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Abstract 

This thesis, submitted to The University of Manchester for the degree of Doctor of 

Philosophy, covers a range of topics related to the research in two-dimensional 

materials and van der Waals heterostructures under the title: ‘Ballistic Josephson 

junctions and vertical tunnelling transistors based on graphene heterostructures.’  

In this thesis, we study the transport properties of two different types of graphene 

devices. The first one is ballistic graphene Josephson junction and the second one is 

graphene-hexagonal boron nitride-graphene vertical tunnelling transistor.  

We report on ballistic graphene Josephson junctions with contacts made from type II 

superconductor, niobium. We observe pronounced Fabry-Pérot oscillations not only 

in the normal-state resistance but also in the critical current. The proximity effect is 

mostly suppressed in magnetic fields of B<10 mT, showing a conventional 

Fraunhofer pattern. However, some proximity superconductivity survives in fields 

higher than 1 T which corresponds to more than 1000 flux quanta threading into the 

junction. We attribute such high-field Josephson effect to individual Andreev bound 

states that persist near the graphene edges.  

By studying the Fraunhofer pattern of graphene Josephson junctions, we reconstruct 

the spatial supercurrent distribution in graphene. The edge-dominated transport is 

observed only in the case of an energy gap opening in bilayer graphene and 

graphene/hexagonal boron nitride superlattices, which points to its non-trivial 

topological origin. Owing to the band structure topology of gapped graphene, the 

valley-polarized edge modes can extend above the disorders and propagate 

efficiently for micrometres.  

By probing the density of states of graphene using graphene tunnelling transistors, 

we demonstrate a stacking transition in bilayer graphene from incommensurate 

twisted stacking state to a commensurate AB stacking state by a macroscopic 

graphene self-rotation. This structural transition is driven by van der Waals energy of 

two graphene layers and is thermally activated by unpinning the microscopic 

chemical adsorbents which are then removed by the self-cleaning of graphene.  

We observe a series of sharp resonant features in the differential conductance of 

graphene-hexagonal boron nitride tunnelling transistors over a wide range of bias 

voltages. We attribute them to electron tunnelling assisted by the emission of 

phonons. The phonon energies corresponding to the resonances are compared with 

the lattice dispersion curves of graphene-hexagonal boron nitride heterostructure and 

are close to peaks in the single phonon density of states. 

 

24 October 2016 

Mengjian Zhu 
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Chapter 1  

Introduction 

Superconductivity is one of the most spectacular phenomena in condensed matter 

physics. The discovery of new materials is always accompanied by a profound 

question: is this material a superconductor and whether the superconductivity order 

could be of an unusual kind.   

Since graphene was first exfoliated and characterized by Geim and Novoselov
1
 in 

2004 at the University of Manchester, the electronic properties of graphene have 

been extensively studied over the past ten years
2,3

. There have been a number of 

ground-breaking experimental observations such as massless Dirac fermions
4,5

, half 

integral quantum Hall effect
4,5

, Klein tunnelling
6-8

, negative refractive index
9,10

, 

fractional quantum Hall effect
11,12

 and Hofstadter’s butterfly
13-15

. However, graphene 

holds one important but not yet experimentally observed prediction: the intrinsic 

superconductivity
16,17

, even at extremely high carrier densities
18

. 

Although not an intrinsic superconductor, graphene still can sustain 

superconductivity due to the proximity effect by bringing graphene into a contact 

with a superconductor. This is a direct result of the wave-like nature of the electrons. 

The wavefunction of Cooper pairs in the superconductor must be continuous even at 

the graphene-superconductor interface. Proximity induced superconductivity in 

graphene originates from a number of  phase-coherent electron-hole states supported 

by a process called Andreev reflection
19

. When two superconducting electrodes are 

connected by a piece of graphene, a zero-voltage dissipationless supercurrent can 

flow through graphene, forming a superconductor-graphene-superconductor junction, 

namely a graphene Josephson junction. Since the first observation of bipolar 

supercurrents in graphene by Heersche
20

 in 2007, the diffusive graphene Josephson 

junctions have been intensively investigated by experiments
21-31

. However, to date it 

is still quite challenging to fabricate high quality ballistic graphene Josephson 

junctions
32-37

. The low transmission probability and high disorder are believed to 

have prevented the emergence or observation of new physics. For instance, the chiral 

nature of the charge carriers (electrons and holes) in graphene is predicted to give 

rise to specular Andreev reflection
38,39

, which is possible only if the superconducting 



26 
 

energy gap (usually below a few meV for conventional superconducting metals or 

alloys) larger than the Fermi level in graphene. In addition, there is an interesting 

argument about injecting supercurrents into a quantum Hall regime
36,40-42

. To check 

this scenario, it requires graphene to enter the quantum Hall regime before the 

applied magnetic field breaks the superconductivity in the electrodes. 

Here we demonstrate our advanced approach to ballistic graphene Josephson 

junctions by utilising superconducting edge contacts to high quality hexagonal boron 

nitride-graphene-hexagonal boron nitride heterostructures. We show that the 

propagation of charge carriers in the graphene Josephson junctions is ballistic. 

Furthermore, as niobium is a type-II superconductor with a relatively high critical 

field Hc2 ~ 4T, it is possible to study the interplay between proximity induced 

superconductivity and the quantum Hall states in ballistic graphene. 

The gapless nature in the band structure of monolayer graphene is protected by its 

crystal lattice symmetry
3,43

. An energy gap can be opened in graphene by breaking 

the lattice symmetry. In bilayer graphene, it is possible to open a gap up to 0.2 eV by 

applying an electric field between two graphene layers
44-46

. However, such gap rarely 

led to a highly insulating state as expected for same quality semiconductors even at 

low temperatures. We try to understand this long-standing puzzle by studying the 

spatial current flow in gapped graphene systems including bilayer graphene and 

graphene/hexagonal boron nitride superlattices.  

Lacking of a band gap in monolayer graphene and intrinsic bilayer graphene results 

in low ON/OFF ratios of graphene based transistors, which limits their potential 

logical applications
47

. An energy gap can be opened in graphene by using graphene 

nanoribbons
48,49

 or chemical derivatives
50

. However, it also has been proven difficult 

to achieve high ON/OFF ratios in graphene nanoribbons and chemical derivatives 

without degrading graphene’s electronic quality
51

. It is tempting to consider bilayer 

graphene with a tunable energy gap as a promising candidate for higher ON/OFF 

ratio transistors – but there is a long-standing argument about the topologically 

protected edge states in gapped bilayer graphene
52

, which shunts the highly 

insulating bulk.  

Recently, scientists at the University of Manchester have built an alternative device 

architecture to achieve high ON/OFF ratio in graphene – the field-effect tunnelling 
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transistors based on quantum tunnelling from two graphene electrodes through a thin 

insulating barrier
51

. The use of hexagonal boron nitride as a tunnel barrier is 

particularly attractive owing to its large band gap (~6 eV), atomically flat surface and 

high breakdown field
53,54

. The tunnelling current is determined by the height and 

thickness of the potential barrier and the electronic density of states of graphene 

electrodes. 

This thesis is organized as follows: 

In Chapter 2, we give an overview of the background of this thesis. We start with a 

quick introduction of mesoscopic physics. Then we introduce the electronic 

properties of graphene including the band structures and principles of quantum Hall 

effect of monolayer and bilayer graphene, respectively. Hexagonal boron nitride is 

mentioned in this chapter as an excellent substrate for high quality graphene devices. 

We introduce the Josephson effect and Andreev reflection with a special focus on 

specular Andreev reflection in graphene. At last, we briefly describe the concept of 

quantum mechanical tunnelling. 

In Chapter 3, we demonstrate our efforts to prepare high quality ballistic graphene 

Josephson junctions and graphene tunnelling transistors. We use the recently 

developed flake stacking technique, ‘dry’ transfer and van der Waals pick-up 

techniques, to obtain contamination-free graphene-hexagonal boron nitride 

heterostructures. Then we quickly describe the measurement set-up and device 

configuration for electrical transport measurements in graphene Josephson junctions 

and tunnelling transistors, respectively. 

In Chapter 4, we present graphene Josephson junctions with a mean free path of 

several micrometers, low contact resistance and large supercurrents. Such devices 

exhibit pronounced Fabry-Pérot oscillations not only in the normal-state resistance 

but also in the critical current. The proximity effect is mostly suppressed in magnetic 

fields below 10 mT, showing a conventional Fraunhofer pattern. Unexpectedly, some 

proximity superconductivity survives even in fields higher than 1 T. Superconducting 

states randomly appear and disappear as a function of magnetic field and carrier 

concentration. We attribute the high-field Josephson effect to mesoscopic Andreev 

states that persist near the graphene edges.  
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In Chapter 5, we investigate the spatial distributions of Josephson supercurrents in 

gapped bilayer graphene and graphene/hexagonal boron nitride superlattices. We 

compare transport measurements between the Hall bar and the Corbino geometries in 

the normal-state of bilayer graphene. By gradually opening the gap in bilayer 

graphene, we find that the supercurrent at the charge neutrality point changes from 

uniform to such that it propagates along narrow stripes near the graphene edges. 

Similar stripes are found in graphene/hexagonal boron nitride superlattices. These 

observations are corroborated by using the ‘edgeless’ Corbino geometry in which 

case resistivity at the charge neutrality point increases exponentially with increasing 

the energy gap, as expected for a conventional semiconductor. This is in contrast to 

the Hall bar geometry where resistivity measured under similar conditions saturates 

to values of only about a few resistance quanta. 

In Chapter 6, we demonstrate a stacking transition of bilayer graphene from an 

incommensurate twisted stacking state to a commensurate AB stacking state by a 

macroscopic graphene self-rotation. This structural transition is driven by van der 

Waals interaction energy of two graphene layers and is thermally activated by 

unpinning the chemical adsorbents which are then removed by the self-cleaning of 

graphene. The structural transition is detected by using graphene tunnelling 

transistors and Raman spectroscopy mapping of twisted bilayer graphene before and 

after thermal annealing. 

In Chapter 7, we present our observation of a series of sharp resonant features in the 

differential conductance of graphene tunnelling transistors over a wide range of bias 

voltages between 10 and 200 mV. We attribute them to electron tunnelling assisted 

by the emission of phonons of well-defined energies. The phonon energies 

corresponding to the resonances are compared with the lattice dispersion curves of 

graphene-hexagonal boron nitride heterostructures and are close to peaks in the 

single phonon density of states. 

In Chapter 8, we make a short summary based on our experimental results in this 

thesis. Then we speculate further works including supercurrents in the quantum Hall 

regime of graphene and using graphene-hexagonal boron nitride resonant tunnelling 

diodes as high-frequency oscillators. 
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Chapter 2  

Overview 

2.1 Mesoscopic physics 

2.1.1 Characteristic length scales 

Our typical graphene devices have dimensions from hundreds of nanometres to tens 

of micrometres. For systems of this size, quantum effects and fluctuations cannot be 

ignored and cannot be treated as classical conductors because the dimensionality of 

the devices are small enough to be comparable to or even less than the characteristic 

lengths such as phase coherence length and mean free path of the electrons. On the 

other hand, they are also too large for the full quantum mechanical treatment as they 

consist of thousands of carbon atoms. This intermediate size range between 

microscopic and macroscopic scale is called mesoscopic
55

, where some classical 

laws can be applied safely and the quantum mechanics must be used as well. 

Mesoscopic systems demonstrate a number of intriguing physics. For instance, 

conductance quantization has been studied in quantum point contacts, whereas weak 

localization has been investigated in the diffusive transport regime.  

The Fermi wavelength 

𝜆𝐹 = 2𝜋/𝑘𝐹                                                   (2.1) 

is nothing but the de Broglie wavelength of electrons near the Fermi level, where the 

Fermi wave vector 𝑘𝐹 is related to the momentum by 𝑝 = ℏ𝑘𝐹. The Fermi energy is 

𝐸𝐹 = ℏ2𝑘𝐹
2/2𝑚∗ for massive non-relativistic particles and 𝐸𝐹 = ℏ𝑘𝐹𝑣𝐹  for massless 

Dirac fermions in graphene, where ℏ  the reduced Planck constant,  𝑣𝐹  the Fermi 

velocity and  𝑚∗ the effective mass. 

The mean free path 𝑙𝑚 is the average length that an electron travels before being 

scattered by a scattering centre. Because only electrons near the Fermi level 

contribute to the electrical transport, we have  

𝑙𝑚 = 𝑣𝐹𝜏,                                                    (2.2) 
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where 𝜏 is the relaxation time. In mesoscopic systems, if the size of the device L is 

larger than 𝑙𝑚 the electrical transport is diffusive. If 𝑙𝑚 is larger than L the transport 

is in the ballistic regime and the electrons experience zero or few scattering events 

inside of the conductor. For ballistic transport, the device boundary plays an 

important role for scattering instead of the impurities.   

The phase coherence length 𝑙𝜑  is the length scale over which an electron can 

maintain its phase coherence. 𝑙𝜑 is bounded by for instance the inelastic scattering 

length. Elastic scattering does not modify the phase coherence so that quantum 

effects of electrons interference can be observed in both ballistic and diffusive 

systems. For the ballistic regime, 

𝑙𝜑 = 𝑣𝐹𝜏𝜑,                                                    (2.3) 

where 𝜏𝜑 is the phase relaxation time.  

For the diffusive regime, 

 𝑙𝜑 = √𝐷𝜏𝜑,                                                   (2.4) 

where D is the diffusion constant given by 𝐷 = 𝑣𝐹
2𝜏/2 = 𝑣𝐹𝑙𝑚/2  for two-

dimensional systems. 

The coherence length 𝑙𝜑  defines the length scale of the interference of the 

wavefunction of a single electron state. At finite temperatures, thermal averaging 

occurs over an energy scale of 𝑘𝐵𝑇. Electrons with an energy difference of 𝑘𝐵𝑇 will 

lose their phase coherence after a time interval of the order of ℏ/𝑘𝐵𝑇 . This 

corresponds to a length scale of 

 𝑙𝑇 = √𝐷ℏ/𝑘𝐵𝑇,                                               (2.5) 

which is known as the thermal length or the Thouless length. For a system of finite 

size L, we can define an energy scale named the Thouless energy 𝐸𝑇ℎ = 𝐷ℏ/𝐿2. Two 

electron states with close energies are correlated unless the energy difference is 

larger than 𝐸𝑇ℎ and then they can be considered as two independent states. If 𝑙𝑇 > 𝑙𝜑, 

the dominant dephasing properties are defined by 𝑙𝜑. On the other hand, if 𝑙𝜑 > 𝑙𝑇, 

the primary dephasing is due to thermal fluctuations.  
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2.1.2 Ballistic transport and Landauer formula 

For an ideal conductor, there is no scattering inside the conductor and therefore the 

resistance should be zero. However, the resistance from the interface between the 

conductor and the conducting pads is non-zero due to the mismatch of modes of the 

conductor and the contact pads. 

In a ballistic conductor, the electrons entering the conductor from one side will 

transport to the other side without any scattering. For each band, the net current from 

one side to the other side when one applies a voltage difference V across the 

conductor is 

𝐼 = (2𝑒/ℎ) ∫ 𝑑𝐸[𝑓(𝐸 − 𝑒𝑉) − 𝑓(𝐸)]
∞

−∞
,                            (2.6) 

where 𝑓(𝐸) = 1/(𝑒(𝐸−𝜇)/𝑘𝐵𝑇 + 1) is the Fermi-Dirac distribution function (here, 𝜇 

is the chemical potential).  

At zero temperature T = 0, 

𝐼 = (2𝑒2/ℎ)𝑉.                                                 (2.7) 

Therefore, the conductance of a ballistic conductor that has M sub-bands (one-

dimensional channels) at zero temperature is 

𝐺 = 𝐼/𝑉 = 𝑀(2𝑒2/ℎ),                                          (2.8) 

which means the conductance will be a multiple of 2𝑒2/ℎ and independent of the 

device length L.  

In realistic experiments of systems with multiple sub-bands, there is a certain 

probability R that an electron entering the conductor will be reflected and a 

probability T that it will be transmitted. These two probabilities obey a simple 

relation that 𝑅 + 𝑇 = 1. Here, we assume the transmission probability is the same for 

all the sub-bands. Thus, the conductance of a ballistic system can be written as 

𝐺 = 𝑀𝑇(2𝑒2/ℎ).                                               (2.9) 

This formula is known as the two-terminal Landauer formula
56

, which takes the 

transmission probability T at two contacts into account. 
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2.1.3 Conductance quantization 

Two pieces of high mobility two-dimensional electron gas (2DEG) can be separated 

by a ballistic quantum point contact (QPC) which is a short and narrow constriction 

with a width W of the order of the Fermi wavelength but smaller than the electron 

mean free path: 𝑊~ 𝜆𝐹 < 𝑙𝑚. This condition can be achieved by depleting the 2DEG 

using split-gates, as depicted in Fig. 2.1(a). Such a QPC constitutes a potential well 

for the electrons in the 2DEG, resulting in a one-dimensional (1D) system when only 

one sub-band of this potential well is filled. Such a sub-band is referred to as a mode. 

The number of modes for a square potential well is 

𝑁 = 𝑖𝑛𝑡[2𝑊/𝜆𝐹].                                           (2.10) 

The conductance through a QPC quantized in units of 2𝑒2/ℎ ≈ 13kΩ was observed 

by two independent groups in 1988
57,58

, as shown in Fig. 2.1(b). The quantum 

conductance per transmission channel is  𝑒2/ℎ  and the factor 2 comes from the spin 

degeneracy of the electron. Each mode therefore contributes 2𝑒2/ℎ  to the 

conductance so that the total conductance through a QPC is 

𝐺 = 𝑁(2𝑒2/ℎ).                                             (2.11) 

The ballistic nature assures that backscattering processes do not affect the 

conductance through a QPC. With increasing width of the constriction, the energy 

separation between the modes becomes smaller and the quantum effect smears. In 

this case the conductance is referred as the Sharvin conductance limit
59

 for a ballistic 

2D conductor: 

𝐺 = (2𝑊/𝜆𝐹)(2𝑒2/ℎ).                                       (2.12) 
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Fig. 2.1 Quantum point contact and conductance quantization 

(a) Schematics of a QPC from a top view (top) and the sub-band energy spacing (bottom). 

Electrical contacts and the 2DEG are represented by yellow and grey areas, respectively. 

Two blue zones on top of the 2DEG demonstrate the split-gates. Black arrow shows only a 

single mode is allowed to propagate through the constriction. (b) Quantized conductance of 

𝑮 = 𝑵(𝟐𝒆𝟐/𝒉) through a QPC. Fig. 2.1(b) is adapted from ref.
57

. 

2.1.4 Weak localization 

In a diffusive regime with 𝑙𝑚 < 𝐿 < 𝑙𝜑 , an electron moving in a conductor 

experiences elastic scattering as 𝑙𝑚 < 𝐿 but still maintains its phase coherence due to 

𝐿 < 𝑙𝜑 . There are many interesting phenomena in this regime. One important 

example is weak localization (WL). There are many paths for electrons to go 

between two positions r and r’ within a conductor. In addition, there is possibility for 

an electron to return to the same position r, as depicted in Fig. 2.2(a). The probability 

of an electron propagating from position r to position r’ during a time scale of t is 

𝑃(𝑟, 𝑟′, 𝑡) = |∑ 𝐴𝑖𝑖 |2 = ∑ |𝐴𝑖|
2

𝑖 + ∑ 𝐴𝑖𝐴𝑗
∗

𝑖≠𝑗 ,                       (2.13) 

where 𝐴𝑖 is the probability for each single trajectory i between r and r’. The first 

term corresponds to the classical diffusion probability, while the second term 

describes the quantum interference contribution.  If positions r and r’ are different, 

then the phase difference is irrelevant over all trajectories. However, if positions r 

and r’ are the same, 𝑃(𝑟, 𝑟′, 𝑡) will describe all closed loop trajectories. At zero 

magnetic field, the time-reversal invariance implies that 𝐴+, 𝐴− (for clockwise and 
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counter clockwise propagating, respectively) are the same 𝐴+ = 𝐴− = 𝐴. Thus, the 

probability of returning to position r during a time t is 

𝑃(𝑟, 𝑟, 𝑡) = |𝐴+ + 𝐴−|2 = 4|𝐴|2.                               (2.14) 

The interference between these paths leads to enhanced resistance, which is known 

as weak localization. 

 

Fig. 2.2 Weak localization and negative magneto-resistance 

(a) An electron travels from position r and returns to position r. For each path, there is a 

reverse path, as shown in blue and red arrows. (b) The weak localization effect is partially 

destroyed if a magnetic field is applied perpendicular to the 2DEG. As a result, a negative 

magneto-resistance appears with a peak centered at zero magnetic field.  

WL can be supressed by applying a small perpendicular magnetic field B. A 

magnetic field breaks the time reversal symmetry of such paths 𝐴+ ≠ 𝐴−, and causes 

the two reverse paths to diverge, hence reducing the quantum interference. When a 

magnetic field is applied, the phase difference acquired between the clockwise and 

counter clockwise path is 

𝜑 = 2𝜋Φ/Φ0,                                              (2.15) 

where Φ is the magnetic flux threading into the enclosed area and Φ0 = ℎ/2𝑒 the 

magnetic flux quantum. By estimating the magnetic field at which the WL is reduced 

by a factor of two: 𝐵𝑐~ℎ/(𝑒𝑙𝜑
2 ), one can thus determine the phase coherence length 

𝑙𝜑 . This can be done by measuring the amplitude of the WL correction and the 

critical magnetic field at which this correction has decayed by a factor of 2
60

. 
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2.2 Electronic properties of graphene  

2.2.1 Monolayer graphene 

Monolayer graphene (MLG) consists of a single planar honeycomb net of carbon 

atoms. The hexagonal crystal lattice is schematically shown in Fig. 2.3(a), where 

each carbon atom has three nearest neighbours in the plane and four valence 

electrons. The Bravais lattice is triangular, with the lattice vectors: 

                         �⃗�1,2 = (3𝑎/2, ±√3𝑎/2),                                       (2.16) 

where 𝑎 ≈ 1.42 Å is the nearest-neighbour distance.  

 

Fig. 2.3 Crystal lattice and reciprocal lattice of monolayer graphene 

(a) Honeycomb lattice of MLG. Sublattice A and B are shown as blue and red, respectively. 

(b) Reciprocal lattice vectors and several special high-symmetry points in the first Brillouin 

zone of MLG.  

The honeycomb lattice of graphene contains two atoms per elementary cell. They 

belong to two sublattices, A and B. The three nearest-neighbour vectors are   

𝛿1,2 = (𝑎/2, ±√3𝑎/2), 𝛿3 = (−𝑎,   0).                         (2.17) 

The reciprocal lattice is also triangular, with the lattice vectors: 

�⃗⃗�1,2 = (2𝜋/3𝑎, ±2√3𝜋/3𝑎).                                 (2.18) 

Fig. 2.3(b) describes the first Brillouin zone and several special high-symmetry 

points, 𝐾,  𝐾′ and 𝑀, with the wave vectors: 
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�⃗⃗⃗� = (2𝜋/3𝑎, 2𝜋/3√3𝑎), �⃗⃗⃗�′ = (2𝜋/3𝑎, −2𝜋/3√3𝑎), �⃗⃗⃗� = (2𝜋/3𝑎, 0).   (2.19) 

The basic electronic structure of graphene was first calculated by Wallace
61

 in 1947 

based on the above honeycomb lattice. He pointed out that the spacing of the planes 

of graphite, 3.37 Å, is so large compared with the nearest-neighbour distance 1.42 Å 

so that useful calculations of graphite can neglect interaction between different 

planes. Wallace also pointed out that of the four valence electrons three are involved 

in the sp
2
 trigonal bonding and played no role in the conduction bands of interest. 

One needs to consider only bands arising from one 2pz electron per atom. Essentially, 

Wallace used the tight-binding theory to treat the band of energies formed by the 2pz 

electrons of carbon in graphene. In the nearest-neighbour approximation, there are no 

hopping processes within the sublattice A and B; hopping occurs only between them. 

For arbitrary wave vector �⃗⃗�, from the tight-binding approximation we can get the 

energy dispersion of graphene: 

𝐸±(�⃗⃗�) = ±𝛾√3 + 2 cos(√3𝑘𝑦𝑎) + 4 cos(√3𝑘𝑦𝑎/2) cos(3𝑘𝑥𝑎/2),      (2.20) 

where 𝛾=2.8 eV is the nearest-neighbour hopping energy (hopping between different 

sublattices A and B). 

After taking the next-nearest-neighbour hopping parameter 𝛾′ (hopping in the same 

sublattice), one can find the energies instead of Eq. (2.20), 

             𝐸±(�⃗⃗�) = ±𝛾√3 + 2 cos(√3𝑘𝑦𝑎) + 4 cos(√3𝑘𝑦𝑎/2) cos(3𝑘𝑥𝑎/2)     

 +𝛾′(2 cos(√3𝑘𝑦𝑎) + 4 cos(√3𝑘𝑦𝑎/2) cos(3𝑘𝑥𝑎/2)).          (2.21) 

It is clear from Eq. (2.21) that the energy spectrum is symmetric around the zero 

energy if 𝛾′ = 0 . The finite 𝛾′  breaks the electron-hole symmetry, shifting the 

conical point from 𝐸 = 0   to 𝐸 = −3𝛾′ and hence the 𝜋  and 𝜋∗  bands become 

asymmetric. However, it will not change the behavior of the Hamiltonian near the 

conical points. Fig. 2.4 shows the full band structure of graphene with a zoomed in 

image of the band structure close to one of the conical points (the K or 𝐾′ point in 

the Brillouin zone, as shown in Fig. 2.3(b)). This linear dispersion can be obtained by 
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expanding the full energy band structure in Eq. (2.20) close to the conical points 𝐾 

(or 𝐾′):  

 𝐸±(𝑞) = ±𝑣𝐹|𝑞|,                                             (2.22) 

where q is the momentum to the conical points and 𝑣𝐹 is the Fermi velocity, with a 

value of 𝑣𝐹 ≈ 1.0 ×10
6
 m/s. The result was first obtained by Wallace

61
. 

 

Fig. 2.4 The electronic energy spectrum of monolayer graphene 

The calculated energy spectrum of MLG from the tight binding model, showing a linear 

dispersion at the low energy scale. Fig. 2.4 is adapted from ref.
3
. 

As shown in Fig. 2.4, graphene exhibits a linear low-energy dispersion with the 

conduction band and the valence band touching at the conical points. For undoped 

graphene, the valence band is completely filled and the conduction band is empty.  

These conical 𝐾  and  𝐾′  points are known as Dirac points. In the nearby energy 

regions the following linear dispersion relation for electron (e) and hole (h) states is 

found: 

𝐸𝑒,ℎ = ±ℏ𝑣𝐹|𝑘|,                                             (2.23) 

where ℏ the reduced Planck constant. It is very important to mention here that the 

gapless state with the Dirac point is symmetry protected
43

. The evidence is based on 

the consideration of two symmetry operations: time reversal symmetry and inversion 

symmetry. In principle, a perturbation that is invariant under time reversal and 

inversion symmetry can shift the Dirac point, but cannot open the band gap. If the 
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sublattices A and B are no longer equivalent, then the inversion symmetry is broken, 

the mass term naturally appears, and the gap opens.   

Because of its 2D nature, the carrier density n in graphene is relatively low and can 

be easily tuned by electrostatic gating
1,2

. We fabricate graphene field-effect devices 

on a silicon wafer with silicon oxide layer (SiO2/Si). Applying a back gate voltage to 

the conducting Si substrate allows opposite charged carriers to accumulation at the 

graphene-SiO2 interface. Thus, the Fermi level in graphene can be tuned into the 

conduction band (electron, n-type doping) or the valence band (hole, p-type doping). 

At the Dirac point, the carrier density in graphene is close to zero and the electronic 

density of states (DoS) almost vanishes, resulting in a large resistivity peak, as shown 

in Fig. 2.5(b). However, it is experimentally difficult to explore the physics in the 

vicinity of the Dirac point due to the existing electron-hole puddles, especially for 

low quality graphene on silicon wafers. By using commercial standard Si/SiO2 

wafers, the achievable carrier density in graphene is of the order of 10
12 

cm
-2

, which 

corresponds to a change of the Fermi level 𝐸𝐹 = ±ℏ𝑣𝐹√𝜋|𝑛|~±0.3 eV relative to the 

Dirac point. 

 

Fig. 2.5 Ambipolar electric field effect in monolayer graphene device 

(a) Optical microscopy image of a graphene Hall bar device on top of a silicon wafer with 

290nm SiO2. (b) Measured resistivity of graphene as a function of applied gate voltage at 

10K. The insets show the low-energy spectrum of holes (left), the Dirac point (middle), and 

electrons (right).  
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2.2.2 Bilayer graphene 

Following the same mechanical exfoliation technique for producing MLG, one can 

also obtain different layers of graphene. Bilayer graphene (BLG) is especially 

interesting because the integral quantum Hall effect shows anomalies, different both 

from MLG and from conventional 2DEGs
62,63

. Furthermore, BLG exhibits a tunable 

gap up to a few hundred meV, which makes it potentially interesting for realistic 

applications
44-46

. 

The crystal lattice structure of BLG is schematically shown in Fig. 2.6(a). The same 

as for three-dimensional graphite, the second layer is rotated by 60
o 

relative to the 

first layer, which is known as AB stacking or Bernal stacking. Thus, the sublattice A 

in one layer sits exactly on top of the other layer. 

 

Fig. 2.6 Crystal lattice and reciprocal lattice of bilayer graphene 

(a) The crystal structure of BLG with different hopping parameters. (b) The reciprocal lattice 

of BLG and several special high-symmetry points in the first Brillouin zone. 

Apart from the nearest-neighbour hopping parameter 𝛾0 = 𝛾 ≈2.8eV in MLG, a 

substantial hopping between two sublattices A in two layers is expected as a result of 

the overlapping of the out-of-plane 𝜋  orbitals, denoted by the hopping parameter 

𝛾1 ≈0.4eV. The energy spectrum of BLG is shown in Fig. 2.7(a). The conduction 

and valence band touch at the point K and K’.  Near these two points, 

𝐸1,2(𝑘) ≈ ±ℏ2𝑘2/(2𝑚∗),                                     (2.24) 

where 𝑚∗ = |𝛾1|/(2𝑣𝐹
2) ≈0.03𝑚𝑒  is the effective mass (𝑚𝑒  is the mass of a free 

electron)
64

. From the band structure, we can see that BLG is also a gapless 
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semiconductor but with a parabolic-like band touching, which indicates the charge 

carriers near the Dirac point in BLG are massive Dirac fermions instead of massless 

in the monolayer case. Two other energy branches 𝐸3,4(𝑘) are separated by a gap of 

2𝛾1 ≈ 0.8 eV, which are irrelevant for the low-energy physics of graphene we 

discuss in this thesis. 

 

Fig. 2.7 Calculated band structure of bilayer graphene 

(a) Without any bias the conduction and valence bands of BLG meet at the K points, similar 

to MLG but the dispersion relation in BLG is now parabolic instead of linear as in MLG. 

