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Abstract

Genome-wide association studies (GWAS) have been tremendously
successful in identifying genetic variants associated with complex diseases,
such as rheumatoid arthritis (RA). However, the majority of these associations
lie outside traditional protein coding regions and do not necessarily represent
the causal effect. Therefore, the challenges post-GWAS are to identify causal
variants, link them to target genes and explore the functional mechanisms
involved in disease. The aim of the work presented here is to use high level
bioinformatics to help address these challenges.

There is now an increasing amount of experimental data generated by several
large consortia with the aim of characterising the non-coding regions of the
human genome, which has the ability to refine and prioritise genetic
associations. However, whilst being publicly available, manually mining and
utilising it to full effect can be prohibitive. | developed an automated tool,
ASSIMILATOR, which quickly and effectively facilitated the mining and rapid
interpretation of this data, inferring the likely functional consequence of
variants and informing further investigation. This was used in a large extended
GWAS in RA which assessed the functional impact of associated variants at
the 22q12 locus, showing evidence that they could affect gene regulation.

Environmental factors, such as vitamin D, can also affect gene regulation,
increasing the risk of disease but are generally not incorporated into most
GWAS. Vitamin D deficiency is common in RA and can regulate genes through
vitamin D response elements (VDREs). | interrogated a large, publicly
available VDRE ChlIP-Seq dataset using a permutation testing approach to
test for VDRE enrichment in RA loci. This study was the first comprehensive
analysis of VDREs and RA associated variants and showed that they are
enriched for VDRESs, suggesting an involvement of vitamin D in RA.

Indeed, evidence suggests that disease associated variants effect gene
regulation through enhancer elements. These can act over large distances
through physical interactions. A newly developed technique, Capture Hi-C,
was used to identify regions of the genome which physically interact with
associated variants for four autoimmune diseases. This study showed the
complex physical interactions between genetic elements, which could be
mediated by regions associated with disease. This work is pivotal in fully
characterising genetic associations and determining their effect on disease.
Further work has re-defined the 6g23 locus, a region associated with multiple
diseases, resulting in a major re-evaluation of the likely causal gene in RA
from TNFAIP3 to IL20RA, a druggable target, illustrating the huge potential of
this research. Furthermore, it has been used to study the genetic associations
unique to multiple sclerosis in the same region, showing chromatin interactions
which support previously implicated genes and identify novel candidates. This
could help improve our understanding and treatment of the disease.

Bioinformatics is fundamental to fully exploit new and existing datasets and
has made many positive impacts on our understanding of complex disease.
This empowers researchers to fully explore disease aetiology and to further
the discovery of new therapies.
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1 Introduction

1.1 Complex Disease Genetics

Many common diseases, such as type 1 diabetes (T1D), inflammatory bowel disease
(IBD) and rheumatoid arthritis (RA), are caused by a complex combination of genetic,
environmental and lifestyle factors. Historically, complex disease genetics were
investigated using linkage or candidate gene studies. While these approaches were
successful in identifying genetic changes and genes causing monogenic disorders’?2,
they have had limited application to complex disorders as, with a few notable
exceptions with large effect sizes®®, they were underpowered to detect much of the

genetic susceptibility to disease.

More recently, since 2007 starting with the Wellcome Trust Case Control Consortium
(WTCCC)®, the modern complex disease genetics era have utilised genome-wide
association studies (GWAS). GWAS have been tremendously successful in
identifying genetic variants associated with common complex diseases in a
hypothesis-free way®~'" and were made possible by technological developments in
array based genotyping methods, pioneered by Affymetrix and lllumina. They
compare the allele frequency of thousands of markers across the whole genome,
usually single nucleotide polymorphisms (SNPs), between cases (individuals with
disease) and controls (healthy individuals) to determine if one allele occurs in cases
more or less often than expected; the statistical significance of this difference is then

determined.

Due to the inherited nature of the genome, the vast majority of associations identified
in GWAS only provide the initial signposts for the identification of the genetic variants
underpinning susceptibility to disease and do not represent the causal effect but one
in linkage disequilibrium (LD). LD describes how alleles can segregate based on
recombination during meiosis; alleles of SNPs in high LD are found together more
often than SNPs in low LD. As such, the causal variation could be any SNP that lies
in high LD with the GWAS associated SNP and can often implicate large genomic
regions representing many potential causal SNPs. It can therefore be difficult to
pinpoint this association to a specific region or gene. Additionally, for many complex

diseases, the vast majority of the genetic associations identified are found outside
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traditional protein coding genes and recent studies have shown that they are enriched

in enhancer elements suggesting that they are involved in gene regulation'>"4,

In an attempt to refine or ‘fine map’ the genetic associations identified, coupled with
the insight that many common complex disease associations share significant overlap
with each other, the Immunochip consortium sought to developed a genotyping array
which could achieve this in a cost effective way to allow much larger sample
numbers'®. This approach not only fine mapped many associations but was also
successful in identifying new variants associated with disease'®?’. Although the
Immunochip array, and subsequent large imputed meta-analyses? were successful,
it was still not possible to fully resolve the causal variations underpinning disease
susceptibility. It is therefore clear that identifying the causal SNP and, more
importantly, the underlying disease mechanisms using GWAS/genetic evidence
alone is typically not possible and considerable challenges remain if we are to fully

translate GWAS findings into an understanding of disease aetiology.

Therefore, the challenges post-GWAS are firstly to determine which of these variants
is most likely causal, secondly, which gene they regulate and finally, how the disease
associated allele affects the functional mechanisms involved in disease. The basis of
my work contributing to this thesis has been to use high level bioinformatics to help

address these challenges.

Specifically, in the first publication?®, | developed a one-stop solution that quickly and
effectively allowed genetics researchers to mine and rapidly interpret the data
generated by the ENCyclopaedia Of DNA Elements (ENCODE) project®® with ease.
This has enabled researchers to easily identify and prioritise potential causal
candidate variants for further investigation. This required multiple bioinformatics skills,
including expertise in programming and databases and coupled with my background
in molecular biology allowed me to develop a tool that researchers could use to fully
utilise this resource. This was accomplished by developing a web-based interface to
allow researchers both internally and externally to access and use the tool efficiently.
This has been used in multiple publications to assess and prioritise genetic variants
associated with disease. For example, the second paper®' describes a large extended
GWAS in RA which used this tool to assess the functional impact of variants
associated at the 22912 locus. Evidence was discovered suggesting an associated
variant, rs1043099, and correlated variants map to sites of transcription factor binding
and open chromatin. Coupled with histone modification evidence, this suggests that

these associated variants could affect gene regulation.
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In the third paper®, | utilised a large publicly available dataset comprising of vitamin
D response element (VDRE) ChIP-Seq data®® and incorporated it with our existing
genetic evidence. This custom analysis involved processing and filtering the data into
a useable format and utilised a permutation testing approach to test for VDRE
enrichment in RA loci and matched random controls. This study showed that variants
associated with RA are enriched for VDREsSs, providing a link between vitamin D, a
non-genetic factor, and RA. This study was the first comprehensive analysis of
VDREs and RA associated variants and provides evidence for in involvement of

vitamin D in RA and has the potential to inform research into vitamin D therapy in RA.

The fourth paper®* represents a large study that was developed and carried out in
Manchester to infer causal genes from genetic associations for four autoimmune
diseases. This unique study has shown the complex physical interactions between
genetic elements which exist in the nucleus and are mediated by regions associated
with disease. This work involved careful consideration with regards to experimental
design and subsequent analysis as it was one of the first to employ the Capture Hi-C
technology and utilised a unique study design. The sequence data generated by this
study was roughly equivalent to the amount required for three human genomes and
required the development of custom pipelines and analyses to identify the multiple
complex effects observed. Furthermore, thousands of interactions were identified and
the results had to be stringently filtered to provide robust, validated interactions which
had strong biological effect. This study is, and will continue to be, pivotal in
subsequent functional experiments to fully characterise genetic associations and

determine their effect on disease.

Although only recently published, the technique has generated considerable interest
from researchers in a number of areas and is already being applied to post-GWAS
investigation of a number of different diseases. This has already led to further work
by our group, presented in the final two papers®+¢, the first of which has re-defined a
genomic region associated with multiple diseases. An in depth analysis of the
interactions of the 6923 locus has resulted in a major re-evaluation of the likely causal
gene from TNFAIP3 to IL20RA, a drugable target. The final paper investigated the
interactions involving variants only associated with multiple sclerosis (MS) in the 6923
region. This showed that MS associated variants are involved in two clusters of
interactions: one containing neurologically related genes and the other
immunologically related genes, showing that individual variants could regulate

multiple genes and that multiple independent variants could co-regulate groups of
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functionally similar genes. These two papers illustrate the huge potential impact of

this and similar subsequent research.

1.2 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a common complex autoimmune disease characterised
by chronic inflammation of the synovial joints leading to irreversible joint damage,
disability and increased mortality. It is the most common form of arthritis in the UK,
affecting approximately 1% of the population worldwide and costs the NHS around
£3.5 billion per annum. However, the cause of RA is still unknown and current
treatment options are not always effective. As such, it is important to understand
which factors contribute to an individual’s risk to RA to allow clinicians to effectively
manage disease. The largest predisposing factor for developing RA is the genetic
background of an individual, with As estimates ranging from 5-10%, and genetic
association studies have been successful in identifying over 100 genetic regions

containing variants associated with RA8:10.11.19.28.38-40_

1.2.1 RA Genetic Associations

The largest and first genetic effect identified comes from the human leukocyte antigen
(HLA) region and the class || HLA-DRB1 gene, specifically copies of the HLA-DRB1
gene containing the shared epitope, a five amino acid motif which confers
susceptibility to RA (amino acid positions 70-74)*'. More recently, a new model for
the association of the HLA region in RA has been proposed which has identified that
five amino acids in three HLA proteins (HLA-DRB1, HLA-B & HLA-DP1) can explain
most of the HLA risk in RA patients who have antibodies against cyclic citrullinated
peptides (anti-CCP-positive RA)*2. The main finding of this study was that HLA-DR1
risk could be defined by three amino acids at positions 11, 71 and 74 which, whilst
offering new insights into RA HLA association does not radically alter the existing
shared epitope hypothesis. A recent study in anti-CCP-positive (ACPA") RA, has also
shown that amino acids at these positions are associated with severity, mortality and
treatment response in RA patients*®. Additionally, a study in anti-CCP-negative
(ACPA") RA showed that while HLA-DRB1 is associated with this subtype, albeit with
a lower effect size, different HLA-DRB1 alleles also have a different direction of effect

(i.e. risk vs protective) (Figure 1)*.
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Figure 1 Distinct Effect Sizes of Amino Acid Residues at HLA-DRB1 Position 11
Effect sizes and confidence intervals for ACPA* are shown on the x-axis and for ACPA™ on the y-
axis**. Reprinted from American journal of human genetics, 94, Han et al., Fine mapping seronegative
and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of

heterogeneity, 522-532, Copyright 2014, with permission from Elsevier.

The second pre-GWAS era association to be identified was the rs2476601, non-
synonymous SNP located in the PTPN22 gene which causes an arginine at position
620 to be replaced by tryptophan (R620W)*. This risk allele of rs2476601 is common
in European and American populations (5-15%), although is absent to rare in African
and Asian populations (0-2%) suggesting that the allele appeared late in humans in
a European population*®. The PTPN22 R620W variant has also been associated with
many other autoimmune diseases including systemic lupus erythematosus (SLE)*,
Myasthenia Gravis*®, Crohns*, juvenile idiopathic arthritis (JIA)®® and originally in
type 1 diabetes (T1D)®'. This suggests it has a more general autoimmune effect and
as a result, several groups have studied the functional consequence of the R620W
polymorphism with mixed results. Bottini et al.>’ and Begovich et al.*° identified the
association in T1D and RA respectively and studied the functional impact of the
variant. Their findings showed that the 620W variant represents a gain of function
allele by altering the ability of LYP, the protein encoded by PTPN22, to interact with
Csk, a negative regulatory kinase, potentially leading to a decrease in T-cell signalling
and activation. Further studies in healthy individuals and those with autoimmune
diseases have corroborated these findings, showing reduced interleukin 2 (IL-2)
production, decreased activity of the NFAT/AP-1 transcription factor complex,
increased phosphatase activity, reduced calcium mobilisation and reduced T-cell

receptor signalling®?-%*. However other studies have shown the 620W variant to be a
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loss of function allele®-%¢, showing more efficient calcium mobilisation in T-cells,
higher numbers of IL-2 producing cells and increased numbers of autoantibody
producing cells in carriers of the 620W variant compared to individuals carrying the
R620 variant. Overall however, most primary cell studies have found the R620W
variant to have a gain of function*®. These contrasting findings may be due to the
variation having different effects on multiple pathways in the same individual or cell

type or may represent disease specific effects.

Subsequent GWAS, GWAS meta-analyses and candidate gene studies prior to 2012
identified a further 33 loci associated with RA in European populations®:10.11:38-40.57-60
In 2012 the results of the Immunochip study'® were published and identified an
additional 14 loci to total 48 non-HLA RA associations (Figure 2). Through these
genetics studies in RA, differences between ethnicities were also observed. For
example, as early as 2003, Suzuki et al.®" identified SNPs in the PADI4 gene which
were associated with RA in a Japanese population. This association was eventually
replicated in samples of European ancestry but not robustly until 2012 by Eyre et al.™.
Another example, previously mentioned, is the PTPN22 R620W variant which,
although being robustly associated with RA in European and American populations,
is virtually absent in Asian populations and is not associated with RA susceptibility. A
further trans-ethnic analysis of the Immunochip results combined with GWAS results
and whole-genome imputation?® identified a further 53 loci associated with RA
susceptibility resulting in 101 non-HLA RA associations (Figure 3). This study also
identified differences between European and Asian populations, identifying 18
variants only present in Europeans and 1 only present in Asians, although their

findings did support their hypothesis that, in general, the genetic risk of RA is shared.
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Figure 2 RA genetic susceptibility loci identified prior to 2013
Loci are shown on the x-axis and effect sizes on the y-axis. Cumulative proportion of observed
variance in disease susceptibility explained is shown by the red line®2. Reprinted by permission from
Macmillan Publishers Ltd: Nature Reviews Rheumatology 9:141-153, copyright 2013.
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Figure 3 RA genetic susceptibility loci identified to date

Approximate chromosomal position of markers are indicated®.

1.2.2 Shared Autoimmune Risk Loci

GWAS have therefore been successful in identifying variants and increasing our
knowledge of RA genetics, implicating several loci important in disease. These
include both variants which are unique to RA (~28%) and many which share
associations, some substantially, with other complex diseases, primarily autoimmune
disorders. For example, associations attributed to CCL271 and RBPJ are currently only
associated with RA (Figure 4), whereas associations attributed to TNFAIP3, PTPN22,
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IL2RA and STAT4 are associated with multiple autoimmune diseases, such as
JIA?1:50 T1D9516485 Crohn’s®7, ulcerative colitis (UC)®” and SLE*. However, not alll
of the overlapping associations have the same direction of effect in all diseases.
Some, such as PTPN22, increase an individual’s risk of RA (odds ratio (OR): 1.80%%),
but are protective for Crohn’s (OR: 0.79%). Whereas others, such as IL6R, are
protective in RA (OR: 0.90") but risk in atopic dermatitis (OR: 1.15%8). Figure 4 shows
the overlap between all genes assigned to a genetic association in RA and 12
additional autoimmune diseases from ImmunoBase. Interestingly, there is limited
genetic overlap between RA and other arthritic disorders, such as JIA (Figure 4) and
psoriatic arthritis (PsA)®, compared to other unrelated autoimmune diseases,
suggesting a different disease mechanism. Indeed, the most relevant cell types for
RA have been epigenetically determined as CD4* T-cells and B-cells'>7°, whereas for
PsA, CD8" T-cells appear to be more important in disease®7"72, The non-overlapping
nature of RA and PsA is also apparent from the use of therapies in disease. Although
there are treatments which are used in PsA and psoriasis (Ps), which share a high
degree of genetic overlap, highly effective treatments in RA, such as anti-TNF

biologics, have little efficacy in PsA and Ps.
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Figure 4 Comparison of RA associated genes against 12 additional autoimmune diseases taken
from ImmunoBase (http://www.immunobase.org)
Disease abbreviations are as follows: AS — Ankylosing spondylitis; ATD — Autoimmune thyroid
disease; CEL — Coeliac disease; CRO — Crohn’s disease; JIA — Juvenile idiopathic arthritis; MS —
Multiple sclerosis; PBC — Primary biliary cirrhosis; Ps — Psoriasis; RA — Rheumatoid arthritis; SLE —

Systemic lupus erythematosus; T1D — Type 1 diabetes; UC — Ulcerative colitis; OD — Other diseases.

1.2.3 RA Clinical Subtypes

GWAS have also highlighted genetic differences between subtypes of RA. As
mentioned previously, RA can be broadly classified into two subtypes, ACPA* and
ACPA", based on the presence of antibodies against cyclic citrullinated peptides (anti-
CCP). These subtypes are clinically indistinguishable at diagnosis, but the presence
of anti-CCP antibodies predicts disease severity and radiological damage ", with
ACPA* RA patients having a more severe disease. As such, ACPA* RA patients are
seen more often at rheumatology clinics and recruited onto genetics studies and
therefore the majority of RA genetics studies have been performed on the ACPA*
subtype. There is also thought that these subtypes are genetically different and may

in fact represent two clinically different conditions.

Initially, based on twin studies, ACPA" RA was estimated to have the same heritability
as ACPA* RA (~60%)’®, but these estimates have since been revised to 50% and
20% for ACPA* and ACPA" RA respectively’®. Despite this reduction in heritability in
ACPA" disease, the effect of HLA is much lower than in ACPA* patients and therefore
additional ACPA" RA genetic associations are likely to exist’’. However, both GWAS
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and candidate gene studies have had little success in identifying variants associated
with ACPA" RA and in addition, many have only been reported in single studies
without independent replication. The first comprehensive analysis of ACPA" RA,
based on the GWAS meta-analysis by Stahl et al., identified 6 loci, already associated
in ACPA* RA, which are also associated with ACPA" RA (Table 1),

Table 1 Schematic classification of RA susceptibility loci into three categories depending on

their association pattern in anti-CCP positive and negative RA

Category Associations Locus Name

Both CCP positive and negative RA, stronger in

1 CCP positive RA

PTPN22, TNFAIP3?

2 Both CCP positive and negative RA, equally ANKRD55, BLK, C50rf30,
strong in both STAT4
iy N . AFF3, CCR6, CCL21, IL2RA,
o gSnimerow sgmaeRee oz cowo, e Rl Rer
P 9 TNFRSF14, TNFAIP3?
Not CCP positive RA only, but no significant difference

classifiable  between CCP positive and negative RA All others

2186920220; ° rs5029937. Reproduced from Genetic markers of rneumatoid arthritis susceptibility in anti-
citrullinated peptide antibody negative patients, Viatte et al.’®, 71,1984-90, 2012 with permission from BMJ
Publishing Group Ltd.

A recent study by Viatte et al.”” utilising ACPA" RA data generated using the
Immunochip array, supplemented by 1,044 replication samples, confirmed existing
loci and identified two novel ACPA" specific loci (PRL & NFIA). Together with other
confirmed or suggestive loci from other studies, this results in 14 ACPA" RA
associated loci. Importantly, this study concluded that, given its sample size, if ACPA
RA had similar genetic architecture to that of ACPA™ RA, it would have been
equivalent to a study conducted in 2012 (for example Eyre et al.’®, 48 non-HLA loci).
However, it is clear that the effect sizes of the ACPA"™ associations are smaller than
ACPA" RA. These findings could be explained by the smaller genetic contribution to
ACPA" RA but could also suggest that the ACPA" RA subtype is itself a heterogeneous
sample population. Despite this, it is clear that ACPA* and ACPA" RA subtypes are

genetically different subsets which only share partial genetic overlap.

1.2.4 Missing Heritability

Despite the success of GWAS and candidate gene studies in RA, most of the
associations identified have modest effect sizes (OR <1.5) (Figure 2) and altogether
only account for ~19.5% of the total heritability for RA28. This outcome is also true for
many other complex diseases and has been termed the ‘missing heritability’ of a
disease. The missing heritability could be due to many factors, including more, as yet
undiscovered, associated variants, rarer and structural variants which are under

investigated, the multiplicative effect of having a burden of risk variants and the
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unknown/under investigated interactions between genetics and the environment.
However, there is conflicting opinion regarding the concept and cause of ‘missing

heritability’.

1.2.5 T-cells and RA

The role of T-cells was implicated in RA pathogenesis many years ago, mostly due
to the association with the HLA region’®. HLA proteins are responsible for presenting
short (<30 amino acids) foreign peptides or antigens to T-cells, the first step in the
process of T-cell activation, as part of the adaptive immune response. Additionally, T-
cells isolated from RA synovial tissue show increased expression of markers of

antigen exposure, CD45R0 and CD27, relative to circulating T-cells’®.

Further genetic evidence since 2005 has added to this hypothesis. For example,
PTPN22, an early discovered risk loci, is responsible for inhibition of T-cell activation
by restricting signalling downstream of the T-cell receptor (TCR)& and more recently
Maine et al.®" and Brownlie et al.®2 demonstrated a link between PTPN22 and the
development of regulatory T-cells (Tregs) in the thymus. Additional associations with
CCR6, a chemokine receptor, expressed by CD4* type 17 T helper (Tu17) cells and
associated with interleukin 17 (IL-17) RA sera levels®, and IL2RA, correlated with
mRNA and surface protein levels in CD4" naive and memory T-cells®, add further

support for the role of T-cells.

Pathway analysis of RA risk loci also support the role of T-cells, highlighting immune
pathways such as T-cell activation and differentiation, antigen processing and
presentation and JAK/STAT signalling®. Indeed, many genes involved in signalling
between dendritic cells and T-cells reside in RA associated regions (Figure 5).
Studies investigating enrichment in gene expression data, DNA methylation and other
epigenetic marks have identified RA genetic associations to be enriched in T-cells in
general?®®” and specific enrichment has been found in Ty17'2, CD4* regulatory T

cells®” and CD4" effector memory T-cells®.
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Genes filled in blue are encoded by genes within RA susceptibility loci®?. Reprinted by permission from

Macmillan Publishers Ltd: Nature Reviews Rheumatology 9:141-153, copyright 2013.

Finally, evidence comes from a current biologic therapy, abatacept, used to treat RA.
Abatacept is an immunoglobulin fusion protein based on cytotoxic T-lymphocyte
protein 4 (CTLA-4). The CTLA-4 protein (also known as CD152) is expressed on the
surface of T-cells and is an important negative regulator of T-cell activation®.

Importantly, variants in the CTLA4 gene region are also associated with RA19-28-38
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This evidence clearly shows the importance of T-cells in RA pathogenesis and the
genetic evidence suggests that changes in T-cells in RA patients are likely to be a
cause, rather than a consequence, of disease. However, studies have also suggested
a role for B-cells, part of the adaptive immune system and responsible for the
secretion of antibodies. B-cells can also present antigens and secrete cytokines,
immune signalling molecules, and can be activated by T-cells®. Studies have shown
a therapeutic benefit for B-cell depletion®'%? and the use of a B-cell biologic therapy,
rituximab, targeting CD20 expressed on the surface of B-cells®® supports this.
Additional evidence implicating B-cell signalling pathways?®, enrichment of B-cell
specific enhancers'? and genes involved in B-cell function®, adds further support for
this hypothesis. These findings highlight the complexity of RA pathogenesis and the

interplay between different cells of the immune system.

1.2.6 Drug Targets in RA

Current treatment options for RA do not always prove effective, they can cause
unacceptable side-effects (adverse events) or just simply not control the disease
sufficiently  (inefficacy). Traditional disease-modifying anti-rheumatic drugs
(DMARDSs), such as methotrexate and sulfasalazine, are the first step in the treatment
of severe RA, however, up to two thirds of patients fail to respond, either due to
adverse events or inefficacy®®. Therapies based upon biological proteins, termed
biologics, were introduced in the late nineties and are new type of DMARD which,
despite being expensive, have proven to be effective in the treatment of RA%. They
target specific molecules involved in the immune response, such as tumour necrosis
factor (TNF), interleukin 6 receptor (IL-6R) and CTLA-4, to supress the immune
response and as a result reduce disease activity. Although there are examples of
biologic therapies which are based on RA associated genes, such as abatacept
(CTLA4) or which are antagonists of RA associated genes, such as tocilizumab (/L6R)
as well as pathways identified by RA genetics, such as tofacitinib (janus kinase (JAK)
inhibitor), etanercept (anti-TNF) and rituximab (B-cell surface molecules (CD20)),
none of the therapies currently used to treat RA were developed based on RA

genetics.

Okada et al. evaluated the potential of drug discovery in RA by testing if any genes
identified either as RA risk genes or by a direct protein-protein interaction (PPI)
network were targets of existing RA drugs?. They found that 27 targets for approved
RA drugs showed significant overlap with 98 RA risk genes and 2,332 PPI genes.
The authors therefore concluded that as genetics was successful in identifying RA

drug targets, it also has the potential to be useful in drug target validation. Further
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work by our group has identified 41 targets for 106 existing drugs from work informed

by genetics for RA%,

1.2.7 Future of RA Genetics

Although RA GWAS has therefore led to major strides in understanding disease,
these findings are based on a relatively imprecise knowledge of the exact genes, cell
types and pathways implicated in disease. Few have been functionally explored and
associated regions have been labelled with the closest, most compelling candidate
with little or no evidence to support their candidature. Many show no obvious role in
RA pathogenesis as they lie in non-coding regions. In fact, of the 101 loci identified
by Okada et al.?®, whilst 50% have expression quantitative trait loci (eQTL) data or
are non-synonymous variants, their involvement in RA pathogenesis is unclear. The
next challenge for RA is to functionally determine the effect of these variations and
identify or confirm their target genes to fully explore RA disease susceptibility. This
then has the potential to provide novel, effective therapies, thus decreasing the

economic burden of RA and improve the quality of life for RA patients.

1.3 Functional Genomics and the post-GWAS era

At a similar time to the GWAS era, a large scale project to characterise the functional
elements of the human genome was initiated. A pilot study by the ENCyclopaedia Of
DNA Elements (ENCODE) international consortium on 1% of the genome was
increased to the whole genome in 2007. This project studied several functional
elements such as transcription factor binding sites, DNase | hypersensitivity and
histone modifications across multiple cell lines using newly developed next-

generation sequencing (NGS) based experimental methods (Figure 6).
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Figure 6 Overview of the ENCODE project
Experimental approaches are indicated at the appropriate resolution®’. Reprinted by permission from
Macmillan Publishers Ltd: Nature 489:52-55, copyright 2012.

DNA is often thought of as a two dimensional linear string however within the cell
nucleus it is heavily condensed into chromatin, a DNA-protein complex, comprising
of DNA wrapped around proteins called histones to produce nucleosomes,
approximately 11nm in diameter. These nucleosomes are further compressed, folded
and coiled to compact them enough to fit in the nucleus of the cell (Figure 7).
However, histones can be modified to change how tightly packed that region of the
genome is and observations of these modifications can indicate how active the region
is and therefore how likely it is to be involved in gene regulation. Similarly DNase |
hypersensitivity data can be used to tell how open or accessible the region is to other
gene regulators such as transcription factors. Collectively, these observations
constitute the cells epigenome and allow researchers to characterise regions of the
genome into functional classes and determine their relevance. For example,
correlating this data with all SNPs in high LD with the GWAS identified SNP allows
genetics researchers to identify which of these potential candidate SNPs is most likely

to be causal and therefore prioritise these for expensive functional follow-up studies.
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Figure 7 Compaction of DNA into chromatin
Numbered boxes indicate compaction method at each stage®.
Since the ENCODE project, complementary large whole-genome epigenomics
projects have been initiated. The NIH Roadmap Epigenomics Mapping Consortium
started the Roadmap Epigenomics Project with the aim to characterise the
epigenomes of primary and ex vivo tissues used to represent normal human tissues
involved in disease but do not target other non-epigenetic transcriptional regulators
such as transcription factors. Similar projects also include the Blueprint epigenome

project (http://www.blueprint-epigenome.eu/index.cfm) and the International Human

Epigenome Consortium (IHEC), including the Canadian Epigenetics, Environment
and Health Research Consortium (CEEHRC) Epigenomic Platform Program
(http://www.epigenomes.ca/), the Deutsches Epigenom Programm (DEEP)

(http://www.deutsches-epigenom-programm.de/) and the Core Research for

Evolutional Science and Technology (CREST) (http://crest-ihec.ip/english/index.html)

projects which focus on different cell types or experimental aims.

It is clear that utilising this data in addition to the generation of new disease focused
experiments will be essential to fully translate genetic findings to progress the
understanding of the genetic basis of complex disease. Post-GWAS bioinformatics
will be fundamental to this process to analyse, exploit and integrate these large cross-
disciplinary datasets and explore disease aetiology and further the discovery of new

treatment options.
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2 Identification of Causal SNPs and Their Function
(Publications 1 and 2)

2.1 Background

As GWAS identified increasing numbers of SNPs for many complex diseases, it
became apparent that the vast majority of these variants were located outside
traditional protein coding regions of the genome and therefore predicted to have a
role in gene regulation. Techniques to study gene regulation were already established
but without specific hypotheses would result in expensive and time-consuming
experiments that may not identify any effect on disease susceptibility. 1t would
therefore be necessary to narrow down the number of potential SNPs and formulate

specific hypotheses to test and prioritise these for future work.

The production phase ENCODE project®®® was initiated in 2007 to study the
functional elements of the whole human genome and has successfully generated data
on multiple cell lines using many different unique and complementary experimental
techniques (Figure 6). This data is publicly available and can be accessed through
the Univeristy of California, Santa Cruz (UCSC) Genome Browser'®. Different
combinations of DNase | hypersensitivity (HS) sites and histone marks are indicative
of certain ‘chromatin states’, for example, active enhancers or promoters (Figure 8).
By aggregating this data for any given SNP or region, researchers can infer the
chromatin state and build up evidence to either strengthen or weaken the case
towards the likelihood for a SNP being functionally relevant. For example, if an
associated variant lies in an area demonstrating DNase | HS and active promoter
histone marks (H3K4me3 and H3K27ac), this shows that this region is ‘open’ and
accessible to other regulatory or transcriptional proteins and is an active promoter,
which would support the functional role of this variant. Conversely, if the region lacked
DNase | HS data and active promoter histone marks, it would suggest that the region
is ‘closed’ and transcriptionally inactive. Additionally, if there was evidence of

transcription factor or Polll binding, this would strengthen the case further still.
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Figure 8 Various chromatin states
Each chromatin state is characterised by DNase | HS and histone marks according to the key'0".
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics 15:272-286,
copyright 2014.

However, while this resource has proved to be invaluable, the sheer wealth of
information available has also provided a challenge to many as fully mining and
utilising this data can be prohibitive and researchers often lack the appropriate skills

to identify and aggregate information across the various experiments and cell types.

2.2 Aims and achievements

The aim of this work was therefore to provide researchers with an easy to use tool
that could automatically interrogate, assimilate and aggregate this data for selected
SNPs and present it in the most efficient way so that researchers could identify the
most likely causal SNPs amongst the potential candidates, allowing them to evaluate
and interpret the data at a high level but still have access to the complete underlying
data.

To address this | developed ASSIMILATOR? to quickly and effectively query the
UCSC database and present the results in a user friendly manner (Figure 9).
ASSIMILATOR was written in Perl and directly queries the UCSC database to
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interrogate the ENCODE data. The ENCODE data is stored as genomic features
(chromosome, start and end co-ordinates) across multiple tables organised by cell
type and experimental features, such as DNase | HS, H3K4me1 and CTCF
transcription factor and due to the amount of data available it is non-trivial to integrate
all the evidence and interpret results. ASSIMILATOR therefore summarises each
broad experiment, such as DNase | HS, histone marks and transcription factor binding
into a simple table showing presence or absence of experimental features. However,
access to the full underlying data is still possible by ‘clicking’ the relevant experimental
summary. This displays all of the overlapping features for that experiment for the
queried SNP within the main page (Figure 9), allowing the user to easily compare
multiple experiments or query SNPs. Additionally the user is able to link to the UCSC
browser to easily visualise the experimental features without having to manually

select, check and add relevant tracks.

Results - Pomerantz et al.

Location Information Standard Expression Regulation
ionl T T, -

SNPID | SNP Position Informati de|Relative |Afty| Caltech | CSHL [GIS[RIKEN| Broad | oOpen [nA1B] uw
RNA[RNA-seq| Sm |PET| CAGE |Histone Chromatin,

rs10808556 chr8:128482329-128482329| snp130
rs4871788 Tchr8:128490967-128490967 snp130
53847137 /chr:128483660-128483680 snp130
rs2060776 chr8:128489299-128489299) snp130
rs4 276648 ill\ls 128496554-128496554) snp130

Yes Yes Yes Yes
Yes Yes Yes Yes

Yes

1. Track: ENCODE RIKEN CAGE Tags (PolyA- RNA in prostate whole cell)
Date Unrestricted: 2009-09-09 1
84871022 |chrB:128496902-128496902| snp130 Name: 00003022001131200022003113 Yes Yes Yes Yes

Yes Yes Yes

Position: chrB:128482488-128482513
rs10956369 chrB:123492999-128492999 snp130 Strand: - Yes Yes Yes Yes
57837644 chrb:120492500-128492580 snp130 Yes Yes
rs871135 |chr8:128495575-128495575|  snp130 2, Track: ENCODE RIKEN CAGE Tags (PolyA- RNA in prostate whole cell) Yes
rs10505477/chr8:128476625-128476625 snp130 Date Unrestricted: 2009-09-09 Yes Yes
- Name: 00003022001131200022003113 + +
rs10505474 chr8:128486686-128486686| snp130 Position: chB:128482488-128482513 L
rs7837328 chrB:128492109-1284921309 snpl130 Strand: Yes Yes
1510956368 chr8:120492032-120492832]  snp130 = T
rs7837626 chr8:128492523-128492523|  snp130 Yes | Yes | | ] ves Yes |Yes| Yes Yes Yes

Figure 9 Example of ASSIMILATOR output

The results are shown for Pomerantz et al.’%? with the causal SNP highlighted.

