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.00% 0.00% 8.33E-05 0.00% 0.00% 0.99% 0.00% 0.26% 52.81% 0.03% 1.24% 39.04%



 

Chapter Two 

95 
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Abstract  

Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry 

(MALDI-TOF-MS) has successfully been used for the analysis of high molecular 

weight compounds, such as proteins. By contrast, analysis of low molecular weight 

compounds with this technique has been less successful due to interference from 

matrix peaks which have a similar mass to the target analyte(s). Recently, a variety 

of modified matrices and matrix additives have been used to overcome these 

limitations. An increased interest in lipid analysis arose from the feasibility of 

correlating these components with many diseases, e.g. atherosclerosis and metabolic 

dysfunctions. Lipids have a wide range of chemical properties making their analysis 

difficult with traditional methods. MALDI-TOF-MS shows excellent potential for 

sensitive and rapid analysis of lipids, and therefore this study focuses on 

computational-analytical optimisation of the analysis of five lipids (4 phospholipids 

and 1 acylglycerol) in complex mixtures using MALDI-TOF-MS with fractional 

factorial design (FFD) and Pareto optimality (PO). Five different experimental 

factors were investigated using FFD which reduced the number of experiments 

performed by identifying 720 key experiments from a total of 8064 possible 

analyses. Factors investigated included: matrices, matrix preparations, matrix 

additives, additive concentrations and deposition methods. This led to a significant 

reduction in time and cost of sample analysis with near optimal conditions. We 

discovered that the key factors to produce high quality spectra were the matrix and 

use of appropriate matrix additives.  
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3.1 Introduction  

Lipids, among other cellular components such as proteins, carbohydrates and nucleic 

acids are the most fundamental components found in bacterial cells (Prescher and 

Bertozzi, 2005). These cellular components have many important functions such as 

storing energy, cell signalling, as well as comprising the lipid bilayer needed to 

protect the organism from its environment (Vance and Vance, 2008). The structures 

of these cellular components are varied due to different combinations of building 

blocks that they are composed of, and these different polar head groups and acyl 

chains allow differentiation between bacterial species (Shu et al., 2012). Moreover, 

one important property of lipids is that they are hydrophobic; hence, they are usually 

dissolved in organic solvents such as chloroform, dichloromethane and hexane rather 

than aqueous solutions (Cliff et al., 2012). 

Development in lipid research has accelerated due to the availability of modern 

analytical technologies such as electrospray ionisation (ESI) coupled with mass 

spectrometry (MS), often with prior lengthy separation using liquid chromatography 

(Goodacre et al., 2004). Lipidomics involves the analysis of lipids and aims to 

explore their roles in health and disease. This field has gained an increased interest 

over the last decade by academics and clinical researchers in different fields as a 

vital means for studying many medical conditions (Mattila et al., 2008; Kenny et al., 

2010) including biomarkers for cancer (Lee et al., 2012; Zemski Berry et al., 2011) 

and microbiological diseases such as anthrax (Li et al., 2013). 

Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF-MS), (Lay et al., 2012; Schiller et al., 1999) has also been used by 

researchers in the field of lipidomics due to its high sensitivity, ease of automation 

and rapidity. This technique is a powerful tool for analysing microorganisms and 

biomolecules such as lipids, (Batoy et al., 2009; Zemski Berry et al., 2011; Stübiger 

and Belgacem, 2007; Jackson et al., 2005; Ryzhov et al., 2000; Stübiger et al., 2010) 

carbohydrates (Choi et al., 2009) and proteins (Lasch et al., 2009; Nicolaou et al., 

2012) since it provides useful information about molecular masses (m/z). The 

importance of understanding the usual distribution of lipids in samples of interest is 

fundamental for the development of treatments and understanding of the disease of 

interest. MALDI-TOF-MS offers the opportunity to analyse lipid mixtures making 

this technology attractive to researchers interested in understanding underlying 



Chapter Three 

100 
 

healthy and disease states using their chosen biological systems. Moreover, one of 

the most fundamental advantages of using this technique is that it is a soft ionisation 

method leading to the production of little or no ion fragmentation. Many lipidomic 

studies have utilised additives which are mixed to the matrix solution when 

analysing lipids using MALDI-TOF-MS. Examples of these additives include 

(amongst others): lithium chloride, (Jackson et al., 2005; Griffiths et al., 2013) 

potassium chloride (Griffiths and Bunch, 2012) sodium acetate (Stübiger and 

Belgacem, 2007) and calcium chloride (Müller et al., 2001). The purpose of using 

some of these salts is sometimes to simplify the spectra and reduce the background 

noise. Furthermore, additives allow adducts of interest to be favoured and the 

concentrations of other adducts to be reduced. 

The aim of this study was to optimise experimental conditions for the detection of a 

mixture of five different lipids via MALDI-TOF-MS using combinations of five 

different experimental conditions: matrices, matrix additives, additive 

concentrations, deposition methods as well as matrix preparation methods. This was 

followed by the use of robust chemometrics to simplify the huge number of possible 

experiments with a view to using these optimum conditions to analyse lipids 

extracted from bacteria.  
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3.2 Materials and Methods  

3.2.1 Chemical solvents and acids 

Acetonitrile (ACN), methanol, trifluoroacetic acid (TFA) and isopropanol 

(C3H7OH), chloroform (CHCl3), ethanol (EtOH) and HPLC grade water (H2O) were 

purchased from Sigma-Aldrich (Dorset, UK). 

3.2.2 Matrices 

Eight different matrices were used in this study: 2,4,6-trihydroxyacetophenone 

(THAP), 2,5-dihydroxybenzoic acid (2,5 DHB), 2,6-dihydroxyacetophenone 

(DHAP), 5-chloro-2-mercaptobenzothiazole (CMBT), 6-aza-2-thiothymine (ATT), 

2-4-hydroxybenzeneazo benzoic acid (HABA), dithranol (INN) and p-nitroaniline 

(PNA). All matrices purchased from Sigma-Aldrich (Gillingham, UK). 

 

3.2.3 Matrices additives 

All matrix additives were also purchased from Sigma-Aldrich (Gillingham, UK) 

including: diammonium citrate, ammonium chloride (NH4Cl), potassium acetate 

(CH3CO2K), potassium chloride (KCl), potassium nitrate (KNO3), sodium acetate 

(C2H3NaO2), sodium nitrate (NaNO3), sodium dodecyl sulfate (NaC12H25SO4), 

lithium nitrate (LiNO3), calcium chloride (CaCl2) and EDTA ammonium. 

 

3.2.4 Lipid standards 

Lipids are typically found in bacterial membranes and the choice of the lipids 

analysed in this study reflects this. Five different lipids were used in this study: 1,2-

dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PG), L-α-hosphatidyl-

ethanolamine dioleoyl (PE), 1,2-distearoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 

(PG), 1,2-di-(13Z-docosenoyl)-sn-glycero-3-phosphocholine (PC) and 1,2 diacyl-3-

O-(α-D-galactosyl1-6)-β-D-galactosyl-sn-glycerol (DGDG), purchased from Avanti 

Polar Lipids Inc. (Delfzyl, The Netherlands). These were named as follows: lipid B, 

lipid C, lipid E, lipid F and lipid G, respectively. Each lipid was dissolved in (1:6) 

MeOH:CHCl3 (v/v). This was followed by mixing the lipid together to form a lipid 

mixture. Each lipid within the mixture was at an equal concentration (1.08 mM). The 

reason behind the lipids nomenclature was that initially seven lipids were used, 
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however; lipids A [L-α-phosphatidylglycerol (E. coli) and D (L-α-

phosphatidylethanolamine (E. coli)] mass spectra did not have definitive and 

reproducible unique peaks that could be assigned to these lipids. Therefore, these 

two lipids were excluded from any further experiments (data not shown). 

3.2.5 Preparation of matrices and matrix additives  

Each matrix was prepared at 10 mg/mL with six different matrix preparations 

including: MeOH:0.1% TFA (80:20, v/v), MeOH:H2O (70:30, v/v), 

CHCl3:MeOH:H2O (40:40:20 ,v/v), H2O:ACN, (50:50 v/v), ACN:H2O:C3H7OH 

(20:20:50, v/v) and EtOH:H2O, (90:10 v/v). All the matrix additives were diluted in 

MeOH:H2O (80:20, v/v). In addition, six different concentrations were used for 

matrix additives viz. 0, 5, 10, 20, 40, and 80 mM. 

3.2.6 Spotting of lipid mixture for MALDI-TOF-MS 

Details of the matrices and matrix additives along with the preparation of matrices 

and matrix additives are provided in SI (see Tables S3.1 and S3.2). Three analytical 

replicates for each experiment (matrix, matrix additive, additive concentration, 

matrix preparation method and sample deposition method) were prepared for 

MALDI-TOF-MS analysis. 

Three different deposition methods (AlMasoud et al., 2014 (Chapter 2)) were used 

while ensuring the same amount of analyte is used for MALDI-TOF-MS analysis: (i) 

dried droplet method (mix method), where the analyte and the matrix are first mixed 

at equal volumes (1 µL each) followed by spotting 2 µL of the resultant mixture onto 

a MALDI plate and allowing the mixture to dry; (ii) thin layer method (underlay 

method), where 1µL of the matrix was applied onto a MALDI plate and was allowed 

to dry, then 1 µL of the analyte was added to the matrix and allowed to dry; and (iii) 

overlay method, in which 1 µL of the analyte was applied onto a MALDI plate and 

allowed to dry, then 1 µL of matrix was spotted and the mixture allowed to dry. 

3.2.7 Preparation of lipid extracts from bacterial samples and human serum 

Gram-positive (Bacillus. cereus, Bacillus. subtilis) and Gram-negative (Escherichia 

coli, and Pseudomonas aeruginosa) bacteria were grown in LB media for 10 h at 

37°C. Lipids were extracted from quenched bacterial samples as described in SI, and 
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the procedure used for lipid extraction from artificial human serum (Sigma-Aldrich, 

Dorset, United Kingdom) is also described in SI. For MALDI-TOF-MS analysis of 

the bacterial lipid extracts, the samples were reconstituted in 100 µL of 80:20 (v/v) 

methanol:HPLC water. The extracted lipid pellet from artificial human serum was 

reconstituted in 100µL of HPLC grade water on the day of analysis where MALDI 

protocol was followed for sample preparation.   

3.2.8 Operating the MALDI-TOF-MS 

720 experiments were carried out in 18 batches using an AXIMA-Confidence 

(Shimadzu Biotech, Manchester, UK) mass spectrometer. This MALDI-TOF-MS 

device contained a nitrogen pulsed UV laser with a wavelength of 337 nm as 

described previously (AlMasoud et al., 2014 (Chapter 2)). The power of the laser 

was set to 100 mV. Each profile contained 20 shots, and 78 profiles were collected 

using a circular raster pattern. The MS was operated in positive ion mode and 

reflectron TOF was used over the range 100-1000 m/z. Approximately 40 

experiments were carried out each day and the analysis time took ~4 months. The 

results of this analysis generated 2160 MALDI-TOF-MS spectra: 720 experiments × 

3 technical replicates. 

 

3.2.9 Data analysis 

3.2.9.1 Fractional Factorial Design 

Five factors were tested in this study (matrix type, matrix preparation, type of matrix 

additive, additive concentration and sample deposition method) to detect lipids using 

MALDI-TOF-MS. Considering all the parameters under study, the full factorial 

design or the total number of unique experiments that could be generated is: 

 

[(8 matrices) × (11 matrix additives) × (6 matrix preparation methods)  

× (5 additive concentrations) × (3 deposition methods)] + [(8 matrices) × (6 matrix 

preparation methods) × (3 deposition methods)] = 8064 experiments 

 

(The product on the left hand side of “+” corresponds to samples where a 

matrix additive was used (i.e., 5, 10, 20, 40, 80 mM), whereas the product on 
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the right hand side of “+” corresponds to samples where no matrix additive 

was used (i.e., 0 mM)). 

 

This is a large number of experiments to perform in the laboratory, and an exhaustive 

analysis of the search space would be unnecessarily laborious, time-consuming and 

expensive. Moreover, many experiments are probably redundant in terms of 

indicating which combinations of mixtures enhance the MALDI-TOF-MS signal, as 

these conditions will have multiple interacting factors. Therefore, in order to 

determine which experiments were to be carried out, a fractional factorial design 

(FFD) was used to filter the search space. FFD is based on a principle known as 

sparsity-of-effects (SOE) (Mukerjee and Wu, 2006). This principle assumes that the 

main effects with low-order interactions dominate a system. FFD selects only a 

subset (fraction) from a full experimental run. This significantly low fraction of 

experiments is expected to be sufficient to understand the underlying problem 

(Quinn and Keough, 2002). FFD was computed using MATLAB (The MathWorks, 

Inc., Natick, Massachusetts, USA) version 2012b. The FFD algorithm returned 720 

(Table S3.3) (see list in the attached material: Chapter 3_SI)) suggested experiments 

(less than 10% of the full design) to be performed. Each of these 720 MALDI 

experiments was then assessed in the laboratory. 

3.2.9.2 Data pre-processing  

 

MATLAB was used for pre-processing and data analysis. Initially, the spectra were 

baseline corrected using statistics-sensitive non-linear iterative peak-clipping 

algorithm (SNIP) (Ryan et al., 1988), then the peaks were aligned using the 

“msalign” function from MATLAB and Bioinformatics Toolbox Release 2012b (The 

MathWorks, Inc., Natick, Massachusetts, United States) (Monchamp et al., 2007). 

This was followed by: (1) peak detection and all known expected peaks for each 

lipid (Table S3.4) and (2) for each individual lipid the intensities of its expected 

peaks are then summed up to represent the evidence of detection of that respective 

lipid on the spectrum analysed (i.e., the higher the sum of the expected peaks, the 

higher the evidence that the lipid has been detected). 
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3.2.9.3 Multiple objectives measured 

 

Despite the complexity of MALDI data, even more so in lipidomics, various aspects 

need to be considered. Therefore, four different multiple objectives were measured to 

evaluate the quality of each proposed experimental solution (combination of factors 

under study). These measurements synthesise highly desirable objectives that are in 

general difficult to achieve in MALDI experiments, namely: (i) high reproducibility, 

(ii) high signal to noise ratio, (iii) high peak intensity of each lipid under study and 

(iv) detection of all lipids included in the mixture, since that the correct identification 

of all lipids present in the sample is a fundamental requirement for systematically 

searching for the simplest possible global optimal solution.  

(Objective function 1) High reproducibility of the spectra: spectra reproducibility 

was evaluated based on the correlation coefficient between the three generated 

analytical replicates using the following formula: 
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where, ek represents the k
th

 replicates of experiment e (in this work k = 1, 2, 3). The 

spectra generated from MALDI-TOF-MS suggested that they were highly 

reproducible (Figure S3.5). 

 

(Objective function 2) High signal-to-noise ratio: the signal to noise ratio (Snr) 

was based on extracting all identified and valid peaks from the original spectrum 

with the undesired noise remaining and was computed based on the following 

formula:  
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(Objective function 3) Number of lipids detected: a lipid is considered to have 

been detected in the mixture when at least one of its unique characteristic peaks are 

present in the spectrum. This objective function then counts how many different 

lipids (out of the 5 composing the mixture) have been positively detected within the 

MALDI-TOF-MS spectrum of lipid mixture. 

(Objective function 4) High peak intensity of each lipid: for each lipid, the sum of 

all of its known expected peaks (Table S3.4) was considered as a single value or 

evidence score indicating the strength of the detection of that lipid. For instance, 

taking lipid B (see Table S3.4) as an example, the sum of its known expected peaks 

would be: 

 
(            ) 

 

 

 

 

 

As this study analysed 5 different lipids, this objective function (#4) is actually 

subdivided into the sum of 5 different lipid intensities as shown in Equation 3.4. 

 

 

3.2.9.4 Pareto optimality 

The Pareto optimality (PO) principle was first introduced by Smilde (Smilde et al., 

1986). PO is defined by experiments having better results for some objectives in 

conjunction with possibly not as good results for other objectives. The aim of PO 

was to identify the samples (spectra) or points for which no other sample is better 

than them for at least one of the objectives measured. 

As there are four objectives to be satisfied in this research (reproducibility, high 

signal to noise ratio, high peak intensity and the number of lipids detected), we used 

the PO approach to identify relevant solutions. In PO, a solution is achieved when 

each objective, in our case four main objectives (note that peak intensity is 

subdivided into five objective functions one of each lipid under study); is optimised 

Lipid B (intensity) = peak@688 + peak@710 + peak@726

Evidence for lipid B detection   
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to the extent that it is acceptable to the decision maker and without other objectives 

suffering as a result of this process if further optimisation were to take place (Ramı et 

al., 2002). In PO, a solution is considered valid and said to be “in the Pareto front” if 

no other solution dominates that solution in all objectives being measured. 

Otherwise, the solution is said to be dominated, is not in the Pareto front and is 

rejected. As at the end of the process there may be many solutions in the Pareto 

front, the decision of which solution is the best depends on the user expectations and 

requirements for each objective measured (Figure S3.2 illustrates PO). The objective 

function used for computation of PO is then given by the following multi-objective 

function: 
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3.3 Results and Discussion 

3.3.1 Systematic matrix optimisation  

There has been wide interest in addressing questions related to the role of lipids and 

their biological function due to their importance in cells (Gidden et al., 2009; Dong 

et al., 2013), using modern analytical techniques such as MALDI-TOF-MS, (Schiller 

et al., 2004; Cornett et al., 2007; Fuchs and Schiller, 2009) since MALDI-TOF-MS 

is a very powerful technique for lipid analysis. For this purpose a mixture of 5 lipids 

were selected due to their importance in bacterial cell membranes and these 

included: 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) PG (lipid B), L-α-

count of different lipids 
positively detected 

Lipid B(intensity) = peak@688 + 
peak@710 + peak@726
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phosphatidylethanolamine dioleoyl PE (lipid C), 1,2-distearoyl-sn-glycero-3-

phospho-(1'-rac-glycerol) (lipid E), 1,2-di-(13Z-docosenoyl)-sn-glycero-3-

phosphocholine PC (lipid F)  and 1,2 diacyl-3-O-(α-D-galactosyl1-6)-β-D-

galactosyl-sn-glycerol (lipid G). Our central focus was to optimise MALDI-TOF-MS 

for lipids using different factors: matrix, matrix preparation, matrix additive, additive 

concentration and deposition method. Therefore different experimental combinations 

resulting in different lipid preparations were spotted directly onto the wells of the 

MALDI plates and MALDI-TOF-MS measurements taken producing corresponding 

mass spectra. 

MALDI-TOF-MS data are quite often challenging to interpret due to the complexity 

of the spectra acquired. The complexity of the data is due to the presence of different 

ion species formed from the lipid molecule including [M+H]
+
, [M+Na]

+
, [M+K]

+ 

and [M-H]
-
 (Zemski Berry et al., 2011). Hence, a selection of eight different 

commonly used matrices, including: THAP (Stübiger and Belgacem, 2007; Lee et 

al., 2013), DHB (Griffiths and Bunch, 2012; Lee et al., 2013; Petkovic et al., 2009; 

Marto et al., 1995), DHAP (Gorman et al., 1996; Stübiger and Belgacem, 2007), 

CMBT (Zhou et al., 2010), ATT (Shanta et al., 2012; Stübiger et al., 2010), HABA 

(Przybylski et al., 2010), INN (Le et al., 2012) and PNA (Ham et al., 2005) were 

used to facilitate the analysis of the lipid mixture. This selection of matrices was 

based on a literature survey conducted to establish which matrices have been 

reported to work well for lipid analysis using MALDI-TOF-MS. Some of these 

matrices were shown to increase background noise and others to decrease it. These 

finding were also reported previously in the literature (Calvano et al., 2011; Schiller 

et al., 1999).  

3.3.2 Fractional Factorial Design used to identify optimum conditions for 

MALDI-TOF-MS 

The significance of different factors (matrix, matrix preparation, matrix additive, 

additive concentration and deposition method) was assessed using 18 peaks, which 

were directly assigned to the corresponding lipids in the mixture. Table S3.4 shows 

the assignment of these peaks. These 18 peaks were extracted from the results of the 

720 experimental protocols selected by FFD. Figure 3.1 illustrates the 3D scores plot 

of MALDI-TOF-MS data using multiple objectives measured for 720 × 3 = 2160 

spectra generated in this study. The different characteristics (shapes and colours) 

http://en.wikipedia.org/wiki/International_Nonproprietary_Name
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shown in this 3D plot represent different matrices. For instance, the red and blue 

squares represent 6-aza-2-thiothymine (ATT) and 2,6-dihydroxyacetophenone 

(DHAP), respectively. Moreover, the size of the shapes is proportional to the quality 

of the spectra according to Equation 3.4 (the bigger, the better). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: 3D scores plot of MALDI-TOF-MS data using multiple objectives measured for 

all 2160 spectra. The different characteristics (shapes and colours) represent different 

experimental conditions. The size of the shapes is proportional to the quality of the spectra; 

i.e. the bigger, the better.  A key was not used to represent the different characteristics as 720 

experiments conditions making this impossible. The purple arrow at the top of the 3D score 

plot indicates the top solution and the bottom arrow indicates one of the worse solutions.      

 

Referring back to Figure 3.1, a red square at the top of the 3-D scores plot clearly 

seen. This square represents the overall best experiment from the 720 experiments 

carried out and its corresponding spectrum is shown in Figure 3.2. This optimised 

experimental setup was further used to analyze lipid extracts from four different 

bacterial biological samples encompassing both Gram-positive and Gram-negative 

bacteria (B. cereus, B. subtilis, E. coli, P. aeruginosa) as well as human serum. The 
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spectra for these five real-world samples are shown in Figure S3.6 (A-E) and it is 

clear that this solution yields high quality spectra.  

By contrast, the experiments that failed to detect the five lipids are shown towards 

the bottom of the plot in Figure 3.1. In this Figure, a significant amount of 

experiments concentrated at the top of the 3D plot. The highlight of these 

experiments (circled in Figure 3.1) showed that ATT, DHB and THAP matrices were 

found in this region. Hence, these matrices are the most compatible with the lipids 

analysed. Experiments shown to be less suitable for the analysis of the lipid mixture 

also yielded very poor quality spectra when used to analyze lipid extracts from 

bacterial and serum as shown in Figure S3.6 (F-J).   

3.3.3 MALDI-TOF-MS spectra of a lipid mixture  

 

In this study, it was shown that using MALDI-TOF-MS, it is possible to analyse 

lipids in a mixture, but their detectability changed significantly (Müller et al., 2001) 

when changing the type of matrix, matrix additives and the concentration of some 

matrix additives. Comparing the matrices that were mentioned in the previous 

section, it can be noted that ATT was the most compatible for the analysis of the five 

lipids in a mixture since it was the softest, (Harvey, 2014) produced good shot-to-

shot and sample-to-sample reproducibility (Lecchi et al., 1995), in turn causing a 

substantially lower amount of fragmentation, reducing the background noise and 

increasing both the signal-to-noise ratio and reproducibility, which produced an 

overall optimum experiment. These observations were also reported by Stubiger et 

al. (Stübiger et al., 2010). Moreover, it can be argued that other matrices, such as 

PNA and CMBT, could be used as alternatives in some cases as some of the lipids 

were detectable, and matrices such as DHAP were not used for further lipid analysis 

as poor spectra were produced regardless of whether matrix additives were used or 

not (Stübiger and Belgacem, 2007). However, reproducibility with PNA was low and 

hence it was decided that ATT was to be used in future lipid studies. 

Figure 3.2 shows the positive ion MALDI-TOF-MS spectrum of the overall optimum 

experiment when using the combination: mix deposition method, ATT as a matrix, 

H2O/ACN (50:50) matrix preparation vehicle. This combination was selected in the 

current experimental design guided by Pareto optimality (described in Section 3.3.5). 

Explaining such selection would require extensive theoretical speculation, which is 
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beyond the scope of this work. The m/z range was from 650 to 1000, and the peaks 

that corresponded to each lipid in the mixture were assigned and summarised in the 

table shown within Figure 3.2. The green, purple and red symbols in the spectrum 

and table corresponded to H
+
, Na

+ 
adduct and K

+
 adduct of each lipid, respectively. 

