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Abstract 

Genome-wide association studies (GWAS) have been tremendously 
successful in identifying genetic variants associated with complex diseases, 
such as rheumatoid arthritis (RA). However, the majority of these associations 
lie outside traditional protein coding regions and do not necessarily represent 
the causal effect. Therefore, the challenges post-GWAS are to identify causal 
variants, link them to target genes and explore the functional mechanisms 
involved in disease. The aim of the work presented here is to use high level 
bioinformatics to help address these challenges. 

There is now an increasing amount of experimental data generated by several 
large consortia with the aim of characterising the non-coding regions of the 
human genome, which has the ability to refine and prioritise genetic 
associations. However, whilst being publicly available, manually mining and 
utilising it to full effect can be prohibitive. I developed an automated tool, 
ASSIMILATOR, which quickly and effectively facilitated the mining and rapid 
interpretation of this data, inferring the likely functional consequence of 
variants and informing further investigation. This was used in a large extended 
GWAS in RA which assessed the functional impact of associated variants at 
the 22q12 locus, showing evidence that they could affect gene regulation. 

Environmental factors, such as vitamin D, can also affect gene regulation, 
increasing the risk of disease but are generally not incorporated into most 
GWAS. Vitamin D deficiency is common in RA and can regulate genes through 
vitamin D response elements (VDREs). I interrogated a large, publicly 
available VDRE ChIP-Seq dataset using a permutation testing approach to 
test for VDRE enrichment in RA loci. This study was the first comprehensive 
analysis of VDREs and RA associated variants and showed that they are 
enriched for VDREs, suggesting an involvement of vitamin D in RA. 

Indeed, evidence suggests that disease associated variants effect gene 
regulation through enhancer elements. These can act over large distances 
through physical interactions. A newly developed technique, Capture Hi-C, 
was used to identify regions of the genome which physically interact with 
associated variants for four autoimmune diseases. This study showed the 
complex physical interactions between genetic elements, which could be 
mediated by regions associated with disease. This work is pivotal in fully 
characterising genetic associations and determining their effect on disease. 
Further work has re-defined the 6q23 locus, a region associated with multiple 
diseases, resulting in a major re-evaluation of the likely causal gene in RA 
from TNFAIP3 to IL20RA, a druggable target, illustrating the huge potential of 
this research. Furthermore, it has been used to study the genetic associations 
unique to multiple sclerosis in the same region, showing chromatin interactions 
which support previously implicated genes and identify novel candidates. This 
could help improve our understanding and treatment of the disease. 

Bioinformatics is fundamental to fully exploit new and existing datasets and 
has made many positive impacts on our understanding of complex disease. 
This empowers researchers to fully explore disease aetiology and to further 
the discovery of new therapies.  
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iii. An overall summary of the aims and achievement of the work, for which the 

publications submitted give evidence. 

1 Introduction 

1.1 Complex Disease Genetics 

Many common diseases, such as type 1 diabetes (T1D), inflammatory bowel disease 

(IBD) and rheumatoid arthritis (RA), are caused by a complex combination of genetic, 

environmental and lifestyle factors. Historically, complex disease genetics were 

investigated using linkage or candidate gene studies. While these approaches were 

successful in identifying genetic changes and genes causing monogenic disorders1,2, 

they have had limited application to complex disorders as, with a few notable 

exceptions with large effect sizes3–5, they were underpowered to detect much of the 

genetic susceptibility to disease. 

More recently, since 2007 starting with the Wellcome Trust Case Control Consortium 

(WTCCC)6, the modern complex disease genetics era have utilised genome-wide 

association studies (GWAS). GWAS have been tremendously successful in 

identifying genetic variants associated with common complex diseases in a 

hypothesis-free way6–11 and were made possible by technological developments in 

array based genotyping methods, pioneered by Affymetrix and Illumina. They 

compare the allele frequency of thousands of markers across the whole genome, 

usually single nucleotide polymorphisms (SNPs), between cases (individuals with 

disease) and controls (healthy individuals) to determine if one allele occurs in cases 

more or less often than expected; the statistical significance of this difference is then 

determined. 

Due to the inherited nature of the genome, the vast majority of associations identified 

in GWAS only provide the initial signposts for the identification of the genetic variants 

underpinning susceptibility to disease and do not represent the causal effect but one 

in linkage disequilibrium (LD). LD describes how alleles can segregate based on 

recombination during meiosis; alleles of SNPs in high LD are found together more 

often than SNPs in low LD. As such, the causal variation could be any SNP that lies 

in high LD with the GWAS associated SNP and can often implicate large genomic 

regions representing many potential causal SNPs. It can therefore be difficult to 

pinpoint this association to a specific region or gene. Additionally, for many complex 

diseases, the vast majority of the genetic associations identified are found outside 
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traditional protein coding genes and recent studies have shown that they are enriched 

in enhancer elements suggesting that they are involved in gene regulation12–14. 

In an attempt to refine or ‘fine map’ the genetic associations identified, coupled with 

the insight that many common complex disease associations share significant overlap 

with each other, the Immunochip consortium sought to developed a genotyping array 

which could achieve this in a cost effective way to allow much larger sample 

numbers15. This approach not only fine mapped many associations but was also 

successful in identifying new variants associated with disease16–27. Although the 

Immunochip array, and subsequent large imputed meta-analyses28 were successful, 

it was still not possible to fully resolve the causal variations underpinning disease 

susceptibility. It is therefore clear that identifying the causal SNP and, more 

importantly, the underlying disease mechanisms using GWAS/genetic evidence 

alone is typically not possible and considerable challenges remain if we are to fully 

translate GWAS findings into an understanding of disease aetiology. 

Therefore, the challenges post-GWAS are firstly to determine which of these variants 

is most likely causal, secondly, which gene they regulate and finally, how the disease 

associated allele affects the functional mechanisms involved in disease. The basis of 

my work contributing to this thesis has been to use high level bioinformatics to help 

address these challenges. 

Specifically, in the first publication29, I developed a one-stop solution that quickly and 

effectively allowed genetics researchers to mine and rapidly interpret the data 

generated by the ENCyclopaedia Of DNA Elements (ENCODE) project30 with ease. 

This has enabled researchers to easily identify and prioritise potential causal 

candidate variants for further investigation. This required multiple bioinformatics skills, 

including expertise in programming and databases and coupled with my background 

in molecular biology allowed me to develop a tool that researchers could use to fully 

utilise this resource. This was accomplished by developing a web-based interface to 

allow researchers both internally and externally to access and use the tool efficiently. 