Two higher energy bands separated by an energy band gap of ~0.8eV are also shown. (b) A 

band gap is opened in BLG by applying a perpendicular bias to the two graphene layers. The 

‘Mexican hat’ dispersion is also visible. Fig. 2.7 is adapted from ref.
43

 

Note that the above discussions are based on an intrinsic bilayer system without any 

potential bias between the two graphene layers. The equivalence of two layers, 

namely the inversion symmetry of BLG, can be broken by applying a bias voltage V 

perpendicular to the graphene layers. The broken inversion symmetry gives rise to 

the band structure as shown in Fig. 2.7(b), and to the opening of a gap in the energy 

spectrum. For small momentum and 𝑉 ≪ 𝛾, in the vicinity of K (or 𝐾′) point , the 

energy spectrum has the so called ‘Mexican hat’ dispersion
43

: 

𝐸(𝑘) = ±(𝑉/2 − 𝑉ℏ2𝑣𝐹
2𝑘2/𝛾1

2 + ℏ4𝑣𝐹
4𝑘4/𝛾1

2𝑉),                  (2.25) 

where we assume that ℏ𝑣𝐹𝑘 ≪ 𝑉 ≪ 𝛾1. Eq. (2.25) results in an energy maximum at 

k=0 and two energy minimum at 𝑘 = 𝑉/√2ℏ𝑣𝐹, as shown in Fig. 2.7(b). The band 

gap opening in BLG has been experimentally confirmed by electrical transport
45

 

and infrared microspectroscopy
46

. Furthermore, the size of gap in BLG is tunable 

by adjusting the amplitude of the bias between two graphene layers
46

.  
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The opportunity to open a tunable gap makes BLG very interesting for potential 

applications, for example the realization of graphene based field-effect transistors 

(FET) with high ON/OFF ratios
47

. 

 

Fig. 2.8 Band gap opening in a dual-gated bilayer graphene device 

(a) Optical micrograph of a BLG device (left). Schematics of the cross-sectional side view 

of BLG device (middle). Illustration showing gate voltage inducing top (𝐷𝑡) and bottom 

(𝐷𝑏) electrical displacement fields (right). (b) The band structure of pristine (left) and gated 

(right) BLG. In the latter case, a band gap ∆ is opened in BLG. (c) Band gap dependence on 

the electrical displacement field.  Fig. 2.8 is adapted from ref.
46

. 
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2.2.3 Quantum Hall effect in graphene 

The quantum Hall effect (QHE) is a fascinating quantum mechanical phenomenon 

that occurs in high mobility 2DEG systems. When the electrons in a 2DEG are 

subjected to strong perpendicular magnetic fields and low temperatures, its Hall 

conductance 𝜎𝑥𝑦 undergoes certain transitions and becomes a quantized value: 

𝜎𝑥𝑦 = 𝜈𝑒2/ℎ,                                               (2.26) 

where e the elementary charge and h the Planck’s constant. The pre-factor 𝜈  is 

known as the filling factor, which can take on either integer (𝜈  =1, 2, 3…) or 

fractional values (𝜈 =1/3, 2/5, 3/7…). Depending on whether 𝜈 is an integer or a 

fraction, the QHE is referred to the integer QHE (IQHE) or fractional QHE (FQHE), 

respectively. In this section, we limit our discussion to the IQHE. 

The QHE was first discovered by K. von Klitzing in the 1980s, working at the high 

magnetic field laboratory in Grenoble with silicon-based metal-oxide-semiconductor 

field-effect transistors (MOSFETs)
65

. After that, most QHE experiments were 

performed on high quality semiconductor heterostructures, particularly on gallium 

arsenide/aluminium gallium arsenide (GaAs/AlGaAs). Graphene is the first real 2D 

material whose electrons behave as massless Dirac fermions, as opposed to massive 

Schrödinger fermions in conventional semiconductors. Thus, the QHE in graphene 

has become one of the most intense research topics in the last ten years
4,5,11-15,62,66,67

.  

Let us consider a 2DEG under a perpendicular magnetic field B, as illustrated in Fig. 

2.9(a). The energy spectrum:  

𝐸𝑛 = ℏ𝜔𝑐(𝑛 + 1/2), 𝑛 = 0, 1, 2, 3 …                             (2.27) 

describes the discrete energy levels of non-relativistic Schrödinger fermions in a 

magnetic field, where 𝜔𝑐 = 𝑒𝐵/𝑚∗  is the cyclotron frequency determined by the 

field B and the effective mass 𝑚∗. Such discrete energy levels are known as Landau 

levels
68

. As shown by Eq. (2.27), for non-relativistic fermions the energy of Landau 

level is linear with magnetic field B and there is no zero energy state (𝐸𝑛 =
1

2
ℏ𝜔𝑐 

when n=0). However, these two properties of Landau levels are significantly 

different for massless Dirac fermions in MLG graphene, which will be shown in the 

following. 



43 
 

 

Fig. 2.9 Quantum Hall effect 

(a) Schematics of a 2DEG device of Hall bar geometry with four-terminal measurement 

configuration under a perpendicular magnetic field B. (b) Conducting states along the edges 

and localized states in the bulk. (c) Landau levels as a function of distance along width 

direction from one edge to the other. The confining potential at the edges causes the Landau 

levels to rise up in energies. (d) Typical signatures of the QHE. Each plateau in the Hall 

resistance (𝑅𝐻) is accompanied by a vanishing longitudinal resistance (𝑅𝑥𝑥). The dashed line 

indicates the classical Hall resistance, which is linear to increased magnetic field. The 

numbers label the plateaus. The integers denote the IQHE and fractions indicate the FQHE. 

Fig. 2.9(d) is adapted from ref.
69

. 
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In a quantum Hall system there is an important property known as the degeneracy, 

which represents how many electrons can squeeze into a Landau level. If one takes 

spin and valley degeneracies of the electrons into account, the number of states that 

each Landau level can hold is 𝑔𝑠𝑔𝑣𝑛𝐵 , where 𝑛𝐵 = 𝑒𝐵/ℎ  implies the number of 

possible states for the momentum in the x-direction 𝑝𝑥 . Another important index 

describing the number of filled Landau levels is called the filling factor, which is 

defined by a dimensionless quantity 𝜈 = 𝑛𝑒/𝑛𝐵 (𝑛𝑒 is the carrier concentration).  

One assumption often made in the description of Landau levels is that the sample 

size is infinite. However, a real sample has finite size and, therefore, the electrons are 

subjected to a confining potential at the sample edges, which causes the energy of the 

Landau levels to rise, see in Fig. 2.9(c). Thus, we can divide a quantum hall system 

into two parts, one for the bulk and the other for the edge.  

Due to existing of disorders in the bulk region which induces a spatially-vary 

potential, the states in a Landau level in the bulk are not completely degenerate, 

resulting in broadened Landau levels. If the Fermi level is much lower than a half-

filled Landau level, the electrons in the bulk are localized and form islands across the 

device with a gapped region in between, as depicted in Fig. 2.9(b). As a result, the 

bulk becomes insulting since the localized electrons cannot propagate from one lead 

to the other. If the Fermi level is gradually increased to close to a half-filled Landau 

level, the formed islands becomes bigger and start to connect to others. As a result, 

the bulk becomes conductive since now there are conducting pathways for electrons 

to transport through the sample. The above processes occur repeatedly when the 

Fermi level is tuned form one Landau level to the next. 

Under perpendicular B, the electrons along one edge propagate in a skipping orbit 

fashion, as shown in Fig. 2.9(b). This prevents electrons moving along the edge from 

back scattering if the Fermi level is much less than a half-filled Landau level. 

Therefore, the longitudinal resistance (𝑅𝑥𝑥) is zero because there is no voltage drop 

along the direction of applied current. As the Fermi level is increased to close to a 

half-filled Landau level, it is possible for electrons, propagating along one edge, to 

back scatter as they can now travel to the opposite side through the conductive bulk. 

As a result, 𝑅𝑥𝑥 becomes finite. The oscillation phenomenon in 𝑅𝑥𝑥 under magnetic 

field is known as the Shubnikov-de-Haas oscillations. 
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Now we turn to the behavior of 𝑅𝑥𝑦. When the Fermi energy is tuned between two 

Landau levels, the bulk becomes insulating and electrons propagate only along the 

edge. Since the backscattering is supressed, electron entering edge states from the 

left contact and the right contact will maintain their electrochemical potential at 𝜇𝐿 

and 𝜇𝑅, respectively, as shown in Fig. 2.9(b). According to the Landauer-Buttiker 

formalism
56

, electrons moving in a 1D edge channel will have a quantized 

conductance of 𝑀𝑔𝑠𝑔𝑣𝑒2/ℎ, where M is the number of the modes that equals to the 

number of Landau levels below the Fermi level. Hence, the net current from the left 

contact to the right contact is 

𝐼 = 𝑀𝑔𝑠𝑔𝑣(𝑒2/ℎ)(𝜇𝐿 − 𝜇𝑅)/𝑒 = 𝜈(𝑒2/ℎ)𝑉𝑥𝑦                     (2.28) 

and the Hall conductance 𝜎𝑥𝑦 now can be written as 

𝜎𝑥𝑦 = 𝐼/𝑉𝑥𝑦 = 𝜈𝑒2/ℎ.                                        (2.29) 

The quantized plateaus in Hall conductance require the presence of disorder in the 

bulk. As the Fermi level is increased away from a completely filled Landau level, the 

injected electrons will enter the bulk and will be localized in the bulk. Therefore, 

they do not contribute to the conductance. As a result, the Hall conductance stays 

constant as the Fermi level is tuned between two fully occupied Landau levels and 

shows up as a plateau in the quantum Hall regime. As the Fermi level is further 

increased to reach the centre of the Landau level (half-filled Landau level), electrons 

in the bulk can now propagate across the sample and can be backscattered along the 

edges. As a result, the value of Hall conductance will increase and then approach a 

new plateau. Typical signatures of the QHE (including IQHE and FQHE) are 

represented in Fig. 2.9(d). 

Due to the chiral and massless nature of carriers in MLG, the QHE in MLG is 

significantly different to non-relativistic electrons in the conventional 2DEG. The 

Landau levels energies of MLG can be written as
43

 

𝐸𝑛 = ±ℏ𝜔𝑐√𝑛,                                               (2.30) 

where 𝜔𝑐 = √2ℏ𝑣𝐹
2|𝑒|𝐵 and 𝑛 = 0, 1, 2….  
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Fig. 2.10 Quantum Hall effect in monolayer graphene 

(a) A graph depicting the Landau levels in MLG. Energy as a function of magnetic field, B. 

(b) Schematic demonstration of quantized Hall conductance in MLG. Blue (electrons) and 

orange (holes) shows the number of Landau levels as a function of carrier concentrations. 

Fig. 2.10(b) is adapted from ref.
62

.  

The differences between the Landau levels in MLG (as shown in Fig. 2.10) and non-

relativistic electrons in a conventional 2DEG are significant. Firstly, the energy of 

Landau levels in MLG is proportional to √𝐵 and √𝑛 instead of B and n. Secondly, 

the Landau levels in MLG have both positive and negative energies depending on the 

carrier types. Most importantly, there exists the zero-energy Landau level, which 

results in a unique half-integer QHE phenomenon in MLG, as the consequence of the 

electron-hole symmetry in MLG. The total degeneracy of each Landau level is four, 

two from the spin degeneracy and two from the valley degeneracy. Thus, the 

quantized plateaus of Hall conductance in MLG occur at 

𝜎𝑥𝑦 = 4(𝑛 + 1/2)(𝑒2/ℎ), 𝑛 ∈ 𝑍.                                 (2.31) 

Note that the filling factors 𝜈 = −2 and 𝜈 = 2 correspond to the emptying and filling 

of the zero-energy Landau level. Since the Landau levels of MLG are proportional to 

√𝑛 and are unevenly spaced in energy, and according to the Fermi level of MLG 

𝐸𝐹 = ±ℏ𝑣𝐹√𝜋|𝑛𝑒,ℎ| ,  the Landau levels are evenly spaced with varying carrier 

density 𝑛𝑒,ℎ, as shown in Fig. 2.10(b). 

The QHE in MLG was first predicted theoretically
70

, and then observed 

experimentally by two research groups independently
4,5

. 
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For the case of BLG, the Landau levels are
43

 

  𝐸𝑛 = ±ℏ𝜔𝑐√𝑛(𝑛 − 1),                                       (2.32) 

with 𝜔𝑐 = 𝑒𝐵/𝑚∗. 𝐸𝑛
+and 𝐸𝑛

− are assigned to electron and hole states, respectively. 

Note that the energy of Landau levels in BLG depends linearly on magnetic field, 

which is the same as the non-relativistic case, as shown in Fig. 2.11.  

 

Fig. 2.11 Quantum Hall effect in bilayer graphene 

(a) A graph depicting the Landau levels in BLG. Energy as a function of magnetic field, B. 

(b) Schematic demonstration of quantized Hall conductance in BLG for the case of V = 0. 

Blue (electrons) and orange (holes) shows the number of Landau levels as a function of 

carrier concentrations. Fig. 2.11(b) is adapted from ref.
62

.  

Similar to MLG, each non-zero Landau level contains four degenerate states, caused 

by the spin and pseudospin degeneracy, while for the E=0 state, the degeneracy 

doubles because of the orbital degeneracy n=0, or n=1. The zero-energy Landau level 

therefore contains an eight-fold degeneracy. Consequently, the quantum Hall 

plateaus occur at filling factors 𝜈 = 4𝑛 where n is non-zero integer: 

𝜎𝑥𝑦 = 4𝑛(𝑒2/ℎ), 𝑛 ∈ 𝑍, 𝑛 ≠ 0.                                 (2.33) 

The QHE in BLG was first predicted by theorists
63

, and then observed 

experimentally by a research group at the University Manchester
62

. 
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2.2.4 Graphene on hexagonal boron nitride 

Hexagonal boron nitride (hBN) has a layered structure, as shown in Fig. 2.12, very 

similar to graphite. Within each layer, boron and nitrogen atoms are bounded by 

strong covalent bonds, whereas the layers are held together by weak van der Waals 

force.    

 

Fig. 2.12 The crystal structure of hexagonal boron nitride 

The crystal lattice of hBN consists of hexagonal rings forming thin parallel planes. Atoms of 

boron (B) and nitrogen (N) are covalently bonded to other atoms in the plane with the angle 

120
o
 between two bonds (each B atom is bonded to three N atoms and each N atom is 

bonded to three B atoms as well). The planes are bonded to each other by weak Van der 

Waals (vdW) forces.  

One can obtain thin hBN flakes down to monolayer thickness by using the same 

exfoliation technique for graphene
71

. Since boron (atomic number 5) and nitrogen 

(atomic number 7) sit either side of carbon (atomic number 6) in the Periodic Table, 

the lattice mismatch between hBN and graphene is only ~1.8% (hBN the larger 

one)
72

. The difference in electronic properties between hBN and graphene arises 

from the fact that the two atoms in the unit cell are not equivalent, which makes hBN 

insulating with a large band gap of ~6 eV
73

. hBN is chemically inert and lacks 
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surface traps and dangling bonds due to the strong in-plane bonding between boron 

and nitride atoms. In addition, the dielectric properties of hBN compare favourably 

with SiO2. These properties make hBN an ideal substrate for graphene-based 

devices
53

. Experiments of scanning tunnel microscopy and spectroscopy (STM and 

STS) demonstrate that graphene devices on hBN substrate have reduced roughness, 

intrinsic doping and chemical reactivity, as shown in Fig. 2.13
74

. 

 

Fig. 2.13 Spatial maps of the density of states of graphene on hBN and SiO2 

(a) Topography of graphene on hBN. (b) Tip voltage at the Dirac point as a function of 

position for graphene on hBN. (c) Tip voltage at the Dirac point as a function of position for 

graphene on SiO2. (d) Histogram of the energies of the Dirac point from (b). The inset shows 

the same data but also includes the histogram for graphene on SiO2 (red). Fig. 2.13 is 

adapted from ref.
74

. 

Transport measurements of graphene on hBN devices show a significant 

improvement of charge carrier mobility by a factor of ~10-50 compared with the 

previous graphene on SiO2
75

. By combining hBN encapsulation and novel 1D edge 

contacts to graphene, ultra-high mobility of graphene at both room temperature 

(~140,000 cm
2
V

-1
s

-1
) and at cryogenic temperature (~1,000,000 cm

2
V

-1
s

-1
) can be 

achieved in hBN/graphene/hBN van der Waals heterostructures
76

.   
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In addition to being a superior substrate for high performance graphene-based 

devices, hBN can also alter the electronic spectrum of graphene
77

. For graphene 

placed on hBN, the moiré pattern induced by the similar honeycomb structures and 

tiny lattice mismatch (1.8%) between hBN and MLG creates a periodic perturbation, 

usually referred to as graphene/hBN superlattices, as shown in Fig. 2.14
78

. 

Graphene/hBN superlattices act on graphene’s charge carriers and lead to multiple 

mini-bands and the generation of secondary Dirac-like spectra. The alignment of 

graphene and hBN leads to a number of fascinating phenomena, such as a gap 

opening in MLG
79

, the Hofstadter butterfly
13-15

 and topologically protected valley 

current
80

. 

 

Fig. 2.14 Graphene/hBN superlattices with different periodicity 

(a)-(c) The schematics of the alignment between graphene and hBN with alignment angle of 

3
o
 (a), 1

o
 (b) and 0

o
 (c); 𝜆 is the periodicity of the superlattices. (d)-(f) STM topography 

images showing 2.4 nm (d), 6 nm (e) and 11.5 nm (f) moiré patterns. Scale bar: 5 nm. Fig. 

2.13 is adapted from ref.
78

. 
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2.3 Josephson Junction 

2.3.1 Superconductivity  

Superconductivity, discovered in 1911 by Onnes
81

, is a macroscopic quantum 

phenomenon that certain materials exhibit under particular magnetic fields and 

temperatures. All superconductors show a drop of resistance to zero, either gradually 

or suddenly, at critical temperatures, 𝑇𝐶 . Another characteristic, later found by 

Meissner and Ochsenfeld in 1933
81

, is that all superconductors are diamagnetic, 

known as the Meissner effect. In 1935, London brothers developed a 

phenomenological theory
82

 to explain the Meissner effect. They derived an equation 

for the penetration depth of the superconductor, 𝜆𝐿. The isotope effect discovered by 

Maxwell and Reynolds in the 1950s describes a decrease in 𝑇𝐶 with an increase in 

isotopic mass
83,84

. A phenomenological model was built by Ginzburg and Landau in 

1950, in which they introduced some important superconducting order parameters, 

such as the superconducting coherence length 𝜉  
81

. In 1957, after 46 years of 

discovery of superconductivity, Bardeen, Cooper and Schrieffer proposed the first 

microscopic theory that describes the microscopic origins of superconductivity (BCS 

theory)
85,86

. They convincingly showed that superconductivity is caused by the 

condensation of electrons near the Fermi level into Cooper pairs through interaction 

between the electrons and the vibrations of crystal lattices (phonons). At low 

temperatures, the attractive force between electrons and phonons in a superconductor 

might be stronger than the Coulomb repulsion between the electrons. However, the 

attractive force is still a weak attraction and is not strong enough to bind the electrons. 

Cooper showed that a pair of electrons with opposite spins and momentum could 

experience the attractive force due to the polarization of the lattice (via electron-

phonon interaction) so that this pair can have energy lower than the Fermi energy 

without using any of the states in the Fermi surface. Cooper pairs can be considered 

as bosons with total spin equals to zero. Therefore, many Cooper pairs are allowed to 

condense into a same quantum state that has the condensation wave function: 

Ψ = |Ψ|𝑒𝑖𝜑,                                                 (2.34) 

where 𝜑 the macroscopic quantum phase of a superconductor and |Ψ| the measure of 

the Cooper pair density.  



52 
 

Owing to the conservation of momentum during the electron-phonon interaction, the 

system will tend towards a configuration, in which each Cooper pair has the same 

average momentum. Then, scattering a single electron or single Cooper pair to a new 

momentum would require overcoming the attractive force between that pair and 

every other Cooper pair. Since at low temperatures there is no energy fluctuation 

large enough to overcome this attraction, once the Cooper pairs as a group have a 

common momentum, they will keep this momentum permanently, which explains the 

zero resistance electrical state observed in superconductors. 

One important prediction made in BCS theory is the superconducting energy gap Δ. 

The origin of Δ is electrons pairing and it is impossible to have an individual electron 

with an energy below one required to form a Cooper pair. The DoS in a 

superconductor, shown in Fig. 2.15, is: 

𝑁𝑆(|𝐸 − 𝐸𝐹|)/𝑁(0) = {
(|𝐸 − 𝐸𝐹|)/√(𝐸 − 𝐸𝐹)2 − ∆2,       |𝐸 − 𝐸𝐹| > ∆

  0,                                                          |𝐸 − 𝐸𝐹| < ∆ 
,    (2.35) 

where 𝑁(0) and 𝑁𝑆(|𝐸 − 𝐸𝐹|) represent the DoS of a BCS superconductor in the 

normal state and in the superconducting state, respectively. The energy |𝐸 − 𝐸𝐹| is 

counted from the Fermi level in the metal. 

 

Fig. 2.15 The density of states of a BCS superconductor 

The DoS in the superconducting state (black solid curve) and in the normal-state (red dashed 

line) of a BCS superconductor. No quasi-particle is allowed below the energy gap ∆.  



53 
 

2.3.2 Andreev reflection 

When a normal metal (N) is contacted with a superconductor (S), an electron with 

energy E higher than ∆  can enter the superconductor and the electron can be 

converted into a quasi-particle with the same energy. However, this does not work 

for an incident electron with E lower than ∆ since there are no available states in the 

gap. As a result, the single-particle transmission from the normal metal into the 

superconductor is forbidden. The only way for an electron to enter the 

superconductor is by forming a Cooper pair. In order to do that, the electron in the 

normal metal must pair with another electron in the superconductor but with opposite 

spin and momentum. This process may proceed when an incident electron from the 

normal metal is reflected back as a hole at the N-S interface, as depicted in Fig. 

2.16(a). While this process conserves energy, it does not conserve the charge in the 

normal metal. During this process, a total charge of 2e is transferred from the normal 

metal to the superconductor since the reflected hole has a charge e but with positive 

sign. The amplitude of the momentum of the reflected hole is almost equal to that of 

the incident electron because of 𝐸 < ∆≪ 𝐸𝐹 in the normal metal. This process works 

the same for an incident hole owing to the time reversal symmetry, in which the hole 

is reflected as an electron at the N-S interface. This process is known as Andreev 

reflection
19

.  

 

Fig. 2.16 Andreev reflection and the BTK model 

(a) Schematics of Andreev reflection. An electron impinging onto the N-S interface picks up 

a second electron to form a Cooper pair and condense in the superconductor energy gap. The 

Andreev reflected hole travels backward. (b) Differential conductance dI/dV across the N-S 

junction as a function of the bias voltage for different values of the barrier intensity Z at T = 

0. Fig. 2.16(b) is adapted from ref.
87

. 
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However, Fig. 2.16(a) is a simplistic picture and we can use a slightly modified 

version of Schrödinger’s equation to look at this problem in a more formal light. This 

work was first done by Blonder, Tinkham and Klapwijk in 1982, and is named as the 

BTK model after their work
87

.  At the N-S interface, an incident electron can be 

either reflected as a hole by Andreev reflection with a probability A or reflected as an 

electron by the normal backscattering with a probability B. The BTK model defines a 

parameter Z to describe the transparency 𝑇𝑟 of the N-S interface, 𝑇𝑟 = 1/(1 + 𝑍2). 

For 𝑍 = 0,  𝐴 = 1 , hence only Andreev reflection can take place when the energy of 

incident electrons are below the superconducting gap. However, for 𝑍 > 0, A is 

rapidly reduced and the normal reflection process become more probable. Thus, the 

𝐼 − 𝑉𝑁𝑆  characteristics across the N-S junction can be written with the normal 

conductance 𝐺0above 𝑇𝐶:  

𝐼(𝑉𝑁𝑆) = 𝐺0/𝑒 ∙ ∫ 𝑑𝐸(𝑓(𝐸 − 𝑒𝑉𝑁𝑆) − 𝑓(𝐸))(1 + 𝐴(𝐸) − 𝐵(𝐸))
∞

−∞
      (2.36) 

with the Fermi-Dirac distribution 𝑓(𝐸) = 1/(𝑒(𝐸−𝜇)/𝑘𝐵𝑇 + 1)  to account for 

temperature smearing of the Fermi energies. 

We can now introduce the normalized differential conductance 𝐺𝑆/𝐺𝑁  since it is 

more relevant for the experimental measurements. Eq. (2.36) then can be written as 

𝐺𝑆/𝐺𝑁(𝑉𝑁𝑆) = 1/𝐺0 ∙ 𝑑𝐼/𝑑𝑉 = (1 + 𝐴(𝑒𝑉𝑁𝑆) − 𝐵(𝑒𝑉𝑁𝑆)).            (2.37) 

It is evident from Eq. (2.37) that A effectively enhances the differential conductance 

and B rapidly reduces it.  

The BTK model gave the normalized differential conductance across an N-S 

interface as a function of the bias voltage by calculating the probability of each 

microscopic process and its individual contribution to the current, as shown in Fig. 

2.16(b). In the case of 𝑍 = 0, there is no barrier between N and S and the probability 

of normal reflection is zero. Thus, Andreev reflection for electrons (or holes) with 

𝐸 < ∆ is perfect. When 𝑍 ≫ 1, there is a strong barrier at the N-S interface and the 

probability of Andreev reflection is strongly supressed while the normal reflection 

dominates the transport within the gap. The BTK model was later experimentally 

confirmed by the 𝐼 − 𝑉𝑁𝑆 characteristics of Cu-Nb point contacts
88

. 
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2.3.3 Josephson effect  

In 1962, Josephson predicted that a dissipationless supercurrent could flow between 

two superconductors separated by a thin insulating barrier without application of any 

voltage
89

: 

𝐼𝑆 = 𝐼𝐶 𝑠𝑖𝑛(∆𝜑),                                            (2.38) 

where 𝐼𝑆  the supercurrent and ∆𝜑 the phase difference of two superconductors. 𝐼𝐶 

denotes to the maximum supercurrent that the junction can support. Josephson made 

a further prediction that the phase difference ∆𝜑  can be modified by applying a 

constant voltage difference V across the junction: 

𝑑(∆𝜑)/𝑑𝑡 = 2𝑒𝑉/ℏ.                                         (2.39) 

By combing Eq. (2.39) and Eq. (2.38), one can obtain an alternating supercurrent 

with amplitude of 𝐼𝐶 and frequency of 2𝑒𝑉/ℏ. Eq. (2.38) and Eq.(2.39) are known as 

the dc and ac Josephson effect, respectively. Such a junction is called Josephson 

junction. Both the dc and ac Josephson effect have been fully confirmed by many 

experimental works and also have been implemented in a wide number of 

applications, such as superconducting quantum interference devices (SQUIDs) and 

qubits in superconducting quantum computing. In this thesis, we limit all discussions 

to the dc Josephson effect. 

Although Josephson’s original predictions were based on the tunnelling process of 

electrons from one superconductor to another through a thin insulating barrier, it is 

now clear that the effect are more general, and occurs whenever two superconductors 

are connected by a ‘weak link’
81

. A ‘weak link’ can be established in several 

different ways. Instead of a thin insulating layer that was originally proposed by 

Josephson, other materials also could be used, for instance a normal metal layer. 

These two cases are usually referred to as SIS and SNS Josephson junctions, 

respectively. For SNS junctions, the thickness of the normal metal layer can be much 

larger than that in SIS junctions, since the normal metal connected to the 

superconductor is weakly superconducting due to the proximity effect.   

In Fig. 2.17(a), a schematic demonstration is shown of two superconductors with a 

Ginzburg-Landau wavefunction |Ψ1|𝑒𝑖𝜑1  and |Ψ2|𝑒𝑖𝜑2  that are contacted to a 
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graphene strip of size L  ×  W. The phase difference can be tuned by a small 

perpendicular magnetic flux, which would modify the supercurrents. The flux  

threading into the graphene strip is Φ = 𝐵 × 𝐿 × 𝑊  and the corresponding phase 

addition across the width W as a function of position x is then 

𝜑(𝑥) = 2𝜋𝐵𝐿𝑦 Φ0⁄ ,                                          (2.40) 

where Φ0 = ℎ 2𝑒⁄ = 2.068 × 10
-15

 Wb  is the flux quantum. Now the phase 𝜑(𝑥) is 

position dependent. To obtain the total supercurrent flow through the junction, the 

supercurrent density has to be integrated over the width W, following the derivation: 

𝐼𝐶 = 𝐼𝐶0|𝑠𝑖𝑛(𝜋Φ/Φ0) (𝜋Φ/Φ0)⁄ |,                             (2.41) 

where 𝐼𝐶0 denotes the maximum critical current at zero magnetic field. As plotted in 

Fig. 2.17(b), this periodic pattern is known as Fraunhofer interference pattern, 

analogous to optical diffraction when light pass through a single slit. In a SNS 

Josephson junction, when the total flux equals an integer number of flux quantum, 

Φ = 𝑁Φ0 , the sum of the phase across the junction is exactly zero and the 

supercurrent would disappear.  

 

Fig. 2.17 Schematics of graphene Josephson junction and Fraunhofer 

interference pattern of the critical current in magnetic field 

(a) Schematics of a graphene Josephson junction. Two superconductors are contacted by a 

graphene strip. (b) Fraunhofer interference pattern. The critical current of graphene 

Josephson junction periodically oscillates as a perpendicular magnetic field is increased. The 

insets demonstrate three examples of the position dependent phase cross the Josephson 

junction. When the total flux equals an integer number of flux quantum, Φ = 𝑁Φ0, the sum 

of the phase across the junction is exactly zero and the supercurrent disappears.  
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We described the general mechanism of Andreev reflection at the N-S interface in 

section 2.3.2. The treatment of Andreev reflection processes can be well extended to 

SNS junctions. In a graphene (G) Josephson junction depicted in Fig. 2.18(a), 

graphene plays a role as the normal metal part. Andreev reflection occurs at both left 

and right G-S interfaces. An incident electron coming from graphene is Andreev 

reflected into a hole at the right G-S interface travelling to the left. At the left G-S 

interface, the hole is Andreev reflected into an electron travelling to the right. When 

a bias voltage 𝑉𝑏 is applied to the junction, electrons and holes, moving in opposite 

direction, are both accelerated by 𝑉𝑏. An electron in graphene can be reflected back 

and forth several times between two G-S interfaces, gaining energy 𝑒𝑉𝑏each time 

when it traverses across the junction, until it accumulates enough high energy to 

escape graphene into the superconducting electrode as a quasiparticle. A total charge 

of 2e is transferred from graphene to the superconductor after each Andreev 

reflection, which modifies the differential resistance (dV/dI) of the junction 

depending on the number of Andreev reflections that occur in the junction. This 

causes a feature in the dV/dI characteristics at each bias 𝑉𝑏 = 2∆/𝑛𝑒,  where n is an 

integer number
87,88

. An example of multiple Andreev reflections (MAR) in graphene 

Josephson junction is shown in Fig. 2.18(b). 

 

Fig. 2.18 Multiple Andreev reflections in a graphene Josephson junction 

(a) Schematic representation of MAR between two identical superconductors with an energy 

gap ∆. The electron is retro-reflected as a positive charged hole, creating a Cooper pair in the 

superconductor; conversely, retro-reflection of a hole annihilates a Cooper pair. Electrons 

and holes, moving in opposite directions, are both accelerated by the applied bias voltage 𝑉𝑏. 