These adducts are usually detected when conducting such experiments. The spectrum 

corresponds to the precursor ions [M + H]
+ 

(m/z 688), [M + Na]
+ 

(m/z 710) and [M + 

K]
+ 

(m/z 726) for lipid B, and the protonated peak represents the most intense peak 

for lipid B. Moreover, the peaks at m/z 744, 766 and 782 correspond to lipid C and 

also represent [M + H]
 +

, [M + Na]
 + 

and [M + K]
 +

, respectively, and this time the 

sodium adduct peak dominated. These observations were also noticed with lipids E, 

F and G, with the exception of [M + K]
 + 

peak not being detected for lipid E. The 

ability to identify protonated molecules simplifies the interpretation of spectra (Ham 

et al., 2005). 

 

 

 

 

 

 

Figure 3.2: Typical and best MALDI-TOF-MS spectrum of a lipid mixture, detected m/z 

from 650 to 1000. 14 lipid peaks are highlighted in the spectrum showing the main lipids 

and lipid-adducts that were detected using the top conditions, where lipid (B) is PG, (C) is 

PE, (E) is PG, (F) is PC and (G) is DGDG. 

Lipid [M+ H] ⁺ [M+ Na]⁺ [M+ K]⁺ 

B 688  710 726 

C 744 766 782 

E 801 823 - 

F 898 920 936 

G 937 959 975 
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On the other hand, some poor complex MALDI-TOF-MS spectra were produced, 

which may be due to the immiscibility of the matrix solution and the lipid mixture, 

making crystallisation inhomogeneous, (Stübiger and Belgacem, 2007) or due to 

failure of the one or more the four different multiple objectives measured. Figure 

3.3B shows an example of a poor spectrum produced for the lipid mixture when 

using the combination: underlay deposition method, PNA dissolved in chloroform, 

MeOH and H2O with 80 mM lithium nitrate as a matrix additive (Figure 3.3B). 

Furthermore, the spectrum slightly improved and was less complex when the 

concentration of the additive was reduced to 40 Mm (Figure 3.3C). From this 

observation, it can be seen in Figure 3.3C that some of the lipids were detected using 

MALDI-TOF-MS, such as peaks at m/z 750, 904 and 943 which correspond to [M + 

Li]
+
 for lipid C, F and G, respectively, with the exception of lipid B and E, which 

were not detected. As discussed above the positions of experiments within the 3-D 

scores plot are vital hence, the position of the experimental condition in Figure 3.3A 

was interesting. For example, when 40 mM lithium nitrate was used (Figure 3.3C) 

compared with the position of the same experiment carried out using 80 mM lithium 

nitrate (Figure 3.3B) instead, with 40 mM lithium nitrate being higher position than 

that 80 mM lithium nitrate. Surprisingly, when the matrix PNA was added to the 

lipid mixture alone without the matrix additive (Figure 3.3D), the spectrum was less 

complex as the protonated peak was easily detected. 
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Figure 3.3: (A) 3D scores plot of MALDI-TOF-MS, (B) MALDI-TOF-MS spectrum for an 

experiment that failed to detect lipid peaks when using PNA as the matrix and 80 mM 

lithium nitrate as the matrix additive, (C) the experiment slightly improved when the 

concentration of the matrix additive was reduced to 40 mM and (D) PNA was used without 

matrix additive. 

 

3.3.4 Additives to reduce the complexity of data 

A number of research groups have used matrix additives for the analysis a of variety 

biological compounds. These additives include: ammonium acetate (Griffiths and 

Bunch, 2012; Stübiger et al., 2010) and citrate (Zhu and Papayannopoulos, 2003) for 

analysing phosphopeptides and proteins; lithium and caesium chlorides (Wang et al., 

2000) for analysing polymers; and tetraamine spermine (Asara and Allison, 1999) 

and polyamine (Vandell and Limbach, 1999) for the analysis of oligonucleotides. 

Interest in using additives has increased due to the quality of MALDI-TOF-MS 

spectra produced upon their addition (Griffiths and Bunch, 2012; Zhou et al., 2010). 

Hence, this study included the addition of matrix additives to reduce the complexity 
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of MALDI-TOF-MS spectra generated with some of the matrices used in lipid 

analysis. 

The matrix additives used in this study contained different cations including: Na
+
, 

Li
+
, K

+
 and Ca

+2
, which participated in the formation of adducts with the lipids. 

Lipid detection was affected significantly by the addition of some additives 

including: sodium nitrate, sodium acetate and diammonium citrate, more so than 

others such as EDTA ammonium (Müller et al., 2001). The best conditions for the 

experiments showed that the use of matrix additives is not always necessary as all 

the five lipid peaks were detected with the only difference in intensity of the adducts. 

Moreover, there appeared to be no obvious effect on the spectra when using different 

concentrations of some of the matrix additives especially when using concentrations 

between 10 to 40 mM (Figures S3.3). 

On the other hand, these matrix additives were found to be useful in reducing the 

complexity of the data with some matrices, such as dithranol. Figure 3.4A and B 

show the spectra of the lipid mixture before and after the addition of sodium nitrite 

(10 mM), respectively. These spectra reiterated that the use of additives can indeed 

generate spectra with more useful information. Figure 3.4A shows that the spectrum 

generated from the analysis of the lipid mixture without the addition of an additive 

was extremely complex and the peaks were not detectable. However, Figure 3.4B 

shows that some of the lipid peaks were detectable such as sodiated peaks at 710, 

766, 823, 920 and 959 m/z corresponding to lipids B, C, E, F and G, respectively. By 

contrast, these peaks were undetectable in Figure 3.4A when the additive was not 

added. 

Three different anions were the centre points for lipid analysis when choosing the 

additives, these anions included: nitrates, acetates and chlorides. We have observed 

that the addition of sodium nitrate/acetate led to an increase in the abundance of Na
+
 

adducts in comparison to K
+ 

adducts and the protonated peaks were also detected 

(data not shown). Moreover, the addition of potassium nitrate led to an increase in 

the intensity of K
+ 

adducts relative to Na
+ 

adducts. In addition, when lithium nitrate 

was added to some of the matrix solutions, such as PNA, this led to reduction in 

spectral complexity and ease of the identification of some peaks. However, high 

concentrations of matrix additives resulted in poor spectra as no or few lipids were 

detected. Moreover, the addition of ammonium chloride to some of matrix solutions 
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resulted in a decrease in abundance of Na
+
 and K

+ 
adducts, in line with a previous 

study carried out by Griffiths et al. (Griffiths and Bunch, 2012). The use of calcium 

chloride resulted in poor spectral quality compared to other additives (Müller et al., 

2001) as Ca
+2

 adducts cannot be detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: MALDI-TOF-MS spectra for the lipid mixture using dithranol as a matrix, (A) 

without a matrix additive, and (B) with 10 mM of sodium nitrate. The experiment resulted in 

an improved spectrum when sodium nitrite was added to the matrix solution. 
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Table 3.1A shows different experiments, which consisted of a combination of 

different factors. The green boxes represent the combination of factors that allow the 

detection of lipid peaks. In contrast, the red boxes represent the experiments that 

combined factors, which failed to detect lipid peaks.  For example ATT, DHB and 

THAP are useful to analyse lipid samples with or without matrix additives, whereas, 

as some of the matrices such as CMPT and dithranol are not able to detect some of 

the lipid peaks without matrix additives. CMPT can detect some of the lipids in the 

presence of an additive such as 40 mM of sodium acetate, however; the spectra 

generated remain poor (Figure S3.4). Referring back to Table 3.1A it can be seen that 

some of the combinations enable the detection of lipids. However, in-depth analysis 

reveals that the intensities of each lipid vary between one experiment to another 

(Table S3.4) (see list in the attached material: Chapter 3_SI). This table shows the 

individual and combined FX (                ) values for each objective for each 

experiment. Although, most of the experiments generated a signal, it can be noted 

that some of the objectives have higher scores than others as expected.  

Our observations in Figure 3.5 below indicate that the choice of matrix and matrix 

additive are the best predictors of peak intensities from the five experiments 

parameters (factors) that were investigated in this study, whereas other factors, such 

as the concentration of the additive, the deposition method and occasionally the 

matrix preparation method, are less important in the detection the lipid peaks using 

MALDI-TOF-MS analysis.  

 

 

 

 

 

 

3.3.5 Pareto optimality  

 

B                                                     C                                                   E                  F                                       G 

Lipid Peak 

Figure 3.5: A factor impact model 

showing the impact of each factor 

considered in the experimental design. 

It indicates that the choice of matrix 

and matrix additive are the best 

predictors of peak intensity, whereas 

other factors are less important to 

optimise for the detection of these lipid 

species using MALDI-TOF-MS. Key: 

black line is the matrix, red line is the 

matrix preparation, green line is the 

matrix additive, blue line is the 

concentration of matrix additive, and 

cyan line is the deposition method. 
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3.3.5 Pareto Optimality  

The aim of this method was to identify the optimal experimental settings based on at 

least one of the objectives which were used for the optimisation process. Table 3.1B 

shows the first overall optimum experiment that was identified using PO. In this 

table, the column (1) which is represented by a blue colour shows the FX score value 

which is the computed score for the multiple objectives. FX score value was 

generated by measuring the overall objective contributions. As with other methods, 

this method also needed to be validated.  

The validation was carried out in different ways: 

(i) Using the top experiment seen in the 3-D plot (Figure 3.1), which is 

represented by a red square; this was shown to be reproducible as this square 

represents an average of three experiments with the same overall optimum 

conditions which have shown good reproducibility and high signal to noise 

ratio (see Figure S3.5). 

(ii)  The lipid mixture without the additive produced the spectrum shown in 

(Figure 3.4A) which was in position 257 of 260 samples based on the Pareto 

optimality; on the other hand, this spectrum was improved upon the addition 

of the additive to the matrix and is shown in (Figure 3.4B), leading to a 

change in the position of the sample to position 177. 

(iii) The first overall optimum experiments were repeated again (Table 3.1B) and 

column (2) which is represented by a yellow colour shows the FX score 

values for the repeated experiments carried out for validation. The results 

achieved had a better score than the maximum value, which indicates that 

these newly tested conditions can be used for subsequent experiments.  
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Table 3.1: (A) Examples of experiments carried out using different factors. The green boxes 

show the best combination of factors for lipid peak detections, whereas the red boxes shows 

the combination of factors that failed to detect lipid peaks. (B) The first overall optimum 

experiments that was selected using Pareto Optimality. (1) Represents by the blue column 

shows the FX score value which is computed score for the multiple objectives. (2) 

Represents by the yellow column shows the FX score value for the repeated experiment 

carried out for validation and is also computed score for the multiple objectives. 
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FX 

value 

ATT H2O/ACN None None Mix      4.277 

ATT Chloroform/MeOH/H2O Sodium nitrate 10 mM Mix      3.109 

DHB ACN/H2O/isopropanol Sodium nitrate 40 mM Underlay      3.972 

DHB MeOH/H2O Sodium acetate 5 Mm Underlay      3.852 

DHB EtOH/H2O Sodium nitrate 5 mM Mix      3.829 

DHB EtOH/H2O Sodium dodecyl sulphate 10 mM Mix      3.787 

DHB ACN/H2O/isopropanol Sodium dodecyl sulphate 5 mM Mix      3.782 

THAP MeOH/H2O Sodium nitrate 10 mM Mix      3.831 

THAP Chloroform/MeOH/H2O None None Mix      3.602 

Dithranol MeOH/H2O None None Overlay      1.029 

Dithranol MeOH/H2O Sodium nitrate 10 mM Overlay      2.775 

CMPT H2O/ACN Sodium dodecyl sulphate 40 mM Overlay      2.567 

HABA EtOH/H2O None None Mix      1.267 

DHAP H2O/ACN Potassium acetate 10 mM Overlay      2.430 

B 
       

Matrix 
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Matrix 
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3.4 Concluding remarks  

In this study, we presented evidence for the feasibility of translating complex data 

generated from lipid analysis using MALDI-TOF-MS to more simplified spectra 

which yields useful information about the lipids being analysed. Reproducibility and 

robustness were achieved when using fractional factorial design and Pareto 

optimality combined with MALDI-TOF-MS analysis, which had the desired effect of 

significantly reducing the experimental search space. Indeed, the use of FFD showed 

that the choice of matrix, matrix preparation, choice of matrix additive, additive 

concentration and deposition method for MALDI-TOF-MS analysis could be 

optimised for lipid detection in a mixture. This resulted in the number of possible 

experimental conditions being reduced from 8064 to 720. 

This study showed that for lipid analysis using MALDI-TOF-MS, the key factors to 

obtain quality spectra are the choice of matrix and matrix additives. For the analysis 

of the five target lipid species analysed the overall optimum conditions were 

achieved when using: mix deposition method, ATT as a matrix, H2O/ACN (50:50, 

v/v) matrix preparation without the addition of a matrix additive. Hence, this would 

suggest that if the correct matrix is used for MALDI-TOF-MS analysis of lipids, a 

matrix additive is often not required. However, this should not be generalised as the 

matrix dithranol required the addition of an additive and gave acceptable results for 

lipid detection.  

Although this study showed the utility of MALDI-TOF-MS in the analysis of lipid 

mixtures, applying this technique for the analysis of low molecular weight 

compounds suffers from several limitations including the observed interference of 

matrix peaks with low molecular weight analyte peaks, the presence of analyte 

isobaric peaks, as well as the complexity of spectra arising from unfractionated 

biological samples. These limitations can still be overcome when suitable 

technologies used to resolve analytes are applied in conjunction with mass 

spectrometry. These technologies include liquid chromatography (Pitt, 2009) and ion 

mobility (Lanucare et.al, 2014), with each having its own specific application.  

In conclusion, we have shown that using FFD and PO it is possible to optimise the 

detection of lipids in an artificial mixture containing 5 lipid species and future 

analyses will concentrate on applying these conditions to real biological systems. 
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3.6 Supplementary information  

3.6.1 Preparation of lipid extracts from bacterial samples 

Nutrient agar (NA) plate cultures were prepared for four bacterial species (Bacillus. 

cereus, Bacillus. subtilis, Escherichia coli MG1655, and Pseudomonas aeruginosa). 

NA was prepared from a preparatory mixture (beef extract 3 g/L, peptone 5 g/L, 

NaCl 8 g/L and agar 2 at 12 g/L) (Lab-M, Bury, UK) following the manufacturer’s 

instructions (28 g in 1 L of deionised water) and the agar was autoclaved (at 121ºC 

and 15 psi for 15 min) before use. A single colony from the agar culture was 

transferred to the LB media (50 mL) in a 250 mL flask which was incubated 

overnight at 37ºC with shaking at 200 rpm. LB media was prepared by mixing 10 g 

of NaCl, 5 g of yeast extract (Amersham Life Sciences, Cleveland, USA) and 10 g of 

tryptone (Formedia, Hunstanton, UK) dissolved in 1 L of distilled water. The broth 

was then autoclaved (at 121ºC and 15 psi for 45 min) before use.  

15 mL from each LB media culture was quenched using 30 mL 60% methanol (-

48ºC) and mixed quickly. The mixture was then centrifuge for 10 min at 4800 ×g at -

8ºC 
1
. This was followed by removing the supernatant rapidly and leaving the pellet 

in the centrifuge tube.  

Biomass of the bacteria was mixed with 2 mL HPLC grade chloroform:methanol 

(2:1) pre-chilled at -20ºC and 1 mL of HPLC water. The mixture was then centrifuge 

at 4800 ×g for 3 min at -8ºC (Winder et.al. 2008). This was followed by tranfering 

the bottom chloroform-based layer which contains most of the lipids into fresh 2 mL 

micro-centrifuge tubes, then the samples were left to evaporate on a hot plate 

overnight at 40ºC before storage at -80ºC. For MALDI-TOF-MS analysis of the 

bacterial lipid extracts, the samples were reconstituted in 100µL of 80:20 (v/v) 

methanol:HPLC water.  

3.6.2 Lipid extraction from human serum 

The lipids from the artificial human serum were extracted by adding 400 µL of cold 

MeOH to 100 µL of serum. The mixture was homogenised using a vortex for 10 

seconds. This followed by centrifugation for 15 min at 13500 g. The supernatant was 

then transferred to an Eppendorf tube and dried overnight in vacuum concentrator. 
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The extracted lipid pellet from artificial human serum was reconstituted in 100µL of 

HPLC grade water on the day of analysis where MALDI protocol was followed for 

sample preparation.   
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Figure S 3.1: Maximising peak intensity is not the only objective. This figure depicts 

the four objectives that were simultaneously measured and optimised in this study. 

 

 

 

Figure S 3.2: Pareto optimality example for two objective functions. Solution A dominates 

solution B in all objectives. Solution C also dominates solution B in all objectives. 

Therefore, solution B is not in the Pareto front and is ignored. However, none of the 

solutions A or C dominates the others in all objectives and both are considered to be in the 

Pareto front, the choice of which solution to choose depends on the user requirements for 

each objective measured. 
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Figure S 3.3: Positive ion mode spectra for lipids in mixture detected using MALDI-TOF-

MS in the presence of matrix additives: (A) sodium nitrate and (B) sodium acetate at two 

different concentrations.  ATT was used as a matrix.   
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Figure S 3.4: Positive ion mode spectra for lipids in mixture detected via MALDI-TOF-MS 

using CMPT matrix and 40 mM of sodium acetate. 

 

Figure S 3.5: Typical MALDI-TOF-MS spectra for a lipid mixture using the overall 

optimum conditions. Reproducibility checks were carried out to prove that the experiments 

identified using Pareto optimality is repeatable for 3 analytical replicates (A, B and C). 
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Figure S 3.6: Typical MALDI-TOF-MS spectra for lipid extracts from examples for bacterial samples 

using the most optimal set of conditions (A-E) and one of the least optimal set of conditions (F-J).  

These two conditions are in Figure 3.1 are indicated by purple arrow. 
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Table S3.1. The concentrations of matrices in the different matrix/matrix additive mixtures used for MALDI-TOF-MS analysis. 

 

* The concentrations of matrix are calculated using (mv × mc / 1000);  

where: mv is the volume of the matrix added (see column 3 of Table S-2) and  

mc is the initial concentration of the matrix (see column 3 of Table S-1) 

 

Table S3.2. Volumes used to prepare the matrix/matrix additive mixtures. 

 

 

 

Matrix 

 

MW 

Initial concentration of 

the matrix in mM (10 

mg/mL) 

Concentration of matrix with*  

5 mM 

additive 

10 mM 

additive  

20 mM 

additive 

40 mM 

additive 

80 mM 

additive 

2',4',6'-Trihydroxyacetophenone (THAP)     168.15 59.50 58.01 56.53 53.55 47.60 35.70 

2,5-Dihydroxybenzoic acid  (2,5 DHB) 154.12 64.90 63.28 61.66 58.41 51.92 38.94 

2′,6′-Dihydroxyacetophenone 152.15 65.70 64.06 62.42 59.13 52.56 39.42 

5-chloro-2-mercaptobenzothiazole  (CMBT) 201.7 49.60 48.36 47.12 44.64 39.68 29.76 

6-aza-2-thiothymine  (ATT)  143.17 69.80 68.06 66.31 62.82 55.84 41.88 

2-(4'-Hydroxybenzeneazo)benzoic acid  (HABA) 242.23 41.30 40.27 39.24 37.17 33.04 24.78 

Dithranol  226.22 44.20 43.10 41.99 39.78 35.36 26.52 

p-nitroaniline (PNA) 138.12 72.40 70.59 68.78 65.16 57.92 43.44 

Concentration of matrix additives (mM) Additive ( µL) Matrix ( µL)  

5 25 975 

10 50 950 

20 100 900 

40 200 800 

80 400 600 
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Table S 3.3: The 720 performed experiments that were identified using fractional factorial 

design (enclosed sheet: Chapter 3_SI). 

 

Table S 3.4: Mass peak assignments for the lipid mixture detected using MALDI-TOF-MS 

(*) Indicates peaks that were not detect in these conditions. These peaks were not included in 

the data analysis 

 

Table S 3.4:  Illustrations of the values for each individual objective that was computed for 

the Pareto optimisation of experiments carried out using different factors (first 5 columns). 

Each objective is normalised to be a number between 0 and 1. Therefore, the number of 

lipids identified is also normalised to be between 0 and 1 (e.g., for the objective “number of 

lipids identified” if 5 lipids have been identified the score is 5/5 = 1) (enclosed sheet: 

Chapter 3_SI).   

  

 

No. 

 

 

Lipid 

 

Measured m/z Assignment 

 

 

1 

 

 

Lipid B 

 

688.98 [lipid B +H]⁺ 
710.93 [lipid B +Na]⁺ 
726.90 [lipid B +K]⁺ 

* Li adduct  

* Ca adduct  

 

 

2 

 

 

Lipid C 

 

744.59 [lipid C +H]⁺ 
766.11 [lipid C +Na]⁺ 
782.09 [lipid C +K]⁺ 
750.69 [lipid C +Li]⁺ 

* Ca adduct 

 

 

3 

 

 

Lipid E 

 

 

801.17 [lipid E +H ]⁺ 
823.12 [lipid E +Na]⁺ 
839.19 [lipid E +K]⁺ 

* Li adduct  
* Ca adduct  

 

 

4 

 

 

Lipid F 

898.41 [lipid F +H]⁺ 
920.37 [lipid F +Na]⁺ 
936.39 [lipid F +K]⁺ 
904.38 [lipid F +Li]⁺ 

* Ca adduct 

 

 

5 
Lipid G 

 

 

937.96 [lipid G +H]⁺ 
959.27 [lipid G +Na]⁺ 
975.37 [ lipid G +K]⁺ 
943.50 [ lipid G +Li]⁺ 

* Ca adduct 
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Abstract 

Bacillus are aerobic spore-forming bacteria that are known to lead to specific 

diseases, such as anthrax and food poisoning. This study focuses on the 

characterisation of these bacteria by the detection of lipids extracted from 33 well-

characterised strains from the Bacillus and Brevibacillus genera, with the aim to 

discriminate between the different species. For the purpose of analysing the lipids 

extracted from these bacterial samples, two rapid physicochemical techniques were 

used: matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF-MS) and liquid chromatography in conjunction with mass 

spectrometry (LC-MS). The average correct classification rate (CCR) for the 7 

species of bacteria was 62.23% and 77.03% based on MALDI-TOF-MS and LC-MS 

data, respectively. The Procrustes distance for the two datasets was 0.0699 indicating 

that the results from the two techniques were very similar. In addition, we also 

compared these bacterial lipid MALDI-TOF-MS profiles to protein profiles also 

collected by MALDI-TOF-MS on the same bacteria (Procrustes distance 0.1006). 

The level of discrimination between lipids and proteins was equivalent and this 

further indicates the potential of MALDI-TOF-MS analysis as a rapid, robust and 

reliable method for the classification of bacteria based on different bacterial chemical 

components. 
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4.1 Introduction  

Classification of bacteria has recently received increasing attention, most likely 

arising from public health concerns, environmental monitoring, food safety 

monitoring, taxonomic identification and differentiation of pathogenic species from 

non-pathogenic species, as well for the identification of biological threat agents 

(Priest and Austin, 1993; Irudayaraj et al., 2002; Sauer et al., 2008; Lopez-Diez and 

Goodacre, 2004). Bacteria can be classified using various physicochemical 

approaches based on different methods that rely either on analysis of (i) whole 

bacterial cells (Lasch et al., 2009; Claydon et al., 1996, Wilkins and Lay, 2005; Gaia 

et al., 2011; AlMasoud et al., 2014) or (ii) extracts of different compounds including 

(as in the current study) lipids (Allwood et al., 2014; Gidden et al., 2009; Shu et al., 

2012b); each of these methods has its advantages and disadvantages.  

Lipids are important components in bacterial cell membranes as they form lipid 

bilayers responsible for cell integrity (Vance and Vance, 2008; Zhang et al., 2011). 