This has been used in multiple publications to assess and prioritise genetic variants 

associated with disease. For example, the second paper31 describes a large extended 

GWAS in RA which used this tool to assess the functional impact of variants 

associated at the 22q12 locus. Evidence was discovered suggesting an associated 

variant, rs1043099, and correlated variants map to sites of transcription factor binding 

and open chromatin. Coupled with histone modification evidence, this suggests that 

these associated variants could affect gene regulation. 
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In the third paper32, I utilised a large publicly available dataset comprising of vitamin 

D response element (VDRE) ChIP-Seq data33 and incorporated it with our existing 

genetic evidence. This custom analysis involved processing and filtering the data into 

a useable format and utilised a permutation testing approach to test for VDRE 

enrichment in RA loci and matched random controls. This study showed that variants 

associated with RA are enriched for VDREs, providing a link between vitamin D, a 

non-genetic factor, and RA. This study was the first comprehensive analysis of 

VDREs and RA associated variants and provides evidence for in involvement of 

vitamin D in RA and has the potential to inform research into vitamin D therapy in RA. 

The fourth paper34 represents a large study that was developed and carried out in 

Manchester to infer causal genes from genetic associations for four autoimmune 

diseases. This unique study has shown the complex physical interactions between 

genetic elements which exist in the nucleus and are mediated by regions associated 

with disease. This work involved careful consideration with regards to experimental 

design and subsequent analysis as it was one of the first to employ the Capture Hi-C 

technology and utilised a unique study design. The sequence data generated by this 

study was roughly equivalent to the amount required for three human genomes and 

required the development of custom pipelines and analyses to identify the multiple 

complex effects observed. Furthermore, thousands of interactions were identified and 

the results had to be stringently filtered to provide robust, validated interactions which 

had strong biological effect. This study is, and will continue to be, pivotal in 

subsequent functional experiments to fully characterise genetic associations and 

determine their effect on disease. 

Although only recently published, the technique has generated considerable interest 

from researchers in a number of areas and is already being applied to post-GWAS 

investigation of a number of different diseases. This has already led to further work 

by our group, presented in the final two papers35,36, the first of which has re-defined a 

genomic region associated with multiple diseases. An in depth analysis of the 

interactions of the 6q23 locus has resulted in a major re-evaluation of the likely causal 

gene from TNFAIP3 to IL20RA, a drugable target. The final paper investigated the 

interactions involving variants only associated with multiple sclerosis (MS) in the 6q23 

region. This showed that MS associated variants are involved in two clusters of 

interactions: one containing neurologically related genes and the other 

immunologically related genes, showing that individual variants could regulate 

multiple genes and that multiple independent variants could co-regulate groups of 
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functionally similar genes. These two papers illustrate the huge potential impact of 

this and similar subsequent research.  

1.2 Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a common complex autoimmune disease characterised 

by chronic inflammation of the synovial joints leading to irreversible joint damage, 

disability and increased mortality. It is the most common form of arthritis in the UK, 

affecting approximately 1% of the population worldwide and costs the NHS around 

£3.5 billion per annum. However, the cause of RA is still unknown and current 

treatment options are not always effective. As such, it is important to understand 

which factors contribute to an individual’s risk to RA to allow clinicians to effectively 

manage disease. The largest predisposing factor for developing RA is the genetic 

background of an individual, with λs estimates ranging from 5-1037, and genetic 

association studies have been successful in identifying over 100 genetic regions 

containing variants associated with RA6,10,11,19,28,38–40.  

1.2.1 RA Genetic Associations 

The largest and first genetic effect identified comes from the human leukocyte antigen 

(HLA) region and the class II HLA-DRB1 gene, specifically copies of the HLA-DRB1 

gene containing the shared epitope, a five amino acid motif which confers 

susceptibility to RA (amino acid positions 70-74)41. More recently, a new model for 

the association of the HLA region in RA has been proposed which has identified that 

five amino acids in three HLA proteins (HLA-DRβ1, HLA-B & HLA-DPβ1) can explain 

most of the HLA risk in RA patients who have antibodies against cyclic citrullinated 

peptides (anti-CCP-positive RA)42. The main finding of this study was that HLA-DRβ1 

risk could be defined by three amino acids at positions 11, 71 and 74 which, whilst 

offering new insights into RA HLA association does not radically alter the existing 

shared epitope hypothesis. A recent study in anti-CCP-positive (ACPA+) RA, has also 

shown that amino acids at these positions are associated with severity, mortality and 

treatment response in RA patients43. Additionally, a study in anti-CCP-negative 

(ACPA-) RA showed that while HLA-DRβ1 is associated with this subtype, albeit with 

a lower effect size, different HLA-DRβ1 alleles also have a different direction of effect 

(i.e. risk vs protective) (Figure 1)44. 
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Figure 1 Distinct Effect Sizes of Amino Acid Residues at HLA-DRβ1 Position 11 

Effect sizes and confidence intervals for ACPA+ are shown on the x-axis and for ACPA− on the y-

axis44. Reprinted from American journal of human genetics, 94, Han et al., Fine mapping seronegative 

and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of 

heterogeneity, 522-532, Copyright 2014, with permission from Elsevier.  

The second pre-GWAS era association to be identified was the rs2476601, non-

synonymous SNP located in the PTPN22 gene which causes an arginine at position 

620 to be replaced by tryptophan (R620W)45. This risk allele of rs2476601 is common 

in European and American populations (5-15%), although is absent to rare in African 

and Asian populations (0-2%) suggesting that the allele appeared late in humans in 

a European population46. The PTPN22 R620W variant has also been associated with 

many other autoimmune diseases including systemic lupus erythematosus (SLE)47, 

Myasthenia Gravis48, Crohns49, juvenile idiopathic arthritis (JIA)50 and originally in 

type 1 diabetes (T1D)51. This suggests it has a more general autoimmune effect and 

as a result, several groups have studied the functional consequence of the R620W 

polymorphism with mixed results. Bottini et al.51 and Begovich et al.45 identified the 

association in T1D and RA respectively and studied the functional impact of the 

variant. Their findings showed that the 620W variant represents a gain of function 

allele by altering the ability of LYP, the protein encoded by PTPN22, to interact with 

Csk, a negative regulatory kinase, potentially leading to a decrease in T-cell signalling 

and activation. Further studies in healthy individuals and those with autoimmune 

diseases have corroborated these findings, showing reduced interleukin 2 (IL-2) 

production, decreased activity of the NFAT/AP-1 transcription factor complex, 

increased phosphatase activity, reduced calcium mobilisation and reduced T-cell 

receptor signalling52–54. However other studies have shown the 620W variant to be a 



25 
 

loss of function allele54–56, showing more efficient calcium mobilisation in T-cells, 

higher numbers of IL-2 producing cells and increased numbers of autoantibody 

producing cells in carriers of the 620W variant compared to individuals carrying the 

R620 variant. Overall however, most primary cell studies have found the R620W 

variant to have a gain of function46. These contrasting findings may be due to the 

variation having different effects on multiple pathways in the same individual or cell 

type or may represent disease specific effects. 