(b) Measured dV/dI of a typical graphene Josephson junction as a function of applied bias. A 

series of sub-harmonic peaks in dV/dI represent the MAR phenomenon. 
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At vanishing temperature T = 0, the critical current in a SIS Josephson junction is 

related to the superconducting energy gap ∆ as 

𝑒𝐼𝐶𝑅𝑁(𝑇 = 0) = 𝜋∆/2,                                        (2.42)  

where 𝑅𝑁 is the normal-state resistance of the junction
90

. This is also the case for 

short SNS Josephson junctions operating in the ballistic regime
91

. However, it has 

been found that for the case of diffusive SNS Josephson junctions, ∆ is no longer the 

dominant parameter. Instead, the critical current is related to the Thouless energy 𝐸𝑇ℎ 

as
92

 

𝑒𝐼𝐶𝑅𝑁(𝑇 = 0) = 10.82𝐸𝑡ℎ.                                     (2.43) 

In the diffusive regime, Thouless energy 𝐸𝑇ℎ = ℏ𝐷/𝐿2 is the characteristic energy 

scale determined by the diffusive constant D and junction length L. The numerical 

results for 𝑒𝐼𝐶𝑅𝑁(𝑇 = 0) as a function of the Thouless energy 𝐸𝑇ℎ are presented in 

Fig. 2.19(a). It demonstrates that it is the minimum of the superconducting gap ∆ and 

the Thouless energy 𝐸𝑇ℎ  that limits the critical current in the diffusive SNS 

Josephson junctions
92

.  At temperatures close to 𝑇𝐶 the critical current through a SNS 

junction is suppressed since the density of Cooper pairs inside a normal metal decays 

exponentially with the distance away from the contact to the superconductor. 

Therefore, the critical current is supressed as 𝐼𝐶 ∝ 𝑒𝑥𝑝 (−𝐿/𝐿𝑇) , where 𝐿𝑇 =

√ℏ𝐷/𝑘𝐵𝑇  is the characteristic thermal length. At moderate temperature 𝐸𝑡ℎ <

𝑘𝐵𝑇 < 𝑘𝐵𝑇𝐶  the temperature dependence of  𝑒𝐼𝐶𝑅𝑁  in units of 𝐸𝑡ℎ  has been 

numerically analyzed, as shown in Fig. 2.19 (b). For   𝑘𝐵𝑇 > 5𝐸𝑡ℎ and in the limit of 

∆/𝐸𝑡ℎ → ∞ , the critical current through a long SNS Josephson junction can be 

expressed analytically as
92

 

𝑒𝐼𝐶𝑅𝑁 = (32/(3 + 2√2))𝐸𝑡ℎ(𝐿/𝐿𝑇)3𝑒(−𝐿/𝐿𝑇) .                     (2.44)  
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Fig. 2.19 Calculated eICRN in long SNS Josephson junctions 

(a) Calculated energy dependence of the zero-temperature 𝑒𝐼𝐶𝑅𝑁 in units of ∆ as a function 

of the ratio ∆/𝐸𝑡ℎ. The long junction regime is on the left part where 𝐸𝑡ℎ < ∆, the short 

junction regime is on the right part where 𝐸𝑡ℎ > ∆. The dashed line corresponds to the 

𝑒𝐼𝐶𝑅𝑁 only depending on the superconducting energy gap ∆ when the junction is in the short 

ballistic regime. (b) Calculated temperature dependence of the 𝑒𝐼𝐶𝑅𝑁. The different curves 

correspond to various values of the ratio ∆/𝐸𝑡ℎ in the long junction regime. The curve for 

∆/𝐸𝑡ℎ → ∞ is universal in the sense it does not depend on ∆.  Fig. 2.19 is adapted from ref.
92

.   

2.3.4 Graphene Josephson junction 

In 2007, Graphene Josephson junctions were first experimentally demonstrated by 

Heersche in aluminium-graphene-aluminium hybrid systems, which were 

characterized at milikelvin temperatures
20

. The results showed that graphene 

performs extremely well as the N-member of a SNS Josephson junction. Over the 

past ten years, a number of experimental works have proven that graphene is a 

promising material for building superconducting devices
21-37,93-95

. Graphene exhibits 

a linear dispersion and vanishing DoS at the Dirac point. The quasiparticles in 

graphene are massless Dirac fermions that differ from other materials. The unique 
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electronic properties of graphene suggest new physics to be found in proximity 

superconductivity and the Josephson effect. The transport properties of graphene 

Josephson junctions near the Dirac point are particularly intriguing. Specular 

Andreev reflection
38

 and supercurrents supported by evanescent modes
96,97

 have been 

theoretically predicted. In addition, both the sign and density of charge carriers in 

graphene can be tuned by applying an electric field to graphene, providing an 

excellent platform for studying the energy dependence of superconducting properties 

of Josephson junctions. From the view of device fabrication, it is relatively easy to 

obtain transparent G-S interfaces because graphene is inert in ambient atmosphere 

which prevents oxidation on its surface.  

Specular Andreev reflection is a remarkable phenomenon that occurs in graphene-

superconductor hybrid junctions. An incident electron from a normal metal with 

energy lower than the gap can be reflected into a hole at the N-S interface, creating a 

Cooper pair in the superconductor, known as Andreev reflection
19

. For most normal 

metals, the Fermi energy is much greater than the superconducting gap
17

, 𝐸𝐹 ≫ ∆. 

Thus, the reflected hole will remain in the same conduction band and has an opposite 

sign mass compared with the incident electron. The momentum of the electron is 

almost conserved before and after Andreev reflection by neglecting the term ∆/𝐸𝐹. 

For electrons in the conduction band, the velocity is parallel to its momentum, while 

the velocity of a hole in the same conduction band has direction opposite to its 

momentum. As a result, the hole is retro-reflected, as shown in Fig. 2.20(a) and (b). 

However, a completely different type of Andreev reflection will occur if the Fermi 

energy can be tuned small enough such that  𝐸𝐹 < ∆ . In this case, the energy 

difference between the incident electron and the reflected hole, 2E, can result in the 

reflected hole appearing in the valence band of graphene rather than the conduction 

band. The reflected hole now has the same mass sign as the incident electron. 

According to momentum conservation, the reflected hole will move in the same 

direction as the incident electron along the G-S interface. Therefore, the hole is not 

retro-reflected but specular-reflected instead. This new type of reflection process is 

called specular Andreev reflection
38

, as shown in Fig. 2.20(c) and (d).  
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Fig. 2.20 Schematics of different types of Andreev reflection at graphene-

superconductor interface 

The linear band dispersion of graphene at high carrier density (a) and at near zero carrier 

density (c). (b) Andreev retro-reflection occurs in the highly doped 𝐸𝐹 ≫ ∆  regime. A 

conduction band electron is reflected into a hole in the conduction band with approximately 

the same momentum. The velocity of a conduction band hole is opposite to its wave vector 

and the hole is therefore retro-reflected. (d) Specular Andreev reflection occurs in the 

undoped regime with 𝐸𝐹 < ∆. A conduction band electron is reflected into a valance band 

hole. A valance band hole moves in the same direction of its wave vector. Hence, 𝑣𝑥 changes 

sign whereas  𝑣𝑦 remains unchanged and namely the electron is specular reflected into a hole.  

There are two major approaches for fabricating high quality graphene devices: by 

suspending graphene,
 
and by sandwiching graphene between two hBN crystals. 

Compared with the suspended devices
98

, hBN encapsulated graphene are more 

robust
75

. Furthermore, it is possible to combine hBN-graphene-hBN heterostructures 

with the 1D edge contacts
76

 which further improve the quality of graphene devices. 

In addition to a number of fascinating physical phenomena, the gate tunability and 

large magnitude of the supercurrents in graphene Josephson junctions suggest many 

promising applications for the graphene based superconducting devices, such as 

SQUIDs
23

 and single-photon detectors 
99

. 
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2.4 Quantum mechanical tunnelling  

2.4.1 Tunnel barrier 

The vertical graphene-hBN tunnelling transistors considered in this thesis can be 

formed by sandwiching a thin hBN (2 to 5 layers) between two graphene layers, 

where the two graphene layers work as top (GrT) and bottom (GrB) electrodes and 

hBN acts as a thin tunnel barrier. There are several advantages of using hBN as the 

tunnel barrier, such as a large bandgap (~6 eV) and high breakdown field strength 

(~1 V/nm)
54

. In addition, the atomically flat surface of hBN with no dangling bonds 

considerably maintains the high quality of graphene and well defines the clean 

interfaces between hBN and graphene due to the van der Waals interactions
100,101

. 

After assembling, the graphene-hBN-graphene heterostructure is placed on 

hBN/SiO2/Si substrate with an additional top protection from hBN, as depicted in Fig. 

2.21.    

 

Fig. 2.21 Schematics of the structure of graphene-hBN tunnelling transistor 

Two graphene electrodes (blue) are separated by a few-layer hBN (red), forming a graphene-

hBN-graphene heterostructure. This heterostructure is encapsulated by two thick hBN, and 

then is placed on the SiO2/Si substrate.  

In the classical case, if an electron is incident onto a potential barrier with energy E 

higher than the barrier height 𝑈0  (𝐸 > 𝑈0 ), the electron then will pass over the 

barrier, resulting a current. If 𝐸 < 𝑈0, the electron cannot pass the barrier and is thus 

reflected. Quantum mechanically, the result of 𝐸 < 𝑈0 is similar to the classical case 

for a thick potential barrier, since the wavefunction of the incident electron will 

exponentially decay to zero before the electron passes through the barrier and thus 
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there is almost no probability for quantum mechanical tunnelling. However, if the 

barrier is thin enough (~nm), it is quite possible that an incident electron with energy 

𝐸 < 𝑈0 can tunnel through the barrier. Both classical and quantum mechanical cases 

are schematically demonstrated in Fig. 2.22. Quantum tunnelling is a direct result of 

the wave-like nature of the electrons, as the wavefunction of the electrons must be 

continuous at the barrier boundaries. Therefore, there is a finite probability of finding 

the electrons on either side of the barrier. Such a potential barrier, in this thesis, can 

be formed by sandwiching a thin hBN between two graphene layers. 

 

Fig. 2.22 An electron incident to a potential barrier 

(a) Classically, electrons with energy 𝐸 > 𝑈0  can pass over a potential barrier while 

electrons with energy 𝐸 < 𝑈0 cannot pass and they will be reflected. (b) and (c) Quantum 

mechanically, for electrons with energy 𝐸 <  𝑈0 the wavefunction of the electrons doesn’t 

abruptly end, but decays exponentially in the barrier. For a thick barrier (b) the electrons 

cannot pass through the barrier before the wavefunction decays to zero. However, if the 

barrier is thin enough (c), there is a finite probability of electrons undergo quantum 

tunnelling through the barrier.  
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2.4.2 Resonant tunnelling  

In this section, we start with a simple discussion of resonant tunnelling through the 

double-barrier heterostructure. Typically, a resonant tunnelling diode (RTD) consists 

of an undoped quantum well layer with a small band gap sandwiched between 

undoped barrier layers with a larger band gap and where the emitter and collector 

contact regions are heavily doped. The most common double-barrier system is based 

on the AlxGa1-xAs (barrier)/GaAs(well)/AlxGa1-xAs (barrier) heterostructures
102

. The 

conduction band diagrams for a RTD under four different bias voltages are shown in 

Fig. 2.23. 

 

Fig. 2.23 Conduction band diagrams of a double-barrier structure RTD at four 

different bias voltages 

(a)  Zero bias. (b) Threshold bias. (c) Resonance. (d) Off-resonance. Left and right patterned 

regions are the Fermi sea in the emitter and collector contacts, respectively. Dashed red lines 

represent the resonant states 𝐸0  in the quantum well confined by the two barriers. Black 

arrows in (b)-(d) indicate the applied bias energies. 

In a RTD shown in Fig. 2.23, the resonant tunnelling occurs when the energy of the 

electrons flowing from the emitter coincides with the energy of resonant states 𝐸0 in 
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the quantum well confined by the two barriers. The alignment between the Fermi 

level of the emitter and the resonant states can be adjusted by applying an external 

bias 𝑉𝑏. When 𝑉𝑏 is applied across the RTD, the Fermi level shifts in both emitter 

and collector, and increases the number of electrons contained in the quantum well. 

A resonant tunnelling current starts to flow when the Fermi level of the emitter 

reaches 𝐸0 (threshold state, Fig. 2.23(b)). At the threshold state, the transmission of 

the incident electrons is close to unity, that is, an electron with the resonant energy 

can cross the double-barrier without being reflected. This resonance phenomenon is 

similar to that taking place in the optical Fabry-Pérot resonators. The tunnelling 

current reaches its maximum when the Fermi sea of the emitter passes through 𝐸0 

(resonant state, Fig. 2.23(c)) and exhibits a negative differential conductance (NDC) 

at 𝑉𝑏 just beyond the resonant bias where the current peak occurs. Further increasing 

𝑉𝑏 will decrease the tunnelling current when the conduction band edge is above 𝐸0 

(off-resonant state, Fig. 2.23(d)), as shown in Fig. 2. 24. 

 

Fig. 2.24 An example of I-V characteristic of a RTD 

A typical I-V curve of a RTD device. The peak and valley currents are pointed out by the 

black arrows. The NDC region is highlighted by the red curve. 

In addition to double-barrier structures we discussed above, RTDs can also be 

formed by graphene-hBN-graphene tunnelling transistors
103,104

. The resonant 

tunnelling and NDC are achieved by carefully controlling the twist angle between 

two graphene layers separated by a thin hBN. The operation is simple and based on 

the conservation of both energy and momentum
104

. The peak-to valley ratios (peak 

current/valley current, PVR) of graphene-based RTDs approaching ~2 have already 

been achieved at room temperature. 
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2.4.3 Scattering-assisted resonant tunnelling 

Our discussion of resonant tunnelling in section 2.4.2 neglected the scattering 

processes, which is known as direct tunnelling where both energy and momentum are 

conserved. However, in real devices there always are some imperfections in the 

crystals, such as impurities, defects and vibrations of the lattice. Thus, the effects of 

electron scattering on resonant tunnelling are inevitable in real systems operating at 

room temperature. There are two types of scattering, elastic and inelastic. Elastic 

scattering usually occurs when an incident electron collides with an impurity or a 

defect in a lattice, which conserves the energy, but does not conserve the momentum. 

During inelastic scattering, neither the energy nor the momentum of the electron is 

conserved
102

. For resonant tunnelling, most of the inelastic scattering processes arise 

from the electron-phonon interactions, such as emission (if the bias voltage is high 

enough), or absorption (if the temperature is high enough) of a phonon, as shown in 

Fig. 2.25. Both elastic and inelastic scattering processes are of great interest not only 

from a fundamental point of view, but also because of the possibility of controlling 

and even engineering these interactions in nanostructure semiconductor devices
105

. 

We will later describe the phonon-assisted resonant tunnelling in graphene-hBN 

tunnelling transistor in Chapter 7. 

 

Fig. 2.25 Schematics of phonon-assisted resonant tunnelling 

Conduction band diagram of phonon-emission-assisted resonant tunnelling process in a 

double-barrier structure tunnelling diode. 
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Chapter 3  

Experimental methods 

3.1 Device fabrication 

3.1.1 Mechanical exfoliation  

In order to obtain high quality graphene-based devices, all graphene and hBN flakes 

with different thickness in this thesis are prepared by mechanical exfoliation
1,71

.  

We start with a natural graphite crystal and a piece of adhesive tape. We gently press 

the graphite onto the tape, leaving an impression of broken graphite crystals on the 

tape. We repeat this procedure several times to produce numerous thin graphite 

flakes. Then we press the tape, which is now covered with many thin graphite flakes, 

onto a freshly cleaned substrate such as a silicon wafer. During this procedure, we 

apply some pressure on the tape to enhance the adhesion between the flakes and the 

substrate. After that, we carefully peel off the tape, leaving thin graphite flakes with 

varying thickness down to the monolayer (MLG) on the substrate. Graphene of 

different layers on specific substrates can be identified by optical contrast even in 

white light without any filters, as shown in Fig. 3.1.     

 

Fig. 3.1 Optical images of mechanically exfoliated graphene flakes on SiO2/Si 

substrates  

(a) Graphene flakes on 290 nm SiO2/Si wafer. (b) Graphene flakes on 90nm SiO2/Si wafer. 

Both images are taken under white light. 
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For the substrate, oxidized silicon wafer (SiO2/Si) or bilayer polymer poly-methyl-

methacrylate and poly-methyl-glutarimide (PMMA/PMGI) are most commonly used 

in our lab. SiO2/Si substrate provides better optical contrast of the flakes. 

PMMA/PMGI substrate is more convenient for advanced flake transfer techniques, 

such as ‘dry’ transfer and van der Waals pick up. In this thesis, we employ a 

combination of the two different substrates to prepare our devices. For the SiO2/Si 

substrate, the SiO2 layer usually has two different thicknesses: 290nm and 90nm.  

We can find the position of graphene flakes on different substrates and estimate the 

number of layers just by using optical microscopy. However, for the conclusive 

evidence, the number of graphene layers is confirmed by either atomic force 

microscopy (AFM) or Raman spectroscopy. Fig. 3.2 shows the AFM images of 

mechanically exfoliated graphene flakes on 290 nm SiO2/Si substrate. 

 

Fig. 3.2 AFM images of mechanically exfoliated graphene flakes on 290 nm 

SiO2/Si substrate 

AFM images of the graphene flakes with different thickness. Monolayer, bilayer and trilayer 

graphene regions are labelled by 1L, 2L and 3L, respectively.  

The Raman spectroscopy of MLG shows distinct features that can be used to 

differentiate MLG from few-layer graphene and graphite
106

. Fig. 3.3 shows the 

Raman spectroscopy of MLG, few-layer graphene and graphite. 
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Fig. 3.3 Raman spectroscopy of graphene and graphite 

(a) The Raman spectroscopy of graphene and graphite, showing the G peak at 1580 cm
-1

 and 

the 2D peak at 2700 cm
-1

. (b) The evolution of the 2D peak from MLG to few-layer 

graphene to graphite. Raman spectroscopy was taken using 514nm wavelength excitation 

source. Fig. 3.3 is adapted from ref.
106

. 

The main peaks in the Raman spectroscopy of MLG and graphite are found at 1580 

cm
-1

 and 2700 cm
-1 

(see Fig. 3.3(a)), which refers to the G peak and the 2D peak, 

respectively. The G peak intensity of MLG and graphite are similar (Fig. 3.3(a) is 

rescaled to get the similar height of the 2D peaks). There is a significantly difference 

in the 2D peaks between MLG and graphite. The 2D peak of MLG is a single sharp 

peak with intensity much higher than the G peak. However, the 2D peak of graphite 

splits into two components and has a height of intensity less than its G peak. Thus, 

we can use the 2D peak as the main feature to distinguish MLG from graphite. The 

2D peak can further tell the difference between MLG and few-layer graphene, as 

shown in Fig. 3.3(b). A single Lorentzian line can fit the single sharp 2D peak in 

MLG, which originates from only one scattering process in MLG. However, in BLG 

for example, the number of allowed scattering processes is four-fold due to its 

special band structure and each of them has slightly different energies, resulting in a 

more complicated line shape of the 2D peak
106

. Fig. 3.3(b) also shows the evolution 

of the 2D peaks from MLG to other few-layer graphene. Thus, Raman spectroscopy 

provides an easy and reliable way to confirm the number of graphene layers. 
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We prepare thin hBN flakes from bulk hBN crystals using the standard mechanical 

cleave technique as used for the exfoliation of graphene from graphite. In this thesis, 

hBN have three main applications: as substrate for high quality graphene device, as 

dielectric layer between graphene and top gate electrodes, and as tunnel barrier for 

graphene-hBN-graphene transistors. For substrate and dielectric layer, we search for 

large size hBN with clean and flat surface and there is no strict requirement of the 

thickness. Usually, we choose the hBN with thickness between 20 nm to 80 nm, as 

show in Fig. 3.4(a). For graphene-hBN tunnelling transistors, the use of larger size 

thin hBN is one of the most important factors that affect performance of the 

transistors. The tunnelling resistance per area of thin hBN exponentially increases 

with increasing thickness, as we expect for quantum tunnelling. Thin hBN between 

2-layers and 5-layers are the best choice for tunnel barrier, as shown in Fig. 3.4(b). 

The number of layers and the thickness of hBN can be subsequently confirmed by 

AFM measurement
54,107

 and Raman spectroscopy
107

. 

 

Fig. 3.4 Optical images of mechanically exfoliated hBN flakes on SiO2/Si 

substrates 

(a) hBN flake with thickness about 60 nm on top of 290 nm SiO2/Si substrate. This hBN can 

be used as substrate or top gate dielectric layer for graphene-based devices. (b) Few-layer 

hBN flake (highlighted by white dash outline) on top of 90 nm SiO2/Si substrate. This hBN 

is a good choice as tunnel barrier in graphene-hBN tunnelling devices after etching away the 

thick part. Both images are taken under white light.  
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3.1.2 van der Waals heterostructures 

Recent progresses in 2D materials and van der Waals heterostructures have enabled 

creating artificial materials with tailorable properties for a range of different 

applications
108,109

.  

In this thesis, in order to obtain high quality graphene devices, we use hBN as a 

substrate and for encapsulation to protect graphene from the roughness of oxidized 

silicon surface and other contaminations. An electric field bias between two 

graphene layers is essential for opening a tunable band gap in BLG. hBN is a perfect 

choice as a dielectric layer between the top gate electrode and BLG. The alignment 

between graphene and hBN is the key point to build graphene/hBN superlattices. In 

addition, few-layer hBN, as the tunnel barrier, is one of the key factors affecting the 

performance of graphene-hBN tunnelling transistors. Unlike the molecular beam 

epitaxial (MBE) technique used in growing high quality GaAs/AlGaAs 

heterostructures, van der Waals heterostructures are achieved by stacking one flake 

on top of another. In order to get atomically clean interface between different flakes, 

it is very important to reduce the contaminations as much as possible during the flake 

transfer. Several transfer techniques are used in our group depending on the design of 

the device. Here, we introduce three different transfer techniques which are most 

commonly applied in preparation of the graphene-hBN van der Waals 

heterostructures in this thesis.   

‘Wet’ transfer 

The very first flake transfer technique is called ‘wet’ transfer. This is because 

graphene has to be immersed in some solvents and unavoidably contaminated by the 

solvent during the transfer from one silicon substrate to another. We first exfoliate 

graphene and hBN on separate silicon substrates and then spin coat a polymer layer 

(usually PMMA) on top of the silicon covering the graphene. A tape with a window 

is attached to a PMMA layer where a graphene flake sits in the middle of the window. 

After that, we use 3% KOH solvent to dissolve the SiO2 layer of silicon substrate, 

leaving the PMMA with graphene floating in KOH solvent. Then we pick up the 

PMMA membrane and transfer it to deionized (DI) water to remove the residual 

KOH solvent. Now, the graphene attached to PMMA is ready to be transferred onto 

top of the hBN that is sitting on another silicon substrate.  
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Fig. 3.5 Schematics of ‘wet’ transfer procedures 

(a) Exfoliate graphene flake on SiO2/Si surface. (b) Spin coat a layer of PMMA resist on 

SiO2/Si substrate and bake it at 130 
o
C for 5 minutes. (c) Place a tape window (a piece of 

tape with a 1 mm×1 mm hole in the middle) on PMMA aiming the centre of the hole to the 

graphene flake ready for transfer. (d) Dive the whole substrate into 3% KOH solvent for 6 

hours at room temperature for etching away the SiO2 layer. (e) Leave the rest tape 

window/PMMA/graphene into fresh DI water for 2 hours for cleaning residual KOH. 

‘Dry’ transfer 

To improve the interface between two different flakes, researchers have developed a 

‘dry’ transfer technique. We exfoliate hBN flake onto silicon substrate, same as ‘wet’ 

transfer. However, the graphene flake is exfoliated onto a double-layer polymer 

PMMA/PMGI that has been spun onto a silicon wafer.  The bottom PGMI layer then 

can be dissolved by injecting MF-319 solvent, leaving the PMMA with graphene 

floating on top of the solvent. This technique has the drawback that in general the 

flakes obtained are smaller due to the weaker adhesion between graphene and the 

polymer. It is also harder to identify the graphene flakes by optical contrast due to 

the changes in the interference conditions of the substrate. However, the major 

advantage of ‘dry’ transfer technique is that the bottom layer polymer can be 

selectively dissolved by specific solvents without graphene touching the solvent. The 
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PMMA membrane then can be picked up, inverted, and carefully transferred onto top 

of the hBN. The remaining PMMA can be either dissolved or peeled off. As the last 

step, we anneal the graphene/hBN heterostructure at 200 
o
C in mixed H2/Ar 

atmosphere to remove the residual contaminations on the top surface of graphene. 

Since there is no or very little contamination trapped in the interface between two 

flakes, it is possible to obtain high quality graphene devices with clean graphene-

hBN interfaces using this ‘dry’ transfer technique. 

 

Fig. 3.6 Schematics of ‘dry’ transfer procedures 

(a) Exfoliate graphene flake on PMMA/PMGI bilayer on top of SiO2/Si substrate. (b) 

Carefully inject MF 319 droplets at the edge of PMMA/PMGI. The bottom PGMI layer can 

be dissolved by the MF-319 solvent (c) PMGI layer is fully dissolved by MF 319, leaving 

the graphene flake on top of PMMA layer floating. (d), (e) Pick up the PMMA membrane 

with graphene on top and transfer it to the target hBN flake. (f) The remaining PMMA can 

be either dissolved or peeled off, leaving graphene/hBN heterostructures on SiO2/Si substrate. 

Van der Waals pick-up 

Even for the ‘dry’ transfer process, the residual polymer and other contaminations to 

graphene are still unavoidable. Now, we introduce a recently developed van der 

Waals pick-up transfer technique, otherwise known as the ‘stamp’ transfer method. 

Graphene and bottom hBN are exfoliated onto separate SiO2/Si substrates. The top 

hBN is prepared onto PMMA/PMGI coated transparent substrate (usually a 
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microscope glass slide). We use the top hBN as an adhesive layer to pick up the 

graphene due to a strong van der Waals interaction between hBN and graphene. The 

top hBN/graphene is then transferred onto the bottom hBN. During the entire 

assembling process, graphene is always protected by hBN without touching any 

solvents and polymers. Thus, we can get ultra-high quality graphene devices by 

employing this method. Notably, the van der Waals pick-up method is not limited to 

graphene and hBN, it is possible to build different van der Waals heterostructures by 

stacking other 2D crystals. 

 

Fig. 3.7 Schematics of van der Waals pick-up transfer procedures 

(a) Prepare exfoliated graphene flake on SiO2/Si substrate. (b) Prepare exfoliated hBN flake 

on PMMA/PMGI substrate. (c) Invert PMMA/PMGI membrane with hBN flake on top of a 

target flake (graphene in here) and then carefully pick up the graphene flake. (d), (e) 

Transfer hBN/graphene to another hBN flake which is prepared on SiO2/Si substrate. (f) The 

remaining PMMA/PMGI layer can be either dissolved or peeled off, leaving 

hBN/graphene/hBN heterostructures on SiO2/Si substrate. 

After the graphene-hBN heterostructures are prepared, we apply a series of standard 

electron-beam (e-beam) lithography, metal deposition (e-beam evaporation or 

magnetic controlled sputtering), flake etching (oxygen plasma or chemical gas) and 

lift-off procedures to fabricate the graphene devices studied in this thesis.  
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3.1.3 Edge contacts to graphene  

A well-defined interface between the superconductor and graphene (G-S) is crucial 

for approaching high quality ballistic graphene Josephson junctions, where the 

transparency of the G-S interface directly affects the Andreev reflection. All previous 

reports on graphene Josephson junctions to date have involved superconducting 

contacts directly deposited onto the graphene surface, which results in diffusive 

transport through the junctions. In addition to the modest electronic quality of such 

devices, the use of surface contacts leaves ambiguity, that is, it is not clear how far 

electrons travel beneath the contact before entering the superconductor. Thanks to 

the recent development in fabrication techniques of graphene device, now we can 

make a one-dimensional (1D) electrical contact to graphene by choosing proper 

metals deposited along the exposed graphene edges.   

 

Fig. 3.8 One-dimensional edge contact to graphene 

(a) Schematics of edge contact fabrication. (b) High-resolution bright-field STEM image 

showing details of the edge contact geometry. Fig. 3.8 is adapted from ref.
76

 

To realize high quality ballistic graphene Josephson junctions we encapsulate 

graphene flakes between two hBN crystals using van der Waals pick-up method, 

which guarantees that the graphene is never in contact with any polymer during the 

assembling and thereafter. Electrical contact is made by metal deposition onto areas 

where the hBN/graphene/hBN van der Waals heterostructure has been etched 

through.  Unlike earlier works, where metal deposition was carried out in a separate 

lithographic step, we begin by etching only the region to be contacted, followed 
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immediately by metal deposition to avoid contamination and then to minimalize the 

contact resistance along the G-S interface, which is necessary to achieve a 

transparent contact. Instead of normal metal contacts, we sputter a superconductor 

Nb as contact to graphene, which has relatively higher critical temperature (𝑇𝐶~8 K) 

and upper critical field (𝐻𝐶2~4 T). We use 50nm thick film of Nb with an adhesion 

sublayer of 5 nm Ta. In addition, a 5 nm layer of Ta was put on top of Nb film to 

protect it from oxidation. The trilayer thin film was then deposited along the 

graphene edge by radio-frequency sputtering at a rate of 5 nm/min and a base 

pressure of ~10
-9 

Torr. 

3.1.4 Graphene Josephson junction 

After deposition of the superconducting contacts, the van der Waals heterostructure 

is etched into the desired geometries. For typical graphene Josephson junctions, the 

separation between two Nb contacts (junction length, L) varies from 100 nm to 2 µm 

and the junction width (W) ranges from 3 µm to 8 µm. In this thesis, we have 

investigated more than twenty ballistic graphene Josephson junctions. The schematic 

drawing and scanning electron microscopy image of one typical graphene Josephson 

junctions are shown in Fig. 3.9. 

 

Fig. 3.9 Graphene Josephson junctions 

(a) Schematics of graphene Josephson junction. Graphene sheet (grey atom array) is 

encapsulated by two hBN and placed on SiO2/Si substrate. Superconducting Nb contacts are 

deposited along the exposed edges of graphene. (b) Scanning electron microscopy (SEM) 

image of one of our graphene Josephson junctions.  

3.1.5 Graphene tunnelling transistor 

We fabricated graphene-hBN tunnelling transistors using a sequence of mechanical 

exfoliation and dry transfer procedures. We first prepare a relatively thick (20-30 nm) 
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hBN on top of oxidised silicon wafer which acted as a back gate. This thick hBN 

serves as a high-quality atomically flat substrate. We then transfer a first graphene on 

top of the selected thick hBN. A few-layer hBN is transferred on top of the first 

graphene flake by repeating the same procedure. This thin hBN serves as the tunnel 

barrier. The above processes are repeated again to complete the stack with the second 

graphene electrode. After depositing of 5 nm Ti / 50 nm Au metallic contacts, the 

structure is annealed at 200 ºC in Ar/H2 gas. One of our graphene tunnelling devices 

is shown in Fig. 3.10. 