These cell components have various structures and several factors can affect lipid 

synthesis such as culture media, temperature and physical dynamics during cell 

growth (Cliff et al., 2012). Complex lipids, just like proteins, can be used to identify 

and characterise bacteria (Calvano et al., 2011; Fahy et al., 2011). Interest in the 

analysis of lipid profiles from bacterial cells for taxonomic identification is 

increasing (Gidden et al., 2009). Not only do lipids play a structural role in the 

integrity of cell membranes but they also contribute to other cellular processes such 

as metabolic and signalling pathways (Wymann and Schneiter, 2008; Van Meer et 

al., 2008).  

Early studies that aimed to resolve lipid species traditionally used different 

chromatographic techniques such as thin layer chromatography (TLC) (Wenk, 2005). 

This approach has disadvantages such as limited resolution and sensitivity which 

negatively affect many lipidomic applications (Wenk, 2005). Therefore, an armoury 

of techniques has been used to address many of these issues, which has led to the use 

of mass spectrometry technology, including direct infusion mass spectrometry 

(DIMS) (Goodacre et al., 2002) and liquid chromatography-mass spectrometry (LC-

MS) (Wedge et al., 2011), which have been extensively used to analyse lipid 

samples enabling the detection of different types of lipids. Matrix-assisted laser 
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desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) has also 

been used for lipidomic analysis to overcome the limitations seen with other 

traditional methods and to analyse samples containing complex mixtures of lipids 

enabling classification and identification of bacteria (Lasch et al., 2009; Gidden et 

al., 2009; Bernardo et al., 2002). The main advantages of MALDI-TOF-MS include: 

(i) it uses soft ionisation causing minimal analyte degradation, (ii) offers the 

possibility to analyse a range of complex molecules in complex mixtures such as 

bacterial samples, (iii) requires minimal sample preparation, and (iv) yields mass 

spectra that contain specific chemical features and fingerprints that can be used to 

identify and characterise bacterial species (Fenselau and Demirev, 2001; Lay, 2001). 

The aim of this study was to classify 33 strains of bacteria belonging to 7 species – 

namely B. amyloliquefaciens, B. cereus, Br. laterosporus, B. licheniformis, B. 

megaterium, B. sphaericus and B. subtilis – based on MALDI-TOF-MS of extracted 

bacterial lipids. The results of which were evaluated and validated using LC-MS to 

confirm the bacterial classification based on MALDI-TOF-MS analysis. 
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4.2 Materials and Methods 

4.2.1 Chemicals and solvents  

Chemicals used were of a high purity grade and included the following: HPLC grade 

chloroform (Sigma-Aldrich, Dorset, UK), ethanol (Sigma-Aldrich), HPLC water 

(Sigma-Aldrich), HPLC grade methanol (Fisher Scientific Ltd., Loughborough, UK) 

and 99.99% pure formic acid (VWR International, East Grinstead, UK). Two 

different matrices were used in this study: 6-Aza-2-thiothymine (ATT) and 2,5-

dihydroxybenzoic acid (DHB) (both from Sigma-Aldrich).  

 

4.2.2 Microorganisms 

Seven bacterial species (i.e., B. amyloliquefaciens, B. cereus, Br. laterosporus, B. 

licheniformis, B. megaterium, B. sphaericus and B. subtilis) were used in this study. 

Table 4.1 gives details of these 33 strains from these Bacillus and Brevibacillus 

genera and these were used previous from MALDI-TOF-MS on bacterial proteins 

(AlMasoud et al., 2014 (Chapter 2)).  

4.2.3 Bacterial cultivation 

Using sterile plastic loops bacterial strains were cultivated three times for 24 h at 

37ºC on nutrient agar (NA) to generate axenic colonies and to maintain a stable 

phenotype.  NA contained beef extract 3 g/L, peptone 5 g/L, NaCl 8 g/L and agar no. 

2 at 12 g/L from Lab-M (Bury, UK) and was prepared following the manufacturer’s 

instructions (28 g in 1 L of deionised water) and subsequently autoclaved (121ºC and 

15 psi for 15 min) before Petri dishes were prepared.  
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Table 4.1: The 33 Bacillus and Brevibacillus species and strains were used in this study 

T
 indicates the type strain; 

* 
indicates strains used for preliminary optimisation experiments 

for time points 

  

Sample no. Species Strain no. 
Key colour in 

Figures  

1 

B. amyloliquefaciens  

B0177
T
 

Red 

2 B0168 

3 B0175 

4 B0251 

5 B0620 

6 

B. cereus 

B0002
T
 

Green 

7 B0550 

8 B0702* 

9 B0712 

10 B0851 

11 

B. licheniformis 

B0252
T 

Blue 

12 B0242 

13 B0755 

14 B1081 

15 B1379 

16 

B. megaterium  

B0056 

Cyan 
17 B0057 

18 B0076 

19 B0621 

20 

B. sphaericus 

7134
T
 

Pink  

21 B0408 

22 B0219 

23 B0769 

24 B1147 

25 

B. subtilis 

B0014
T 

Yellow 

26 B0044 

27 B0098 

28 B0099* 

29 B0410 

30 B0501 

31 B1382 

32 
Br. laterosporus 

B0043* 
Black 

33 B0262 
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4.2.4 Optimisation of collection time points of collection for three different 

species of Bacillus and Brevibacillus for LC-MS 

Three different species were used at the beginning of this work to choose the 

optimal collection time points; these species were B. cereus B0702, B. subtilis 

B0099 and Br. laterosporus B0043. An axenic colony was collected from each 

culture and inoculated in 600 mL of nutrient broth, (prepared according to the 

manufacturer’s instructions (Oxoid Ltd., Basingstoke, UK) in 2 L flasks and then 

incubated for 24 h at 37ºC at 200 rpm.  Optical density measurements (OD) at 600 

nm were collected at 6 different time points (4, 6, 8, 10, 14 and 18 h) using a 

Biomate 5 spectrophotometer (Thermo, Hemel Hempstead, UK). For each species, 

three biological replicates were prepared in the same way. 

4.2.4.1 Quenching  

Samples were collected at the six different time points (4, 6, 8, 10, 14 and 18 h). 

From each culture, 15 mL was quenched using 30 mL of 60% cold methanol (-48ºC, 

chilled on dry ice) and mixed rapidly. This was followed by centrifugation of the 

quenched culture for 10 min at 4800 ×g at -8ºC (Winder et al., 2008). The 

supernatant was removed quickly then the rest was centrifuged again for 2 min and 

the remaining supernatant removed, leaving the pellet containing the bacterial cells 

in the centrifuge tube. The pellets were stored at -80ºC until lipid extraction was 

performed (AlRabiah et al. 2014). Figure S4.1A illustrates this process. 

4.2.4.2 Lipid extraction   

Bacterial pellets were mixed with 2 mL HPLC grade chloroform:methanol (2:1) pre-

chilled at -20ºC (Winder et al., 2008). The samples were mixed using a laboratory 

shaker for 15 min, and 1 mL of cold HPLC water was then added to the mixtures. 

This was followed by centrifugation at 4800 ×g for 3 min at -8ºC. A biphasic system 

was generated, with the bottom chloroform based layer containing most of the lipids. 

The lipid layers were transferred to fresh 2 mL micro-centrifuge tubes (Allwood et 

al., 2014). The samples were left to evaporate on a hot plate at 40ºC to complete 

dryness prior to storage at -80ºC (Figure S4.1B). These samples were reconstituted 

in 80:20 methanol:water (v/v) at 100 µL per 0.1 OD600 and then analysed using LC-

MS. 
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4.2.5 Collections of Bacillus and Brevibacillus strains for LC-MS and MALDI-

TOF-MS analysis 

In total, 33 strains were collected for LC-MS and MALDI-TOF-MS after 10 h of 

culturing at 37ºC and 200 rpm. Five biological replicates were collected for each 

strain. 

A- Preparing extracted samples for MALDI-TOF-MS 

For MALDI analysis of the extracted lipids, the samples were reconstituted in 80:20 

methanol:HPLC water (v/v) (Tables S4.1-S4.5). 10 mg of DHB was dissolved in 900 

µL ethanol and 100 µL sterile deionised water, and 10 mg of ATT was dissolved in 

500 µL acetonitrile and 500 µL of sterile deionised water. 10 µL of the extracted 

lipid samples was mixed with 10 µL of either matrix and then 2 µL of the 

matrix/samples mixture was applied to a MALDI stainless steel plate and allowed to 

dry at room temperature (ca. 22
 
°C). 

Samples were analysed in batches using an AXIMA-Confidence mass spectrometer 

(Shimadzu Biotech, Manchester, UK) equipped with a nitrogen pulsed UV laser 

(wavelength 337 nm) (AlMasoud et al., 2014 (Chapter 2)) set at 100 mV; each 

profile was produced using 20 laser shots, and  78 profiles were collected using a 

circular raster pattern. The instrument was operated in positive ionisation mode using 

the reflectron TOF over the mass-to-charge ratio (m/z) range 100-1600. Each 

biological sample was analysed in 4 technical replicates. A single biological replicate 

of each of the 33 bacterial strains was analysed each day. Before sample analysis, the 

MALDI instrument was calibrated using polyethylene glycol using the following m/z 

values: 613.7, 657.75, 710.80, 746.86, 789.91, 833.96, 878.02, 922.07, 966.12, 

1010.18, 1054.23, 1098.28, 1142.34, 1186.39, 1230.44, 1274.50, 1318.55 and 

1362.60.  

Sample preparation of MALDI TOF-TOF 

Sample preparation was carried out as follows. Samples were reconstituted in 1:1 

chloroform/methanol (v/v). DHB was used as matrix, and was prepared in methanol 

(10 mg/mL) containing 10 mM NaCl. A sample droplet (0.35 µL) was placed onto a 

MALDI target spot, followed by an equal amount of matrix solution.  
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MALDI TOF-TOF analysis 

The samples were analysed on a MALDI 7090 mass spectrometer (Shimadzu Kratos, 

Manchester, UK) with a solid state UV-laser (355 nm) operating at a 2 kHz 

acquisition repetition rate. The instrument was operated at an acceleration voltage of 

20 keV, and a pulsed extraction function to improve mass resolution was carefully 

applied. The low mass rejection and the focus mass were set to 300 and 800 Da, 

respectively. The instrument was operated in the reflectron mode. To enhance the 

signal-to-noise ratio, 100 single shots were averaged for each mass spectrum. The 

laser intensity was adjusted for each experiment to obtain the best signal-to-noise 

ratio and to maximize the number and intensity of structural fragments. Positive 

mode spectra of all analytes were recorded. Helium gas was used for high-energy 

CID (20 keV) MS/MS experiments. All mass spectrometric data were acquired and 

analyzed by using the MALDI Solution software (Shimadzu Kratos, Manchester, 

UK). 

B- LC-MS analysis  

An Accela UHPLC system (Thermo-Fisher Ltd., Hemel Hempsted, UK) coupled to 

an electrospray LTQ-Orbitrap XL hybrid mass spectrometry system (Thermo-Fisher, 

Bremen, Germany) was used to analyse the samples. Samples were reconstituted in 

80:20 methanol:HPLC water based on 100 µL per OD600 of 0.1 (Tables S4.1-S4.5). 

The mixture was vortexed and centrifuged at 11500 g for 30 s. Quality control (QC) 

samples were prepared by mixing an equal volume of each extracted sample and 

vortexing the mixture thoroughly. The mixtures were then transferred to 100 µL 

analytical vials (Dunn et al., 2011).  All samples were run in positive ESI mode since 

LC-MS was used to confirm the results obtained from MALDI-TOF-MS which was 

also operated in the positive ionisation mode. 

First, three biological replicates were analysed over 5 days and the remaining two 

biological replicates were analysed over a further 3 day period to account for the 

large number of samples. Briefly, 10 µL of extracted sample was injected onto a 

Hypersil GOLD UHPLC C18 analytical column (length 100 mm, diameter 2.1 mm, 

particle size 1.9 µm, Thermo-Fisher Ltd.). The flow rate used for UHPLC was 
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400 µL/min. The two solvents used for LC were water with 0.1% formic acid 

(solvent A) and methanol with 0.1% formic acid (solvent B). The following settings 

were used for chromatographic separation in positive ionisation mode: 100% A held 

for 1 min, 0-100% B over 11 min, 100% B held for 8 min, returning to 100% A over 

2 min (total run 22 min). The column was conditioned prior to analysis by running 

50:50 water:methanol gradient in isocratic conditions for 3 h at 50ºC followed by 30 

min of initial gradient conditions. Xcalibur software (Thermo-Fisher Ltd.) was used 

to operate the Thermo LTQ-Orbitrap XL MS system using the same method 

described by Wedge et al. (Wedge et al., 2011). The LTQ-Orbitrap MS was 

calibrated according to the manufacturer’s instructions. Orbitrap data was obtained at 

a resolution of 30,000 (Full width at half maximum (FWHM) defined at m/z 400).  

The batch programme involved the use 20 injections of QC samples for each 

individual analytical block. These were used for column conditioning. The analysis 

batch then followed where five injections of extracted samples were followed by a 

QC injection. These steps were repeated until all the samples were analysed and the 

run was concluded by performing three QC injections.  

Orbitrap MSn analysis parameters 

Direct infusion of samples was carried out onto a LTQ-Orbitrap XL hybrid mass 

spectrometry system (Thermo-Fisher, Bremen, Germany) in order to conduct MSn 

experiments. Samples were injected at a constant flow of 10 µL/min into ESI probe. 

A full scan of sample was followed by trapping the ion of interest in ion trap for 30 

msec and collision induced fragmentation was carried out with varied CID levels 

(between 35 to 200 arbitrary units). This was repeated until no more fragmentation 

could be carried out for the pre-cursor ion in each cycle.  

4.2.6 Processing raw data and using UHPLC-MS profiles  

Xcalibur software’s file conversion option was used to convert the raw data profiles 

obtained using UHPLC-MS into a NetCDF format (Dunn et al., 2008). XCMS, a 

free package for R available from (http://masspec.scripps.edu/xcms/xcms.php), was 

used to deconvolve the peaks using in-house deconvolution parameters fit for high 

resolution mass spectrometric data collected. Once the peaks were deconvoluted, a 

Microsoft Excel sheet (XY) matrix was produced containing spectral features 

including: the retention time and m/z ratios. The total numbers of mass spectral 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=7220&_issn=15700232&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fmasspec.scripps.edu%252Fxcms%252Fxcms.php
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features from the LC-MS data was 2618. After deconvolution, lipid identification 

was carried out using Taverna Workbench version 2.4 (Wedge et al., 2011). 

4.2.7 Statistical analysis of data  

 
4.2.7.1  Analysis of MALDI-TOF-MS data 

 
All data pre-processing and data analysis were carried out using MATLAB 2012a 

(The MathWorks, Natick, MA, USA). MALDI-TOF-MS spectra were subjected to 

the following pre-processing steps: (i) baseline correction using asymmetric least 

squares (AsLS) (Eilers, 2004) of the raw MS data and (ii) normalisation carried out 

by dividing the baseline corrected spectrum with the square root of the sum of 

squares of the spectrum (Brereton, 2003). Multivariate analysis included principal 

components discriminant function analysis (PC-DFA) and partial least squares for 

discriminant analysis (PLS-DA). PLS-DA is a linear model representing a supervised 

method used for classification. For PLS-DA with 1,000 bootstraps was performed. In 

this process the data were split into two different sets: a training set and a test set 

using bootstrap re-sampling based on biological replicates as described before 

(AlMasoud et al., 2014 (Chapter 2)).  

 

 In order to identify the most significant lipids features, PLS-DA loadings plot was 

used. The lipid maps online database was used to identify the lipid peaks based on 

accurate mass information from MALDI-TOF-MS analysis 

(http://www.lipidmaps.org/). 

 

4.2.7.2 Analysis of LC-MS data 

PC-DFA and PLS-DA were also performed on LC-MS data and PLS-DA modelling 

was also validated using bootstrap resampling. As also described above loadings 

plots were generated to identify the most significant lipid features at both species and 

strain levels. 

4.2.7.3 Comparison of two analytical techniques 

 

MALDI-TOF-MS and LC-MS results were then compared using the Procrustean test 

(Peres-Neto and Jackson, 2001). The test was based on Procrustes analysis which is 

an effective approach for assessing the similarities and differences between different 

http://www.lipidmaps.org/
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ordination spaces from cluster analyses and has been used previously for the 

assessment of different analytical techniques (AlRabiah et al. 2014). In Procrustes 

analysis, the similarity between two sets of multivariate data sets, i.e. two matrices 

with same number of rows, was measured in terms of the Procrustes distance, which 

ranges between 0 and 1, where 0 indicates a perfect match and 1 indicates nothing in 

common. The Procrustes test on the two datasets was based such Procrustes distance. 

Give two data matrices, a Procrustes distance was calculated (named observed 

Procrustes distance) and this distance was then compared against a null distribution 

generated by n permutations. In each permutation, the order of the rows in one 

matrix (e.g. MALDI-TOF-MS lipid) was randomly permuted while that of the other 

(e.g. LC-MS lipid) remained the same; a Procrustes distance was then calculated. A 

total number of n Procrustes distances were calculated from n different random 

permutations and formed the null distribution. An empirical p-value was then 

calculated by counting the cases where the Procrustes distance from the null 

distribution was lower than the observed Procrustes distance. In this study, we 

compared three data sets, i.e. MALDI- TOF-MS lipids, MALDI- TOF-MS protein 

and LC-MS lipids using Procrustes test. For each test, 1,000 permutations were 

performed and the observed Procrustes distance and the associated p-values were 

reported. 

 

4.3 Results and Discussion  

Traditional phenotypic methods such as biochemical tests (Wilkins and Lay, 2005) 

are used routinely to discriminate between different microorganisms. These methods, 

however, are not always reliable, are generally laborious, time-consuming and 

provide limited information compared to modern analytical techniques (Wenk, 2005; 

Allwood and Goodacre, 2010; AlRabiah et al. 2014). For the purpose of this 

lipidomics study, two complementary analytical techniques were used to analyse 

lipids extracted from 33 Bacillus and Brevibacillus strains – MALDI-TOF-MS and 

LC-MS. The findings of this work show that the use of MALDI-TOF-MS to classify 

bacteria based on lipid extracts is promising and can be a useful analytical tool for 

research carried out in the lipidomics field. 

At the beginning of this work, three different species (B. cereus B0702, B. subtilis 

B0099 and Br. laterosporus B0043) were analysed using LC-MS to determine the 
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optimal time point for collecting bacterial samples based on the quality of separation 

determined using LC-MS data. Our observations show that samples collected after 

10 h of cell culture (Figure S4.2), generated better separation for the three species 

due to there being a sufficient amount of biomass that is needed for lipid extraction, 

which was evident from the optical density (OD) (data not shown). 

4.3.1 MALDI-TOF-MS lipid profiles  

Recently, we optimised the experimental conditions for the detection of lipid 

mixtures using MALDI-TOF-MS analysis and fractional factorial design. Our 

observations suggested that ATT and DHB were the most compatible matrices with 

lipid mixture. Initially, as routine practice in our laboratory when conducting 

MALDI-TOF-MS experiments, pilot tests are performed before analysing samples. 

In this case, two different species, B. cereus and B. subtilis, were used and analysed 

with MALDI-TOF-MS using two different matrices ATT (Shanta et al., 2012; 

Stübiger et al., 2010) and DHB (Griffiths and Bunch, 2012; Schiller et al., 2004) as 

these were found to be the most compatible matrices with the lipid mixture. Figure 

S4.3 shows the principal components analysis (PCA) scores plot of B. cereus and B. 

subtilis using these matrices and the results suggested that DHB provided better 

separation between the bacteria based on the total expline variance (TEV) values 

generated in PC1 dimension in the PCA plots, which were higher at around 84% 

compared to 54% achieved with ATT. Previous studies showed that DHB is more 

compatible with lipids than other matrices as DHB matrix peaks do not cause 

complications when interpreting data (Schiller et al., 2001; Zhou et al., 2010). A 

relatively good separation between bacterial samples was still generated using ATT; 

however, due to the huge number of samples, only the better performing matrix 

(DHB) was used in order to generate more reliable data for all of the 33 Bacillus and 

Brevibacillus strains. 

Lipids were extracted from Bacillus and Brevibacillus using chloroform:methanol 

(2:1) since this method was used previously with successful outcomes (Allwood et 

al., 2014, Shu et al., 2012b, Shu et al., 2012a). MALDI-TOF-MS spectra of lipids 

extracted from all the seven species, B. amyloliquefaciens B0177, B. cereus B0002, 

Br. laterosporus B0034, B. licheniformis B1379, B. megaterium B0010
T
, B. 

sphaericus B0769 and B. subtilis B1382, are shown in Figure 4.1. In general, 
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MALDI-TOF-MS generated high quality data due to high signal-to-noise ratios over 

the m/z range of acquisition. 
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Figure 4.1: Typical MALDI-TOF-MS after pre-processing of lipids extracted from seven 

species: (A) B. cereus B0002, (B) B. megaterium B0056, (C) B. sphaericus B0769, (D) B. 

subtilus B1382, (E) B. licheniformis B1379, (F) Br. laterosporus B0034 and (G) B. 

amyloliquefaciens B0177. 
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At first glance, MALDI-TOF-MS spectra for the 7 species from Bacillus and 

Brevibacillus appeared to have different patterns in m/z range 200-1600 (Figure 4.1). 

Some parts of the spectra were amplified to show peaks that cannot be visualised due 

to low intensities in comparison to the more dominant peaks. These spectra are rich 

in information and lipids were detected across a broad range mainly below m/z 1600. 

Some of the peaks remained the same for the 7 species; for example, lipids at m/z 

values of 568, 637 and 851. On the other hand, other parts of the spectra are unique 

to each species, such as the region between m/z 1500 and 1600 in Br. laterosporus. 

Visual inspection of the MALDI-TOF-MS spectra revealed features that can be used 

to discriminate between some of the species. Br. laterosporus was characterised by 

significantly different spectra compared to the other species, most likely due to the 

expected differences between bacterial genera (Logan and Berkeley, 1984). It is 

important to note that the biomass concentration was the same for the 7 species 

analysed in this study. However, the signal-to-noise ratios seemed to be different 

from one spectrum to another; this is possibly due to the ionisation efficiency of 

analytes under MALDI-TOF-MS analysis and can possibly be assessed using 

different matrices. 

Figure 4.1(A-G) shows that during the growth of bacterial strains in nutrient broth; 

they produced lipids represented by the detection of various peaks on different 

spectra. These peaks, which were readily detectable by a simple MALDI-TOF-MS 

analysis, may represent significant lipids that can be used as a fingerprint for each 

type of bacteria. The Lipid Maps database (http://www.lipidmaps.org/) was used to 

assign the most abundant lipid peaks and the probable assignments for the seven 

species are listed in Table 4.2. Table 4.2 also shows that sodium and potassium 

adducts can be seen in the MALDI mass spectra owing to the nature of the biological 

samples, which are rich in these cations. Most of the significant lipids detected using 

MALDI-TOF-MS were identified using advanced chemometrics such as PLS-DA 

modelling; these lipids are highlighted in bold in Table 4.2. Lipids detected in these 

species are a broad set of naturally occurring molecules. Several studies have 

confirmed that phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are 

the most abundant phospholipids in bacteria such as Bacillus spp. (Shu et al., 2012a; 

Epand and Epand, 2011; Dowhan, 1997) and Escherichia coli (Shu et al., 2012a). 

Bacillus has also been reported to produce other categories of lipids such as 

http://www.lipidmaps.org/
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digalactosyldiacylglycerol (DGDG) (Gidden et al., 2009), phosphatidylcholine (PC) 

(Pomerantsev et al., 2003) and fatty acids (FA) (Kaneda, 1977). These significant 

lipid features were subjected to MS/MS analysis as well as MSn analysis on 

MALDI-TOF-TOF as well as Orbitrap MS respectively in order to obtain structural 

information to validate putative assignments. It was noted that not all lipid features 

that were in significant abundance required for MSn analysis. Table 2 includes lipid 

features presents in seven species classified in this study. Identification of lipids was 

based on accurate mass match on LipidMaps, followed by verification of their 

presence reported in literature and further confirmation by MSn analysis. 

With regards to the structural identification carried out by means of tandem MS, the 

high energy-CID MS/MS (MALDI-TOF-MS) and MSn (Orbitrap) spectra exhibited 

the characteristic fragmentation of the polar head group of the phospholipids. 