Subsequent GWAS, GWAS meta-analyses and candidate gene studies prior to 2012 

identified a further 33 loci associated with RA in European populations3,10,11,38–40,57–60. 

In 2012 the results of the Immunochip study19 were published and identified an 

additional 14 loci to total 48 non-HLA RA associations (Figure 2). Through these 

genetics studies in RA, differences between ethnicities were also observed. For 

example, as early as 2003, Suzuki et al.61 identified SNPs in the PADI4 gene which 

were associated with RA in a Japanese population. This association was eventually 

replicated in samples of European ancestry but not robustly until 2012 by Eyre et al.19. 

Another example, previously mentioned, is the PTPN22 R620W variant which, 

although being robustly associated with RA in European and American populations, 

is virtually absent in Asian populations and is not associated with RA susceptibility. A 

further trans-ethnic analysis of the Immunochip results combined with GWAS results 

and whole-genome imputation28 identified a further 53 loci associated with RA 

susceptibility resulting in 101 non-HLA RA associations (Figure 3). This study also 

identified differences between European and Asian populations, identifying 18 

variants only present in Europeans and 1 only present in Asians, although their 

findings did support their hypothesis that, in general, the genetic risk of RA is shared. 
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Figure 2 RA genetic susceptibility loci identified prior to 2013 

Loci are shown on the x-axis and effect sizes on the y-axis. Cumulative proportion of observed 

variance in disease susceptibility explained is shown by the red line62. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Rheumatology 9:141-153, copyright 2013. 

 

Figure 3 RA genetic susceptibility loci identified to date 

Approximate chromosomal position of markers are indicated63.  

1.2.2 Shared Autoimmune Risk Loci 

GWAS have therefore been successful in identifying variants and increasing our 

knowledge of RA genetics, implicating several loci important in disease. These 

include both variants which are unique to RA (~28%) and many which share 

associations, some substantially, with other complex diseases, primarily autoimmune 

disorders. For example, associations attributed to CCL21 and RBPJ are currently only 

associated with RA (Figure 4), whereas associations attributed to TNFAIP3, PTPN22, 
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IL2RA and STAT4 are associated with multiple autoimmune diseases, such as 

JIA21,50, T1D9,51,64,65, Crohn’s66,67, ulcerative colitis (UC)67 and SLE47. However, not all 

of the overlapping associations have the same direction of effect in all diseases. 

Some, such as PTPN22, increase an individual’s risk of RA (odds ratio (OR): 1.8028), 

but are protective for Crohn’s (OR: 0.7966). Whereas others, such as IL6R, are 

protective in RA (OR: 0.9019) but risk in atopic dermatitis (OR: 1.1568). Figure 4 shows 

the overlap between all genes assigned to a genetic association in RA and 12 

additional autoimmune diseases from ImmunoBase. Interestingly, there is limited 

genetic overlap between RA and other arthritic disorders, such as JIA (Figure 4) and 

psoriatic arthritis (PsA)69, compared to other unrelated autoimmune diseases, 

suggesting a different disease mechanism. Indeed, the most relevant cell types for 

RA have been epigenetically determined as CD4+ T-cells and B-cells12,70, whereas for 

PsA, CD8+ T-cells appear to be more important in disease69,71,72. The non-overlapping 

nature of RA and PsA is also apparent from the use of therapies in disease. Although 

there are treatments which are used in PsA and psoriasis (Ps), which share a high 

degree of genetic overlap, highly effective treatments in RA, such as anti-TNF 

biologics, have little efficacy in PsA and Ps. 

Gene AS ATD CEL CRO JIA MS PBC Ps RA SLE T1D UC OD 

ABHD6 0 0 0 0 0 0 0 0 27 47 0 0 6 

ACOXL 0 0 0 0 0 0 0 0 27 0 2 0 6 

AFF3 0 0 80 0 62 27 0 0 75 0 55 0 0 

ANKRD55 0 0 80 3 68 27 0 0 75 0 55 0 4 

ARID5B 0 0 0 0 0 0 0 0 51 47 0 0 0 

ATG5 0 0 0 3 0 0 0 0 27 47 0 28 68 

ATM 0 0 0 0 0 0 0 0 27 0 0 0 0 

BACH2 32 68 80 30 0 51 0 0  0 55 0 68 

BLK 0 0 0 0 0 0 0 0 51 52 0 0 83 

C1QBP 0 0 0 0 0 0 0 0 27 0 0 0 0 

C5 0 0 0 0 0 0 0 0 27 0 0 0 0 

C5orf30 0 0 0 0 0 0 0 6 51 0 0 0 0 

CASP8 0 0 0 0 0 0 0 0 27 0 0 0 0 

CCL19 0 0 0 0 0 0 0 0 27 0 0 0 0 

CCL21 0 0 0 0 0 0 0 0 75 0 0 0 0 

CCR6 0 62 0 58 0 0 0 0 75 0 0 28 68 

CD226 0 0 0 28 0 39 0 0 27 0 64 30 68 

CD28 0 62 42 0 0 0 0 0 51 0 64 0 68 

CD40 0 0 0 30 0 51 0 0 51 0 0 28 42 

CD5 0 0 0 28 0 24 0 0 51 0 0 28 38 

CDK2 0 0 0 0 0 0 0 3 27 0 2 0 9 

CDK6 0 0 0 0 0 0 0 0 27 0 0 0 0 

CEP57 0 0 0 0 0 0 0 0 24 0 0 0 0 

CFLAR 0 0 0 0 0 0 0 0 27 0 0 0 0 

CLNK 0 0 0 0 0 0 0 0 24 0 0 0 62 

COG6 0 0 0 0 68 0 0 0 27 0 0 0 0 

CSF3 0 0 0 3 0 2 6 0 27 52 2 3 4 
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CTLA4 0 68 42 0 0 0 0 0 51 0 72 0 99 