 

Fig. 3.10 Graphene tunnelling transistor 

(a) Schematics of the tunnelling device. Bottom graphene (GrB) and top graphene (GrT) 

layers are separated by a thin hBN. The GrB-hBN-GrT heterostructure is placed on hBN-

SiO2/Si substrate. (b) Optical micrograph of one of our tunnelling devices. Two graphene 

sheets are separated by a trilayer hBN tunnel barrier (white outline). The overlap between 

GrB (blue outline) and GrT (red outline) corresponds to an active tunnelling area 𝐴 ≈ 10 μm2. 
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3.2 Electrical Measurement 

3.2.1 Measurement set-up 

Transport properties of graphene Josephson junctions and graphene tunnelling 

transistors in this thesis are measured in a liquid Helium cryostat with a base 

temperature of 4.2 K. Further cooling down to 0.3 K can be achieved by using a 

Helium 3 insert (Heliox VL, Oxford instruments, as shown in Fig. 3.11(a).) through 

pumping and adjusting the needle valve. For high temperature measurement, it is 

possible to achieve temperatures up to 300 K by controlling the heater near the 

sample. For magnetic fields below 6 T, a small magnet is mounted on to the IVC 

tube and provides magnet operation in persistent mode in a transport dewar, as 

shown in Fig. 3.11(d).  

 

Fig. 3.11 Set-up for electrical transport measurements 

(a) Heliox VL Helium 3 insert (Oxford Instruments). (b) 24 pin and 20 pin Chip carriers. (c) 

24 pin and 20 pin sample holders. (d) 6 T and 0.5 T superconducting solenoids. 
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For the measurement of quantum interference (Fraunhofer pattern) of critical 

currents, the applied magnetic field is usually below 10 mT with a resolution up to 

0.01 mT. Such requirement is satisfied by using a current source meter (Keithley 

2614B) instead of the magnet power supplies (IPS 120, Oxford Instruments) to 

control the output current and determine the small magnetic field.  

3.2.2 Resistance measurement 

In this thesis, we carry out all the resistance measurements by standard low-

frequency lock-in techniques using SR830 lock-in amplifiers (Stanford Research 

Systems). Typical values of resistances we measure range from a few tens of Ohms 

up to a few hundreds of kilo-Ohms. Thus, it is possible to connect a series resistor of 

10 MΩ in the measurement circuit to provide a nearly constant ac current, measure 

the voltage drop across the device, and eventually determine the resistance. 

According to the designed geometry of graphene Josephson junctions, we use the 

four-probe configuration to measure the resistance, as schematically shown in Fig. 

3.12(a). 

 

Fig. 3.12 Four-probe resistance measurement 

(a) Schematics of four-probe measurements. A current I is driven from probe 1 to probe 4 

while a voltage drop V is detected between probe 2 (high) and probe 3 (low). The grey area 

represents the graphene sheet and the golden areas indicate 4 superconducting Nb contacts. 

The silicon back gate and hBN are not shown in here. (b) The resistance of graphene 

Josephson junctions with same width W but difference L at T=10 K (T > 𝑇𝐶). The inset 

shows an optical micrograph of graphene Josephson junction. Graphene sheet is marked by 

the dashed area. 
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Fig. 3.12(b) shows the resistance of graphene Josephson junctions with same W but 

different L at T=10 K (T > 𝑇𝐶). One can tune the charge carrier density in graphene 

from electrons to holes by applying a back gate voltage (𝑉𝑔) between the graphene 

and the highly doped Silicon substrate. The gate voltage induces a surface charge 

density in graphene via a two-plate capacitance, 𝑛 = 휀휀0𝑉𝑔/(𝑒𝑑), where 휀0  is the 

vacuum permittivity and 휀 the dielectric constant of SiO2, e is the elementary charge 

and d the thickness of SiO2. Due to the change of carrier density, the Fermi level (𝐸𝐹) 

in graphene accordingly shifts to conduction (electron) band or valence (hole) band. 

Typically, the carrier density in MLG can be tuned from 10
10 

cm
-2

 to 10
12

 cm
-2

 by 

applying a gate voltage, which corresponds to 𝐸𝐹 from a few meV to a few hundred 

meV, respectively. 

From the resistance measurements, one can obtain important information of the 

graphene Josephson junctions, such as resistivity ( 𝜌 = 𝑅𝑊/𝐿 ), conductivity 

(𝜎 = 1/𝜌), inhomogeneity, mobility (𝜇) and contact resistance (𝑅𝐶). Carrier mobility 

is one of the most important parameters for modern semiconductor materials, which 

represents how fast the charge carriers can move under an electric field and 

determines the conductivity of the semiconductor. As shown in Fig. 3.12(b), the 

resistance of graphene rapidly increases as we reduce the carrier density by gating, 

reaching its maximum value at the Dirac point. One can extract the carrier mobility 

𝜇 = 1/𝑒𝑛𝜌. The typical mobility of graphene in our graphene Josephson junction 

devices varies from 100,000 cm
2
V

-1
s

-1
 to 500, 000 cm

2
V

-1
s

-1
 at T=10 K. 

3.2.3 Superconductivity measurement 

Once we have cooled our sample down to 0.3 K, we can carry out the 

superconducting measurement of our graphene Josephson junctions. For current-

voltage characteristics (I-V), the configuration is the same as in the normal-state 

resistance measurement, as shown in Fig. 3.13(a).  We pass a dc current 𝐼𝑑𝑐 through 

probe 1 to Probe 4 and measure the voltage drop between probe 2 and probe 3. A 

typical I-V curve of one of our junctions is shown in Fig. 3.13(a). There is no voltage 

drop across the junction when the applied dc current is below the critical current 𝐼𝐶, 

indicating the sample is in a superconducting state. Further increasing the current 

will break the superconducting state. The critical current strongly depends on the 

sample geometry, junction quality and graphene doping level. 𝐼𝐶 varies from 10 nA 
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at the charge neutrality point (CNP) to 15 µA at high n-type doping in our graphene 

Josephson junctions.  

 

Fig. 3.13 Supercurrent and multiple Andreev reflections in graphene 

(a) I-V characteristics. The zero voltage drop indicates the superconducting state. (b) 

Differential resistance dV/dI as a function of 𝐼𝑑𝑐. (c) dV/dI as a function of applied bias 𝑉𝑏. A 

series of sub-harmonic peaks in dV/dI represent the multiple Andreev reflections in graphene 

Josephson junctions. The first and second order MAR are labelled by black arrows at 

𝑉𝑏 = 2∆/𝑒 and 𝑉𝑏 = 2∆/2𝑒, respectively. 

In order to measure the differential resistance dV/dI simultaneously, we mix a small 

ac current (𝐼𝑎𝑐 =2 nA for example) with 𝐼𝑑𝑐  and then detect the ac voltage drop 

between two probes. Such an ac voltage drop can be very small (below 1 µV) and 

therefore a voltage amplifier (SR560, Stanford Research Systems) is always used 

here prior to the lock-in amplifier to magnify the ac voltage signal. A typical dV/dI-

𝐼𝑑𝑐 curve of one of our junctions is shown in Fig. 3.13(b). In graphene Josephson 

junctions, an electron in graphene can be reflected back and forth several times 

between the two S/G interfaces, gaining energy 𝑒𝑉𝑏 each time when it transverse the 

junction until it accumulates sufficient energy to enter the superconductor as a 

quasiparticle. The quantum mechanical description of this physical picture is so 

called multiple Andreev reflections (MAR). To observe MAR in our graphene 
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Josephson junctions, we measure the dV/dI of our device as a function of the bias 

voltage across the junction, as shown in Fig. 3.13(c). At zero bias, there is a giant dip 

indicating the proximity superconductivity. The peaks at 𝑉𝑏 = ±2.2 meV mark the 

onset of first order MAR and corresponds to 2∆, where ∆ is the superconductor 

energy gap. Below 2∆, there are a series of dV/dI peaks when 𝑉𝑏 = ±2∆/𝑛𝑒, where 

n is an integer and e the elementary charge. Those sub-harmonic features arise from 

the MAR. As taken from Fig. 3.13(c), the sub-harmonic features occur at 𝑉𝑏 = 1.1, 

0.72, and 0.5 meV, corresponding to n = 2, 3 and 4 respectively. The observation of 

MAR indicates well defined G-S interfaces in our ballistic graphene Josephson 

junctions. 

3.2.4 Tunnelling measurement 

In our graphene-hBN tunnelling devices, the tunnelling current I is measured as a 

function of applied bias voltage 𝑉𝑏 between the bottom and top graphene electrodes 

and the back gate voltage 𝑉𝑔  applied between bottom graphene and highly doped 

silicon gate electrode. In order to measure the differential tunnelling conductance 

dI/dV, we mixed small low-frequency ac voltage to a dc bias 𝑉𝑏 and measured the 

current with a lock-in amplifier.  Typical I-V and dI/dV characteristics for different 𝑉𝑔 

measured at temperature of T=1.6 K are shown in the Fig. 3.14(a) and (b), 

respectively. 

 

Fig. 3.14 Tunnelling characteristics of graphene-hBN tunnelling transistor 

Measured tunnelling current I (a) and differential tunnelling conductance dI/dV (b) as a 

function of 𝑉𝑏 for three different 𝑉𝑔 at 1.6 K. 
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Chapter 4  

Quantum oscillations of the critical current and high 

field superconducting proximity in ballistic graphene 

The results demonstrated in chapter 4 are from the publication: “Quantum 

oscillations of the critical current and high field superconducting proximity in 

ballistic graphene” Nature Physics 12, 318-322 (2016). 

Due to the unique linear dispersion of graphene and its gate tunability, graphene 

provides an ideal platform to study the proximity superconductivity and the 

Josephson effect. However, previous reported graphene Josephson junctions are 

mostly limited into the diffusive transport regime, ballistic graphene Josephson 

junctions remain little studied.  

Here, we demonstrate ballistic graphene Josephson junctions with micron scale mean 

free path and transparent interface. Due to the ballistic nature of the electrons 

propagating in the junction, pronounced Fabry-Pérot oscillations are observed in the 

normal-state resistance and the critical current. At low magnetic field, the critical 

current decays exponentially, showing a conventional Fraunhofer interference pattern. 

However, at higher magnetic field up to 1T, which corresponds to more than 1000 

flux quanta, the proximity superconductivity still survives in the ballistic junctions. 

We attribute such high-field Josephson effect in ballistic graphene to the mesoscopic 

Andreev bound states that persist near the edges of graphene.  

My personal contribution to this work is: I carried out the electrical transport 

measurements, analysed the data, and prepared all the figures for the main text and 

supplementary information. 

The acknowledgements for the paper are: A.K.G., A.V.K. and M.B.S. designed the 

experiment. M.B.S. and A.V.K. fabricated the devices. M.J.Z. and J.R.P. carried out 

the measurements. M.B.S., M.J.Z., V.I.F., A.K.G. and J.R.P. analysed and 

interpreted the data. V.I.F. provided theory support. K.W. and T.T. supplied hBN 

crystals. A.M. and C.R.W. helped with experiments. M.B.S., J.P.R., V.I.F. and 

A.K.G. wrote the manuscript with input from all the authors.  
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Graphene-based Josephson junctions have attracted significant interest as a 

novel system to study the proximity effect
1-3

 due to graphene’s unique electronic 

spectrum and the possibility to tune junction properties by gate voltage
4-16

. Here 

we describe graphene junctions with the mean free path of several micrometers, 

low contact resistance and large supercurrents. Such devices exhibit 

pronounced Fabry-Pérot oscillations not only in the normal-state resistance but 

also in the critical current. The proximity effect is mostly suppressed in 

magnetic fields of <10 mT, showing the conventional Fraunhofer pattern. 

Unexpectedly, some proximity survives even in fields higher than 1 T. 

Superconducting states randomly appear and disappear as a function of field 

and carrier concentration, and each of them exhibits a supercurrent carrying 

capacity close to the universal limit
17,18

 of e/h where  is the superconducting 

gap, e the electron charge and h Planck’s constant. We attribute the high-field 

Josephson effect to mesoscopic Andreev states that persist near graphene edges. 

Our work reveals new proximity regimes that can be controlled by quantum 

confinement and cyclotron motion.  
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The superconducting proximity effect relies on penetration of Cooper pairs from a 

superconductor (S) into a normal metal (N) and is most pronounced in systems with 

transparent SN interfaces and weak scattering so that superconducting correlations 

penetrate deep inside the normal metal. Despite being one atom thick and having a 

low density of states, which vanishes at the Dirac point, graphene (G) can exhibit 

low contact resistance and ballistic transport on a micrometer scale
19,20

 exceeding a 

distance between superconducting leads by an order of magnitude. These properties 

combined with the possibility to electrostatically control the carrier density n offer 

tunable Josephson junctions in a regime that can be referred to as ballistic proximity 

superconductivity
21

. Despite intense interest in SGS devices
3-16

 that can show 

features qualitatively different from the conventional SNS behavior
2,3

, ballistic 

graphene Josephson junctions
15,16

 remain little studied.  

Our SGS devices are schematically shown in Fig. 4.1 and described in further detail 

in Supplementary Section 1. The essential technological difference from the 

previously studied SGS junctions
4-14

 is the use of graphene encapsulated between 

boron-nitride crystals
19,20

 as well as a new nanostrip geometry of the contacts. This 

allows high carrier mobility, low charge inhomogeneity and low contact resistance. 

More than twenty SGS junctions with the width W between 3 and 8 μm and the 

length L between 0.15 and 2.5 μm were studied, all exhibiting a finite supercurrent at 

low temperatures (T), reproducible behavior and consistent changes with L and W. 

First, we characterize the devices above the transition temperature TC  7 K of our 

superconducting contacts. Fig. 4.1b shows examples of the normal-state resistance Rn 

as a function of back gate voltage Vg that changes n in graphene. The neutrality point 

(NP) was found shifted to negative Vg by a few V, with the shift being consistently 

larger for shorter devices (Supplementary Information). This is due to electron 

doping induced by our Nb contacts. For ballistic graphene, such doping is uniform 

away from the metal interface
22

. The observed smearing of Rn(Vg) curves near the NP 

allows an estimate for charge inhomogeneity in the graphene bulk as  210
10 

cm
-2

. 

For consistency, data for devices with different L are presented as a function of Vg, 

the gate voltage counted from the NP.  

For positive ΔVg (electron doping) and n > 10
11 

cm
-2

, SGS junctions made from the 

same graphene crystal and having the same W exhibit the same Rn(ΔVg) dependence, 
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independently of L (Fig. 4.1b). This shows that mean free path is larger than the 

contact separation and yields carrier mobility > 300,000 cm
2 

V
-1 

s
-1

, in agreement 

with the quality measured for similarly made Hall bar devices. The dashed curve in 

Fig. 4.1b indicates the behavior expected in the quantum ballistic limit, RQ = 

(h/e
2
)/4N where N =int(2W/F) is the number of propagating electron modes, F the 

Fermi wavelength that depends on n(Vg) and the factor 4 corresponds to graphene’s 

degeneracy. The difference between RQ and the experimental curves yields a record 

low contact resistivity,  35 Ohm
 
µm. This value corresponds to an angle-averaged 

transmission probability Tr  0.8 (Supplementary Section 2).  

 

Fig. 4.1 Ballistic SGS junctions 

a, Top: Junctions’ schematics. Bottom: Electron micrograph of a set of four junctions with 

different L. A few nm-wide graphene ledge (top drawing) is referred to as a nanostrip contact. 

b, Typical behavior for SGS junctions with different L but for the same set of junctions with 

W = 5 µm. To avoid an obscuring overlap between four oscillating curves, we plot Rn at 

negative Vg only for the two shortest junctions. For positive Vg > 5 V, the four curves 

overlap within the line width. The dashed curve shows calculated RQ(n). Inset: Changes in 

the differential conductance dI/dV; L =0.25 µm. Color scale: -1 to 1 mS.   

For hole doping, Rn becomes significantly higher indicating smaller Tr. This is 

because pn junctions appear at the Nb contacts and lead to partial reflection of 

electron waves, which effectively creates a Fabry-Pérot (FP) cavity
5,23

. The standing 

waves lead to pronounced oscillations in Rn as a function of both Vg and applied bias 
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Vb (Fig. 4.1b). The oscillatory behavior indicates that charge carriers can cross the 

graphene strip several times preserving their monochromaticity and coherence. Some 

FP oscillations could also be discerned for positive Vg but they were much weaker 

because of higher Tr. The observed FP behavior in the normal-state agrees with the 

earlier reports
5,23

. Its details can be modelled accurately if we take into account that 

the position of pn junctions varies with Vg so that the effective length of the FP 

interferometer becomes notably shorter than L at low hole doping (Supplementary 

Section 3). 

After characterizing our SGS devices at T > TC, we turn to their superconducting 

behavior. All of the junctions (including L = 2.5 µm) exhibited the fully developed 

proximity effect. Fig. 4.2a,b show that the critical current Ic remained finite at the NP 

and rapidly increased with |Vg|, reaching densities > 5 µA/µm for high electron 

doping and short L, notably larger than Ic previously reported
4-16

. Such high Ic are 

due to ballistic transport and low contact resistance. Indeed, Ic can theoretically reach 

a value
2,24

 

Ic = /eRn                                                       (1) 

with  2.1. Because in our devices Rn  RQ = h/4Ne
2
, the equation implies that we 

approach the quantum limit Ic  (e/h)4N where the supercurrent is determined 

solely by the number of propagating electronic modes that transfer Cooper pairs 

between superconducting contacts, and each of the modes has the supercurrent 

carrying capacity
3,17

 IQ  e/h. 
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Fig. 4.2 Quantum oscillations in supercurrent 

a, Examples of I-V characteristics for ballistic SGS junctions in the superconducting state. 

The data are for the device in Fig. 4.1 with L = 0.25 µm. The arrows explain notions Ic and Ie. 

b, Absolute voltage drop |Vb| across the SGS junction in (a) for a wide range of doping. The 

black region corresponds to the zero-resistance state, and its edge exhibits clear FP 

oscillations. c, IcRn and IeRn for a device with L = 0.3 µm, W = 6.5 µm and   0.8 meV 

estimated from its TC. Each data point is extracted from a trace such as in (a). Inset: 

Oscillatory part of IcRn is magnified. Similar behavior was observed for other devices. d, 

Effect of the junction length on supercurrent for 12 devices with different W. Red symbols - 

W = 3 µm; blue - 5 µm; green - 6.5 µm. For each data set, Ic follows the same dependence as 

IcRn because Rn were practically independent of L for the same W. For the two longest 

devices in (d), the critical current falls below the plotted 1/L dependence, probably because 

of thermal fluctuations (Supplementary Section 4).  

Eq. (1) suggests that IcRn should be a constant. This holds well in our SGS devices 

away from the NP (Fig. 4.2c) and indicates that, at low T, external noise, fluctuations 

and other mechanisms
4-16

 which are dependent on n or Rn do not limit Ic. However, 
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Fig. 4.2c yields  that is notably smaller than the expected constant in eq. (1). For 

hole doping, this can be attributed to the presence of pn junctions at the 

superconducting interfaces but even for electron doping and high Tr we find   0.4 

(Fig. 4.2c). Furthermore, we measured the excess current Ie > Ic as shown in Fig. 4.2a 

and found that, in the case of Ie,  also does not reach a value close to 2.1 (Fig. 4.2c). 

This corresponds to the fact that all our devices were in the limit of long L > hvF/ 

(vF is the Femi velocity), as also follows from the 1/L dependence found for IcRn (Fig. 

4.2d). In this long-junction regime, the critical current is given by Ic   ETh/eRn being 

determined by the Thouless energy ETh rather than the superconducting gap
2,17,24

. For 

a ballistic system, ETh depends on time charge carriers spent inside the FP cavity and 

can be estimated
25

 as
 
 hvF/L. This yields Ic   1/L and IcRn  1/L because Rn is 

independent of ballistic device’s length. Our detailed studies of Ic as a function of T 

and L show that all data for IcRn/ETh collapse on a universal curve f(T/ETh) with ETh  

hvF/L, which again agrees well with expectations for the long-junction limit 

(Supplementary Section 4). We estimate that to reach the transition regime ETh/  1 

for our SGS junctions would require L < 100 nm. Let us also mention that no 

definitive signs of specular Andreev reflection
3,17

 were found in our devices 

(Supplementary Section 4).  

As a consequence of FP resonances in the normal-state (Fig. 4.1), the supercurrent 

also exhibits quantum oscillations that are clearly seen in Fig. 4.2b for hole doping. 

Eq. (1) implies that such oscillations in Ic should occur simply because Rn oscillates. 

Indeed, Rn and Ic are found to oscillate in antiphase, compensating each other in the 

final products eIcRn. However, we find that oscillations in the critical current are 

approximately 3 times stronger than those in Rn. This observation is consistent with 

the fact that Ic is not only inverse proportional to Rn but also depends on the Thouless 

energy as discussed above whereas the latter is expected to oscillate because of the 

oscillating transparency of FP resonators (Supplementary Section 4). We note in 

passing that Rn and its FP oscillations exhibit little temperature dependence below 

20K, which justifies the use of Rn measured above TC in the above analysis of the 

superconducting behavior. 
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In magnetic field B, our ballistic junctions exhibit further striking departures from the 

conventional behavior (Fig. 4.3). In small B such that a few flux quanta 0 = h/2e 

enter an SGS junction, we observe the standard Fraunhofer dependence
2
  

Ic = Ic(B =0)|sin(/0)/(/0)|                                    (2) 

where  = LW B is the flux through the junction area. Marked deviations from eq. 

(2) occur in B > 5 mT (Fig. 4.3a). Figs. 4.3b-e show that, in this regime, the 

supercurrent no longer follows the oscillatory Fraunhofer pattern but pockets of 

proximity superconductivity can randomly appear as a function of n and B. At low 

doping, the pockets can be separated by extended regions of the normal-state where 

no supercurrent could be detected with accuracy of a few nA << IQ (Figs. 4.3c,e). 

Within each pocket, I-V characteristics exhibit a gapped behavior (inset of Fig. 4.3d) 

with Ic  IQ  40 nA, although the exact value depends on doping and Ic falls down to 

 10 nA close to the NP, possibly due to rising contributions of electrical noise and 

thermal fluctuations that suppress apparent Ic (Fig. 4.3c). These proximity states 

persist until B as large as 1 T (/0 10
3
) and are highly reproducible, although 

occasional flux jumps in Nb contacts can reset the proximity pattern (Supplementary 

Section 5). Correlation analysis presented in Supplementary Section 6 yields that, to 

suppress such superconducting states, it requires changes in  of  0 and changes in 

the Fermi energy of  1 meV.   



4-8 
 

 

Fig. 4.3 Fluctuating proximity superconductivity 

a, Example of dV/dI as a function of applied current I and B. The purple regions correspond 

to the zero-resistance state and their edges mark Ic (see Supplementary Section 10). The map 

is symmetric in both I and B. The white curve is given by eq. (2). The low-B periodicity is  

0.4 mT, smaller than expected from the device’s area, which is attributed to the Meissner 

screening that focuses the field into the junction
30

. b, Continuation of the map from (a) above 

0.1 T. Intervals with finite Ic continue randomly appear, despite the Fraunhofer curve is 

indistinguishable from zero. c, Another high-B example but as a function of Vg in 0.5 T. d, 

Examples of low-current resistance (I = 2 nA) in different B. The dashed curve for 0.5 T 

shows that current I = 150 nA > IQ completely suppresses superconductivity. The arrows 

mark the expected onset of edge state transport. e, Local map of fluctuating 

superconductivity. T 10 mK; all color scales are as in (c). Inset in (d): Typical I-V 

characteristics for high-B superconducting states. f-i, Electron-hole paths responsible for 

Andreev states in ballistic junctions in zero (f), intermediate (g,h) and high B (i). In (h), the 

cyclotron bending suppresses the transfer of Cooper pairs in the middle of the graphene strip 

but Andreev states can persist near the edges.   
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The semiclassical description
2,24-27

 of  the superconducting proximity relates the 

Cooper pair transfer between the leads to electrons and Andreev-reflected holes, 

which travel along same trajectories but in opposite directions (Fig. 4.3f). In low B, 

interference between many Andreev states traversing the graphene strip results in the 

Fraunhofer-type oscillatory suppression of Ic described by eq. (2) (see Fig. 4.3a). 

Although not reported before, the Fraunhofer pattern in ballistic devices can be 

expected to break down in relatively small B because the cyclotron motion deflects 

electrons and holes in opposite directions so that they can no longer retrace each 

other (Fig. 4.3g). We have estimated the field required to suppress Andreev states in 

the bulk as B
*
 /eLvF (Supplementary Section 7). For the devices in Fig. 4.3, this 

yields B
*
 5 mT, in agreement with the field where strong deviations from the 

Fraunhofer curve are observed.  

As for the random pockets of superconductivity at B >> B
*
 which exhibit Ic much 

higher than that expected from eq. (2), we invoke the previously noticed analogy
18

 

between mesoscopic fluctuations in the normal-state conductance
28

, <G
2
> and in 

the supercurrent
17,18

, <Ic
2
>. Both types of fluctuations are due to interference of 

electron waves propagating along different paths but start and finish together. In 

contrast to the case of B =0, for which semiclassical phases of counter-propagating 

electrons and holes near the Fermi level cancel each other because of time-reversal 

symmetry (Fig. 4.3f), electrons and holes propagating along non-retracing 

trajectories in a finite B acquire large and random phase differences (Figs. 4.3g,h). 

Averaging over all imaginable geometrical paths would lead to complete suppression 

of the supercurrent
18

. However, for each given realisation of either diffusive or 

chaotic ballistic SNS junction, the characteristic values of fluctuations are set
17,18,28-30

 

at <G
2
>

1/2
  e

2
/h and <Ic

2
>

1/2
  e/h. In the case of B >> B

*
, non-retracing paths 

that can transfer Cooper pairs between superconducting contacts can occur only near 

graphene edges (see Fig. 4.3h and Supplementary Section 7). In a way, a 

combination of cyclotron motion and edge scattering provides a chaotic ballistic 

billiard near each graphene edge, and this leads to random pockets of 

superconductivity with Ic = <Ic
2
>

1/2
  IQ. Moreover, the analogy with chaotic 

billiards allows us to estimate the change in the Fermi energy, which is needed to 

change a realization of the mesoscopic system and, therefore, suppress an existing 

pocket of superconductivity. The required change is again given by the Thouless 
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energy ETh  hvF/ where  is the typical length of Andreev paths in a strong 

magnetic field (Fig. 4.3h). At high B, we estimate  as (rcL)
1/2

 where rc is the 

cyclotron radius. This yields ETh  1 meV, in agreement with the observed changes in 

doping which are required to suppress the pockets of superconducting proximity 

(Supplementary Section 6). An interference pattern in mesoscopic systems is also 

known
18,28-30

 to change upon changing the flux  through the system by 0. This 

scale agrees well with that observed experimentally (Fig. 4.S8). 

Finally, the discussed mesoscopic proximity effect can be expected to disappear if rc 

becomes shorter than L/2 (Fig. 4.3i). This condition is marked in Fig. 4.3d and seen 

more clearly in the data of Supplementary Section 8. It is also worth noting that that 

the near-edge superconductivity was not observed for hole doping, which we 

attribute to the fact that Klein tunneling in graphene collimates trajectories 

perpendicular to the pn interface
23

, making it essentially impossible to form closed-

loop Andreev states shown in Fig. 4.3h (Supplementary Section 7). In principle, the 

effect of near-edge Andreev states could be further enhanced by presence of 

extended electronic states at graphene edges
16

 but, based on our experimental data, 

no evidence for this or other spatial inhomogeneity was found in the studied samples 

(Supplementary Section 9). 

Methods 

The measurements were carried out in a helium-3 cryostat for T down to 0.3 K and in 

a dilution refrigerator, for lower T. All electrical connections to the sample passed 

through cold RC filters (Aivon Therma) and additional ac filters were on the top of 

the cryostats. The differential resistance was measured in the quasi-four-terminal 

geometry (using 4 superconducting leads to an SGS junction) and in the current-

driven configuration using an Aivon preamplifier and a lock-in amplifier. To probe 

the superconducting proximity, we used an excitation current of 2 nA.  
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Quantum oscillations of the critical current and high field 

superconducting proximity in ballistic graphene 

Supplementary Information 

M. Ben Shalom et al 

1. Device fabrication 

Monolayer graphene was encapsulated between two relatively thick (typically, >30 

nm) crystals of hexagonal boron nitride (hBN) by using the dry-peel transfer 

technique as detailed previously
S1

. The hBN-graphene-hBN stack was assembled on 

an oxidized Si wafer (300 nm of SiO2) and then annealed at 300 °C in a forming gas 

(Ar-H2 mixture) for 3 hours. As the next step we used the standard electron-beam 

lithography to make a PMMA mask that would define contact regions. Reactive ion 

etching (Oxford Plasma Lab 100) was employed to make trenches in the 

heterostructure through the mask. The etching process was optimized to achieve high 

etching rates for hBN with respect to both PMMA and graphene. We used a mixture 

of CHF3 and O2 which allowed rates of 300, 60 and 3 nm per min for hBN, PMMA 

and graphene, respectively. Importantly, the PMMA mask was not cross-linked 

during the etching and allowed easy liftoff so that metal contacts could be deposited 

directly after plasma etching. This procedure allowed us to avoid additional 

processing and, accordingly, contamination of the exposed graphene edges. The 

same etching recipe was later used to define the device geometry. We chose that all 

Josephson junctions made on the same graphene crystal would have the same width 

W.  
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Fig. 4.S1 Nanostrip contacts to encapsulated graphene 

Left column: Atomic force microscopy of a plasma-etched edge of an hBN-graphene-hBN 

stack. Top: Typical topography line scan across the step. Bottom: Typical adhesion scan. 

Inset: Imaging in the adhesion mode (color scale: 0 to 2.5 nN). A narrow graphene ledge 

appears in the middle due to the large difference in etching rates between graphene and hBN. 

The right column shows scanning electron microscopy images of etched edges for hBN-hBN 

and hBN-graphene-hBN stacks. The narrow step is clearly visible in the bottom image. 

Due to the large difference in the etching rates of graphene and hBN, the resulting 

edge profile was found to exhibit a step of, typically, 5 nm in width as depicted 

schematically in Fig. 4.1a of the main text and shown in micrographs of Fig. 4.S1. 

This step developed because graphene effectively served as a mask during etching of 

the bottom hBN, leading to a gradual exposure of graphene buried under the top 

hBN. In comparison with contacts prepared in the same manner but without the 

highly selective etching, the graphene nanostrip provided a notably lower contact 

resistance (see below).  

2. Superconducting contacts to graphene  

As superconducting contacts, we used 50 nm thick films of Nb with an adhesion 

sublayer of Ta (5nm). Also, a few nm of Ta were put on top to protect Nb from 

oxidation. The trilayer film was deposited by radio-frequency sputtering at a rate of 5 

nm per min and a base pressure of 10
-9

 Torr. The resulting films exhibited a sharp 

superconducting transition as shown in Fig. 4.S2a. Here TC =7.2 K and the second 
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critical field HC2 3.5 T, which yields the superconducting gap  =1.76TC  12K and 

the coherence length  = (0/2 HC2)
1/2 
10 nm. The data are for the same set of SGS 

devices as in Fig. 4.1 of the main text. Variations in superconducting characteristics 

between different sets of SGS junctions did not exceed 10%.  

 

Fig. 4.S2 Characterization of Nb contacts 

Resistive measurements of their critical temperature (a) and critical field (b). Rn is the 

normal-state resistance of our Nb/Ta films above TC.   