Specifically, ions equivalent to [M – 43]
+
, [M – 141]

+
  and [M – 163]

+
, 

corresponding to the loss of ethanolamine, ethanolamine phosphate and sodiated 

ethanolamine phosphate, respectively, were consistently observed in the tandem MS 

spectra of PE-lipids. In the MS/MS and MSn spectra of PA-lipids (one single species 

has been found), the loss of phosphate ([M – 98]
+
) and potassium phosphate group 

([M – 136]
+
) have been observed accordingly. 

Out of 17 lipids, six lipids were assigned definite identification based on their 

fragmentation pattern whereas five lipids were observed in insufficient quantities to 

be able to perform fragmentation. There were six lipids that were only identified 

based on their accurate mass as their fragmentation pattern did not follow a lipid-like 

fragmentation. Putatively identified lipids were assigned identification based on 

either their match on LipidMaps or previous reports of successful fragmentation by 

other authors using various fragmentation techniques. 

Figure 4.1A shows a zoomed in area that contains mass peaks between around m/z 

600 and 800 in the B. cereus spectrum, representing lipids consisting of different 

numbers of carbon, from different categories such as PE, PG and PC. The spectrum 

generated from B. megaterium (Figure 4.1B) seemed to be similar to B. cereus based 

on the existence of PE, PG and PC, while B. megaterium produced a visibly unique 

peak at around 1206 m/z. Figure 4.1D shows the mass spectrum of B. subtilis, where 

fewer peaks were detected compared to B. cereus and B. megaterium. Notably, the 
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spectrum in Figure 4.1G, which represents Br. laterosporus, is largely dominated by 

peaks at m/z 1224, 1315, 1335, 1367, 1570 and 1584, a series of peaks that can be 

used to identify this species; the fact that this species is different is perhaps not 

surprising as these bacteria are from a different genera.  
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Table 4.2: List of probable and definite identification of the seven Bacillus species using MSn 

fragmentation results. If a peak was detected for a particular lipid, this is illustrated with a colour 

matching the different species. 

 

Bacteria: B. amy, B. amyloliquefaciens; B. cer, B. cereus; Br. lat, Br. laterosporus; B. lic, B. licheniformis; B. meg, B. megaterium; B. sph, B. 

sphaericus; B. sub, B. subtilis. Lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), 

phosphatidylglycerol (PG), L-alpha-lysophosphatidylinositol (LPI), lyso- phosphatidylglycerol (LPG) and digalactosyldiacylglycerol 

(DGDG).    

 

^indicates m/z of lipid-like features that were not in high enough quantities to be able to successfully fragment into product ions. 

~indicates m/z of features that have been putatively assigned an identification based on previously reports in literature.  
1
 (Gidden, et. al , 2009), 2 (Shu, et al. 2012) 

 

 

 

 

m/z 

 

 

Matched 

m/z  

 

 

Delta  

 

Probable assignment 

 

 

Definite 

identification 

 

Br.la 

 

B .ce 

 

B .me 

 

B .su 

 

B .am 

 

B.li 

 

B .sp 

659.5 659.2 0.2406 [Lyso-PI(20:4) + K]+ [Lyso-PI(20:4) + K]+ 
       

675.5~ 675.4 0.0793 1[
PG(27:0) +Na]+ - 

       

678.5 678.5 0.0069 [PC(28:0) +Na]+ - 
       

637.5 637.4 0.0925 [PG(26:1)+H]+ - 
       

685.5 685.4 0.0794 [PA(32:1) +K]+ [PA(32:1) +K]+ 
       

686.5~ 686.4 0.0269 1[PE (30:0) +Na]+ [PE (30:0) +Na]+ 
         

700.5~ 700.4 0.0112 1[PE(31:0)  + Na]+ [PE(31:0)  + Na]+ 
        

710.5 710.5 0.0269 [PE(32:2) +Na]+ [PE(32:2)+Na]+ 
       

714.5~ 714.5 0.0044 1[PE(32:0) +Na]+ [PE(32:0) +Na]+ 
       

741.5^ 741.4 0.0323 [PG(32:2) + Na]+ - 
        

766.6~ 766.5 0.5357 2[PE (36:2) +Na]+ - 
       

768.5^~ 768.5 0.0514 1[PE(36:1) + Na]+ - 
       

823.5 823.5 0.0459 [PG(38:3) + Na]+ - 
       

846.6 846.6 0.0008 [PC(41:7) + H]+ - 
       

851.6^~ - - 1[LPG(32:0) +H]+ - 
       

882.6^ 882.6 0.0017 [PC(42:7) +Na]+ - 
       

915.7^~ 915.6 0.0985 1[DGDG(32:0) +Na]+ - 
       

http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PG(27:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PG(27:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PE(30:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PE(30:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PC(29:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PC(29:0)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PC(33:2)&even=1
http://www.lipidmaps.org/tools/ms/G_expand.php?ABBREV=PC(33:1)&even=1
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However, visual inspection is laborious and unreliable; consequently, advanced 

chemometric methods were required to extract more information from the MS data 

in a reproducible, objective and automated manner. We have previously shown that 

after the optimisation of MALDI-TOF-MS in combination with advanced 

chemometrics, this analytical technique can become a robust and rapid tool that 

enables the classification of a large number of Bacillus and Brevibacillus bacterial 

strains based on their proteins (AlMasoud et al., 2014 (Chapter 2)). Multivariate 

analysis has proven vital for extracting information when analysing samples using 

different analytical techniques such as pyrolysis mass spectrometry (PyMS), Fourier 

transform infrared (FT-IR) spectroscopy and Raman spectroscopy to discriminate 

between bacterial samples (Goodacre et al., 2000; Timmins et al., 1998; Goodacre et 

al., 1998). There are different statistical methods that can be used to assess the 

information generated from the MALDI-TOF-MS spectra, enabling discrimination 

between the 7 species. One such method is PC-DFA and in Figure 4.2A a three 

dimensional DFA scores plot shows four major clusters detected based on the data: 

(1) B. megaterium and B. cereus; (2) B. subtilus, B. amyloliquefaciens and B. 

licheniformis; (3) B. sphaericus; and (4) Br. laterosporus. Figure 4.2B shows that Br. 

laterosporus is well separated in the first DF and is therefore completely chemically 

different from the other six Bacillus species, which confirms differences seen in the 

MALDI-TOF-MS spectra. These large lipid differences in all the Br. laterosporus 

species dominated both plots, and therefore another PC-DFA plot was generated for 

Bacillus species only. This resulted in more separation between the 6 Bacillus 

species (Figure 4.2 C). Most notably, B. licheniformis could be separated from B. 

subtilus and B. amyloliquefaciens, since B. amyloliquefaciens was shown to similar 

to B. subtilis, which is expected as these two species are phylogenetically very 

closely related (Priest et al., 1987). 
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Figure 4.2: DFA scores plots after pre-processing MALDI-TOF-MS data. Different DFA 

plots were generated for seven species including: (A) DF1 vs. DF2 vs. DF3; (B) DF1 vs. 

DF2; (C) DF1 vs. DF2 of six species with (Br. laterosporus removed) DF1 vs. DF2. 

Different colours represent different species; Table 4.1 shows the annotations. 

 

These Bacillus species were examined previously using different types of techniques, 

such as the analytical profile index (API) (Logan and Berkeley, 1984) and 

genotyping using 16S rDNA sequencing (Goodacre et al., 2000). API test used for 

bacterial classification based on miniaturized biochemical test, using API tests, four 

main groups were observed including: group I with only B. cereus, group II 

containing only Br. laterosporus, group III containing only B. sphaericus and a large 

group IV consisting of B. subtilis, B. licheniformis, B. amyloliquefaciens, and B. 

megaterium. By contrast, phylogenetic analysis using 16S rDNA sequencing 

detected five different clusters (1) B. sphaericus, (2) Br. laterosporus, (3) B. subtilis, 

B. licheniformis, and B. amyloliquefaciens, (4) B. megaterium, and (5) B. cereus.     

A 

B C 

Cluster 4

Cluster 1

Cluster 2

Cluster 3
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The next stage in the present study was to assess whether the MALDI lipid profiles 

contained enough information to all identification of the different bacteria analyses. 

Therefore, automated classification prediction accuracies for the 7 species and 33 

strains were calculated based on the MALDI-TOF-MS data using multiple PLS-DA 

models. Tables 4.3 and S4.6 summarise the classification of Bacillus and 

Brevibacillus bacteria at the species level (i.e., 7 classes) and at the strain level (i.e., 

33 classes), respectively. The average correct classification rate (CCR) for the 7 

species was 62.23% whereas the CCR for the 33 strains was 15.67%. Interestingly, 

prediction of Br. laterosporus based on MALDI-TOF-MS data was more accurate 

compared to the other species. Moreover, if B. amyloliquefaciens, B. subtilis and B. 

licheniformis are considered as one class, as these species have the same 

phylogenetic origin (Logan and Berkeley, 1984), the prediction accuracies for the 

three species increases from 60.26%, 67.76% and 59.60% to 92.28%, 91.61% and 

87.45%, respectively.  

Table 4.3: Prediction accuracy of seven species from Bacillus using PLS-DA based on 

MALDI-TOF-MS data 

B. am: B. amyloliquefaciens, B. ce: B. cereus, Br. la: Br. laterosporus, B. li: B. 

licheniformis, B. me: B. megaterium, B. sp: B. sphaericus and B. su: B. subtilis. 

 

Heat map plots from confusion matrices were generated using the PLS models from 

the 7 species and 33 strains (Figure S4.4A and B respectively). In these figures, 

warm colours (e.g. red) are indicative of species or strains of high percentage class 

membership assignments using MALDI-TOF-MS data, while cold colours (e.g., 

blue) represent low percentage class membership assignment. It can be seen that the 

colours on diagonal “tiles” were generally much warmer than off-diagonal “tiles”, 

indicating high agreement between predicted and known classes. 

 B.am B.ce B.li B.me B.sp B.su Br.la 

B.am 60.26 5.85 5.80 1.25 0.50 26.22 0.01 

B.ce 0.23 63.36 2.45 18.02 6.30 9.55 0.00 

B.li 8.52 10.51 59.60 2.36 1.58 17.34 0.00 

B.me 2.84 36.54 0.87 43.40 0.95 15.31 0.00 

B.sp 0.02 19.17 0.16 0.23 80.11 0.21 0.00 

B.su 12.50 9.63 3.56 6.35 0.10 67.76 0.00 

Br.la 2.26 3.15 1.33 2.60 1.60 5.30 83.66 
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The same bacterial species were previously classified based on MALDI-TOF-MS 

analysis of proteins from intact bacterial cells [4]. The overall classification based on 

protein analysis was highly similar to that based on lipid analysis. However, the 

quality of classification carried out based on protein analysis from intact cells was 

superior with CCR values of over 80% at the species level (average CCR of 89%). 

This may be explained by the better quality of spectra obtained for proteins using 

MALDI-TOF-MS or the inherent differences in gene products between bacteria 

compared to those of metabolites, such as lipids. The case of misclassification of 

Bacillus megaterium with Bacillus cereus based on lipid profiles is interesting as 

these two species were very distinctly classified using protein profiles (CCR of 91% 

and 83%, respectively), indicating that the protein profiles were different whereas the 

lipid profiles were similar.  

 

4.3.2 Interpretation of LC-MS lipid profiles 

Although MALDI-TOF-MS is a robust and rapid analytical technique, interference 

of matrix peaks with low molecular weight analyte peaks, especially those of lipids 

below 300 m/z, and inability of MALDI-TOF-MS to discriminate between isobaric 

peaks (which have the same m/z) present a potential limitation to this 

chemotaxonomic technique. Therefore, LC-MS analysis was carried out on the same 

samples to complement and confirm the classification of bacteria based on MALDI-

TOF-MS analysis. Although the mass accuracy (< 10 ppm) of TOF analysers is high 

(~15000 FWHM in reflectron mode), it is recognised that Orbitrap mass analysers 

have higher mass accuracy (sub-ppm) and resolution (>100,000 FWHM), allowing 

the identification of lipids to be more accurate and robust. The high mass accuracy 

and resolution of the Orbitrap combined with resolution of analytes by HPLC can 

reduce the observed interference between the different lipid species and other 

components of the samples. These factors considered together are expected to lead to 

better classification and identification by LC-MS.    

The LC-MS findings suggest that Bacillus species produced many different lipid 

categories such as: phosphatidylcholine (PC), phosphatidylethanolamine (PE), 

diradylglycerolipid (DG), glycerophosphoglycerol (PG), phosphatidic acids (PA), 

glycerophosphoinositol (PI), ceramide (Cer) as well as free fatty acids (FFA). 
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Methyl-branched fatty acids were observed in the lipid profiles of Bacillus species; 

these include dimethyl tetradecanoic acid (C15), methyl hexadecanoic acid (C17), 

13-methyl pentadecanoic acid (C16) and menaquinones in line with previous reports 

(Kaneda, 1977; Kaneda, 1972). A summary of these putative lipid categories is 

shown in Table S4.8 (in the enclosed material: Chapter 4_SI). Table S4.8 shows that 

the main lipids detected in LC-MS were most likely PE, PC and free fatty acid 

(FFA), in addition to a small number of PA. 

In order to compare classifications based on LC-MS data with those generated from 

MALDI-TOF-MS, PC-DFA was also applied to LC-MS data. Figure 4.3A shows a 

PC-DFA scores plot in three dimensions. It can be noted that four main clusters were 

detected: (1) B. megaterium and B. cereus, (2) B. subtilus, B. amyloliquefaciens and 

B. licheniformis, (3) B. sphaericus and (4) Br. laterosporus. These observations were 

in agreement with MALDI-TOF-MS analysis based on these bacterial lipids (Figure 

4.2A). Moreover, this observation also is similar to the previous work that we carried 

out based on whole cell analysis of proteins using MALDI-TOF-MS (AlMasoud et 

al., 2014 (Chapter 2)), Raman spectroscopy (Lopez-Diez and Goodacre, 2004) and 

direct infusion ESI-MS (Vaidyanathan et al., 2001). Figure 4.3B shows that Br. 

laterosporus again is significantly different from the other strains when DF1 vs. DF3 

is plotted. Therefore, Br. laterosporus was again excluded from data analysis and 

this resulted in the separation of B. licheniformis from B. subtilus and B. 

amyloliquefaciens (Figure 4. 3C). 
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Figure 4.3: DFA scores plots after pre-processing the LC-MS data. Different DFA plots were 

generated for seven species including: (A) DF1 vs. DF2 vs. DF3; (B) DF1 vs. DF3 and (C) 

DF1 vs. DF2 for the six species (again Br. laterosporus was not included). Different colours 

represent different species; Table 4.1 shows the annotations. 

 

In order to effect bacterial classification from these LC-MS lipid profiles data 

analysis was carried out used using a PLS-DA model for the 7 species (i.e. 7 classes) 

and 33 strains (i.e. 33 classes). Tables 4.4 and S4.7 show the prediction accuracies 

for the 7 species and 33 strains, respectively. Table 4.4 shows that qualitative 

information based on lipids is appropriate for accurate classification of bacteria. This 

model provided an average correct classification rate (CCR) of 77.03% and 15.2 % 

for the 7 species and 33 strains, respectively. Looking back at Table 4.3 which was 

generated from MALDI-TOF-MS data using the PLS-DA model, it can be observed 
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that the results from these two analytical techniques overlapped and most of the 

species reflected higher predication accuracies based on LC-MS data due to the high 

sensitivity of LC-MS compared to MALDI-TOF-MS.  

Table 4.4: Prediction accuracy of seven species from Bacillus using PLS-DA based on the 

LC-MS data 

B. am: B. amyloliquefaciens, B. ce: B. cereus, Br. la: Br. laterosporus, B. li: B. 

licheniformis, B. me: B. megaterium, B. sp: B. sphaericus and B. su: B. subtilis. 

 

The findings in Table 4.4 can be summarised in three points:  

(i) Br. laterosporus did not match other species, which is not surprising 

because these bacteria are from a different genus. 

(ii) Some species, including B. cereus and B. megaterium, are sometimes 

misclassified since they are phylogenetically related (Lopez-Diez and 

Goodacre, 2004).  

(iii) B. subtilis is sometimes misclassified with B. licheniformis and B. 

amyloliquefaciens.  

Furthermore, heat maps of the confusion matrices were generated in order to 

visualise the classification of Bacillus strains. Figure S4.5 A and B show the heat 

maps generated for the 7 species and 33 strains, respectively. Comparing the two 

heat maps that were generated from MALDI-TOF-MS (Figure S4.4A) and LC-MS 

(Figure S4.5A) when 7 classes (species) are used, it can be seen that both techniques 

were robust at the species level and both techniques show that B. megaterium can be 

misclassified with B. cereus. Moreover, when 33 strains were compared, it can be 

seen that all the strains from Br. laterosporus showed the highest prediction 

accuracies. In addition, B. subtilis B0044 and B. subtilis B0098 overlapped and gave 

 B.am B.ce  B.li  B.me  B.sph B.su Br.la 

B.am  93.85 1.09 0.18 0.16 0.10 4.62 0.00 

B.ce 5.41 71.93 1.63 17.75 0.59 2.70 0.00 

B.li 1.50 0.40 84.03 0.95 4.39 8.73 0.00 

B.me 3.04 35.64 3.22 38.41 8.86 10.82 0.01 

B.sp 2.93 9.95 1.92 6.44 77.13 1.62 0.01 

B.su 4.20 0.61 4.64 1.69 1.05 87.81 0.01 

Br.la 0.01 0.03 0.00 1.13 7.28 0.11 91.43 
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the mixed classification results in both heat maps. These observations from LC-MS 

confirm that MALDI-TOF-MS is indeed a very useful and robust analytical 

technique which generates classifications similar to LC-MS. 

LC-MS has relatively high resolution and sensitivity, and it allows quantitative 

analysis to be performed. Figure S4.6 shows the relative levels of examples of the 

most significant lipids (based on the PCA loadings plot) in the seven species 

classified in this study. Table S4.9 (see attached material: Chapter 4_SI) shows a list 

of the putative assignment of the significant lipids. Again, based on the levels of 

these lipids, Br. laterosporus was observed to be significantly different in 

comparison with the other species, particularly based on fatty acid content (Figure 

S4.6 A-D). Different lipids can be used to distinguish between species; for example, 

PE (14:1(9Z)/15:0) in Figure S4.6G could be used to distinguish B. subtilis from B. 

amyloliquefaciens and licheniformis. Moreover, the level of 7-hydroxy-10E, 16-

heptadecadien-8-ynoic acid from the FA category was relatively high in B. 

licheniformis compared to other species (Figure S4.6H). Significant lipids were also 

identified in the remaining 33 strains and are shown in Figure S4.7 A-D. Table S4.10 

(see enclosed material: Chapter 4_SI) lists the putatively assignment of examples of 

significant lipids in the 33 strains. Looking back at Figure S4.7A, it can be noted that 

the existence of an unknown lipid is significantly higher in all the strains from Br. 

laterosporus compared to the remaining strains from Bacillus. Moreover, Figure 

S4.7 B-D confirms that B. subtilis B0044 and B. subtilis B0098 are highly similar 

and this is most likely due to producing similar amounts of lipids. 

 

 4.3 Comparison of two analytical techniques 

The objective of this step was to compare the patterns of Bacillus and Brevibacillus 

bacteria based on lipid extracts to those based on protein analysis which has already 

been carried out previously using MALDI-TOF-MS (AlMasoud et al., 2014 (Chapter 

2)). In order to assess the similarities in the patterns that were generated from the two 

analytical techniques used for analysing lipids and proteins from Bacillus and 

Brevibacillus samples, three datasets were compared: MALDI-TOF-MS and LC-MS 

were used for the analysis of lipids and MALDI-TOF-MS for protein analysis. This 

led to the use of Procrustean test. Table 4.5 shows the similarity between data 
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obtained from DFA plots for the 7 species (highlighted in bold) and the 33 strains (in 

normal font).  Table 4.5 highlights the following observations: 

(i) MALDI-TOF-MS lipid profiles and LC-MS lipid profiles had the highest 

similarity level with a Procrustes distance of 0.0699 and a p-value of <0.001 

(i.e. not a single case where the permuted data obtained a lower Procrustes 

distance than that of the data without permutation). These findings were 

encouraging because this indicated bacteria were successfully classified 

using MALDI-TOF-MS analysis of lipids. 

(ii) MALDI-TOF-MS protein profiles and both lipid based experiments 

(MALDI-TOF-MS and LC-MS) were significantly similar with Procrustes 

errors of 0.1006 and 0.1081 (p<0.001), respectively. However, the errors are 

higher compared to that highlighted in point (i), which was expected as 

different compounds were compared (i.e. lipids and proteins), and as a result 

this observation supports the validity of our work. 

(iii) Data based on the 33 strains generated higher Procrustes errors comparing 

to data on the 7 species and this is as expected because of the larger number 

of strains compared to the number of species, hence the more complex data 

and high similarity within a bacterial species. Nevertheless, the p-values 

were still very significant (p<0.001). 

 

Table 4.5: Similarity between three different data sets for species and strain levels using 

Procrustes distance 

The values that are highlighted in bold correspond to 7 classes (7 species) and those in normal 

font correspond to 33 classes (33 strains) 

 

 

 

 

 

MALDI-MS (lipid) 

 

MALDI-MS (protein) 

 

LC-MS (lipid) 

MALDI-MS (lipid) - - - 

MALDI-MS (protein) 
0.1006 (p<0.001) 

0.3443 (p<0.001) 
- - 

LC-MS (lipid) 
0.0699 (p<0.001) 

0.3262 (p<0.001) 
0.1081 (p<0.001) 

0.4717 (p<0.001) 
- 
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4.4 Conclsion  and remarks 

MALDI-TOF-MS in an analysing bimolecular compounds, has proven to be useful 

for discriminating between different microorganisms, and its use in bacterial 

profiling is common in clinical microbiology laboratories (Sauer and Kliem, 2010; 

Carbonnelle et al., 2011). Our study involved the use of two analytical techniques, 

MALDI-TOF-MS and LC-MS, to analyse 33 strains from 7 bacterial species 

belonging to the Bacillus (n=6 species) and Brevibacillus (n=1) genera. The spectral 

information generated using MALDI-TOF-MS on lipids extracted from the 33 

strains and 7 species was highly informative and was useful in discriminating 

between the bacteria at the sub-species level. In order to validate these findings LC-

MS data were used to evaluate and confirm results obtained from the simple and 

rapid MALDI-TOF-MS analysis for bacterial classification. The results obtained 

from the two analytical techniques based on the 7 bacterial species showed that these 

data were highly similar, which was supported by the use of Procrustes distance 

analysis. The calculated Procrustes distance was 0.0699 for the two datasets 

indicating very high similarity between MALDI-TOF-MS and LC-MS data. Finally, 

MALDI-TOF-MS data based on analysis of extracted lipids and previous analysis of 

proteins, from intact bacteria analysis of the same species, were also very similar 

(Procrustes distance was 0.1006). These findings suggest that MALDI-TOF-MS can 

be used reliably as a powerful routine clinical tool for the robust classification and 

reliable identification of bacteria based on lipids or proteins. However; direct 

MALDI-TOF-MS analysis for lipids from intact bacterial cells is expected to reduce 

the scope of analysis and the quality of data would be compromised due to the 

interference from different cell components such as proteins, which can lead to ion 

suppression and spectra dominated by highly abundant proteins considering the 

analysis would be carried out using MALDI-TOF-MS. The extra steps required for 

lipid extraction and sample preparation are therefore a necessary inconvenience to 

acquire better quality data. For future work, it would be interesting to compare lipid 

analysis on intact cells with lipid analysis after extraction on the same bacteria.   
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4.6 Supplementary information 

  

 

 

Figure S 4.1: (A) Schematic representing sample quenching using methanol (-48°C).  

(B) Schematic representing extraction of each sample for UHPLC-MS and MALDI-MS analysis 

using (2:1) chloroform:methanol. 
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Figure S 4.2:  UHPLC-MS Parallel factor analysis (PARAFAC2) at 4, 6, 8, 10, 14 and 18 h 

for three different species; where B. cereus= ce, B. subtilis= su and Br. laterosporus= la. 