CXCR5 0 0 4 30 0 75 6 0 27 0 0 28 91 

DDX6 0 0 4 3 0 2 68 0 27 0 0 0 62 

DNASE1L3 0 0 0 0 0 0 0 0 63 52 0 0 99 

ELMO1 0 0 80 0 0 51 0 35 63 0 72 0 0 

EOMES 0 0 0 0 0 75 0 0 27 0 0 0 0 

ETS1 0 0 80 0 0 0 0 35 27 52 0 0 0 

ETV7 0 0 0 0 0 2 0 0 27 0 0 0 0 

FADS1 0 0 0 58 0 0 0 0 27 0 0 28 42 

FADS2 0 0 0 30 0 0 0 0 27 0 0 28 42 

FADS3 0 0 0 3 0 0 0 0 27 0 0 0 4 

GATA3 0 0 0 0 0 0 0 0 51 0 0 0 0 

GRHL2 0 0 0 0 0 0 0 0 24 0 0 0 0 

HLA-DRB1 6 12 8 6 12 29 12 6 29 57 4 61 46 

IKZF3 0 0 0 58 0 27 68 0 75 57 2 58 42 

IL2 0 0 80 30 68 0 0 0 75 0 72 58 99 

IL20RB 0 0 0 0 0 0 0 0 27 0 0 0 0 

IL21 0 0 80 30 68 0 0 0 75 0 37 58 99 

IL2RA 0 68 0 58 68 75 0 0 75 0 72 28 99 

IL6R 35 0 0 0 68 0 0 0 99 0 18 0 0 

IL6ST 0 0 0 28 0 0 0 0 24 0 0 28 38 

ILF3 0 0 0 0 0 2 0 35 27 0 0 0 0 

INPP5B 0 0 0 0 0 0 0 0 27 0 0 0 0 

IRAK1 0 0 42 0 0 0 0 0 51 52 0 0 0 

IRF4 0 0 80 0 0 0 0 32 27 0 18 0 0 

IRF5 0 0 0 28 0 0 68 0 75 99 0 58 91 

IRF8 0 0 0 28 0 72 62 0 48 0 0 28 83 

JAZF1 0 0 0 30 62 27 0 0 27 52 0 28 38 

LBH 0 0 0 0 0 0 0 0 27 0 0 0 0 

LINC01343 0 0 0 0 0 0 0 0 27 0 0 0 0 

LOC100506023 0 0 0 0 0 0 0 0 27 5 0 0 9 

LOC100506403 0 0 0 0 6 0 0 0 27 0 0 0 0 

LOC145837 0 0 0 0 0 0 0 0 24 0 0 0 0 

MED1 0 0 0 3 0 2 6 0 27 47 2 3 4 

MMEL1 0 68 99 3 0 51 0 0 51 0 0 58 99 

MTF1 0 0 0 0 0 0 0 0 27 0 0 0 0 

NFKBIE 0 0 0 0 0 0 0 0 27 0 0 0 0 

P2RY10 0 0 0 0 0 0 0 0 27 0 0 0 0 

PADI4 0 0 0 0 0 0 0 0 51 0 0 0 0 

PLCL2 0 0 0 0 0 24 6 0 27 0 0 0 0 

POU3F1 0 0 0 0 0 0 0 0 24 0 0 0 0 

PPIL4 0 0 0 0 0 0 0 0 27 0 0 0 0 

PRKCH 0 0 0 0 0 0 0 0 27 0 18 0 0 

PRKCQ 0 0 4 0 0 0 0 0 51 0 46 0 0 

PTPN11 3 0 4 0 6 0 6 0 27 75 2 0 6 

PTPN2 0 0 80 30 68 0 0 0 27 0 72 3 4 

PTPN22 0 99 0 72 68 0 0 0 75 75 99 3 99 

PVT1 0 0 0 0 0 27 0 0 24 0 0 0 99 

PXK 0 0 0 0 0 0 0 0 51 47 0 0 68 

RAD51B 0 0 4 3 6 2 68 0 27 47 4 0 4 

RASGRP1 0 0 0 30 0 0 0 0 51 5 37 3 38 

RBPJ 0 0 0 0 0 0 0 0 48 0 0 0 0 

RCAN1 0 0 0 0 0 0 0 0 51 0 0 0 0 



29 
 

REL 0 0 42 58 0 2 0 67 51 0 0 30 42 

RTKN2 0 0 0 0 0 0 0 0 27 5 0 0 0 

RUNX1 0 0 0 0 68 0 0 0 51 0 0 0 0 

SH2B3 35 0 99 0 99 0 68 0 63 5 72 0 99 

SMIM20 0 0 0 0 0 0 0 0 24 0 0 0 0 

SPRED2 0 0 42 30 0 27 0 0 75 0 19 28 42 

STAT4 0 0 42 30 68 27 68 0 51 99 19 30 91 

SYNGR1 0 0 0 3 0 0 68 0 27 0 0 3 4 

TAGAP 0 0 80 58 0 75 0 35 51 0 37 3 38 

TLE3 0 0 0 0 0 0 0 0 24 0 0 0 0 

TNFAIP3 0 0 38 28 0 27 68 67 51 52 53 28 83 

TNFRSF14 0 6 42 28 0 2 0 0 27 0 0 58 68 

TPD52 0 0 0 0 0 0 0 0 27 0 0 0 0 

TRAF1 0 0 0 0 0 0 0 0 51 0 0 0 0 

TXNDC11 0 0 0 0 0 0 0 0 27 0 0 0 0 

TYK2 35 0 42 72 99 39 99 99 75 47 55 30 42 

UBASH3A 0 0 42 0 0 0 0 0 51 0 55 0 68 

UBE2L3 0 0 80 30 68 39 0 35 51 52 0 30 42 

WDFY4 0 0 0 0 0 0 0 0 27 52 0 0 0 

YDJC 0 0 99 58 6 2 0 3 27 5 0 30 42 

ZNF438 0 0 0 0 0 27 0 0 27 0 0 0 0 

Figure 4 Comparison of RA associated genes against 12 additional autoimmune diseases taken 

from ImmunoBase (http://www.immunobase.org) 

Disease abbreviations are as follows: AS – Ankylosing spondylitis; ATD – Autoimmune thyroid 

disease; CEL – Coeliac disease; CRO – Crohn’s disease; JIA – Juvenile idiopathic arthritis; MS – 

Multiple sclerosis; PBC – Primary biliary cirrhosis; Ps – Psoriasis; RA – Rheumatoid arthritis; SLE – 

Systemic lupus erythematosus; T1D – Type 1 diabetes; UC – Ulcerative colitis; OD – Other diseases. 