For a ballistic device with superconducting (zero-resistance) leads, the measured 

resistance is given by Rn = RQ + 2RC where RQ is the quantum ballistic resistance 

determined in the main text and RC is the contact resistance per interface. Fig. 4.1b of 

the main text plots RQ using the Fermi wavelength F that was calculated from carrier 

density n induced by gate voltage, using the standard equation λF = 2√𝜋/𝐶𝑔𝑉𝑔  

where the capacitance 𝐶𝑔 (typically, 510
10

 cm
-2

/V) was determined experimentally 

from the frequency of Shubnikov-Haas oscillations at high n. One can see that, 

independently of L, all the devices in Fig. 4.1b exhibited the same shift in Rn 

upwards with respect to RQ, which indicates a constant resistance contribution, 2RC. 

For electron doping of graphene with Vg 10 V, which corresponds to n 510
11

 

cm
-2

, RQ 32 Ohm for devices with W =5 µm whereas we measured R 46 Ohm. 

This yields RC 7 Ohm and contact resistivity of 35 Ohm µm. We find the same RC 

for all Vg >10 V. The quality of our graphene-superconductor interface can also be 

characterized by their average transmission probability Tr given by
S2

 Tr = RQ/(RQ + 

RC). For Vg 10 V, we calculate Tr 0.82, that is, we have a highly transparent GS 
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interface. As discussed below, this estimate is also supported by analysis of 

differential I-V characteristics in the superconducting state.  

The low contact resistivity and high transmission probability of our nanostrip 

contacts were found to be highly reproducible for different devices, even though the 

etching and metal deposition required transfer between different equipment and, 

consequently, exposure of the interfaces to air. The nanostrip contacts’ quality can be 

attributed to the finite width of the graphene-metal contact area (compared to one-

dimensional contacts
20

 without a ledge) and an extensive damage of the exposed 

graphene by oxygen plasma, which is known to improve contact quality
S3

. A good 

match between the work functions of Ta and damaged graphene
S3

 is probably a 

contributing factor, too. For hole doping (Vg <-10 V), the contact resistance is much 

larger (70 Ohm), yielding Tr 0.3. This additional resistivity is due to reflection of 

charge carriers at pn junctions formed near the superconducting contacts.    

3. Fabry-Pérot oscillations in the normal-state 

The term Fabry-Pérot (FP) interferometer refers to a cavity defined by two parallel 

semitransparent mirrors, in which monochromatic waves bouncing back and forth 

between the mirrors lead to interference and, therefore, resonances in transmission. 

The pronounced oscillations observed in resistance of our devices (Fig. 4.1b of the 

main text) are due to interference of electron waves partially reflected by the pn 

junctions formed near the nanostrip contacts
S4,23

.  

For a pn junction with a smooth potential profile only incident waves almost 

perpendicular to the junction have a non-vanishing transmission probability
S5

. This 

determines the relative size, G, of the peaks in Rn which appear under the resonance 

condition, 2L
*
/F = N where N is integer, corresponding to the formation of standing 

waves in a cavity of length L
*
. Using the dispersion relation F = hvF/F (F and vF are 

the Fermi energy and velocity, respectively) the period of the standing-wave 

resonances on the energy scale  is expected to be 0 = hvF/2L
*
. Taking into account 

the energy-dependent contributions to the conductivity, 𝐺(ε) = 𝐺0 + δ𝐺 sin
2πε

ε0
, the 

current I flowing through the FP cavity is given by 𝐼 = 1

𝑒
∫ 𝐺(ε)𝑑ε

εF+𝑒𝑉𝑏/2
εF−𝑒𝑉𝑏/2 , which yields 

oscillations in I and the differential conductance dI/dVb in the form  
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𝐼 = 𝐺0𝑉𝑏 +  ε0
π𝑒

δ𝐺 sin
2πεF

ε0
sin

π𝑒𝑉𝑏
ε0

        
𝑑𝐼

𝑑𝑉𝑏
= 𝐺0 −  δ𝐺 sin

2πεF
ε0

cos
π𝑒𝑉𝑏

ε0
.           (S1). 

The latter expression describes FB oscillations as a function of both F  n
1/2

 

|Vg|
1/2

 and Vb.  Qualitatively, this is the behavior observed experimentally and 

shown in Fig. 4.1b of the main text.  

Despite the overall agreement, the experiment shows notable deviations from the 

exact periodicity expected in eq. (S1). They are not important in the context of this 

report but probably worth of pointing out. The observed deviations are due to 

changes in the effective position of pn junctions with varying graphene’s doping. 

Indeed, one can see in the inset of Fig. 4.1b (also, Fig. 4.S3b below) that the 

chequered pattern becomes stretched along the y-axis with approaching the NP. This 

indicates that 0 becomes progressively larger closer to the NP, which means that the 

effective length L
*
 of our FP cavity becomes shorter with decreasing hole doping. 

Fig. 4.S3a plots the inferred values of L
*
 for different Vg, which shows that the 

length of the FP cavity changes as much as by a factor of 2. This behavior is not 

unexpected. Indeed, graphene is electron doped by the contact with Nb/Ta and, as we 

increase |Vg| and induce hole doping in graphene, the pn junctions are expected to 

become sharper and shift closer to the nanostrip contacts, approaching the limit L
*
 = 

L at high doping. For completeness, we have also modelled changes in Rn using eq. 

(S1) and the inferred changes in L
*
. The results are plotted in Fig. 4.S3b that shows 

good agreement with the detailed behavior observed experimentally in Fig. 4.1b of 

the main text. 
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Fig. 4.S3 Changing length of graphene FP resonators 

(a) The effective length of the FP cavity as found from the periodicity of the resistance 

oscillations along the Vb axis. The data points with error bars are from the plot shown in the 

inset of Fig. 4.1a of the main text. At low doping, the cavity is significantly shorter than the 

lithographically-defined distance between Nb contacts, L 0.25 µm. (b) Modelling the 

chequered pattern found experimentally (Fig. 4.1b of the main text). In the calculations we 

used the cavity length found in (a) and a constant 𝐶𝑔 to the back gate. The latter is 510
10

 

cm
-2

 per V as found from Shubnikov-de Haas oscillations. 

4. Proximity superconductivity in the ballistic regime 

In our SGS devices the critical current at low T increased with decreasing L down to 

our shortest junctions (Fig. 4.2d of the main text). This implies that our experiments 

were not in the limit of short L, in which case Ic should be independent of L. In the 

limit of long diffusive junctions, it is known
2,24

 that  in eq. (1) of the main text 

should be substituted with the Thouless energy ETh  hD/L
2
, determined by the 

diffusion time across a Josephson junction (D is the diffusion coefficient). In the case 

of ballistic SNS junctions, we estimate a characteristic time of crossing such 

junctions as L/vF and, accordingly, the Thouless energy ETh can be written as hvF/L. 

Such scaling with the distance between superconducting contacts is characteristic for 

SNS junctions made from any ballistic metal
25,S6

.  At the same time, the normal-state 

resistance of wide ballistic devices does not depend on their length (it is determined 

only by cross-sectional width and the Fermi wavelength). Therefore, we expect IcRn 

 1/L for long ballistic junctions, in agreement with the behavior reported in Fig. 

4.2d.  
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To substantiate further the above conclusion about the long-L limit for our SGS 

junctions, we studied temperature dependence of their supercurrent. Fig. 4.S4 shows 

measurements for a set of five SGS junctions made from the same graphene crystal 

and having the same W but different L. The figure shows their resistance in the 

normal-state (Fig. 4.S4a), temperature dependence of the critical current (Fig. 4.S4b) 

and the product IcRn as a function of graphene doping (Fig. 4.S4c). One can see that 

Rn away from the NP is practically the same for all the junctions, independent of L 

(Fig. 4.S4a). Similar to the device in Fig. 4.2c of the main text, IcRn in Fig. 4.S4 

varies little at high doping and, again, yields a relatively small ratio of eIcRn/ < 1. 

Furthermore, Fig. 4.S4b shows that at high electron doping Ic rapidly increases with 

decreasing T, even for the shortest junction with L = 0.25 m. This behavior again 

indicates that we are not in the short-L limit described by eq. (1) of the main text, 

where temperature should play little role, except for reducing the superconducting 

gap at kBT comparable to  where kB is the Boltzmann constant. As discussed above, 

for long devices with ETh/ <1, the critical current Ic is limited by ETh rather than  

and, using the scaling arguments that are also valid for long diffusive junctions
24

, we 

can write 

𝑒𝐼𝑐𝑅𝑛 ~ 𝐸𝑇ℎ𝑓 (
𝐸𝑇ℎ

𝑘𝐵𝑇
)                                           (S2). 

In our case, ETh  hvF/L, and eq. (S2) yields IcRn  1/L at low T as expected. We also 

examined the validity of eq. (S2) at finite T by plotting IcRn/ETh as a function of 

ETh/kBT (Fig. 4.S4d). One can see that the data for all L and T collapse on a single 

curve. Although the function f(x) remains to be determined theoretically, which 

would require taking into account angle-dependent contributions of different 

trajectories responsible for Andreev bound states and including the effect of Klein 

tunneling
S4,S5,S7,23

, the universal behavior in Fig. 4.S4d leaves little doubt that the 

observed critical current is determined by the Thouless energy, hvF/L.  
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Fig. 4.S4 Effect of length, doping and temperature on the critical supercurrent 

(a) Normal-state resistance of 5 adjacent junctions fabricated on the same graphene crystal. 

The NP shifts to increasingly negative values for shorter junctions because of doping 

induced by the Nb/Ta contacts. Note that Rn can be determined by measuring at temperatures 

T > TC or currents I > Ic. In both cases, we find the same amplitude of oscillations in Rn. (b) 

Temperature dependence of Ic at high electron doping. (c) Low-temperature RnIc as a 

function of gate voltage. (d) Scaling dependence of eq. (S2) holds accurately for all the 

junctions, except for the longest one among them (L = 0.5 m) which shows stronger T 

dependence. For such long junctions, I-V curves are found more “rounded” near the 

superconducting-normal transition. This probably indicates that the supercurrent is 

suppressed by thermal fluctuations. (e) Examples of I-V curves and the IcRn product (f) for 

such SGS devices (L = 1.5 m).  
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Note that in contrast to Fig. 4.2c of the main text, IcRn in Fig. 4.S4c shows a 

pronounced minimum rather than maximum at the NP. In principle, such a minimum 

can indicate specular Andreev reflection. Unfortunately, we find that different 

devices exhibit qualitatively different behavior of IcRn at the NP as illustrated by Fig. 

4.S4c and Fig. 4.2c. Moreover, although our devices had very low charge 

inhomogeneity at the NP, it is still 10
10

 cm
-2

, which translates into smearing of the 

Dirac point by ≈10 meV, an order of magnitude larger than . Specular Andreev 

reflection is predicted for the opposite inequality
3
. This fact combined with poor 

reproducibility for different devices does not allow us to make conclusions about the 

nature of Andreev bound states at the neutrality point.  

 

Fig. 4.S5 Sub-gap multiple Andreev reflection in a FP cavity 

(a) Differential resistance for hole doping of the device in Figs. 4.2a,b of the main text. 

Larger currents I are used here. Different resistance is calculated using I-V curves such as in 

Fig. 4.2a. (b) Differential resistance as a function of bias Vb rather than current. (c) The same 

characteristics as in (a) but plotted as a function of Vb rather than I.  

Figs. 4.2 of the main text showed pronounced Fabry-Pérot oscillations in the critical 

current Ic,e. As discussed in the main text, these oscillations cannot be explained 

simply by FP oscillations in Rn and require a more fundamental mechanism. We have 

argued in the main text that the oscillations arise due to changes in ETh that depends 

on the effective length of Andreev bound states and, therefore, also changes with 

changing Tr. This mechanism is straightforward and should be expected to play a 

certain role in any SNS junction with FP oscillations. In principle, one can try an 

alternative explanation and attribute the oscillatory behavior to FP oscillations in the 

gap  itself. We confirmed experimentally that this was not the case. Indeed, Fig. 

4.S5 shows how features in the differential I-V characteristics of our SGS devices 
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evolve as a function of doping, current and bias. Again, the FP transmission 

resonances result in a pronounced oscillatory pattern in the critical current (Fig. 

4.S5a). For I > Ic, the FB oscillations are mirrored in by oscillation multiple Andreev 

reflections (MAR)
2,26

. Fig. 4.S5b,c show the same differential I-V characteristics but 

as a function of applied bias Vb rather than I. The peaks due to MAR occur at Vb  

2/N (Fig. 4.S5b), and their positions do not exhibit any discernable FP oscillations 

that would indicate oscillations in . The somewhat wavy pattern in Fig. 4.S5c 

appears only due to oscillatory broadening of MAR peaks. 

The observed MAR also allow an alternative estimate
S8

 for the transmission 

coefficient Tr using the differential resistance at biases below Δ. In the case of a 

single NS interface, it is known that the sub-gap resistance is half the Rn value if Tr = 

1 (perfect normal-electron transmission and only Andreev reflections at the interface). 

When a finite barrier strength Z is introduced, sub-gap dV/dI increases and can be 

calculated using this parameter
2
 all the way up to the tunnel limit (Tr = 0). In the case 

of SNS junctions, calculations are more complicated and sensitive to employed 

models
S8

. This is particularly valid for wide ballistic junctions where gap-less 

Andreev spectrum has been predicted
S9

. It is nevertheless instructive to compare the 

observed MAR behavior with the simplest model
S8

. To this end, we focus on the sub-

gap differential resistance at Vb < 0.5 mV, significantly below Δ/e, where individual 

Andreev resonances are no longer resolved. Fig. 4.S5b yields dV/dI  0.5Rn for 

positive Vg (3 bottom curves), and dV/dI  0.8Rn for negative Vg, (here Rn is 

determined as dV/dI at large biases Vb > 2Δ/e, where its value reaches close to the 

normal-state resistance measured above TC). Repeating the previous analysis
S8

, we 

find Z  0.5 and 0.75, which corresponds to 𝑇𝑟 =
1

1+𝑍2  0.6 and 0.8 for electron and 

hole doping, respectively. This is in good agreement with Tr  0.8 found from the 

normal-state contact resistance for electron doping. As for hole doping, the MAR 

analysis suggests twice higher transmission compared with the normal-state analysis, 

which can be attributed to pn junctions and Klein tunneling, the effects not currently 

included in theory. Finally, we note that theory predicts
S8

 a minimum rather than a 

peak for our MAR curves at Vb = 2Δ/e. However, it was shown experimentally
S10

 that 

minima usually appear for superconductors with long coherence lengths (e.g., 



4-24 
 

aluminum) whereas MAR spectroscopy for Nb junctions previously reported peaks, 

similar to our results. 

5. Reproducibility of proximity patterns in high magnetic fields  

In the high-flux regime, the supercurrent randomly changed with varying 𝐵 and Vg. 

Fluctuating patterns such as the one shown in Fig. 4.3e of the main text were found 

to be stable over a period of several hours and reproducible if B was swept up and 

down (Fig. 4.S6). This proves that the observed fluctuations are not caused by flux 

creep in the adjacent superconducting contacts. Such creep can indeed appear due to 

movements of pinned vortices and is an irreversible process. Flux jumps could be 

observed over longer time scales and with varying B over intervals larger than 

several mT. The flux instability is easily distinguishable leading to abrupt changes in 

proximity patterns as illustrated in Fig. 4.S7. 

 

Fig. 4.S6 Reproducibility 

Differential resistance maps measured by sweeping Vg and gradually increasing (a) and 

decreasing (b) B in steps of 0.1 mT. Time elapsed between the shown maps was 12 h.  
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Fig. 4.S7 Abrupt changes in a proximity pattern caused by flux creep 

The map was acquired over a period of 3.8 days. The arrows indicate some of the 

discontinuities caused by flux jumps between consecutive sweeps of Vg.  

6. Correlation scales 

Characteristic scales for the observed fluctuations in Ic were calculated as follows. 

For a given set of 𝑁 resistance values 𝑅𝑖 measured at magnetic fields 𝐵𝑖 = 𝐵0 + 𝑖Δ𝐵 

where 0 ≤ 𝑖 < 𝑁  is an integer and Δ𝐵  is the spacing in B between consecutive 

sweeps, the autocorrelation 𝐾𝑛
(𝐵)

at a scale 𝛿𝐵 = 𝑛Δ𝐵  (0 ≤ 𝑛 < 𝑁 is an integer) is 

given by 

𝐾𝑛
(𝐵)

= [∑
(𝑅𝑖)2

𝑁𝑖 ]
−1

∑
𝑅𝑖𝑅𝑖+𝑛

𝑁−𝑛𝑖 . 

Similarly, given a discrete set of 𝑁  resistances 𝑅𝑗  measured at Fermi energies 

휀𝑗 = 휀0 + 𝑗Δ휀  (where 𝑗  is an integer and Δ휀  is the spacing of energies) the 

autocorrelation 𝐾𝑛
(𝜀)

 for an energy scale 𝛿휀 = 𝑛Δ휀 is given by 

𝐾𝑛
(𝜀)

= [∑
(𝑅𝑗)

2

𝑁𝑗 ]

−1

∑
𝑅𝑗𝑅𝑗+𝑛

𝑁−𝑛𝑗 . 

Fig. 4.3e of the main text and Fig. 4.S8a show two maps of the fluctuating proximity 

effect. For each of them, the found autocorrelations 𝐾𝑛
(𝐵)

 are averaged over all εF to 

find 〈𝐾𝑛
(𝐵)〉, and the autocorrelations 𝐾𝑛

(𝜀)
 are averaged over all 𝐵 to find  〈𝐾𝑛

(𝜀)〉. The 
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averaged autocorrelations are shown in Figs 4.S8b,c. The plots yield a characteristic 

scale for suppression of Ic with changing B as 0.5 mT (Fig. 4.S8b). It requires 

changes in εF by  1.7 meV at low n whereas somewhat smaller changes of 1 meV 

are required at high n (Fig. 4.S8c). The latter can be understood by longer effective 

lengths at higher doping, which should lead to smaller ETh, as discussed in the main 

text.  

 

Fig. 4.S8 Characteristic scales for high-field Andreev bound states 

(a) Another example of dV/dI maps, covering a different range of doping with respect to the 

map in Fig. 4.3e of the main text. (b) and (c) are autocorrelation functions 〈𝐾(𝐵)〉 and 〈𝐾(𝜀)〉, 

respectively, for maps in (a) and of Fig. 4.3e, which are labelled as low and high εF , 

respectively. The large peak at zero B arises due to a finite interval (0.1 mT) between 

consecutive sweeps.  

7. Andreev bound states at zero and finite magnetic fields 

The supercurrent through a normal metal placed between two superconductors is 

mediated by a process known as Andreev reflection
26

. In this process (Fig. 4.S9a), an 

electron arriving at the NS interface forms a Cooper pair with another electron found 

near the Fermi energy F, and this sends a hole back into the Fermi sea of the normal 

metal. The transfer of a Cooper pair through an SNS junction requires two such 

reflections at the opposite NS interfaces (‘double’ Andreev process, in which the 

involved electrons (e) and holes (h) retrace each other’s trajectories). This leads to 

the formation of so called Andreev bound states.  

If e and h forming Andreev states have exactly opposite momenta (p = -p’), their 

phases acquired along trajectories inside the normal metal cancel exactly. Andreev 

bound states can also be formed by e and h with slightly different momenta, provided 
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the carriers reside within the superconducting gap  (that is, |p - p’|vF < ) and the 

phase shift acquired along the retracing e-h trajectories,  = |p - p’|/, is small. This 

leads to the known constraint,  < hvF/ = ETh where  is the effective length 

determined by the time charge carriers spend in graphene. This length is larger than L 

because of a finite probability of reflection at contacts and different reflection angles 

with respect to the GS interface. Andreev-type trajectories with longer effective 

length  do not contribute to the transfer of Cooper pairs.  

Following a consideration similar to the above, one can find that e and h involved in 

the formation of Andreev bound states do not have to retrace each other exactly and 

may have slightly misaligned trajectories as illustrated in the top part of Fig. 4.S9a. 

The conversion of two electrons from a 2D metal into a Cooper pair necessitates the 

condition 𝑝𝑦 = −𝑝′𝑦   (indices x and y refer to the directions perpendicular and 

parallel to the GS interface, respectively). On the other hand, restrictions on the x-

components of the momenta [𝑝𝑥 = (휀/𝑣) cos 𝜃 and    𝑝′𝑥 = (휀′/𝑣) cos 𝜃′]  are set by 

the requirement |𝑣𝐹√𝑝𝑥
2 + 𝑝𝑦

2 − εF| < ∆  , which means that energies of the charge 

carriers involved in Andreev bound states should reside within the gap. This sets the 

following constraint, 

cot θ′ − cot θ ≈
θ′−θ

sin2 θ
<

Δ/(𝑣𝐹 cos θ)

𝑝 sin θ 
 , 

on the misalignment angle, δθ = θ − θ′ , between ballistic e and h trajectories 

forming Andreev bound states (Fig. 4.S9a). The above expression can be simplified 

as 

δθ <
Δ

F 
tan θ                                                (S3). 
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Fig. 4.S9 Andreev bound states and allowed misalignment of contributing 

trajectories 

(a) The bottom set of e-h trajectories illustrates the standard double Andreev process. Top: 

Slightly misaligned e-h trajectories can also form Andreev bound states if their positions at 

the two NS interfaces are spatially close. The constraints are given by equations (S3) and 

(S4). (b) Similarly, slightly curved cyclotron trajectories (rc >> L) can form Andreev bound 

states with constraints set by eq. (S4).  

Another important requirement is that the ends of e-h trajectories should not be 

farther away from each other than max [, F] (see Fig. 4.9a). Otherwise, two 

electrons cannot form a Cooper pair inside a superconductor, where its size is given 

by the coherence length . On the other hand, positions of two electrons within a 

normal metal are indistinguishable if they are separated by less than F. For all 

carrier densities in our experiments,  < F, which results in the following condition, 

 
𝐿δθ

cos2 θ
< λF. Finally, one more limitation is set by the requirement that the phase shift 

between an electron and Andreev-reflected hole should be small, which leads to 

(sec θ′ − sec θ)𝐿/λF ≈
𝐿δθ sin θ

λF cos2 θ
< 1. The latter two constraints are nearly identical 

and require  

δθ <
λF

𝐿 
cos2 θ.                                                 (S4) 

If   ETh = hvF/L (see the main text), constraints (S3) and (S4) have similar 

strengths. Note that eq. (S3) discriminates against Cooper pairs transferred 

perpendicular to the NS interface, whereas eq. (S4) against those at shallow angles. 
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For our devices, we estimate that Andreev bound states with  1 and δθ less than a 

couple of degrees should dominate Cooper-pair transport. 

The supercurrent provided by Andreev bound states is suppressed by magnetic field. 

In low B, the dominant effect is interference between Cooper pairs that cross the 

normal metal along different paths. If BS  0, Cooper pairs acquire broadly 

distributed phase shifts, and this leads to the oscillatory suppression of the 

supercurrent as described by eq. (2) of the main text.  

In ballistic devices with large L, magnetic field curves e-h trajectories, leading to 

their misalignment such that Andreev-reflected electrons and holes can no longer 

retrace each other exactly
21,S11

. The effect is rather similar to the zero-B 

misalignment described above but is caused by a finite cyclotron radius, rc =

𝑝𝐹/𝑒𝐵 = ℏ√π𝑛/𝑒𝐵  (Fig. 4.S9b). For e-h trajectories leaving a superconducting 

contact at an angle  (Fig. 4.S9b), the cyclotron curvature leads to misalignment  

δθ ~
𝐿

𝑟𝑐 cos θ
                                                    (S5). 

Combined with the constraint set by (S3), eq. (S5) yields 𝑟𝑐 >  
F

Δ 
𝐿 , in order to 

support Andreev bound states at finite B. This condition is satisfied if B < B
*
 where  

𝐵∗  
Δ

𝑒𝐿𝑣𝐹 
                                                     (S6). 

For our ballistic SGS devices with submicron L, B
*
 is a few mT. For B > B

*
, it 

becomes impossible for Andreev-reflected electrons and holes to form closed loops 

that are necessary to transfer Cooper pairs. Accordingly, the supercurrent in the 

graphene bulk is suppressed.  

One may wonder whether Andreev bound states can be formed for B >> B
*
 by a 

fortuitous combination of a number of segments of cyclotron orbits as charge carriers 

bounce between two superconducting contacts. The answer is No. As shown in Fig. 

4.S10, the condition B >> B
*
 results in long open trajectories. Indeed, each Andreev 

reflection process involves two segments of the full cyclotron orbit, one for an 

electron and the other for a hole (Fig. 4.S10b). Each consecutive reflection increases 

the deflection angle by   L/rc, until the final segment (#1 and 6 in Fig. 4.S10) 

brings the quasiparticle back to the same NS interface where the last Andreev 
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reflection took place. After this step, a reversed sequence of Andreev reflections 

follows, transferring the charge in the opposite direction. This results in an infinite 

path containing periodic sets of star-shaped e-h orbits bouncing between the 

superconducting leads. As shown in Fig. 4.S10b, the number N of Andreev processes 

linking sets of (N +1)-pointed stars is determined simply by int[2rc/L]. The shape of 

such open trajectories is quite generic: they describe the electron drift along a 

graphene strip. It is also worth of mentioning that, depending on partition of the 

cyclotron orbit in Fig. 4.S10b, such drifts can be in both ‘up’ and ‘down’ directions 

in Fig. 4.S10a. Among such star-shaped orbits, there is a special one that has a zero 

drift velocity and, hence, it is closed. Nonetheless, even the special orbit cannot 

support an Andreev bound state, because half such an orbit provides the electron 

(hole) transfer from one S contact to the other whereas the other half brings it back.  

 

Fig. 4.S10 No Andreev bound states for strongly curved trajectories 

(a) Typical trajectory formed by Andreev-reflected electrons and holes for B > B
*
. (b) 

Ballistic orbits in (a) correspond to well-defined sectors of the full cyclotron orbit. Labelling 

of the segments is the same in both plots.  

Although closed Andreev trajectories are forbidden in the ballistic bulk for B >> B
*
, 

they are still allowed near graphene edges. Two examples of such orbits are shown in 

Fig. 4.S11, and many others can be drawn depending on scattering details and B. 

These near-edge orbits have closed ends at both NS interfaces. This means that, 

despite different lengths of e and h parts (solid and dashed curves in Fig. 4.S11), the 

e-h trajectories transfer Cooper pairs between the superconducting contacts. In a way, 

a combination of cyclotron motion and scattering from graphene edges creates a 
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‘chaotic ballistic billiard’ near SGS junction’s edges. For each Andreev state, its 

current carrying capacity IQ is  e/h as discussed in the main text.  

 

Fig. 4.S11 Andreev bound states near graphene edges 

Examples of closed Andreev trajectories due to diffusive scattering at graphene edges.  

In contrast to the retracing e-h paths at B =0, for which semiclassical phases of 

propagating electrons and holes near the Fermi level almost cancel each other, phase 

differences acquired along non-retracing paths in large B are large and random. If we 

average over all imaginable geometrical paths, the supercurrent would be zero. 

However, for each realisation of a disordered SNS device, the characteristic values of 

mesoscopic fluctuations are known
18,28-30

 to be given by  √〈𝛿𝐺2〉~
𝑒2

ℎ
 and 𝐼𝑐 =

√〈𝛿𝐼𝑐
2〉~𝐼𝑄 =

𝑒Δ

ℎ
 . The same fluctuations are expected for the case of chaotic ballistic 

conductors. The latter statement is based on the analogy between mesoscopic 

fluctuations in conductance
18,28

 and supercurrent
17,18,29,30

: both originate from 

interference of electron waves propagating along different paths. This mesoscopic 

effect provides a supercurrent with a random phase, different at the opposite 

graphene edges. These two edge contributions results in Aharonov-Bohm-type 

oscillations in the total supercurrent as a function of the magnetic flux  through the 

junction, which have a characteristic periodicity of about the flux quantum, 0. The 

analogy with chaotic billiards enables us to estimate the change in the Fermi energy 

needed to change the sample realization as the Thouless correlation energy ETh  

hvF/ determined by the typical length  of Andreev e-h-e path (see the main text). 

For the case of a finite magnetic field (Fig. 4.3h),   √𝐿𝑟𝑐 for rc >> L and   L for 

L/2 < rc < L, which yields ETh  1meV, the scale at which the interference pattern 

should change with changing gate voltage. 
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Finally, the situation changes again if rc < L/2, that is, if the cyclotron orbit becomes 

small enough to fit within the graphene strip without touching the NS interfaces. In 

this case, which takes place in B > 
2ℏ

𝑒𝐿
√𝜋𝑛(𝑉𝑔), charge carriers can be transferred 

between the contacts only by skipping orbits and only in one direction at each of the 

two graphene edges (Fig. 4.3i of the main text). As a result, the transfer of Cooper 

pairs is no longer possible anywhere, either along graphene edges or in the bulk.  

8. High-field cutoff in the proximity effect 

It was argued above and indicated in the main text (Fig. 4.3d) that random Andreev-

bound states could survive in high B only until cyclotron orbits start fit between 

superconducting contacts. To further substantiate this experimentally, Fig. 4.S12 

shows the differential resistance R measured over a large range of B and Vg. Three 

different regions can clearly be distinguished for the case of positive Vg (electron 

doping; no pn junctions at the Nb contacts). One of the regions corresponds to the 

conventional Josephson effect and is found in a narrow interval of small B (black 

stripe in Fig. 4.S12a). Here the cyclotron radius rc >> L, and the proximity is 

mediated by practically straight Andreev bound states, that is, B < B
*
 (Fig. 4.S12b). 

In high B, our ballistic devices enter the opposite regime, rc << L (Fig. 4.S12d), 

which results in skipping trajectories and Shubnikov-de Haas oscillations, 

characteristic of the quantum Hall regime in the two-terminal geometry. In high B, 

clear quantum Hall plateaus develop (Fig. 4.S12e). In between the two extremes lies 

a wide range of B and Vg in which pockets of the proximity superconductivity were 

observed (blue region). Boundaries between the three regimes are clearly seen due to 

changes in color in Fig. 4.S12a. From the high-B side, the boundary is well described 

by the condition 2rc = L which is shown by the black curve. In the blue region, the 

proximity effect randomly occurs all the way up to the high-B boundary (see Fig. 

4.3d of the main text). A finite resistance that appears in the blue region of Fig. 

4.S12a is due to sampling and averaging over relatively large intervals of B. On this 

scale (>> 1mT), individual superconducting states such as in Figs. 4.3e and 4.S8a 

cannot be resolved but their occurrence frequency is reflected in different shades of 

blue. 

Note that high-B pockets of the superconducting proximity could not be observed for 

hole doping. Instead clear quantum oscillations cover nearly the entire interval of B 
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and n (Fig. 4.S12a). The latter oscillations continue first as an extension of FP 

oscillations in low B (see Fig. 4.2b of the main text) but then they exhibit a phase 

shift and start bending. This behavior is attributed
S4,23

 to Klein tunneling through the 

hole-doped graphene strip between n-doped contact regions. It is important to note 

that Klein tunneling collimates electron and hole trajectories perpendicular to pn 

interfaces
S5

. To form near-edge Andreev states shown in Fig. 4.S11, it requires 

cyclotron trajectories tilted towards the NS interface and, therefore, the Klein-

tunneling collimation is expected to strongly suppress such Andreev states. This is 

likely to be the reason that no high-B proximity states could be observed in this hole-

doping regime.  