 

 

Figure S 4.3:  PCA scores plots for two different Bacillus species: B. cereus and B. subtilis 

using two different matrices: (A) ATT and (B) DHB. 
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Figure S 4.4: Heat maps of the confusion matrices from: (A) 7 species and (B) 33 strains 

from Bacillus generated from PLS-DA on the MALDI-TOF-MS data. 
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Figure S 4.5: Heat maps of the confusion matrices from: (A) 7 species and (B) 33 strains 

from Bacillus were generated from PLS-DA on the LC-MS data. 
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Figure S 4.6: Box-whisker plots for the seven species from Bacillus representing the relative 

concentration levels of different lipids (A-H). Each box plot indicates a different type of 

lipid; for more details see attached Excel sheet (Lipids-SI-TabsS3-S5.xls). X-axis coding: B. 

amy: B. amyloliquefaciens, B. cer: B. cereus, Br. lat: Br. laterosporus, B. lic: B. 

licheniformis, B. meg: B. megaterium, B. sph: B. sphaericus and B. sub: B. subtilis. For more 

information see Table S4.9 (enclosed material: Chapter 4_SI). Phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidic acid (PA) and free fatty acid (FFA). 
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Figure S 4.7 A-D: Box-whisker plots (A-D) for the 33 strains representing the concentration 

levels of different lipids. Each box plot indicates a different type of lipids; for more details 

see Table S4.10 (see enclosed material: Chapter 4_SI). Each colour represents different 

strains as indicated in Table 4.1 on the manuscript. FA, fatty acids. 

         A=   Unknown 

   B = Unknown 

       C = Unknown 

    D = FA 
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Table S 4.1: Normalised sample for the first biological replicates reconstitution volumes 

used prior to LC-MS analysis 

Sample 

number 
Strain 

no. 

Absorbance at OD 600 nm 

(average of 3 technical 

replicates) 
Class 

Normalised 

reconstitution 

volume (µL)* 

1 B0056 2.53 
1 

361.43 

2 B0057 1.57 
1 

224.29 

3 B0076 1.74 
1 

248.57 

4 
B0621 1.75 

1 
250.00 

5 B0002
T
 3.57 

2 
510.71 

6 B0550 2.56 
2 

366.43 

7 B0702 3.32 2 475.00 

8 B0712 3.30 2 472.14 

9 B0851 2.76 2 394.29 

10 B0014
T
 1.66 

3 
237.86 

11 B0044 1.84 
3 

263.57 

12 B0098 2.11 
3 

301.43 

13 B0099 1.42 
3 

202.86 

14 B0410 1.94 
3 

277.14 

15 B0501 2.07 
3 

295.71 

16 
B1382 1.52 

3 
217.86 

17 B0177
T
 1.39 

3 
198.57 

18 B0168 1.76 4 252.14 

19 B0175 1.36 4 194.29 

20 B0251 1.53 4 219.29 

21 
B0620 1.23 

4 
176.43 

22 B0252
T
 2.5 

5 
357.14 

23 B0242 2.16 
5 

309.29 
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Table S 4.1:  Continued 

24 B0755 1.99 
5 

285.00 

25 B1081 1.84 5 262.86 

26 B1379 1.64 5 235.00 

27 7134
T
 1.00 6 143.57 

28 B0408 1.38 6 197.14 

29 B0219 3.1 
6 

442.86 

30 B0769 0.95 
6 

136.43 

31 
B1147 0.86 

6 
123.57 

32 B0043 0.88 
7 

126.43 

33 
B0262 1.38 

7 
197.86 

    *(Minimum volume (100 µL)/Minimum OD (0.70)) × Sample OD      
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Table S 4.2: Normalised sample for the second biological replicates reconstitution volumes 

used prior to LC-MS analysis 

Sample 

number 
Strain no. 

Absorbance at OD 

600 nm (average of 3 

technical replicates) 

Class 

Normalised 

reconstitution 

volume (µL)* 

1 B0056 2.48 
1 

354.29 

2 B0057 
1.83 

1 
261.43 

3 B0076 1.54 
1 

220.71 

4 B0621 1.83 
1 

261.43 

5 B0002
T
 3.23 

2 
461.43 

6 B0550 2.47 
2 

353.57 

7 B0702 3.24 
2 

462.86 

8 B0712 3.16 
2 

451.43 

9 
B0851 2.54 

2 
362.86 

10 B0014
T
 1.47 

3 
210.00 

11 B0044 2.02 
3 

289.29 

12 B0098 1.8 
3 

257.14 

13 B0099 
1.21 

3 
173.57 

14 B0410 1.47 
3 

210.71 

15 B0501 1.87 
3 

267.14 

16 
B1382 1.30 

3 
186.43 

17 B0177
T
 1.235 

3 
176.43 

18 B0168 1.43 
4 

204.29 

19 B0175 1.28 
4 

182.86 

20 B0251 
1.27 

4 
182.14 

21 
B0620 0.98 

4 
140.71 

22 B0252
T
 2.27 

5 
324.29 

23 B0242 
2.05 

5 
292.86 
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Table S 4.2: Continued 

24 B0755 1.97 
5 

282.14 

25 B1081 1.44 
5 

205.71 

26 
B1379 1.65 

5 
235.71 

27 7134
T
 1 

6 
142.86 

28 B0408 0.76 
6 

108.57 

29 B0219 2.71 
6 

387.14 

30 B0769 0.81 
6 

116.43 

31 
B1147 0.91 

6 
130.00 

32 B0043* 1.28 
7 

183.57 

33 
B0262 0.85 

7 
122.14 

*(Minimum volume (100 µL)/Minimum OD (0.70)) × Sample OD   
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Table S 4.3: Normalised sample for the third biological replicates reconstitution volumes 

used prior to LC-MS analysis 

Sample number 
Strain 

no. 

Absorbance at OD 

600 nm (average of 3 

technical replicates) 

Class 

Normalised 

reconstitution 

volume (µL)* 

1 B0056 2.36 
1 

337.14 

2 B0057 1.34 
1 

192.14 

3 B0076 1.34 1 192.14 

4 
B0621 1.84 

1 
263.57 

5 B0002
T
 3.26 

2 
466.43 

6 B0550 2.39 
2 

342.14 

7 B0702 3.025 2 432.14 

8 B0712 2.98 
2 

425.71 

9 
B0851 2.45 

2 
350.71 

10 B0014
T
 1.76 3 252.14 

11 B0044 1.77 3 253.57 

12 B0098 1.59 
3 

227.86 

13 B0099 1.24 
3 

177.14 

14 B0410 0.70 3 100.00 

15 B0501 1.82 
3 

260.00 

16 
B1382 1.35 

3 
193.57 

17 B0177
T
 1.17 3 167.86 

18 B0168 1.43 4 204.29 

19 B0175 1.17 
4 

167.14 

20 B0251 1.19 
4 

170.00 

21 B0620 0.99 4 141.43 

22 B0252
T
 2.13 

5 
304.29 

23 B0242 1.95 
5 

278.57 
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Table S 4.3: Continued 

24 B0755 2.0 
5 

287.86 

25 B1081 
1.46 

5 
208.57 

26 
B1379 1.25 

5 
178.57 

27 7134
T
 1.01 

6 
144.29 

28 B0408 1.10 
6 

157.86 

29 B0219 
2.47 

6 
352.86 

30 B0769 0.84 
6 

120.00 

31 B1147 0.84 
6 

120.00 

32 B0043 
1.23 

7 
176.43 

33 
B0262 1.26 

7 
180.71 

  *(Minimum volume (100 µL)/Minimum OD (0.70)) × Sample OD   
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Table S 4.4: Normalised sample for the fourth biological replicates reconstitution volumes 

used prior to LC-MS analysis 

Sample 

number 

Strain 

no. 

Absorbance at OD 

600 nm (average of 3 

technical replicates) 

Class 

Normalised 

reconstitution 

volume (µL)* 

1 B0056 
3.30 

1 
471.43 

2 B0057 3.35 
1 

478.57 

3 B0076 2.81 
1 

401.43 

4 
B0621 1.80 

1 
257.14 

5 B0002
T
 3.41 

2 
487.14 

6 B0550* 3.21 
2 

458.57 

7 B0702 3.56 
2 

508.57 

8 B0712 
3.46 

2 
494.29 

9 
B0851 3.29 

2 
470.00 

10 B0014
T
 1.98 

3 
282.86 

11 B0044 
2.12 

3 
302.86 

12 B0098* 2.16 
3 

308.57 

13 B0099 1.38 
3 

197.14 

14 B0410 1.36 
3 

194.29 

15 B0501 
2.20 

3 
314.29 

16 
B1382 1.345 

3 
192.14 

17 B0177
T
 1.66 

3 
237.14 

18 B0168 1.86 
4 

265.71 

19 B0175 1.60 
4 

228.57 

20 B0251 1.54 
4 

220.00 

21 B0620 0.96 
4 

137.14 

22 B0252
T
 

2.42 
5 

345.71 

23 B0242 2.19 
5 

312.86 
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Table S 4.4: Continued 

24 B0755 2.24 
5 

320.00 

25 B1081 
2.11 

5 
301.43 

26 
B1379 1.61 

5 
230.00 

27 7134
T
 0.95 

6 
135.71 

28 B0408 0.83 
6 

118.57 

29 B0219 
3.69 

6 
527.14 

30 B0769 1.28 
6 

182.86 

31 B1147 1.12 
6 

160.00 

32 B0043* 
1.67 

7 
238.57 

33 
B0262 1.98 

7 
282.86 

*(Minimum volume (100 µL)/Minimum OD (0.70)) × Sample OD   
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Table S 4.5: Normalised sample for the fifth biological replicates reconstitution volumes 

used prior to LC-MS analysis 

Sample 

number 

Strain 

no. 

Absorbance at OD 

600 nm (average of 3 

technical replicates) 

Class 

Normalised 

reconstitution 

volume (µL)* 

1 B0056 4.37 
1 

624.29 

2 B0057 
3.54 

1 
505.71 

3 B0076 3.64 
1 

520.00 

4 B0621 2.05 
1 

292.86 

5 B0002
T
 3.52 

2 
502.86 

6 B0550* 3.99 
2 

570.00 

7 B0702 3.86 
2 

551.43 

8 B0712 3.66 
2 

522.86 

9 
B0851 3.69 

2 
527.14 

10 B0014
T
 2.05 

3 
292.86 

11 B0044 2.16 
3 

308.57 

12 B0098* 2.41 
3 

344.29 

13 B0099 
1.37 

3 
195.71 

14 B0410 1.32 
3 

188.57 

15 B0501 2.58 
3 

368.57 

16 
B1382 1.57 

3 
224.29 

17 B0177
T
 1.83 

3 
261.43 

18 B0168 1.68 
4 

240.00 

19 B0175 1.88 
4 

268.57 

20 B0251 
1.54 

4 
220.00 

21 
B0620 0.82 

4 
117.14 

22 B0252
T
 2.55 

5 
364.29 

23 B0242 
2.15 

5 
307.14 
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Table S 4.5: Continued 

24 B0755 2.20 
5 

314.29 

25 B1081 
2.45 

5 
350.00 

26 
B1379 1.66 

5 
237.14 

27 7134
T
 1.58 

6 
225.71 

28 B0408 1.75 
6 

250.00 

29 B0219 
4.04 

6 
577.14 

30 B0769 1.79 
6 

255.71 

31 B1147 1.07 
6 

152.86 

32 B0043* 
1.78 

7 
254.29 

33 
B0262 1.24 

7 
177.14 

   *(Minimum volume (100 µL)/Minimum OD (0.70)) × Sample OD   
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Table S 4.6: Prediction accuracies of the 33 Bacillus strains from MALDI-TOF-MS data using PLS-DA 

The different colours represent the species level identification 
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Table S 4.7: Prediction accuracies of the 33 Bacillus strains from LC-MS data using PLS-DA 

The different colours represent the species level identification 

B.amy1 B.amy2 B.amy3 B.amy4 B.amy5 B.cer1 B.cer2 B.cer3 B.cer4 B.cer5 B.lic1 B.lic2 B.lic3 B.lic4 B.lic5 B.meg2 B.meg3 B.meg4 B.meg5 B.sph1 B.sph2 B.sph3 B.sph4 B.sph5 B.sub1 B.sub2 B.sub3 B.sub4 B.sub5 B.sub6 B.sub7 Br.lat1 Br.lat2

B.amy1 24.86% 1.30% 36.05% 5.64% 0.13% 0.42% 8.08% 0.04% 0.00% 0.00% 0.00% 3.97% 0.06% 0.77% 0.00% 0.00% 0.24% 5.07% 0.00% 0.00% 0.00% 1.02% 0.00% 0.00% 1.72% 0.00% 0.00% 0.00% 0.16% 9.06% 0.23% 0.00% 0.00%

B.amy2 1.40% 31.88% 3.91% 14.09% 12.60% 8.61% 0.00% 1.67% 0.15% 0.00% 0.00% 0.81% 3.63% 0.09% 0.00% 0.53% 4.96% 0.00% 0.24% 0.00% 0.00% 5.18% 0.33% 0.33% 0.00% 1.33% 8.01% 0.00% 0.00% 0.09% 0.00% 0.00% 0.00%

B.amy3 25.97% 1.77% 41.97% 7.06% 0.07% 1.04% 0.00% 0.03% 4.01% 0.08% 0.04% 1.12% 0.04% 2.89% 0.00% 0.00% 0.09% 0.68% 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 11.71% 0.00% 0.06% 0.04% 0.00% 0.44% 0.00% 0.00% 0.00%

B.amy4 5.32% 21.16% 12.60% 3.26% 29.96% 0.44% 0.58% 0.11% 0.00% 0.93% 0.19% 3.45% 1.67% 0.65% 2.93% 0.00% 0.00% 0.11% 0.00% 0.06% 6.79% 0.31% 0.31% 0.11% 0.06% 5.63% 1.74% 0.49% 0.00% 0.25% 0.45% 0.00% 0.00%

B.amy5 0.55% 3.62% 0.18% 20.04% 54.57% 3.19% 3.07% 0.00% 0.07% 0.00% 2.88% 0.19% 0.00% 0.00% 0.00% 0.07% 2.68% 0.29% 0.28% 0.00% 0.03% 0.00% 0.00% 0.14% 0.09% 1.40% 0.22% 0.92% 0.07% 0.00% 4.59% 0.00% 0.00%

B.cer1 5.06% 12.92% 0.90% 1.12% 0.84% 0.22% 2.33% 11.25% 41.13% 1.67% 0.86% 0.08% 0.04% 1.45% 0.06% 3.66% 5.16% 0.18% 0.11% 0.00% 0.23% 8.69% 0.06% 0.09% 1.34% 0.44% 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% 0.00%

B.cer2 14.74% 0.07% 0.00% 1.64% 3.91% 2.96% 0.50% 8.30% 2.50% 16.00% 0.39% 0.24% 2.30% 0.56% 0.74% 13.18% 8.83% 10.04% 3.08% 0.00% 2.09% 0.85% 0.69% 0.00% 0.39% 0.47% 0.06% 0.00% 0.00% 1.07% 3.75% 0.00% 0.00%

B.cer3 0.24% 2.50% 2.72% 2.07% 0.17% 17.49% 6.08% 11.73% 15.80% 4.76% 0.37% 0.47% 0.20% 2.25% 0.00% 3.99% 13.52% 1.80% 1.54% 0.00% 0.06% 2.70% 0.98% 0.23% 0.04% 0.16% 0.15% 0.00% 0.09% 6.56% 0.00% 0.00% 0.00%

B.cer4 0.06% 0.35% 1.12% 0.00% 0.06% 24.22% 0.20% 14.06% 30.02% 4.57% 0.06% 0.00% 0.03% 0.00% 0.00% 0.04% 10.92% 0.48% 1.70% 0.00% 0.00% 8.55% 1.33% 0.71% 0.86% 0.44% 0.00% 0.00% 0.07% 0.15% 0.00% 0.00% 0.00%

B.cer5 0.05% 0.00% 0.63% 0.15% 0.00% 3.86% 17.76% 4.23% 13.02% 3.25% 1.22% 1.81% 5.70% 0.17% 0.00% 17.83% 0.79% 9.50% 12.43% 0.11% 0.22% 1.79% 1.34% 1.12% 1.34% 0.80% 0.00% 0.13% 0.25% 0.56% 0.00% 0.00% 0.00%

B.lic1 0.38% 0.03% 0.96% 0.09% 6.40% 1.72% 2.16% 0.09% 0.00% 3.51% 23.06% 8.75% 12.73% 11.36% 1.16% 0.03% 0.00% 1.03% 0.00% 17.04% 0.15% 0.00% 0.09% 5.64% 0.00% 0.00% 0.74% 1.43% 1.41% 0.00% 0.00% 0.00% 0.00%

B.lic2 12.99% 1.70% 1.27% 5.90% 3.33% 1.71% 0.14% 0.04% 0.00% 4.02% 5.66% 21.39% 17.49% 6.03% 5.26% 0.15% 3.41% 0.06% 0.04% 0.00% 0.04% 0.61% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.58% 5.92% 1.74% 0.00% 0.00%

B.lic3 0.68% 0.13% 0.90% 0.99% 0.00% 0.00% 2.82% 0.10% 0.00% 5.02% 4.36% 19.56% 20.45% 1.36% 18.86% 3.05% 0.00% 7.58% 2.32% 0.00% 0.00% 1.22% 0.00% 0.00% 1.69% 0.00% 0.00% 1.85% 1.03% 5.02% 1.37% 0.00% 0.00%

B.lic4 2.52% 0.20% 1.88% 2.31% 0.00% 0.27% 0.09% 1.11% 0.00% 0.96% 10.35% 6.25% 1.54% 40.48% 0.06% 0.00% 0.26% 1.10% 4.49% 13.17% 0.41% 8.50% 1.99% 0.39% 0.00% 0.00% 0.00% 0.00% 0.00% 1.24% 0.00% 0.00% 0.00%

B.lic5 0.66% 0.00% 0.00% 0.14% 0.11% 0.00% 0.00% 0.00% 0.04% 0.00% 0.24% 2.07% 19.71% 0.06% 27.75% 0.58% 0.24% 0.07% 0.11% 0.10% 5.44% 0.21% 0.06% 0.00% 1.32% 0.03% 0.00% 16.00% 15.87% 0.06% 8.64% 0.00% 2.94%

B.meg2 0.00% 0.53% 0.00% 0.25% 7.51% 6.67% 13.26% 0.93% 0.55% 18.96% 0.04% 0.13% 1.76% 0.22% 0.46% 13.69% 4.62% 3.25% 0.07% 0.00% 3.49% 15.18% 0.00% 0.00% 0.00% 1.10% 0.40% 0.00% 0.32% 2.55% 3.19% 0.00% 0.00%

B.meg3 1.28% 3.64% 0.53% 1.55% 3.10% 6.10% 6.61% 16.50% 20.46% 2.48% 0.34% 2.61% 0.03% 0.30% 0.11% 2.04% 7.59% 15.23% 0.06% 0.19% 0.06% 5.11% 0.15% 0.00% 0.00% 0.06% 1.05% 0.00% 0.00% 2.63% 0.51% 0.00% 0.00%

B.meg4 6.45% 0.00% 4.76% 1.41% 0.06% 4.77% 7.31% 0.22% 1.31% 6.08% 1.85% 0.70% 2.77% 3.64% 0.16% 0.67% 13.19% 15.17% 9.83% 0.00% 0.00% 9.17% 0.60% 0.00% 0.00% 5.39% 4.42% 0.00% 0.05% 0.00% 0.00% 0.00% 0.00%

B.meg5 0.00% 0.00% 0.00% 0.00% 0.00% 0.48% 0.31% 1.86% 4.69% 3.31% 0.00% 0.06% 0.32% 0.65% 2.76% 2.98% 1.38% 5.27% 25.24% 0.26% 1.74% 0.09% 8.60% 10.10% 1.20% 0.00% 0.44% 5.57% 13.55% 0.60% 6.01% 0.00% 3.92%

B.sph1 0.00% 0.04% 0.82% 0.20% 0.00% 0.00% 0.14% 0.00% 1.41% 0.00% 3.02% 0.00% 0.00% 0.23% 0.00% 0.00% 0.00% 0.00% 2.30% 49.86% 10.99% 0.09% 6.47% 23.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

B.sph2 0.04% 0.00% 0.67% 0.94% 0.74% 0.00% 0.06% 0.06% 0.00% 0.26% 0.20% 0.00% 0.00% 0.39% 0.00% 11.05% 0.11% 0.15% 9.03% 22.28% 1.30% 0.33% 16.68% 20.85% 1.23% 0.29% 0.00% 1.29% 0.07% 0.09% 8.03% 0.00% 0.00%

B.sph3 0.11% 12.77% 2.22% 1.00% 0.00% 6.00% 4.89% 1.18% 18.12% 7.59% 0.00% 0.09% 2.91% 9.25% 0.00% 10.81% 7.01% 8.54% 0.09% 0.04% 0.37% 0.95% 0.15% 0.28% 0.07% 0.00% 0.50% 0.00% 0.00% 2.03% 0.00% 0.00% 4.90%

B.sph4 0.11% 0.99% 0.07% 0.86% 0.00% 0.06% 0.00% 2.02% 1.44% 1.22% 0.00% 0.10% 0.06% 2.90% 0.00% 0.06% 0.04% 2.83% 9.49% 20.64% 19.54% 0.04% 11.78% 18.28% 0.06% 0.00% 0.04% 0.00% 1.77% 0.25% 0.00% 0.49% 3.92%

B.sph5 0.00% 0.00% 0.94% 0.00% 0.00% 0.00% 0.07% 0.00% 0.24% 0.00% 3.09% 0.00% 0.06% 0.31% 0.00% 0.00% 0.04% 0.08% 3.34% 30.65% 21.14% 0.30% 16.30% 20.99% 0.13% 0.00% 0.39% 0.72% 0.00% 0.22% 0.80% 0.00% 0.00%

B.sub1 7.51% 0.11% 3.10% 0.08% 1.09% 1.23% 0.69% 0.03% 1.69% 0.50% 0.00% 0.47% 10.72% 0.11% 2.95% 0.00% 0.00% 0.12% 0.87% 0.11% 5.71% 0.27% 0.17% 0.43% 11.94% 0.04% 0.99% 6.00% 2.46% 22.24% 17.32% 0.00% 0.00%

B.sub2 0.03% 0.42% 0.00% 8.46% 1.81% 0.00% 0.59% 0.00% 0.09% 0.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.05% 0.80% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 42.60% 45.11% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

B.sub3 0.00% 0.50% 0.00% 0.59% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00% 0.00% 0.40% 0.03% 0.46% 0.00% 0.00% 0.08% 0.00% 0.00% 1.07% 0.04% 49.06% 39.47% 0.04% 7.94% 0.00% 0.00% 0.00% 0.00%

B.sub4 0.00% 0.00% 1.60% 0.82% 0.28% 0.00% 0.00% 0.84% 0.00% 0.00% 0.15% 0.12% 12.04% 0.00% 5.95% 0.00% 0.00% 0.00% 4.38% 0.00% 0.10% 0.00% 0.00% 6.28% 12.61% 0.04% 0.00% 10.77% 24.38% 3.87% 14.77% 0.00% 0.00%

B.sub5 1.78% 0.00% 1.07% 0.13% 0.24% 0.04% 0.00% 0.08% 0.25% 3.89% 2.08% 0.44% 0.04% 1.98% 11.05% 0.15% 0.57% 0.10% 7.47% 4.20% 3.49% 0.00% 2.69% 0.24% 9.22% 0.07% 4.88% 24.18% 4.84% 3.90% 10.02% 0.00% 0.00%

B.sub6 11.17% 0.00% 5.36% 1.39% 0.00% 0.06% 0.19% 0.39% 0.00% 0.31% 0.00% 3.93% 5.24% 6.79% 0.05% 4.82% 0.71% 0.09% 0.00% 0.00% 0.00% 1.10% 0.00% 0.09% 25.12% 0.46% 0.00% 3.11% 3.31% 8.18% 17.80% 0.00% 0.00%

B.sub7 1.19% 0.00% 0.11% 1.37% 11.58% 0.00% 2.99% 0.11% 0.00% 0.46% 0.00% 1.37% 5.75% 0.00% 6.03% 0.00% 0.11% 0.17% 2.28% 0.00% 3.13% 0.34% 0.00% 0.63% 17.41% 1.73% 0.00% 11.89% 8.28% 22.18% 0.91% 0.00% 0.00%

Br.lat1 0.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 60.78% 46.08%

Br.lat2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.96% 0.00% 0.00% 0.00% 1.96% 2.94% 0.00% 0.00% 8.82% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 39.22% 45.10%
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Table S 4.8: shows the putative lipid categories of Bacillus bacteria detected using LC-MS 

(enclosed sheet: Chapter 4_SI). 