1.2.3 RA Clinical Subtypes 

GWAS have also highlighted genetic differences between subtypes of RA. As 

mentioned previously, RA can be broadly classified into two subtypes, ACPA+ and 

ACPA-, based on the presence of antibodies against cyclic citrullinated peptides (anti-

CCP). These subtypes are clinically indistinguishable at diagnosis, but the presence 

of anti-CCP antibodies predicts disease severity and radiological damage73,74, with 

ACPA+ RA patients having a more severe disease. As such, ACPA+ RA patients are 

seen more often at rheumatology clinics and recruited onto genetics studies and 

therefore the majority of RA genetics studies have been performed on the ACPA+ 

subtype. There is also thought that these subtypes are genetically different and may 

in fact represent two clinically different conditions. 

Initially, based on twin studies, ACPA- RA was estimated to have the same heritability 

as ACPA+ RA (~60%)75, but these estimates have since been revised to 50% and 

20% for ACPA+ and ACPA- RA respectively76. Despite this reduction in heritability in 

ACPA- disease, the effect of HLA is much lower than in ACPA+ patients and therefore 

additional ACPA- RA genetic associations are likely to exist77. However, both GWAS 
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and candidate gene studies have had little success in identifying variants associated 

with ACPA- RA and in addition, many have only been reported in single studies 

without independent replication. The first comprehensive analysis of ACPA- RA, 

based on the GWAS meta-analysis by Stahl et al., identified 6 loci, already associated 

in ACPA+ RA, which are also associated with ACPA- RA (Table 1)78. 

Table 1 Schematic classification of RA susceptibility loci into three categories depending on 

their association pattern in anti-CCP positive and negative RA 

Category Associations Locus Name 

1 
Both CCP positive and negative RA, stronger in 

CCP positive RA 
PTPN22, TNFAIP3a 

2 
Both CCP positive and negative RA, equally 

strong in both 

ANKRD55, BLK, C5orf30, 

STAT4 

3 
CCP positive RA only, significant difference 

between CCP positive and negative RA 

AFF3, CCR6, CCL21, IL2RA, 

CD28, CD40, PXK, REL, RBPJ, 

TNFRSF14, TNFAIP3b 

Not 

classifiable 

CCP positive RA only, but no significant difference 

between CCP positive and negative RA 
All others 

a rs6920220; b rs5029937. Reproduced from Genetic markers of rheumatoid arthritis susceptibility in anti-

citrullinated peptide antibody negative patients, Viatte et al.78, 71,1984-90, 2012 with permission from BMJ 

Publishing Group Ltd. 

A recent study by Viatte et al.77 utilising ACPA- RA data generated using the 

Immunochip array, supplemented by 1,044 replication samples, confirmed existing 

loci and identified two novel ACPA- specific loci (PRL & NFIA). Together with other 

confirmed or suggestive loci from other studies, this results in 14 ACPA- RA 

associated loci. Importantly, this study concluded that, given its sample size, if ACPA- 

RA had similar genetic architecture to that of ACPA+ RA, it would have been 

equivalent to a study conducted in 2012 (for example Eyre et al.19, 48 non-HLA loci). 

However, it is clear that the effect sizes of the ACPA- associations are smaller than 

ACPA+ RA. These findings could be explained by the smaller genetic contribution to 

ACPA- RA but could also suggest that the ACPA- RA subtype is itself a heterogeneous 

sample population. Despite this, it is clear that ACPA+ and ACPA- RA subtypes are 

genetically different subsets which only share partial genetic overlap. 

1.2.4 Missing Heritability 

Despite the success of GWAS and candidate gene studies in RA, most of the 

associations identified have modest effect sizes (OR <1.5) (Figure 2) and altogether 

only account for ~19.5% of the total heritability for RA28. This outcome is also true for 

many other complex diseases and has been termed the ‘missing heritability’ of a 

disease. The missing heritability could be due to many factors, including more, as yet 

undiscovered, associated variants, rarer and structural variants which are under 

investigated, the multiplicative effect of having a burden of risk variants and the 
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unknown/under investigated interactions between genetics and the environment. 

However, there is conflicting opinion regarding the concept and cause of ‘missing 

heritability’. 

1.2.5 T-cells and RA 

The role of T-cells was implicated in RA pathogenesis many years ago, mostly due 

to the association with the HLA region79. HLA proteins are responsible for presenting 

short (<30 amino acids) foreign peptides or antigens to T-cells, the first step in the 

process of T-cell activation, as part of the adaptive immune response. Additionally, T-

cells isolated from RA synovial tissue show increased expression of markers of 

antigen exposure, CD45RO and CD27, relative to circulating T-cells79. 

Further genetic evidence since 2005 has added to this hypothesis. For example, 

PTPN22, an early discovered risk loci, is responsible for inhibition of T-cell activation 

by restricting signalling downstream of the T-cell receptor (TCR)80 and more recently 

Maine et al.81 and Brownlie et al.82 demonstrated a link between PTPN22 and the 

development of regulatory T-cells (Tregs) in the thymus. Additional associations with 

CCR6, a chemokine receptor, expressed by CD4+ type 17 T helper (TH17) cells and 

associated with interleukin 17 (IL-17) RA sera levels83, and IL2RA, correlated with 

mRNA and surface protein levels in CD4+ naïve and memory T-cells84, add further 

support for the role of T-cells. 

Pathway analysis of RA risk loci also support the role of T-cells, highlighting immune 

pathways such as T-cell activation and differentiation, antigen processing and 

presentation and JAK/STAT signalling85. Indeed, many genes involved in signalling 

between dendritic cells and T-cells reside in RA associated regions (Figure 5). 

Studies investigating enrichment in gene expression data, DNA methylation and other 

epigenetic marks have identified RA genetic associations to be enriched in T-cells in 

general86,87 and specific enrichment has been found in TH1712, CD4+ regulatory T 

cells87 and CD4+ effector memory T-cells88. 
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Figure 5 T-cell–dendritic-cell dialogue 

Genes filled in blue are encoded by genes within RA susceptibility loci62. Reprinted by permission from 

Macmillan Publishers Ltd: Nature Reviews Rheumatology 9:141-153, copyright 2013. 

Finally, evidence comes from a current biologic therapy, abatacept, used to treat RA. 