 

Fig. 4.S12 Characteristic regimes in ballistic Josephson junctions 

 (a) Resistance map obtained using the probing current of 2 nA. The Josephson effect 

mediated by the conventional Andreev bound states shows up in black. Blue: Pockets of 

proximity superconductivity are observed for electron doping. (b-d) Sketches of electron and 

Andreev-reflected hole trajectories in graphene in low (b), intermediate (c) and high B (d). In 

(b), graphene can support large supercurrents. In (c), the supercurrent is suppressed because 

the cyclotron motion prevents e and h trajectories from retracing each other. In this case, the 

proximity can still be mediated by Cooper pairs that cross the junction near graphene edges. 

In the high-B regime (d), no Andreev states are possible. (e) Quantum Hall plateaus observed 

in high B. Our Nb contacts remain superconducting at B ≤ 3 T. No sign of superconductivity 

mediated by edge states could be observed, which is not surprising because such states are 

unidirectional along each edge and, therefore, cannot mediate the transfer of Cooper pairs 

across graphene. 
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9. Spatial distribution of supercurrents 

A non-uniform distribution of supercurrent through an SNS junction can appear due 

to fluctuations in its length, charge inhomogeneity in graphene, or a non-uniform Nb-

graphene contact resistance. It has also been shown in literature that zigzag segments 

at graphene edges may lead to enhanced conductance, even for strongly disordered, 

non-crystallographic egdes
S12,S13

. Furthermore, in the strip geometry, an extended 

back gate can causes inhomogeneous doping for purely electrostatic reasons
S14

. 

Therefore, it is reasonable to ask whether the observed high-B Andreev states could 

also be enhanced by such mechanisms that influence local or near-edge conductance.  

First of all, a clear indication of high homogeneity of our devices comes from the 

pronounced FP oscillations that would be smeared if the Fermi wavelength λF would 

noticeably change across the graphene junctions (in the W direction). Second, change 

inhomogeneity in our devices is estimated to be only ≈10
10

cm
-2

 (see the main text) 

whereas L is lithographically defined with accuracy better than 10%; see Fig. 4.1a 

and Fig. 4.S1). Third, all the studied junctions exhibited similar behavior consistent 

with the explanation provided in Section 8. Nonetheless, to address the issue of 

supercurrent uniformity further, we have calculated the inverse Fourier transform for 

the observed Fraunhofer patterns in low B (see Fig. 4.3a of the main text). The 

Fourier transform yields directly the spatial distribution of supercurrents across the 

junction
2,S15

. An example of our analysis is shown Figs. 4.S13a,b, which confirms a 

fairly uniform supercurrent distribution along the junction. One can see in Fig. 

4.S13b that Ic varies by approximately 10% but this is probably an overestimate 

because the Fourier transform’s accuracy was limited by the finite B window for the 

Fraunhofer pattern that has to be analyzed for B < B
*
. We emphasize that distribution 

patterns similar to the one in Fig. 4.S13b were obtained for many doping levels and 

many devices.  
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Fig. 4.S13 Uniform supercurrent distribution in low magnetic fields 

(a) Another example of the observed Fraunhofer patterns. (b) Supercurrent distribution along 

W, which was calculated as the inverse Fourier transform of the data in (a) following the 

procedures described in refs 16 and S15. (c) Diffraction patterns measured for several 

representative gate voltages. The central peak is twice wider than the other peaks, which is a 

clear signature that, in B < B
*
, no significant portion of supercurrent flows along graphene 

edges, in contrast to the observations of ref.
S16

.  

A particularly important case is the edge inhomogeneity
S12-S14

 such that the 

supercurrent can predominantly flow along more conductive graphene edges
16

. This 

is clearly not the case of our SGS devices. Indeed, edge inhomogeneity leads to 

easily distinguishable signatures in the Fraunhofer pattern. For weak inhomogeneity, 

the central peak in the Fraunhofer pattern first narrows and, if the near-edge 

supercurrent becomes significant, the peak splits into two
2,16

. As shown in Fig. 

4.S13c, no narrowing of the central Fraunhofer peak could be detected at any doping 

including the NP, indicating that in low B the supercurrent flows uniformly through 

the graphene bulk.  

As for structural non-uniformities in graphene or at its interface, they can also lead to 

a finite localized supercurrent surviving even in high B, similar to the case of 

inhomogeneous tunnel junctions
S17

. However, in this case the envelope for the 

maxima in Fraunhofer oscillations should tend to a finite Ic value
S17

 rather than to 

zero as in Figs 4.3a and 4.S13a. Furthermore, in the presence of several 

superconducting shorts, they should smear out the Fraunhofer pattern above a few 

flux quanta
S17

, in contrast to the behavior observed in our SGS devices.  
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10. Measuring small critical currents for individual Andreev bound states 

Ic is usually defined as the current at which the voltage measured across the junction 

is indistinguishable from background noise. This condition is easy to achieve for 

large Josephson junctions and even in our case of low-B measurements where the 

supercurrent flows uniformly and the Josephson energy eIcRn is higher than thermal 

one. However, in a magnetic field, we encounter the case of individual 

superconducting states with small critical currents and IcRn as small as 2 µV (see the 

inset in Fig. 4.3d), which translates into thermal energy of 20 mK. In this case, 

voltage fluctuations smear the standard Josephson I-V characteristics and it is 

difficult to observe a clearly-defined zero resistance state. Whereas the 

superconductivity can still be verified for individual measurements such as in the 

inset of Fig. 4.3d by using long averaging times, it is impractical to use such time 

consuming measurements when dealing with a large parameter space such as, e.g., in 

Figs 4.3a-c of the main text. In the latter measurements, we have used a quicker and 

more convenient way to determine the critical current as explained by Fig. 4.S14. To 

this end, we have used the half width at half height on differential resistance curves 

to estimate Ic. This estimate is rather insensitive to noise and fluctuations as Fig. 

4.S14 shows.  

 

Fig. 4.S14 Defining small critical currents 

Typical differential resistance measurements of the same SGS junction but at different levels 

of external noise. The critical current is clearly defined as 300 nA in the case of low noise 
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(red curve). If one of the filters in our measurement system was removed, this resulted in a 

higher noise level and smearing of the I-V characteristics (black curve). Nevertheless, the 

notion of half width at half height yields the same value of Ic for the black curve as for the 

red one.  
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Chapter 5  

Edge currents shunt the insulating bulk in gapped 

graphene 

The results demonstrated in chapter 5 are from the publication:  ‘Edge currents shunt 

the insulating bulk in gapped graphene’ arXiv:1612.05902 (under review of  Nature 

communications). 

The gapless nature of graphene is protected by its crystal symmetry. An energy gap 

can be opened in bilayer graphene by applying a bias between two graphene layers. 

However, such energy gap up to few hundred meV in bilayer graphene rarely leads 

to an ON/OFF ratio above 100 in realistic devices. 

We try to answer this puzzle by studying the spatial supercurrent flow in graphene 

Josephson junctions. While we gradually open a gap in bilayer graphene, the uniform 

supercurrent flow switches to an edge-dominated distribution. Similar phenomenon 

occurs in graphene/hBN superlattices. We carry out transport measurements in 

bilayer graphene Hall bar and Corbino devices. For Hall bar geometry, the resistance 

saturates to few resistance quanta at finite gap. In contrast, the resistance in ‘edgeless’ 

Corbino devices keep increasing. Our results show that due to the topology of 

gapped graphene systems the insulating bulk is shunted by the edge channels. 

My personal contribution to this work is: I generated the idea of using Josephson 

junctions to detect the edge currents. I carried out the electrical transport 

measurements, analysed the data, prepared all the figures for main text and 

supplementary information, and participated to writing the manuscript. 

The acknowledgements for the paper are: A.K.G., M.B.S. and M.J.Z. designed the 

experiment. M.B.S., A.V.K. and S.H. fabricated the devices. M.J.Z., M.D.T., J.R.P., 

D.B. and G.L.Y. carried out the transport measurements. M.J.Z., M.D.T., J.R.P., 

A.K.G. and M.B.S. analysed and interpreted the data. M.P. provided theory support. 

K.W. and T.T. supplied hBN crystals. A.M. and I.J.V.-M. helped with experiment 

and simulation. M.B.S., M.J.Z., J.P.R. and A.K.G. wrote the manuscript with input 
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An energy gap can be opened in the electronic spectrum of graphene by lifting 

its sublattice symmetry
1-4

. In bilayers, it is possible to open gaps as large as 0.2 

eV. However, these gaps have rarely led to a highly insulating state expected for 

such semiconductors at low temperatures
5-11

. This long-standing puzzle is 

usually explained by charge inhomogeneity
6-10

. Here we investigate spatial 

distributions of proximity-induced superconducting currents in gapped 

graphene and, also, compare measurements in the Hall bar and Corbino 

geometries in the normal-state. By gradually opening the gap in bilayer 

graphene, we find that the supercurrent at the charge neutrality point changes 

from uniform to such that it propagates along narrow stripes near graphene 

edges. Similar stripes are found in gapped monolayers. These observations are 

corroborated by using the ‘edgeless’ Corbino geometry in which case resistivity 

at the neutrality point increases exponentially with increasing the gap, as 

expected for an ordinary semiconductor. This is in contrast to the Hall bar 

geometry where resistivity measured under similar conditions saturates to 

values of only about a few resistance quanta. Our results demonstrate an edge-

dominated current flow inherently related to the gapped graphene spectra
12-14

. 
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The gapless spectra of mono- and bi- layer graphene (MLG and BLG, respectively) 

are protected by symmetry of their crystal lattices. If the symmetry is broken by 

interaction with a substrate
3,4

 or by applying an electric field
1,2

, an energy gap opens 

in the spectrum. In BLG, its size Egap can be controlled by the displacement field D 

applied between the two graphene layers. Large gaps were found using optical 

methods
5
 and extracted from temperature (T) dependences of resistivity  at 

sufficiently high T
6-10

. Their values are in good agreement with theory.  On the other 

hand, at low T (typically, below 50 K),  at the charge neutrality point (CNP) in 

gapped graphene is found to saturate to relatively low values that are incompatible 

with large Egap
6-11

. This disagreement is attributed to remnant charge 

inhomogeneity
6,8,10

 that results in hopping conductivity and, therefore, weakens T 

dependences. Alternative models to explain the subgap conductivity were proposed, 

too. They rely on the nontrivial topology of Dirac bands in gapped MLG and BLG
12-

15
, which gives rise to valley-polarized currents

13-15
. Large nonlocal resistances were 

reported for both graphene systems at the CNP and explained by valley currents 

propagating through the charge-neutral bulk
16-18

. Graphene edges
12,15

, p-n 

junctions
14,19 

and stacking boundaries
20

 can also support topological currents. These 

conductive channels were suggested to shunt the insulating bulk, leading to a finite . 

Experimentally, the situation is even more complicated because additional 

conductivity may appear for trivial reasons such as charge inhomogeneity induced by 

chemical or electrostatic doping
21-23

. Here we show that there are intrinsic conductive 

channels near edges of charge-neutral graphene, which emerge if an energy gap is 

opened in its spectrum. In contrast to the naive expectation, at low disorder levels the 

gap is efficiently shunted, suggesting a significant role of the localization length at 

the device edge. We tentatively attribute the edge channels to the presence of 

unavoidable defects such as, e.g., short zigzag-edge segments
12

. Their wavefunctions 

extend deep into the insulating bulk where they sufficiently overlap to create a quasi-

one-dimensional impurity band with little intervalley scattering and high 

conductivity. 

We start with discussing behavior observed for superconductor-graphene-

superconductor (SGS) Josephson junctions. Our devices were short and wide 

graphene crystals that connected superconducting Nb electrodes
24 

(Fig. 5.1). Each 

device contained several such SGS junctions with the length L varying from 300 to 
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500 nm and the width W from 3 to 5 µm. To ensure highest possible quality
24

, 

graphene was encapsulated between hexagonal boron nitride (hBN) crystals with the 

upper hBN serving as a top-gate dielectric and the Si/SiO2 substrate as a bottom gate 

(Fig. 5.1b). For details of device fabrication and characterization we refer to Methods 

and Supplementary Information (SI). By measuring the critical current Ic as a 

function of perpendicular magnetic field B, the local density Js(x) in the x direction 

perpendicular to the super-current flow can be deduced
25

, as illustrated in Fig. 5.1c,d. 

This technique is well established and was previously used to examine, for example, 

edge states in topological insulators
26

 and wave-guided states in graphene
22

. In our 

report, we exploit the electrostatic control of the BLG spectrum to examine how Js(x) 

changes with opening the gap.  

 

Fig. 5.1 Gated Josephson junctions and spatial distribution of supercurrents 

a, Electron micrograph  of our typical device (in false color). Nb leads (green) are connected 

to BLG (its edges are indicated by red dashes). The top gate is shown in yellow. b, 

Schematics of such junctions. c, Illustration of uniform and edge-dominated current flow 

through Josephson junctions (top and bottom panels, respectively). d, The corresponding 

behavior of the critical current Ic as a function of B. Ic is related to Js(x) by the equation 

shown in d. For a uniform current flow, Ic should exhibit a Fraunhofer-like pattern (top panel) 

such that the supercurrent goes to zero each time an integer number N of magnetic flux 

quanta 0 thread through the junction. Maxima in Ic between zeros also become smaller with 

increasing N. For the flow along edges (bottom panel), Ic is minimal for half-integer flux 
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values  = (N+1/2)0, and maxima in Ic are independent of B. The spatial distribution Js(x) 

can be found
24,25

 from Ic(B) using the inverse FFT. Due to a finite interval of  over which 

the interference pattern is usually observed experimentally, Js(x) obtained from the FFT 

analysis are usually smeared over the x-axis as shown schematically in c.  

By varying the top and bottom gate voltages (Vtg and Vbg, respectively), it is possible 

to keep BLG charge neutral while doping the two graphene layers with carriers of the 

opposite sign (see Fig. 5.2a). This results in the displacement field D(Vtg,Vbg) that 

translates directly into the spectral gap
1,2,5,6

. Its size Egap(D) can be deduced not only 

theoretically but also measured experimentally, as discussed in section 1 of SI. To 

quantify proximity superconductivity in our devices, we define their critical current 

Ic as the current at which the differential resistance dV/dI deviates from zero above 

our noise level
24

. With reference to Fig. 5.2b, Ic corresponds to the edge of the black 

area outlined by bright contours. At high doping (Fermi energy > Egap) and low T, Ic 

is found to depend weakly on D, reaching values of a few µA/m, in agreement with 

the previous reports
22,24,27

. The supercurrent generally decreases with increasing 

junction’s resistance and becomes small at the CNP. Its value depends on Egap (Fig. 

5.2b). Accordingly, the largest Ic in the neutral state is found for zero D (no gap) 

reaching ≈300 nA for the junction shown in Fig. 5.2. The value drops to 2 nA at D = 

0.07 V/nm, which corresponds to Egap ≈ 7 meV. For larger gaps, Ic becomes smaller 

than 1 nA and could no longer be resolved because of a finite temperature (down to 

10 mK) and background noise
24

. 

We analyze changes in the interference pattern, Ic(B), with increasing D (that is, Egap). 

At zero D, we observe the standard Fraunhofer pattern at the CNP, which is basically 

similar to that measured at high doping (cf. two top panels of Fig. 5.2c). Only 

absolute values of Ic are different because of different , as expected
24

. The 

Fraunhofer pattern corresponds to a uniform current flow (Fig. 5.1c,d). In contrast, 

the interference pattern measured at the CNP for a finite gap is qualitatively different 

(Fig. 5.2c; D = 0.055 V/nm). The phase of the oscillations changes by 90 and the 

central lobe becomes twice narrower. In addition, the side lobes no longer decay with 

increasing B but exhibit nearly the same amplitude. Such a pattern resembles the one 

shown schematically in Fig. 5.1d for the case of the supercurrent flowing along edges. 

The only difference with Fig. 5.1d is that in our case the central lobe remains higher 

than the others. For quantitative analysis, we calculated the inverse fast Fourier 
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transform (FFT) of Ic(B), which yielded
26

 the current distributions Js(x) shown in Fig. 

5.2d. The supercurrent is progressively pushed towards device edges with increasing 

the gap. This is already visible for D = 0.025 V/nm but further increase in D 

suppresses the bulk current to practically zero, within the experimental accuracy of 

our FFT analysis (Fig. 5.2d). The accuracy is limited by a finite range of B in which 

the interference pattern could be detected (section 2 of SI).  

 

Fig. 5.2 Redistribution of supercurrent as the gap opens in bilayer graphene 

a, Resistance R of one of our Josephson junctions (3.5 µm wide and 0.4 µm long) above the 

critical T as a function of top and bottom gate voltages. The dashed white line indicates equal 

doping of the two graphene layers with carriers of the same sign. The dashed green line 

marks the CNP (maximum R) and indicates equal doping with opposite-sign carriers. b, 

Differential resistance dV/dI measured along the green line in a at low T and in zero B. 

Transition from the dissipationless regime to a finite voltage drop shows up as a bright curve 

indicating Ic. The vertical line marks the superconducting gap of our Nb films. c, Interference 

patterns in small B. The top panel is for the case of high doping [Ic(B =0) ≈10 µA] and 

indistinguishable from the standard Fraunhofer-like behavior illustrated in Fig. 5.1d. The 

patterns below correspond to progressively larger Egap. Changes in the phase of Fraunhofer 
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oscillations are highlighted by the vertical dashed white lines. d, Extracted spatial profiles of 

the supercurrent density at the CNP for the three values of D in c. 

For completeness, we have also studied SGS junctions that were fabricated using 

monolayer graphene placed on top of hBN and aligned along its crystallographic 

axes. Such alignment (within 1-2) results in opening of a gap of ≈30 meV at the 

main CNP
3,4

, and secondary CNPs appear for high electron and hole doping
3,4,16

. 

Unlike for the case of BLG, Egap cannot be changed in situ in MLG devices, but one 

can still compare interference patterns for neutral and doped states of the same SGS 

junction and, also, use nonaligned junctions as a reference. Fig. 5.3a,b show typical 

behavior of Ic as a function of carrier concentration n for SGS devices made from 

gapped (aligned) and gapless (nonaligned) MLG. In the gapped device, the 

supercurrent is suppressed not only at the main CNP but also at secondary CNPs. For 

all electron and hole concentrations away from the CNPs, both devices exhibit the 

standard Fraunhofer pattern indicating a uniform supercurrent flow (cf. top panels of 

Fig. 5.3c,d). The same is valid at the CNP in gapless graphene (Fig. 5.3d,f). In 

contrast, for gapped MLG, the interference pattern at the main CNP undergoes 

significant changes such that the phase and period of oscillations in Ic change (Fig. 

5.3c; bottom panel), somewhat similar to the behavior of gapped BLG at the CNP. 

Quantitative analysis using FFT again shows that, in gapped MLG, the supercurrent 

flows predominantly along graphene edges for n < 510
10

 cm
-2

 (Fig. 5.3e). The 

figure seems to suggest a shift of conductive channels from edges into the interior. 

This shift originates from the increase in the Fraunhofer period at the CNP in Fig. 

5.3c and corresponds to a decrease in the junction’s effective area. However, we 

believe that this shift arises from non-uniform doping along the current direction. 

Our MLG devices do not have a top gate and this allows doping by metal contacts to 

extend significantly (tens of nm) inside the graphene channel
28

 which reduces the 

effective length of the junction. 
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Fig. 5.3 Interference patterns and supercurrent flow in gapped and non-gapped 

MLG 

a, Differential resistance as a function of carrier concentration n and applied current I for a 

Nb-MLG-Nb junction (5 µm wide and 0.4 µm long). The gap is induced by alignment with 

the bottom hBN crystal. b, Same for encapsulated but nonaligned monolayer graphene (the 

junction is 3 µm wide and 0.35 µm long). c, Interference patterns for gapped MLG at 

relatively high doping (top panel) and at the CNP. d, Same for non-gapped graphene. e,f, 

Corresponding spatial profiles of the current flow. They were calculated using experimental 

patterns such as shown in c and d. Note that graphene edges in e support fairly high 

supercurrent at the CNP whereas there is no indication of any enhanced current density along 

edges for the non-gapped case in f. 

We emphasize that the observed redistribution of supercurrents towards edges is an 

extremely robust effect observed for all 8 gapped-graphene junctions we studied and 

in none without a gap (more than 10)
24

. In principle, one can imagine additional 
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electrostatic and/or chemical doping near graphene edges
21-23

, which would enhance 

their conductivity and, hence, favor local paths for supercurrent. The electrostatic 

doping is ruled out by the fact that edge supercurrents appeared independently of the 

CNP position as a function of gate voltage (residual doping in our devices varied 

from practically zero to < 10
11

 cm
-2

) and were observed for devices with the top gate 

being only a few nm away from the graphene plane, which ensured a uniform electric 

field. Chemical doping at graphene edges was previously reported in non-

encapsulated
21 

and, also, encapsulated but not annealed devices
23

. All our devices 

were encapsulated and thoroughly annealed, and some of them had edges that were 

fully covered by top hBN rather than exposed to air (section 4 of SI). We note that 

the Josephson interference experiment, which confirms an even supercurrent density 

at the two BLG edges, are independent of their profile. Importantly, we have found 

no evidence for enhanced transport along edges of similar but gapless-graphene 

devices. To this end, we refer, for example, to Fig. 5.3 e,f. In the gapped MLG 

device, near-edge Js reaches  100nA/µm. Such supercurrents would certainly be 

visible in the distribution profile of the non-gapped graphene at the CNP in Fig. 5.3f. 

All the above observations point at a critical role of the gap presence in creating local 

edge currents. 

While providing important insights about the current flow, Josephson interference 

experiments are limited to small Egap such that junction’s resistance remains well 

below 1 MOhm allowing superconducting proximity. To address the situation for the 

larger gaps accessible in BLG devices, we compare their normal transport 

characteristics in the Corbino and Hall bar geometries. Because the Corbino 

geometry does not involve edges, such a comparison has previously been exploited 

to investigate the role of edge transport (for example, in the quantum Hall effect
29

). 

A number of dual-gated BLG devices such as shown in Fig. 5.4a were fabricated and 

examined over a wide range of D and T. Our experiments revealed a striking 

difference between  measured in the two geometries. In the Corbino geometry,  at 

the CNP rises exponentially with D and its value is limited only by a finite dielectric 

strength of ≈0.7 V/nm achievable for our hBN (Fig. 5.4b) and, at low T, by leakage 

currents. In contrast, in the Hall bar geometry,  at the CNP saturates already at low 

D < 0.2 V/nm and reaches only to a few tens of kOhms for all our T (Fig. 5.4c). 

Importantly, this behavior is seen under the same measurement conditions and 
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despite the same or higher homogeneity attained for the Hall bar devices. The 

profound difference unambiguously points at a finite conductivity caused by the 

presence of graphene edges, in agreement with the conclusions achieved from our 

Josephson experiments. 

 

Fig. 5.4 Resistivity of charge-neutral bilayer graphene in Corbino and Hall bar 

geometries 

a, Optical image of one of our devices with a Hall bar and two Corbino disks. The left disk is 

colored to indicate source, drain and top gate electrodes. b, Cross-sectional schematics of our 

double-gated Corbino devices. c, Resistivity  at the CNP for Corbino and Hall bar 

geometries as a function of D. For the Corbino device,  changes exponentially over 3 orders 

of magnitude. The Hall bars exhibit saturation to a few RQ. d, Arrhenius plot for  (T). The 

energy gap Egap is calculated from the linear slopes at T > 100 K, which are similar for both 

Corbino and Hall bar geometries. Below 50 K, the Hall bar device exhibits little T 

dependence. Inset: Egap found for various D (symbols). The blue curve is tight-binding 

calculations for the BLG gap from ref.
1
. 

Another noteworthy distinction between the two geometries is their temperature 

dependences at the CNP. For T above 100 K, both Corbino and Hall bar devices 

exhibited the same activation behavior   exp(Egap/2kBT) as expected for a 
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semiconductor with the gap Egap (Fig. 5.4d). Our measurements over a wide range of 

D yielded Egap[meV] ≈ 100×D[V/nm], in quantitative agreement with theory and 

previous reports
5
 (inset of Fig. 5.4d). At lower T, resistivity of the Corbino devices 

continued growing and is well described by hopping conductivity that may involve 

both nearest-neighbor and variable range hopping
6,8-10

 (Fig. 5.4d). On the other hand, 

 (T) found using the Hall bars rapidly saturated below 100 K to values of a few 

resistance quantum RQ=h/e
2
 and changed little (by <30%) with decreasing T down 2 

K. The saturation behavior is similar to that observed for conductance along the line 

junction of oppositely biased BLG
19

, and along walls separating BLG domains with 

AB and BA stacking
20

. 

Two possible scenarios for shunting the insulating state of gapped graphene have 

previously been put forward. Both rely on nontrivial topology of the gapped Dirac 

spectrum. One of them considers electronic states due to short zigzag segments
15

 that 

may be present even at relatively random edges
12

. Although these states decay 

exponentially into the gapped bulk, their penetration length ξ is very long with 

respect to the lattice constant a. For MLG and BLG, ξ can be estimated as  v/𝐸𝑔𝑎𝑝 

and /√𝑚𝐸𝑔𝑎𝑝, respectively, where  is the reduced Planck constant, v the Fermi 

velocity in MLG and m the effective mass in BLG. For our typical gaps, ξ is about 

10–20 nm, much larger than a. This suggests that wavefunctions of isolated zigzag 

states should strongly overlap inside the bulk creating a quasi-one-dimensional (1D) 

band. Moreover, because ξ/a >> 1, the wavefunctions mostly reside in the bulk 

where there are little defects, which ensures that impurity bands are effectively 

protected against backscattering. The situation resembles the modulation doping used 

to achieve high carrier mobilities in semiconductor quantum wells. The observed 

saturation of  to  RQ and the long-range nonlocal resistance reported previously
16-18

 

imply that the mean free path along the quasi-1D channels can reach a micrometer 

scale for high-mobility graphene. Although numerical simulations
12

 yielded zero-T 

localization lengths at least an order of magnitude shorter than this scale, localization 

in the edge channels may be suppressed by a finite T and electron-electron 

interactions that are prominent especially in low-dimensional conductors. Such 

delocalization effects have so far not been investigated theoretically. The invoked 

edge channels would explain our experimental observations. In addition, there is a 
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complementary scenario that also relies on the nontrivial topology of the gapped 

Dirac spectra but may not require zigzag segments. The valley Hall effect is inherent 

to gapped graphene and generates valley currents that flow perpendicular to applied 

electric field
13,16

. If injected from electric contacts into the gapped bulk, they are 

expected to become squeezed towards weakly-conductive edges, similar to what is 

known for the case of the quantum Hall effect and in agreement with recent 

simulations for gapped MLG
14

.  

To conclude, our results show that the insulating state of gapped graphene is 

electrically shorted by narrow edge channels exhibiting high conductivity. This can 

explain low apparent resistivity often observed for charge-neural gapped graphene at 

low temperatures, especially in devices made from high quality graphene in which 

the bulk is expected to contribute little to either hopping conductivity or 

backscattering of edge modes
5-11,19

. Further experiments and theory are needed to 

distinguish between the described scenarios and elucidate the nature of the reported 

edge conductance.  

Methods 

Device fabrication. Mono- or bi-layer graphene crystals were encapsulated between 

hBN crystals (typically, ≈30 nm thick) using the dry transfer technique as detailed 

previously
31

. The hBN-graphene-hBN stack was assembled on top of an oxidized Si 

wafer (300 or 90 nm of SiO2) and then annealed at 300 °C in a forming gas (Ar-H2 

mixture) for 3 hours. As the next step we used the standard electron-beam 

lithography to create a PMMA mask that defined contact regions. Reactive ion 

etching (Oxford Plasma Lab 100) was employed to make trenches in the 

heterostructure through the mask. We used a mixture of CHF3 and O2, which 

provided easy lift-off of PMMA, so that metal contacts could be deposited directly 

after plasma etching. This also allowed us to minimize contamination of the exposed 

graphene edges
24

. After this, for BLG devices, another metal film (typically, Au/Cr) 

was deposited on top of the heterostructure to serve as the top gate. In order to avoid 

the edges of graphene extending out of the metal gate, the latter is used as a part of 

the final etch-mask; the uncovered graphene between the contacts and the gate is 

protected by a second PMMA mask, allowing the metal gate to extend slightly at the 

crucial edge locations. For the Hall bar geometry, we often used an additional hBN 
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crystal to cover the hBN-graphene-hBN stack after plasma etching, which allowed 

the metal film for the top gate to go over exposed graphene edges without touching 

them. To provide the central contact in Corbino devices, we used air bridges
32

. In 

some of our Josephson devices, graphene was not etched but made directly from 

cleaved crystals selected to have a strip-like shape. In this case, graphene edges were 

not exposed but fully encapsulated in hBN. Similar transport and Josephson behavior 

was found in all cases, independent of the variations in fabrication procedures. 

Transport experiments. All electrical measurements were carried out in a He3 

cryostat (Oxford Instruments) for T down to 0.3 K and, for lower T, in a dilution 

refrigerator with the base temperature of 10 mK (BlueFors Cryogenics). The 

differential resistance was measured in a quasi-four-terminal configuration (two 

superconducting leads for driving the current and the other two for measuring 

voltage) using a low-frequency lock-in technique. All electrical connections to our 

devices passed through a cold RC filter (Aivon Therma) placed close to the sample 

and additional AC filters were used outside the cryostats. At large displacement 

fields, our Corbino devices exhibited high resistivity such that the lock-in technique 

became inappropriate. In this case, we used dc measurements. 
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Edge currents shunt the insulating bulk in gapped graphene 

Supplementary Information 

M. J. Zhu et al 

1. Characterization of double-gated bi-layer graphene 

By implementing top and bottom gate electrodes in the studied devices, it is possible 

control the charge carrier density n and the electric displacement field D between the 

two layers independently
S1

. Below, the calibration procedure of n(Vtg,Vbg) and 

D(Vtg,Vbg) (Vtg and Vbg are the top and bottom gate voltages respectively). Examples 

of such measurements for Hall bar, Josephson junction, and Corbino device 

geometries are presented in Fig. 5.S1.  

At first, the resistance R is plotted as a function of the two gates (Fig. 5.S1a,c,d). The 

sharp peak in R determines the position of the charge neutrality point (CNP), Fig. 

5.S1b. The axis parallel to the charge neutrality line is determined (see black arrows, 

Fig. 5.S1a), and its slope: ΔVbg/ΔVtg≈2 is equal to the capacitance ratio of the two 

gates Ctg/Cbg. Smaller Cbg is expected for the thicker SiO2 dielectric at the bottom, 

and requires separate characterization for each device due to the different thickness 

of hBN which we place on top of SiO2. The negative slope (ΔVbg/ΔVtg≈-2, marked by 

white line on Fig. 5.S1a), corresponds to adding the same charge to both layers and 

changing the total n while keeping a fixed D. In order to accurately measure n we 

analyze the quantum oscillations in R at high magnetic fields and away from CNP. 

From this, the capacitance (per unit of area) for each gate is extracted using: 𝑛𝑒 =

𝐶𝑡𝑔∆𝑉𝑡𝑔 + 𝐶𝑏𝑔∆𝑉𝑏𝑔, and the displacement field is calculated to be: 𝐷 = (𝐶𝑡𝑔∆𝑉𝑡𝑔 −

 𝐶𝑏𝑔∆𝑉𝑏𝑔)/2휀0.  