Table S 4.9:  Excel sheet shows the putative significant lipid categories of 7 species detected 

using LC-MS (enclosed sheet: Chapter 4_SI).  

Table S 4.10:  Excel sheet shows the putative significant lipid categories of 33 strains 

detected using LC-MS (enclosed sheet: Chapter 4_SI).      
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Abstract  

Recent clinical isolates of glycopeptide resistant enterococci (GRE) were used to 

compare three rapid phenotyping and analytical techniques. Fourier transform 

infrared (FT-IR) spectroscopy, Raman spectroscopy and matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) –were 

used to classify 35 isolates from 12 Enterococcus faecium strains, which had been 

previously analysed by pulsed-field gel electrophoresis (PFGE).The results show that 

the three analytical techniques provide clear discrimination among enterococci at 

both the strain and isolate levels. FT-IR and Raman spectroscopic data produced 

very similar bacterial classification, also reflected in the Procrustes distance between 

the datasets (0.2125-0.2411, p<0.001); however, FT-IR data provided superior 

prediction accuracy to Raman data, with correct classification rates (CCR) of 89% 

and 69% at the strain level, respectively. MALDI-TOF-MS produced slightly 

different classification of these enterococci, also with high classification accuracy 

(78%). Classification data from the three analytical techniques were consistent with 

PFGE data especially in the case of strains identified as unique by PFGE.  This study 

presents phenotypic techniques as a complementary approach to current methods 

with a potential for high-throughput point-of-care screening enabling rapid and 

reproducible classification of clinically relevant enterococci. 
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5.1 Introduction  

Enterococcus are a highly significant genus of bacteria, which cause important 

clinical infections including urinary tract infections (UTIs), endocarditis, meningitis, 

bacteremia, wound infections, pelvic and intra-abdominal infections amongst others. 

Some of these Gram-positive cocci were originally classified as Streptococcus spp. 

until genomic analysis by Schleifer and Kilpper-Balz in 1984 demonstrated the 

requirement for a separate genus classification (Schleifer and Kilpper-Bälz, 1984). 

This well-known genus is part of the normal intestinal microflora of humans and 

other animals (Kayser et al., 2011). Enterococcus are also part of the lactic acid 

bacteria (LAB) group present in foods, and whilst they are able to spoil fresh meats 

(Hayes et al., 2003), they are important in ripening and development of certain foods 

(i.e. dairy products), as well as being used as probiotics in humans (Franz et al., 

2003).   

 

The majority of human clinical isolates of enterococci belong to tow species, 

Enterococcus faecalis and Enterococcus faecium (McCracken et al., 2013). In 

addition to their prevalence and pathogenicity, another very important factor 

associated with enterococci is the high level of antimicrobial resistance, particularly 

resistance to glycopeptide antibiotics (such as vancomycin, teicoplanin and 

telavancin); resistant strains are referred to as GRE (glycopeptide-resistant 

enterococci) (Woodford, 1998; Arias and Murray, 2012).  

 

There is a constant requirement to develop analytical methods for the classification 

of bacteria, which can be used in clinical diagnostics and food quality control. These 

methods should ideally be rapid, reproducible, and easy to use and automate, in 

addition to having high resolution and sensitivity (Altekruse et al., 1997). Over a 

decade ago, it was common to use chemical methods, such as polymerase chain 

reaction (PCR) for identification of specific DNA sequences and recognition by 

antibodies via enzyme-linked immunosorbent assay (ELISA), to characterise whole 

bacteria. Although these techniques are sensitive and specific, they are time-

consuming and their use is limited by the complexity of preparation procedures and 

the requirement for specific primers and antibodies (Engvall, 1977; Yolken, 1980; 

Ke et al., 1999; Reen 1994). Nowadays, modern analytical techniques, such as 
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matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF-MS) (Claydon et al., 1996; Quintela-Baluja et al., 2013), Fourier 

transform infrared (FT-IR) spectroscopy (Goodacre et al., 1998, Helm et al., 1991; 

Naumann et al., 1991; Burgula et al., 2007) and Raman spectroscopy (Huang et al., 

2010; Beekes et al., 2007) are also used for the characterisation of bacteria. High 

dimensional and information rich datasets are produced from these techniques, which 

have also directly led to the requirement of robust and reliable chemometrics 

methods to assist with data deconvolution and in-depth analysis (Ellis et al., 2013). 

This saw the introduction, acceptance and use of chemometrics, such as discriminant 

function (DFA) and hierarchical cluster analyses (HCA) (Gutteridge et al., 1985; 

Davis and Mauer, 2010; López-Díez and Goodacre, 2004). 

 

Previously, MALDI-TOF-MS has shown promising results for bacterial 

classification and characterisation (AlMasoud et al., 2014 (Chapter 2); Claydon et 

al., 1996; Lasch et al., 2014). FT-IR and Raman spectroscopy complement each 

other for bacterial classification; both are robust metabolic fingerprinting techniques 

and need little sample preparation (Sauer and Kliem, 2010; Ellis and Goodacre, 

2006; Marvin et al., 2003; Lay, 2001). FT-IR is used by many researchers since it is 

not only rapid but also represents a high-throughput and non-destructive method, 

allowing the analysis of intact bacteria and producing unique, reproducible and 

distinct biochemical fingerprints (Argyri et al., 2013). Moreover, Raman 

spectroscopy shares similar advantages to FT-IR and also has the additional 

advantage of water being a very weak Raman scatter (Smith and Dent, 2013; Ferraro 

et al., 2003) and producing complementary information to its related vibrational 

spectroscopic technique, FT-IR spectroscopy. 

 

Here, the aim was to use these three distinct phenotypic approaches (namely 

MALDI-TOF-MS, FT-IR spectroscopy and Raman spectroscopy) in combination 

with rigorous chemometric analysis of the resultant datasets to classify 35 clinically 

relevant isolates of Enterococcus faecium, which had been previously analysed by 

pulsed-field gel electrophoresis (PFGE). This was carried out in order to compare the 

results from, and determine the efficiency of, these analytical techniques for the 

rapid classification of enterococci. In future, this may allow clinical diagnostic 

laboratories to analyse multiple bacteria samples rapidly for infection control 
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purposes in point-of-care setting within hospitals, clinics, or GP surgeries which 

would significantly accelerate diagnosis, ensure the correct antimicrobial therapies 

were used if required, and eliminate the delay associated with sending strains to 

reference laboratories when analysing patient samples. 
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5.2      Materials and Methods 

5.2.1 General Chemicals 

Trifluoroacetic acid (TFA), acetonitrile (ACN), sinapinic acid (SA), α-cyano-4-

hydroxycinnamic acid (CHCA), and ferulic acid (FA) were purchased from Sigma-

Aldrich (Dorset, UK). 

5.2.2 Enterococci  isolates   

35 isolates from enterococci were previously analysed using pulsed-field gel 

electrophoresis (PFGE) in Public Health England’s National Reference Laboratory. 

Table 5.1 summarises information on the 35 clinical isolates within 12 groups (12 

strains (12 PFGE-defined types)) including: EC04, EC09, EC10, EC13, EC14, 

EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214. These bacterial 

samples were collected and sourced from clinical isolates from a hospital in Belfast 

UK. Following an increased number of enterococcal infections on a surgical ward in 

this hospital, appropriate infection control arrangements required identification of all 

patients carrying enterococci. Patients submitted fecal samples to the lab in the 

hospital, from which bacteria were cultured. The isolates were then 

sent to the reference laboratory where PFGE typing was performed and strains were 

allocated to a recognised ECn group or described as “unique” (UNIn).  

 

5.2.3 Media  

Two different types of media were used to culture the enterococci: Lysogeny Broth 

(LB) and Nutrient Agar (NA). LB was prepared by mixing 5 g of yeast extract 

(Amersham Life Sciences, Cleveland, USA), 10 g of tryptone (Formedia, 

Hunstanton, UK) and 10 g of NaCl dissolved in 1 L of distilled water and the broth 

was then autoclaved (at 121ºC and 15 psi for 45 min). NA was prepared from a 

preparatory mixture (beef extract 3 g/L, peptone 5 g/L, NaCl 8 g/L and agar 2 at 12 

g/L) (Lab-M, Bury, UK) following the manufacturer’s instructions (28 g in 1 L of 

deionised water) and the broth was autoclaved (at 121ºC and 15 psi for 15 min). 
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          Table 5.1: The 35 Enterococcus faecium isolates used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

         UNI= UNIQUE (named in Public Health England’s National Reference Laboratory) 

  

 

No. 

 

Isolates Strains   

1 139 EC10 

2 151 EC10 

3 144 EC13 

4 149 EC13 

5 152 EC13 

6 154 EC13 

7 155 EC13 

8 167 EC13 

9 177 EC13 

10 185 EC13 

11 194 EC14 

12 203 EC14 

13 190 EC15 

14 223 EC15 

15 224 EC15 

16 173 EC19 

17 174 EC19 

18 175 EC19 

19 192 EC20 

20 198 EC20 

21 204 EC20 

22 109 EC04 

23 170 EC04 

24 179 EC04 

25 193 EC04 

26 133 EC09 

27 160 EC09 

28 211 EC09 

29 205 EC09 

30 219 EC09 

31 233 EC09 

32 156 UNI 

33 178 UNI 

34 191 UNI 

35 214 UNI 
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5.2.4 Bacterial isolates 

35 isolates of enterococci were shipped as slopes from Microbiology Laboratory, 

Royal Victoria Hospital, Belfast UK. Enterococci were streaked on NA plates to 

obtain single colonies. This was followed by collecting and transferring the bacteria 

to 1 mL of 20% [v/v] glycerol working inoculum stocks and these were then stored 

at -80ºC.   

The samples analysed by the three techniques (viz. MALDI-TOF-MS, FT-IR and 

Raman) were collected from the same flask to avoid any variations between different 

preparations that may affect results obtined using the different anlaytical platforms. 

First, enterococci were cultured on NA plates for 24 h at 37ºC. A single colony from 

the agar culture was used to inoculate with 50 mL of LB in a 250 mL flask which 

was incubated overnight at 37ºC with shaking at 200 rpm. This was followed by 

measuring the optical density (OD) at 600 nm using a Biomate 5 spectrophotometer 

(Thermo, Hemel Hempstead, UK) for each of the isolates. The volume of analysed 

bacteria was then normalised to account for variance in cell biomass in the different 

replicate  cultures (4 biological replicates were prepared for each isolate). Second, 

the new cultures were incubated at 37ºC for 11 h. Then, 10 mL from each flask was 

collected and centrifuged at 4800 g for 5 min and the pellet washed three times with 

sterile deionised water. Figure 1 illustrates the preparation process.  

For vibrational spectroscopic analysis, the collected pellets were suspended in 

suitable volumes of NaCl (0.9% (w/v)) (depending on the OD). Then, 15 µL was 

spotted onto a silicon plate (Bruker Ltd., Coventry, UK) and was allowed to dry at 

40ºC for 45 min before analysis with FT-IR spectroscopy. For Raman spectroscopy, 

4 µL of each sample was spotted onto a stainless steel plate and then allowed to dry 

at 40ºC for 45 min. 

For MALDI-TOF-MS, three different matrices were tested to find the most 

compatible matrix with enterococci; these matrices were: SA, FA and CHCA. In 

addition, 3 different deposition methods as described previously (AlMasoud et al., 

2014 (Chapter 2)) were tested to find the best method for depositing the samples: 

mix, overlay and underlay (data not shown). SA matrix and the mix deposition 

method were found to be the optimal combination for MALDI-TOF-MS analysis. On 

the day of analysis of the samples, the biomass was suspended in 1000 µL of 2% 
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TFA then vortexed for 3 min. An equal volume of 10 µL of bacterial suspended and 

matrix were vortexed for 2 s and 2 µL of this mixture spotted onto a MALDI 

stainless steel plate and allowed to dry at ambient temperature. 
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Figure 5.1: Schematic of sample preparation for: (1) FT-IR spectroscopy, (2) Raman spectroscopy and (3) 

MALDI-TOF-MS analysis of bacterial isolates 

The GRE strains were analysed using an 

AXIMA-Confidence (Shimadzu Biotech, 

Manchester, UK) mass spectrometer 

50 ml of LB 

medium incubated 

for 24 h  at 37 °C 

10 ml 100 µl culture + 900 µl 

broth  

(broth) C1 V1=C2 V2 (culture)  

Bacteria were 

streaked on NA 

plate  
Single colony was added to 1 

ml of 20% glycerol then stored 

at (-20°C) 

Single colony 

was 

transferred  

Centrifugation for 5 

min at 4800  x g  

 

Incubate freach broth 

(LB) and culture for 11 h 

at 37 °C 
Measured the OD for 

normalization   

The supernatant was removed 

leaving the pallet in the tube; this 

was followed by washing the 

pellet using sterile deionised 

water 

 

Centrifugation again 

The pellets were mixed 

with NaCl (0.9%)  
The pellets were mixed 

with NaCl (0.9%)  

The pellets were 

mixed with TFA.  
Raman Spectroscopy was carried out to 

analyse GRE bacteria using a confocal 

Raman system (inVia, Renishaw plc, 

Wotton-Under-Edge, UK) coupled with a 

785 nm wavelength laser. 

High-throughput screening (HTS) was 

carried out using a Bruker Equinox 55 FT-

IR spectrometer, HTX module was used 

with this instrument. The transmission mode 

was used to analyse the dried biomass to 

produce FT-IR spectra 

(1) (2) 

(3) 
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5.2.5 Fourier transform infrared (FT-IR) spectroscopy 

Sodium dodecyl sulfate (SDS) was used to wash a silicon FT-IR spectroscopy plate 

(Bruker Ltd., Coventry, UK) which contained 96 locations/spots.  This was followed 

by washing the plate using deionised water and allowing it to dry at room 

temperature (Patel et al., 2008). High-throughput screening (HTS) was carried out 

using a Bruker Equinox 55 FT-IR spectrometer. The HTX
TM

 module described by 

Winder et al. (Winder et al., 2006) was used with this instrument. Transmission 

mode was used to analyse the dried biomass to produce FT-IR spectra. The 

parameters used for FT-IR analysis included the following: spectra were collected 

from the wavenumber range between 4000 and 600 cm
-1

, resolution was 4 cm
-1

 and 

each spectrum was the average of 64 co-adds. Spectral acquisition and subtracting 

the background were achieved using Opus software (Bruker Ltd.). Four biological 

replicates, each in four analytical replicates were analysed and analysis was 

performed in three machine runs, resulting in 1680 FT-IR spectra.    

 

5.2.6 Raman Spectroscopy 

This was carried out using a confocal Raman system (inVia, Renishaw plc., Wotton-

Under-Edge, UK) coupled with a 785 nm wavelength laser. A power intensity of ~30 

mW was applied on the samples at an exposure time of 20 s. Four biological 

replicates and seven different locations within each sample spot were analysed, 

resulting in a total of 980 Raman spectra. 

 

5.2.7 MALDI spectrometry  

The enterococci isolates were analysed using an AXIMA-Confidence MALDI-TOF-

MS (Shimadzu Biotech, Manchester, UK), equipped with a nitrogen pulsed UV laser 

with a wavelength of 337 nm. The parameters of this device were set as follows: 

140 mV laser power, 91 acquired profiles with each profile containing 20 shots, 

linear TOF, positive ionisation mode, and mass-to-charge (m/z) range of 1000-

18000. The spectra were collected using a circular raster pattern. The MALDI-TOF-

MS device was calibrated using a protein mixture: insulin (5,735 Da), cytochrome c 

(12,362 Da), and apomyoglobin (16,952 Da) (Sigma-Aldrich). Each of 4 biological 

replicates from the 35 isoaltes was analysed in four technical replicates on four 

different days; this led to the generation of a total of 560 MALDI-TOF-MS spectra 

(35 isolates × 4 biological replicates × 4 analytical replicates). 
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5.3 Data analysis  

5.3.1 Data pre-processing 

Opus software was used to export FT-IR data into ASCII format; the data were then 

transferred into MATLAB 2012a (The Mathworks Inc., MA, US). All FT-IR spectra 

were corrected using standard normal variate (SNV) to remove any light scattering 

effect. The analytical replicates were averaged to reduce the number of redundant 

samples. Due to the large number of samples, 8 separate (96 spot silicon) sampling 

plates were used; therefore, it was necessary to correct for the subtle differences in 

signals from different silicon plates. This was achieved by using a piece-wise direct 

standardisation (PDS) model (Wang et al., 1991). The PDS model was built on two 

different ‘refreance’ isolates which were spotted on every plate. The pre-processed 

FT-IR spectra were then subjected to multivariate analysis (MVA, see below). 

Raman spectra were also normalised using standard normal variate (SNV) and then 

subjected to MVA. 

 

MALDI-TOF-MS data were pre-processed as follows: (i) the baseline was corrected 

using asymmetric least squares (AsLS) (Eilers, 2004), and (ii) spectra were 

normalised by dividing each individual baseline corrected spectrum with the square 

root of the sum of squares of the spectrum (Brereton, 2003). The pre-processed 

MALDI-TOF-MS data were subjected to the same data analysis flow as Raman and 

FT-IR spectral data.  

 

5.3.2  Multivariate data analysis 

A flowchart of multivariate data analysis is provided in Figure 5.2. For all three 

datasets, two types of classification were performed: one at the strain level (i.e. 12 

classes), and the other at the isolate level (i.e. 35 classes). 

  

For cluster analyses principal components-discriminant function analysis (PC-DFA) 

(Manly, 2004; Harrigan et al., 2004; Gromski et al., 2015) was applied to reduce the 

dimensionality of the data and discriminate samples from the designated classes. The 

PC-DFA scores of each class were then averaged and subjected to hierarchical 

cluster analysis (HCA) (Hastie et al., 2009). Dendrograms from each analysis were 

generated to illustrate the relative relatedness of these bacteria. 
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Partial least squares-discriminant analysis (PLS-DA) (Barker and Rayens, 2003), 

with 1,000 bootstrapping validations (Efron and Tibshirani, 1994), was also applied 

to obtain a validated supervised classification model for discriminating different 

strains or isolates. In each bootstrapping process, the data were randomly split into 

two different sets:  a training set and a test set. A PLS-DA model was trained on the 

training set and then applied to the test set to predict the class membership of the 

samples in the test set. This process was repeated 1,000 times and the results were 

recorded and averaged to produce a c×c confusion matrix (c is the number of 

designated classes, either 12 (strains) or 35 (isolates)), in which the element at the i
th

 

row, j
th

 column is the percentage of samples in class i being predicted as class j on 

average. In order to assess the statistical significance of the predictive performance 

of the PLS-DA models, a corresponding permutation test within each bootstrapping 

resampling was also performed. This means that in addition to building the PLS-DA 

model using the known class membership, another model (called the ‘null’ model) 

was also built using a randomly permuted class membership. The results of the null 

models were also recorded and from this the null distribution was obtained. An 

empirical p-value was calculated by counting the number of cases where the null 

model had obtained better predictive accuracy than the real model and dividing the 

obtained number by the total number of bootstrapping resampling (i.e. 1,000 in this 

study).  

Finally, similarities between the three different datasets (FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS data) were measured using Procrustes analysis 

(Gower and Dijksterhuis, 2005). Procrustes analysis is an excellent approach for 

assessing the differences and similarities between different ordination space from 

cluster analyses and has been used previously for the assessment of different 

analytical techniques (AlRabiah et al. 2014). The distances were calculated based on 

the averaged PC-DFA scores for the biological replicates. 
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Figure 5.2: Workflow of data analysis undertaken for FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS. The data were first pre-processed then MVA was 

applied using PC-DFA at both the (ST) strain (12 classes) and (IS) isolate (35 classes) levels. 

This was followed by PLS-DA. 

  

Raw Data (FT-IR, Raman  
and MALDI)

Preprocessing  

Multivariate analysis 

Supervised analysis (DFA)

ST (12 classes) IS (35 classes)

PLS-DA

IS (35 classes)ST (12 classes)
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5.4 Results and Discussions  

The number of Enterococcus infections is continually on the rise, leading to a 

requirement for improvement and development of sensitive, reliable and rapid 

methods to analyse these important and clinically relevant microorganisms 

(Quintela-Baluja et al., 2013). Accurate and rapid identification and classification of 

these pathogenic bacteria can assist in successful antibiotic treatment of infections. 

In this study, three analytical techniques were applied for the discrimination and 

classification of 35 isolates from 12 Enterococcus faecium strains. These clinical 

strains acquired from the surgical ward of the hospital were previously analysed 

using PFGE. Table 5.1 shows all 35 isolates belonging to 12 strains including: EC04, 

EC09, EC10, EC13, EC14, EC15, EC19, EC20 UNI 156, UNI 178, UNI 191 and 

UNI 214. The PFGE results (Figure S5.1) were compared to results obtained in this 

study using FT-IR spectroscopy (Naumann, 1984, Goodacre et al., 1998), Raman 

spectroscopy (Ferraro et al., 2003; Ashton et al., 2011; Muhamadali et al., 2015) and 

MALDI-TOF-MS (Cramer et al., 2005; Quintela-Baluja et al., 2013; Carbonnelle et 

al., 2011). We believe that these analytical techniques offered an improvement in the 

classification of bacteria due to their higher chemical resolution.  

 

5.4.1 Classification using FT-IR spectroscopy 

FT-IR spectroscopy is a rapid, robust and highly reproducible analytical technique 

with considerable potential for routine use in high-throughput clinical screening 

(Mariey et al., 2001; Ellis and Goodacre, 2006). This technique has been 

successfully used to discriminate bacteria to species and strain levels since 

pioneering work at the Robert Koch Institute in Berlin was published by Dieter 

Naumann and co-workers from the mid-1980s onwards (Naumann et al., 1988; 

Naumann et al., 1991; Helm et al., 1991). In this study, four biological replicates of 

bacterial isolates were analysed in four analytical replicates and analysis was 

performed in three machine runs, resulting in a total of 1680 FT-IR spectra. The 

three machine replicates measurements were performed in order to evaluate the 

reproducibility of the FT-IR technique. Typical spectra based on four biological 

replicates of 12 enterococcus strains (EC04, EC09, EC10, EC13, EC14, EC15, 

EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) are provided in Figure 

5.3A. The infrared spectra contain different distinct regions that can be used to 
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characterise bacterial samples. These have been well documented previously and 

include: wavenumbers around 3000-2850 cm
-1 

corresponding to fatty acids, at 1705-

1454 cm
-1 

related to amide I and II regions attributed to peptides and proteins, and 

around 1085-1052 cm
-1

 corresponding to polysaccharides (Winder and Goodacre 

2004; Kim et al., 2005; Naumann et al., 1991; Ellis et al., 2003). 