Abatacept is an immunoglobulin fusion protein based on cytotoxic T-lymphocyte 

protein 4 (CTLA-4). The CTLA-4 protein (also known as CD152) is expressed on the 

surface of T-cells and is an important negative regulator of T-cell activation89. 

Importantly, variants in the CTLA4 gene region are also associated with RA19,28,38. 
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This evidence clearly shows the importance of T-cells in RA pathogenesis and the 

genetic evidence suggests that changes in T-cells in RA patients are likely to be a 

cause, rather than a consequence, of disease. However, studies have also suggested 

a role for B-cells, part of the adaptive immune system and responsible for the 

secretion of antibodies. B-cells can also present antigens and secrete cytokines, 

immune signalling molecules, and can be activated by T-cells90. Studies have shown 

a therapeutic benefit for B-cell depletion91,92 and the use of a B-cell biologic therapy, 

rituximab, targeting CD20 expressed on the surface of B-cells93 supports this. 

Additional evidence implicating B-cell signalling pathways28, enrichment of B-cell 

specific enhancers12 and genes involved in B-cell function63, adds further support for 

this hypothesis. These findings highlight the complexity of RA pathogenesis and the 

interplay between different cells of the immune system. 

1.2.6 Drug Targets in RA 

Current treatment options for RA do not always prove effective, they can cause 

unacceptable side-effects (adverse events) or just simply not control the disease 

sufficiently (inefficacy). Traditional disease-modifying anti-rheumatic drugs 

(DMARDs), such as methotrexate and sulfasalazine, are the first step in the treatment 

of severe RA, however, up to two thirds of patients fail to respond, either due to 

adverse events or inefficacy94. Therapies based upon biological proteins, termed 

biologics, were introduced in the late nineties and are new type of DMARD which, 

despite being expensive, have proven to be effective in the treatment of RA95. They 

target specific molecules involved in the immune response, such as tumour necrosis 

factor (TNF), interleukin 6 receptor (IL-6R) and CTLA-4, to supress the immune 

response and as a result reduce disease activity. Although there are examples of 

biologic therapies which are based on RA associated genes, such as abatacept 

(CTLA4) or which are antagonists of RA associated genes, such as tocilizumab (IL6R) 

as well as pathways identified by RA genetics, such as tofacitinib (janus kinase (JAK) 

inhibitor), etanercept (anti-TNF) and rituximab (B-cell surface molecules (CD20)), 

none of the therapies currently used to treat RA were developed based on RA 

genetics. 

Okada et al. evaluated the potential of drug discovery in RA by testing if any genes 

identified either as RA risk genes or by a direct protein-protein interaction (PPI) 

network were targets of existing RA drugs28. They found that 27 targets for approved 

RA drugs showed significant overlap with 98 RA risk genes and 2,332 PPI genes. 

The authors therefore concluded that as genetics was successful in identifying RA 

drug targets, it also has the potential to be useful in drug target validation. Further 
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work by our group has identified 41 targets for 106 existing drugs from work informed 

by genetics for RA96. 

1.2.7 Future of RA Genetics 

Although RA GWAS has therefore led to major strides in understanding disease, 

these findings are based on a relatively imprecise knowledge of the exact genes, cell 

types and pathways implicated in disease. Few have been functionally explored and 

associated regions have been labelled with the closest, most compelling candidate 

with little or no evidence to support their candidature. Many show no obvious role in 

RA pathogenesis as they lie in non-coding regions. In fact, of the 101 loci identified 

by Okada et al.28, whilst 50% have expression quantitative trait loci (eQTL) data or 

are non-synonymous variants, their involvement in RA pathogenesis is unclear. The 

next challenge for RA is to functionally determine the effect of these variations and 

identify or confirm their target genes to fully explore RA disease susceptibility. This 

then has the potential to provide novel, effective therapies, thus decreasing the 

economic burden of RA and improve the quality of life for RA patients. 

1.3 Functional Genomics and the post-GWAS era 

At a similar time to the GWAS era, a large scale project to characterise the functional 

elements of the human genome was initiated. A pilot study by the ENCyclopaedia Of 

DNA Elements (ENCODE) international consortium on 1% of the genome was 

increased to the whole genome in 2007. This project studied several functional 

elements such as transcription factor binding sites, DNase I hypersensitivity and 

histone modifications across multiple cell lines using newly developed next-

generation sequencing (NGS) based experimental methods (Figure 6). 
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Figure 6 Overview of the ENCODE project 

Experimental approaches are indicated at the appropriate resolution97. Reprinted by permission from 

Macmillan Publishers Ltd: Nature 489:52-55, copyright 2012. 

DNA is often thought of as a two dimensional linear string however within the cell 

nucleus it is heavily condensed into chromatin, a DNA-protein complex, comprising 

of DNA wrapped around proteins called histones to produce nucleosomes, 

approximately 11nm in diameter. These nucleosomes are further compressed, folded 

and coiled to compact them enough to fit in the nucleus of the cell (Figure 7). 

However, histones can be modified to change how tightly packed that region of the 

genome is and observations of these modifications can indicate how active the region 

is and therefore how likely it is to be involved in gene regulation. Similarly DNase I 

hypersensitivity data can be used to tell how open or accessible the region is to other 

gene regulators such as transcription factors. Collectively, these observations 

constitute the cells epigenome and allow researchers to characterise regions of the 

genome into functional classes and determine their relevance. For example, 

correlating this data with all SNPs in high LD with the GWAS identified SNP allows 

genetics researchers to identify which of these potential candidate SNPs is most likely 

to be causal and therefore prioritise these for expensive functional follow-up studies. 
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Figure 7 Compaction of DNA into chromatin 

Numbered boxes indicate compaction method at each stage98. 

Since the ENCODE project, complementary large whole-genome epigenomics 

projects have been initiated. The NIH Roadmap Epigenomics Mapping Consortium 

started the Roadmap Epigenomics Project with the aim to characterise the 

epigenomes of primary and ex vivo tissues used to represent normal human tissues 

involved in disease but do not target other non-epigenetic transcriptional regulators 

such as transcription factors. Similar projects also include the Blueprint epigenome 

project (http://www.blueprint-epigenome.eu/index.cfm) and the International Human 

Epigenome Consortium (IHEC), including the Canadian Epigenetics, Environment 

and Health Research Consortium (CEEHRC) Epigenomic Platform Program 

(http://www.epigenomes.ca/), the Deutsches Epigenom Programm (DEEP) 

(http://www.deutsches-epigenom-programm.de/) and the Core Research for 

Evolutional Science and Technology (CREST) (http://crest-ihec.jp/english/index.html) 

projects which focus on different cell types or experimental aims. 