However, allowing access to all experimental data can take a large amount of time,
due to the complexity and amount of data held in the UCSC database. Therefore
several systems have been implemented to speed up ASSIMILATOR and simplify its
use. The first of these stores existing track information in an extensible markup
language (XML) file, which is automatically updated with new tracks, reducing the
number of database queries needed to obtain information about each track. The next
speed improvement utilises multi-core processing to allow ASSIMILATOR to query
multiple SNPs simultaneously, reducing execution time by up to eight times over a
single core implementation. The final improvement enhances usability, providing a
unique token which allows users to submit a SNP query and return at a later date to
retrieve the results from a MySQL™ database. The results are presented as an

overview in a web page which can be viewed in a standard web browser. This
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summary page can then be used to access the underlying data by selecting the

relevant experiment and SNP.

2.3 Contribution to the literature

ASSIMILATOR was the first tool to be developed which aggregated data from
ENCODE to annotate a list of regions and allowed researchers to easily identify and
prioritise potential causal candidate variants for further investigation. This tool has
been used to annotate other associated variants'*1% and this is exemplified in the
work by Orozco et al.3! describing a large extended GWAS in RA, in which this tool
was used to assess the functional impact of variants associated at the 2212 locus.
Evidence was discovered suggesting an associated variant, rs1043099, and
correlated variants map to sites of transcription factor binding and open chromatin.
Coupled with histone modification evidence, this suggests that these associated

variants could affect gene regulation.

Shortly following the publication of ASSIMILATOR, two groups from the Broad
Institute and the Center for Genomics and Personalized Medicine at Stanford
University have developed similar tools, HaploReg'® and RegulomeDB',
augmenting them with different features. Unlike ASSIMILATOR which includes a self-
updating procedure and queries the ENCODE data held at UCSC each time allowing
retrieval of the most up-to-date information, both HaploReg and RegulomeDB rely on
locally hosted database snapshots. As such they are faster than ASSIMILATOR but
require manual bulk updates to integrate newly released data. Both tools have

additional features and have been updated and developed since their initial release.

HaploReg supplemented the ENCODE data with transcription factor (TF) position
weight matrices (PWMs) from TRANSFAC'?” and JASPAR'% to annotate variants by
their effect on protein binding. Additionally, all SNPs in LD with the query SNPs were
included by utilising data from the 1000 genomes project'® and storing it locally. This
has both advantages as it improves user friendliness and additional analysis steps
but removes an element of control from the user and the ability to use custom LD
panels, for example from a disease reference panel, or specific locations, such as
new possibly rare SNPs. To overcome the first limitation HaploReg allows users to
disable the LD selection and enter multiple query SNPs to test. Subsequent releases
of HaploReg added data from the epigenomics roadmap project'’?, eQTLs from the
GTEXx project', an updated SNP database and expanded PWM data.
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RegulomeDB also builds on the ENCODE data by adding PWMs and additional
annotations from ChlP-Seq, eQTL, DNase | sensitivity QTLs (dsQTLs) and ChIP-exo
experiments. RegulomeDB is unique as, in addition to the underlying data, it also
provides the user with a score rating how likely the query SNP is to have a functional
consequence. This score is however based on the presence of certain features, rather
than a statistical measure, using the likelihood of observing the individual
experimental features and aggregating them into measure of significance. For
example, to attain a score of 1a, the SNP must show evidence of an eQTL, TF
binding, matched TF motif, matched DNase | footprint and DNase | peak. Since the
initial release of RegulomeDB the database has been updated to the 2012 ENCODE
data freeze and additional data on chromatin states from the epigenomics roadmap

project, DNase footprinting, PWMs, and DNA methylation has also been added.

More recently, tools have been released which utilise statistical methods to score
variants using various annotation sources or test for enrichment within a specific set
of annotations, for example, histone marks’®''213, These do not utilise full annotation
datasets or test all SNPs and do not provide information on individual variants but on
disease associations in general and therefore are less utilised for SNP prioritisation

than HaploReg and RegulomeDB.

Further tools have been developed which score variants based not only on functional
annotation but evolutionary fitness''* or deleteriousness''®. Kircher et al. have
developed a framework, combined annotation-dependent depletion (CADD), which
compares the annotations of ‘fixed’ derived alleles with simulated variants''>. CADD
is based on the assumption that deleterious mutations are removed, or depleted, by
natural selection in fixed variation, but not in simulated variation. Annotations are
obtained from various sources, such as the Ensembl Variant Effect Predictor'®
(VEP), ENCODE and the UCSC genome browser and a matrix of 29.4 million fixed
and simulated variants (50:50 ratio) against 63 annotations is produced. Scores are
then precomputed by applying the average of ten models trained on the labelled
matrix. This method performs particularly well for nonsense variants, however less so
for non-coding variants, producing much lower scores compared to nonsense
variants (Figure 10) and as such, its application to GWAS SNPs may be limited. This
limitation has also been commented on by Gulko et al. who later released fitCons™",

although their comparison was later refuted by Cooper et al'"’.
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Figure 10 Relationship of scaled C scores and categorical variant consequences.
Proportion of substitutions with a specific consequence after first normalizing by the total number of
variants observed in that category. The legend includes in parentheses the median and range of
scaled C score values for each category. Consequences were obtained from Ensembl VEP. Adapted
by permission from Macmillan Publishers Ltd: Nature Genetics 46:310-315, copyright 2014.

FitCons''*, developed by Gulko et al., seeks to assign a probability that a variation
will affect fitness to each position in the genome. This score can then be used as an
evolution-based measure of potential function. To calculate the score, functional
annotation data from ENCODE, primarily DNase |, RNA-Seq and histone ChlIP-Seq,
is clustered to produce 624 distinct functional genomic classes. This task is simplified
by using chromatin states, as opposed to full ChlP-Seq data, defined by ChromHMM,
discussed later. This is followed by estimating the fraction of sites under selection,
using the INSIGHT method, by functional class and assigning this score to each
position belonging to that class. Similar to CADD, fitCons assigns the highest scores
to coding variants and the lowest score to intergenic variants showing little or no
evidence for functional enrichment (Figure 11). Interestingly, the authors also show
that the performance of fitCons for non-coding variants outperforms other methods
(Figure 12). However, the method appears to have been less widely adopted
compared to CADD.
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Figure 11 Composition of high-scoring genomic regions according to fitCons
Varying fitCons thresholds (S) are shown on the x-axis and the composition of various annotation
types are shown on the y-axis''*. Reprinted by permission from Macmillan Publishers Ltd: Nature
Genetics 47:276-283, copyright 2015.
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Figure 12 Coverage of active cis regulatory elements as a function of total coverage of the
noncoding genome
Coverage of each type of element is shown as the score threshold is adjusted to alter the total
coverage of noncoding sequences in the genome, excluding sites annotated as CDSs or UTRs ™.
Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics 47:276-283, copyright 2015.

The ability of CADD and fitCons to accurately determine the functional importance of
non-coding SNPs is therefore not comprehensive and manual assessment is
therefore required. Unfortunately, neither CADD nor fitCons provide access to the
original evidence used to produce the score which makes manual assessment

challenging.

Additionally, algorithms, like ChromHMM''® have been developed which classify
regions into various chromatin states giving researchers the ability to quickly ascertain
if a region is functionally relevant, however they do not combine other functionally
important features such as transcription factor binding or DNase | HS and thus are
still limited. Nevertheless ChromHMM classifications are a useful determinate of
regulatory potential and can allow classification of up to 50 chromatin states by using

imputation based on six epigenetic marks'®.
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As technology improves and NGS costs reduce, more epigenomics data will
undoubtedly be produced, in increasing numbers of cell types, including primary cells,
and under different stimulatory conditions and the task of combining and, most
importantly, interpreting this data will get increasingly more difficult. It is therefore
important that researchers have access to these tools which allows them to make
sense of the data and to inform subsequent experiments. However, there is still a
need to be able to statistically aggregate and model related, complex data, including
temporal and spatial data, to fully explore transcriptional regulation in the context of

disease.

Despite the usefulness and innovative approach of ASSIMILATOR it has been
superseded by other annotation tools, such as HaploReg, RegulomeDB and CADD.
Due to the complexity of the publicly available epigenomic data that now exists,
coupled with the knowledge of the importance of cell type, it is probably no longer
valid to summarise this data across cell types. An enhanced approach would be to
aggregate data by cell type and return the evidence for the most functionally important
cell type using a scoring system such as RegulomeDB. Additionally, a method, such
as ChromHMM as employed by fitCons, which could summarise at least elements
(i.e. histone ChlP-Seq data) of the vast amount of data into well-defined functional
classes before testing for functional importance would be beneficial from both a query

time and resource utilisation perspective.

3 Vitamin D Response Element Enrichment in RA
(Publication 3)

3.1 Background

Complex diseases are a combination of genetics and environmental factors and there
is evidence that the environmental factors can increase the risk of disease through
interactions with genes (GxE)'?. This is because different genotypes can respond to
environmental changes, such as physical shock (temperature) or chemical exposure,
in different ways. Individuals carrying a ‘high-risk’ genotype do not necessarily
develop disease but are more sensitive to an environmental factor which causes
disease. For example individuals with fairer skin have a higher risk of developing skin
cancer due to exposure to sunlight than darker skin individuals due to naturally lower

levels of melanin'?".
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However, most GWAS do not incorporate any environmental factors and rely on
genetic evidence alone. This can be due to multiple reasons: firstly, environmental
factors can be difficult to robustly define or measure; secondly, while GWAS have
benefitted from increasingly lower costs and provide millions of results per individual,
environmental factors can still be expensive and time consuming to collect and record
thoroughly; thirdly, it is often unclear or unknown which environmental measure is
required and therefore a specific hypothesis must be tested; and finally, statistical
methods to detect GXE are less well defined and interaction analyses typically require
four times the number of samples compared to analyses used to identify a main effect

of similar magnitude'??.

Vitamin D is a steroid hormone involved in many biological processes including bone
metabolism, muscle strength and modulation of the immune system'?. The active
form of vitamin D, 1,25-dihydroxyvitamin D3 (VitD3s), modulates its biological effects
by binding to the nuclear vitamin D receptor (VDR) which can then act as a ligand-
inducible transcription factor'? and control more than 200 genes, including ones
involved in regulation of cellular proliferation, differentiation, apoptosis and
angiogenesis'?. It achieves this by binding to specific elements in the genome, called
vitamin D response elements (VDREs), and subsequently regulation of its target

genes.

Vitamin D deficiency is common in RA'? and as vitamin D is known to induce
immunological tolerance'®, deficiency may disrupt this by inducing the development
of disease. Vitamin D has also been shown to induce Tregs'?® and inhibit the
production of proinflammatory cytokines'?’, such as IL-2 and interferon-y (IFN-y),
which in turn can cause a reduction in antigen presentation in antigen presenting cells

(APCs)'?8, thereby reducing T cell activation.

A study by Ramagopalan et al.*® used chromatin immunoprecipitation followed by
next-generation sequencing (ChlP-Seq) to characterise all VDREs in lymphoblastoid
cell lines (LCLs) from two individuals of European ancestry before and after calcitriol
(VitD3) stimulation. The authors then tested for and showed significant enrichment of
VDREs in known autoimmune disease (AID) loci, including RA (p<0.001). However,
this study only tested 16 loci for RA and only 9 of these were confirmed to be
associated with RA. Since its publication, the RA Immunochip study had also
identified 48 non-HLA loci confirmed to be associated with RA susceptibility.

Additionally, a study conducted in a T1D cohort identified two loci involved in vitamin
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D metabolism (DHCR7 and CYP2R1) which were associated with disease
susceptibility.

3.2 Aims and achievements

The aims of this study were, firstly, to test for a potential enrichment of VDREs in RA
loci by combining our genetic association data with the VDRE ChIP-Seq data to
investigate whether the functional mechanism in RA associated regions acts through
an interaction with vitamin D and secondly, to test variants previously associated with

vitamin D levels and disease susceptibility in T1D and RA.

To achieve this, firstly a total of 2,776 VDREs identified after calcitriol stimulation were
obtained from Ramagopalan et al.®® and assigned to the nearest gene within 100kb.
RA associations were assigned to genes either by GRAIL or by position and
compared to the VDREs to determine the number of VDREs present in RA loci. To
identify an enrichment of VDREs in RA loci, the average number of VDREs identified
in 100,000 comparison sets of the same number of randomly selected loci was used
to calculate the relative risk (RR) for RA loci. To test existing vitamin D loci associated
with T1D, genotyping was carried out as part of the RA Immunochip study restricting

the data to UK samples only.

Our study showed significant enrichment of VDRESs in RA loci when associations were
either assigned to genes by GRAIL (RR 5.50) or by position (RR 5.86) supporting a
role for vitamin D in RA pathogenesis®2. Additionally, evidence of association with the
previously identified T1D locus, DHCR7, was also observed in RA (p=0.0008)

providing further evidence supporting this conclusion.

3.3 Contribution to the literature

Many epidemiological studies have investigated the link between vitamin D deficiency
and autoimmune diseases (AIDs), including T1D, multiple sclerosis (MS) and RA'2%-
134 but these studies have used either questionnaires or serum 25-hydroxyvitamin D
(25(OH)D), the precursor to the active VitDsz and have not incorporated genetic
evidence. Likewise genetics studies have also been conducted to investigate vitamin
D deficiency but have again focused on serum levels of 25(OH)D, candidate genes
and RA risk13%, While Ramagopalan et al.®® decided to take a different approach
and test for enrichment of VDREs, their approach for RA was limited by the genetic

associations used and how VDREs were assigned to associated variants.

Our study improved on their analysis by utilising additional, validated loci and

accounting for the number of VDREs attributable to each genetic association using a
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variety of methods. Using enrichment based methodology we have tested the
potential environmental effect of vitamin D and RA susceptibility in an unbiased
manner. This study, provides evidence that vitamin D deficiency is a cause of RA,
although a recent study has suggested that lower levels of vitamin D present in severe
RA patients is more likely a consequence rather than a cause and does not support

the role of vitamin D supplementation as a direct therapeutic intervention™’.

Although at the time, our study was the most comprehensive to date, similarly to
Ramagopalan et al., it is now limited by the genetic associations used to test for
enrichment as there are now 101 non-HLA RA associations?®. A more comprehensive
analysis would therefore be to repeat this method using all 101 RA associations
currently known. This however would not be an ideal approach as methodologically,
this study has also been superseded by other methods, such as Genomic Annotation

Shifter (GoShifter)’® and Mendelian randomisation3.

As mentioned previously, GoShifter tests for enrichment of query features, such as
SNPs, within a specific set of annotations, such as histone marks. GoShifter works
by firstly, identifying all variants in LD (r? > 0.8) with each association to define a SNP
region. Secondly, the observed overlap of each LD SNP with the annotations is
determined. To produce a null distribution, each region is randomly shifted and the
proportion of overlap is determined. This shifting process is repeated many times to
generate a distribution. The significance of the overlap for the associated SNPs can
then be determined by where in the distribution it lies relative to the random shifts.
This process has an advantage over other methods as it maintains the genomic
context for each region and the authors show that this yields more power compared
to SNP matching methods (Figure 13). This method has been used to show that 88
RA SNPs from Okada et al. are enriched for H3K4me3 ChlIP-Seq summits (£100bp)
across all 118 cell types tested and specifically CD4* memory T-cells. This
association remained significant after stratification on the other 117 cell types. This
method could therefore be applied to test for enrichment of VDREs for SNPs
associated with RA.
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Figure 13 Comparison of power between GoShifter and the best-performing matching strategy
Two significance levels (p < 0.05 and p < 0.01) are shown™. Sets of 1,416 SNPs were generated with

varying proportions within DNase | HS features (x-axis).

This approach, however, may not necessarily prove that vitamin D deficiency is a
cause of RA as there are multiple additional factors affecting symptom onset, such
as other risk variants, environmental factors and the interplay between them, which
this method would not account for. To overcome these confounding factors,
Mendelian randomisation has been proposed as a possible approach. First
suggested in 1986 as an approach to show the relationship between cholesterol
levels and cancer™® and implemented by Gray and Wheatley in 1991 to study the
effect of bone marrow transplants'®, Mendelian randomisation provides a similar
study design as a randomised control trial (Figure 14) and uses genetic variants of
known function to test the causal effect of an exposure on disease. For example, if
you believe that low cholesterol (the exposure) causes cancer (the outcome), simply
testing levels of cholesterol in cancer patients would not tell you if cholesterol was a
cause of or due to cancer and a traditional randomised control trial would not be
possible. SNPs associated with cholesterol levels can be tested for association in
cases because alleles are inherited randomly, due to meiosis, and the presence of a
particular allele or genotype in the population should be unrelated to any potential
confounding factor. If low cholesterol causes cancer then the SNPs associated with
low cholesterol level should be more common in cancer patients than controls; if not

then it shows that cholesterol level is an effect of cancer.
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Mendelian randomization Randomized controlled trial
Random segregation of alleles Randomization method
Exposed: Control: Exposed: Control:
one allelle other allelle intervention no intervention
Confounders equal Confounders equal
between groups between groups
QOutcomes compared between groups QOutcomes compared between groups

Figure 14 Comparison of the design of a Mendelian randomization study and a randomized
controlled trial
In a randomised, controlled clinical trial, participants are randomly allocated into intervention
(exposure) and control (no exposure) arms. In a Mendelian randomisation study, this is achieved
through random segregation at meiosis. Both groups are equally exposed to confounders™O.
Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology 12:486-496,
copyright 2016.

The use of Mendelian randomisation studies has only increased recently due to the
ever increasing amount of GWAS data and variants associated with multiple traits.
For example, an adequately powered Mendelian randomisation study requires large
datasets (>10,000 individuals)'' which has only been possible for many traits with
the increased application of GWAS. The method has been successfully applied to
several relationships, such as coronary heart disease and C-reactive protein (CRP)
levels, obesity and vitamin D levels and RA and levels of IL-1 and vitamin D. The

findings of these studies are shown in Table 2.
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Table 2 Example Mendelian randomisation studies

Exposure Disease/outcome Conclusion Reference
C-reactive  Coronary heart “C reactive protein concentration itself is C Reactive Protein
protein disease unlikely to be even a modest causal factor Coronary Heart
in coronary heart disease” Disease Genetics
Collaboration
(CCGC)™#2
Vitamin D Obesity “that a higher BMI leads to lower Vimaleswaran et

25(0H)D, while any effects of lower al.'43
25(0OH)D increasing BMI are likely to be

small”
IL-1 Cardiovascular “that long-term dual IL-1a/B inhibition Freitag et al.'#
inhibition risk /RA could increase cardiovascular risk and,

conversely, reduce the risk of
development of rheumatoid arthritis”

VitaminD  RA “the reported lower vitamin D levels in Viatte et al.’¥’
more severe RA are more likely to be
consequence than cause”

Mendelian randomisation therefore promises to be a powerful approach to link
exposures, such as vitamin D, to causation in disease and indeed Viatte et al. has
used this approach to show that lower vitamin D levels are more likely a consequence
of RA"™’. However, these type of studies do have limitations. Firstly, any effect on the
outcome must be as a direct result of the exposure and not due to any off target
effects. Secondly, the robustness of the genetic association or associations must be
ensured as these form the basis of subsequent tests. Since most of the genetic
variants used in Mendelian randomisations will come from GWAS associations, the
direct link of the association on the exposure must be ensured, otherwise more
confounders will be introduced and any effect observed on the outcome may itself be
due to an indirect link with the exposure. Additionally, it is usually not possible to
include the entire genetic component of the exposure and gain sufficient power to
identify a link. It is therefore important to ensure that the study design fully addresses
these limitations and the power to achieve this will only increase as more genetic data

is obtained and linked directly to particular traits.

4 Linking variants to target genes (Publications 4, 5 and 6)

4.1 Background

GWAS has now been successful in identifying over 100 genetic variants associated
with susceptibility to RA. However many of these variants, like other complex disease
associations, lie outside traditional protein coding regions suggesting that they have

a role in gene regulation rather than directly affecting the protein produced. One of
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the most obvious ways which GWAS variants are likely to affect gene regulation,
which is generally different in different cell types, is by altering the DNA binding motif
of a transcriptional activator or repressor such as a transcription factor and indeed,
there has been increasing evidence to suggest that gene expression and eQTLs can

be cell type and stimulus specific''4,

Fairfax et al. studied the effect of stimuli on naive CD14* monocytes by performing
whole-genome genotyping and mRNA expression using microarrays. They used
hierarchical clustering to investigate changes in monocyte expression after
stimulation, with lipopolysaccharide (LPS), a component of gram negative bacteria
which triggers Toll-like receptor (TLR) 4 signalling and IFN-y, a cytokine which acts
through the JAK-STAT pathway. Ye et al. primarily studied the effect of stimulation
duration on CD4* T-cells using expression microarrays at 0, 0.75, 2, 4, 10, 24 and 48
hours, stimulating the TCR receptor alone, with anti-CD3/anti-CD28 beads, or in
combination with conditions favouring Tnu17 differentiation or IFN-f3. Additionally, they
followed up a subset of genes and conditions to show differences in inter-individual

and population variability using a NanoString panel.

Specifically, they both found either eQTLs or expression of certain genes, which were
shared across cell states, whereas for other genes, the eQTL or expression was only
present after stimulation. These findings show the importance of performing eQTL or
expression experiments in the correct cell state as results based on naive cells may
not represent a stimulated or disease relevant cell state or reflect the true state of

cells used in related experiments.

Fairfax et al. also found eQTLs were effected by stimulus type, either showing only
significance under one stimulatory condition or showing different effect sizes between
stimulatory types, for example, IL8 and TRAF6 eQTLs were only significant in LPS
and IFN-y stimulated cells respectively. The same was also true for gene expression.
Ye et al. found 289 and 270 genes which were only expressed upon co-stimulation
with Ty17-biased conditions and IFN-B respectively (Figure 15a and b). This shows
that while stimulation is an important consideration, which stimulation is just as
important to ensure relevancy when comparing between experiments. Additionally,
Ye et al. showed an inter-individual variation in expression between genes (Figure
15c), with some genes, such as /L2 and TNF showing little variation whilst others,
such as /L3 and IL17A showed much more variation between individuals. These
findings could be attributable to genotype or environment. Indeed the authors

sampled a subset of individuals on different dates and showed that generally, T-cell
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response is reproducible, with common cis genetic effects accounting for ~25% and
physiological effects for ~4% of the observed variation. Although an in-depth eQTL
study would need to be performed to fully resolve the effect of genotype on gene

expression in these samples.
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Figure 15 CD4* T-cell time course gene expression profiles from Ye et al.
Cell states are colour coded as follows: black — naive; blue — anti-CD3/anti-CD28 stimulated; red —
TH17-biased co-stimulation and green — IFN-B co-stimulation. a) Clustering of genes across time
points and stimulatory conditions. b) Expression profiles for each cluster identified. ¢c) NanoString
expression profiles of 16 cytokines showing cell state specificity, stimulatory duration specificity and
inter-individual variation. From Ye et al., Science 345:1254665 (2014). Reprinted with permission
from AAAS.

Both studies found that changing the duration of stimulation affected not only, which
genes were expressed (Figure 15b), but also how the expression of certain genes is
affected by genotype such LTA and TNF (Figure 16) and while the time course
performed by Ye et al. offered a more complete picture, Fairfax et al. were also able
to identify the importance of duration of stimulation and its effect on gene expression,
with additional influence by genotype. Importantly, they were also able to show that
eQTLs specific to a cell state are found further away from the transcription start site
(TSS) relative to those shared across cell states (Figure 17a), with stimulation specific
eQTLs showing increased distance from the TSS (Figure 17b). Interestingly, for a
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minority of eQTLs, which were observed across conditions, the direction of effect was
reversed between conditions (Figure 18). These findings highlight the complexity
involved in gene regulation and suggest a potential mechanism of gene regulation
which is dependant or defined by distance from the TSS.
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Figure 16 Duration of stimulation by LPS affects significance of certain eQTLs
Results are shown for a) LTA and b) TNF'. From Fairfax et al., Science 343:1246949 (2014).
Reprinted with permission from AAAS.
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Figure 17 Distance of eQTL from TSS
Results are shown by a) number of cell states the eQTL is observed in and b) by cell treatment
status3. From Fairfax et al., Science 343:1246949 (2014). Reprinted with permission from AAAS.
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Figure 18 eQTLs showing opposing direction of effect
Results are shown for HIP1 and STEAP4 after stimulation with b) LPS and b) IFN-y respectively'3.
From Fairfax et al., Science 343:1246949 (2014). Reprinted with permission from AAAS.

GWAS variants have also been shown to be enriched for epigenetic marks indicative
of enhancer elements which can also be cell type and stimulus specific. To fine map
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GWAS associations and link them to transcription and cis-regulatory element
annotations, Farh et al.'?> developed an algorithm, Probabilistic Identification of Causal
SNPs (PICS), which uses the haplotype structure and pattern of associations at a
locus, to estimate the probability of a SNP being causal. The PICS algorithm was
applied to 21 autoimmune disease datasets and the authors showed that the majority
(~90%) of candidate causal SNPs did not affect protein coding genes. Next they
investigated the functions of these non-coding variants by mapping them to a set of
specialised cis-regulatory elements, defined by H3 lysine 27 acetylation (H3K27ac),
a mark indicative of active promoters and enhancers, for 56 individual cell types,
including CD4* T-cells, Tregs, B-cells and monocytes. This revealed enrichment of
the candidate enhancers in B-cells and T-cells (Figure 19). This finding highlights the
differences in enhancers between cell types and also shows enrichment for stimulus
dependant enhancers. Indeed, by coinciding PICS SNPs with cis-regulatory

elements, Farh et al. predicted cell types contributing to disease (Figure 20).
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Figure 19 PICS enhancer mapping
Heatmaps for H3K27ac and H3K4me1 signals for 1,000 candidate enhancers (rows) in 12 immune

cell types (columns). Enhancers are clustered by the cell type-specificity of their H3K27ac signals.
The adjacent heatmap shows the average RNA-Seq expression for the genes nearest to the
enhancers in each cluster. Greyscale (right) depicts the enrichment of PICS autoimmunity SNPs in
each enhancer cluster'?. Reprinted by permission from Macmillan Publishers Ltd: Nature 518:337-
343, copyright 2015.
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Figure 20 Heatmap showing cell type specificity of 39 human diseases in acetylated cis-
regulatory elements of 33 cell types
Colour represents the P-value from 10-30 (dark red) to 1 (dark blue)'?. Reprinted by permission from
Macmillan Publishers Ltd: Nature 518:337-343, copyright 2015.

Additionally, they showed enrichment in super-enhancers, large regions with several
enhancers in clusters, as well as evidence for different diseases mapping to distinct
elements within a super-enhancer. For example, a candidate SNP lying in the IL2RA
super-enhancer for MS has no effect on autoimmune thyroiditis risk, and vice versa
for another candidate SNP, even though the SNPs are in close proximity. This
suggests that some enhancer elements are specific to certain diseases and can
effect, even a shared locus, in different ways. Interestingly, they also found GWAS
SNPs associate with areas of the genome indicative of transcription factor occupancy,
the specificity of which is dependent on disease and that many eQTL SNPs identified
in peripheral blood do not correspond to enhancer elements (Figure 21), suggesting
that many disease SNPs exhibit subtle and highly context-specific effects. These
findings further highlight the cell type and stimulus type dependency of enhancer

elements effecting gene regulation in disease.
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Figure 21 Functional effects of disease variants on gene expression
Pie charts showing of proportion of PICS SNPs (left) and eQTLs (right) explained by the genomic
features shown'2. Reprinted by permission from Macmillan Publishers Ltd: Nature 518:337-343,
copyright 2015.

Since a large proportion of GWAS SNPs are found outside protein coding genes, it is
imperative to identify which gene or genes they effect. Variants identified by GWAS
have traditionally been annotated to the closest most biologically relevant genes and
while this strategy may seem sensible, it could also be incorrectly implicating genes
which are not involved in disease or masking additional effects with other genes. For
example, the locus containing the CTLA4, CD28 and ICOS genes contains two SNPs
independently associated with RA, one of which has been assigned to CD28, the
other to CTLA42® based on biological plausibility (Figure 22). However, all three genes
are involved in T-cell activation and therefore represent ideal candidates for RA.
There is therefore the possibility that either all three genes are regulated by these
SNPs, and operate together to affect T-cell activation, only one is regulated or indeed,

the two candidates assigned are the functionally relevant genes for RA.
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Figure 22 CD28-CTLA4-ICOS locus

Lead SNP associations are shown as well as SNPs in LD (r?20.8).

Furthermore, Musunuru et al. showed a SNP, rs12740374, associated with levels of
low-density lipoprotein cholesterol (LDL-C), which is located within the 3’ UTR of the
CELSR?2 gene, actual regulates the expression of the SORT? gene'. Additionally,
Davison et al. showed that SNPs, located predominately in intron 19 of the CLEC16A
gene, and associated with T1D and MS, modify the expression of the DEXI gene

using chromosome conformation capture (3C)™®.
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An increasing number of studies, including Davison et al. have also shown that
enhancers do not necessarily regulate the nearest gene (Figure 23a). In a study
investigating the pilot ENCODE regions, Sanyal et al. showed that only 7% of
elements regulate the nearest gene'’. Additionally, elements were shown to regulate
genes located some distance away, with a peak distance of 120kb, although further
distances, up to 1.5Mb or more, have also been observed'#-1%, This long-range gene
regulation, is achieved through chromatin looping (Figure 23b), thought to be
mediated by cohesin and other protein complexes'!, which brings distant genomic
regions into close proximity to regulate expression in a cell type and stimulus specific

manner (Figure 23c).
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Figure 23 Long-range gene regulation
(a) Enhancers are distinct regions which bind transcription factors (TFs). These can be located at any
distance from their target genes. However, when active (b), enhancers can be brought close to and
interact with their target gene allowing them to regulate expression. These interactions can be tissue
specific (c). (d-f) Patterns of gene expression. Source: Shlyueva et al.’®'. Reprinted by permission
from Macmillan Publishers Ltd: Nature Reviews Genetics 15:272-286, copyright 2014.

Chromosome conformation capture methods, such as 3C, 4C, 5C and Hi-C, identify

regions of the genome, such as enhancers and promoters, which physically interact
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in the nucleus. This is achieved using formaldehyde to crosslink the two interacting
regions together, preserving any physical interactions present in the nucleus, followed
by digestion with a restriction enzyme. The ‘free ends’ produced by the digest are
then ligated together such that the interacting regions form a ligation junction which
can be detected by assays designed for the particular technique. These early
chromosome conformation capture techniques, such as 3C, 4C and 5C were
successful in identifying chromatin interactions. Using 3C, Tolhuis et al. investigated
interactions between the B-globin locus and the locus control region (LCR) in
mouse'®?. They showed that in erythroid cells, the LCR, located 40-60kb away, comes
into close contact with active B-globin genes to control their expression. Furthermore,
Stadhouders et al. showed that an intergenic region interacts with the promoter of the
Myb gene to up-regulate gene expression in proliferating cells'. However, these

methods were low throughput and interaction targets had to be considered a priori.

Later, chromosome conformation capture was coupled with next-generation
sequencing (Hi-C) to provide researchers with a high-throughput, hypothesis-free
way to investigate chromatin interactions. Hi-C has been used to study the three-
dimensional structure of the genome, identifying large, megabase-sized local
chromatin interaction domains, such as topologically associated domains (TADs),
large contiguous regions of the genome which associate in the nucleus and partition
the genome into discrete domains'™4. TAD boundaries have been shown to be
enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs
and short interspersed element (SINE) retrotransposons. This suggests they may
have a role in establishing the three-dimensional structure of the genome. They are
conserved across cell types and are highly species specific. The frequency of
chromatin interactions within the TAD boundaries is much higher compared to across
TAD boundaries. This may have implications on how GWAS SNPs regulate genes,
predominantly affecting genes within the same TAD allowing discrete control of
clusters of functionally related genes. Additionally, disruptions of TADs in the human
WNT6/IHH/EPHA4/PAX3 locus have been linked to various limb malformations, such
as brachydactyly and polydactyly'®®, showing the functional importance of TADs and
how variations within TAD boundaries could lead to a disease phenotype. However,
Hi-C suffers from limited resolution and cannot resolve fine promoter-enhancer

interactions.

Capture Hi-C was recently developed'™® to provide researchers with a high-
throughput method to study interactions at high resolution for a defined set of targets,

such as promoter or enhancer regions. The first step in a Capture Hi-C experiment is
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to generate a standard Hi-C library containing all the interactions present in the
original sample (Figure 24). Using sequence capture technology'®’, RNA baits, which
are specifically designed to the targeted restriction fragment ends, are used to capture
all the interactions involving the desired restriction fragments. These are then purified,
enriched and sequenced at a much higher depth relative to a Hi-C library and can
result in between a 19 to 130 fold enrichment over a Hi-C library depending on the

number of targets selected and sequencing depth%6:158.159,
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Figure 24 Capture Hi-C Overview
The first step in Capture Hi-C is to generate a standard Hi-C library by cross-linking DNA, digestion,
re-ligation, reversal of cross-links, followed by purification. This provides a library containing all
interactions in the cell. After adaptor ligation, RNA baits, designed to restriction fragment ends, are
used to capture interactions specific to the targeted regions. This is followed by PCR and paired-end

sequencing. Source: Schoenfelder et al.'%®

This method was initially used to study the chromatin interactions involving regions
associated with breast cancer'®® which demonstrated the power of Capture Hi-C to
identify high-resolution interaction maps for three breast cancer gene deserts
mapping to 2935, 89g24.21 and 9p31.2. The authors used a low LD cut-off (r>>0.1)
with the associated SNPs to define the regions to target, with the aim to identify
interactions between regulatory elements and protein coding genes which could
potentially be hundreds of kilobases apart. They identified 27 and 45 significant
interactions for the BT483 and SUM44 breast cancer cell lines respectively. The
majority of the interactions identified were tissue specific but there was also evidence
of some interactions being common across the cell types studied and interactions
were identified between both protein coding genes and long non-coding RNAs

(IncRNAs). Additionally, using Hi-C data for one of the cell lines, they were able to
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show a 30-60 fold enrichment of the target loci by incorporating the sequence capture

step.