 

 

Figure 5.3: Typical spectra from (A) FT-IR spectroscopy, (B) Raman spectroscopy and (C) 

MALDI-TOF-MS for the 12 Enterococcus faecium strains (EC04, EC09, EC10, EC13, 

EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214). The spectra from 

each analytical technique were plotted after pre-processing. 
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Discrimination between the bacterial strains based on visual inspection of the spectra 

was difficult because these strains are very similar phenotypically. Therefore, in 

order to develop a classification model to distinguish between bacterial samples 

based on similarities in the spectral data, multivariate analysis was used to reduce the 

high dimensionality of the data (Goodacre et al., 1998). First, PC-DFA was applied 

using 40 principal components (PCs) to the 12 strains (i.e. 12 classes) and 35 isolates 

(i.e. 35 classes) using the pre-processed FT-IR spectra (Figure. 5.4A and 5.5A, 

respectively). Figure 5.4A shows a clear separation between the 12 strains, 

displaying 4 main clusters; Cluster 1 containing only (EC10), Cluster 2 includes 

(EC20 and UNI 156), Cluster 3 (UNI 191, EC04 and EC15) and Cluster 4 formed a 

large group and is a combination of (EC13, EC19, EC14, EC09, UNI 214 and UNI 

178). Each cluster is represented by a different colour in the figure. As described 

above, HCA was undertaken using spectral data in order to simplify the DFA plot 

and to illustrate the related strains. Cluster analysis was based on averaged DFA 

scores (12 classes/strains), using Ward’s linkage as shown in Figure 5.4B. Clusters 

seen in Figure 5.4A are reflected in the HCA dendrogram plot (Figure 5.4B). 

 

 

Figure 5.4: (A) Discriminant function analysis (DFA) scores plot from FT-IR data after pre-

processing, illustrating the relationship between the 12 enterococci. (B) Cluster analysis on 

averaged PC-DFA scores (12 classes/strains) using Ward’s linkage. 
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PC-DFA was subsequently performed for all the 35 isolates and the results are 

provided in Figure 5.5. Clear separation between all 35 isolates was observed despite 

the fact that there were a much higher number of classes to be separated than the 

number of strains. For example, clear separation was observed between the two 

representatives of EC10 (139 and 151). Furthermore, results generated using PFGE 

correlated well with FT-IR spectroscopic data. For example, the isolates UNI 156 

and UNI 178 were seen as unique by both techniques. In addition, the three 

representatives of EC20 (192, 198 and 204) and EC19 (173, 174 and 175) clustered 

together and were not differentiated using FT-IR spectroscopy, which was also 

observed in the PFGE results, (Figure 5.5B). This implies that these isolates with 

each of these groups are highly similar to each other phenotypically and genetically. 

Finally, two more clusters were observed, with one cluster containing all the EC04, 

EC15 and UNI 191 and the remainder of the isolates forming another cluster. 

 

 
 

Figure 5.5: (A) PC-DFA plot from FT-IR data after pre-processing which illustrates the 

relationship between the 35 enterococcus isolates. (B) Hierarchical cluster analysis on 

averaged PC-DFA scores (35 classes/isolates) using Ward’s linkage (right) and PFGE results 

(left). Each strain is represented by the same colour in both PFGE and dendrogram of FT-IR 

data. 
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The PLS-DA classification achieved an average correct classification rate (CCR) of 

89.4% at the strain level and 54.3% at the isolate level, both with an empirical p-

value of <0.001, i.e. not a single case where the null model obtained better results, 

indicating that the predictive accuracies were highly significant. The null 

distributions are provided in Figure S5.2A and B at the two levels.  

 

The confusion matrices of strain and isolate classification are presented in Table 5.2 

and Table S5.1, respectively. Most of the 12 strains showed high prediction 

accuracies, for example EC04, EC10, EC13 and EC20 had accuracies of around 

89.9%, 99.7%, 99.8% and 99.2%, respectively. However, EC14 and UNI 214 had 

lower prediction accuracies of 47.3% and 58.9%, respectively. The confusion matrix 

showed that there was a certain level of overlap between (EC14 and EC09) and (UNI 

214 and EC19).  

Table 5.2: The prediction accuracies of the 12 enterococci strains using FT-IR spectroscopy 

data 

 

 

Furthermore, in-depth analysis of the confusion matrix for the classification of 

isolates (Figure 5.6) showed that classification of unique strains was generally in line 

with PFGE results. In Figure 5.6, high percentage class membership assignments are 

represented by warm colours (e.g. red), indicating agreement between predicted 

classes and known classes. It is also interesting to see that representatives from 

Class 

Known / 
Predicted 

EC04 EC09 EC10 EC13 EC14 EC15 EC19 EC20 
UNI 

156 

UNI 

178 

UNI 

191 

UNI 

214 

EC04 89.9% 0.5% 0.0% 0.0% 0.4% 8.3% 0.1% 0.0% 0.0% 0.0% 0.7% 0.1% 

EC09 0.1% 90.3% 0.0% 1.3% 4.8% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC10 0.0% 0.1% 99.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 

EC13 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC14 0.1% 48.9% 0.0% 1.1% 47.3% 1.0% 1.4% 0.1% 0.0% 0.0% 0.1% 0.0% 

EC15 6.8% 1.4% 0.0% 0.0% 0.5% 91.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 

EC19 1.6% 9.3% 0.0% 0.2% 3.6% 0.0% 83.5% 0.0% 0.0% 0.0% 0.0% 1.8% 

EC20 0.0% 0.1% 0.0% 0.0% 0.0% 0.7% 0.0% 99.2% 0.0% 0.0% 0.0% 0.0% 

UNI 156 0.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 0.9% 98.1% 0.0% 0.0% 0.0% 

UNI 178 0.0% 5.3% 0.0% 0.1% 0.0% 0.0% 0.4% 0.0% 0.0% 93.9% 0.2% 0.0% 

UNI 191 6.5% 0.9% 0.0% 25.2% 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 66.1% 0.1% 

UNI 214 1.9% 13.4% 0.0% 1.0% 0.1% 0.0% 20.4% 0.0% 0.0% 0.0% 4.2% 58.9% 
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strains EC19 and EC20 formed two “squares” of “tiles” on the diagonal line, in 

which the colours were similar to each other. Results from Figure 5.6 suggest that 

the PLS-DA model was not able to differentiate the isolates within EC19 and EC20, 

yet another observation that is consistent with PFGE results. On the other hand, all 

representatives of EC04 and EC09 (160 and 133) were unique in the FT-IR 

spectroscopy profile using the PLS-DA model but not in the PFGE profiles. This is 

most likely due to PFGE providing genetic information (Turabelidze et al., 2000; 

Bannerman et al., 1995) while FT-IR spectroscopy describes phenotypes (Davis and 

Mauer, 2010; Alvarez-Ordóñez et al., 2011). This implies that isolates from EC19 

and EC20 may be highly conserved phenotypically, whereas those from EC04 and 

EC09 are not, and such subtle differences in phenotypes were detected by FT-IR 

spectroscopy. Our observations showed that FT-IR spectroscopy appears to be a very 

promising analytical approach for discrimination of enterococci bacteria at the strain 

and isolate levels. In line with the results presented in this study, work carried out by 

Guibet et al. showed that clear discrimination and classification of enterococci 

strains can be achieved using FT-IR spectroscopy (Guibet et al., 2003). 

 

 

Figure 5.6: PLS-DA trained on 35 classes (i.e. 35 isolates) from FT-IR spectral data. High 

percentage class membership assignments are represented by warm colours (e.g. red) whilst 

the cold colours (e.g. blue) represent low percentage class membership assignments. The 

diagonal “tiles” are much warmer than off-diagonal “tiles”, which indicates agreement 

between predicted classes and known classes. 
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5.4.2 Classification using Raman spectroscopy 

In addition to the FT-IR spectroscopy technique used in this study, Raman 

spectroscopy was used as a complementary technique (Kirschner et al., 2001; van de 

Vossenberg et al., 2013; Ch. Schroder et al., 2015). As expected, the two techniques 

generated different spectra. These two approaches are complementary due to the 

selection rules, whereby infrared causes a change in the net dipole moment in a 

particular functional group, induced by molecular vibrations, whereas Raman causes 

a change in the polarisation of bond within a molecule. Therefore, bonds within a 

molecule are infrared or Raman active with the result being that the two techniques 

can provide complementary (bio) chemical information (Ferraro et al., 2003; 

Goodacre et al., 2002). 

Raman spectra of the 12 Enterococcus faecium strains are shown in Figure 5.3B. 

Raman spectra for these strains appeared almost indistinguishable and no differences 

waere detected on visual inspection. Moreover, some specific peaks which were 

identified in these spectra included: peaks at around 720 cm
-1

, 854 cm
-1

, 1004 cm
-1

, 

1336 cm
-1

, 1451 cm
-1 

and 1663 cm
-1

, which correspond to adenine, tyrosine, 

phenylalanine,  guanine, protein and amide I, respectively (Uzunbajakava et al., 

2003; Huang et al., 2010).  

PC-DFA scores plot of pre-processed Raman spectra for the 12 enterococci at the 

strain level is shown in Figure 5.7A. The figure shows classification results similar 

to those seen with FT-IR spectroscopy data. There was an obvious overlap between 

the two spectroscopic techniques, especially with representatives of EC10. However, 

EC20 overlapped with UNI 156 in FT-IR spectroscopy data, whereas EC20 was 

closer to UNI 178 based on Raman spectroscopy data. These observations can be 

seen in the HCA dendrogram based on Raman data (Figure 5.7B), which was quite 

similar to the HCA results generated from FT-IR data. Looking back at the 

dendrogram in Figure S5.1 based on PFGE data, visual inspection showed that there 

were some similarities between results generated via spectroscopic techniques and 

those based on PFGE; for example, EC04 and EC15 were shown to overlap in both 

sets of results (Figure S5.1). 
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Figure 5.7: PC-DFA plot from Raman data after pre-processing, illustrating the relationship 

between the 12 enterococci. (B) Cluster analysis on averaged DFA scores (12 classes/strains) 

using Ward’s linkage. 

 

As with FT-IR data, Raman spectroscopy data on the 35 isolates were also submitted 

to PC-DFA and HCA (Figure S5.3A and B, respectively). The results suggested that 

Raman spectroscopy was also successful in discriminating the two representatives of 

EC10 (139 and 151), which was also the case using FT-IR analysis (Figure 5.5). 

Furthermore, in order to ensure the classification is robust, the data were analysed 

using a heat map based on PLS-DA (Figure S5.3C). The results suggested that all the 

isolates indicated as unique (UNI) by PFGE were also unique in the PLS-DA model 

generated using Raman spectroscopy data. 

In addition, chemometric-based identification was carried out using PLS-DA at both 

the strain and isolate levels and the predictive accuracies were calculated based on 

1,000 bootstrapping resampling using Raman spectral data. The null distribution was 

obtained (Figure S5.2C and D) at both the strain (12 classes) and isolate levels (35 

classes) resulting in an average correct classification rates (CCR) of 69.3% 

(p<0.001) and 21.1% (p<0.001), respectively. The CCR from FT-IR data was higher 

at both levels compered to Raman data possibly due to the higher reproducibility of 

FT-IR data. The prediction accuracies were also generated at both the strain level 

(Table 5.3) and the isolate level (Table S5.2); these results suggested that Raman 
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spectroscopy can also be used as a robust technique for bacterial discrimination. In-

depth analysis showed that Raman spectroscopy generated around 70% prediction 

accuracy at the strain level which is lower than that of FT-IR spectroscopy (nearly 

90%). This is most likely due to the low concentration of cells used for analysis: the 

infrared interrogation beam used was ca. 1 mm and passes completely through the 

dried bacterial film; while the Raman microscope delivers a highly focussed laser 

beam with an interrogation volume of ~1 pL and therefore measures very few 

bacteria. To overcome this limitation with Raman, bacteria can be analysed directly 

from the agar plates or surface-enhanced Raman spectroscopy (SERS) can be used as 

an alternative technique (Cotton et al., 1991; Nabiev et al., 1994; Jarvis and 

Goodacre, 2008), but this is an area for future study. 

Table 5.3: The prediction accuracies of the 12 enterococci strains using Raman spectroscopy 

data 

 

 

5.4.3 Classification using MALDI-TOF mass spectrometry 

As described in the Materials and Methods section, four biological replicates were 

analysed in four analytical replicates for each bacterial strain, resulting in 560 

MALDI-TOF-MS spectra. The spectra for all 35 enterococci isolates were pre-

processed before data analysis. The typical pre-processed positive ion mode 

MALDI-TOF-MS spectra for all 12 E. faecium strains (EC04, EC09, EC10, EC13, 

Class 

Known / 
Predicted 

EC04 EC09 EC10 EC13 EC14 EC15 EC19 EC20 
UNI 

156 

UNI 

178 

UNI 

191 

UNI 

214 

EC04 71.5% 2.3% 0.6% 2.1% 0.3% 21.5% 1.4% 0.1% 0.0% 0.0% 0.1% 0.0% 

EC09 0.6% 69.3% 0.0% 17.4% 7.4% 0.9% 2.8% 0.9% 0.0% 0.0% 0.1% 0.5% 

EC10 0.1% 7.0% 88.8% 3.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.8% 0.0% 0.0% 

EC13 1.0% 6.9% 0.4% 82.3% 0.5% 0.7% 4.4% 1.2% 2.1% 0.4% 0.0% 0.1% 

EC14 0.2% 77.6% 0.0% 10.0% 7.3% 0.5% 0.6% 3.7% 0.0% 0.0% 0.0% 0.1% 

EC15 33.3% 2.3% 0.0% 4.4% 0.2% 58.5% 0.8% 0.3% 0.0% 0.1% 0.1% 0.0% 

EC19 0.4% 4.9% 0.0% 25.5% 0.0% 0.0% 68.9% 0.0% 0.0% 0.0% 0.2% 0.0% 

EC20 0.5% 3.3% 0.2% 2.4% 0.7% 2.2% 0.2% 90.2% 0.1% 0.1% 0.0% 0.0% 

UNI 156 1.2% 4.1% 0.0% 42.6% 0.1% 0.1% 1.5% 16.1% 34.1% 0.0% 0.0% 0.0% 

UNI 178 4.0% 14.4% 1.3% 14.5% 0.2% 4.7% 10.4% 4.9% 0.0% 45.4% 0.2% 0.0% 

UNI 191 39.1% 11.9% 0.0% 9.8% 4.7% 19.3% 4.1% 5.6% 0.0% 0.1% 5.4% 0.0% 

UNI 214 6.0% 41.7% 0.0% 31.5% 2.1% 0.3% 12.4% 0.0% 0.0% 0.0% 0.1% 5.8% 
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EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) are provided 

in Figure 5.3C. The generated MALDI-TOF-MS spectra were of high quality with 

high signal-to-noise ratios in the acquisition m/z range 1000-18,000 and a high 

number of peaks for each studied strains. There are many factors that can affect 

MALDI-TOF-MS results and some of these can differ from lab to another, such as 

the type of medium used (Lay Jr, 2000; Shu et al., 2012), sample handling, type of 

matrix (Giebel et al., 2010), sample deposition method (Dreisewerd, 2003), solvents 

(Williams et al., 2003), instrument settings (Freiwald and Sauer, 2009; Williams et 

al., 2003) and the type of data analysis chosen (Gromski et al., 2015; Gromski et al., 

2014). These can inadvertently affect MALDI-TOF-MS results and subsequent PC-

DFA and HCA. 

MALDI-TOF-MS spectra are not readily interpretable from enterococci at strain and 

isolate levels, as they are similar phenotypically and MALDI-TOF-MS spectra show 

only two dimensions (m/z × intensity). Therefore, as is the case for the vibrational 

spectroscopy techniques, robust multivariate analysis methods were employed for 

this purpose. The results of PC-DFA using 12 classes (12 strains) in a three-

dimensional plot of DF1 vs DF2 vs DF3 and a two-dimensional plot of DF2 vs DF3 

are shown in Figure 5.8A and B, respectively. Four main clusters were observed in 

the PC-DFA plots; Cluster 1 contains only UNI 178; Cluster 2 contains EC20; 

Cluster 3 consists of EC04, EC10, EC15 and UNI 191 and Cluster 4 formed a large 

group of (EC13, EC19, EC14, EC09, UNI 214 and UNI 156). Results from the HCA 

dendrogram (Figure 5.8C) confirmed the separation between the 12 classes (i.e. 12 

strains). This indicated that UNI 178 is phenotypically very different from the other 

strains based on MALDI-TOF-MS data. 

PC-DFA was also applied to data from the 35 isolates; the results showed that 

isolates 160 and 219 (both from EC09) were very different from the other isolates 

and dominated the plot (data not shown). The HCA dendrogram plot of data on the 

35 isolates showed that these two strains also dominated the corresponding 

dendrogram (Figure S5.4B). Therefore, another PC-DFA was carried out with the 

two dominating strains removed and the HCA results are shown in Figure S5.4D. It 

appears that all representatives of EC20 (204, 198 and 192) overlap with each other, 

which was also observed in FT-IR and Raman spectroscopy data, with the exception 

that isolates 192 slightly differed from the other two representatives (204 and 198) in 
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the HCA dendrogram when using Raman data (Figure S5.3B). However, analysis 

using PFGE typing showed that isolates 192 and 198 clustered more closely with 

each other than with 204. 

 

 

Figure 5.8: (A) 3-D PC-DFA plot from MALDI-TOF-MS data after pre-processing, 

illustrating the relationship between the 12 enterococci strains. (B) DFA plot for DF2 vs 

DF3. (C) Hierarchical cluster analysis on averaged DFA scores from MALDI-TOF-MS data 

of the 12 strains from enterococci bacteria using Ward’s linkage. 

 

Furthermore, PLS-DA model applied to MALDI-TOF-MS data achieved an 

averaged CCR of 78.2% (p<0.001) and 35.7% (p<0.001) for 12 (strains) and 35 

(isolates) classes, respectively. When PLS-DA was undertaken with 33 isolates (with 

isolates 160 and 219 removed), the average CCR increased to 53.95% (p<0.001). 

The prediction accuracies for the 12 classes (strains) are shown in Table 5.4 and 

A
B

C
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those for the 35 classes (isolates) are shown in Table S5.3. Table 5.4 shows that 

discrimination between most of the strains (12 calsses) using MALDI-TOF-MS data 

achieved high correct classification rates, except for EC14 and UNI 191, which had 

rather low classification rates.   

Table 5.4: The prediction accuracies of the 12 enterococci strains using MALDI-TOF-MS 

data 

 

Confusion matrices for the 35 classes and the 33 classes (when 160 and 219 isolates 

were removed) are shown in Figure S5.4A and C, respectively. From these matrices, 

it can be seen that all the isolates identified by the reference laboratory as unique 

(UNI), which included isolates 156, 178, 191 and 214, were also classified as unique 

based on MALDI-TOF-MS data using PLS-DA modelling. Moreover, EC20 and 

EC19 were assigned the same classification in PFGE typing, and this was in 

agreement with MALDI-TOF-MS, FT-IR spectroscopy and Raman spectroscopy 

data. In addition, based on MALDI-TOF-MS data (Figure S5.4A and C), 

representatives of EC13 (152, 154 and 155) belonged to the same cluster, and 

isolates 177 from EC13 was significantly different from the remaining EC13 

isolates; this was also observed in FT-IR and PFGE data. Looking back at 

Figure S5.4C, it can be seen that all the strains from EC04 were unique in MALDI-

TOF-MS and FT-IR profiles when using PLS-DA modelling. 

 

Class 

Known / 

Predicted 

EC04 EC09 EC10 EC13 EC14 EC15 EC19 EC20 
UNI 

156 

UNI 

178 

UNI 

191 

UNI 

214 

EC04 93.8% 1.0% 0.1% 0.4% 0.3% 3.8% 0.1% 0.1% 0.0% 0.0% 0.3% 0.0% 

EC09 1.0% 71.5% 0.1% 11.0% 13.7% 0.3% 0.5% 0.2% 0.2% 0.0% 0.1% 1.5% 

EC10 0.4% 3.7% 83.1% 4.4% 0.1% 2.6% 1.6% 2.8% 0.0% 0.0% 1.0% 0.3% 

EC13 0.3% 2.5% 0.0% 95.8% 0.7% 0.6% 0.0% 0.0% 0.1% 0.0% 0.1% 0.0% 

EC14 0.0% 58.7% 0.0% 15.0% 25.8% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC15 7.8% 2.7% 0.9% 0.8% 1.3% 77.0% 0.8% 0.4% 0.2% 0.0% 8.0% 0.1% 

EC19 0.0% 0.4% 0.0% 1.8% 0.0% 0.0% 97.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC20 0.1% 0.2% 0.1% 1.1% 0.1% 0.4% 0.0% 97.6% 0.5% 0.0% 0.0% 0.0% 

UNI 156 0.0% 10.8% 0.0% 18.7% 0.5% 0.1% 0.0% 12.1% 56.1% 0.0% 0.0% 1.7% 

UNI 178 0.6% 4.4% 0.0% 8.2% 0.0% 3.1% 0.4% 0.0% 0.0% 83.2% 0.0% 0.0% 

UNI 191 51.6% 0.4% 0.7% 0.0% 0.2% 29.1% 4.7% 0.0% 0.0% 0.0% 13.2% 0.0% 

UNI 214 0.6% 20.6% 0.8% 13.9% 1.4% 0.9% 1.1% 0.0% 2.8% 0.0% 0.0% 57.9% 
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5.4.4 Procrustes distance of three analytical techniques 

Analytical techniques such as FT-IR spectroscopy, Raman spectroscopy and 

MALDI-TOF-MS are currently used in clinical research studies worldwide and 

many reports have been published showing advantages of using such techniques 

(Beekes et al., 2007; De Carolis et al., 2012; Risch et al., 2010; Carbonnelle et al., 

2011). Kirschner et al. (2001) demonstrated accurate identification and classification 

of 18 strains from 6 different species belonging to enterococci using vibrational 

spectroscopic techniques in combination with chemometrics. This study suggested 

that FT-IR and Raman spectroscopy can offer potential alternatives to the 

conventional typing tests due to their speed and ease of use. In another previous 

study it was also shown that 59 clinical bacterial strains associated with urinary tract 

infections (UTIs) could be identified using FT-IR and Raman spectroscopy 

(Goodacre et al., 1998). As an alternative to vibrational spectroscopic techniques, 

MALDI-TOF-MS is a relatively new technique which has shown very promising 

results in agreement with methodologies carried out in microbiological laboratories, 

and therefore has been used for the identification and classification of bacterial 

species (Benagli et al., 2011; Sauer and Kliem, 2010; Bizzini and Greub, 2010). 

 

Previous studies have generally focused on the application of just one or two 

analytical techniques for the classification of Enterococcus spp. bacteria. However, 

to generate complementary data and more comprehensive analysis, this study 

combines three different analytical techniques – FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS – to analyse whole bacterial cells. Successful 

classification was demonstrated at the strain (i.e. 12 classes) and isolate (i.e. 35 

classes) level based on data generated by the three analytical platforms. Using 

Procrustes analysis, similarity between the patterns detected by these three platforms. 

In order to assess the overall information content in the spectra that has been 

revealed by the cluster analysis from the scores plots, Procrustes analysis was 

employed to assess the overall similarity between the patterns detected by these three 

platforms. The results are presented in terms of Procrustes distance (Table 5.5A and 

B), where the Procrustes distance varies from 0 to 1; the lower the distance, the 

higher the similarity between the results. The comparisons were made using 

averaged PC-DFA scores. For each dataset, there were two sets of PC-DFA scores, 
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one for the strain level (12 classes) and the other for isolate classification (35 

classes). For each set of PC-DFA scores, the scores were then averaged according to 

their strain label and isolate label to give two sets of averaged PC-DFA scores. 

 

Table 5.5: Shows the similarity between three different data sets using Procrustes distance  

 

(A) PC-DFA on strain level 

Averaging on ST 

level 

FT-IR 

(IS) 

FT-IR 

(ST) 

Raman 

(IS) 

Raman 

(ST) 

MALDI 

(IS) 

MALDI 

(ST) 

FT-IR (IS) -           

FT-IR (ST) 0.0858 -         

Raman (IS) 0.2125 0.2933 -       

Raman (ST) 0.2314 0.3187 0.1502 -     

MALDI (IS) 0.8602 0.889 0.899 0.8202 -   

MALDI (ST) 0.9125 0.8846 0.9149 0.8988 0.1812 - 
 

(B) PC-DFA on isolate level 

Averaging on IS 

level 

FT-IR 

(IS) 

FT-IR 

(ST) 

Raman 

(IS) 

Raman 

(ST) 

MALDI 

(IS) 

MALDI 

(ST) 

FT-IR (IS) -           

FT-IR (ST) 0.1085 -         

Raman (IS) 0.2112 0.2446 -       

Raman (ST) 0.2411 0.3168 0.1132 -     

MALDI (IS) 0.8593 0.8719 0.8196 0.8001 -   

MALDI (ST) 0.8975 0.8608 0.8841 0.8703 0.0681 - 
(ST) and (IS) indicate the PC-DFA calculated at the strain (12 classes) and isolate (35 

classes) levels, respectively.  