It is clear that utilising this data in addition to the generation of new disease focused 

experiments will be essential to fully translate genetic findings to progress the 

understanding of the genetic basis of complex disease. Post-GWAS bioinformatics 

will be fundamental to this process to analyse, exploit and integrate these large cross-

disciplinary datasets and explore disease aetiology and further the discovery of new 

treatment options.  

http://www.deutsches-epigenom-programm.de/
http://crest-ihec.jp/english/index.html
http://www.blueprint-epigenome.eu/index.cfm
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2 Identification of Causal SNPs and Their Function 

(Publications 1 and 2) 

2.1 Background 

As GWAS identified increasing numbers of SNPs for many complex diseases, it 

became apparent that the vast majority of these variants were located outside 

traditional protein coding regions of the genome and therefore predicted to have a 

role in gene regulation. Techniques to study gene regulation were already established 

but without specific hypotheses would result in expensive and time-consuming 

experiments that may not identify any effect on disease susceptibility. It would 

therefore be necessary to narrow down the number of potential SNPs and formulate 

specific hypotheses to test and prioritise these for future work. 

The production phase ENCODE project30,99 was initiated in 2007 to study the 

functional elements of the whole human genome and has successfully generated data 

on multiple cell lines using many different unique and complementary experimental 

techniques (Figure 6). This data is publicly available and can be accessed through 

the Univeristy of California, Santa Cruz (UCSC) Genome Browser100. Different 

combinations of DNase I hypersensitivity (HS) sites and histone marks are indicative 

of certain ‘chromatin states’, for example, active enhancers or promoters (Figure 8). 

By aggregating this data for any given SNP or region, researchers can infer the 

chromatin state and build up evidence to either strengthen or weaken the case 

towards the likelihood for a SNP being functionally relevant. For example, if an 

associated variant lies in an area demonstrating DNase I HS and active promoter 

histone marks (H3K4me3 and H3K27ac), this shows that this region is ‘open’ and 

accessible to other regulatory or transcriptional proteins and is an active promoter, 

which would support the functional role of this variant. Conversely, if the region lacked 

DNase I HS data and active promoter histone marks, it would suggest that the region 

is ‘closed’ and transcriptionally inactive. Additionally, if there was evidence of 

transcription factor or PolII binding, this would strengthen the case further still. 
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Figure 8 Various chromatin states 

Each chromatin state is characterised by DNase I HS and histone marks according to the key101. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Genetics 15:272-286, 

copyright 2014.  

However, while this resource has proved to be invaluable, the sheer wealth of 

information available has also provided a challenge to many as fully mining and 

utilising this data can be prohibitive and researchers often lack the appropriate skills 

to identify and aggregate information across the various experiments and cell types. 

2.2 Aims and achievements 

The aim of this work was therefore to provide researchers with an easy to use tool 

that could automatically interrogate, assimilate and aggregate this data for selected 

SNPs and present it in the most efficient way so that researchers could identify the 

most likely causal SNPs amongst the potential candidates, allowing them to evaluate 

and interpret the data at a high level but still have access to the complete underlying 

data. 

To address this I developed ASSIMILATOR29 to quickly and effectively query the 

UCSC database and present the results in a user friendly manner (Figure 9). 

ASSIMILATOR was written in Perl and directly queries the UCSC database to 
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interrogate the ENCODE data. The ENCODE data is stored as genomic features 

(chromosome, start and end co-ordinates) across multiple tables organised by cell 

type and experimental features, such as DNase I HS, H3K4me1 and CTCF 

transcription factor and due to the amount of data available it is non-trivial to integrate 

all the evidence and interpret results. ASSIMILATOR therefore summarises each 

broad experiment, such as DNase I HS, histone marks and transcription factor binding 

into a simple table showing presence or absence of experimental features. However, 

access to the full underlying data is still possible by ‘clicking’ the relevant experimental 

summary. This displays all of the overlapping features for that experiment for the 

queried SNP within the main page (Figure 9), allowing the user to easily compare 

multiple experiments or query SNPs. Additionally the user is able to link to the UCSC 

browser to easily visualise the experimental features without having to manually 

select, check and add relevant tracks. 

 

Figure 9 Example of ASSIMILATOR output 

The results are shown for Pomerantz et al.102 with the causal SNP highlighted. 

However, allowing access to all experimental data can take a large amount of time, 

due to the complexity and amount of data held in the UCSC database. Therefore 

several systems have been implemented to speed up ASSIMILATOR and simplify its 

use. The first of these stores existing track information in an extensible markup 

language (XML) file, which is automatically updated with new tracks, reducing the 

number of database queries needed to obtain information about each track. The next 

speed improvement utilises multi-core processing to allow ASSIMILATOR to query 

multiple SNPs simultaneously, reducing execution time by up to eight times over a 

single core implementation. The final improvement enhances usability, providing a 

unique token which allows users to submit a SNP query and return at a later date to 

retrieve the results from a MySQL™ database. The results are presented as an 

overview in a web page which can be viewed in a standard web browser. This 
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summary page can then be used to access the underlying data by selecting the 

relevant experiment and SNP. 

2.3 Contribution to the literature 

ASSIMILATOR was the first tool to be developed which aggregated data from 

ENCODE to annotate a list of regions and allowed researchers to easily identify and 

prioritise potential causal candidate variants for further investigation. This tool has 

been used to annotate other associated variants103,104 and this is exemplified in the 

work by Orozco et al.31 describing a large extended GWAS in RA, in which this tool 

was used to assess the functional impact of variants associated at the 22q12 locus. 

Evidence was discovered suggesting an associated variant, rs1043099, and 

correlated variants map to sites of transcription factor binding and open chromatin. 

Coupled with histone modification evidence, this suggests that these associated 

variants could affect gene regulation. 

Shortly following the publication of ASSIMILATOR, two groups from the Broad 

Institute and the Center for Genomics and Personalized Medicine at Stanford 

University have developed similar tools, HaploReg105 and RegulomeDB106, 

augmenting them with different features. Unlike ASSIMILATOR which includes a self-

updating procedure and queries the ENCODE data held at UCSC each time allowing 

retrieval of the most up-to-date information, both HaploReg and RegulomeDB rely on 

locally hosted database snapshots. As such they are faster than ASSIMILATOR but 

require manual bulk updates to integrate newly released data. Both tools have 

additional features and have been updated and developed since their initial release. 