Capture Hi-C was also used to study 14 loci associated with colorectal cancer'® and
also identified complex interaction networks and multiple long range interactions.
Similar to Dryden et al. the authors defined capture regions using a low LD cut-off
(r>>0.2) and obtained an enrichment in excess of 130 fold over Hi-C data. Their data
not only confirmed documented interactions, such as the one between rs6983267, a
colorectal cancer risk loci, and the MYC gene, but also novel interactions involving
plausible biological candidates, such as CCAT7 and CCAT2 which, together with

MYC, suggest a network involving Wnt-feedback signalling.

These studies focused on a small number of large regions to test specific hypotheses
related to cancer risk but do not offer a genome-wide method to provide a systematic
and unbiased approach to study the chromatin interactions influencing gene
regulation for thousands of targets, such as promoters. This led Mifsud et al. to design
baits to study whole-genome promoter-enhancer interactions in two human cell lines
by targeting all restriction fragments overlapping the promoters of Ensembl
transcripts'®. The authors discovered that the majority of interactions were between
promoter and ‘non-promoter’ fragments, promoters would typically interact with tens
of other ends, irrespective of transcriptional activity and other ends would interact with
one or two promoter fragments. These results suggest that gene regulation involves
a complex interplay between multiple genomic regions and that regulatory elements
are shared between genes. Additionally, they also discovered that GWAS SNPs are
enriched in fragments which interact with promoters, strengthening the role of GWAS

SNPs in gene regulation.

In addition, promoter-enhancer interactions in mouse embryonic stem cells (ESCs)
and mouse foetal liver cells (FLCs) have been investigated using this method'® and
the authors found similar observations as in humans. Their data also showed that
genes with higher numbers of enhancer interactions tended to be enriched in
developmental pathways for ESCs and metabolic pathways for FLCs supporting the
hypothesis that the three-dimensional promoter-enhancer landscape is highly cell
type specific. While whole-genome promoter capture experiments, such as these,
offer a comprehensive view of genome regulation at high-resolution, a disease
focused approach would yield interactions which are specific to disease associated

loci, helping to inform gene candidature.

61



Similar methods to Capture Hi-C have been developed that incorporate a sequence
capture step to 3C libraries, Targeted Chromatin Capture (T2C)'®" and Capture-C'%2,
T2C follows essentially the same method as Capture Hi-C but is based on a 3C library
and as such does not employ the enrichment step for biotinylated ligation products or
di-tags. This step is crucial in removing ‘invalid’ interactions and DNA fragments left
after sonication that would otherwise be sequenced unnecessarily. Capture-C, like
T2C, suffers from the lack of enrichment for valid di-tags but does allow better
resolution than both Capture Hi-C and T2C as it utilises a 4bp cutter as opposed to a
6bp cutter. Whilst no studies have performed a direct comparison of these methods,
it is thought that the addition of the enrichment step in Capture Hi-C would offer
superior signal to noise ratio and surpass the advantage of added resolution',
Additionally, other studies have employed 4bp cutters to Hi-C libraries'®® and,
although this has yet to be applied to Capture Hi-C libraries, it therefore has the
potential to offer both the benefit of high-resolution interactions and low signal to noise
ratio. This approach does however also cause added statistical analysis

considerations.

While Capture Hi-C does not offer a truly hypothesis free way to study chromatin
interactions, it provides researchers with the ability to identify all chromatin
interactions involving thousands of target fragments in a cost-effective, high-
throughput manner. Additionally, the flexibility of this approach provides opportunities

to study a wide variety of potential targets and aims.

4.2 Aims and achievements

The aim of this work was to use Capture Hi-C to characterise the physical interactions
of associated loci for four autoimmune diseases: RA, JIA, PsA and T1D, with the
objective of linking associated variants with causal genes. Uniquely, this was
achieved using two Capture Hi-C experiments: the first targeted the associated
regions for each disease, defined by LD; the second targeted promoters of genes
within 500kb of each lead association (Index SNP) (Figure 25).
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Figure 25 Capture Hi-C Experimental Design
Hindlll restriction fragments targeted in the region capture are shown in green. Hindlll restriction

fragments targeted in the promoter capture experiment are shown in orange.

This study provides compelling evidence that GWAS SNPs may regulate genes
located some distance away, SNPs associated with different AIDs may well regulate
the same genes with different enhancer mechanisms and a number of interactions

also show evidence of cell type specificity®*.

Following on from this study, comprehensive analysis of one RA locus, 6923,
revealed a complex pattern of interactions, implicating multiple immune related
genes, such as TNFAIP3, IL20RA, IFNGR1 and IL22RA2. Additional work on this
region has confirmed these interactions, obtained bioinformatics evidence to narrow
down the potential causal SNPs and shown allele specific histone marks and binding
of the NFkB transcription factor. This work is the first study to comprehensively
interrogate the chromatin interactions within this region and has highlighted the
importance of gene assignment for translating GWAS findings to improve our

knowledge of disease mechanisms and identify potential therapeutic targets.

This work on the 6923 region also led to the identification of chromatin interactions
involving regions not associated with RA and not in LD with these associations.
Instead, these regions contained variants uniquely associated with multiple sclerosis
(MS), an autoimmune disease affecting the central nervous system. It was therefore
reasoned that our Capture Hi-C data could be used to investigate the mechanisms
specifically affecting MS at this locus. The aim of this study was therefore to link the

MS associations to potentially causal genes using Capture Hi-C data within this region
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and refine variants further using bioinformatics. While this study identified the reported
GWAS genes as potential candidates, it also identified other related genes suggesting
that MS associated variants could regulate not just one but multiple causal genes.
Indeed, this work identified two clusters of chromatin interactions involving four lead
MS associations within this region: one containing neurologically related genes and
the other containing immunologically related genes. There is also evidence that
independent disease associations interact with each other suggesting a complex
regulatory mechanism where multiple regions associated with MS act cooperatively
to regulate the expression of several genes. These findings could help us to
understand the mechanisms of disease and also suggest potential novel therapeutic

targets.

4.3 Contribution to the literature

This application of the Capture Hi-C method is the first to target the full known genetic
component of four related AlDs at a much higher depth of sequencing (average
10,000 interactions per restriction fragment) compared to previous studies.
Additionally, our unique, complementary study design allowed us to investigate
chromatin interactions in a comprehensive, self-validating manner. This
complementary approach is now being utilised by other studies to validate
interactions observed in whole-genome promoter capture experiments'®* and offers

a robust high-throughput method to confirm findings.

We have redefined how GWAS variations are assigned to genes, showing that it is
often more complicated than simply the closest gene and that Capture Hi-C can be
used to interrogate a large number of GWAS loci in a systematic and unbiased
manner to identify potential gene targets and to further the understanding of complex

diseases.

Our data has identified both existing and novel potential gene targets of disease
associations giving the potential to inform future experiments to undercover the
molecular mechanisms underpinning disease. Indeed, for the 6g23 region, this has
already transpired as interactions identified in these experiments have already been
utilised and expanded on to increase our understanding of how the genetic
associations in the region not only interact with their target genes but also each other
and between related diseases. Our work in the 6923 region has also provided support
for a new anti-IL-20 therapy which has been shown to be effective in the treatment of
RA and psoriasis'®'%, showing that this method could be effective in identifying other

novel or existing drug targets. Further work on our Capture Hi-C data has identified
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41 genes which are targets for 109 existing drugs for RA alone, of these only nine are

currently used in the treatment of RA%,

While our work has focused on the four AlDs previously mentioned, it has the potential
to also inform gene regulation in other related AlDs as considerable overlap has been
observed between AlIDs. For example, the 6923 region also contains multiple
associations to other AIDs such as MS, celiac and SLE and, while not targeted
directly, our data may provide insight into genetic associations with these diseases.
Further exploration of this region has shown that variants which are only associated
with MS, interact with two regions, the first implicating neurologically related genes
including AHI1, SGK1 and BCLAF1 and the second implicating immunologically
related genes such as IL20RA, IL22RA2, IFNGR1 and TNFAIP3%.

Despite the success of this and similar studies, it is clear that the interactions
identified are highly cell type and even stimulus specific and further work will be
required to fully explore GWAS associations to identify the genes they regulate.
Future Capture Hi-C studies should be conducted in primary cells, preferably patients,
to fully explore the regulatory mechanisms which exist and underpin disease. This
approach, coupled with matching eQTL data, would help to resolve which genes are

affected by GWAS associations and how they act to cause disease.

5 Discussion

It is clear that whilst GWAS has been tremendously successful in identifying variants
associated with common complex diseases, not least in RA, it is only the beginning
in understanding disease and how these common variants act together with each
other and the environment to increase an individual's risk to develop disease.
Improvements in genomics technologies, increased sample sizes and larger, more
collaborative research has driven this success but has also driven the evolution of
bioinformatics. Only up to relatively recently, the initial GWAS generally did not
include any bioinformatic analysis and simply presented the significant associations
annotated to the closest or most biologically plausible gene. As GWAS became more
and more common, bioinformatic analysis was gradually introduced and now
comprises a substantial portion of GWAS publications. For example, only
approximately one third of the publication by Okada et al. discussed the association
results and trans-ethnic analysis. The remainder of the article described further
bioinformatics analyses including epigenetic marks, functional annotation, overlap

with disease, pathway and PPl networks and drug target evaluation.
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Once it was clear that many of the genetic associations were outside of protein coding
regions, the challenge was to determine how these variants could influence disease
susceptibility. The obvious mechanism was gene regulation and projects such as
ENCODE and the epigenomics roadmap project allowed researchers to annotate
potential functional variants with regulatory elements, such as histone marks and
DNase | HS sites. This presented a new challenge for researchers due to the wealth
of data available and limited methods to query, integrate and investigate the functional
elements in relation to disease associations. This led to the development of several
bioinformatics tools to integrate this data to allow researchers to fully utilise the

resource.

Furthermore, many techniques to study the regulation of genes, either by measuring
the expression directly or identifying regulatory elements, require sequencing to
produce high-throughput and cost efficient data. Prior to the development and
widespread adoption of next generation sequencing (NGS), Sanger sequencing was
used. This technology was low-throughput and expensive, costing around $5,000 per
megabase (Mb) in 2001 (the completion of the human genome sequence'®”1%8 ~$95
million/genome) and although dropping significantly to around $400/Mb in 2007, still
suffered from poor throughput and technological limitations (Figure 26). Importantly,
sequencing costs within this period roughly followed Moore’s law, an observation that
compute power roughly doubles every year. However, with the advent of NGS in
2008, it triggered not only a rapid decline in the cost of sequencing, falling from
$0.52/Mb in 2010 to $0.014/Mb or $1,245 per genome in 2015 and surpassing
Moore’s law, but also a rapid increase in the rate of sequence production. As the cost
continued to drop and throughput continued to increase, NGS was applied to more
techniques, such as RNA-Seq, ChIP-Seq and Hi-C, allowing researchers to study
genome-wide regulation for the first time. This rapid increase of data coupled with the
range of techniques, has cemented the role of bioinformatics in research and also
has led to the establishment of many companies offering specific bioinformatics
analysis solutions. Indeed, bioinformatics is now commonplace and many
researchers are required to have at least a basic understanding of bioinformatics

knowledge.
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Figure 26 Cost per raw megabase of sequencing in US dollars between 2001 and 2015
Prices between 2001 and 2007 are for Sanger sequencing. From 2008 onwards, costs are based on

NGS. Source: https://www.genome.gov/sequencingcostsdata/.

Importantly, since the introduction of NGS, cost and rate of sequence data generation
has surpassed developments in compute power. This has meant that data analysis
has moved away from large workstations and small clusters to large shared compute
farms with thousands of cores and large amounts of memory. In addition, this has
meant that analysis solutions require complex multi-core solutions, -efficient
algorithms and efficient sharing of data between processes. Almost all NGS tools
employ some sort of multi-threading allowing them to utilise a set number of cores to
reduce the overall compute time needed.

The increase in the use of newer techniques, such as single cell RNA-Seq and mass
cytometry by time of flight (CyTOF) has provided new challenges to the field of
bioinformatics. Single cell RNA-Seq has shown that a homogeneous population of
cells can actually represent multiple cell sub-types, each exhibiting slightly different
expression profiles and reacting differently to their environment. Macosko et al.
showed that mouse retinal cells are comprised of 39 transcriptionally different sub-
types using novel combinations of clustering techniques'®®. Following a similar trend

as other NGS techniques, such as RNA-Seq, Pollen et al. showed that sub-types of
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developing cortex cells could be identified with as few as 10,000 reads per cell,
compared to the 100,000 minimum read limit imposed by Macosko et al., although to
obtain finer distinctions between categories, 50,000 reads per cell were necessary'’°.
This does however highlight how techniques can develop and the importance of

bioinformatics to achieve this.

CyTOF provides a different challenge to single cell RNA-Seq as no sequence data is
generated. Instead it uses mass spectrometry to measure more than forty cell surface
markers on individual cells. Cell surface markers are labelled with a unique
combination of metal-tagged reagents, such as antibodies. The time taken from
excitation to detection allows the mass to be determined and therefore the
corresponding antibody and the signal strength represents the frequency of markers
on the cell. This technique has the ability to profile individual cells of a heterogeneous
population and classify them into sub-types. However, analysis of the data is complex
and requires a host of bioinformatics solutions, including new clustering methods,

cloud based analysis solutions and visualisation methods.

Perhaps as significant a task as developing novel methods to evaluate the vast
amounts of data being currently generated is the ability to combine these ‘omics data
sets and to compare across cell types. The bioinformatics, and analysis fields, are
now moving into areas of how to handle the enormous data sets, how to integrate the
multi-level data and how to determine sensible conclusions from this data. For
example, determining how variation relates to transcription factor binding, gene
expression and protein levels, has the capacity to infer cause and effect, and the
mechanism by which an associated variant increases risk of disease. This is
obviously not trivial, requiring novel analysis tools, powerful computing resources and

robust statistics.

The work presented here has used high level bioinformatics to solve specific research
problems. Firstly to assist researchers to integrate a vast array of data to functionally
annotate and select potential causal SNPs from GWAS associations. Secondly, to
test for enrichment of specific genomic features, VDREs, in SNPs associated with RA
to ascertain the involvement of vitamin D in RA pathogenesis. Thirdly, to analyse the
complex three-dimensional chromatin interactions between disease associated
regions and their target gene promoters to explore disease mechanisms and finally
to show that, by combining Capture Hi-C results with subsequent bioinformatics tools
and experiments, it has the potential to uncover disease mechanisms and therapeutic

targets.
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Although largely superseded by other tools, such as HaploReg and RegulomeDB,
ASSIMILATOR was the first tool developed to mine the ENCODE data and proved to
be a useful tool to select potentially functional variants from GWAS associations.
However the increase in the amount of epigenomic data over the last few years and
the number of diverse sources, favours the use of pre-processed static datasets, such
as those used by HaploReg and RegulomeDB, rather than a ‘real-time’, up to date,
data retrieval method due to speed considerations. Additionally, with the increased
numbers of cell types and experiments, researchers should consider looking at
specific sub-types relevant to the disease of interest or methods to summarise
experimental results into functionally relevant categories. The ChromHMM method,
used to classify regions of the genome into chromatin states, offers an ideal solution
to summarise experiments and allows researchers to concentrate on cell types
instead. As such, prioritisation tools, such as ASSIMILATOR, should base their initial
searchers on ChromHMM data and then integrate other resources, such as
transcription factor binding, which as yet has not been achieved. Similarly, methods
to explore genomic feature enrichment and linking environmental factors with disease
causality have evolved and methods, such as Mendelian randomisation offer the

potential to fully explore disease causality.

However, the current challenge, to translate GWAS findings to functional
mechanisms, knowing the maijority are regulatory, is to identify which gene or genes
the variants act on to regulate their expression. Although this has historically been
assumed to be the closest, most biologically plausible gene, we have shown, using
Capture Hi-C, that this may not always be the case and variants may actually have
several gene targets. Capture Hi-C has proved that gene regulation involves a
complex interplay of several factors and bioinformatics has been crucial in all aspects
of these experiments: in their design, analysis and interpretation. Although previous
studies have used Capture Hi-C to study chromatin interactions, our Capture Hi-C
experiment was the first to systematically and comprehensively investigate chromatin
interactions between all regions associated with four autoimmune diseases and their
target genes. Our approach to target both disease associated regions and selected
promoters allowed us to explore in much greater detail, compared with a whole-
genome promoter capture, how disease variants may effect gene regulation.
Unexpectedly the observed interactions were much further than originally thought and
although our complementary experimental design was unique to this study and
offered to be a powerful approach to self-validate chromatin interactions, it did not

yield as much potential as hoped. As such, our experimental design for future studies
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has been adapted slightly and instead of performing both capture experiments in
parallel, they will be performed sequentially, with the first experiment informing the
second. We believe that whilst this approach will take longer to execute it offers the
most comprehensive way to validate findings and is therefore being adopted for future

studies both by our group and others.

One of the main limitations of this study however, is the use of cell lines as opposed
to human primary cells, either healthy controls or affected individuals. Cells lines are
much more amenable than primary cells, as they overcome technical limitations with
regards to cell number and availability. But despite not being alone in the use of cell
lines in Capture Hi-C experiments, they do not necessarily represent a true cellular
state and as such, any findings may not be comparable to an in vivo system. Ideally,
50 million cells are required to produce a Hi-C library to ensure complexity in the final
library. For cell lines this number is easily achievable but for primary cells, less so.
We have produced data showing comparable results with lower cell numbers
(unpublished), which will aid the use of primary cells in future Capture Hi-C
experiments. It is however imperative that future studies are performed in primary

cells relevant to disease.

The final two papers not only highlight what could be achieved using Capture Hi-C,
coupled with further validatory and exploratory experiments, but also the importance
of cell type specificity in establishing a link between expression and genotype. They
demonstrate the ability of Capture Hi-C to identify chromatin interactions which affect
disease and how these findings have led to a better understanding of how the
associated variants contribute to disease. Although, further validation would be
required in primary cells and the direct effects of genotype specificity explored,
Capture Hi-C has also demonstrated potential utility in identifying pathways involved
in disease and identification of new and existing drug targets which could provide a
real clinical impact and patient benefit. Recent advances in genome editing,
specifically the CRISPR/Cas9 system, will allow researchers to explore the direct
effect of genotype on cellular phenotype, either by directly modifying the genome or

by altering gene regulation, for example the effect of the enhancer (Figure 27).
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Figure 27 Applications of the CRISPR/Cas9 system
Precise genome editing (a) can be achieved by targeting a single locus. The DNA is repaired using
either an error prone non-homologous end-joining (NHEJ) to produce indels or the precise homology-
directed repair (HDR). Chromosomal rearrangements (b) and large chromosomal deletions (c) can
be performed by targeting two different sites of the genome. The desired effect can be altered by
varying the distance between the two sites. Finally, a functionally inactive or dead Cas9 (dCas9) can
be fused with different functional modifier domains to induce transcriptional control, epigenetic
modification or DNA labelling. Modified from Heidenreich et al.'”". Adapted by permission from

Macmillan Publishers Ltd: Nature Reviews Neuroscience 17:36-44, copyright 2016.

It is clear that post-GWAS, bioinformatics has informed the steps we need to take to
refine, prioritise, integrate and translate GWAS findings into a complete
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understanding of disease. It will continue to be invaluable in future efforts to uncover
these mechanisms and to inform new therapies and to better inform treatment

options.

The exponential progression in the cost and throughput of data accumulation,
particularly related to sequence data, has been matched by an exponential
requirement to integrate robust statistical bioinformatics into genetic pipelines.
Already we can see how bioinformatics has informed such diverse discoveries as the
cell types important in disease, the histone marks enriched in GWAS loci, pathways
important in disease, how expression changes with cell type and state, how SNPs
influence the expression of certain transcript isoforms, how enhancers are defined,
the genes they are linked to and the mechanism by which an implicated SNP may
change expression, for example through TF binding. Bioinformatics, therefore,
although still evolving, has made many positive impacts on our understanding of

complex disease, and will continue to do so in the future.

6 Scientific Impact

Publication 1 was published in Bioinformatics (Oxford University Press), a leading
journal in its field. In 2011 it had an impact factor of 5.468 and was ranked the number
1 journal, out of 47, in the category of mathematical and computational biology.
Publication 2 was published in Arthritis and Rheumatology (Wiley-Blackwell), an
official journal of the American college of rheumatology. Arthritis and Rheumatology
was previously known as Arthritis and Rheumatism and in 2014 was ranked 3™ out of
31 journals in the category of rheumatology, behind Annals of Rheumatology and
Nature Reviews Rheumatology with an impact factor of 7.764. Publication 3 was
published in Genes and Immunity (Nature Publishing Group), a journal dedicated to
functional genetics of the immune response. In 2013 it was ranked 47" out of 165 in
the category of genetics and heredity and 45" out of 144 in the category of immunity,
with an impact factor of 3.789. Publication 4 was published in Nature
Communications, an open access journal that publishes high-quality research in
biology, physics, chemistry, Earth sciences, and related areas. In 2015 it had an
impact factor of 11.329 and was ranked 3™ out of 63 in the category of
multidisciplinary sciences behind Nature and Science. Publication 5 was published in
Genome Biology (Biomed Central Ltd), an online only, open access journal publishing
outstanding research in all areas of biology and biomedicine studied from a genomic
and post-genomic perspective. No impact factors or journal ranking have been
released for 2016 but in 2015 it had an impact factor of 11.313 and was ranked 5™
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out of 161 and 7" out of 165 in the categories of biotechnology & applied microbiology
and genetics & heredity respectively. Publication 6 was published in PLoS One
(Public Library of Science), the world’s first multidisciplinary Open Access journal,
publishing reports of original research from all disciplines within science and
medicine. Again, no impact factors or journal ranking have been released for 2016
but in 2015 it had an impact factor of 3.057 and was ranked 11" out of 63 in the
category of multidisciplinary sciences. All impact factors and category rankings are
based on Thomson Reuters™ InCites™ Journal Citation Reports®

(http://icr.incites.thomsonreuters.com).

In total, as of November 2016, the work presented here has been cited 45 times.
Publication 1 has been cited seven times?'32103.104.172-174 gnd publication 2 has been
cited seventeen times'’5'®. Publication 3 has been cited seven times'"192-197,
Publication 4 has been cited fourteen times336.164.175.198-207 ' Thjg publication is still
relatively recent and the number of citations is expected to rise. However, the
measure of online attention, Altmetric, scores this article 78, placing it in the 97"
percentile of tracked articles of a similar age in all journals. Additionally, it has been
viewed over 6,600 times as of November 2016. Publications 5 & 6 have only recently
been published and therefore do not currently have any citations, although the
number is expected to rise and publication 5 has an Altmetric score of 27 putting it in
the top 5% of all tracked research outputs and the 92" percentile of all outputs of a

similar age.

In addition to the publications and citations, the work presented here has also been
selected for presentation at national and international conferences. Publication 1 has
been presented at a North of England Genetic Epidemiology Group meeting in Leeds,
UK in November 2010. Publication 2 was selected for an oral presentation in the
“Genetics” session at the British Society of Rheumatology conference in 2012 held in
Glasgow, UK. Publication 3 was selected for an oral presentation in the “Genomics,
genetics and epigenetics of rheumatic diseases” session at the European League
Against Rheumatism (EULAR) conference in 2012 held in Berlin, Germany?°.
Publication 4 was selected for a platform (oral) presentation at the 65" American
Society of Human Genetics conference held in Baltimore, MD, USA in the “Going All
In: Experimental Characterization of Complex Trait Loci” session in 2015%%.
Publication 5 was selected for a poster presentation at the 65" American Society of
Human Genetics conference held in Baltimore, MD, USA in 2015%'° obtaining a
reviewers’ choice award and oral presentations at the Target Validation using

Genomics and Informatics conference held at the Wellcome Trust Genome Campus,
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Hinxton in 2015, the Be The Cure Functional Genomics Workshop held in London,
UK in 2016 and the European Human Genetics Conference 2016 held in Barcelona,
Spain in the “Complex traits” session?'". Publication 6 was selected for a poster
presentation at the European Human Genetics Conference 2016 held in Barcelona,
Spain?'?, obtaining a poster award. It was also selected for a platform (oral)
presentation at the 66" American Society of Human Genetics conference held in
Vancouver, BC, Canada in the “Chromatin Architecture, Fine Mapping, and Disease”

session in 2016213,
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ABSTRACT

Motivation: Fine-mapping experiments from genome-wide asso-
ciation studies (GWAS) are underway for many complex diseases.
These are likely to identify a number of putative causal variants,
which cannot be separated further in terms of strength of genetic
association due to linkage disequilibrium. The challenge will be
selecting which variant to prioritize for subsequent expensive
functional studies. A wealth of functional information generated from
wet lab experiments now exists but cannot be easily interrogated
by the user. Here, we describe a program designed to quickly
assimilate this data called ASSIMILATOR and validate the method
by interrogating two regions to show its effectiveness.

Availability: http://www.medicine.manchester.ac.uk/musculoskelet
al/research/arc/genetics/bioinformatics/assimilator/.

Contact: paul.martin-2@manchester.ac.uk
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1 INTRODUCTION

Genome-wide association studies (GWAS) have been enormously
successful in identifying regions associated with a variety of
complex traits and diseases. Fine-mapping studies are underway
for many of these disorders and are likely to identify a number of
putative causal variants. The challenge then will be to prioritize
which variants to select for the expensive functional studies
required to fully translate how these variants affect risk. In many
cases, it is expected that the likely causal variants will be single
nucleotide polymorphism (SNP) markers that are in complete
linkage disequilibrium and which cannot be prioritized further based
on genetic evidence alone. SNPs within genes which affect the
resulting protein or lie in a regulatory region would be obvious
candidates for functional studies but, in many complex diseases,
the causal SNPs identified to date map to intergenic, non-coding
regions and it is more challenging to prioritize these based on likely
function (Barton ef al., 2008; Thomson ef al., 2007; Wellcome Trust
Case Control Consortium, 2007).

There is now a wealth of information available from the
ENCyclopaedia Of DNA Elements (ENCODE) international
consortium (Birney et al., 2007; ENCODE Project Consortium
2004) hosted by the University of California Santa Cruz (UCSC)
through their Genome Browser (Kent er al, 2002). These
data have been generated from wet lab experiments including

*To whom correspondence should be addressed.

Chromatin ImmunoPrecipitation Sequencing (ChIP-Seq), DNase
hypersensitivity and histone modification studies, and thus may
provide better evidence of putative function compared with
predictive algorithms used previously to infer function at a locus. An
enormous amount of data is available including studies in different
cell lines and different cell compartments, but currently these sites
cannot be easily interrogated by the user simultaneously. Other
potential resources for prioritizing SNPs for functional studies are
now becoming more widely available and include eQTL studies
and programs which predict likely effects of non-synonymous
polymorphisms. Here, we describe a program designed to quickly
assimilate all available data for SNPs or locations entered by
the user, called ASSIMILATOR. Importantly, the ability to enter
SNPs using base pair position will allow the interrogation of novel
variants identified, for example, by the 1000 Genomes project
(http://www.1000genomes.org) even if an rs number has not yet
been assigned. We also validate the method by interrogating SNPs
in two regions: one associated with colorectal cancer (Pomerantz
et al., 2009) and one with type II diabetes (T2D) (Gaulton et al.,
2010). We show that, based on the information drawn together
by ASSIMILATOR, we would have prioritized the subsequently
confirmed causal SNPs for functional investigation from both
previous studies.

2 METHODS

‘Written in Perl, ASSIMILATOR retrieves, queries and processes information
for the desired SNPs from the UCSC Genome Browser’s public MySQL
database and displays this in a simplified, user-friendly manner. All
available ENCODE tracks are queried in addition to predefined tracks,
such as mRNAs, ESTs and CpG islands. In addition, eQTL data hosted by
the Pritchard laboratories (http://eqtl.uchicago.edu), PolyPhen2 functional
annotation (Adzhubei er al., 2010) and SNP location relative to the gene are
displayed. Multiple systems have been designed to improve the efficiency
of data retrieval such as an XML-based track database, which minimizes the
number of database queries and multi-threading support to query multiple
SNPs simultaneously, reducing processing time with minimal reduction in
individual performance.

The output can be viewed in a standard web browser and allows the user to
quickly identify SNPs, which could be functionally important. To add extra
functionality, the ability to view selected SNPs in NCBIs dbSNP (Sherry
et al., 2001) and in the UCSC Genome Browser has been incorporated into
the output. To efficiently display features for a SNP in the UCSC Genome
Browser, only tracks that contain features in the SNP region are displayed.
The user interface has been designed to allow further mining of the output
(Fig. 1) to display information from the multiple cell types and links to
external data. This includes the ability to view the detailed experimental data
thereby allowing users to assess the biological relevance of the results in the

© The Author(s) 2010. Published by Oxford University Press.
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ASSIMILATOR

Results - Pomerantz et al,

Location Information Standard Expression Regulation
SNP ID SNP Position f vation| [ [ de|Relative |Affy| Caltech | CSHL [GIS|RIKEN| Broad | Open [HAIB] UW | Uw | UW vale
ESTs |mRNAs| Genes [Location|RNA|RNA-seq| Sm |PET| CAGE [Histone Chromatin|TFBS Histone DNase|DNasel TFBS,
rs10808556 chrf:128482329-128482329)  snp130 Yes | Yes Yes Yes Yes Yes Yes | Yes | Yes | Yes | Yes
rs4871788 [chrb:128490967-128490967  snp130 Yes | Yes Yes Yes| Yes | Yes Yes Yes Yes
rs3847137 [chrB:128483680-128483680  snp130 Yes Yes Yas Yes
52060776 [chrB:128489299-128489299)  snp130 Yes
t . T 1. Track: ENCODE RIKEN CAGE Tags (PolyA- RNA in prostate whole cell)
rsd4276648 [chrb:128496554-128496554  snp130 T i s Yes Yes Yes
rs4871022 [chrB:128496902-128496502 snp130 Mame: 00003022001131200022003113 Yes Yes Yas Yes
Fosition: chr:128482458-126482513
rs10956369 chrf:128492999-128492999]  snp130 Strand: - Yes Yes Yes Yes
rs7837644 |chB:120492560-120492580] snp130 ety I Ves Yes
rs871135 |chrB:128495575-128495575 _ snp130 2. Track: ENCODE RIKEN CAGE Tags (PolyA- RNA in prostate whole gell) Yes
rs10505477 |chrB:128476625-128476625|  snp130 Date Unrestricted: 2009-00-09 Yes Yes
bl : Name: 00003022001131200022003113
rs10505474/chrb:120486686-120486686]  snp130 Poaition: che: 128482488-128482513 Yes
rs7837328 [chrB:128492309-128492309) snp130 Strand; - Yes Yes
rs10956368/chrb:128492832-128492832] snp130 Scove: 200 s | Yes Yes
rs7837626 [chrB:128492523-128492523)  enp130 Yes | Yes | | | | Yes Yes |Yes Yes Yes Yes
T ———
Location Information Standard Expression Regulation VarRep
SNP ID SNP Position Information Conservation Human Human Gencode Relative Affy| Caltech |GIS GIS  |Hud. UwW | Broad Open |HAIB SUNY| uUw uw UW | Yale|Common
ESTs mRNAs| Genes seq PET RNA-seq| RNA-seq CAGE | Affy |Histone Chromatin| TFBS RBP BS|Cell TNV
| | 1 | | | Loc Loc| Loc_|Exon| | DGF | HS
chré: 128462487 Yes Yes | ves Yes| YVes |ves Yes Ve | ves | ves |ves
rs7903146/chr10:114748339-114748339 snpl 30 Yes Yes Yes Intromse Yes Yes Yes Yas Yes Yes

Fig. 1. Examples of ASSIMILATOR output showing results for (a) Pomerantz er al. with the causal SNP highlighted and (b) Gaulton e al. showing the
evidence that the SNP is in a region of open chromatin. In addition, an example of results for a SNP without an rs number, as might be the case for novel
SNPs identified via the 1000 Genomes project (http://www.1000genomes.org), is shown.

context of the thresholds and criteria used. ASSIMILATOR automatically
queries any new tracks appearing from the ENCODE project on UCSC and
includes these in the analysis. To further ensure ASSIMILATOR stays up to
date, an option is available, which searches all UCSC database versions for
ENCODE tracks and automatically uses the latest suitable version [currently
March. 2006 (NCBI36/hgl18)]. The ENCODE data release policy places
restrictions on the publication of ENCODE data; therefore, the date at which
the data becomes unrestricted is also displayed to aid the user.

To analyse the data, a hierarchical approach can be employed by the user,
where isolated evidence for conservation across species, evidence of histone
modification or mapping to a methylated region might be assigned a low
weighting by the user; conversely, consistent evidence for a region being
active, such as evidence for histone modification, DNase-1 hypersensitivity
and open chromatin in the same cell line, coupled with evidence that a SNP
lies within a transcription factor binding site (TFBS) would receive a higher
weighting and could help to prioritize that SNP for functional work and may
inform the design of such studies.