The energy gap Egap is measured independently from the Arrhenius-like activation of 

R at high temperatures as shown in the main text, Fig. 5.4d. When measured at 

different D, we find Egap[meV]≈100×D[V/nm] to hold for all our BLG devices (see 

inset to Fig. 5.4d), in agreement with previous reports
S2

 and calculations
S3

. 

The devices presented here also show saturation of the sub-gap R with increasing D 

in the Hall bar and Josephson geometry, and exponentially increasing R in the 

Corbino geometry (Fig. 5.S1b,d). For the latter, an additional increase in R is 
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observed at a fixed value of the bottom gate Vbg≈-3V (Fig. 5.S1c). It corresponds to 

the CNP of the BLG at the locations in the device not covered by the top gate (see 

image in Fig. 5.4a). This spatial separation of the top gate from the metal-graphene 

interface guarantees a negligibly-low contact resistance at high D for the two-probe 

measurement in this geometry. 

 

Fig. 5.S1 Characterization of double-gated bilayer graphene 

a, Color-plots of the resistance R (in log-scale) as a function of the top and bottom gate 

voltages, for the Hall bar geometry (the measured section is 2.3 µm wide and 6.6 µm long). 

b, Bottom gate scans from the map in (a) at different fixed values of the top gate. At the 

charge neutrality point (CNP) R is saturated for Vtg>5V corresponding to D ≈-0.2V/nm as 

shown in the main text (Fig. 5.4c).  c, Color-plots of the resistance R (in log-scale) as a 



5-18 

 

function of the top and bottom gate voltages for the Josephson junction studied in the main 

text Figs. 5.2. d, Resistance at CNP extracted from the map in (c). The increase in R is 

saturated for displacement field D≈0.15V/nm.  e, Color-plots of the resistance R (in log-scale) 

as a function of the top and bottom gate voltages for a Corbino “edge-less” device. Here the 

top gate is 10 µm wide and 1 µm long, and it is separated by 1 µm from the inner and outer 

contacts. The vertical white line at Vbg≈-3V corresponds to the charge neutrality point in the 

part of the device which is not covered by the top gate. f, Resistance at CNP extracted from 

the map in (c). The increase in R is exponential with the displacement field D. 

2. Example of additional BLG Josephson junction 

 

Fig. 5.S2 Redistribution of supercurrent as the gap opens in bilayer graphene 

a, Resistance R of a Josephson junctions (3.5 µm wide and 0.5 µm long) above the critical T 

as a function of top and bottom gate voltages. b, Differential resistance dV/dI measured 

along the CNP line in a at low T and in zero B. Transition from the dissipationless regime to 

a finite voltage drop shows up as a bright curve indicating Ic. c, Interference patterns in small 

B. The top panel is for the case of high doping [Ic(B =0) ≈2 µA] and indistinguishable from 

the standard Fraunhofer-like behavior illustrated in Fig. 5.1d. The patterns below correspond 

to progressively larger Egap. Changes in the phase of Fraunhofer oscillations, consistent with 

the formation of edge modes, are highlighted by the vertical dashed white lines. 
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3. Bulk versus edge distribution of the supercurrent in bi-layer graphene 

In this section we further analyze the interference patterns of the supercurrent Ic(B) at 

CNP for different values of D. The inverse FFT is calculated to extract the local 

current distribution Js(x) (see Fig. 5.S3b and Fig. 5.2d of the main text). Then the 

current density at the edges is compared to the one at the center of the junction. We 

find that the transition from uniform current distribution to the edge-dominated flow 

is rather sharp and occupies the range in the displacement 0.015<D<0.03 V/nm (see 

Fig. 5.S3b). The bulk component of Js is dramatically reduced above D≈0.03 V/nm 

and the supercurrent becomes restricted to the edge channels. To this end we note 

that the supercurrent in the graphene is carried by Andreev pairs coupled by the 

superconductor gap Δ. At zero temperature and for entirely gaped graphene, finite Ic 

is not expected for Egap > 2Δ because tunneling processes are improbable across this 

400nm long barrier (the length of the graphene channel). The analysis of Js(x,D) 

below suggest that the cut-off for the bulk contribution is indeed happening at Egap ≈ 

2Δ (=2meV in the case of these Nb contacts
S4

). Thus the finite Ic at the edges 

persisting to large gaps indicates that the edges are less gapped than the bulk, or not 

gapped at all.  

The inverse FFT shown in Fig. 5.S3b and Fig. 5.2d can be fitted by Gaussians in 

order to estimate the width w to which the edge mode extend into the bulk (taken as 

the width of the peak at half maximum). Yet a limit on the spatial resolution of Js(x) 

arise, which can be defined by the largest number of the magnetic flux in which the 

interference pattern Ic(B) still can be detected (additional limitation of the calculation 

is the assumption of a sinusoidal current-phase relation, which is not accurate in 

these long and ballistic Josephson junctions). We can reliably extract the interference 

over ≈10 periods (flux quanta) before the noise level or other ballistic effects
S4

 alter 

its pattern. This number correspond to a spatial resolution limit of ≈W/10=350 nm 

for the studied junctions of the width W. The calculated w from the FFT is 650nm 

and 450nm at D=0.025 V/nm and 0.055 V/nm respectively and should be regarded as 

an upper limit of the width of the edge channels.  
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Fig. 5.S3 Supercurrent distribution as a function of the displacement field D 

a, Examples of interference patterns measured at two different D. b, The supercurrent 

density at the bulk and at the edges is extracted from inverse FFTs of the Ic(B) patterns (as 

shown in Fig. 5.2d). The transition from bulk dominant to edge current is sharp, in the range 

D≈0.015 to 0.03 V/nm. Inset, Gaussian fit to the edge current distribution. 

4. Chemical and electrostatic variations at the edge 

The effect of external doping at the edges of graphene, which may be different than 

the bulk doping, offers a trivial explanation for edge-transport when the bulk is 

gaped. In the following we consider three different doping scenarios, how to 

minimize their presence, and how to test their effect on the experiments. The three 

doping scenarios are: i) Chemical variations at the edge, which may depend 

significantly on the fabrication process
S5

; to minimize this effect we anneal all 

samples as part of the procedure. ii) Electrostatic doping arising from the finite 

separation between the gate electrodes and graphene
S6

; the spatial range of this stray 

doping is determined by the proximity of the top and bottom metal gates, which are 

fabricated very close to the graphene (≈30nm, 120nm away respectively). iii) Non-

uniform termination of the two layers in the BLG; this is avoided by dry etching the 

two layers simultaneously using a highly anisotropic process. 

To evaluate the effect of external doping, we measured devices in which the two 

edge-profiles of the Josephson junction are different (see Fig. 5.1a, Fig. 5.S4). One 

edge of the BLG is encapsulated by hBN and overlaid by the top gate, while at the 

other edge the top gate terminates and the BLG edge is uncovered. In principle, the 

different profiles should result in different chemical and electrostatic doping. 
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Calculations of the electrostatic doping profiles are shown for the two edge 

configurations (Fig. 5.S4). When the top gate terminates above the graphene edge, 

the charge density accumulation is diverging on approaching it, with a lateral scale of 

the dielectric spacer thickness as expected. At 100 nm away from the edge the carrier 

density is ≈5x10
9
 cm

-2
 for 1V / 0.24V on the bottom / top gate respectively 

(corresponding to CNP and D≈0.03V/nm). In contrast, the configuration of extended 

gate and hBN show negligible electrostatic doping as expected. The effect of 

electrostatic or chemical doping, if significant, should clearly favor edge 

conductance along one of the edges only. 

 

Fig. 5.S4 Electrostatic modelling of edge doping 

a, Schematic cross-section of a Josephson junction with different edge profiles (the other 

cross-section and top view are shown in Figs. 5.1a,b main text). b, c, Finite element 

calculation of the electrostatic potential distribution for the two edge configurations. The 

bottom gate is fixed at 1 Volt while the top gate is tuned to fix a zero potential at the bulk of 

the BLG (colored circles mark the two edge configurations) d, Calculated carrier density 

accumulation as function of the distance from the edge for the extended (Blue curve) and 

edge-terminated (red) profiles. For the former, charge accumulation is negligible. 

Here we point out the high sensitivity of the supercurrent interference patterns to 

asymmetric supercurrent density distribution. Conceptually this sensitivity can be 

described as follow: if the maximum supercurrent density in the two edges is 

precisely equal, flux penetration can force it in opposite directions for each edge, 

such that a zero net supercurrent can be driven across the junction (the measured Ic). 

On the other hand, uneven critical current density will preserve a finite “net” 

supercurrent in the better conducting edge, even when the flux-driven supercurrent at 

the less conducting edge is maximal. This will result in a non-zero net supercurrent 

flowing across the junction, at all values of magnetic flux. In the interference pattern, 
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it will show up as a lifting of the minimum Ic
S7,S8

. Furthermore, in the case of 

supercurrent flowing only in one of the edges the period of the oscillations will 

increase significantly, reflecting the confined width of the supercurrent and the small 

effective area of flux penetration. 

The fact that the interference of the BLG junctions drops to zero at half integer 

values of flux (see Fig. 5.2c, Fig. 5.S2c), indicates that the conductance at the two 

edges is very similar, and that the gate electrode profile does not have a significant 

effect on the edge modes observed. 

To test the electrostatic doping scenario in the Hall bar devices, we compared top 

gates terminated at the edge of bilayer graphene (see Fig. 5.4a), or extend far beyond 

the bilayer (see Fig. 5.S5a). For both types of devices the sub-gap resistance at high 

D was measured and similar saturation of R was observed (Fig. 5.S5b). It indicates 

again that the edge profile and the resulting external doping is not significant in these 

devices. 

 

Fig. 5.S5 Sub-gap resistivity of bilayer graphene Hall bar device with the top 

gate extending above the edges 

a, Optical image of the device. Additional hBN cover-layer was placed, enabling the 

extension of the top gate away from the BLG edges (marked by dashed black line). b, 

Resistivity  as a function of the displacement field measured at neutrality point for the 

device shown in a (blue curve). The exponential increase in resistivity is dumped above 

D≈0.2 V/nm, where  becomes comparable to the quantum of resistance. Devices with gate 

electrode terminated at the edge (red curve) show a more pronounced saturation, presumably 

owing to the higher mobility achieved. 
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We also point to the experiments on the gapped monolayer graphene discussed in the 

main text. There we compare Josephson junctions made using the same fabrication 

procedures and geometries (including the thickness of the dielectric materials) but for 

non-aligned (non-gapped) and aligned (gapped) devices. Any inhomogeneity in the 

external doping should be essentially the same for the two cases. After testing more 

than 10 non-gapped monolayers
S4

 and 4 gaped (hBN-aligned) junctions we note that 

no edge current enhancement was observed in any of the former, while clear edge-

dominated currents where observed in all the latter. Here, to avoid the case of the 

edge-modes being masked by the bulk currents, we examined different aspect-ratios 

of un-gapped junction with different normal-state resistance above the Nb transition 

temperature or at currents above Ic (see Fig. 5.3d,f). We note that no sign of edge 

currents was found even when the normal-state resistance exceeds the resistance 

where edge-dominated transport was observed in the gapped graphene. It points 

again to the crucial role of the gap in supporting the enhanced edge conductivity 

rather than external doping mechanism. 

5. On-off ratio in gapped bi-layer graphene 

Achieving high on-off ratio in gapped graphene devices is a focus of intense research 

driven by the practical requirements of electronic applications like field effect 

transistors (FET)
S9

. Owing to the ballistic transport over micron length scales in 

pristine graphene and BLG at room temperature, the “on” state resistance is mostly 

determined by the metal-graphene interface resistance, which can be as low as 35 

Ohm×µm
S4

.  

The “off” state resistance is usually determined by the size of the gap and the device 

inhomogeneities. As has been discussed in the main text, for sufficiently clean 

bilayer graphene devices the edge conductance limits the sub-gap R to the order of 

the quantum resistance. In the Josephson junction FET geometry for example, the 

on-off ratio is limited to 10
2
 at D=0.2V/nm and saturates for higher displacement 

fields. In contrast, for the edgeless Corbino geometry the highly resistive “off” state 

is recovered. Here we demonstrate on-off ratio ≈10
4
 (at 20K), achieved already at 

D=0.2V/nm owing to the high device homogeneity. Importantly the “off” resistance 

is limited only by the device quality and the achievable D.  
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Fig. 5.S6 On-off ratios of bilayer graphene devices in Corbino and in field effect 

transistor (FET) geometry 

The resistance of the device in the FET geometry (3.5µm wide, 0.4µm long) changes by only 

2 orders of magnitude, due to the edge-conductance at the charge neutrality point. In the case 

of the “edge-less” Corbino geometry, R changes by over 4 orders of magnitude already at 

D=0.2 V/nm. 
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Chapter 6  

Stacking transition in bilayer graphene caused by 

thermally activated rotation  

The results demonstrated in chapter 6 are from the publication: ‘Stacking transition 

in bilayer graphene caused by thermally activated rotation’ 2D Materials 4, 01013 

(2017). 

Here, we provide the first experimental evidence of thermally activated structural 

transition in bilayer graphene from twisted stacking state to AB stacking state. By 

using tunnelling spectroscopy, we directly probe the difference of the electronic 

density of states and the dispersion relation between twisted bilayer graphene and 

AB stacking bilayer graphene. We further confirm our observations by employing 

Raman spectroscopy mapping. We demonstrate that twisted bilayer graphene 

undergoes a macroscopic rotation and reaches an energetically favourable state – the 

AB stacking bilayer graphene. Such structural transition is also accompanied by a 

topological transition in the reciprocal space and by a pseudospin texturing.  

My personal contribution to this work is: I generated the idea of employing graphene 

tunnelling transistors to detect the structural transition from twisted bilayer graphene 

to AB stacking bilayer graphene. I carried out the transport measurements, analysed 

the data and wrote the manuscript.  

The acknowledgements for the paper are: M.J.Z., A.M. and K.S.N. designed the 

experiment. Y.C. and A.Misra fabricated the devices. M.J.Z., D.G. and A.M. carried 

out the transport measurements. S.-K.S. carried out Raman spectroscopy 

measurements. M.J.Z. and A.M. analysed and interpreted the data. L.H. did the 

calculation. K.W. and T.T. supplied hBN crystals. M.J.Z. and A.M. wrote the 

manuscript with input from all the authors. 

 

 

 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6-1 

 

Stacking transition in bilayer graphene caused by thermally 

activated rotation 

M. J. Zhu
1,†

, D. Ghazaryan
1,†

, S.-K. Son
2,†

, C. R. Woods
1
, A. Misra

1,2
, L. He

3
, T. 

Taniguchi
4
, K. Watanabe

4
,  K. S. Novoselov

1,2
, Y. Cao

1,2,‡
, A. Mishchenko

1,2,‡ 

 

1
School of Physics and Astronomy, University of Manchester, Oxford Road, 

Manchester, M13 9PL, UK 

2
National Graphene Institute, University of Manchester, Booth St. E, Manchester, 

M13 9PL, UK
 

3
Department of Physics, Beijing Normal University, Beijing, 100875, China 

4
National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan 

†
These authors contributed equally 

‡
Corresponding authors, e-mail: 

yang.cao@manchester.ac.uk, artem.mishchenko@gmail.com 

 

Crystallographic alignment between two-dimensional crystals in van der Waals 

heterostructures brought a number of profound physical phenomena, including 

observation of Hofstadter butterfly and topological currents, and promising 

novel applications, such as resonant tunnelling transistors. Here, by probing the 

electronic density of states in graphene using graphene-hexagonal boron nitride 

tunnelling transistors, we demonstrate a structural transition of bilayer 

graphene from incommensurate twisted stacking state into a commensurate AB 

stacking due to a macroscopic graphene self-rotation. This structural transition 

is accompanied by a topological transition in the reciprocal space and by 

pseudospin texturing. The stacking transition is driven by van der Waals 

interaction energy of the two graphene layers and is thermally activated by 

unpinning the microscopic chemical adsorbents which are then removed by the 

self-cleaning of graphene.  
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1. Introduction 

The recent progress in two-dimensional materials and van der Waals heterostructures 

enabled creating artificial materials with tailorable properties for a range of different 

applications [1]. Although it is desirable in many cases, in van der Waals 

heterostructures it is currently hard to achieve the perfect crystallographic alignment 

of individual layers during stacking procedure [2]. On the contrary, in the parent-

layered crystals the constituent layers are in a commensurate registry with each other 

as this minimises the interlayer van der Waals energy of the crystal. For instance, in 

exfoliated bilayer graphene the individual graphene layers are in a commensurate AB 

(or Bernal) stacking, which minimises the van der Waals energy due to a maximal 

overlap of electronic orbitals in two graphene layers. This overlap leads to a strong 

interlayer coherence of electrons in the two graphene layers and the interlayer 

electron hopping dramatically modifies graphene band structure [3].  

When bilayer graphene is prepared by mechanically transferring two graphene layers 

on top of each other, there exists another degree of freedom – a twist angle between 

graphene crystallographic directions. This rotational misalignment provides a tuning 

knob for the electronic spectrum of graphene bilayer. Twisting the two graphene 

crystals with respect to each other introduces a momentum mismatch between the 

two Dirac cones, which hinders the interlayer electronic coherence and preserves the 

linear energy dispersion [4]. 

When one MLG is strongly crystallographically misaligned with another MLG, the 

friction between two graphene layers can vanish, leading to a superlubric motion of 

the top layer [5-7]. Eventually, the van der Waals interaction energy will drive the 

system to the most energetically favourable commensurate state, the AB stacking 

bilayer graphene (BLG) [8,9]. Similar phenomena (though driven by maximization 

of the overlapping area) indeed have been observed at the micron scale for self-

retraction of three-dimensional graphite mesa structures [9,10], and, more recently, 

for thermally induced self-alignment in MLG-hBN heterostructures[11,12]. The 

reason why thermal activation is often necessary for macroscopic self-alignment is 

the presence of chemical adsorbents between the atomic layers, acting as nanoscale 

‘glue’ and preventing the superlubric motion [13]. Such pinning effect may stabilise 
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the crystals in a thermodynamically unstable configuration, such as twisted bilayer 

graphene (tBLG). 

In the following, we demonstrate that, despite the strong pinning effect due to 

chemical contaminations between two graphene layers, tBLG can rotate towards 

stable BLG state after a long-time thermal annealing. In order to probe the transition 

from tBLG to BLG precisely, we employ the tunnelling spectroscopy technique 

using graphene-hBN tunnelling transistors, which are known for their high sensitivity 

to the DoS of graphene [14].  

2. Results and discussions 

We fabricated graphene tunnelling transistors using a sequence of mechanical 

exfoliation and dry transfer procedures, similar to those described in previous works 

[14,15]. We first used the standard micromechanical cleavage technique to prepare 

relatively thick (20–30 nm) hBN crystal on top of oxidised (290 nm SiO2) silicon 

wafer which acted as a back gate. The hBN crystals served as a high-quality 

atomically flat substrate. We then transferred a first MLG flake on top of the selected 

hBN crystal using dry transfer procedure. A trilayer (3L) hBN was identified and 

transferred on top of the first MLG by repeating the same procedure. This thin hBN 

layer served as the tunnel barrier. The above whole processes were repeated again to 

complete the stack with the second MLG. After depositing of 5 nm Ti / 50 nm Au 

metallic contacts, the structure was annealed at 200 ºC in Ar/H2 gas. The device 

schematics and micrograph are shown in Fig. 6.1(a). 

In our graphene tunnelling devices, the tunnelling current I was measured as a 

function of applied bias voltage 𝑉𝑏 between the bottom and top graphene electrodes 

and the back gate voltage 𝑉𝑔  applied between bottom graphene and highly doped 

silicon gate electrode. In order to measure the differential tunnelling conductance 

dI/dV, we mixed small low-frequency ac voltage to a dc bias 𝑉𝑏 and measured the 

current with a lock-in amplifier.   

Typical I-V and dI/dV characteristics for different 𝑉𝑔 measured at a base temperature 

of T=1.6 K are shown in the Fig. 6.1(c). 
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Fig. 6.1 Graphene-hBN-graphene field-effect tunnelling transistor 

(a) Schematics of the device. (b) Optical micrograph of one of our devices. Two MLG sheets 

are separated by a 3L hBN tunnel barrier (white outline). The overlap between top layer 

graphene (red outline) and bottom layer graphene (blue outline) corresponds to an active 

tunnelling area 𝐴 ≈ 10μm2 . (c) Tunnelling current I as a function of 𝑉𝑏  at T=1.6 K for 

different gate voltages. Inset shows the differential tunnelling conductance dI/dV. 

It is more informative to plot a contour map of measured dI/dV map as a function of 

𝑉𝑏  and 𝑉𝑔 , as shown in Fig. 6.2(b). Here, the X-shaped white feature is a low 

tunnelling conductance, which we attribute to the passing of the chemical potential 

𝜇𝑖 through the CNP of each graphene layer. The dI/dV is suppressed in this region 

due to the vanishing DoS.  

We analysed the electrostatic properties of our tunnel transistors using parallel-plate 

capacitor model [14, 16]. In addition, we took into account that the electric field 

generated by the charge on the gate electrode is only partially screened by the bottom 

graphene layer, due to graphene low DoS. Based on this model we have derived the 

following pair of simultaneous equations: 

{
𝑒𝑉𝑏 = 𝜇𝐵 − 𝜇𝑇 − 𝛥𝜑

𝑒𝑉𝑔 = 𝜇𝐵 + 𝑒2𝐷(𝑛𝐵 + 𝑛𝑇)/휀휀0
.                                   (1) 

Here, e is the elementary charge and 𝜇𝑖  and 𝑛𝑖 the chemical potentials and carrier 

densities of the bottom and top graphene, respectively. In the case of MLG, 𝜇𝑖 =

±ℏ𝑣𝐹√𝜋|𝑛𝑖|. D is the total thickness of SiOx and hBN substrate, d is the thickness of 
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hBN tunnel barrier, 휀0 is the vacuum permittivity and 휀 is the medium permittivity 

(3.2 for hBN and 3.9 for SiO2). Additionally, the band offset between the top and 

bottom graphene layers is obtained using ∆𝜑 = 𝑒2𝑑𝑛𝑇/휀휀0.  

We then fitted the experimental data with this model and determined the conditions 

for the intersection of the chemical potentials with the CNP for each graphene layer. 

The fits are shown as dashed blue and red lines for top and bottom graphene layers, 

respectively (Fig. 6.2(b)). Note that Fermi velocity 𝑣𝐹=1.05×10
6 

m/s extracted from 

our electrostatic model is in a good agreement with the literature [17]. 

 

Fig. 6.2 Differential conductance of monolayer graphene-hBN-monolayer 

graphene tunnelling transistor 

(a) Schematics of energy band diagrams of the MLG tunnelling transistor when the chemical 

potential in one graphene layer passing through its CNP. (b) Measured dI/dV map as a 

function of 𝑉𝑏 and 𝑉𝑔. Blue and red dashed lines represent the electrostatic calculations with 

vanishing DoS in the bottom and top graphene, respectively.  

Apart from CNP-related low DoS features, there are other regions with suppressed 

electronic DoS and we can clearly distinguish them from a darker background as 

sharp vertical (independent of Vg) lines at 𝑉𝑏≈12, 20, 170 and 200 mV. We attribute 

those features to phonon-assisted tunnelling process, where conductance increases as 
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a series of steps every time 𝑉𝑏 is large enough to excite a phonon 𝑒𝑉𝑏 = ℏ𝜔𝑝ℎ, where 

ℏ the reduced Planck constant and 𝜔𝑝ℎ the phonon frequency [18,19]. 

Having characterised our tunnelling transistor we then carefully transferred another, 

smaller, MLG flake on top of the device using the same dry transfer method. During 

the transfer, we intended to align the graphene flake within 5º with the top graphene 

layer to obtain tBLG as the top electrode.  

Rotational misalignment between two MLG crystals leads to a moiré pattern,, as 

depicted in Fig. 6.3(a). The superlattice period is determined by the twist angle 𝜃. In 

addition to the structural modification, such rotation causes a shift between the Dirac 

points in the reciprocal space by |∆𝐾| = 2|𝐾|𝑠𝑖𝑛 (𝜃 2⁄ ), leading to a significantly 

different spectrum from both MLG and BLG, as demonstrated in Fig. 6.3(b). If there 

is a finite interlayer coupling between the two MLG layers, two saddle points will 

apear at the intersection of the two cones resulting in two van Hove singularities 

(VHS) in the DoS (Fig. 6.3(c)) at energies of 𝐸𝑉𝐻𝑆
± = ±(ℏ𝑣𝐹∆𝐾/2 − 𝜏𝜃), where 𝑣𝐹 

the Fermi velocity of MLG and  𝜏𝜃 the interlayer hopping parameter [4,20-22]. 

 

Fig. 6.3 Structure and electronic dispersion of twisted bilayer graphene 

(a) Schematics of the structural model of two misoriented honeycomb lattice with a 

twist angle 𝜃. (b) Shcmeatic Dirac cones of the two graphene layers in the reciprocal 

space at K point. (c) Electronic band structure of tBLG along a line joining the two 

Dirac points  In the calculation, 𝜃=5
o
 and 𝜏𝜃=110 meV are used in here. 

After transfer, we carried out the same tunnelling spectroscopy measurements, see 

Fig. 6.4(e). Noticeably, CNP of the top tBLG graphene electrode shifted from 0 V to 

10 V after transfer. This is a strong evidence of the presence of adsorbents and 

chemical residues left after device fabrication in-between top graphene electrode and 

recently added graphene flake. This ‘glue’ prevents the superlubric motion and 
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rotation of the top MLG flake immediately after the transfer and stabilises  twisted 

bilayer configuration. 

Crystallographic orientations of the flakes and corresponding tunnelling 

spectroscopy maps are shown in Fig. 6.4(b) and (e), where for consistency we used 

∆𝑉𝑔 instead of 𝑉𝑔 to characterise the carrier density in graphene electrodes. The dI/dV 

map of tBLG-MLG (Fig. 6.4(e)) compares well with MLG-MLG tunnelling device 

(Fig. 6.4(d)). That is, the X-shaped feature is also present in Fig. 6.4(e) indicating a 

low energy linear dispersion in tBLG, which is qualitatively similar with the MLG 

case. Quantitatively, there is a significant difference between of tBLG and MLG 

tunnelling devices when the chemical potential of bottom MLG sits at zero 𝜇𝐵 = 0. 

We attribute the shrinked X-shaped feature in tBLG tunnelling device to the reduced 

chemical potential in tBLG electrode. At low energy, there are two Dirac cones at K 

(or K’) point in the reciprocal space of tBLG instead of single Dirac cone for the 

MLG case. In this simple assumation we ignored the Fermi velocity renormalization 

in tBLG due to a relatively large twist angle (𝜃 ~ 5
o
) and the unknown interlayer 

coupling strength [23,24]. The calculation agrees well with our experimental data for 

tBLG tunelling devcie (dashed green line in Fig. 6.4(e)) after we sligtly modify the 

electrostatic model by adding an additional equation to Eq. (1) to describe the 

complementary MLG layer (T2) shorted with the initial top MLG layer (T1):        

      {

𝑒𝑉𝑏 = 𝜇𝐵 − 𝜇𝑇1 − Δ
1

𝑒𝑉𝑔 = 𝜇𝐵 + 𝑒2𝐷(𝑛𝐵 + 𝑛𝑇1)/휀휀0

𝜇𝑇1 = 𝜇𝑇2 + Δ
2

 .                               (2) 

Here Δ
1

= 𝑒2𝑑(𝑛𝑇1 + 𝑛𝑇2)/휀휀0  is the band offset between bottom MLG and top 

tBLG electrodes separated by hBN and Δ
2

= 𝑒2𝑑𝑛𝑇2/휀0 is the band offset between 

T1 and T2 where 𝑑′=0.35 nm is the separation by vacuum. The relation between 

chemical potential and carrier density in tBLG is still defined as 𝜇𝑖 = ±ℏ𝑣𝐹√𝜋|𝑛𝑖|. 

Worth to mention that we did not obeserve any singnatures of VHS in tBLG 

tunnelling device. We attribute this to a large twist angle ( >5º) which shifts VHS to 

the high energy |𝐸𝑉𝐻𝑆| >0.4 eV, higher than the chemial potential (~0.2 eV) in tBLG 

we can reach by applying gate and bias voltages. 
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Fig. 6.4 Differential conductance of graphene-hBN tunnelling transistors with 

different top graphene electrodes 

(a)-(c): Schematics of different graphene-hBN tunnelling transistors (only graphene-hBN-

graphene heterostructures are shown in here). (d)-(f): measured dI/dV contour maps as a 

function of 𝑉𝑏  and 𝑉𝑔  for MLG-MLG, tBLG-MLG and BLG-MLG tunnelling devices. 

Dashed lines are the calculations of electrostatic models in Eq. (1). 

Finally, we annealed the device at 200ºC for 12 hours under Ar/H2 and then carried 

out the same tunnelling spectroscopy measurements again. The CNP of the top 

graphene layer shifts from 10 to 3 V, which implies that chemical adsorbents were 

partially removed by thermal annealing. Measured dI/dV map (Fig. 6.4(f)) clearly 

shows two differences in comparison with tBLG case (Fig. 6.4(e)). First of all, one of 

the lines of the X-shaped region ascribed to zero DoS in bottom graphene assumes 

linear rather than square root dependence (in contrast to both MLG-MLG and tBLG-



6-9 

 

MLG cases). Secondly, the other line of the X-shaped region corresponding zero 

DoS in top graphene disappears. 

To explain these findings we fit the linear low-DoS line (see Fig. 6.4(f)) with 

modified electrostatic model considering AB stacked bilayer graphene as a top 

electrode [25]: 

  {

𝑒𝑉𝑏 = 𝜇𝐵 − 𝜇𝑇 − 𝑒2𝑑𝑛𝑇/휀휀0

𝑒𝑉𝑔 = 𝜇𝐵 + 𝑒2𝐷(𝑛𝐵 + 𝑛𝑇)/휀휀0

𝛥 = 𝑒2𝑑′(𝑛𝐵 + 𝑛𝑇
′′)/휀휀0

,                                   (3) 

where the relation between carrier density and chemical potential is given by 

𝑛𝑇(
𝑇

, 𝛥) =
𝑚


𝑅𝑒√(2𝜇𝑇)2 − 𝛥2, here 𝑚 is the effective carrier mass, 𝛥 the tunable 

bandgap, 𝑛𝑇
′′ = 𝑛𝑇 − 𝑛𝑇

′  the carrier density on one particular layer in AB stacked 

bilayer. 

To further confirm observed tBLG-to-BLG transition we performed another 

annealing experiment using Raman spectroscopy (Renishaw Raman spectrometer, 

excitation line of 514 nm, and incident power of 2 mW) as an independent tool to 

identify a twist angle between the top and bottom MLG flakes. The full width at half 

maximum (FWHM) of a 2D peak (~2690 cm
-1

) of tBLG is sensitive to the twist 

angle, increasing from ~20 cm
-1

 for θ>15º up to ~50 cm
-1

 for θ=0º (BLG) [26]. We 

fabricated tBLG sample on hBN substrate (Fig. 6.5(a)) and measured its Raman 

maps of FWHM of 2D peak before and after annealing (Fig. 6.5(b)-(c)). Maps 

clearly show a difference in θ before and after annealing: the average FWHM was 

45.3±0.9 cm
-1

, which corresponds to ~4-5º twist, while after annealing FWHM 

increased to 50.0±0.9 cm
-1

 – a value typical for BLG. Interestingly, a small part of a 

top MLG has rotated in the opposite direction after annealing (FWHM 33.8±1.7 cm
-1

 

corresponding to ~9-10º twist), probably to compensate for a strain due to the 

presence of two large bubbles in that region of the tBLG. 
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Fig. 6.5 Raman spectroscopy map of twisted bilayer graphene before and after 

thermal annealing 

(a) Optical micrograph of tBLG on hBN heterostructure. The red and black dashed lines 

indicate the edges of top and bottom MLG flakes, respectively. (b) and (c) Raman maps of 

FWHM of 2Dpeak before (b) and after (c) annealing. 