The findings in Table 5.5 can be summarised as follows: 

 

(i) The patterns in the PC-DFA scores at the isolate level and strain level were 

highly similar to each other for all the three analytical platforms. The 

Procrustes distances varied from 0.0681 to 0.1812. This suggested that the 

variation originated from different strain is the main factor in PC-DFA, i.e. 

the differences between different strains were significantly higher than those 

between different isolates. 

(ii) The two vibrational spectroscopic techniques (FT-IR and Raman) generated 

highly similar results both at the strain and isolate classification levels, with 

the corresponding Procrustes distances varying from 0.2112 to 0.3187. 

(iii) However, the results generated by MALDI-TOF-MS were significantly 

different from those generated by the two spectroscopic techniques, and the 
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corresponding Procrustes distances varied were all above 0.8. Such 

differences can be mainly attributed to data on isolate UNI 178, which 

appeared to be very different to other isolates in the MALDI-TOF-MS 

dataset.  

 

Table 5.6 shows a summative comparison of the 4 main clusters identified based on 

the three analytical techniques using PC-DFA plots of the 12 strains of E. faecium 

(12 classes). It can be seen from this table that despite the large Procrustes distances 

between data generated by MALDI-TOF-MS and those generated by the other two 

techniques, the main identified clusters patterns observed in all three datasets were 

still largely consistent. 

 
Table 5.6: Shows the 4 main clusters that were observed from the three different analytical 

techniques based on the PC-DFA plots of 12 classes (12 strains) 

 

 

 

 

 

 

 

 

 

 
Cluster 1 Cluster 2 Cluster 3 

 

Cluster 4 

 

FT-IR EC10 EC20 UNI 156 EC04/EC15/UNI 191 
EC13/EC19/EC14/

EC09/UNI 214 

UNI 

178 

Raman EC10 EC20 UNI 178 EC04/EC15/UNI 191 

EC13/EC19/EC14/

EC09/UNI 214/ 

UNI 156 
 

MALDI UNI 178 EC20 
EC04/EC15/UNI 

191 
EC10 

EC13/EC19/EC14/

EC09/UNI 214/ 

UNI 156 
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5.5 Concluding and remarks  

The results obtained from the two vibrational spectroscopic techniques demonstrated 

that good discrimination can be achieved at both the strain and isolate levels and the 

detected patterns from the two techniques were highly similar. In addition, bacterial 

classification results from MALDI-TOF-MS were generally consistent with these 

vibrational spectroscopic techniques. However, UNI 178 was detected to be very 

different in MALDI-TOF-MS data, which differed from the other two analytical 

techniques employed in this study. 

The results obtained using these spectroscopic phenotyping approaches were mostly 

consistent with previous results obtained from experiments carried out using the 

genotypic classification method of PFGE. Some of the results differed when directly 

comparing our analytical approach with results from the molecular approach and 

these differences may be due to comparing phenotypic differences from whole-

organism fingerprinting with genotypic differences using PFGE.  

In conclusion, in this work, we have presented an assessment of several analytical 

phenotyping methods as a complementary approach to currently used molecular 

methods. All the described methods provided excellent identification, which is in 

general agreement with results from genotypic baseline methods, and therefore, 

allowed high level of discrimination down to the strain level with sufficient 

resolution at the sub-strain level. We believe that these physicochemical techniques 

have excellent potential to become high-throughput point-of-care screening tools for 

rapid and reproducible classification and identification.  
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5.7 Supplementary information   

 

Figure S 5.1: Dendrogram generated from pulsed field gel electrophoresis (PFGE) of the 35 

enterococci isolates. The top strain A13960776 is strain 178; the others follow in the 

sequence: 214, 192, 198, 204, 160, 233, 211, 205, 133, 194, 203, 219, 174, 175, 173, 139, 

151, 154, 155, 149, 152, 144, 185, 177, 167, 191, 190, 223, 224, 179, 193, 170, 109, and 

156.  
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Figure S 5.2: The predictive accuracies expressed as correct classification rates (CCRs) 

generated from FT-IR spectroscopy data (A-B), Raman spectroscopy data (C-D) and 

MALDI-TOF-MS data (E-F) based on 1,000 bootstrapping re-sampling (blue bars). The null 

distribution (red bars) was obtained by permuting the order of the labels and conducting the 

same PLS-DA classification procedure. Not a single case out of 1,000 bootstrap cases had a 

model using permuted labels that obtained a higher CCR than the one using the known 

labels (A, C and E) at the strain level (12 classes) based on FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS data; the mean CCRs = 89.4%, 69.3% and 78.2%, 

respectively. At the isolate level (35 classes), based on FT-IR spectroscopy, Raman 

spectroscopy and MALDI-TOF-MS data, the mean CCRs were 54.3%, 21.1%, and 35.7%, 

respectively. 
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Figure S 5.3: (A) PC-DFA plot of Raman spectroscopy data after pre-processing illusting the 

relationship between the 35 isolates. (B) Hierarchical cluster analysis on averaged PC-DFA 

scores (35 classes), using the Ward’s linkage algorithm. (C) PLS-DA trained on 35 classes 

(i.e. 35 isolates) generated from Raman spectroscopy data. 
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Figure S 5.4: (A) PLS-DA trained based on MALDI-TOF-MS data for the 35 strains (i.e. 35 

classes). (B) Hierarchical cluster analysis based on averaged DFA scores of 35 isolates (i.e. 

35 classes) using Ward’s linkage. (C) PLS-DA results trained based on MALDI-TOF-MS 

data for 33 isolates (i.e. 33 classes) where species 160 and 219 were removed. (D) 

Hierarchical cluster analysis based on averaged mean DFA scores of the 33 isolates (i.e. 33 

classes) using Ward’s linkage. 
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Table S 5.1: The prediction accuracies of the 35 enterococci isolates using a PLS-DA model generated from FT-IR spectroscopy data 

 

The different colours represent the strain level identification 
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Table S 5.2: The prediction accuracies of the 35 enterococci isolates using a PLS-DA model generated from Raman spectroscopy data 

 

  The different colours represent the strain level identification 
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Table S 5.3: The prediction accuracies of the 35 enterococci isolates using a PLS-DA model generated from MALDI-TOF-MS data 

 

The different colours represent the strain level identification 
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6. Conclusion and Future work   

6.1 General discussion  

Rapid discrimination and classification of bacteria is vital for the diagnosis and 

timely treatment of bacterial infections in human and veterinary medicine (Sauer and 

Kliem, 2010; Peeling et al., 2006). However, bacterial discrimination has presented 

an analytical challenge, which has motivated scientists to investigate different 

approaches continually to identify and discriminate microorganisms rapidly and 

reliably (Wilkins and Lay, 2005). Traditional methods ranging from serological and 

physiological assessment to modern genomic methods (Freiwald and Sauer, 2009; 

Nester, 2001) have gained importance in a wide range of fields in addition to clinical 

applications. These methods are based on the analysis of morphological 

characteristics and molecular features; however, these tend to be laborious and time-

consuming (Luzzatto-Knaan et al., 2015; Wilkins and Lay, 2005; Nomura, 2015). 

Moreover, the applications of such methods are usually limited; for example, 

methods such as enzyme-linked immunosorbent assay (ELISA) are normally used 

for specific types of bacteria whereas the Analytical Profile Index (API) test is 

usually applied for a small range of bacteria (Freiwald and Sauer, 2009).  

Relatively modern technological approaches, such as mass spectrometry and 

vibrational spectroscopy, have emerged as essential tools for the analysis of bacterial 

samples, providing rapid and significantly reliable results based on the measurement 

of a range of chemical compounds within a given bacterial sample. Mass 

spectrometry (MS) is a popular example of modern analytical techniques, which has 

been used routinely to characterise bacteria, generating rich information at both the 

species and strain levels (Siuzdak, 1996; Luzzatto-Knaan et al., 2015; de Hoffmann 

and Stroobant 2007; Claydon et al., 1996). Table 6.1 lists the advantages and 

disadvantages of different methods used to characterise bacteria while Figure 6.1 

provides a schematic illustration of the processes of such methods. 
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Table 6.1: Some of the most commonly used methods for the characterisation of different 

types of bacteria  

Information combined from (Sauer et al., 2008; Lequin, 2005; Herschleb et al., 2007; Durmaz et al., 2009; 

Gan and Patel, 2013; Garibyan and Avashia, 2013; Sauer and Kliem, 2010).  

 

Methods Advantages Disadvantages 

 

PCR 

 

 

 Very sensitive 

 Precise 

 Accurate 

 DNA sequence to be analysed 

must have been previously 

identified 

 Time-consuming 

 Expensive equipment 

 Small  amount of contamination 

within samples interferes with 

experiments 

ELISA 

 Specific 

 Sensitive 

 Reliable 

 Need specific antibody 

 Laborious 

 

PFGE 

 Generates stable and 

reproducible bands 

 Detection of large DNA 

molecules 

 Time-consuming 

 High cost per sample 

FT-IR spectroscopy 

 Easy sample preparation 

 Simple to use 

 Sensitive technique 

 FT-IR spectra provide general 

information about bacteria 

 Rapid analysis 

 High-throughput screening of 

multiple samples 

 May need expertise in 

chemometric analysis of data 

 Water band is very strong. 

 Different conditions (e.g. 

growth time and culture 

medium) can cause variations 

in spectra 

Raman spectroscopy 

 Provides information on 

biological structures 

 Water band is very weak 

 Rapid 

 Able to analyse small 

quantities of samples 

 Raman effect is weak 

 Interference with fluorescence. 

 

MALDI-TOF-MS 

 Rapid and specific detection of 

whole bacteria 

 Ability to analyse high 

molecular mass compounds 

(e.g. proteins) using a wide 

mass range 

 Gentle ionisation technique 

 Sub-picomole sensitivity 

 Wide array of matrices 

 MALDI matrix cluster ions 

obscure low m/z species (<600) 

leading matrix interference with 

small molecules 

 Homogeneity from spot to spot 

is variable 

LC-MS 

 Separates and identifies any 

type of compounds present in 

bacteria 

 Reproducible 

 Quantitative 

 Need solvents for extraction. 

 Time-consuming 

 Generates complex data 

 Adduct formation 
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Figure 6.1: Illustration of various methods used for bacterial characterisation including: 

traditional methods, mass spectrometry and vibrational spectroscopy. 

 

The main motivation in this research work was to identify useful modern analytical 

techniques that can be applied to discriminate bacteria at both species and strain 

levels. In general, a comprehensive analytical approach to characterise bacteria 

should ideally fulfil the following criteria: provide a standard protocol for bacterial 

characterisation, detect uncharacterised bacteria and match them to closely related 

species, detect bacterial samples at high speed and sensitivity with high throughput 

analysis, rely on cost-effective methodology and have the ability to process the data 

to a high standard using chemometrics (Sauer and Kliem, 2010). 

The introduction of modern biomolecular analytical tools that were initially based on 

mass spectrometry and spectroscopic technologies provided an excellent balance for 

the characterisation of bacteria samples (Krásný et al., 2013; Helm et al., 1991; 

Mariey et al., 2001; Naumann et al., 1991). Interestingly, some of these analytical 

techniques, such as MALDI-TOF-MS and LC-MS, generate both genotypic and 

phenotypic information that can provide a complete set of valuable data (Sauer, 

2007; Wilkins and Lay, 2005; Claydon et al., 1996; Cobo, 2013; Goodacre et al., 

1999; Fenn et al., 1989; El-Aneed et al., 2009). At present, it is evident from many 

research studies, including this research, that MALDI-TOF-MS has gained greater 
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popularity for the analysis of bacterial samples. A few years after MALDI-TOF-MS 

was introduced in the field of bacterial classification, it has become a standard 

analytical tool in most clinical microbiology laboratories as it provides a rapid, 

accurate and cost-effective method for successful analysis and characterisation of 

microorganisms (Welker and Moore, 2011; Claydon et al., 1996; de Hoffmann and 

Stroobant, 2007).  

One of the greatest advantages of using MALDI-TOF-MS is its ability to analyse 

proteins and lipids in complex mixtures, in the presence of salts and buffers, 

facilitating the analysis of non-purified extracts of biomolecules (i.e. proteins and 

lipids) and whole (intact) cell samples (Saenz et al., 1999; Schumann and Maier, 

2014). Different factors can affect the quality of MALDI-TOF-MS experiments 

including: sample preparation, sample handling, the choice of matrix, matrix 

deposition methods and cell lysis methods. Additionally, instrument performance 

settings, such as the mass range and choice of mode (linear or reflector), can also 

have a direct effect on the MALDI spectra generated. Different culture conditions 

and solvent extraction processes can affect MALDI-TOF mass spectra (Liu et al., 

2007; Giebel et al., 2010; Kafka et al., 2011; Saenz et al., 1999; Valentine et al., 

2005).  

Choosing the matrix to match the analyte is a key element in MALDI-TOF-MS 

analysis. The most commonly used matrices are sinapinic acid (SA), ferulic acid 

(FA), alpha-cyano-4-hydroxycinnamic acid (CHCA), and 2,5-dihydroxybenzoic acid 

(DHB) (Marvin et al., 2003; Giebel et al., 2010; Saenz et al., 1999; Schumann and 

Maier, 2014; Šedo et al., 2011; Lartigue, 2013). Optimising the protocol for 

MALDI-TOF-MS sample preparation for bacterial analysis is vital to generate a 

sufficient number of clear and identifiable peaks with a high signal-to-noise (S/N) 

ratio that enable reliable discrimination of bacteria. 

The main challenge faced in this thesis was to develop a robust MALDI-TOF-MS 

data collection system to discriminate between different types of bacteria based on 

analysis of different biomolecular compounds (such as proteins and lipids mentioned 

above), in combination with multivariate analysis. This system resulted in the rapid 

analysis of bacterial samples, with analysis time of approximately 2 min per sample, 

with accurate bacterial discrimination compared to other commonly used techniques, 
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such as PCR. This research was carried out on a number of bacterial samples 

including Bacillus spp. and enterococci. 

In Chapter 2 of this thesis, a number of MALDI-TOF-MS experimental conditions 

were optimised including various matrices and matrix deposition methods. This was 

carried out to develop a standard experimental procedure for the analysis of a protein 

mixture, followed by applying these optimum conditions to the analysis of proteins 

from intact bacterial samples from 34 strains and 7 different species belonging to 

Bacillus and Brevibacillus genera. The results obtained indicated that the strains 

were successfully classified using MALDI-TOF-MS with correct classification rate 

of 90% for the 7 species. This indicates that MALDI TOF-MS can be a powerful, 

rapid and accurate analytical tool for analysing and classifying bacteria, with 

minimum sample preparation. Therefore, the remainder of the studies carried out in 

this thesis relied on the use of MALDI-TOF-MS in addition to other analytical tools.  

In Chapter 3, lipids were the main focus of analysis by MALDI-TOF-MS. This 

powerful analytical tool provided promising and reliable results for analysing a lipid 

mixture containing 5 different lipids. This work involved the optimisation of 

experimental conditions for detecting lipids within mixtures using MALDI-TOF-

MS. A fractional factorial design (FFD) was applied to the data generated in this 

study in order to significantly reduce the number of potential experiments from 8064 

to just 720, which in turn reduced the workload significantly. In addition, using FFD, 

it was possible to explore multiple MALDI-TOF-MS parameters and optimise the 

system for the detection of specific analytes of interest. A number of different 

conditions were investigated in relation to analysis of the lipid mixture via MALDI-

TOF-MS including: matrices, matrix preparations, matrix additives, additive 

concentrations and matrix deposition methods. The significance of each variable was 

investigated using the FFD exercise, which aided in the discovery of exactly which 

combinations enabled the detection of the five lipid peaks successfully. The work in 

this chapter showed that the choice of matrix and the presence of matrix additives 

were the key factors in producing high quality spectra. Moreover, ATT and DHB 

were shown to be the best matrices that can be used to analyse lipid samples using 

MALDI-TOF-MS.            



Chapter Six 

238 
 

In Chapter 4, the results above were used to direct MALDI-TOF-MS for the analysis 

of 7 of different species featuring 33 strains from Bacillus and Brevibacillus genera 

based on lipid extracts, which confirmed that this technique can be used to identify 

extracted lipids (putatively) and classify bacterial samples based on lipid analysis. 

These findings contradicted some review articles where MALDI-TOF-MS was 

reported to have less successful outcomes with low molecular mass biomolecules, 

due to the interference between matrix peaks and lipid peaks. In this chapter, LC-MS 

(as a gold standard tool) was used to evaluate and confirm the results obtained using 

MALDI-TOF-MS. Confirmatory results from these two powerful analytical 

techniques indicated that the classification of Bacillus and Brevibacillus species 

based on extracted lipids was possible. Furthermore, Procrustes distance analysis 

was employed and suggested that classification of Bacillus and Brevibacillus 

bacteria based on these two analytical techniques was highly similar with a 

Procrustes distance of 0.0699 (p<0.001). Moreover, the results obtained based on 

protein and lipid analysis (Chapters 2 and 4, respectively) were also very similar 

(Procrustes distance of 0.1006, p<0.001). This strongly suggests that MALDI-TOF-

MS could be used reliably as a routine clinical tool to classify and identify bacteria 

based on the analysis of lipids or proteins and that both biomolecular species yield a 

similar level of differentiation.  

Following the successful development of MALDI-TOF-MS for bacterial 

classification, clinical samples from Belfast Hospital (35 isolates from 12 

Enterococcus faecium strains) were analysed using three different modern analytical 

techniques (Chapter 5 of this thesis). Enterococcus faecium was chosen as a clinical 

sample as it frequently causes infections in babies in the Neonatal Unit of this 

hospital. In addition to MALDI-TOF-MS, FT-IR and Raman spectroscopic 

techniques were used to analyse these clinical relevant samples. Again, MALDI-

TOF-MS provided promising discrimination results at the strain level providing a 

clear distinction between the 12 classes of bacteria. In addition, FT-IR spectroscopy 

generated high quality and promising results in the discrimination of E. faecium 

strains and isolates. Raman spectroscopy was also able to discriminate the 35 isolates 

and provided relatively similar results to FT-IR spectroscopy. However, the correct 

classification rates (CCRs) using Raman spectroscopy was low compared to FT-IR 

spectroscopy.  
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The characteristics of the various analytical techniques that were used to analyse 

bacteria in this research are summarised in Table 6.2.  

 

Table 6.2: Characteristics of MALDI-TOF-MS, LC-MS, FT-IR spectroscopy and Raman 

spectroscopy relevant for analysing bacterial samples* 

Analytical Techniques 

                     Characteristics 
MALDI-MS LC-MS FT-IR Raman 

Cost running per-sample 
Medium High Low Low 

Automation 
Yes Yes Yes No

#
 

Sample preparation Minimum/Moderate 
(depending on biomolecule) 

Moderate Minimum Minimum 

Amount of the samples 
2 μL 10 μL 20 μL 3 μL 

Analysis time (spectral 

acquisition)  
2 min 20 min 1 min 1 min 

Reproducibility Medium Good Good Poor 

Sensitivity 
High High High Medium 

Destructive of sample 
Yes Yes No No 

Size of generated dataset 
Average Large Small Small 

Complexity of data 

analysis 
Average Complex Simple Average 

*This table was generated from work carried out on each individual analytical technique in 

this thesis. 
# 
Ideally, Raman spectroscopy can be used in automated mode for running samples; however, 

in this study, non--automated mode was used as the stage tended to move and come out of 

focus during analysis.  

Modern analytical techniques enable accurate and rapid analysis of a wide range of 

biological and clinical samples such as bacteria. However, it is vital that analytical 

techniques are continuously optimised and developed to meet the increasing demand 

to analyse bacterial samples, in particular those related to disease and infection. 
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Many analytical techniques have been used individually for the analysis of bacterial 

samples. However, from the work carried out in this thesis and as seen in Table 6.2, 

the use of two or more analytical techniques can provide complementary 

information, thus offering more in-depth insights into bacterial characterisation and 

classification. The main characteristics of each analytical technique described in this 

thesis are highlighted in Table 6.2. Despite the few limitations MALDI-TOF-MS 

has, this analytical technique offers excellent and promising results for analysing 

bacterial samples. Though it is recommended that the findings from MALDI-TOF-

MS analysis are confirmed using other useful analytical techniques such as FT-IR 

spectroscopy and LC-MS. Our research complemented previous studies as it showed 

that in contrast to other analytical techniques, Raman spectroscopy provides 

relatively lower quality data. 

The main hindrance to the application of MALDI-TOF-MS as a technique for the 

analysis of different types of bacteria at both species and strain levels is 

reproducibility. This is mainly due to the large number of factors on which the 

quality and the reproducibility of MALDI-TOF-MS spectra depend; namely, the 

matrix, matrix additives, matrix solvents, deposition methods, concentration of cells 

and spectral variation in sample handling. Furthermore, the absence of standard 

protocols for the analysis of different types of bacteria is another contributing factor. 

In this thesis, the optimisation of some of these parameters was pursued with the aim 

of contributing to building up standard protocol.  

From the findings of this thesis, it can be speculated that MALD-MS analysis can be 

used for bacterial typing and classification exercises with relevance to applications in 

the clinic. This may be of significance to diagnostic and therapeutic applications in 

addition to other uses in taxonomical studies. However, using FT-IR and Raman 

spectroscopic methods may be hindered by the relatively lower accuracy of 

identification (especially for Raman spectroscopy) and more importantly the lack of 

available reference databases of spectroscopic data. Further, lipid analyses using 

MALDI-MS is of particular interest as this type of application can be of clinical 

relevance with such advantages as higher resolution of analysis than proteins. 

Understanding the existence and distribution of lipid species in normal biological 

samples compared to trends associated with disease states are key to further 
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characterisation of such diseases as cancer and cardiovascular health problems and 

development of effective therapies. 

Figure 6.2 summarises the results of this thesis (Chapters 2, 3, 4 and 5) on bacterial 

discrimination using various analytical techniques: MALDI-TOF-MS, LC-MS, FT-

IR and Raman spectroscopies.  
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Figure 6.2: A summary of the results of this thesis (Chapters 2, 3, 4 and 5) on bacterial discrimination 

using various analytical techniques including; MALDI-TOF-MS, LC-MS, FT-IR and Raman 

spectroscopies. 
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6.2 Future work 

Microbiology has developed over the past decades from traditionally classifying 

microorganisms by morphology to more comprehensive genotypic, phenotypic and 

biochemical characterisations. Arguably, the findings described in this study have 

the potential to contribute to the field of microbiological classification and clinical 

diagnosis of bacteria. As an outlook for the future, the work described in this thesis 

can be extended to analysing different types of bacteria of clinical relevance and can 

be useful as a high throughput approach for the analysis of a large number of 

bacterial samples.  

Moreover, the Enterococcus faecium bacteria examined in this thesis can also be 

analysed based on lipid extracts using MALDI-TOF-MS to investigate the usefulness 

of lipid extracts versus whole-cell based approaches.  

Tandem mass spectrometry, such as MALDI-TOF-MS/MS and LC-MS/MS, can also 

be used for bacterial analysis as these can provide more detailed structural 

information and more features on which to base bacterial classification and 

identification using database searching.  

In addition, as the proteomic and lipidomic fields gain more importance in the 

analysis of different types of bacteria, a ‘universal library’ of bacterial classification 

features can be built based on MALDI-TOF-MS data for the two genera investigated 

in this thesis, and could also be extended to other clinically relevant bacteria. 

 6.3 Outlook  

The results generated from the work carried out in this thesis indicate that modern 

analytical techniques are extremely useful tools for providing in-depth information to 

classify and discriminate different types of bacteria successfully down to the isolate, 

species and strain levels. This work focused on analysing bacterial samples using 

MALDI-TOF-MS, which was found to be a powerful tool, and contributed to the 

optimisation of the experimental and analytical procedures relevant to this technique 

which can be of benefit to further studies. The work undertaken in this study strongly 

suggests that this analytical technique has huge potential in many biological and 

clinical applications. 
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