3 RESULTS

To verify the usefulness of ASSIMILATOR, we used information
from a published study by Pomerantz et al. who found that
an intergenic SNP, rs6983267, associated with colorectal cancer,
showed functional evidence for interaction with the MYC gene
(Pomerantz et al., 2009). We used the SNP Annotation and Proxy
Search (SNAP) tool (Johnson et al., 2008) to generate a list of
SNPs highly correlated with 156983267 (2 > 0.8). This generated
a list of 15 SNPs that were subsequently used as the input
to ASSIMILATOR. The results are shown in Figure la clearly
indicating that rs6983267 has the strongest a priori evidence of
function. Not only is it in an active region of the genome, but also it is
one of only two SNPs to lie in a TFBS. Additionally, ASSIMILATOR
correctly identified the same TFBS as the published data.

Similarly, a recent study by Gaulton et al. (2010) looking at
open chromatin across the genome identified a SNP associated with
T2D in an open region. As a further proof of concept, supplying
ASSIMILATOR with the same SNP revealed three lines of evidence
showing bioinformatically that the SNP was in a region of open
chromatin (Fig. 1b). This selection was achieved quickly and easily
using our programme.

4 CONCLUSIONS

ASSIMILATOR provides a user-friendly interface with which to
collate and assess the wealth of experimental evidence available
for SNPs in order to prioritize efficiently for functional studies.
ASSIMILATOR does not try to make assumptions about the
likelihood of a SNP being functional and as such allows the
user to make their own judgements about the candidacy of a
SNP. ASSIMILATOR will also quickly and easily incorporate new
data added to the ENCODE project ensuring that it maintains its
relevance. With the wealth of information emerging from genome
annotation studies, the task of manually mining the thousands
of data points would be daunting. Here, we provide a one-stop
solution that quickly and efficiently allows the user to view only
relevant studies for their SNPs of interest and to mine that data with
ease.

We have validated the program using published data and have
shown that it allows the correct prioritization of a SNP subsequently
shown to be the causal variant in a region associated with colorectal
cancer. It thus provides an efficient portal to gather the essential
information on which to base decisions regarding priorities for
functional work. We have made ASSIMILATOR freely available
through our web site as a download and we are also developing a
web-based interface which will be found at the same location.
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Novel Rheumatoid Arthritis Susceptibility Locus at 22q12
Identified in an Extended UK Genome-Wide Association Study
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Objective. The number of confirmed rheumatoid
arthritis (RA) loci currently stands at 32, but many lines
of evidence indicate that expansion of existing genome-
wide association studies (GWAS) enhances the power to
detect additional loci. This study was undertaken to
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extend our previous RA GWAS in a UK cohort, adding
more independent RA cases and healthy controls, with
the aim of detecting novel association signals for sus-
ceptibility to RA in a homogeneous UK cohort.

Methods. A total of 3,223 UK RA cases and 5,272
UK controls were available for association analyses,
with the extension adding 1,361 cases and 2,334 controls
to the original GWAS data set. The genotype data for all
RA cases were imputed using the Impute program
version 2. After stringent quality control thresholds
were applied, 3,034 cases and 5,271 controls (1,831,729
single-nucleotide polymorphisms [SNPs]) were avail-
able for analysis. Association testing was performed
using Plink software.

Results. The analyses indicated a suggestive as-
sociation with susceptibility to RA (P < 0.0001) for 6
novel RA loci that have been previously found to be
associated with other autoimmune diseases; these 6
SNPs were genotyped in independent samples. Two of
the associated loci were validated, one of which was
associated with RA at genome-wide levels of significance
in the combined analysis, identifying a novel RA locus at
22q12 (P = 69 X 107%). In addition, most of the
previously known RA susceptibility loci were confirmed
to be associated with RA, and for 16 of the loci, the
strength of the association was increased.

Conclusion. This study identified a new RA locus
mapping to 22q12. These results support the notion that
increasing the power of GWAS enhances novel gene
discovery.

Understanding the genetic component of suscep-
tibility to rheumatoid arthritis (RA) will increase our
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Table 1. Previously confirmed rheumatoid arthritis (RA) loci association results in the original WTCCC association analysis and the expanded UK
RA GWAS*
WTCCC study Expanded UK RA GWAS

Chr. SNP Gene Proxy P OR (95% CI) Proxy P OR (95% CI)
1 153890745 TNFRSFI14 8.47x10°° 0.82 (0.75-0.89) 143 x 10°° 0.85 (0.79-0.91)
1 152476601 PTPN22 rs6679677 2.60 % 107 1.90 (1.68-2.15) 487 x 107% 1.77 (1.61-1.95)
1 1511586238 CD2, CD58 413 x107* 1.19 (1.08-1.31) 154271251 6.47 % 1073 1.11 (1.03-1.19)
1 1512746613 FCGR24 0.04 1.14 (1.01-1.29) 0.03 1.11 (1.01-1.22)
1 1510919563 PTPRC 0.003 0.82 (0.72-0.94) 718 x 1077 0.82 (0.74-0.9)
2 1513031237 REL None rs13031721 0.29 1.04 (0.97-1.11)
2 15934734 SPRED2 0.10 0.93 (0.86-1.01) 0.11 0.95 (0.89-1.01)
2 1510865035 AFF3 rs9653442 548 x107* 1.16 (1.07-1.26) rs1160542 137 % 107° 1.15 (1.08-1.23)
2 157574865 STAT4 rs11893432 0.02 1.13 (1.02-1.25) rs10181656 6.64 X 107 1.14 (1.06-1.23)
2 151980422 CD28 480 x 107 1.15 (1.04-1.26) 175 % 107 1.15 (1.07-1.24)
2 153087243 CTLA4 0.09 0.93 (0.86-1.01) 0.02 0.92 (0.87-0.99)
3 1513315591 PXK 0.20 1.10 (0.95-1.26) None
4 1874040 RBPJ None rs6448432 388 x 1077 1.19 (1.11-1.28)
4 156822844 IL2, IL21 None r$62322744 6.42 x 1077 1.18 (1.05-1.32)
5 156859219 ANKRDS5, 55x10°° 0.78 (0.70-0.87) None

IL6ST
5 1526232 CSorf30 rs556560 246 X 107* 0.85 (0.78-0.93) rs556560 9.64 % 107° 0.88 (0.82-0.94)
6 16910071 HLA-DRBI rs6457617 349 x10°™ 0.44 (0.40-0.48) rs3763309 1.50 x 107124 2.3 (2.14-2.46)
6 15548234 PRDM1 0.01 112 (1.02-1.22) 1.24 x 1072 1.12 (1.04-1.19)
6 156920220 TNFAIP3 6.11 % 107° 1.25 (1.13-1.37) 311 x10°® 1.23 (1.14-1.32)
6 15394581 TAGAP 586 x 1073 0.88 (0.80-0.96) None
6 153093023 CCR6 rs6907666 0.05 1.09 (1-1.18) rs3093024 1.88 x 1073 1.11 (1.04-1.18)
7 10488631 IRF5 rs12531711 0.03 1.16 (1.02-1.31) 310x 107 1.16 (1.05-1.28)
8 152736340 BLK 8.0l x 1072 1.14 (1.03-1.25) 0.05 1.07 (1-1.15)
9 152812378 CCL21 114> 1073 1.15 (1.06-1.26) None
9 153761847 TRAFI, C5 0.80 0.99 (0.91-1.07) 0.19 1.04 (0.98-1.11)
10 12104286 IL2RA 7.06 X 107° 0.81 (0.73-0.89) 1.46 X 10°° 0.84 (0.78-0.9)
10 54750316 PRKCQ 522x107° 0.80 (0.72-0.89) 155x10°* 0.85 (0.78-0.93)
11 15540386 TRAF6 0.04 0.88 (0.77-0.99) rs1046864 0.01 0.89 (0.8-0.98)
12 151678542 KIF54 2.81 % 107° 0.83 (0.76-0.91) 9,75 x 107% 0.83 (0.78-0.89)
20 14810485 CD40 0.07 0.91 (0.83-1.01) rs1569723 0.22 0.95 (0.89-1.03)
22 13218253 IL2RB 1.88 x 10°* 1.19 (1.09-1.31) 251 x 107 1.15 (1.07-1.23)

* WTCCC = Wellcome Trust Case Control Consortium; GWAS = genome-wide association study; Chr. = chromosome; SNP = single-nucleotide

polymorphism; OR = odds ratio; 95% CI = 95% confidence interval.

knowledge of the disease process and has the potential
to inform new approaches to disease management. For
example, the identification of disecase-associated genetic
variations, which are presumed to cause modified im-
mune responses and precede the onset of disease symp-
toms, could inform stratification of patients into more
phenotypically homogeneous subgroups and provide
testable hypotheses regarding response to treatment.
The use of genome-wide association studies (GWAS)
has been remarkably successful in locating novel genetic
loci associated with RA, and there are now more than 30
gene regions that have been confirmed as RA suscepti-
bility loci, but, in total, they account for fewer than 50%
of the total genetic heritability (1,2). It is likely that there
are more common variants of small effect size that could
be identified by increasing the power of the GWAS
through the use of larger sample sizes. Indeed, this
approach has been used successfully in a number of

autoimmune diseases, such as type 1 diabetes (3) and
inflammatory bowel disease (4,5), resulting in a more
complete picture of the genetic background.

In the present study, we used the data set from an
RA GWAS in the UK (6) and increased the sample sizes
of the RA cases and healthy controls by 75% and 80%,
respectively. With this extended data set, together with
the data obtained in a validation study of the UK cohort,
we were able to discover potential novel RA risk loci in
the UK population. This study constitutes the largest
UK-only GWAS to date, and the results will enhance the
power to investigate whether population heterogeneity
exists, i.e., whether different genes are associated with
RA in different populations.

PATIENTS AND METHODS

Genotype data were available for 1,862 RA cases and
2,938 controls from the original Wellcome Trust Case Control
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Consortium (WTCCC) study (6); these genotypes were ob-
tained using the Affymetrix 500K array. Together with this
data set, we added GWAS genotype data for a further 2,334
UK controls and 1,361 UK RA cases (sample call rate >95%).
The additional samples were from 5 different studies, with
genotypes obtained using a range of GWAS arrays. Members
of the WTCCC, UK Rheumatoid Arthritis Genetics Group,
and Biologics in Rheumatoid Arthritis Genetics and Genomics
Study Syndicate Consortiums and details on the platforms used
are given in the Supplementary Materials and Supplementary
Table 1, available on the Arthritis & Rheumatology web site at
http:/fonlinelibrary.wiley.com/doi/10.1002/art.38196/abstract.

Since each GWAS array contains different single-
nucleotide polymorphisms (SNPs), the first stage of the cur-
rent study was to impute genotypes to generate data for a
common set of SNPs, thus allowing combined analysis of the
data from the 5 different studies. The genotypes of the patients
in each RA case cohort were imputed using the Impute
program (version 2) (7), based on 2 reference panels, the 1000
Genomes Project pilot data and HapMap3. The genotypes of
control subjects were imputed using the same 1000 Genomes
Project reference panel, with imputation performed using
MaCH software (8). Stringent quality control (QC) thresholds
were applied to individual cohorts and then to the merged data
set (see Supplementary Figure 1, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/doi/
10.1002/art.38196/abstract). Self-reported information on each
subject’s ethnicity was used to exclude non-Caucasians from
the analyses.

Identity-by-descent analysis was performed in Plink
statistical software. Pairs of samples with genome identity
(pi-hat values) greater than 0.9 were reported to be duplicate
samples, and those with pi-hat values greater than (.2 were
considered to be closely related. Case and control genotype
data were compared using logistic regression, performed in
Plink (9). Novel SNPs not previously found to be associated
with RA in the UK population were selected for validation if
the association P value was less than 0.0001, and if the region
had been previously found to be associated with another
autoimmune disease. The SNPs satisfying these criteria were
genotyped in independent UK samples (4,726 cases and 2,625
controls), using Sequenom technology. Additional control data
were available using non-autoimmune disease cases (n =
7,670) from the WTCCC study (6).

A regional association plot for the 22ql2 locus was
created using LocusZoom (http://csg.sph.umich.edu/
locuszoomy/). Bioinformatics analysis was performed using pub-
licly available functional annotation files (http://genome.
ucsc.edu/) and our own custom query SQL-code (Assimilator;
available at http://assimilator.mhs.manchester.ac.uk/cgi-bin/
assimilator.pl) (10).

RESULTS

Forty-two duplicate samples were removed after
identity-by-descent analysis. There were 14 pairs of
individual samples with pi-hat values greater than 0.2,
and thus 1 sample from each pair was removed due to
possible relatedness. A total of 1,831,729 SNPs passed
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Figure 1. Manhattan plots showing P values for genetic association
with rheumatoid arthritis (RA) in the original Wellcome Trust Case
Control Consortium genome-wide association study (GWAS) (a) and
the expanded UK GWAS (b). Panels are truncated at a —log,, P value
of 35. Single-nucleotide polymorphisms having an association with RA
at genome-wide levels of significance are shown above the horizontal
red line.

QC and were included in the association analysis. In the
expanded GWAS, 3,034 RA cases and 5,271 controls
passed QC.

The genetic inflation factor lambda (Age) was
1.06, implying that there was a low possibility of false-
positive associations attributable to population stratifi-
cation, genotyping errors, or other artifacts. For most of
the previously known RA susceptibility loci (2), we
confirmed their association with RA in the present study
(Table 1). Interestingly, when compared to the original
WTCCC study (6), the extended RA GWAS showed
that the strength of the association with RA susceptibil-
ity was increased for 16 of the loci in the UK population
(TNFAIP3, STAT4, PTPN22, HLA-DRBI, PTPRC, IL2/
IL21, CSorf30, CD247, CTLA4, RBPI, PRDM1, CCR6,
IRFS, TRAF6, KIF54, and CD28). For example, the
association of TNFAIP3 with RA risk reached genome-
wide levels of significance in this expansion of the
WTCCC analysis, and the robustly validated locus
STATH4, for which no significant association had been
found in the original WTCCC study, was found to be
associated with RA in the present study (Figure 1).

Similar to the findings in the original WTCCC
study, some of the known RA loci (CD40, REL,
SPRED?2, BLK, and TRAF1/C5) were not found to have
an association with RA in the present study. Finally, no
proxies were available for 4 of the known RA loci.

Six of the SNPs with suggestive evidence of
association with RA in the present study and with
additional evidence of association in other studies were
selected for validation analysis (Table 2). Evidence of an
association with susceptibility to RA was found for
151043099 (on chromosome 22q12) in this validation
study (P = 2.7 X 107%), and the association exceeded
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Figure 2. Regional plot of association with rheumatoid arthritis (RA)
at chromosome 22q12. The P values for association ( —log,, values) of
cach single-nucleotide polymorphism (SNP) are plotted against their
physical position on chromosome 22 (top panel). Estimated recombi-
nation rates from the 1000 Genomes Project population show the local
linkage disequilibrium (LD) structure (middle panel). Different colors
indicate the LD of each SNP with rs1043099, based on pairwise 1’
values from the 1000 Genomes Project. Gene annotations are shown in
the lower panel.

genome-wide significance thresholds in the combined
analysis (P = 69 x 107%) (Figure 2). A SNP on
chromosome 11, near CXCR5 and in strong linkage
disequilibrium (LD) (r* > 0.9) with a SNP previously
associated with RA at genome-wide significance levels
(11), was also associated with RA in the validation

OROZCO ET AL

cohort (P = 0.02), and there was suggestive evidence of
association in the combined analysis (P = 1.8 x 1077°).

In further analyses, we interrogated publicly
available functional annotation data (10,12} and found
evidence to indicate that rs1043099 and its correlated
SNPs (r* > 0.8) may have regulatory activity in RA.
First, the SNP alleles were found to be associated with
expression levels of the SF347 gene (which encodes
subunit 1 of the splicing factor 3a protein complex)
(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) (Man-
gravite LM, et al: unpublished observations). Second,
several of the SNPs map to sites of transcription factor
binding, histone modification, and open chromatin (Ta-
ble 3), suggesting that these SNPs could influence gene
transcription.

We then stratified the expanded UK GWAS and
validation data sets according to the presence or absence
of anti—cyclic citrullinated peptide (anti-CCP) antibod-
ies in RA patients. The proportion of anti-CCP-positive
RA patients in the original WTCCC study, expanded
UK GWAS, and validation study was 79%, 73.5%, and
67%, respectively. SNP rs1043099 was significantly asso-
ciated with both anti-CCP-positive RA and anti-CCP-
negative RA. In contrast, SNP rs6421571 was associated
with anti-CCP-positive RA only (see Supplementary
Table 2, available on the Arthritis & Rheumatology web
site at http://onlinelibrary.wiley.com/doi/10.1002/
art.38196/abstract). Similar results were obtained when
patients were stratified by the presence of rheumatoid

Table 3. Potential regulatory role of the rheumatoid arthritis—associated single-nucleotide polymorphism (SNP) 151043099 and its proxies®

Relative Transcribed Histone DNase [ CTCF
SNP location Gene region modifications TFBS HS FAIRE binding eQTL
152108093 3 GATSL3 Yes Yes Yes Yes Yes
151043099 Exonic, 3'-UTR GATSL3 Yes Yes Yes Yes Yes
154823085 5¢ GATSL3 Yes Yes Yes Yes Yes Yes Yes
18929454 Intronic TBCIDI10A Yes Yes Yes Yes Yes
154820831 Intronic TBCIDI0A Yes Yes Yes Yes Yes Yes
15740219 Intronic TBCIDI10A Yes Yes Yes Yes Yes
185753071 3 SF3A1 Yes Yes Yes Yes Yes
1510376 Exonic, 3'-UTR SF3A1 Yes Yes Yes Yes Yes
1s2041199 Intronic SF3A1 Yes Yes Yes Yes
154339043 Intronic SF3A1 Yes Yes Yes Yes Yes
155749066 Intronic SF3A1 Yes Yes Yes Yes Yes
155753080 Intronic SF3A1 Yes Yes Yes
1510427610 Intronic SF3A1 Yes Yes Yes Yes Yes Yes
rs4820008 Intronic SF3A1 Yes Yes Yes
15737950 Intronic CCDC157 Yes Yes Yes
155749078 Intronic CCDC157 Yes Yes Yes Yes
159619104 3 CcCDC157 Yes Yes Yes Yes

* Proxies of rs1043099 were correlated at > > 0.8, Results are the summary output from the Assimilator bioinformatics analysis. TFBS =
transcription factor binding site; HS = hypersensitive sites; FAIRE = open chromatin by formaldehyde-assisted isolation of regulatory elements;
CTCF = CCCTC binding factor; eQTL = expression quantitative trait loci; 3-UTR = 3’-untranslated region.
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factor (see Supplementary Table 3, available on the
Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.38196/abstract).

DISCUSSION

In this study, we discovered a new RA risk locus
on chromosome 22q12, rs1043099, for which the associ-
ation with susceptibility to RA reached genome-wide
levels of significance (combined P = 6.9 X 10™%). This
locus has previously been associated with other auto-
immune diseases, including type 1 diabetes (3) and
inflammatory bowel disease (5,13). The SNP lies within
a gene of unknown function, GATSL3. It will be inter-
esting to better fine-map this region in RA, as well as in
other autoimmune diseases, to help determine which
gene is causal. Using bioinformatics analysis, we showed
that rs1043099 and its correlated SNPs have potential
regulatory activity. Interestingly, evidence suggests that
these SNPs act as expression quantitative trait loci for
the SF341 gene. SFAI is involved in messenger RNA
splicing, but the particular role that this gene might have
in the pathogenesis of RA has not yet been explored.
Further functional studies will be required to determine
which of the SNPs is causal and to elucidate the mech-
anisms of action of each SNP.

Of the remaining SNPs tested in the validation
samples, evidence of increased strength of the associa-
tion with susceptibility to RA was found only for
156421571 on chromosome 11q23 (combined P = 1.8 X
1077). This SNP maps 5’ to the CXCR5 gene, which is a
chemokine involved in B cell migration and localization,
and has previously been associated with primary biliary
cirrhosis (14). Different SNPs in the same region have
been found to be associated with multiple sclerosis (15)
and RA (11). The SNP identified as being significantly
associated with RA and celiac disease in a combined
analysis, rs10892279, is adjacent to the gene DDX6, and
although it is >130 kb from rs6421571, the 2 SNPs are
strongly correlated (r? > 0.9). Therefore, which of these
2 strong candidate genes will ultimately be found to be
causal requires further fine-mapping and functional
studies.

The added power provided by this study strength-
ens the evidence for an association with RA for 16 loci
that were already confirmed to be associated with RA in
the UK population (2). The most striking findings
supporting an association with RA within the UK pop-
ulation, as evidenced by an increase in the significance of
the association from the original WTCCC study to the
expanded GWAS, were seen for the loci at PTPRC
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(increasing from P = 0.003 to P = 7 X 10°), TNFAIP3
(increasing from P = 6 X 10™% to P = 3 x 107%), and
KIF5A (increasing from P =2 X 10 to P =9 x 107%),
RBFJ, not available for analysis in the original WTCCC
study, showed evidence of a strong association with RA
in this expanded GWAS (P = 3 x 1077).

There was little evidence of an association with
other previously confirmed RA loci in this expanded UK
data set, including FCGR24, REL, SPRED2, CTLA4,
BLK, TRAF1, and CD40. This could be attributed to a
number of factors, but the most likely explanation is that
the current study was underpowered to detect such
associations. Although we performed a relatively large
discovery study, the power to detect all of the associa-
tions was limited (average power across SNPs with a
minor allele frequency >5% was 47% for an odds ratio
[OR] of 1.1, and >90% for an OR of >1.2), and
therefore failure to detect a signal could simply be the
result of stochastic variations leading to a false-negative
result. Indeed, it is well established that even the most
strongly associated signals across multiple diseases are
not found to be consistently associated in all cohorts,
and often an accumulation of evidence is required in
many thousands of samples. In this regard, a recent
meta-analysis failed to detect the association between
the 22q12 locus and RA that we identified in the current
study (for 15929454, P = 0.63, r> = 0.91 for LD with
rs1043099) (2).

Interestingly, most of the confirmed RA loci for
which we did not find any association with RA in the
expanded UK data set (FCGR24, REL, SPRED?2,
CTLA4, BLK, TRAFI, and CD40) were found to have an
association with anti-CCP-positive RA, but not anti-
CCP-negative RA, in a recent study, which was the
largest anti-CCP-stratified RA sample size studied to
date (16). We found very modest evidence of association
with anti-CCP-positive RA for only 2 of the above-
mentioned variants (P = 0.03 for FCGR24, and P = 0.03
for BLK), and therefore it is likely that the present study
was underpowered to detect serotype-specific effects at
these RA loci.

This study has added to the argument that in-
creasing the size, and consequently the power, of RA
GWAS can prove fruitful in the discovery of novel
genes. Increasing the number of known disease loci will
facilitate the estimation of disease risk, potentially al-
lowing early intervention in high-risk groups, possibly
informing prognosis, and, ultimately, aiding in the dis-
covery of novel targets for pharmacologic therapy. Fu-
ture work will involve adding this new extended UK data
to existing meta-analyses of RA case data with the aim of
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expanding our knowledge of the common genetic vari-
ants predisposing to RA.
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Enrichment of vitamin D response elements in RA-associated loci
supports a role for vitamin D in the pathogenesis of RA

A Yarwood'?, P Martin'3, J Bowes', M Lunt', J Worthington'?, A Barton'? and § Eyre'

The aim of this study was to explore the role of vitamin D in rheumatoid arthritis (RA) pathogenesis by investigating the enrichment
of vitamin D response elements (VDREs) in confirmed RA susceptibility loci and testing variants associated with vitamin D levels for
association with RA. Bioinformatically, VDRE genomic positions were overlaid with non-HLA (human leukocyte antigen)-confirmed
RA susceptibility regions. The number of VDREs at RA loci was compared to a randomly selected set of genomic loci to calculate an
average relative risk (RR). Single-nucleotide polymorphisms (SNPs) in the DHCR7/NADSYNT (nicotinamide adenine dinucleotide
synthase 1) and CYP2RT loci, previously associated with circulating vitamin D levels, were tested in UK RA cases (n=3870) and
controls (n = 8430). Significant enrichment of VDREs was seen at RA loci (P=9.23 x 10~ %) when regions were defined either by
gene (RR 5.50) or position (RR 5.86). SNPs in the DHCR7/NADSYNT locus showed evidence of positive association with RA, rs4944076
(P=0.008, odds ratio (OR) 1.14, 95% confidence interval (Cl) 1.03-1.24). The significant enrichment of VDREs at RA-associated loci
and the modest association of variants in loci-controlling levels of circulating vitamin D supports the hypothesis that vitamin

D has a role in the development of RA.

Genes and Immunity (2013) 14, 325-329; doi:10.1038/gene.2013.23; published online 2 May 2013

Keywords: vitamin D; rheumatoid arthritis; VDRE; Mendelian randomization

INTRODUCTION

Vitamin D is a steroid hormone that has an important role in many
processes.” Vitamin D acts through its nuclear receptor, the
vitamin D receptor, the expression of which on immune cells
raises the question of a role for the hormone in the control
of the immune system. Numerous lines of evidence support a
regulatory role for vitamin D; indeed the active form, calcitriol or
1,25-dihydroxyvitamin D3 (VitDs), has been found to control over
200 genes including those involved in cell differentiation,
proliferation, apoptosis and angiogenesis®™* The vitamin
D receptor acts by binding to specific sequences in DNA known
as vitamin D response elements (VDREs), which result in
transcriptional regulation of vitamin D-responsive genes.

Rheumatoid arthritis (RA) is a chronic inflammatory autoim-
mune disease (AID) that causes inflammation of synovial joints.
RA is thought to arise as a result of an autoimmune reaction due
to a breach in self tolerance, inducing a type 1 T helper cell-driven
immune response that causes infiltration of immune cells into the
joint and secretion of pro-inflammatory cytokines.”

Vitamin D deficiency is common in RA and the active form of
vitamin D can alter several aspects of the immune responses,
which are pivotal to RA pathogenesis. The cytokine profile
of immune cells can be affected; for example, production of
interleukin (IL)-2 and interferon-y, which are important immune
mediators, by type 1 T helper lymphocytes is inhibited, resulting in
a shift towards a regulatory type 2 T helper cell phenotype.
Inhibition of interferon-y production also reduces antigen
presentation by antigen-presenting cells, and in turn reduces
T-cell activation, acting as a negative feedback regulator.®

Vitamin D inhibits the differentiation of monocytes to dendritic
cells,” reduces the production of IL-12 by dendritic cells and
stimulates phagacytosis of bacteria by macrophages.®® Boonstra
et al.'® showed that vitamin D increased the production of IL-4, IL-
5 and IL-10 by type 2 T helper cells; IL-4 and IL-10 normally act to
inhibit type 1 T helper cell function. Vitamin D has also been
shown to inhibit the activation of type 17 T helper cells by
inhibiting the expression of IL-6.""'? In addition, vitamin D can
affect the invasiveness of cultured RA fibroblast-like synoviocytes
(FLS), in which higher concentrations of calcitriol were shown to
significantly decrease the invasion of RA FLS by 53%.'° The
expression of matrix metalloproteinases (MMP), such as MMP-1
and MMP-2, can also be affected by vitamin D. MMPs are key
molecules involved in the destruction of cartilage and bone in RA.
IL-1B is known to increase the expression of MMP-1 by RA FLS;
Laragione et al.'® have shown that in both human and rats,
treatment of activated FLS with calcitriol significantly inhibited
IL-1B-induced expression of MMP-1 by 73-75%.

Given its immunoregulatory potential, a role for vitamin D has
been postulated in AlIDs. Circumstantial evidence supports this
possibility; for example, circulating vitamin D levels have been
reported to correlate with the risk of multiple sclerosis,’® type 1
diabetes (T1D)' and Crohn’s disease.’® In RA, decreased serum
levels of precursor vitamin D (25(0H)D) and active VitD; have
been reported in cross-sectional studies.'” However, findings may
be confounded by the decreased physical activity and reduced
sun exposure that RA patients with disability experience,
which means that it is not clear whether the associations
observed are cause or effect. With regards to disease onset, the
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evidence surrounding vitamin D intake is conflicting. Merlino
et al.'® showed an inverse prospective association between high
vitamin D intake and the risk of RA in women from the lowa health
study. However, a large prospective study of 180000 women
showed no association between vitamin D intake and subsequent
development of RA.'®

Low serum levels of vitamin D have also been associated
with increased disease severity;?>** however, the regulatory
genes associated with disease severity may be different to those
associated with susceptibility, therefore, there may be a different
set of genes regulating disease severity, which remain unexplored
for VDRE enrichment.

Thus, there is conflicting epidemiological evidence for a role of
vitamin D in influencing disease susceptibility to RA, and
differentiating cause from effect is challenging. However, there
is emerging genetic evidence that vitamin D levels may be
linked to the onset of AlDs. First, a recent study by Ramagopalan
et al?® determined VDREs throughout the genome using
chromatin immunoprecipitation (ChIP), followed by massively
parallel sequencing (ChIP-seq). The authors identified VDREs in
lymphoblastoid cell lines from two individuals of European
ancestry before and after VitD; stimulation. In the basal state,
before stimulation, 623 genomic sites were identified, whereas
after calcitriol stimulation, the number of VDRE sites increased to
2776. The authors demonstrated significant enrichment of VDREs
in known AID susceptibility loci, including Crohn’s disease,
systemic lupus erythematosus, T1D and multiple sclerosis
(P-value <0.001 in all diseases). Interestingly, the study also
tested 16 RA susceptibility loci and found significant VDRE
enrichment (P<0.001). However, only 9 of the 16 loci have been
confirmed to be associated with RA; in addition, there are now 45
non-HLA (human leukocyte antigen) loci confirmed to be
associated with RA susceptibility.””

The second piece of genetic evidence to support a role for
vitamin D in the aetiology of AID comes from a recent study in a
T1D cohort, this study confirmed the association of four vitamin D
metabolism genes (GC, DHCR7/NADSYN1, CYP2R1, CYP24A1) with
vitamin D levels in healthy controls; in addition, two of these
genes showed association with T1D susceptibility (DHCR7 P=1.2
x10 2 and CYP2R1 P=3.0x10 )%

The association of the same variants in the same genes that
control circulating levels of vitamin D with an AID provides an
unbiased test of the hypothesis that vitamin D levels are
important in the aetiology of AIDs (Mendelian randomization).*®
Therefore, the aims of the current study were, first, to investigate
potential enrichment of VDREs in RA susceptibility loci that have
been confirmed to date;” second, to test variants previously
associated with circulating levels of vitamin D and T1D
susceptibility for association with RA susceptibility.

RESULTS

Enrichment of VDREs at RA loci

Out of the 46 RA regions defined by gene, a total of 39 VDREs
were identified in 17 RA regions, showing that 37% of RA regions
contain VDREs. The relative risk (RR) for RA-associated

genes harbouring VDRES compared with random genes was 5.5
(95% Cl 2.55-26.33) (Table 1).

Analysing the data using a simple 2 x 2 table also showed a
significant increase in VDREs in RA-associated loci compared with
the rest of the protein-coding genes in the genome obtained from
ensembl build 65, P=1.20% 10 '° (odds ratio (OR) 5.72, 95%
confidence interval (Cl) 2.95-10.79) (Table 1).

However, this 2 x 2 table method does not take into account
the number of VDREs in each gene region; therefore, a trend test
was carried out using a 2 x 16 table (online Supplementary
Table 2), which also showed a significant enrichment of VDREs
(P=923x1075).

When defining regions by gene, the RA-defined gene may not
be the true causal gene. To overcome this issue, we also defined
regions by position, extending 50kb up- and downstream
of the associated single-nucleotide polymorphism (SNP) site.
Defining regions by SNP position identified 25 VDREs in 16 out of
46 regions (35.5% of RA-associated SNPs contain VDREs within
50kb), again showing a significant enrichment of VDREs at RA loci
(after 100000 randomizations, RR 5.86, 95% Cl| 2.04-51) (Table 1).
However, only one RA-associated SNP was shown to lie directly
within a VDRE; rs947474 is located on chromosome 10 and maps
within the PRKCQ locus.

Association of SNPs in vitamin D gene regions with RA
DHCR7/NADSYN1. After QC, 360 SNPs in 3870 UK RA cases and
8430 UK controls remained for analysis, capturing 59% of variation
across the DHCR7/NADSYN1 (nicotinamide adenine dinucleotide
synthase 1) locus (> 0.8). Weak association (P=0.04) was seen at
rs11600569, which is in complete linkage disequilibrium with
the vitamin D SNP associated with T1D (rs12785878); the OR is the
same in both diseases (OR 1.07) (Table 2).%

Association was seen between rs4944076, located in an intron
of NADSYNT and RA (P=0.008, OR 1.14, 95% CI 1.03-1.24) after
principal components analysis to correct for geographical
variation (Figure 1, Table 2, full results Supplementary Table 3).
This SNP was modestly correlated (r* =0.3) with rs12785878.%8

CYP2R1. After QC, 177 SNPs remained for analysis, capturing
47% of the variation across the CYP2RT region (r">0.8).
Weak association was seen at four SNPs (Table 2): two of these
SNPs, rs7116978 and rs6486205 (P=0.05 OR 1.06 95% Cl
0.99:1.18), are highly correlated with rs10741657 and rs2060793
(r* = 0.87), previously associated with vitamin D levels and T1D*®
(Supplementary Figure 1).