Van der Waals energy between graphene layers strongly depends on the 

misalignment – the minimum energy corresponds to the AB stacking at every 60
o
 

rotations [27, 28]. The energy difference (van der Waals energy) between the AB 

stacking and a fully misaligned (θ=30º) conformation is ~0.13 meV/atom [29]. This 

energy difference is sufficient to drive a transition from an incommensurate stacking 

state to a commensurate AB stacking since they are separated by a small barrier 

<0.02 meV/atom [29]. The reason why the transition doesn’t happen before the 

thermal annealing is most likely the pinning effect due to the chemical adsorbents 

between the graphene layers [30]. Indeed, it was recently confirmed that the 

dissipative energy, related to irreversible removal of contaminants from the graphite-

graphite interface, decreases rapidly with increasing temperature [31]. During the 

long-time thermal annealing, those contaminants become mobile and then are 

segregated to localised pockets by the self-cleaning driven by van der Waals force 

between two graphene layers [11,32]. Remarkably, the observed tBLG to BLG 

transition implies that the top 5 µm size MLG has rotated by at least 500 nm [11], 

which can find its applications in nanoelectromechanical systems (NEMS). 

The observed incommensurate-commensurate transition between tBLG and BLG 

was predicted to occur under certain conditions, such as strain in one of the layers 

[34,35]. In our work, we present an alternative route to achieve this structural 

transition by graphene self-rotation, see Fig. 6.6. The tBLG behaves as two 
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decoupled MLG when the twist angle is large enough and the interlayer interaction 

can be neglected (Fig. 6.6(a)). During annealing the top MLG rotates driven by van 

der Waals energy. As a result, 𝜃  decreases and two saddle points apear at the 

intersection of the two Dirac cones resulting in two VHS in DoS (Fig. 6.6(b), (c)). 

Finally, graphene reaches the BLG structure, forming a parabolic low-energy 

dispersion (Fig. 6.6(d)).  

This structural transition is also accompanied by the topological transition in the 

reciprocal space - the twist dependent Lifshitz transition, where the rotation modifies 

the Fermi surface topology of the system: two independent Fermi surfaces merge 

into one after the rotation, Fig. 6.6(e)-(h). Analogous topological transitions were 

observed in tBLG and BLG in high magnetic fields [36,37], while in our case it is 

driven by a mechanical rotation of the two graphene crystals. In addition to topology, 

a pseudospin texture is also affected by the structural transition. The electron wave 

function in graphene consists of two components, which represent the probability of 

finding an electron on the two sublattices of the honeycomb lattice. The pseudospin 

is the phase shift between those components, which, for MLG is locked to the 

direction of the electron’s motion. The tBLG with large twist angle (θ>5°) can be 

treated as two decoupled MLG layers with the same pseudospin texture, as shown in 

Fig. 6.6(e). For smaller-θ tBLG, due to the interlayer interaction, the pseudospin 

vectors rotate to lower the symmetry of tBLG, which merges the two Fermi surfaces 

above the VHS (Fig. 6.6(f), (g)) [33,38]. Finally, the tBLG system reaches its 

commensurate state when θ=0º and two MLG aligns with each other within a AB 

stacking, where the Fermi surfaces completely merge to single one and the 

pseudospin texture assumes the BLG case (Fig. 6.6(h)). This evolution of pseudospin 

texture also implies a continuous Berry phase transition from   for large-θ tBLG to 

2 for BLG through a small-θ tBLG state [36,37].  

Our results (as shown in Figs. 6.4 and 6.6) provide the first experimental evidence of 

a thermally activated stacking transition in bilayer graphene driven by the self-

rotation, which paves the way to nanomechanical band structure engineering. 
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Fig. 6.6 Structural transition in bilayer graphene 

(a)-(c) Schematics of the evolution of Brillouin zone from the large-θ tBLG to small-θ tBLG 

to BLG (d). Low energy dispersions (Dirac cones) are shown only for one corner of the 

Brillouin zone for top (red) and bottom (green) graphene layers, Twist angles θ are 

exaggerated. (e)-(h) Low-energy (E=60 meV) Fermi surfaces and pseudospin texture vs. 

twist angle θ for K valley, calculated as described in ref. [33]. The interlayer hopping 𝜏𝜃=110 

meV was used. Enclosed curves indicate the Fermi surface topology and black arrows 

represent the pseudospin angle.     

3. Conclusions 

To summarise, we demonstrated a structural transition from twisted bilayer graphene 

to AB stacking bilayer graphene using the highly sensitive technique of tunnelling 

spectroscopy. We also showed that thermal annealing unpins the graphene allowing 

its macroscopic self-rotation driven by van der Waals energy. We believe this 

technique will be useful to study similar structural transitions in 

nanoelectromechanical systems, clearing the way to mechanically driven band 

structure engineering. 
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Chapter 7  

Phonon-assisted resonant tunnelling of electrons in 

graphene–boron nitride transistors 

The results demonstrated in chapter 7 are from the publication: ‘Phonon-assisted 

resonant tunnelling of electrons in graphene–boron nitride transistors’ Physics 

Review Letters 116, 186603 (2016). 

Understanding the process and mechanism of phonon-assisted resonant tunnelling is 

of great importance not only from a fundamental point of view, but also because of 

the possibility of controlling and engineering advanced tunnelling devices.  

Here, we demonstrate a phonon-assisted resonant tunnelling phenomenon in 

graphene-hBN-graphene tunnelling transistors. We observe a series of sharp 

enhancement in the differential conductance at bias voltages between 10mV and 

200mV. The positions of bias voltage corresponding to the resonant states are 

independent to the applied gate voltage. Therefore, we can safely exclude the 

contribution of plasmonic effect. We compare the energies of resonance with the 

phonon dispersion of graphene and graphene-hBN heterostructure and then attribute 

the resonant features in our devices to the electron tunnelling assisted by the 

emission of phonons of well-defined energies.  

My personal contribution to this work is: I measured the tunnelling characteristics of 

graphene-hBN transistors at room temperature and participated in the data analysis 

and discussion. 

The acknowledgements for the paper are: E.E.V., A.M., M.T.G., A.K.G., K.S.N. and 

L.E. designed the experiment. A.Misra and Y.C. fabricated the devices. E.E.V., A.M., 

M.J.Z., D.G. and S.V.M. carried out the measurements. O.M., T.M.F., A.P., G.J.S. 

and M.I.K. provided theoretical supports. K.W. and T.T. supplied hBN crystals. 

M.T.G. and L.E. wrote the manuscript with input from all the authors. 
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We observe a series of sharp resonant features in the differential conductance of 

graphene-hBN tunnelling transistors over a wide range of bias voltages between 

10 and 200 mV. We attribute them to electron tunnelling assisted by the 

emission of phonons of well-defined energy. The bias voltages at which they 

occur are insensitive to the applied gate voltage and hence independent of the 

carrier densities in the graphene electrodes, so plasmonic effects can be ruled 

out. The phonon energies corresponding to the resonances are compared with 

the lattice dispersion curves of graphene–boron nitride heterostructures and are 

close to peaks in the single phonon density of states. 
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The discovery of the remarkable electronic properties of graphene [1,2] has been 

followed by an upsurge of interest in other layered materials such as hBN, the 

transition metal dichalcogenides, and the III-VI family of layered semiconductors. 

These anisotropic layered materials have strong in-plane bonds of covalent character, 

whereas the interlayer bonding arises from weaker van der Waals like forces, so 

crystalline flakes, one or a few atomic layers thick, can be exfoliated mechanically 

from bulk crystals. These developments have led to the realization of a new class of 

materials, van der Waals heterostructures, in which nanoflakes of different materials 

are stacked together in an ordered way [3-5]. These heterostructures possess unique 

properties that can be exploited for novel device applications. An example is a tunnel 

transistor in which a barrier is sandwiched between two graphene layers and 

mounted on the oxidized surface layer of a doped Si substrate [6,7]. The tunnel 

current flowing between the two graphene layers can be controlled by applying a 

gate voltage to the doped Si layer and arises predominantly from resonant processes 

in which the energy, in-plane momentum, and chirality of the tunnelling electron are 

conserved [8-10]. 

Previous investigations of electron tunnelling in a variety of metal-insulator diodes  

[11] and conventional semiconductor heterostructures [12] have demonstrated that 

electrons can tunnel inelastically, with the emission of one or multiple phonons. 

Atomically resolved scanning tunnelling spectroscopy measurements on 

mechanically cleaved graphene flakes with a tunable back gate have revealed the 

presence of phonon-assisted tunnelling [13-16]. The multicomponent nature of our 

van der Waals heterostructure gives rise to a more complex set of lattice dispersion 

curves than for graphene [17-21] and to phonon-assisted tunnelling, as shown 

recently for a graphite-hBN-graphene transistor [22]. The study of electron-phonon 

interactions is relevant to interlayer conduction in twisted graphene bilayers [23] and, 

more generally, to the recent discovery of superconductivity in graphene-based van 

der Waals heterostructures [24-27]. 

Here we investigate tunnel transistors in which a ~ 1 nm layer of hBN is sandwiched 

between MLG electrodes. Unlike the devices reported in refs. [9,10], which have a 

similar composition, the crystalline lattices of the component layers in the two 

devices investigated here are not intentionally aligned. We estimate the lattice 

misalignment of the two graphene electrodes to be at least 3°. This gives rise to a 
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misalignment in k space of the Dirac cones at the corners of the hexagonal Brillouin 

zones of the two electrodes, so the momentum-conserving elastic transitions cannot 

occur over the bias voltage range over which the device characteristics are measured. 

Under these conditions interlayer conductance is dominated by phonon-assisted 

tunnelling processes that relax the momentum conservation rule [23]. 

We observe a series of sharp resonant steps in the electrical conductance over a wide 

range of bias voltage, gate voltage, and temperature. This spectrum can be 

understood in terms of inelastic transitions whereby electrons tunnelling through the 

hBN barrier emit phonons of different and well-defined energies between ~ 12 and 

200 meV, covering the range of lattice phonon energies in these heterostructures. 

The resonances correspond closely to van Hove-like peaks in the single phonon 

density of states of the heterostructure, with the strongest peaks arising from the 

emission of low- and high-energy optical mode phonons.  

A schematic energy band diagram of our devices and circuit is shown in the inset of 

Fig. 7.1(a). The bottom graphene layer is mounted on an atomically flat hBN layer, 

placed above the silicon oxide substrate, and the active region of the device is capped 

with a hBN protective top layer. The tunnel current I was measured as a function of 

the bias voltage 𝑉𝑏 applied between the two graphene electrodes and the gate voltage 

𝑉𝑔 applied across the bottom graphene electrode and the doped Si gate electrode. Fig. 

7.1(a) shows plots of differential tunnel conductance, 𝐺(𝑉𝑏) = 𝑑𝐼/𝑑𝑉𝑏, measured at 

a temperature of T=4 K. The form of the 𝐺(𝑉𝑏) curves is strongly dependent on 𝑉𝑔. 

Close to 𝑉𝑏 = 0, G ≈ 0 at all gate voltages. With increasing |𝑉𝑏|, the conductance 

increases in a series of well-defined steps, indicated by vertical arrows. We attribute 

each step to inelastic phonon-assisted tunnelling in which an electron emits a phonon 

and tunnels from close to the Fermi energy in one electrode to an empty state near 

the Fermi energy in the other electrode, with the emission of a phonon of well-

defined energy, ℏ𝜔𝑝. Fig. 7.1(b) shows a colour map of 𝐺(𝑉𝑏, 𝑉𝑔) in which some of 

these step-like features are discernible as a series of faint vertical striped modulations 

in the colour map. Also visible is a dark blue, X-shaped region in which G is small. 

This corresponds to the passage of the chemical potential through the Dirac point of 

the two MLG electrodes as 𝑉𝑏 and 𝑉𝑔 are varied; here, the conductance is suppressed 

due to the small density of electronic states into which electrons can tunnel. Using an 
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electrostatic model [7], which includes a small amount of doping in the bottom 

electrode (p-type, 2.5×10
11

 cm
−2

) as a fitting parameter, we determine the condition 

for the intersection of the chemical potential with a Dirac point in each of the two 

graphene electrodes. The calculated loci of these intersections are shown by the 

yellow dashed line in Fig. 7.1(b); they correspond closely with the measured X-

shaped low conductance region.  

 

Fig. 7.1 Differential conductance of Device 1 at T= 4 K 

(a) 𝐺(𝑉𝑏)for 𝑉𝑔 = −30 V (red) to 30 V (blue) and intervals ∆𝑉𝑔=2 V. Inset: Schematic band 

diagram of Device 1 with bias 𝑉𝑏 and gate 𝑉𝑔 voltages applied to the MLG electrodes, which 

are separated by an hBN barrier of thickness d=0.9 nm. Here, 𝜇𝑏,𝑡 are the chemical potentials 

of the bottom and top electrodes and F is the electric field across the barrier. A phonon-

assisted tunnel process is shown schematically. (b) Colour map of 𝑑𝐼/𝑑𝑉𝑏 for a range of 𝑉𝑔 

and 𝑉𝑏. 

The vertical stripes in the 𝐺(𝑉𝑏, 𝑉𝑔) map are faint because the step-like modulation in 

𝐺(𝑉𝑏) is only a small fraction of the total conductance. Most of the monotonic 
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increase of 𝐺(𝑉𝑏) with 𝑉𝑏 can be partly eliminated by taking the second derivative 

𝑑𝐺/𝑑𝑉𝑏, which reveals the weak but sharp phonon-assisted resonances more clearly. 

Fig. 7.2(a) shows a gray-scale contour map of 𝛼𝑑𝐺/𝑑𝑉𝑏, where 𝛼 = |𝑉𝑏|/𝑉𝑏 = ±1. 

Here, the phonon-assisted tunnelling features appear as easily discernible bright 

vertical stripes, indicated by arrows, at well-defined values of 𝑉𝑏, at which 𝐺(𝑉𝑏) 

rapidly increases. These values are independent of gate voltage, but their amplitudes 

at low 𝑉𝑏 are significantly stronger at large positive and negative values of 𝑉𝑔. 

Interestingly, the vertical stripe features are not observed in the conductance maps of 

similar devices in which the graphene electrodes are closely aligned to within 2° (see 

Figs. 2 and 3 of ref. [9]). We can exclude the possibility that the features are plasmon 

related as the sheet density n in both graphene electrodes is strongly dependent on 𝑉𝑔: 

n varies from ~10
12

 cm
−2

 (holes) through zero to ~10
12

 cm
−2

 (electrons) between 

𝑉𝑔=−30 V and 30 V. Even though the plasma frequency of carriers in graphene varies 

relatively weakly with n (~n
1/4

) [28], plasmon related resonances would have a 

significant gate voltage dependence, which is not observed. 

Since the bias voltage values|𝑉𝑏| of the weak resonant features are independent of 

gate voltage and are the same in both negative and positive biases, we can display 

them more clearly by averaging over all 60 of the measured 𝛼𝑑𝐺/𝑑𝑉𝑏 plots in the 

range −30 V<𝑉𝑔<30 V. This procedure significantly reduces the level of background 

noise. The result of this averaging procedure for Device 1 is shown in Fig. 7.3(a). It 

reveals the phonon-assisted resonances as a series of well-defined peaks. The 

corresponding plot for another device, Device 2, is also shown. The overall forms of 

the two curves are qualitatively similar, with the exception of some notable 

differences, e.g., the position of the strong peaks at high 𝑉𝑏>0.12 V. 
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Fig. 7.2 Gray-scale contour maps of αdG/dVb for Device 1 

(a) Measured plots 𝛼𝑑𝐺/𝑑𝑉𝑏for Device 1. (b) Calculated gray-scale map of 𝛼𝑑𝐺/𝑑𝑉𝑏 for 

T=4 K, best fit to data in Fig. 7.2(a) using the model described in the text and in Table 1. 

Yellow dashed curves show where the chemical potential in a graphene layer intersects with 

the Dirac point in that layer. 

To understand the physical origin of the peaks in Fig. 7.3(a), we compare them to the 

one-phonon densities of states of MLG (red curve) and a graphene-hBN bilayer 

(green); the lower three curves show the partial density of states associated with the 

predominant motion of the carbon, boron, and nitrogen atoms in the bilayer; the solid 

and dashed curves show contributions by in- and out-of-plane phonons, respectively. 

The full phonon dispersion curves of the graphene-hBN bilayer [17] are shown in Fig. 

7.3(b). 
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Fig. 7.3 Density of phonon states and phonon dispersion in graphene-hBN 

heterostructures 

(a) The three top curves (blue): 𝑑𝐺/𝑑𝑉𝑏  averaged over all gate voltages for our model 

(dashed) and measured data for Devices 1 and 2 (both solid). Lower curves: Total density of 

phonon states for MLG (red, monolayer Gr) and a graphene-hBN heterostructure [green, Gr-

hBN (total)]. Lower three curves: The partial density of states associated with the carbon 

(red, C), boron (blue, B), and nitrogen (black, N) atoms of a graphene-hBN heterostructure. 

Solid and dashed curves show contributions by in- and out-of-plane phonons, respectively. 

(b) Phonon dispersion of a graphene-hBN heterostructure [17]. Vertical dotted curves are 

guides to the eye, highlighting the alignments. 

The phonon density of states and the phonon dispersion curves were determined by 

using the “phonopy” package [29] with the force constants obtained by the finite 

displacement method [30,31], using the Vienna ab initio simulation package (VASP) 

[32,33]. For the phonon density of states, a tetrahedron smearing was applied for 
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higher accuracy. A detailed description of the computational methods can be found 

in ref.[17]. 

At high bias, the two peaks labelled (i) and (ii) are close to the energies of the large 

densities of states associated with the weakly dispersed, high-energy optic phonons 

of MLG (Device 1) and a bilayer of graphene and hBN (Device 2). Note that peak 

(iii) at 130 meV in Device 2 is absent in Device 1. This energy corresponds closely 

to the flat region of the dispersion curve of the graphene-hBN bilayer near the K 

point of the Brillouin zone, which arises predominantly from vibrations of the 

nitrogen atom. This difference, and the variation of the position of peaks (i) and (ii), 

between the two devices may arise from differences in the relative lattice orientation 

of the graphene and hBN layers in the device. 

Both devices exhibit peaks around 110, 84, and 53 mV, labelled (iv), (v), and (vi), 

corresponding to prominent features in the calculated density-of-state plots and the 

flat regions of the dispersion curves. An interesting feature of the data for both 

devices is the strong peak (viii) at low bias, around 12 mV, which we attribute to the 

weakly dispersed low-energy phonons close to the 𝛤  point of the graphene hBN 

bilayer. This low-energy “out-of-plane” mode was intensively studied in inelastic x-

ray spectroscopy measurement of bulk graphite and hBN [18]. Note that the resonant 

peak (vii) observed at 32 mV can be associated with a peak in the phonon density of 

states of the graphene-hBN bilayer, which arises predominantly from the motion of 

the nitrogen atoms and corresponds to the flat region of the lowest-energy acoustic 

mode at ~30 meV in the vicinity of the M and K points of the Brillouin zone. 

As shown in Fig. 7.4, the resonant peaks broaden and their amplitudes decrease with 

increasing temperature, disappearing completely at temperatures T ≥ 150 K. This is 

consistent with the thermal broadening of the electron distribution functions around 

the Fermi energies of the two graphene electrodes so that Pauli blocking of electron 

tunnelling for 𝑒𝑉𝑏 < ℏ𝜔𝑝  is diminished as more states become available with 

increasing thermal smearing around the Fermi energies. We fit the data in Fig. 7.2(a) 

using a model in which an inelastic tunnelling transition is allowed only when the 

difference between the chemical potentials 𝜇𝑏 and 𝜇𝑡 in the bottom (b) and top (t) 

graphene layers, respectively, exceeds ℏ𝜔𝑝
𝑖 , which corresponds to the bias voltage of 

a particular phonon-assisted resonance peak i in the conductance. At low 
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temperatures (4 K), 𝑒𝑉𝑏 = 𝜇𝑏 − 𝜇𝑡 − 𝑒𝐹𝑑 greatly exceeds the thermal smearing ~ 

2𝑘𝐵𝑇 of the Fermi seas of the two graphene electrodes. The emission of a phonon of 

energy, ℏ𝜔𝑝
𝑖 , becomes possible when 𝑒𝑉𝑏 exceeds ℏ𝜔𝑝

𝑖 , thus opening up an inelastic 

scattering channel and resulting in a step-like rise in the current and a resonant peak 

in 𝑑𝐺/𝑑𝑉𝑏 when 𝑒𝑉𝑏 = ℏ𝜔𝑝
𝑖 . In our model the current is given by: 

𝐼 = ∑ 𝑇(𝑖) ∫ 𝑑𝐸𝑏 ∫ 𝑑𝐸𝑡𝐷𝑏(𝐸𝑏)𝐷𝑡(𝐸𝑡){Γ(𝐸𝑏 − 𝐸𝑡 − ℏ𝜔𝑝
𝑖 )𝑓𝑏(𝐸𝑏)[1 − 𝑓𝑡(𝐸𝑡)] −𝑖

        Γ(𝐸𝑡 − 𝐸𝑏 − ℏ𝜔𝑝
𝑖 )𝑓𝑡(𝐸𝑡)[1 − 𝑓𝑏(𝐸𝑏)]} ,                                                          (1) 

where 𝐸𝑏,𝑡  is the electron energy in the b and t layers, 𝐷𝑏,𝑡(𝐸) is the density of 

electronic states in these layers (which are shifted energetically by eFd), Γ(𝐸) =

exp (−𝐸2/2𝛾2) with energy broadening 𝛾=5 meV, and 𝑓𝑏,𝑡 is the Fermi function in 

the bottom and top electrodes. 𝑇(𝑖) is a relative weighting factor that depends on the 

electron-phonon coupling and phonon density of states for each inelastic transition. 

We show the values of 𝑇(𝑖)  used in our model in Table 1, which provides a 

qualitative indication of the relative strengths of the phonon-assisted processes. 

Table 1 Phonon energies ℏ𝝎𝒑
𝒊  and weighting factors T(i) used in Eq. (1) to 

obtain the fit to the experimental data shown in Fig. 7.2(b). 

i 1 2 3 4 5 6 7 8 

ℏ𝜔𝑝
𝑖  (meV) 12 32 53 84 110 143 174 201 

𝑇(𝑖) 1.0 0.58 0.30 0.26 0.24 0.23 3..53 1.81 

 

Using this model, and including phonon emission processes at threshold energies 

corresponding to the values of 𝑉𝑏, we obtain the gray-scale plot in Fig. 7.2(b), which 

accurately simulates the measured data in Fig. 7.2(a). In particular, the relative 

intensities of the vertical stripes are in good agreement with the measured data. At 

high positive and negative 𝑉𝑔 , the asymmetry in the measured intensities of the 

resonances for positive and negative 𝑉𝑏 is replicated by the model. This confirms that 

the peaks arise from tunnelling of carriers, mediated by phonon emission, from filled 

states near the chemical potential in one electrode into the empty states just above the 

chemical potential in the other.  
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Fig. 7.4 Temperature dependence of phonon-assisted resonant tunnelling 

Temperature dependence of |𝑑2𝐼/𝑑𝑉𝑏
2| vs 𝑉𝑏 in Device 2 measured from T=2.3K to T=180K 

(blue to red) for 𝑉𝑏=40 V. Inset: Peak amplitude vs T. Curve colours match peaks marked by 

correspondingly coloured arrows in the main plot.  

In conclusion, our measurements reveal a rich spectrum of inelastic phonon-assisted 

electron tunnelling peaks in the conductance of multilayer graphene-hBN tunnelling 

transistors. They allow us to probe electron-phonon interactions in this type of device 

and spectroscopically identify the energies and nature of the emitted phonons. Our 

results provide spectroscopic evidence that the tunnel current in van der Waals 

heterostructures is strongly suppressed by the large lateral momentum mismatch that 

arises when the crystalline lattices of the component electrodes are misaligned. 

Under these conditions, inelastic electron tunnelling with emission of phonons with 

well-defined energy plays a dominant role in carrying current perpendicular to the 

layers. 
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Chapter 8  

Summary and outlook 

8.1 Summary 

In this thesis, several novel devices based on the graphene-hBN heterostructures 

have been fabricated and the underlying physics has been studied and discussed. 

We fabricated graphene Josephson junctions with high carrier mobility and 

transparent G-S interfaces. Such high quality devices allowed us to study the new 

physics of ballistic graphene Josephson junctions. We observed clear Fabry-Pérot 

interference not only in the normal-state resistance but also in the critical current. 

Under high magnetic field up to 1000 flux quanta of the junction, the critical current 

appears and disappears randomly as function of carrier concentration and magnetic 

field. We attribute the high field Josephson effect to mesoscopic Andreev states that 

persist near the graphene edges. 

By opening a gap in graphene, we found that the supercurrent at the CNP of 

graphene changes from uniform flow to propagation along the graphene edges. Our 

results show that the insulating state of gapped graphene is electrically shunted by 

the conducting edge channels, which explains a long-standing puzzle of why 

graphene transistors have a low ON/OFF ratio.  

By studying the graphene tunnelling transistors and the Raman spectroscopy of 

twisted BLG before and after annealing, we probed a structural transition in bilayer 

graphene from incommensurate twisted stacking to commensurate AB stacking. We 

found that the low-energy electronic dispersion preserves linearity in twisted BLG, 

but changes to almost parabolic in BLG. The structural transition is achieved by 

macroscopic scale graphene self-rotation driven by the van der Waals energy.  

We observed a series of gate independent kinks in the differential conductance of 

graphene-hBN tunnelling transistors, which are attributed to the phonon-assisted 

resonant tunnelling phenomenon. The phonon energies corresponding to the 

resonances are compared with the lattice dispersion curves of graphene-hBN 

heterostructures and are close to peaks in the single phonon density of states. 
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8.2 Outlook 

8.2.1 Supercurrent in graphene quantum Hall regime 

Superconductivity and quantized Hall states are both macroscopic quantum 

phenomena that allow electrical currents to flow without dissipation. The QHE 

occurs in two-dimensional electron gases subjected to perpendicular magnetic fields. 

In the quantum Hall regime, the current is fully carried by dissipationless edge states 

that travel in only one direction along the edge, known as chiral edge current. Studies 

of the integer and fractional QHE have yielded many fascinating physics. In addition, 

there has been great interest in understanding the emergent physics from the 

interplay between the QHE and other correlated states, for instance the Josephson 

supercurrent. However, this interplay has proven to be experimentally difficult. A 

small magnetic field will destroy the supercurrent and more fundamentally will break 

the time-reversal symmetry, which is essential for s-wave pairing of conventional 

superconductors. 

It has been proven that graphene can be coupled to superconductors with transparent 

interfaces, and can sustain supercurrents. High quality graphene enters the quantum 

Hall regime in the presence of a relatively small magnetic field (few Tesla), while the 

electrodes still remain superconducting. Thus, graphene Josephson junction is an 

ideal platform to examine the coupling between supercurrents and the QHE.  

Amet et al. recently demonstrated the interplay of superconductivity and the QHE in 

graphene-hBN heterostructures with superconducting MoRe contacts at 10mK. 

Magnetic fields of ~2 T ensured that the radius of the cyclotron orbit was smaller 

than both the junction length and the mean free path. At the same time, the opposite 

free edges were far enough apart to prevent edge coupling through conventional 

Andreev reflections. Remarkably, the behavior of the differential resistance 

unambiguously showed signatures of supercurrents.  

The observation of superconductivity in the quantum Hall regime is an important 

step forward to the realisation of Majorana fermions. In addition, the fractional QHE 

in graphene can emerges in magnetic fields as small as 5T
110

. Thus, we can start to 

look forward the interplay between the fractional QHE and the proximity 

superconductivity in graphene Josephson junctions in the near future.  
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8.2.2 Supercurrent in quasi-one-dimensional graphene systems 

Graphene nanoribbons (GNRs), narrow stripes of graphene, have emerged as 

promising building blocks for nanoelectronic devices because of the tunable 

properties by adjusting the width, length and the edge topology. GNRs with zigzag 

edges are particularly interesting because of spin-polarized edge states. Along each 

edge, the electrons all spin in the same direction; an effect which is referred to as 

ferromagnetic coupling. At the same time, the antiferromagnetic coupling ensures 

that the electrons on the other edge all spin in the opposite direction. The spin-

polarized edge states are proposed to support ballistic transport. However, it has 

proven experimentally difficult to probe such edge currents due to disorders and 

scattering processes.  

Recent advances in bottom-up synthesis have allowed the production of atomically 

precise zigzag GNRs
111

. Now, it is possible to create high quality Josephson 

junctions based on zigzag GNRs contacted by superconductors. By studying the 

Fraunhofer interference pattern of critical currents under a small magnetic field, it is 

possible to rebuild the spatial current distribution.  

There is another approach to achieve quasi-one-dimensional ballistic transport in 

graphene by confining the Dirac fermions using split-gates technique. The fermi 

wavelength in high quality graphene can be tuned from few tens of nanometres to 

few hundreds of nanometres, which are comparable to the width of formed graphene 

QPC. The fundamental result of such confinement is the conductance quantization in 

multiple of the conductance quanta. 

Quantization of the critical current in superconducting QPC has been observed two 

decades ago by studying a split-gates superconductor-2DEG-superconductor 

Josephson junction
112

. A recent work done by M. Kee et. al.
113

 showed that 

conductance quantization in graphene QPC can be achieved by gate-defined carrier 

guiding which is identical to the conductance quantization in zigzag GNRs. Thus, it 

would be very interesting to investigate the Josephson effect and Andreev reflection 

in superconducting QPC based on graphene. 
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8.2.3 Graphene-hBN RTDs as high-frequency oscillators 

RTDs operating above THz at room temperature have been demonstrated recently
114-

116
. The first graphene RTD was achieved by controlling the twisted angle between 

two graphene electrodes
103,104

, in which the resonant tunnelling and NDC arise from 

the energy and momentum conservation of Dirac fermions tunnelling through a thin 

hBN barrier. The first graphene RTD showed a peak-to-valley ratio of ~ 2 at room 

temperature suggesting potential applications in high frequency circuits
103,104

. 

Although the proof-of-principle devices only produced stable oscillations in the MHz 

range
104

, mainly limited by the external parameters such as the parasitic capacitance 

between the contact pads and the Si back gate. Compared with conventional double-

barrier RTDs, the time to transit the barrier of graphene RTDs is much shorter than 

the dwell time in the quantum well. Theoretical work suggested that current 

oscillations with frequency up to several hundred GHz is achievable by carefully 

optimizing the diode and circuit parameters including the graphene doping level, 

device geometry, alignment between two graphene electrodes, and the circuit 

impedances
117

.  
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