DISCUSSION

Although RA loci have previously been shown to be enriched for
VDREs, this was in a total of 16 non-confirmed loci, of which only
nine have since been validated as RA susceptibility loci. Here, we
perform the first comprehensive analysis of VDREs in all 45
confirmed non-HLA RA susceptibility loci. We have shown that
genes or regions surrounding SNPs associated with susceptibility
to RA are significantly enriched for VDREs. Indeed, the vitamin D
receptor has a binding site at 17 out of 46 confirmed non-HLA

Table 1. VDRE enrichment results when regions are defined by gene or SNP position
RR 95% CI *
P-value OR 95% CI
Defining regions by gene 5.50 2.55-26.33 121x10-"° 572 2.95-10.79
Defining regions by position (50 kb) 5.86 2.04-51

Abbreviations: Cl, confidence interval; OR, odds ratio; RR, relative risk.
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Table 2. Logistic regression results showing top SNP associations in the DHCR7/NADSYN1 and CYP2R1 regions with RA
SNP SNP position SNP type MAF in controls MAF in cases P-value OR 95% Cl
DHCR7/NADSYN1
rs4944076 70889302 Intronic 0.09 0.10 0.008 1.135 1.034:1.246
rs4944997 70884016 Intronic 0.09 0.10 0.008 1.135 1.033:1.246
rs2919722 70631179 Intronic 0.40 0.42 0.014 1.072 1.014:1.133
rs1002171 70895219 Intronic 0.05 0.05 0.014 1.166 1.031:1.319
rs11600569 70851395 Intronic 0.22 0.23 0.040 1.071 1.003:1.143
CYP2RI1
rs117162870 14782929 Intronic 0.04 0.05 0.04 1.15 1.009:1.305
rs116856365 14726866 Intronic 0.04 0.05 0.04 1.42 1.004:1.300
rs7116978 14838347 Intronic 0.37 0.38 0.05 1.06 0.9996:1.118
rs6486205 14837832 Intronic 0.37 0.38 0.05 1.06 0.999:1.118
Abbreviations: Cl, confidence interval; MAF, minor allele frequency; NADSYN1, nicotinamide adenine dinucleotide synthase 1; OR, odds ratio. rs11600569
shown in bold is perfectly correlated (r* = 1) with rs12785878 previously associated with vitamin D levels and T1D.*®
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RA-associated genes, and binds within 50kb of 355% of
RA-associated SNPs, resulting in a RR of 5.86 compared with the
rest of the genome. We have also shown that SNPs within the
vitamin D-associated loci DHCR7/NADSYNT show modest associa-
tion with RA susceptibility, suggesting that vitamin D may have a
role in the development of RA.

There are some points that should be considered when
interpreting these results. Primarily, the RA-associated genes as
defined by this study may not represent the true causal gene.
Indeed, when genes are assigned to loci, any functionality that is
associated is largely speculative, and involves variants being
assigned to the nearest gene, or to a gene in the region that is a
plausible biological candidate. Therefore, we used GRAIL (gene
relationships across implicated loci), which is the best method to
assign genes to loci in a non-biased fashion. We also used a

© 2013 Macmillan Publishers Limited

position-based approach, as well as a gene-based approach, with
the assumption that a causal gene will lie reasonably close to the
currently defined associated variant. However, associated variants
may not exert their effects on nearby genes, but may be acting on
genes some distance away in cis or trans.*®

Although most regions have been fine-mapped using
the immunochip (@ custom SNP array designed for dense
genotyping of 186 loci identified through genome-wide
association studies),”” in large sample collections, it is possible that
the true causal variants are not the currently defined
RA-associated variants or those in tight linkage disequilibrium with
them and, indeed, independent associations may exist in already
confirmed susceptibility loci. Therefore, more causal variants may
exist within VDREs than indicated here, and functional studies to
define causal SNPs will be necessary to understand the full picture.

Genes and Immunity (2013) 325-329
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Finally, it is possible that some genes and SNPs included in the
randomized control groups will ultimately be associated with RA,
once all contributing genetic factors have been identified.
However, that would reduce the likelihood of a difference being
observed between currently defined RA loci and random non-RA-
associated loci, and would be more likely to lead to a type 2 error.

Reassuringly, results from the two methods to define RA regions
produced very similar results. In addition, defining region by
position showed an increased RR compared with defining regions
by gene (RR 5.86 and RR 5.50, respectively) (Table 1), suggesting
that as the regions are more specifically centred on the
RA-associated variant, VDRE enrichment increases.

Several studies have found reduced vitamin D levels in
individuals with RA and other AIDs,"*'®'"'® but determining
whether their association with disease is cause or effect is
challenging. However, several SNPs have been reproducibly
associated with vitamin D levels:?®*! if the same SNPs are also
associated with disease, it provides strong evidence that the
pathway is causal (Mendelian randomization).”® In the current
study, the genetic results are of borderline significance; a SNP
perfectly correlated (P =1) with the TiD-associated variant
showed modest association (rs11600569 P=0.04) after
correction for geographical variation. Although this association
would not remain significant after correction for multiple testing,
it is interesting to note that the effect size seen for the association
of this SNP with RA is the same as was previously identified in T1D
(OR 1.07),%® increasing the plausibility of this result. In addition, we
have shown association between other SNPs in the DHCR7Z/
NADSYNT locus and RA (P=0.008), and although these SNPs have
not been previously associated with vitamin D levels, since the
association between SNPs in this region and vitamin D levels was
identified by genome-wide association studies, the causal variant
in the region responsible for altering vitamin D levels has not yet
been determined, and it is possible that a secondary association in
the region could be identified.

All variants associated with vitamin D levels (Table 2) are
intronic variants. The most associated variant rs4944076 lies in an
intron of NADSYN1. Bioinformatics analysis using the programme
ASSIMILATOR®? that retrieves and queries the experimental data
generated by ENCODE, which is available on the UCSC web
browser, has shown that rs4944076 lies within a region of open
chromatin, DNase 1 hypersensitivity and histone modification,
suggesting possible regulatory potential. In addition, one SNP,
rs4944997, has been found to be an expression-quantitative-trait
locus, potentially regulating the expression of NADSYN1.?
However, the associations at this locus are modest and will
require replication and identification of the functional variant
before speculation of the functional effect of the variant can be
determined.

The main source of vitamin D comes from endogenous
production in the skin after exposure to UVB light from the sun,
which results in the conversion of 7-dehydrocholesterol (present
in the skin) to pre-vitamin Ds. This is then metabolized in the liver
by CYP2R1 and CYP27A1 enzymes to form 25(OH)D, the major
circulating form of vitamin D that is converted to its active form
1,25-(0H)2D3 (calcitriol) in the kidneys by CYP27B1. DHCR7
encodes an enzyme that catalyzes the conversion of 7-dehydrox-
ycholesterol to cholesterol, which removes pro-cholesterol from
the vitamin D pathway, reducing the availability of 7-dehydrocho-
lesterol for conversion to 25(0OH)D. We could speculate that
variants resulting in increased DHCR7 activity could, therefore,
lead to increased removal of 7-dehydrocholesterol from the
vitamin D pathway, causing vitamin D deficiency.

In conclusion, analysis of all 45 confirmed RA non-HLA
susceptibility loci to date has shown a significant enrichment of
VDREs at RA loci; in addition, we have shown the modest
association of SNPs, previously associated with vitamin D levels,
with RA. Validation of this finding is required in larger,
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independent studies. If confirmed, the genetic association along
with the significant enrichment of VDREs in RA-associated loci
would provide supportive evidence for the involvement of vitamin
D in RA, and may pave the way for future trials of vitamin D
therapy to prevent RA.

MATERIALS AND METHODS
Analysis of enrichment of VDREs at RA loci

The enrichment of VDREs at confirmed RA loci®’ was investigated
bioinformatically to compare the genomic location of defined RA loci
with the genomic positions of VDREs identified by Ramagopalan et al® A
total of 2776 VDREs identified by ChIP-seq in lymphoblastoid cell lines after
VitD; stimulation were obtained from Ramagopalan et al, and were
assigned to the nearest gene within 100 kb using the Ensembl genome
browser (www.ensembl.org) build 65. The 100 kb threshold was selected
arbitrarily; it is possible that VDREs act on more distant genes, however it
has been shown that calcitriol-responsive genes have a VDRE at a median
distance of 66.6 Kb from the transcription start site.

RA loci were defined using the ensembl genome sequence in two ways:

(1) First, regions were defined based on the most plausible candidate
gene, a query gene list was created using the 45 non-HLA loci defined
in a recent study by Eyre et al?” (Supplementary Table 1). Each
associated SNP from this study was assig;ned to the most functionally
plausible candidate gene using GRAIL3? GRAIL uses the literature to
identify relationships between genes, and selects the best candidate
gene in a region in relation to a particular phenotype. One locus
contained multiple candidate genes (/L2-/L27), and therefore was
included twice, creating a final list of 46 genes in the query list.
Second, regions were defined using the base pair position of each
associated SNP from Eyre et al.”’ and defining the RA loci by extending
50kb up- and downstream of each of the associated SNP (one locus
IKZF3 had two candidate SNPs, see Supplementary Table 1).

(2

The genomic locations of these defined RA loci obtained from Ensembl
were then compared with the genomic positions of the VDREs from
Ramagopalan et al.?® using perl scripts to determine the number of VDREs
present in RA loci.

To identify an enrichment of VDREs, a comparison set of the same
number of random loci was created. Perl scripts were used to select
random genes from all protein-coding genes in the genome (except those
already associated with RA) or base pair positions from the ensembl
genome sequence, and regions were defined in the same way as described
for the RA loci. In total, 100000 randomly selected comparison gene sets
were generated and VDRE enrichment was determined by assessing the
RR. This was calculated by dividing the number of VDREs in the query gene
list by the average number of VDREs in 100000 randomizations. Some
random gene sets will undoubtedly contain zero VDREs, but the risk ratio
cannot be calculated if there are no events in the control group. To
overcome this problem, 0.5 was added to the total number of VDREs in all
gene sets, including the query list.

STATA version 11 (http://www.stata.com) was then used to calculate P-
values. A »° test was performed to test the null hypothesis that the
probability of a VDRE existing at a given locus did not depend on whether
that locus was close to a region associated with RA risk, by creating a 2 x 2
table cross-classifying genes by association with RA and presence of a
VDRE. As this method does not take into account the number of VDREs in
each region, a trend test was performed using a 2 x N table.

Analysis of SNPs associated with circulating levels of vitamin D
The regions surrounding two genes previously associated with circulating
levels of vitamin D and T1D were fine-mapped as part of a larger study”
(DHCR7/NADSYNT and CYP2R1).%**" All known SNPs in the region from
HapMap and the 1000 genomes project low-coverage whole-genome-
sequencing pilot were included for fine mapping. Genotyping was carried
out using a custom lllumina infinium genotyping chip, in 4752 UK RA cases
and 9006 UK RA controls (described previously™).

As the DHCR7/NADSYNT locus lies in a region identified by the Wellcome
Trust Case Control Consortium (WTCCC)*® to be a region in which allele
frequencies show geographic differentiation in the UK, principal
components analysis®® was carried out (described previously”’) to
correct for this. The study was approved by the North West Ethics
Committee (MREC 99/8/84).
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Capture Hi-C reveals novel candidate genes and
complex long-range interactions with related
autoimmune risk loci
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Genome-wide association studies have been tremendously successful in identifying genetic
variants associated with complex diseases. The majority of association signals are intergenic
and evidence is accumulating that a high proportion of signals lie in enhancer regions. We use
Capture Hi-C to investigate, for the first time, the interactions between associated variants for
four autoimmune diseases and their functional targets in B- and T-cell lines. Here we report
numerous looping interactions and provide evidence that only a minority of interactions are
common to both B- and T-cell lines, suggesting interactions may be highly cell-type specific;
some disease-associated SNPs do not interact with the nearest gene but with more
compelling candidate genes (for example, FOXO1, AZI2) often situated several megabases
away; and finally, regions associated with different autoimmune diseases interact with each
other and the same promoter suggesting common autoimmune gene targets (for example,
PTPRC, DEXI and ZFP36L1).
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associated with complex traits detected through genome-

wide association studies (GWAS) has proved challenging!
but is essential if the full potential of genetic studies is to be
realised. Accumulating evidence suggests the majority of these
variants lie outside traditional protein-coding genes and are
enriched in enhancer regions, which are both cell-type and
stimulus specific> ™. The task now is to identify which genes are
implicated and understand which cell types are involved, to
ascertain the biological pathways that are perturbed in individuals
who are genetically susceptible to disease. It is well-established
that enhancers regulate gene transcription by physical
interactions®. These can operate over large genetic distances, so
the tradition of annotating GWAS hits with the closest, or most
biologically plausible gene candidate, may prove misleading and
result in expensive, time consuming efforts to define the function
of non-causal genes.

The utility of chromosome conformation capture technology
(Capture Hi-C) to detect the patterns of interactions between
chromosomal regions has been demonstrated®®, Here, for the
first time, we used this approach to characterize the interactions
of confirmed susceptibility loci for four autoimmune diseases:
rheumatoid arthritis (RA), type 1 diabetes (T1D), psoriatic
arthritis (PsA) and juvenile idiopathic arthritis (JIA) with the
aim of linking disease-associated SNPs with disease-causing
genes. Uniquely, we have tested the interactions in two
complementary experiments: first, Region Capture targets
regions associated with disease!®'%; second, Promoter Capture
provides independent validation through capturing all known
promoters within 500kb of lead disease-associated single
nucleotide polymorphisms (SNPs). Our study expands on
recent applications of the Capture Hi-C method firstly, by
increasing the depth of sequencing and therefore the resolution,
(average 10,000 interactions per restriction fragment), second, by
comprehensively targeting the full known genetic component of
four related autoimmune diseases and finally by performing
complimentary experiments, such that we target the disease-
associated regions and, in separate experiments, all gene

The idenfication of the precise gene targets of variants

promoters within 500kb, so providing direct, independent,
reciprocal validation for each interaction. All experiments were
performed in human B (GM12878) and T (Jurkat) cell lines,
selected because they are most relevant to these diseases’.
Hi-C libraries were generated for both cell lines!'’, then
hybridized to custom biotinylated RNA baits and sequenced on
an Illumina HiSeq 2500. We tested for significant interactions
using a negative binomial distribution as described previously®,
performing all experiments in duplicate.

Our findings provide compelling evidence that disease-
associated SNPs, currently nominally assigned to the closest
plausible gene candidate, may well-regulate genes some distance
away. We also show that in a subset of risk loci, SNPs associated
to different autoimmune diseases physically interact with and
may well-regulate the same genes but with differing enhancer
mechanisms. A number of the interactions also show evidence of
cell-type specificity, occurring in either the B- or T-cell lines only.

Results

Summary of identified interactions. Our unique study design
determined a complex array of interactions between
disease-associated regions and promoters (Fig. 1). After quality
control, in the Region Capture experiment, 60.9 million and
54.9 million unique di-tags (comprising one restriction fragment
from a capture target region and its ligated interacting partner)
were on-target for GM12878 and Jurkat cell lines, respectively
(average 21,170 reads per HindIIl restriction fragment; 62%
capture efficiency). Similarly, in the Promoter Capture experi-
ment, 121.1 million (GM12878) and 115 million (Jurkat) unique
di-tags were on-target (average 21,448 reads per HindIII restric-
tion fragment; 70% capture efficiency) (Fig. 2).

At any given false discovery rate (FDR) threshold, interactions
are called with an unknown rate of false negatives. With the
assumption that interactions called in both the Region and
Promoter Capture experiments are more likely to be true positives
compared with those only seen in one experiment, we evaluated
several potential FDR thresholds (Fig. 3). We saw a consistent

Region capture interactions

Region to promoter - validated
Region to promoter - not validated :
Region to promoter - unable to validate H
Region to region - unable to validate
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Figure 1| A schematic of a hypothetical associated region including possible chromatin interactions. Chromatin interactions are shown by arcs, those
above the promoter capture target region are observed in the '‘Region Capture’ experiment; those below are observed in the 'Promoter Capture’ experiment.
All potential chromatin interactions are shown and are coloured by their potential to appear and be validated in both capture experiments. Those in green
are observed in both the ‘Region Capture' and the ‘Promoter Capture’ and comprise the ‘confirmed’ interaction set. Interactions shown in purple are only
present in one capture experiment and were therefore not validated. Other interactions (red, orange and blue) would only be observed in either the ‘Region
Capture’ or ‘Promoter Capture’ and could therefore not be validated as described. The inset shows a magnified view of the associated region (as defined by
LD) detailing which restriction fragments were targeted in the ‘Region Capture' and which were excluded as they appeared in the ‘Promoter Capture'.
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Figure 2 | Flowchart summarizing capture Hi-C experiments by cell line.
The ‘Region Capture’ experiment is shown on the left and the ‘Promoter

Capture’ experiment on the right. Flowchart sections are coloured by cell
type: light blue—GM12878 cells; light grey—Jurkat cells and grey—both cell
types. Each section label is shown in dark blue.

enrichment in interactions called in both experiments at decreasing
Promoter Capture experiment FDR thresholds, providing
confidence that they represent true interactions. At 5% FDR, we
called 8,594 interactions in the Region Capture experiment
representing 764 targeted HindIII restriction fragments. Of these
interactions 372/8,594 (4.3%) from 116 targeted HindIII restriction
fragments demonstrated evidence of interacting with a promoter
within 500kb, and so could be validated by the complementary
capture method. Of these, 146/342 interactions were identified in
the Promoter Capture experiment (Fig. 2), implicating 29 regions,
of which 15 contain disease-associated SNPs (Supplementary
Table 1). The majority of significant interactions were cell-type
specific, with only 20% found in both cell lines.

We compared our data with publicly available chromatin
interaction data in similar cell lines and could detect the well-
established interactions with the cis-acting regulatory region of

GM12878 Jurkat
34
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Figure 3 | Fold enrichment. Fold enrichment of retained interactions called
in the promoter capture experiments with decreasing FDR thresholds, given
they had been called in the region capture experiments at the FDR
threshold shown. "= shows the enrichment found by focusing only on
interactions called in the region capture experiments for which the other
end lay in a Hindlll restriction fragment targeted in the promoter capture
design.

the HBA locus'® (Supplementary Fig. 1a) and interactions in the
5C ENCODE (https://www.encodeproject.org/)!” experiments at
two regions: IFNARI and IL5 (Supplementary Fig. 1b,c).

Interactions with novel candidate genes. Confirmed interactions
provided examples of disease-associated SNPs that do not interact
with the nearest gene, but rather with promoters some distance
away, implicating entirely different target genes. For example,
strong evidence was found to suggest that regions with SNPs
associated with RA, situated proximal to the EOMES gene, make
strong physical contact with the promoter of AZI2, a gene
involved in NFkB activation, some 640kb away (Fig. 4a) in
both GM12878 and Jurkat cell lines. In addition, variants
associated with RA and JIA in the 3’ intronic region of COG6, a
gene encoding a component of Golgi apparatus, show interactions
with the promoter of the FOXOI gene, mapping over 1 Mb away,
in both cell types (Fig. 4b). Recent findings suggest that the
FOXOl1 gene is important in the survival of fibroblast-like
synoviocytes (FLS) in RA'® and is hypermethylated in RA FLS
compared with osteoarthritis FLS!?, providing strong supporting
functional evidence as to gene candidature.

Common interaction targets mediated by multiple genetic loci.
Perhaps the most striking finding comes from genetic regions that
harbour susceptibility loci for different autoimmune diseases,
where the lead disease-associated SNP for one disease maps some
distance from the lead disease-associated SNP for other
autoimmune diseases; previously, using the ‘nearest candidate
gene’ annotation method, different genes would have been
assigned to the diseases but our work shows that they may all act
on the same gene promoter. We provide three examples below to
illustrate the findings. First, the 16pl3 region contains SNPs
associated with both T1D and multiple sclerosis that locate within
intron 19 of the CLECI6A gene. A physical interaction between a
20-kb region of CLECI6A and the promoter of DEXI has
previously been reported’, although was not detected in the
current study. Our data suggest that a separate, independent
region, associated with both T1D and JIA, near the RMI2 gene
and 530kb from the DEXI gene, also interacts with the DEXI
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Figure 4 | Examples of chromatin interactions implicating novel gene candidates. (a) EOMES SNPs—both GM12878 and Jurkat cell lines show that SNPs
situated proximal to the EOMES gene interact with the promoter of AZI2l, involved in NFKkB activation, situated ~640kb away. (b) COG6 SNPs—interactions
are shown that link SNPs within the COG8& to the FOXO1 promoter, over 1Mb away, in both cell types. Genomic co-ordinates are shown along the top of each
panel and tracks are labelled A-Y (empty tracks removed for clarity): (A) Hindlll restriction fragments; (B-E) Regions targeted and restriction fragments

included in the region (B,C) and promoter (D,E) capture experiments; (F) RefSeq Genes from the UCSC Genome Browser, downloaded 1 January 2012; (G,1,K)
Index SNPs identified for RA (G), JIA (1) and PsA (K). Associations in red were identified in the RA Immunochip study. SNPs in blue were novel associations
identified in the RA trans-ethnic GWAS meta-analysis, JIA and PsA SNPs were identified in the JIA and PsA Immunochip studies; (H,J,L) Density plots showing
1000 Genomes SNPs in LD (2= 0.8) with the index SNPs (green-red) for RA (H), JIA (1) and PsA (L); (M) T1D Credible set SNPs identified in the T1D

Immunochip study; (N-Q) Significant Interactions identified in the region and promoter capture experiments in GM12878 (N,O) and Jurkat (P,Q) cells; (R-Y)
Data from the WashU Encode track hub showing DNasel HS sites, H3K4me1 histone marks and H3K27ac histone marks for GM12878 (R T,V) and CD3

Primary (S,UW) cells and BROAD ChromHMM states for GM12878 (X) and CD4 Naive Primary cells ().

promoter (Fig. 5a). Furthermore, a region proximal to the
ZC3H7A gene, associated with RA susceptibility, some 1.2 Mb
from DEXI, interacts with both the T1D/JIA-associated region
and the DEXI promoter.

The second example is provided by RA-associated variants
mapping within a strong enhancer region intronic of RAD5IB,
where a significant interaction is observed with the promoter of
the ZFP36L1 gene. SNPs in the promoter region of ZFP36L1 are
independently associated with JIA but not RA; however, the
interaction of the ZFP36L1 promoter with the RA-associated
SNPs suggests that the causal gene in both diseases may be
ZFP36L1 and not RAD51B. ZFP36L1 is a zinc finger transcription
factor involved in the transition of B cells to plasma cells and it is
noteworthy that the interaction with the RA-associated region
was only seen in the B-cell line (Fig. 5b).

Finally we show evidence that SNPs associated with PsA within
the DENNDIB gene make strong contact with a region associated
with RA within the PTPRC gene, which is responsible for T- and
B-cell receptor signalling and maps over 1 Mb away (Fig. 5c).

We, like others®’, have demonstrated a complex relationship
between promoters and enhancers, where promoters interact with
many enhancers and enhancers interact with many promoters,
rarely in a one-to-one relationship (Fig. 1 and Supplementary
Table 2). Enhancers containing risk variants for autoimmune
diseases can, therefore, ‘meet’ at the same promoters. This

4 NATURE COMMU

challenges the assumption that disease-associated SNPs have to
be in close linkage disequilibrium (LD) to have a disease related
effect on the same gene. In addition, these findings may well-
suggest an evolutionary phylogeny, where polymorphic variants
regulating expression of the same gene result in either different
autoimmune diseases or different molecular mechanisms
resulting in risk of the same disease.

Interactions with previously implicated loci. Among the other
141 confirmed interactions, we observed examples of disease-
associated SNPs within the 3’ untranslated region, or within
introns of a gene, interacting with the promoter of the same gene
(STAT4, CDK6, Supplementary Fig, 2ab); disease-associated
SNPs within IncRNA interacting with the promoter of genes
(RBPJ, Supplementary Fig. 3) and several examples of restriction
fragments, proximal to those containing disease-associated SNPs,
interacting with promoters some distance away (ARID5B, IL2RA,
TLE3, Supplementary Fig. 4a—c), supporting recent findings that
disease-associated SNPs are enriched outside transcription factor-
binding sites’.

Long-range interactions. Perhaps unexpectedly, ~80% of
significant interactions occurred at distances exceeding 500 kb
(Supplementary Fig. 5) and interacted with ‘non-promoters’,
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Figure 5 | Examples of chromatin interactions linking several disease associations to a common promoter. (a) DEX/—both GM12878 and Jurkat cell
lines show that SNPs associated independently with RA, PsA and T1D interact with the DEXI promoter. In addition, evidence suggests that the RA and JIA
SNP regions interact in GM12878 cells. (b) RAD51B—RA associations located within a strong enhancer are shown to interact with the promoter of ZFP36L1,
a gene involved in B-cell transition, which also contains SNPs associated with JIA. (), PTPRC—Variants associated with PsA, within the DENND1B are shown
to interact with PTPRC, a region independently associated with RA. Genomic co-ordinates are shown along the top of each panel and tracks are labelled

A—Y as in Fig. 4.

reducing the number of interactions available for co-validation in
the Promoter and Region Capture experiments (targeted genes in
the Promoter Capture not extending that far) and reinforcing the
idea that GWAS regions may be involved with complex
long-range gene regulation possibly involving multiple enhancer
elements. To investigate whether these are likely to be true
interactions, we compared results from the largest Hi-C data set
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on GMI12878 cells reported, to date?!. Of the 4,607 longer
distance interactions (> 500kb) we called at FDR <5% in our
data, 377 were found at 50 times observed over expected in
the independent Hi-C data set (Supplementary Data 1). This
provided both strong confirmation of our long-range capture
Hi-C results we already co-validated with Promoter and Region
Capture (for example, FOXO1, ZFP36L1, Supplementary Fig. 6)
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and supports many potentially novel interactions (for example,
MMEL], Supplementary Fig. 7), but detailed examination to
confirm these long-range interactions is now required.

Discussion

Our targeted Capture Hi-C analyses have identified, for the first
time, many long-range interactions between autoimmune risk
loci and their putative target genes. Using this methodology we
have intriguing data illustrating that regions associated with more
than one disease, often some distance apart, interact with the
same gene and that associated regions can ‘skip’ genes to interact
with more distant novel candidates. Our results provide new
insights into complex disease genetics and changes the way we
view the causal genes in disease, with obvious implications for
pathway analysis and identification of therapeutic targets. Since
we uncovered evidence of cell-specific interactions, the current
study is likely to be only the beginning of similar explorations.
Further work to characterize functionally the observed interac-
tions, including eQTL studies using a range of cell types and
stimulatory conditions, are required to determine how disease-
associated SNPs influence the risk of disease, with the aim of
better understanding disease aetiology.

Methods

SNP and region associations, All independent lead disease-associated SNPs for
RA were selected from both the fine-mapped Immunochip study'” and a trans-
ethnic GWAS meta-analysis'!. Lead disease-associated SNPs were also added from
the Immunochip fine mapping studies for JTA'3 and PsA'2. This resulted in a total
of 242 distinct variants associated with one or more of the three diseases after
exclusion of HLA-associated SNPs. Associated regions were defined by selecting all
SNPs in LD with the lead disease-associated SNP (#2> =0.8; 1000 Genomes phase
I EUR samples; May 2011). In addition to the SNP associations, credible SNP set
regions were defined for both T1D- and RA-associated loci discovered by the
Immunochip array at a 99% confidence level'’. RA loci, as defined from the
Immunochip analysis, were extended to include the credible SNP region where
necessary and overlapping regions were merged using the BEDTools v2.21.0

(ref. 22) merge command resulting in 211 associated regions.

Target enrichment design. To remain hypothesis free and to validate significant
findings, two target enrichments were designed. The first targeted the ‘associated
region’ and was called the ‘Region Capture’ set. The second targeted all known gene
promoters overlapping the region 500 kb up- and downstream of the lead disease-
associated SNP dubbed as the ‘Promoter Capture’ set. Capture oligos (120 bp;
25-65% GC, <3 unknown (N) bases) were designed using a custom Perl script
within 400 bp but as close as possible to each end of the targeted HindIII restriction
fragments and submitted to the Agilent eArray software (Agilent) for manufacture.

Region Capture design. Capture oligonucleotides were designed to all HindITI
restriction fragments in each previously defined associated region after excluding
those already targeted in the Promoter Capture. Regions were extended by one
restriction fragment where there was <500 bp between the restriction site and the
region start/end. This resulted in 3,159 restriction fragments in total after merging
overlapping regions. Of these, 1,028 failed design, 1,096 had both ends captured
and 1,035 had one end captured, producing a target capture of 387.24 kb covering a
genomic region of 7.46 Mb (3.5 kb/restriction fragment on average). In addition, a
control region, which represents a well-characterized region of long-range inter-
actions, was also included: HBA (174.57 kb genomic; 26 restriction fragments;
6.71 kb/restriction fragment).

P Capture design. Promoter Capture target regions were defined as
500kb up- and downstream of each disease-associated SNP. These regions were
further extended to encompass the associated regions where appropriate. HindITI
restriction fragments were identified within 500 bp of the transcription start site of
all genes mapping to the defined regions (Ensembl release 75; GRCh37) and
overlapping regions were merged using the BEDTools?? merge command resulting
in 6,296 restriction fragments. Of these, 792 failed design, 2,986 had both ends
captured and 2,518 had one end captured, producing a target capture of 1.02 Mb.
The 5,504 captured restriction fragments covered a genomic region of 38.76 Mb
(7.04 kb/restriction fragment on average) and contained promoters for 3,857 genes.
The HBA control region previously mentioned was also included.

Cell culture and crosslinking. The GM12878 B-lymphoblastoid cell line,
produced from the blood of a female donor with northern and western European
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ancestry by EBV transformation, was obtained from Coriell Institute for Medical
Research. Lymphoblastoid cell lines were cultured in Roswell Park Memorial
Institute (RPMI) 1640 per 20 mM L-glutamine supplemented with 15% foetal
bovine serum (FBS) in 25 cm? vented culture flasks at 37 °C per 5% CO,. The
T-lymphoblastoid Jurkat E6.1 cell line, originating from the peripheral blood of a
14-year-old boy in the study by Schneider et al.>, was obtained from LGC
Standards and cultured in RPMI 1640 per 20 mM L-glutamine supplemented with
10% FBS in 25 cm? vented culture flasks at 37 °C/5% CO,. To generate Hi-C
libraries, 5-6 x 107 GM12878 and Jurkat cells were grown to ~90% confluence
then formaldehyde crosslinking was carried out as described in the study by Belton
et al.'%. Cells were washed in Dulbecco’s Modified Eagle’s medium (DMEM)
without serum then crosslinked with 2% formaldehyde for 10 min at room
temperature. The crosslinking reaction was quenched by adding cold 1 M glycine to
a final concentration of 0.125 M for 5 min at room temperature, followed by 15 min
on ice. Crosslinked cells were washed in ice-cold PBS, the supernatant discarded
and the pellets flash-frozen in liquid nitrogen and stored at — 80°C.

Hi-C library generation. Cells were thawed on ice and re-suspended in 50 ml
freshly prepared ice-cold lysis buffer (10mM Tris-HCI pH 8, 10mM NaCl, 0.2%
Igepal CA-630, one protease inhibitor cocktail tablet). Routinely, two pellets from
each cell line were re-suspended and combined in 7 ml complete lysis buffer to give
~5-6 % 107 cells. Cells were lysed on ice for a total of 30 min, with 2 x 10 strokes of
a Dounce homogeniser with a 5-min break between Douncing. Following lysis, the
nuclei were pelleted and washed with 1.25 x NEB Buffer 2 then re-suspended in
1.25 x NEB Buffer 2 to make aliquots of 5-6 x 10° cells for digestion. Following lysis,
Hi-C libraries were digested using HindIII then prepared as described in the study by
van Berkum ef al.** with modifications described in the study by Dryden et al.®.
Pre-Capture amplification was performed with eight cycles of PCR on multiple
parallel reactions from Hi-C libraries immobilized on Streptavidin beads, which were
pooled post PCR and SPRI bead purified. The final library was re-suspended in 30 ul
TLE and the quality and quantity assessed by Bioanalyzer and qPCR.

Solution hybridization capture of Hi-C library. Hi-C samples corresponding to
750 ng were concentrated in a Speedvac then re-suspended in 3.4 pl water.
Hybridization of SureSelect custom Promoter and Region Capture libraries to Hi-C
libraries was carried out using Agilent SureSelectXT reagents and protocols. Post-
capture amplification was carried out using six cycles of PCR from streptavidin
beads in multiple parallel reactions, then pooled and purified using SPRI beads.

Paired-end next generation sequencing. Two biological replicates for each of the
cell lines were prepared for each target capture. Sequencing was performed on
MHlumina HiSeq 2500 generating 75bp paired-end reads (Genomic Technologies
Core Facility in the Faculty of Life Sciences, the University of Manchester).
CASAVA software (v1.8.2, Illumina) was used to make base calls; reads failing
Illumina filters were removed before further analysis. Promoter Capture libraries
were each sequenced on one HiSeq lane and each Region Capture was sequenced
on 0.5 of a HiSeq lane. Sequences were output in FASTQ format, poor quality reads
truncated or removed as necessary, using Trimmomatic version 0.30 (ref. 25), and
subsequently mapped to the human reference genome (GRCh37/hgl19) and filtered
to remove experimental artefacts using the Hi-C User Pipeline (HiCUP, http://
www.bioinformatics.babraham.ac.uk/projects/hicup/). Off-target di-tags, where
neither end mapped to a targeted HindIII restriction fragment, were removed from
the final data sets using a combination of BEDTools and command line tools. Full
details of the number and proportion of excluded di-tags are given in
Supplementary Table 3.

Analysis of Hi-C interaction peaks. Di-tags separated by <20kb were removed
prior to analysis, as 3C data have shown a very high-interaction frequency within
this distance®®, Di-tags were then assi{gned to one of the four categories of ligations
defined in the study by Dryden et al.® using custom scripts: (1) single baited, cis
interaction (<5 Mb); (2) single baited ¢is interactions ( > 5 Mb); (3) double-baited cis
and (4) trans (cither single or double baited). Significant interactions for cis
interactions within 5 Mb were determined using the ‘High resolution analysis of the
cis interaction peaks’ method described in the study by Dryden et al. To correct for
experimental biases, the interactability of each fragment was determined.
Interactability is calculated from the interactions from a particular baited HindIII
restriction fragment to long-range, ‘trans’ fragments, under the assumption that
those represent random, background interactions and so should be similar in any
particular baited fragment. The resulting distribution is bimodal consisting of
stochastic noise (low trans counts) and genuine signal (high trans counts). A
truncated negative binomial distribution was fitted to the distribution with the
negative binomial truncation point for interacting restriction fragments set at a count
of 3,000 and non-interacting set at 1,500 for the Promoter Capture and 600 for the
Region Capture due to differences in read depth. The 5% quantile point of the non-
truncated distribution was determined to provide the noise threshold. For both cell
lines in both captures, the noise threshold was determined to be 400 di-tags and
therefore all restriction fragments with fewer than 400 di-tags were filtered out. A
negative binomial regression model was fitted to the filtered data correcting for the
interactability of the captured restriction fragment and interaction distance. For
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interactions, where both the target and baited region were captured (double-baited
interactions), we also accounted for the interactability of the other end.

‘We wanted to examine whether concordance between interactions called in the
Region and Promoter Capture experiments increased with decreasing FDR
thresholds. This is complicated because we can only define the set of interactions
that could have been observed in both experiments conditional on those that were
observed at a given FDR threshold in one experiment. We therefore decided to
normalize to those interactions called at an FDR threshold of 20% in the region
experiment and defined the following enrichment parameter: X[i,j] = P (called in
Region Capture at FDR i and in Promoter Capture at FDR j| called in Region
Capture at FDR 20%)/P(called in Region Capture at FDR i| called in Region
Capture at FDR 20%).

Interactions were considered statistically significant after combining replicates
and filtering on FDR < 5%. Significant Interactions were visualized in the WashU
Epigenome Browser (http://epigenomegateway.wustl.edu/browser/ )28,
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IL20RA, in the pan-autoimmune genetic
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Abstract

Background: The identification of causal genes from genome-wide association studies (GWAS) is the next
important step for the translation of genetic findings into biclogically meaningful mechanisms of disease and
potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T
and B cell lines, we provide compelling evidence that redefines causal genes at the 6g23 locus, one of the most
important loci that confers autoimmunity risk.

Results: Although the function of disease-associated non-coding single nucleotide polymorphisms (SNPs) at 6g23
is unknown, the association is generally assigned to TNFAIP3, the closest gene. However, the DNA fragment
containing the associated SNPs interacts through chromatin looping not only with TNFAIP3, but also with [/ 20RA,
located 680 kb upstream. The risk allele of the most likely causal SNP, rs6927172, is correlated with both a higher

associations to this region.

Causal genes, Functional genomics, Capture Hi-C

frequency of interactions and increased expression of IL20RA, along with a stronger binding of both the NFxB
transcription factor and chromatin marks characteristic of active enhancers in T-cells.

Conclusions: Our results highlight the importance of gene assignment for translating GWAS findings into
biologically meaningful mechanisms of disease and potential therapeutic targets; indeed, monoclonal antibody
therapy targeting 1L.-20 is effective in the treatment of rheumatoid arthritis and psoriasis, both with strong GWAS

Keywords: Autoimmunity, Single nucleotide polymorphisms (SNP), Genome-wide association studies (GWAS),

Background

In recent years, understanding of the genetic predispos-
ition to human complex diseases has been dramatically
enhanced through the application of well-powered
genome-wide association studies (GWAS). Thousands of
genetic variants (single nucleotide polymorphisms or
SNPs) have been associated with disease [1], but the
functional role of the vast majority of these disease
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variants is yet to be explored. This is due to the fact that
around 90 % lie outside known coding regions of the
genome and, therefore, their potential role in patho-
logical mechanisms is not obvious [2, 3]. There is now
strong evidence supporting a role for these non-coding
variants in transcriptional regulation as they are
enriched in cell type and stimulus-specific enhancer re-
gions [4—6], which are capable of influencing their target
genes through long-range chromosomal interactions
[7-10]. Traditionally, GWAS associated variants have
been annotated with the closest or most biologically
relevant candidate gene within arbitrarily defined dis-
tances. However, this approach has been challenged
by recent chromatin looping interaction studies showing

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commans Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(httpifcreativecommons.org/publicdomain/zero/1.04) applies o the data made available in this article, unless otherwise stated.
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that interactions between enhancers and their target genes
can occur over unexpectedly large genetic distances, often
bypassing the nearest genes [11-13].

In order to link GWAS associated variants with
disease-causing genes, we have employed a hypothesis-
free method that enables the targeted characterisation of
chromatin interactions at the genome-wide level at high
resolution. While chromosome conformation capture
studies utilising chromosome conformation capture
(3C), chromosome conformation capture-on-chip (4C)
and chromosome conformation capture carbon copy
(5C) have been successfully used to identify interactions
between regulatory elements and target genes [14-16],
regions of interest and potential targets have to be con-
sidered a priori. By contrast, Hi-C allows interrogation
of all interactions on a genome-wide scale [17], but the
approach lacks resolution. Recently, a new method that
incorporates a targeted sequence capture step into Hi-C,
Capture Hi-C (CHi-C), has been developed [13, 18-20].
The method has facilitated the identification of interac-
tions between non-coding SNPs associated with cancer
and autoimmunity with their targets [18, 19, 21].

The chromosomal region 6q23 contains several variants
associated with many autoimmune diseases. These associa-
tions have been annotated to the TNFAIP3 gene, the clos-
est most plausible causal gene within the locus, with
independent variants within the gene associated with dif-
ferent diseases. There are three distinct linkage disequilib-
rium (LD) blocks independently associated with a range of
autoimmune diseases, including rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), celiac disease (CeD),
type 1 diabetes (T1D), inflammatory bowel disease (IBD),
psoriasis (Ps) and psoriatic arthritis (PsA) [22-29]. One re-
gion, containing SNPs associated with RA, SLE, CeD, IBD
and T1D, tagged by the rs6920220 SNP, lies a considerable
distance (>181 kb) from the TNFAIP3 gene and its
functional role has, so far, been underexplored (Fig. 1g).
The second, independent association signal, tagged by
rs7752903, and predisposing to RA, SLE and CeD, spans
around 100 kb and includes the TNFAIP3 gene (Fig. 1h).
There is evidence that a TT > A polymorphism located
within this LD block, 42 kb downstream of TNFAIP3,
alters A20 (the protein encoded by TNFAIP3) expression
through impaired delivery of NFkB to the TNFAIP3 pro-
moter [9, 30, 31]. An additional association signal, tagged
by rs610604, confers risk to Ps and PsA (Fig. 1i).

The aim of the current work was to identify causal dis-
ease genes and refine the likely causal SNPs at the auto-
immunity locus 6q23 by studying long-range chromatin
interactions using CHi-C, to validate findings using
genotype specific 3C and augment the evidence further
with cell-type and genotype specific expression quantita-
tive trait loci (eQTL) and chromatin immunoprecipitation
(ChIP) analysis. Here, we report a new causal candidate
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disease gene within the 6q23 region, IL20RA, which en-
codes one of the subunits of the receptor for the pro-
inflammatory cytokine IL-20. Our results suggest that
non-coding SNPs associated with RA, SLE, CeD, IBD
and T1D alter a regulatory element of [L20RA, some
680 kb away, which acts through long-range interac-
tions with the JL20RA promoter, resulting in increased
expression of the gene.

Results

6q23 variants interact with several genes, including
IL20RA, through chromatin looping

Investigation of chromatin interactions at the 6¢23 locus
was carried out as part of a larger study that included all
known risk loci for RA, JIA, PsA and T1D [21]. We se-
lected four target regions mapping to 6q23 for enrich-
ment in two different CHi-C experiments: first, the
Region Capture Hi-C targeted the LD blocks (r* > 0.8)
for three SNPs associated with the diseases under study:
$6920220 (RA, T1D, JIA), rs7752903 (RA) and rs610604
(Ps, PsA) (Fig. la—c); second, the Promoter Capture tar-
geted all known gene promoters overlapping the region
500 kb upstream and downstream of the lead disease as-
sociated SNPs (Fig. 1d and e). CHi-C libraries were gen-
erated for two cell lines: GM12878, a B-lymphoblastoid
cell line, and Jurkat, a CD4+ T-lymphoblastoid cell line.

The LD block containing the intergenic 6q23 SNP,
156920220, targeted in the region capture, spans 47.3 kb
(chr6:137959235-138006504) and contains seven re-
striction fragments (Fig. 1b, ¢ and g). Of these, five
were involved in statistically significant interactions.
This intergenic region, containing SNPs associated with
multiple autoimmune diseases, demonstrated a complex
pattern of interactions, shown in Fig. 1k—n. Intriguingly,
these long-range interactions involved robust and compel-
ling interactions with both IL20RA and IFNGRI, reflecting
putative roles in regulating the expression of these genes.
There is also evidence of interactions with the long
non-coding RNAs (IncRNAs) RP11-10J5.1 and RP11-
240M16.1 downstream of the TNFAIP3 gene.

The Region Capture experiments targeting both the LD
block containing RA (rs7752903) and Ps/PsA (rs610604)
associated variants, and spanning the TNFAIP3 gene along
with its upstream and downstream regions (Fig. 1h and i),
showed interactions with a region proximal to the
rs6920220 LD block, encompassing the IncRNAs RP11-
95M15.2 (a PTPNI11 pseudogene) and RP11-35612.1, the
miRNA AL357060.1 and also an upstream region contain-
ing non-coding RNAs (Y_RNA and RP11-35612.2)
(Fig. 1k). Finally, the Region Capture experiment detected
an interaction involving TNFAIP3 and a region contain-
ing the IncRNAs RP11-10J5.1 and RP11-240M16.1 approxi-
mately 50 kb downstream of the gene, which in turn, also
interacts with the intergenic rs6920220-tagged LD
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block. Interestingly, this region, downstream of TNFAIP3,
showed an additional long-range interaction with the
IL20RA gene (Fig. 1k).

These interactions were independently validated in
the second, separate Promoter Capture experiment
(Fig. 1d, e, 1 and n). Furthermore, we detected an inter-
action between the promoters of TNFAIP3 and IL20RA
that was not revealed in the Region Capture experiment,
as promoters were excluded from the Region Capture
experiment (Fig. 11).

Importantly, we sought validation of CHi-C results by
3C-quantitative real-time polymerase chain reaction

(qPCR). Higher interaction frequencies were confirmed
for all interrogated regions, compared to adjacent non-
interacting regions (Fig. 2).

To validate our analysis method, we reanalysed our
CHi-C data using a recently developed analytical algo-
rithm, CHiCAGO (Capture HiC Analysis of Genomic
Organisation (http://biorxiv.org/content/early/2015/10/
05/028068). The pattern of chromatin loops obtained
when we applied CHICAGO was more complex, although
it confirmed our findings (Additional file 1: Figure S1).
Additional interactions not passing the significance thresh-
old in the initial analysis were found between IL22RA2 and
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the rs6920220 LD block, IL22RA2 and the RP11-10]J5.1
and RP11-240M16.1 IncRNAs downstream of TNFAIP3,
IFNGRI and the rs6920220 LD block and IFNGRI and
TNFAIP3. Further investigations will be required to valid-
ate these interactions.

Therefore, using CHi-C and validated by 3C-qPCR, we
have confirmed that an intergenic region containing SNPs
associated with RA, T1D, SLE, CeD and IBD, tagged by
rs6920220 interacts with JL20RA, IFNGRI and the
IncRNAs RP11-10]5.1 and RP11-240M16.1. We also con-
firmed that a second region, containing TNFAIP3 and
SNPs associated with RA, SLE, CeD, PsA and Ps, interacts
with JL20RA, and a number of IncRNAs, including RP11-
10J5.1 and RP11-240M16.1.

rs6927172 shows the most regulatory potential among all
SNPs in LD with the top GWAS signal

Although rs6920220 is associated with a host of auto-
immune diseases, its intergenic location and underexplored

functional role means no causal gene has so far been un-
equivocally assigned. We therefore focused our work on
this SNP region. The autoimmunity associated SNP
156920220 is in tight LD (r*>0.8) with eight other SNPs
(rs6933404, rs62432712, rs2327832, rs928722, rs6927172,
1$35926684, rs17264332 and rs11757201). After confirm-
ation that these SNPs are involved in long-range interac-
tions with several genes, including IL20RA, IFNGRI, and
several IncRNAs, we aimed to narrow down the most
plausible causal SNP using bioinformatics. Haploreg v4.1
was used to identify SNPs with regulatory potential
[32], showing that rs6927172 demonstrates a number
of lines of evidence to support a function in disease causal-
ity, including mapping to an enhancer in B-lymphoblastoid
cell lines, primary stimulated Th17, and T-regulatory cells
(ChromHMM chromatin state). It also maps to a region of
open chromatin, characterised by DNase hypersensitivity,
shows evidence of binding regulatory proteins and lies in a
conserved region (Table 1). Furthermore, analysis of a
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library of transcription factor binding site position weight
matrices predicts that the SNP alters the binding site of
eight transcription factors, including NFkB and BCL3 [32].
Additionally, investigation of functional annotation using
RegulomeDBVersion 1.1 assigned the highest score to
1r$6927172 [33] (Additional file 1: Table S1). This evidence
suggests that rs6927172 shows the most regulatory poten-
tial of those in LD with rs6920220. In support of this, a pre-
vious study showed evidence of differential transcription
factor binding to rs6927172 alleles [34].

The risk allele of the intergenic 6q23 variant rs6927172
correlates with increased expression of IL20RA

We next focused on confirming disease causal genes by
exploring the effect of SNP genotype on gene expression
levels. However, publicly available eQTL data from dif-
ferent human tissues, including B-lymphoblastoid cell
lines (LCLs), revealed no cis-eQTLs with the disease-
associated SNPs (rs6920220, rs7752903 and rs610604) or
SNPs in LD (r* > 0.8) with them.

Since gene expression is cell type specific, the effect of
SNPs on transcription may occur in disease-relevant cell
types only. To study the correlation between 6q23 SNP
genotypes and gene expression levels in autoimmune
relevant cell types, whole genome expression data from
CD4+ and CD8+ primary T-cells obtained from 21 indi-
viduals from the Arthritis Research UK National Reposi-
tory of Healthy Volunteers (NRHV) were interrogated.
In CD4+ T-cells, the risk allele of rs6927172 correlated
with increased expression of the IL20RA gene (Fig. 3a,
P =0.02), supporting that the physical interaction between
them plays a functional role in the transcriptional control
of IL20RA (Fig. 1). Additionally, CD4+ T-cell whole
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genome expression data were available from a cohort of
102 early undifferentiated arthritis patients collected at
baseline. To avoid confounding by clinical epiphenomena
typically seen in patients, individuals that were diagnosed
with RA after follow-up were not included in the analysis.
The correlation between rs6927172 risk alleles and in-
creased expression of IL20RA was validated in this larger
cohort (Fig. 3b, P=0.03). No correlation was found be-
tween disease-associated SNPs (rs6927172, rs7752903 or
rs610604) and expression of the previously assumed tar-
get, TNFAIP3, or the other interacting genes, including
IENGRI, in any of the CD4+ or CD8+ T-cell cohorts.
Whole genome expression data were also available in
primary CD19+ B-cells for the same cohort, but no
eQTLs were detected for rs6927172, rs7752903 or
rs610604, suggesting that the effect of rs6927172 on
IL20RA expression may either be T-cell type specific or
stimulation-dependent in B-cells. Therefore, the eQTL
results showing that 6q23 non-coding variants are cor-
related with JL20RA messenger RNA (mRNA) expres-
sion in CD4+ T-cells further support that IL20RA is
one of the target genes in the region, as evidenced by
the CHi-C experiment.

rs6927172 risk allele shows higher frequency of
interactions with IL20RA and IFNGR1

Having established that the non-coding 6q23 SNPs inter-
act with several genes by long-range chromatin looping,
we investigated whether the different alleles of rs6927172,
the most likely candidate regulatory SNP according to bio-
informatic analysis, interact with different affinities with
their targets. Evaluation of 3C interactions was carried out
in LCLs, as they have been genotypically well characterised
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Fig. 3 eQTL effect of rs6927172 on gene expression. a Increased expression of IL20RA in primary CD4+ T-cells from 21 healthy individuals carrying
the G risk allele of rs6927172, P=0.02. b Increased expression of IL20RA in primary CD4+ T-cells from 102 early inflammatory arthritis clinic patients
carrying the risk G allele of rs6927172, P =0.03. The three different genotypes for the SNPs are displayed on the x-axis and gene expression levels
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as part of the HapMap Project and cells carrying the three
different genotypes for the rs6927172 variant (GM11993
CC, GM12878 CG and GMO07037 GG) are readily access-
ible commercially. This experiment revealed significantly
higher interaction frequencies between both IL20RA
and [FNGRI and the restriction fragment containing
rs6927172 in individuals carrying the risk G allele of
this SNP compared with the homozygous non-risk allele
(GG versus CC, P=0.01; CG versus CC, P=0.01 and GG
versus CC, P =0.04; CG versus CC, P=0.02, respectively)
(Fig. 4). Interaction frequencies between the fragment con-
taining rs6927172 and both fragments containing the
IncRNAs RP11-10J5.1 and RP11-240M16.1 were similar
regardless of genotype (Additional file 1: Figure S2). Simi-
larly, none of the interactions between TNFAIP3 and
targets identified in the CHi-C experiment (PTPN11
pseudogene, RP11-10J5.1, RP11-240M16.1, Y_RNA and
IL20RA) and between IL20RA and RP11-10]5.1 were influ-
enced by rs6927172 genotype (Additional file 1: Figure S3).

6923 is one of the most important loci for RA suscep-
tibility, being the third most strongly associated region
after HLA-DRBI and PTPN22. Although T-cells are
thought to be the most important cell type in RA patho-
genesis, synovial fibroblasts have also been shown to
play a crucial role in the perpetuation of disease [35].
Therefore, we sought to evaluate the 3D conformation
of the locus in this cell type. The preferential interaction
of the fragment containing rs6927172 and IL20RA was
confirmed by 3C-qPCR in primary human synovial fi-
broblasts (Additional file 1: Figure S4).

Hence, our experiments suggest that increased IL20RA
expression that correlates with the risk G allele of
rs6927172 may be mediated through increased ability to
bind the /L20RA gene via chromatin looping.
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The risk allele of rs6927172 shows increased enrichment
of regulatory proteins
To further explore the role of rs6927172 in transcrip-
tional regulation, we evaluated enrichment of chromatin
marks of active regulatory elements to this site using
chromatin immunoprecipitation (ChIP) in LCLs. We ob-
served an enrichment of histone marks, H3K4mel and
H3K27ac, to the region containing the SNP, compared
to a non-regulatory control region (P=0.0001 and P=
0.0001, respectively) and to a no antibody control sam-
ple (P2=0.0001 and P =0.0008, respectively), confirming
the bioinformatic evidence that rs6927172 is located in a
regulatory element (Additional file 1: Figure S5). We
then performed allele-specific qPCR using Tagman
probes complementary to each rs6927172 allele in Jurkat
T-cells and GM12145 B-cells, which are both heterozy-
gous for the variant, and the balance between the immu-
noprecipitated fragments with the C allele or the G
allele was determined. In Jurkat cells, the risk G allele
showed evidence of increased enrichment of both
H3K4mel (P =0.009) and H3K27ac (P = 0.03), compared
to the non-risk allele (Fig. 5), supporting the CD4+ spe-
cific nature of the eQTL evidence and further suggesting
that the risk allele is correlated with an increased regula-
tory activity. By contrast, in GM12145 B-cells, where no
eQTL evidence was detected/observed, the non-risk C
allele showed evidence of increased enrichment for his-
tone marks (P =0.009 and P =0.0001 for H3K4mel and
H3K27ac respectively), further highlighting the cell type
specificity of transcriptional regulation (Additional file 1:
Figure S5).

The rs6927172 variant was predicted to alter the bind-
ing motif for eight transcription factors, including NFkB
and BCL3 (Table 1). Since NFkB is an important mediator
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Fig. 5 Allele-specific ChIP in Jurkat cells, showing increased binding
of H3K4me1, H3K27ac and NFkB p65 to the risk allele of rs6927172.
Error bars indicate standard deviation of three biological replicates

of the immune response [36] and previous studies have
shown that the TT > A variant, which maps to the
TNFAIP3 LD block tagged by rs7752903, impairs the
binding of this transcription factor [9], we experimentally
tested whether NFkB binds rs6927172 alleles with differ-
ent affinities. We performed ChIP in Jurkat and GM12878
cell lines using antibodies for the p50 and p65 subunits of
NFkB. Estimation of the C/G ratio in the immunopreci-
pitated chromatin was performed and results showed
that, in Jurkat cells, the p65 subunit of NFxB binds with
higher affinity to the risk G allele, compared to the
non-risk C allele (P=0.007) (Fig. 5). The SNP did not
show evidence of altered binding of NFkB in the B-
lymphoblastoid cell line.

BCL3 is a transcriptional co-activator that inhibits
the nuclear translocation of the NFkB p50 subunit in
the cytoplasm and contributes to the regulation of tran-
scription of NF-kB target genes in the nucleus [37-39].
Therefore, we also investigated binding of BCL3 to the
different alleles of rs6927172 using the same approach.
Although this transcription factor seems to be part of
the transcriptional machinery at the site of the SNP,
BCL3 binding showed no statistically significant differ-
ences between the two alleles, either in Jurkat or in
GM12878 cells.

Taken together, these results suggest that the mechanism
by which the risk allele of rs6927172 increases expression
of IL20RA may be mediated by an increased regula-
tory activity and augmented binding of the transcription
factor NFkB.

Discussion

The chromosomal region 6q23 is an important locus in
autoimmunity. It is an exemplar complex non-coding
genomic region, some distance from the nearest gene,
containing enhancer elements and implicated in multiple
diseases by GWAS, but where independent variants
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associate with different conditions. To date, investigation
of the functional consequences of disease-associated alleles
have focused almost exclusively on the gene TNFAIP3.
Here we present findings from a hypothesis-free, system-
atic approach using the recently developed CHi-C method
to identify causal genes at this locus. Qur experiments have
revealed that the spatial organisation of the chromatin at
this region is complex, bringing together several genes with
key roles in the immune response, including IL20RA,
IFNGRI and TNFAIP3, alongside regulatory elements
containing SNPs associated with different autoimmune
diseases. This supports the recently proposed concept of
specialised transcription factories, where co-regulated
genes come together to share transcription factors and
regulatory elements such as enhancers [40].

Previous studies investigating the functional role of
6q23 disease variants had been restricted to the SNPs
mapping to the LD block tagged by rs7752903 spanning
the TNFAIP3 gene, associated with SLE, RA and celiac dis-
ease, showing that the TT > A variant, located downstream
of TNFAIP3, impairs that gene’s expression through chro-
matin looping and altered NFkB binding [9, 30, 31, 40].
However, the functional impact of the remaining disease-
associated SNPs at the locus, such as the intergenic
6920220 nominally assigned to TNFAIP3, had remained
unexplored. Our CHi-C study, supplemented by confirma-
tory 3C, eQTL and ChIP evidence, offers for the first time
a firm indication that autoimmune-associated regions in
general [21], and this region in particular, can demonstrate
complex regulatory interactions with a number of plausible
candidate genes, potentially functional IncRNA genes and,
importantly, each other. The complexity of the interactions
is magnified when considering the differences observed in
cell types (here, in B and T-cell lines and synovial fibro-
blasts). Interestingly, the rs6927172 alleles, associated with
RA, correlate with IL20RA expression levels in CD4+ T-
cells, supporting the accumulating evidence that CD4+ T-
cells are the most relevant cell type to RA [41]. Published
high resolution Hi-C data were available for GM12878 B-
lymphoblastoid cells and we observed numerous, strong
interactions between the 6q23 intergenic SNPs and
IL20RA, supporting our results [42]. In contrast, these in-
teractions with the associated intergenic region were mark-
edly decreased or non-existent in cell lines that do not
express IL20RA, such as human umbilical vein endothelial
cells (HUVEC) or chronic myeloid leukaemia (IK562) cells
(Additional file 1: Figure S7), supporting a cell type
dependent regulatory role for the disease-associated en-
hancer region and IL20RA.

Chromatin looping and eQTL experiments strongly
support IL20RA as a putative causal autoimmunity gene
in 6q23. The IL20RA gene encodes the IL-20 receptor «
subunit (IL-20RA), which can form a heterodimeric
receptor with either IL-20RB to bind IL-19, IL-20 and
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IL-24, or with IL-10RB to bind IL-26 [43]. Evidence
suggests that this family of cytokines have a pro-
inflammatory effect, and are essential in the activation
of the epithelial innate immunity [44], with expression
of IL20RA detected in whole blood, T-cells, B-cells
and monocytes [45]. Recently, interactions of IL-20
subfamily cytokines with their receptors have been
shown to be involved in the pathogenesis of RA. IL-20
and its receptors are upregulated in the synovium of RA
patients [46—50] and IL-19, IL-20 and IL-22 are able to in-
crease the proliferation of synovial cells and induce IL-6,
IL-8 and CCL2 in these cells [48, 50]. In rats, experimen-
tally induced autoimmune arthritis and collagen-induced
arthritis are attenuated by IL-19 blockade [51] and admin-
istration of soluble IL-20RA [47, 51], respectively. These
cytokines also have involvement in skin inflammation
[52]. Overexpression of [i20, 1122 or 1I24 in mice leads to
the development of psoriasis-like skin lesions [53-55],
and levels of IL-19, IL-20, IL-22 and IL-24 are increased
in psoriatic skin [56-58]. Notably, SNPs mapping to the
TNFAIP3 region have been shown to be associated with
Ps and PsA, but map to a different risk haplotype, tagged
by rs610604, distinct to other autoimmune diseases
[22, 26]. Very interestingly, two recent clinical trials have
demonstrated that anti-IL-20 monoclonal antibody is
effective in the treatment of RA and psoriasis [59, 60]. Fur-
thermore, levels of IL-19, IL-20, IL-24 and IL-26 are also
elevated in serum of patients with inflammatory bowel
disease [61-64], which is associated with the intergenic
6q23 variants tagged by rs6920220 [25]. The evidence
that SNPs associated with different autoimmune diseases
interact with each other and the same genes supports a
concept that regional genetic variation, regulating simi-
lar target genes, but with mechanistic and cellular dif-
ferences, are risk factors for different diseases. This
may also suggest that blocking the IL-20 pathway might
be effective in the treatment of multiple autoimmune
diseases. Indeed, a recent study has shown that select-
ing a therapeutic target with genetic data supporting its
role could double the chance of a drug’s success in clinical
improvement [65].

Our CHi-C experiment suggested another potential
novel causal gene in the 6q23 region, IFNGRI. In
addition, targeted 3C experiments found that the inter-
action between rs6927172 and this gene is stronger
when the disease risk G allele is present. IFNGRI en-
codes one of the subunits of the interferon gamma
(IFN-y) receptor. This cytokine plays an important role in
autoimmunity, since it is involved in macrophage activa-
tion, enhanced MHC expression on neighbouring cells,
balancing Th1/Th2 cell differentiation, and inducing the
secretion of other pro-inflammatory cytokines [66]. Al-
though it has been shown that an increased expression of
IFNGRI in blood is associated with RA [67], we did not
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detect an effect of rs6927172 genotype on this gene’s ex-
pression levels in CD4+ and CD8+ T cells, eQTLs, though,
are context-specific [6, 68—72] and, therefore, it would be
interesting to explore whether the SNP influences IFNGR1
expression in other cell types and/or under different
stimulatory conditions.

Whereas we provide evidence of additional putative
causal genes in the 6923 region, the TNFAIP3 gene re-
mains a strong candidate. The role of TNFAIP3 in auto-
immunity is well established. The protein encoded by
TNFAIP3, A20, is induced by tumour necrosis factor
(TNF) and inhibits NF«kB activation and TNF-mediated
apoptosis [73]. Mice deficient for A20 develop severe
multiorgan inflammation [74] and tissue-specific deletion
of A20 results in different phenotypes that resembles
human autoimmune diseases such as inflammatory
polyarthritis (macrophages), SLE (dendritic cells), IBD
(intestinal epithelial cells) or psoriasis (keratinocyes) [73].

Bioinformatic analysis suggested that rs6927172 is
the most likely causal SNP in the rs6920220 LD block.
Genotype specific 3C showed increased interactions
with the IL20RA gene when the risk G allele is present
compared with the non-risk allele. By contrast, the
genotype-specific interaction was not observed for the
rs6920220 variant. However, although bioinformatic
evidence and ChIP experiments coupled with previous
evidence from electrophoretic mobility shift assays [34]
point to rs6927172 as the most likely causal SNP, the
resolution of this experiment is limited by the re-
striction enzyme used; rs6927172 is located in the
same restriction fragment as rs35926684 and both
SNPs are strongly correlated (1* = 0.8). Therefore, although
bioinformatic evidence suggests that rs35926684 is
less likely to affect binding of regulatory proteins, the
possibility that it is the causal SNP, or that both
SNPs contribute to transcriptional regulation, cannot
be excluded.

Our study illustrates the challenges in linking associ-
ated variants to function. Associated variants can be
linked to a number of genes, dependent on which en-
hancer they are located within and the cell type under
investigation. This could explain apparent inconsisten-
cies in findings; for example, how the risk variant of
rs6927172 is associated with higher levels of active en-
hancer histone marks in Jurkat cells, but has the oppos-
ite effect in GM12878 cells. Indeed, up to 50 % of allele
specific associations with epigenetic marks of enhancer
activity (histoneQTLs) have been reported to show in-
consistent direction of effects between samples, indicat-
ing the intricacies that exist in gene regulation [75].
Nonetheless, our work reinforces previous evidence that
the nearest plausible biological candidate gene is not ne-
cessarily the causal gene. While TNFAIP3 gene involve-
ment is still implicated at the 6q23 locus, the primary
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causal gene may well be IL20RA, supported by the suc-
cess of anti-IL20 therapies in RA and Ps.

It is noteworthy that the intergenic 6q23 SNP, corre-
lated with higher frequency of interactions with IL20RA,
higher expression of IL20RA and increased enrichment
of histone marks of active enhancers and NFkB, is
located at the boundary of two topologically associated
domains (TADs) (Fig. lg and j). TADs are genomic
regions that show high levels of interaction within the
region and little or no interaction with bordering regions
and are thought to be conserved across different cell
types and species [76, 77]. It has been shown that
boundaries between TADs can separate functionally dis-
tinct regions of the genome [78]. Intriguingly, it has
been suggested that eQTLs often occur around TAD
boundaries and preferentially associate with genes across
domains [79]. There is now evidence that disruption of
TAD boundaries can cause ectopic interactions between
regulatory non-coding DNA and gene promoters, result-
ing in pathogenic phenotypes [80]. Our CHi-C experi-
ments show long-range interactions between IL20RA and
targets located outside the TAD this gene is located, i.e.
the intergenic disease-associated SNPs, TNFAIP3 and sev-
eral IncRNAs (Fig. 1). The cell lines used in these experi-
ments (GM12878 and Jurkat) are both heterozygous for
rs6927172 and genotype-specific 3C experiments showed
that the interaction between this SNP and /L20RA occurs
preferentially when the risk allele is present (Fig. 3). It
would be interesting to explore whether this autoimmun-
ity associated variant exerts its pathogenic effect through
a disruption of the TAD boundary between IL20RA and
potential regulatory elements that would not otherwise
interact with it.

Conclusions

We provide evidence that an intergenic enhancer region
on 6q23, associated with numerous autoimmune dis-
eases and nominally assigned to TNFAIP3 although over
200 kb from the nearest gene, makes allele-specific,
regulatory contact with IL20RA, the target of an existing
drug and located 680 kb away from the associated re-
gion. Our findings show how functional evaluation of
disease risk loci can help better translate GWAS findings
into biologically meaningful mechanisms of disease and
validate existing therapeutic targets or suggest potential
new ones.

Methods

Cell culture

B-lymphoblastoid cell lines (LCL) were obtained from
the Coriell Institute for Medical Research (Additional
file 1: Table $2). Cells were grown in vented 25 cm?® cell
culture flasks containing 10-20 mL of Roswell Park
Memorial Institute medium (RPMI)-1640+2 mM L-
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glutamine culture medium, supplemented with 15 %
fetal bovine serum (FBS). Flasks were incubated up-
right at 37 °C/5 % CO,. Cultures were regularly mon-
itored to maintain a cell density in the range of 2 x
10°-5 x 10°viable cells/mL. Cells were split every two
days into fresh medium until they reached a maximum
density of 1 x 10° cells/mL.

Jurkat E6.1 human leukaemic T-lymphoblast cells were
obtained from LGC Standards. Cells were grown in
vented 25 cm?® cell culture flasks containing 10-20 mL
of RPMI-1640 + 2 mM L-glutamine, supplemented with
10 % FBS. Flasks were incubated upright at 37 "C/5 %
CO, and the cultures regularly monitored to maintain a
cell density in the range of 3 x 10°~9 x 10° viable cells/mL.

These cell lines are not listed in the in the database of
commonly misidentified cell lines maintained by ICLAC,
were authenticated using STR analysis and were tested
for mycoplasma contamination (MycoSEQ® Mycoplasma
Detection System, 4460625, Life Technologies).

Capture Hi-C

Chromatin interactions at 6q23 were scrutinised using
CHi-C as part of a larger study that included all con-
firmed risk loci for four autoimmune diseases (RA, JIA,
PsA and T1D) [21].

We tested chromatin interactions in two complemen-
tary experiments: Region Capture, which targeted regions
associated with disease [22, 27, 81-83], and Promoter
Capture, which provided independent validation by cap-
turing all gene promoters within 500 kb upstream and
downstream of lead disease-associated SNPs. Associated
regions were defined by selecting all SNPs in LD with the
lead disease-associated SNP (r’=0.8; 1000 Genomes
phase 1 EUR samples; May 2011). For the Promoter
Capture experiment, HindIIl restriction fragments
were identified within 500 bp of the transcription
start site of all genes mapping to the defined regions
(Ensembl release 75; GRCh37). A control region with well
characterised long-range interactions was also included,
HBA [84]. Capture oligos (120 bp; 25-65 % GC, <3 un-
known (N) bases) were designed using a custom Perl
script within 400 bp but as close as possible to each end
of the targeted HindIlII restriction fragments.

Human T-cell (Jurkat) and B-cell (GM12878) lines
were used, since they are among the most relevant cell
types in autoimmune disease [5]. Hi-C libraries were
generated as previously described [85]. Cells of 5-6 x
107 were grown to ~90 % confluence and cross-linked
with 2 % formaldehyde for 10 min at room temperature.
The cross-linking reaction was quenched by adding cold
1 M glycine to a final concentration of 0.125 M for
5 min at room temperature, followed by 15 min on ice.
Cells were resuspended in 50 mL ice-cold lysis buffer
(10 mM Tris—HCI pH 8, 10 mM NaCl, 0.2 % Igepal CA-



McGovern et al. Genome Biology (2016) 17:212

630, protease inhibitors) and lysed on ice for 30 min,
with 2 x 10 strokes of a Dounce homogeniser. Following
lysis, the nuclei were pelleted and washed with 1.25 x
NEB Buffer 2 then resuspended in 1.25 x NEB Buffer 2.
Hi-C libraries were digested using HindIII then prepared
as described in van Berkum et al. [86] with modifications
described in Dryden et al. [18]. Pre-Capture amplifica-
tion was performed with eight cycles of PCR on multiple
parallel reactions from Hi-C libraries immobilised on
Streptavidin beads which were pooled post-PCR and
SPRI bead purified. The final library was resuspended in
30 uL TLE (10 mM Tris pHS8; 0.1 mM EDTA) and the
quality and quantity assessed by Bioanalyzer and qPCR.

Hybridisation of Agilent SureSelect custom Promoter
and Region Capture RNA bait libraries to Hi-C libraries
was carried out using Agilent SureSelectXT reagents
and protocols. Post-capture amplification was carried
out using six cycles of PCR from streptavidin beads in
multiple parallel reactions, then pooled and purified
using SPRI beads.

Two biological replicates for each of the cell lines
were prepared for each target capture. Sequencing
was performed on Illumina HiSeq 2500 generating
75 bp paired-end reads (Genomic Technologies Core
Facility in the Faculty of Life Sciences, University of
Manchester). CASAVA software (v1.8.2, [llumina) was used
to make base calls; reads failing Illumina filters were re-
moved before further analysis. Promoter Capture libraries
were each sequenced on one HiSeq lane and each Region
Capture library was sequenced on 0.5 of a HiSeq lane.
Sequences were output in FASTQ format, poor quality
reads truncated or removed as necessary, using Trim-
momatic version 0.30 [87], and subsequently mapped to
the human reference genome (GRCh37/hgl9) and
filtered to remove experimental artefacts using the
Hi-C User Pipeline (HiCUP, http://www.bioinformatics.-
babraham.ac.uk/projects/hicup/). Off-target di-tags, where
neither end mapped to a targeted fragment, were removed
from the final datasets.

Di-tags separated by <20 kb were removed prior to
analysis, as 3C data have shown a very high interaction
frequency within this distance [88]. Significant interac-
tions for cis interactions within 5 Mb were determined
using the ‘High resolution analysis of cis interaction
peaks’ method described by Dryden et al. [18]. To cor-
rect for experimental biases, the interactability of each
fragment was calculated to long-range, ‘trans’ fragments,
under the assumption that those represent random,
background interactions and so should be similar in any
particular baited fragment. The resulting distribution is
bimodal consisting of stochastic noise (low frans counts)
and genuine signal (high trans counts). A truncated
negative binomial distribution was fitted to the distribu-
tion. The 5 % quantile point of the non-truncated
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distribution was determined to provide the noise thresh-
old. A negative binomial regression model was fitted to
the filtered data correcting for the interactability of the
captured restriction fragment and interaction distance.
For interactions where both the target and baited region
were captured (double-baited interactions) we also
accounted for the interactability of the other end.

Interactions were considered statistically significant
after combining replicates and filtering on FDR<5 %.
Significant interactions were visualised in the WashU
Epigenome Browser [89, 90].

Chromosome conformation capture (3C)

Validation of interactions was carried out on biological
replicate 3C libraries for each of the cell lines (GM12878
and Jurkat). Libraries were prepared using the cross-
linking, digestion with HindIII and ligation steps used
for the generation of Hi-C libraries [84] but without the
biotin fill-in step. qPCR was carried out using Power
SYBR® Master Mix (Life Technologies) according to the
manufacturer’s instructions using the following cycling
conditions: 50 °C 2 min, 95 °C 10 min, followed by 40 cy-
cles of 95 °C 15 s, 60 °C 1 min. gPCR was performed in
triplicate using 50 ng of 3C library [88]. Standard curves
for each primer set used in the qPCR were generated
using tenfold serial dilutions of 3C control template
libraries, prepared by digestion and random ligation of
bacterial artificial chromosomes (BACs) (Life Technolo-
gies) spanning the region of interest with minimal overlap
(Additional file 1: Table S3). Data were normalised to a
short-range ligation product using the bait primer in com-
bination with a primer for adjacent HindIII fragments, to
control for differences in cross-linking and ligation effi-
ciencies between different cell lines. 3C primers are shown
in Additional file 1: Table S4. Statistical analysis was
performed in STATA by paired t-test. P values < 0.05
were considered statistically significant. Variance between
groups was similar (two-tailed F-test for equality of two
variances P > 0.05).

Bioinformatics

To narrow down the most plausible causal SNP among
all variants in LD with the lead GWAS SNP rs6920220,
Haploreg v4.1 was used with the following settings: LD
threshold, r* = 0.8; 1000G Phase 1 population for LD cal-
culation: EUR; Source for epigenomes: ChromHMM
(25-state model using 12 imputed marks); Mammalian
conservation algorithm: SiPhy-omega. Additionally, Reg-
ulomeDBVersion 1.1 was used.

Expression quantitative trait loci (eQTLs) analysis

Public eQTL data were interrogated using Haploreg
v4.1 [32], which examines all datasets obtained from
the GTEx analysis release V6 (http://www.gtexportal.org/
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static/datasets/gtex_analysis_v6/single_tissue_eqtl data/
GTEx_Analysis_ V6_eQTLs.tar.gz), the GEUVADIS ana-
lysis (EUR and YRI panels, http://www.ebi.ac.uk/arrayex-
press/files/E-GEUV-1/analysis_results/), the NCBI eQTL
Browser (http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/
index.cgi, lymphoblastoid cell lines [91, 92], liver [93] and
brain [94]) and eight additional studies including data
obtained from tumours [95], blood [96], lung [97],
heart [98], monocytes [4], bone [99], lymphoblastoid
cell lines [100] and brain [101].

Four whole genome gene expression datasets were
available: CD4+ and CD8+ T-cells from 21 healthy indi-
viduals of the National Repository of Healthy Volunteers
(NRHV), The University of Manchester (North West
Centre for Research Ethics Committee) (Additional
files 2, 3, 4 and 5), and CD4+ T-cells and CD19+ B-
cells from 102 early undifferentiated arthritis patients,
Newcastle University (Newcastle and North Tyneside
Local Research Ethics Committee) (Additional files 6, 7, 8
and 9). Informed consent was obtained from all partici-
pants. mRNA was isolated from sorted cell subsets, quality
and concentration assessed using the Agilent Bioanalyzer
and Nanodrop, before complementary DNA (cDNA)/
complementary RNA (cRNA) conversion using Illumina
TotalPrep RNA Amplification Kits. A total of 750 ng of
cRNA was hybridised to HumanHT-12 v4 Expression
BeadChip arrays according to the manufacturer’s protocol
before being scanned on the Illumina iScan system. Raw
expression data were exported from Illumina Genome-
Studio and analysed using the R Bioconductor package
‘limma’ [102]. Briefly, the neqc function was used for log2
transformation of the data, background correction and
quantile normalisation using control probes. Principal
component analysis was used to detect batch effects. The
cDNA/cRNA conversion produced the largest batch effect
in both cohorts and was corrected using ComBat (in R
Bioconductor package sva) (http://bioconductor.org/pack-
ages/release/bioc/html/sva.html). Genome-wide genotype
data were generated using the Illumina HumanCor-
eExomeBeadChip kit. Genotype data were aligned to the
1000 genomes reference strand, pre-phased using SHA-
PEIT2 (v2.r727 or v2.r790), before imputation using IM-
PUTE2 (v2.3.0 or v2.3.1) with the 1000 genome reference
panel (Phase 1, December 2013 or June 2014). Imputed
data were hard-called to genotypes using an INFO score
cutoff of 0.8 and posterior probability of 0.9. The effect of
the SNPs on gene expression was analysed using Matrix-
EQTL (v.2.1.0) (http://www.bios.unc.edu/research/geno-
mic_software/Matrix_eQTL/) with an additive linear
model. The errorCovariance = numeric() parameter was
set to account for possible differences in variance between
groups. SNPs within 4 Mb of a gene expression probe
were considered to be cis-eQTL, since the majority (99 %)
of interactions detected in the CHi-C experiment happened
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within a 4 Mb window. P values < 0.05 were considered
statistically significant. The study (N =102 early arthritis
patients) had 80 % power to detect a change of 0.08
log expression at 5 % significance level.

Chromatin immunoprecipitation (ChiP)

1% 107 cells were cross-linked with 1 % formaldehyde
for 10 min at room temperature. Cells were lysed in
1 mL of ChIP lysis buffer (50 mM Tris—HCI pHB8.1,
10 mM EDTA, 1 % SDS, one protease inhibitor cocktail
tablet) and chromatin sheared using a Covaris 5220 with
the following conditions: target base pairs: 200—400 bp,
duty cycle: 5 % for LCL; 10 % for Jurkat cells, peak inci-
dent power: 140 Watts, cycles per burst: 200, temperature:
4. °C, time: 20-25 min.

Each immunoprecipitation (IP) was carried out in trip-
licate using LCLs obtained from HapMap individuals
(Additional file 1: Table S1). The negative control was a
no antibody control or IgG. Antibodies were available
from Abcam for NFkB p50 (ab7971), NFkBp65 (ab7970),
H3K4mel (ab8895) and H3K27ac (ab4729) and from
Santa Cruz for BCL3 (sc-185X). To detect the relative
enrichment of regions interacting with the target protein,
qPCR of ChIP and input samples was carried out. qPCR
was performed in triplicate using SYBR green, or TagMan
probes complementary to each allele of rs6927172
for allele-specific assays (Applied Biosystems, assay ID
C___1575580_100), on an Applied Biosystems QuantStu-
dio 12 K Flex qPCR instrument. Primers were designed
for the target SNP region, positive control region and
negative control region (Additional file 1: Table S5). Fol-
lowing qPCR, the % input for each sample was calculated
and statistical analysis of ChIP data was carried out to de-
termine significant differences in antibody binding to the
different SNP genotypes in STATA by paired t-test.
P values <0.05 were considered statistically significant.
Variance between groups was similar (two-tailed F-test for
equality of two variances P > 0.05).

Additional files

Additional file 1: Supplementary tables and figures. (DOCX 2089 kb)
Additional file 2: Contains the cis-eQTLs with P value < 5 % for CD4+
T-cells obtained from NRHV participants. (TXT 405 kb)

Additional file 3: Contains the normalised expression values for CD4+
T-cells obtained from NRHV participants. (TXT 26 kb)

Additional file 4: Contains the cis-eQTLs with P value <5 % for CD8+
T-cells obtained from NRHV participants. (TXT 352 kb)

Additional file 5: Contains the normalised expression values for CD8+
T-cells obtained from NRHV participants. (TXT 26 kb)

Additional file 6: Contains the cis-eQTLs with P value < 5 % for B-cells
obtained from early undifferentiated arthritis patients. (TXT 985 kb)

Additional file 7: Contains the normalised expression values for B-cells
obtained from early undifferentiated arthritis patients. (TXT 124 kb)
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Additional file 8: Contains the cis-eQTLs with P value <5 % for T-cells
obtained from early undifferentiated arthritis patients. (TXT 1162 kb)

Additional file 9: Contains the normalised expression values for T-cells
obtained from early undifferentiated arthritis patients. (TXT 125 kb)

Abbreviations

3C: Chromosome conformation capture; BACs: Bacterial artificial
chromosomes; Cel: Celiac disease; CHI-C: Capture Hi-C; CHICAGO: Capture
HiC Analysis of Genomic Organisation; ChIP: Chromatin immunoprecipitation;
eQTL: Quantitative trait loci; FBS: Fetal bovine serum; GWAS: Genome-wide
association studies; HICUP: Hi-C User Pipeline; IBD: Inflammatory bowel
disease; IFN-y: Interferon gamma; IL-20RA: IL-20 receptor a subunit; LCLs:
B-lymphoblastoid cell lines; LD: Linkage disequilibrium; IncRNAs: Long non-
cading RNAs; NRHV: National Repository of Healthy Volunteers; Ps: Psoriasis;
PsA: Psoriatic arthritis; gPCR: Quantitative real-time PCR; RA: Rheumatoid
arthritis; RPMI: Roswell Park Memerial Institute medium; SLE: Systemic lupus
erythematosus; SNPs: Single nucleotide polymorphisms; T1D: Type 1
diabetes; TADs: Topologically associated domains; TNFAIP3: Tumour necrosis
factor alpha-induced protein 3

Acknowledgements

We thank Dr Kathryn Steel for carrying out cell separation and gene
expression profiling of healthy volunteers and Dr Nisha Nair for her
contribution to the generation of gene expressicn data in the early arthritis
patient cohort. The authors would also like to acknowledge the Faculty of
Life Sciences Genomics Facility and the assistance given by IT Services and
the use of the Computational Shared Facility at The University of
Manchester,

Funding

This work was funded by the Wellcome Trust (grant no. 095684), Arthritis
Research UK (grant no. 20385) and supported by the National Institute for
Health Research Manchester Musculoskeletal Biomedical Research Unit.
The views expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health Research or
the Department of Health.

Availability of data and materials

The CHI-C datasets supporting the conclusions of this article are available in
the Gene Expression Omnibus repository, http//www.ncbinimnih.gov/geo/
query/acc.cgi?acc=GSE69600. The in-house eCTL data are provided as
supplemental data files (Additional files 2, 3, 4, 5, 6, 7, 8 and 9).

Public eQTL data were interrogated using Haploreg [32], which examines all
datasets obtained from the GTEx analysis release V6 (http/iwww.gtexportal org/
static/datasets/gtex_analysis_vé/single_tissue_eqtl_data/GTEx_Analysis_V6_
eQTls.targz), the GEUVADIS analysis (EUR and YRI panels, http//www.ebiacuk/
arrayexpress/files/E-GEUV-1/analysis_results/), the NCBI eQTL Browser
(http://www.nebinlm.nih.gov/projects/gap/eqtl/index.cgi, lymphoblastoid
cell lines [91, 92], liver [93] and brain [94]) and eight additional studies including
data obtained from tumours [95], blood [96], lung [97], heart [98], monocytes
[4], bane [99], lymphoblastoid cell lines [100] and brain [101].

Authors' contributions

AMG, S5, PM, M, KD, DP, AP, AA, JI, 1D, NT, CO and GO performed
experiments and contributed to the writing of the paper. 5SS, PF, AB, JW, SE
and GO designed experiments and wrote the paper. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable

Ethics approval and consent to participate

Written informed consent was obtained from all participants. Ethical
approval was obtained from North West Centre for Research Ethics
Committee (REC:99/8/84) and NRES Coemmittee North East - County Durham
and Tees Valley Ethics Committee (REC: 12/NE/0251). Experimental methods
comply with the Helsinki Declaration.

Page 13 of 15

Author details

' Arthritis Research UK Centre for Genetics and Genomics, Division of
Musculoskeletal and Dermatological Sciences, School of Biological Sciences,
Faculty of Biology, Medicine and Health, Manchester Academic Health
Science Centre, The University of Manchester, Stopford Building, Oxford
Road, Manchester M13 9PT, UK. “Nuclear Dynamics Programme, The
Babraham Institute, Cambridge CB22 3AT, UK. *NIHR Manchester
Musculoskeletal BRU, Manchester Academic Health Sciences Centre, Central
Manchester Foundation Trust, Manchester, UK. “Institute of Cellular Medicine
(Musculoskeletal Research Group), Newcastle University, Newcastle upon
Tyne NE2 4HH, UK. “Center of Experimental Rheumatology Department of
Rheumatology, University Hospital of Zurich, Wagistrasse 14, 8952 Schlieren,
Switzerland.

Received: 26 May 2016 Accepted: 5 October 2016
Published online: 01 November 2016

References

1. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014:42:01001-6.

2. Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C, et al.
Principles for the post-GWAS functional characterization of cancer risk loci.
Nat Genet. 2011;:43:513-8,

3. Ward LD, Kellis M. Interpreting noncoding genetic variation in complex
traits and human disease. Nat Biotechnol. 2012;30:1095-106.

4. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, et al. Innate
immune activity conditions the effect of regulatory variants upon monocyte
gene expression. Science. 2014;343:1246949.

5. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley W, Beik S, et al.
Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature. 2015,518:337-43.

6. Ye CJ, Feng T, Kwon HK, Raj T, Wilsan MT, Asinovski N, et al. Intersection of
papulation variation and autoimmunity genetics in human T cell activation.
Science. 2014;345:1254665.

7. Davison L, Wallace C, Cooper JD, Cope NF, Wilson NK, Smyth DJ, et al.
Long-range DNA looping and gene expression analyses identify DEXI as an
autoimmune disease candidate gene. Hum Mol Genet. 2012,21:322-33.

8. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H,
et al. The 8924 cancer risk variant rs6983267 shows long-range interaction
with MYC in colorectal cancer, Nat Genet. 2009,41:882—4.

9. Wang 5, Wen F, Wiley GB, Kinter MT, Gaffney PM. An enhancer
element harboring variants associated with systemic lupus
erythematosus engages the TNFAIP3 promoter to influence A20
expression. PLoS Genet. 2013;9:21003750.

10, Zhang X, Cowper-Sal IR, Bailey SD, Moore JH, Lupien M. Integrative
functional genomics identifies an enhancer looping to the SOX9
gene disrupted by the 179243 prostate cancer risk locus. Genome Res.
2012;22:1437-46.

11, Bulger M, Groudine M. Functional and mechanistic diversity of distal
transcription enhancers, Cell. 2011;144:327-39.

12, Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape
of gene promoters, Nature. 2012,48%109-13.

13, Schoenfelder 5, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R,
Javierre BM, et al. The pluripotent regulatory circuitry connecting promaoters
to their long-range interacting elements. Genome Res. 2015,25:582-97.

14, Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome
conformation. Science. 2002,295:1306-11.

15. Dostie J, Richmond TA, Amaout RA, Selzer RR, Lee WL, Honan TA, et al
Chromosome Conformation Capture Carbon Copy (5C): a massively parallel
solution for mapping interactions between genomic elements. Genome
Res. 2006;16:1299-309.

16.  Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de WE, et al. Nuclear
organization of active and inactive chromatin domains uncovered by
chromesorme conformation capture-on-chip (4C). Nat Genet. 2006,38:1348-54.

17, Lieberman-Aiden E, van Berkurn NL, Williams L, Imakaev M, Ragoczy T,
Telling A, et al. Comprehensive mapping of long-range interactions reveals
folding principles of the human genome, Science. 2009;326:289-93.

18, Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, Schoenfelder S,
et al. Unbiased analysis of potential targets of breast cancer susceptibility
loci by Capture Hi-C. Genome Res. 2014;24:1854-68.



McGovern et al. Genome Biology (2016) 17:212

20,

21

22

23

24,

25.

26.

27.

28,

29.

30.

31

32

33,

34,

35.

36.

37

38

39,

40.

41,

42,

43,

Jager R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al.
Capture Hi-C identifies the chromatin interactome of colorectal cancer risk
loci. Nat Commun. 2015,6:6178.

Mifsud B, Tavares-Cadete F, Young AN, Sugar R, Schoenfelder S, Ferreira L,
et al. Mapping long-range promoter contacts in human cells with high-
resolution capture Hi-C. Nat Genet. 2015;47:598-606.

Martin P, McGovern A, Orozco G, Duffus K, Yarwood A, Schoenfelder S, et al.
Capture Hi-C reveals novel candidate genes and complex long-range
interactions with related autoimmune risk loci. Nat Commun. 20156:10069.
Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al.
Dense genotyping of immune-related susceptibility loci reveals new
insights into the genetics of psoriatic arthritis. Nat Commun, 20156:6046.
Coenen MJ, Trynka G, Heskamp 5, Franke B, van Diemen CC, Smolonska J,
et al. Common and different genetic background for rheumatoid arthritis
and coeliac disease. Hum Mol Genet. 2009;18:4195-203.

Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon IM, et al.
Genetic variants near TNFAIP3 an 6023 are associated with systemic lupus
erythematosus. Nat Genet, 2008:40:1059-61.

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-
microbe interactions have shaped the genetic architecture of inflammatory
bowel disease. Nature. 2012;491:119-24.

Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al. Genome-
wide scan reveals association of psoriasis with 1L-23 and NF-kappaB
pathways. Nat Genet. 2009,41:199-204.

Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR,
Mychalecky] JC, et al. Fine mapping of type 1 diabetes susceptibility loci
and evidence for colacalization of causal variants with lymphoid gene
enhancers. Nat Genet. 2015;47:381-6.

Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J, et al. Rheumatoid
arthritis association at 6q23. Nat Genet. 2007,39:1431-3.

Wellcome Trust Case Control Consortium. Genome-wide association study
of 14,000 cases of seven common diseases and 3,000 shared controls,
Nature. 2007,447:661-78.

Adrianto |, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al.
Association of a functional variant downstream of TNFAIP3 with systemic
lupus erythematosus. Nat Genet. 2011;43:253-8.

Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, et al.
Multiple polymorphisms in the TNFAIP3 region are independently
associated with systemic lupus erythematosus. Nat Genet. 2008,40:1062-4.
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically
linked variants. Nucleic Acids Res. 2012;40:0930-4.

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al.
Annotation of functional variation in personal genemes using RegulomeDB.
Genome Res. 2012,22:1790-7.

Elsby LM, Qrozco G, Denton J, Worthington J, Ray DW, Donn RP. Functional
evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol.
201028.708-14.

Huber LC, Distler O, Tarner |, Gay RE, Gay 5, Pap T. Synovial fibroblasts: key
players in rheumatoid arthritis. Rheumatology (Oxford). 2006:45:669-75.
Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response.
Oncogene. 2006;25:6758-80.

Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, et al, The
oncoprotein Bcl-3 directly transactivates through kappa B motifs via
association with DNA-binding p50B homodimers. Cell. 1993;72:729-39.
Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH. Negative regulation of
toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade.
Science. 2007,317:675-8.

Wulczyn FG, Naumann M, Scheidereit C. Candidate proto-oncagene bcl-3
encodes a subunit-specific inhibitor of transcription factor NF-kappa B.
Nature. 1992,358:597-9.

Schoenfelder S, Clay |, Fraser P. The transcriptional interactome: gene
expression in 30. Curr Opin Genet Dev. 2010;20:127-33.

Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks
identify critical cell types for fine mapping complex trait variants. Nat Genet.
2013;45:124-30.

Rao S5, Huntley MH, Durand NC, Stamenova EK, Bochkov 1D, Robinsan JT,
et al. A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell. 2014;159:1665-80.

Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and
related cytokines and receptors. Annu Rev Immunol. 2004;22:929-79.

45.

47.

48.

49,

50.

52.

53.

54.

55.

56.

57.

58.

59.

62.

63.

65.

67.

Page 14 of 15

Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines-from host
defence to tissue homeostasis. Nat Rev Immunol. 2014;14:783-95.

Su Al Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of
the mouse and human protein-encading transcriptomes. Proc Natl Acad Sci
U5 A 2004;101:6062-7.

Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al.
IL-26 is overexpressed in rheumatoid arthritis and induces prainflammatory
cytokine preduction and Th17 cell generation, PLoS Biol, 2012,10:21001395,
Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS, et al. Function of
interleukin-20 as a proinflammatory malecule in theumataid and
experimental arthritis. Arthritis Rheurn. 2006;,54:2722-33.

Ikeuchi H, Kuroiwa T, Hiramatsu N, Kaneko Y, Hiromura K, Ueki K, et al.
Expression of interleukin-22 in rheurnatoid arthritis: potential role as a
proinflammatory cytokine. Arthritis Rheum. 2005;52:1037-46.

Kragstrup TW, Otkjaer K, Holm C, Jorgensen A, Hokland M, Iversen L, et al.
The expression of IL-20 and IL-24 and their shared receptors are increased
in rheumatoid arthritis and spondyloarthropathy. Cytokine. 2008;41:16-23.
Sakurai N, Kuroiwa T, lkeuchi H, Hiramatsu N, Maeshima A, Kaneko Y, et al.
Expression of IL-19 and its receptors in RA: potential role for synovial
hyperplasia formation. Rheumatology (Oxford). 2008:47:815-20.

Hsu YH, Hsieh PP, Chang MS. Interleukin-19 blockade attenuates collagen-
induced arthritis in rats. Rheumnatology (Oxford). 2012,51:434-42.

Quyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and
functions of the IL-10 family of cytokines in inflammation and disease. Annu
Rev Immunol. 2011;29:71-109.

Blumberg H, Canklin D, Xu WF, Grossmann A, Brender T, Carcllo S, et al.
Interleukin 20: discovery, receptor identification, and role in epidermal
function. Cell. 2001;104:9-19.

He M, Liang P. IL-24 transgenic mice: in vivo evidence of overlapping functions
for IL-20, 1L-22, and IL-24 in the epidermis. J Immunol. 2010;184:1793-8.

Wolk K, Haugen HS, Xu W, Witte E, Waggie K, Anderson M, et al. IL-22 and
IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17
and IFN-gamma are not. ] Mol Med (Berl). 200,87:523-36.

Otkjaer K, Kragballe K, Funding AT, Clausen JT, Noerby PL, Steiniche T, et al.
The dynamics of gene expression of interleukin-19 and interleukin-20 and
their receptors in psoriasis. Br J Dermatol. 2005;153:911-8.

Romer J, Hasselager E, Norby PL, Steiniche T, Thorn CJ, Kragballe K.
Epidermal overexpression of interleukin-19 and —20 mRNA in psoriatic skin
disappears after short-term treatment with cyclosporine a or calcipotriol.
JInvest Dermatal. 2003;121:1306-11.

Wolk K, Kunz 5, Witte E, Friedrich M, Asadullah K, Sabat R. IL-22 increases the
innate immunity of tissues. Immunity. 2004;21:241-54,

Gottlieb AB, Krueger JG, Sandberg LM, Gothberg M, Skolnick BE. First-in-
human, phase 1, randomized, dose-escalation trial with recombinant anti-i-20
monoclonal antibody in patients with psoriasis. PLoS One. 2015;10:e0134703,
Senolt L, Leszczynski P, Dokoupilova E, Gothberg M, Valencia X, Hansen BB,
et al. Efficacy and safety of anti-interleukin-20 monoclonal antibody in
patients with rheumatoid arthritis: a randomized phase lla trial. Arthritis
Rheumatol, 2015;67:1438-48,

Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S,

el al. Expression of IL-24, an activator of the JAKI/STAT3/SOCS3 cascade, is
enhanced in inflammatory bowel disease. J Immunol. 2009;183:687-95.
Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, et al.
The rale of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut.
2009,58:1207-17.

Fonseca-Camarillo G, Furuzawa-Carballeda J, Llorente L, Yamamoto-Furusho
JK IL-10- and IL-20-expressing epithelial and inflammatory cells are
increased in patients with ulcerative colitis. J Clin Immunol. 2013;33:640-8.
Fonseca-Camarillo G, Furuzawa-Carballeda J, Granados J, Yamamoto-Furusho
JK. Expression of interleukin (IL}-19 and IL.-24 in inflammatory bowel disease
patients: a cross-sectional study. Clin Exp Immunol. 2014;177:64-75.

Nelson MR, Tiprey H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The
support of human genetic evidence for approved drug indications. Nat
Genet. 2015;47:856-60.

Hu X, vashkiv LB. Cross-regulation of signaling pathways by interferon-
gamma: implications for immune responses and autoimmune diseases.
Immunity. 2009,31:539-50.

Tang Q, Danila MI, Cui X, Parks L, Baker BJ, Reynolds RJ, et al. Expression of
interferon-gamma receptor genes in peripheral blood mononuclear cells is
associated with rheumatoid arthritis and its radiographic severity in African
Americans. Arthritis Rheumatol. 201567:1165-70.



McGovern et al. Genome Biology (2016) 17:212

68.

69,

70.

71

72,

73.

74.

75.

76.

77.

78.

79.

80.

81,

82,

83.

84.

85.

86.

87.

88.

89.

90.

91.

92,

Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, Gilad Y. Deciphering the
genetic architecture of variation in the immune response to Mycobacterium
tuberculosis infection. Proc Natl Acad Sci U S A. 2012,109:1204-9.

Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, Dilthey A, et al.
Genetics of gene expression in primary immune cells identifies cell type-
specific master regulators and roles of HLA alleles. Nat Genet. 2012,44:502-10.
Hu X, Kim H, Raj T, Brennan PJ, Trynka G, Teslovich N, et al.
Regulation of gene expression in autoimmune disease loci and the
genetic basis of proliferation in CD4+ effector memory T cells. PLoS
Genet. 2014;10:21004404.

Lee MN, Ye C, Villani AC, Raj T, Li W, Eisenhaure TM, et al. Common genetic
variants modulate pathogen-sensing responses in human dendritic cells.
Science. 2014;343:1246980.

Romanoski CE, Lee S, Kim MJ, Ingram-Drake L, Plaisier CL, Yordanova R, et al.
Systems genetics analysis of gene-by-environment interactions in human
cells, Am J Hum Genet. 2010,86:395-410,

Catrysse L, Vereecke L, Beyaert R. van LG. A20 in inflammation and
autoimmunity. Trends Immunol. 2014;35:22-31.

Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to
regulate TNF-induced NF-kappaB and cell death responses in A20-deficient
mice. Science. 2000;289:2350-4.

Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, et al.
Coordinated effects of sequence variation on DNA binding, chromatin
structure, and transcription. Science. 2013;342:744-7.

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in
mammalian genomes identified by analysis of chromatin interactions.
Nature. 2012,485:376-80.

Pombo A, Dillon N. Three-dimensional genome architecture: players and
mechanisms. Nat Rev Mol Cell Biol. 2015;16:245-57.

Kim YJ, Cecchini KR, Kim TH. Canserved, developmentally regulated
mechanism couples chromoscmal looping and heterochromatin barrier activity
at the homeobox gene A locus. Proc Natl Acad Sci U 5 A 2011;1087391-6.
Duggal G, Wang H, Kingsford C. Higher-order chromatin domains link eQTLs
with the expression of far-away genes. Nucleic Acids Res. 2014;42:87-96.
Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, et al.
Disruptions of topological chromatin domains cause pathogenic rewiring of
gene-enhancer interactions. Cell. 2015;161:1012-25.

Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P, et al. High-density
genetic mapping identifies new susceptibility loci for rheumatoid arthritis.
Nat Genet. 2012;44:1336-40.

Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense
genotyping of immune-related disease regions identifies 14 new
susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45:664-9,
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of
rheurnatoid arthritis contributes to biology and drug discovery. Nature.
2014,506:376-81.

Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, et al.
Analysis of hundreds of cis-regulatory landscapes at high resolution in a
single, high-throughput experiment. Nat Genet. 2014;46:205-12.

Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. Hi-C: a
comprehensive technique to capture the conformation of genomes.
Methods. 2012;58:268-76.

van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mimy
LA, et al. Hi-C: a method to study the three-dimensional architecture of
genomes. J Vis Exp. 2010. DOI: 10.3791/1869.

Bolger AM, Lohse M, Usadel B, Trimmomatic: a flexible trimmer for lllumina
sequence data. Bioinformatics. 2014;30:2114-20.

Naumova N, Smith EM, Zhan Y, Dekker J. Analysis of long-range chromatin
interactions using Chromosome Conformation Capture. Methods.
2012;58:192-203.

Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, et al. The Human
Epigenome Browser at Washington University, Nat Methods. 2011;8:989-90.
Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF, et al.
Exploring long-range genome interactions using the WashU Epigenome
Browser. Nat Methods. 2013;10:375-6.

Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett
J, et al. Transcriptome genetics using second generation sequencing in a
Caucasian population. Nature. 2010;464:773-7.

Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C, et al.
Population genomics of human gene expression. Nat Genet.
2007,39:1217-24,

93.

94

95.

97.

98.

99.

100.

101

102.

Page 15 of 15

Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the
genetic architecture of gene expression in human liver. PLoS Biol. 2008,6:2107.
Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL,

et al. Abundant quantitative trait loci exist for DNA methylation and gene
expression in human brain. PLoS Genet, 2010:6:21000952.

Li @, Stram A, Chen C, Kar S, Gayther S, Pharoah P, et al. Expression QTL-
based analyses reveal candidate causal genes and loci across five tumor
types. Hum Mol Genet. 2014,23:5294-302.

Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al.
Systematic identification of trans eQTLs as putative drivers of known disease
associations. Nat Genet. 2013:45:1238-43,

Hao K, Bosse ¥, Nickle DC, Pare PD, Postma DS, Laviolette M, et al. Lung
eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet.
2012,8:1003029.

Koopmann TT, Adriaens ME, Moerland PD, Marsman RF, Westerveld ML, Lal
5, et al. Genome-wide identification of expression quantitative trait loci
(eQTLs) in human heart. PLoS One. 2014;9:¢97380.

Grundberg E, Adoue V, Kwan T, Ge B, Duan QL, Lam KC, et al. Global
analysis of the impact of environmental perturbation on cis-regulation of
gene expression. PLoS Genet. 2011;7:1001279.

Lappalainen T, Sammeth M, Friedlander MR, ‘t Hoen PA, Monlong J, Rivas
MA, et al. Transcriptome and genome sequencing uncovers functional
variation in humans. Nature. 2013;501:506-11.

Ramasamy A, Trabzuni D, Guelfi 5, Varghese V, Smith C, Walker R, et al.
Genetic variability in the regulation of gene expression in ten regions of the
human brain. Nat Neurosci. 2014;17:1418-28.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 201543:e47

Submit your next manuscript to BioMed Central
and we will help you at every step:

* \We accept pre-submission inquiries

¢ Qur selector tool helps you to find the most relevant journal
* \We provide round the clock customer support

* Convenient online submission

* Thorough peer review

* Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral. com/submit O BioMed Central




Publication 6: Identifying Causal Genes at the Multiple Sclerosis Associated
Region 6g23 Using Capture Hi-C

94



@'PLOS | ONE

CrossMark

click for updates

B OPEN ACCESS

Citation: Martin P, McGovern A, Massey J,
Schoenfelder S, Duffus K, Yarwood A, et al. (2016)
Identifying Causal Genes at the Multiple Sclerosis
Associated Region 6g23 Using Capture Hi-C. PLoS
ONE 11(11): 0166923. doi:10.1371/journal.
pone.0166923

Editor: David R. Booth, Westmead Millennium
Institute for Medical Research, AUSTRALIA

Received: July 7, 2016
Accepted: November 6, 2016
Published: Novemnber 18, 2016

Copyright: © 2016 Martin et al. This is an open
access article distributed under the terms of the
Creative Commaons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: Raw data and Hindll|
restriction fragment interaction counts are available
inthe NCBI Gene Expression Omnibus (GEO;
http://www.ncbi.nim.nih.gov/geo/) under accession
number GSE69600.

Funding: Wellcome Trust Research Career
Development Fellowship (095684); Arthritis
Research UK (grant numbers 20385, 20571);
Wellcome Trust (097820/2/11/B); European
Union’s FP7 Health Programme (FP7-HEALTH-F2-
2012-305549, Euro-TEAM, FP7/2007-2013);
Innovative Medicines Initiative (BeTheCure project

|dentifying Causal Genes at the Multiple
Sclerosis Associated Region 6923 Using
Capture Hi-C

Paul Martin'®, Amanda McGovern'*, Jonathan Massey’, Stefan Schoenfelder?,
Kate Duffus', Annie Yarwood', Anne Barton'-?, Jane Worthington'~, Peter Fraser?,
Stephen Eyre', Gisela Orozco'*

1 Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Division of
Musculoskeletal and Dermatological Siences, Faculty of Biology, Medicine and Health, Manchester Academic
Health Science Centre, The University of Manchester, Stopford Building, Oxford Road, Manchester, M13
9PT, United Kingdom, 2 Nuclear Dynamics Programme, The Babraham Institute, Cambridge CB22 3AT,
United Kingdom, 3 NIHR Manchester Musculoskeletal BRU, Manchester Academic Health Sciences Centre,
Central Manchester Foundation Trust, Manchester, United Kingdom

@« These authors contributed equally to this work.
* gisela.orozco @ manchester.ac.uk

Abstract

Background

The chromosomal region 6g23 has been found to be associated with multiple sclerosis (MS)
predisposition through genome wide association studies (GWAS). There are four indepen-
dent single nucleotide polymorphisms (SNPs) associated with MS in this region, which
spans around 2.5 Mb. Most GWAS variants associated with complex traits, including these
four MS associated SNPs, are non-coding and their function is currently unknown. However,
GWAS variants have been found to be enriched in enhancers and there is evidence that
they may be involved in transcriptional regulation of their distant target genes through long
range chromatin looping.

Aim

The aim of this work is to identify causal disease genes in the 6q23 locus by studying long
range chromatin interactions, using the recently developed Capture Hi-C method in human
T and B-cell lines. Interactions involving four independent associations unique to MS,
tagged by rs11154801, rs17066096, rs7769192 and rs67297943 were analysed using Cap-
ture Hi-C Analysis of Genomic Organisation (CHICAGO).

Results

We found that the pattern of chromatin looping interactions in the MS 623 associated
region is complex. Interactions cluster in two regions, the first involving the rs11154801
region and a second containing the rs17066096, rs7769192 and rs67297943 SNPs. Firstly,
SNPs located within the AHI1 gene, tagged by rs11154801, are correlated with expression
of AHI1 andinteract with its promoter. These SNPs also interact with other potential
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candidate genes such as SGK7 and BCLAF1. Secondly, the rs17066096, rs7769192 and
rs67297943 SNPs interact with each other and with immune-related genes such as IL20RA,
IL22RA2, IFNGR1 and TNFAIP3. Finally, the above-mentioned regions interact with each
other and therefore, may co-regulate these target genes.

Conclusion

These results suggest that the four 623 variants, independently associated with MS, are
involved in the regulation of several genes, including immune genes. These findings could
help understand mechanisms of disease and suggest potential novel therapeutic targets.

Introduction

Genome wide association studies (GWAS) have been pivotal in identifying genetic associa-
tions with single nucleotide polymorphisms (SNPs) in many complex diseases, including mul-
tiple sclerosis (MS) [1-4]. MS is an inflammatory demyelinating disease of the central nervous
system (CNS) and is a common cause of chronic neurological disability, showing moderate
heritability (A, ~6.3) [5]. Similar to many autoimmune diseases, the major histocompatibility
complex (MHC) represents the largest single genetic risk factor for MS, with multiple non-
HLA loci, discovered in large international GWAS, contributing smaller individual effects to
disease susceptibility. Due to the extensive overlap of genetic loci between multiple autoim-
mune diseases, the International Multiple Sclerosis Genetics Consortium (IMSGC) conducted
a large study using the Illumina Immunochip genotyping array, identifying 48 new and vali-
dating 49 previously discovered non-MHC susceptibility variants for MS [6]. Among these
variants, four mapped to the 6q23 region, which is also associated with other autoimmune dis-
eases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), celiac disease
(CeD), type 1 diabetes (T1D), inflammatory bowel disease (IBD), psoriasis (Ps) and psoriatic
arthritis (PsA), and containing several candidate genes, such as TNFAIP3, AHII and IL22RA2
[7-13].

The 6q23 locus, like many other GWAS loci, shows extensive overlap with many other auto-
immune diseases and demonstrates a complex pattern of different associations attributable to
different diseases. This sharing of associated loci led to the Immunochip array which contains
three regions densely mapped and capturing four independent associations with MS (Table 1
and Fig 1) in the 6q23 region. The first, tagged by rs11154801, is located within an intron of
the AHII gene required for both cerebellar and cortical development. The second region,
tagged by rs17066096, is an intergenic region 87kb 5" of IL20RA and 12kb 3’ of IL22RA2. The
third region covers 430kb, encompassing a PTPN11 pseudogene (RP11-95M15.2), TNFAIP3
and several IncRNAs and contains two independent associations (rs7769192 & rs67297943).
Interestingly, while other SNP associations are shared between autoimmune diseases, the MS
associated SNPs are unique to MS alone (S1 Data). As such, these MS associated SNPs could
offer an insight into the mechanisms affecting MS at this locus.

However, due to the design of GWAS, these lead genetic associations do not necessarily
represent the causal variant but instead a number of variants in strong linkage disequilibrium
with them. In addition, associated SNPs have generally been annotated to the closest, most bio-
logically plausible gene. Evidence suggests that GWAS discovered SNPs in general, including
these associations within 6q23, are enriched in cell-type specific enhancer regions [14,15]
which can regulate gene expression. Additionally, an individual’s genotype can influence this
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Table 1. MS 6g23 Immunochip associated regions.

Region Co-ordinates (GRCh37) Index SNP Reported Gene MAF P OR

Chr. Start End

8 134946991 135498875 rs11154801 AHI1 0.37 1.80x107%° 1.12

6 136685539 136875216 rs17066096 IL22RA2 0.23 1.60x 10722 1.14

6 137231416 | 137660037 rs7769192° : 0.45 3.30x107%° 1.08
rs67297943 TNFAIP3 0.22 550x107"3 1.11

All P values are from the joint analysis by Beecham et al.[6]. Chr., chromosome; MAF, minor allele frequency; OR, odds ratio.
a, P values and ORs shown after conditioning on rs67297943.

doi:10.1371/journal.pone.0166923.1001

expression (expression quantitative trait loci (eQTL)), potentially leading to disease. It has
been shown that enhancers can regulate genes located some distance away through long-range
chromatin interactions [16]. Therefore, confidently assigning causal SNPs, genes and cell types
to these and other GWAS signals remains a major challenge. Potential long-range interactions
have previously been prohibitive to investigate as methods, such as 3C and Hi-C, required
interacting regions to be considered a priori or, lacked throughput and resolution. Capture Hi-
C was developed to overcome these limitations by enriching a Hi-C library using RNA baits
designed to specific restriction fragments. This approach reduces library complexity, increases
power and subsequently allows the identification of statistically significant chromatin interac-
tions at a restriction fragment resolution (~4kb). As part of a large study investigating the
interactions with associated regions in four autoimmune diseases [17], several sites within the
6q23 region were targeted, including associated regions and promoters of nearby genes
(Table 1 and Fig 1). Our Capture Hi-C data represents a unique opportunity to explore this
region for MS and offer an insight into the mechanisms specifically affecting MS at this locus
and how they compare with other autoimmune diseases. The aim of this study was to use this
chromatin interaction experiment to explore the unique genetic associations with MS in the
6q23 region to identify possible target causal genes whose expression could be perturbed in at
risk individuals. The ultimate goal is to help translate GWAS findings into clinical benefit, as
the identification of causal genes can pinpoint biological mechanisms altered in disease and
suggest potential therapeutic targets or drug repositioning.

We demonstrate that the MS associated region 6¢23 presents numerous, complex chroma-
tin looping interactions clustered in two regions. The first contains SNPs located within the
AHII gene, tagged by rs11154801, and correlated with expression, which interact with the
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Fig 1. Overview of MS 6q23 Immunochip associated regions. Tracks are labelled as follows: A-Hindlll restriction fragments; B-LD regions
targeted in ‘region’ Capture Hi-C; C-Hindlll restriction fragments targeted in ‘region’ Capture Hi-C; D—Gene regions targeted in ‘promoter’ Capture
Hi-C; E-Hindll| restriction fragments targeted in ‘promoter’ Capture Hi-C; F-ReiSeq genes (packed for clarity); G-MS index SNPs; H-Density of
MS LD SNPs ( = 0.8) and I-MS LD regions. The genomic region chré:136,238,000-137,360,000 has been omitted for clarity. All co-ordinates are
based on GRCh37. Generated using the WashU EpiGenome Browser (http://epigenomegateway .wustl.edu/browser/).

doi:10.1371/journal.pone.0166923.g001
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AHII promoter thereby supporting the gene candidature of AHII. Interestingly, these SNPs
also interact with other potential candidate genes such as SGK1 and BCLAF1, suggesting they
may regulate multiple loci. The second region encompasses the rs17066096, rs7769192 and
rs67297943 associated regions and interact with each other and with immune-related genes,
such as IL20RA, IL22RA2, IFNGR1 and TNFAIP3. Additionally, these regions interact with
each other and therefore, may co-regulate these target genes.

Materials and Methods
MS SNP Associations & Regions

All MS SNP associations in the 6¢23 region were taken from the IMSGC Immunochip study
[6]. All SNPs in linkage disequilibrium (LD) (r2>0.8) with each lead Immunochip MS SNP
were identified using European samples from the 1000 Genomes Phase 3 release. Associated
regions for each lead association were defined by the two terminal SNPs in LD.

Cell culture

B-lymphoblastoid cell lines (LCL) were obtained directly from Coriell Institute for Medical
Research (catalogue number GM12878). Cells were grown in vented 25cm? cell culture flasks
containing 10-20mls of Roswell Park Memorial Institute (RPMI)-1640 + 2mM L-glutamine
culture medium, supplemented with 15% foetal bovine serum (FBS). Flasks were incubated
upright at 37°C/5% CO®. Cultures were regularly monitored to maintain a cell density between
2x10%-5x10° viable cells/ml. Cells were split every 2 days into fresh medium until they reached
a maximum density of 1x10° cells/ml.

Jurkat E6.1 human leukaemic T-lymphoblast cells were obtained directly from LGC Stan-
dards (catalogue number ATCC ¥ TIB-152™). Cells were grown in vented 25cm? cell culture
flasks containing 10-20mls of RPMI-1640 + 2mM L-glutamine, supplemented with 10% FBS.
Flasks were incubated upright at 37°C/5% CO, and the cultures regularly monitored to main-
tain a cell density between 3x10°-9x107 viable cells/ml.

These cell lines are not listed in the in the database of commonly misidentified cell lines
maintained by ICLAC, were authenticated using STR analysis and were tested for mycoplasma
contamination (MycoSEQ® Mycoplasma Detection System, 4460625, Life Technologies).

Capture Hi-C

Capture Hi-C data was produced as part of a larger study targeting all regions associated with
four autoimmune diseases (RA, JIA, PsA and T1D) and separately, all promoters within these
regions [17]. Briefly, all promoters within 1Mb of associated SNPs were selected and RNA baits
were designed to the ends of all fragments within 500bp of the transcription start sites. Separately,
associated regions were defined by SNPs in LD (r*>0.8) and all restriction fragments not selected
for the promoter capture experiment were targeted. Experiments were performed using human
T-cell (Jurkat) and B-cell (GM12878) lines. Capture Hi-C libraries were sequenced using 75bp
paired-end reads on an Illumina HiSeq 2500. Resulting reads were mapped to restriction frag-
ments and filtered using the Hi-C User Pipeline (HICUP http://www.bioinformatics.babraham.
ac.uk/projects/hicup). Chromatin interactions were analysed using CHICAGO (Capture Hi-C
Analysis Of Genomic Organisation [18], http://regulatorygenomicsgroup.org/chicago), a publicly
available, open-source, bespoke statistical model for detecting significant interactions in Capture
Hi-C data at a single restriction fragment resolution. Further filtering was carried out using the
BEDTools v2.21.0 pairtobed command to identify significant interactions involving the MS asso-
ciated regions.
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Chromatin interactions identified in the Capture Hi-C data were further validated against
dense Hi-C data generated by Rao et al. [19] in GM 12878 cells. No data was available for the
Jurkat T-cell line. Raw contact matrices and normalisation matrices for GM12878 cells at 5kb
resolution were obtained from GEO accession GSE63525. Observed and expected contact
matrices were normalised using the Knight and Ruiz normalisation matrices as described in
the accompanying documentation. Observed/expected (O/E) values were calculated and fur-
ther filtered by O/E =5 and normalised read count > 5. BEDTOOLS was used to obtain the
overlap of interactions observed in our data and the Rao et al. [19] data.

Expression quantitative trait loci (eQTLs) analysis

Publicly available datasets from Westra, ef al. [20], the GEUVADIS analysis (http://www.ebi.
ac.uk/arrayexpress/files/E-GEUV-1/analysis_results/) and Raj et al. [21] were queried directly.
Additional datasets were also queried through HaploReg [22]. Two whole-genome gene
expression datasets were also available in-house: CD4+ and CD8+ T-cells from 21 healthy
individuals of the National Repository of Healthy Volunteers (NRHV), The University of
Manchester. Written informed consent was obtained from all subjects. Ethical approval was
obtained from North West Centre for Research Ethics Committee (REC: 99/8/84). Samples
were all of Caucasian ancestry with a median age of 50.5 years (2682 years) and comprised of
8 males and 13 females. mRNA was isolated from sorted cell subsets, quality and concentration
assessed using the Agilent Bioanalyzer and Nanodrop, before cDNA/cRNA conversion using
Mlumina TotalPrep RNA Amplification Kits. 750ng of cRNA was hybridised to HumanHT-12
v4 Expression BeadChip arrays according to the manufacturer’s protocol before being scanned
on the Illumina iScan system. Raw expression data were exported from Illumina GenomeStu-
dio and analysed using the R Bioconductor package ‘limma’ 81. Briefly, the neqc function was
used for log2 transformation of the data, background correction and quantile normalisation
using control probes. Principal Component Analysis was used to detect batch effects. The
¢DNA/cRNA conversion produced the largest batch effect in both cohorts and was corrected
using ComBat (in R Bioconductor package sva) (http://bioconductor.org/packages/release/
bioc/html/sva.html). Genome-wide genotype data was generated using the Illumina Human-
CoreExome BeadChip kit. Genotype data was aligned to the 1000 genomes reference strand,
pre-phased using SHAPEIT2 (v2.r727), before imputation using IMPUTE2 (v2.3.0) with the
1000 genome reference panel Phase 1. Imputed data was hard-called to genotypes using an
INFO score cut-off of 0.8 and posterior probability of 0.9. The effect of the SNPs on gene
expression was analysed using MatrixEQTL (v 2.1.0) (http://www.bios.unc.edu/research/
genomic_software/Matrix_eQTL/) with an additive linear model. Only SNPs within 4Mb of a
gene expression probe were considered to be cis-eQTL.

Bioinformatics Refinement of SNPs

SNPs were annotated using data from HaploReg v4.1 [22] and RegulomeDB v1.1 [23] for each
LD SNP and combined with our Capture Hi-C data. SNPs attaining a RegulomeDB score of
>5 and showing evidence of chromatin interactions in either cell type were selected as poten-
tially causal and merit further investigation.

Results and Discussion
Capture Hi-C

Chromatin interactions at the 623 locus were analysed as part of a larger study that included
all known risk loci for RA, juvenile idiopathic arthritis (JTA), PsA and T1D. We performed two
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Fig 2. Overview of MS 6q23 interactions. Tracks are labelled as follows: A-LD regions targeted in ‘region’ Capture Hi-C; B-Gene regions
targeted in ‘promoter’ Capture Hi-C; C—RefSeq genes (packed for clarity); D-MS index SNPs; E-MS LD regions; F-Interactions observed in the
GM12878 B-cell line and G—Interactions observed in the Jurkat T-cell line. Promoter and region Capture Hi-C experiments have been merged for
clarity. The genomic region chr6:136,650,000-137,280,000 has been omitted for clarity. All co-ordinates are based on GRCh37. Generated using
the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/).

doi:10.1371/journal.pone.0166923.9002

different Capture Hi-C experiments: firstly, the Region Capture targeted the LD regions
(r*>0.8) for all SNPs associated with each disease (Fig 1B); secondly, the Promoter Capture
targeted all known gene promoters overlapping a region 500kb upstream and downstream of
the lead disease associated SNP (Fig 1D). Capture Hi-C libraries were generated for two cell
lines: GM12878, a B-lymphoblastoid cell line, and Jurkat, a CD4+ T-lymphoblastoid cell line.

Our Capture Hi-C experiments revealed that the 6q23 region presents a complex pattern of
chromosomal interactions, highlighting both new and previously implicated genes for disease
risk. Overall, 827 unique interactions involving MS 6q23 associated regions were observed
across both cell lines and both capture experiments (promoter & region) (Fig 2 and S1 Fig).
Each cell line demonstrated similar interaction patterns in both capture experiments, Encour-
agingly, there was a high degree of support from previously published Hi-C data obtained in
GM12878 cells [19], with between 81% and 90% of interactions identified through our Capture
Hi-C also being seen at an observed/expected ratio of >5 in previously published data.

The numerous chromosomal interactions detected appeared to cluster in two genomic
locations, involving the rs11154801 region and a region containing the other three indepen-
dent MS associations: rs17066096, rs7769192 and rs67297943 (Fig 2).

The rs11154801 LD block spans 170.4kb and contains several enhancers overlapping SNPs
in strong LD with the lead association. It demonstrates a complex array of several long-range
(>100kb) as well as shorter (< 100kb) chromatin interactions (Fig 2 and S2 Fig) in both cell
lines. Shorter internal chromatin interactions include ones with restriction fragments flanking
the AHII gene (previously assigned as the candidate gene to this variant) promoter, and SNPs
in LD with rs11154801. We show how these SNPs, within the introns of AHII, interact with
the promoter region thereby supporting the AHII hypothesis in both cell lines. Mutations in
AHII have been shown to cause Joubert syndrome [24], an autosomal recessive neurological
condition causing symptoms including neonatal breathing abnormalities and mental retarda-
tion. Furthermore, it has been suggested that AHII is required for both cerebellar and cortical
development in humans and is expressed in the brain [25].

However, this locus may be more complex than previously thought, as long-range chroma-
tin interactions, although more numerous in B-cells, were observed between the enhancer
region and other compelling candidates such as SGK1 and BCLAFI in both cell lines. The
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interaction with SGK1 represents a >>1.2Mb interaction and SgkI knockout mice have been
shown to have a reduced incidence of disease severity in experimental autoimmune encephalo-
myelitis (EAE), a mouse model of MS [26]. Other long-range interactions include those to the
MYC and PDE7B gene regions.

Finally, rs11154801 also showed an interaction in both B and T-cells with a region encom-
passing the promoters of BCLAF1, MTFRZ, an antisense gene (RP13-143G15.4) overlapping
PDE7B and a lincRNA (RP3-406A7.7). The BCLAF1 gene encodes a transcriptional repressor
which interacts with BCL2-family proteins, is expressed in the brain and overexpression can
lead to cell apoptosis [27]. In lymphocytes, dysregulation of BCL2-family proteins has been
shown to lead to a reduction of pro-apoptotic BCL-2 members and survival of T-cells in MS
[28]. Additionally, BCLAFI has also been shown to be crucial in the homeostasis of T- and B-
cell lineages and proliferation of T-cells [29]. These interactions suggest that the associations at
this locus may have different or additional effects on disease than just the previously assigned
AHII gene.

The second cluster of chromatin interactions involve the remaining MS associated SNPs in
the 6923 region, rs17066096, rs7769192 and rs67297943. Our Capture Hi-C results showed
that these three SNPs interact with each other and also with several genes with immune func-
tion such as IL20RA, IL22RA2, IFNGR1 and TNFAIP3, suggesting that these variants may be
involved in the regulation of common immune pathways (Fig 2).

The first two interacting regions in this cluster, identified by the promoter Capture Hi-C
experiment and tagged by rs17066096, were only observed in B-cells and involved the
IL22RA2and IFNGRI gene promoters, almost 71kb and 113kb away, respectively. The restric-
tion fragment overlapping the rs17066096 LD block shows evidence of enhancer activity, as
predicted by ChromHMM, and the furthest 5 SNP in LD with the index SNP is located within
this enhancer.

The region tagged by rs7769192 spans 50kb and contains 72 SNPs in LD, 21 of which are
perfectly correlated with the lead SNP. It shows evidence of multiple enhancers and in addition
to the previously mentioned interaction with the rs17066096 region, interacts with five other
regions, in both cell lines. The first of these is located >500kb 5’ of rs7769192 and contains the
IL20RA gene. The next two regions, located over 400kb away, are shared with the rs17066096
region and contain the IL22RA2 and IFNGRI genes, providing further evidence of the inter-
play between the two associated regions. The product of the IFNGR1 gene is a subunit of the
interferon gamma (IFN-y) receptor whose ligand, IFN-y, is important in adaptive immunity
and has been linked to many different autoimmune diseases [30]. The IL20RA and IL22RA2
genes both encode receptors for members of the IL-20 sub-family of cytokines and both
exhibit a pro-inflammatory effect [31]. Additionally, anti-IL20 therapy has recently been
shown to be effective in the treatment of RA and psoriasis [32,33]. Although anti-IL20 therapy
was not developed as a result of Capture Hi-C, the discovery of interactions between these
genes and autoimmune disease associations, demonstrates the power of this technique to
inform drug discovery or repositioning. Further evidence for anti-IL20 therapy comes from
the interaction with IL22RA2. IL22RA2 encodes a soluble receptor which binds to and inhibits
IL-22, a cytokine which can stimulate pro-inflammatory epithelial defence mechanisms [34],
preventing the interaction with its cell surface receptor. This evidence suggests that blocking
the IL-20 pathway may be effective in the treatment of MS and other autoimmune diseases.

The fourth region is located 178kb 3’ of the associated region and contains multiple pro-
moters of the TNFAIP3 gene as well as a non-coding processed transcript (RP11-35612.4) of
unknown function. The role of TNFAIP3 in autoimmunity is well established and the gene
product A20 is a protein that is induced by tumour necrosis factor (TNF) and inhibits NFxB
activation and TNF-mediated apoptosis [35]. This locus within the 6q23 region is one of the
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most important autoimmunity risk loci, as it contains multiple SNPs strongly associated with
many autoimmune diseases, including MS, RA, SLE, CeD, IBD, psoriasis and PsA, among oth-
ers. Variants associated with most autoimmune diseases map to the TNFAIP3 gene or its vicin-
ity, including the MS SNPs rs17066096, rs7769192 and rs67297943.

The rs67297943 SNP is located within a predicted enhancer element in B-cells and also in a
48.8kb region showing multiple enhancer marks in both B and T-cells. Furthermore, the adja-
cent restriction fragment to rs67297943 interacts with the IL20RA promoter region only in B-
cells in this experiment.

Our Capture Hi-C results suggest that rs17066096, rs7769192 and rs67297943 physically
interact with several immune genes with pro-inflammatory roles, such as IL20RA, IL22RA2,
IFNGR1I and TNFAIP3, indicating that they may be involved in the inflammatory processes
that typically occurs in autoimmunity. Conversely, rs11154801, which is exclusively associated
to MS and not other autoimmune diseases, interacts with genes with neurological function,
like AHII, SGK1 and BCLAFI. Intriguingly, these two separate regions, over 2.3Mb apart,
interact with each other in T-cells but not B-cells (S1 Fig), suggesting that these pathways may
converge to give rise to disease-specific MS mechanisms in a stimulus and cell type specific
manner. In this regard, it has been previously shown that there is a correlation between chro-
matin interactions and gene co-expression [36-39] and it has been hypothesised that multiple
co-regulated genes can interact and share regulatory elements at specialised ‘transcription fac-
tories’ [16]. Our data possibly supports this idea and suggests a possible co-regulation of genes
in this region in MS.

It could be argued that the differences observed between cell types for the rs1154801 region
and the rs17066096 region could also be attributable to genotype differences in the cell lines
(Table 2). While the overall pattern of chromatin interactions is similar for the rs11154801,
rs17066096 and MYB regions, the intensity of interactions observed does vary between cell
lines and could be due to carriage of risk alleles in the B-cell line, absent in the T-cell line. It is
therefore important to validate the chromatin interactions in a genotype specific manner.

Expression Quantitative Trait Loci (eQTLS)

Public databases were interrogated for evidence of eQTLs for MS associated SNPs in the 6q23
region (rs11154801, rs17066096, rs7769192 and rs67297943) and all SNPs in LD (r2>>0.8) with
them. The SNPs within the intergenic region 5’ of the AHII gene, tagged by rs11154801 and
interacting with the AHII gene promoter, are correlated with AHIT mRNA expression in mul-
tiple tissues, including brain, nerve and whole blood. This further supports that AHII is one of
the causal genes within the 6q23 region.

Although many of the interactions detected in the Capture Hi-C experiment are between
regions which show enhancer activity and regions which show active transcription, no eQTL
evidence from public databases was observed for any of the other MS associated SNPs

Table 2. Associated SNP genotypes for GM12878 (B) and Jurkat (T) cell lines.

SNP Risk Allele GM12878 Jurkat
Genotype Number of risk alleles Genotype Number of risk alleles
rs11154801 A CA 1 CcC 10
rs17066096 G AA 0 AG 1
rs7769192 A AA 2 unknown*
1s67297943 C TC 1 unknown*

*Neither directly genotyped nor suitable proxies available on array

d0i;10.1371/journal.pone.0166923.1002
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investigated, other than rs11154801. This could be due to the distance cut-offs used to define
cis effects or the selection of the correct cell type and stimulatory conditions, as eQTLs are
known to be highly cell type and stimulus specific.

However, using in-house eQTL data on CD4+ and CD8+ primary T-cells from healthy
donors, rs17066096 was shown to be correlated with expression of IL20RA in CD8+ T-cells
(P =0.01, Fig 3). Although the design of the Capture Hi-C experiment did not allow for the
testing of chromatin interactions between the rs17066096 region and IL20RA, this eQTL sug-
gests IL20RA could be important in the pathogenesis of MS in CD8+ T-cells, which have previ-
ously been shown to contribute to disease [40]. This data also confirmed the eQTL between
rs11154801 and AHII in both CD4+ and CD8+ T-cells (P = 2.0x10™* and 0.02 respectively).
Full eQTL results for all MS SNPs are presented in S2 Data. No other eQTLs were identified
between MS SNPs and genes showing chromatin interactions, this may again be due to the
selection of the correct cell type and stimulatory conditions.

Bioinformatics Refinement of SNPs

By utilising publically available data on regulatory elements obtained through HaploReg and
RegulomeDB and augmenting with our Capture Hi-C data, we were able to refine large num-
bers of potential causal SNPs for three out of the four MS associated regions, by strong evi-
dence of being in both a relevant cell-type enhancer region and interacting with a gene
promoter (Table 3 and S3 Data). For the rs11154801 region, 6 SNPs were identified out of 19
potential candidates; for the rs17066096, 3 SNPs were selected from a total of 7 in LD with the
index association; and finally, for the rs7769192 region, we refined the potential candidates to
4 SNPs out of 72 in LD with rs7769192. No SNPs were found in LD with rs67297943 and
although this SNP shows enhancer marks in 6 tissues, no interactions were identified with this
region and as such further refinement was not possible. It will be imperative to follow-up puta-
tive SNPs and genes with functional assays and demonstrate their contribution to disease in
relevant cell types in a biological context using genome editing techniques.

Conclusion

In conclusion, our work has strengthened the case for the AHI!I gene candidate but also identi-
fied other potential MS gene targets, such as SGK1, BCLAFI IL20RA, IL22RA2, IFNGR1 and
TNFAIP3. Additionally, we have shown a possible co-regulation of MS GWAS associations in
the 6923 region, which could help elucidate the pathogenesis of MS as well as other autoim-
mune diseases. These targets require further functional investigation which has been informed
by the bioinformatics analysis. While the MS associations show evidence of interacting with
other genes with no obvious role in MS pathogenesis, it is likely that they share regulatory ele-
ments within this region. It is however important to investigate these interactions, in addition
to ones highlighted in this analysis to fully explore disease pathogenesis.

Whilst the interactions identified require further independent validation, the unique exper-
imental design using complementary capture baits (region and promoter captures) provides
robust evidence of chromatin interactions. Additionally, validation with chromatin interac-
tions identified by Rao ef al. [19] further add to the confidence of the observed interactions.
While Capture Hi-C offers much greater resolution for chromatin interactions than Hi-C,
observed interactions are still limited by the restriction enzyme used and do not pinpoint the
interactions to specific enhancers. As such further work will be necessary to confirm causal
enhancers and how they affect gene regulation. The use of cell lines is a limitation of the study
but the experimental requirement of high cell numbers for Capture Hi-C makes the use of pri-
mary cells challenging. However, it is essential that further experiments are performed in
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Fig 3. Increased expression of IL20RA in primary CD8+ T-cells from 21 healthy individuals carrying the G risk allele of rs17066096,
P =0.01. The three different genotypes for the SNPs are displayed on the X axis and gene expression levels on the Y axis. Error bars indicate
standard deviation.

doi:10.1371/journal.pone.0166923.9003

primary cells to fully elucidate how chromatin interactions can effect gene regulation in MS.
Despite these limitations of Capture Hi-C, it is clear that this technique is a powerful approach
to link genes to their regulatory elements and this work has identified several candidate causal
genes for MS. Additionally it has been proposed that by using genetic evidence to select drug
targets, it could double the success rate in clinical development [41]. Since Capture Hi-C has
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the potential to identify causal genes for genetic associations, it provides a way to enhance this

further. This is exemplified by the identification of chromatin interactions between MS associ-
ations and the IL20RA and IL22RA2 genes, showing a potential use of anti-IL20 therapy in MS,
and highlights the potential of Capture Hi-C to provide novel therapeutic targets or drug repo-
sitioning to improve patient outcome.

Supporting Information

$1 Data. LD between MS associated SNPs and other disease associated SNPs in the 6q23
region. Disease abbreviations are as follows: CEL-Coeliac disease; CRO-Crohn’s disease; MS-
Multiple sclerosis; PBC-Primary biliary cirrhosis; PSO-Psoriasis; RA-Rheumatoid arthritis;
SLE-Systemic lupus erythematosus; T1D -Type 1 diabetes; UC-Ulcerative colitis; SJO—Sjog-
ren Syndrome.

(XLSX)

$2 Data. NRHV CD4 and CD8 eQTLs for MS SNPs within the 6q23 region.
(XLSX)

$3 Data. Full table of bioinformatics and Capture Hi-C data analysis. Refined SNPs are
highlighted in green.
(XLSX)

S$1 Fig. Interactions within the rs11154801 LD region. Tracks are labelled as follows: A-LD
regions targeted in ‘region’ Capture Hi-C; B-Gene regions targeted in ‘promoter’ Capture Hi-
C; C-GENCODE Genes V17; D-MS index SNPs; E-MS LD regions; F-Interactions observed
in the GM 12878 B-cell line and G-Interactions observed in the Jurkat T-cell line. All co-ordi-
nates are based on GRCh37.

(TIF)

S2 Fig. Full overview of MS 6q23 Immunochip associated regions. Tracks are labelled as fol-
lows: A-LD regions targeted in ‘region’” Capture Hi-C; B-Gene regions targeted in ‘promoter’
Capture Hi-C; C-RefSeq genes (packed for clarity); D-MS index SNPs; E-MS LD regions; F-
Interactions observed in the GM12878 B-cell line and G-Interactions observed in the Jurkat
T-cell line. All co-ordinates are based on GRCh37.

(TIF)
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