HaploReg supplemented the ENCODE data with transcription factor (TF) position 

weight matrices (PWMs) from TRANSFAC107 and JASPAR108 to annotate variants by 

their effect on protein binding. Additionally, all SNPs in LD with the query SNPs were 

included by utilising data from the 1000 genomes project109 and storing it locally. This 

has both advantages as it improves user friendliness and additional analysis steps 

but removes an element of control from the user and the ability to use custom LD 

panels, for example from a disease reference panel, or specific locations, such as 

new possibly rare SNPs. To overcome the first limitation HaploReg allows users to 

disable the LD selection and enter multiple query SNPs to test. Subsequent releases 

of HaploReg added data from the epigenomics roadmap project110, eQTLs from the 

GTEx project111, an updated SNP database and expanded PWM data. 
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RegulomeDB also builds on the ENCODE data by adding PWMs and additional 

annotations from ChIP-Seq, eQTL, DNase I sensitivity QTLs (dsQTLs) and ChIP-exo 

experiments. RegulomeDB is unique as, in addition to the underlying data, it also 

provides the user with a score rating how likely the query SNP is to have a functional 

consequence. This score is however based on the presence of certain features, rather 

than a statistical measure, using the likelihood of observing the individual 

experimental features and aggregating them into measure of significance. For 

example, to attain a score of 1a, the SNP must show evidence of an eQTL, TF 

binding, matched TF motif, matched DNase I footprint and DNase I peak. Since the 

initial release of RegulomeDB the database has been updated to the 2012 ENCODE 

data freeze and additional data on chromatin states from the epigenomics roadmap 

project, DNase footprinting, PWMs, and DNA methylation has also been added. 

More recently, tools have been released which utilise statistical methods to score 

variants using various annotation sources or test for enrichment within a specific set 

of annotations, for example, histone marks70,112,113. These do not utilise full annotation 

datasets or test all SNPs and do not provide information on individual variants but on 

disease associations in general and therefore are less utilised for SNP prioritisation 

than HaploReg and RegulomeDB. 

Further tools have been developed which score variants based not only on functional 

annotation but evolutionary fitness114 or deleteriousness115. Kircher et al. have 

developed a framework, combined annotation-dependent depletion (CADD), which 

compares the annotations of ‘fixed’ derived alleles with simulated variants115. CADD 

is based on the assumption that deleterious mutations are removed, or depleted, by 

natural selection in fixed variation, but not in simulated variation. Annotations are 

obtained from various sources, such as the Ensembl Variant Effect Predictor116 

(VEP), ENCODE and the UCSC genome browser and a matrix of 29.4 million fixed 

and simulated variants (50:50 ratio) against 63 annotations is produced. Scores are 

then precomputed by applying the average of ten models trained on the labelled 

matrix. This method performs particularly well for nonsense variants, however less so 

for non-coding variants, producing much lower scores compared to nonsense 

variants (Figure 10) and as such, its application to GWAS SNPs may be limited. This 

limitation has also been commented on by Gulko et al. who later released fitCons114, 

although their comparison was later refuted by Cooper et al117.  
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Figure 10 Relationship of scaled C scores and categorical variant consequences. 

Proportion of substitutions with a specific consequence after first normalizing by the total number of 

variants observed in that category. The legend includes in parentheses the median and range of 

scaled C score values for each category. Consequences were obtained from Ensembl VEP. Adapted 

by permission from Macmillan Publishers Ltd: Nature Genetics 46:310-315, copyright 2014. 

FitCons114, developed by Gulko et al., seeks to assign a probability that a variation 

will affect fitness to each position in the genome. This score can then be used as an 

evolution-based measure of potential function. To calculate the score, functional 

annotation data from ENCODE, primarily DNase I, RNA-Seq and histone ChIP-Seq, 

is clustered to produce 624 distinct functional genomic classes. This task is simplified 

by using chromatin states, as opposed to full ChIP-Seq data, defined by ChromHMM, 

discussed later. This is followed by estimating the fraction of sites under selection, 

using the INSIGHT method, by functional class and assigning this score to each 

position belonging to that class. Similar to CADD, fitCons assigns the highest scores 

to coding variants and the lowest score to intergenic variants showing little or no 

evidence for functional enrichment (Figure 11). Interestingly, the authors also show 

that the performance of fitCons for non-coding variants outperforms other methods 

(Figure 12). However, the method appears to have been less widely adopted 

compared to CADD. 
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Figure 11 Composition of high-scoring genomic regions according to fitCons 

Varying fitCons thresholds (S) are shown on the x-axis and the composition of various annotation 

types are shown on the y-axis114. Reprinted by permission from Macmillan Publishers Ltd: Nature 

Genetics 47:276-283, copyright 2015. 

 

Figure 12 Coverage of active cis regulatory elements as a function of total coverage of the 

noncoding genome 

Coverage of each type of element is shown as the score threshold is adjusted to alter the total 

coverage of noncoding sequences in the genome, excluding sites annotated as CDSs or UTRs114. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics 47:276-283, copyright 2015. 

The ability of CADD and fitCons to accurately determine the functional importance of 

non-coding SNPs is therefore not comprehensive and manual assessment is 

therefore required. Unfortunately, neither CADD nor fitCons provide access to the 

original evidence used to produce the score which makes manual assessment 

challenging. 

Additionally, algorithms, like ChromHMM118, have been developed which classify 

regions into various chromatin states giving researchers the ability to quickly ascertain 

if a region is functionally relevant, however they do not combine other functionally 

important features such as transcription factor binding or DNase I HS and thus are 

still limited. Nevertheless ChromHMM classifications are a useful determinate of 

regulatory potential and can allow classification of up to 50 chromatin states by using 

imputation based on six epigenetic marks119. 
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As technology improves and NGS costs reduce, more epigenomics data will 

undoubtedly be produced, in increasing numbers of cell types, including primary cells, 

and under different stimulatory conditions and the task of combining and, most 

importantly, interpreting this data will get increasingly more difficult. It is therefore 

important that researchers have access to these tools which allows them to make 

sense of the data and to inform subsequent experiments. However, there is still a 

need to be able to statistically aggregate and model related, complex data, including 

temporal and spatial data, to fully explore transcriptional regulation in the context of 

disease. 

Despite the usefulness and innovative approach of ASSIMILATOR it has been 

superseded by other annotation tools, such as HaploReg, RegulomeDB and CADD. 

Due to the complexity of the publicly available epigenomic data that now exists, 

coupled with the knowledge of the importance of cell type, it is probably no longer 

valid to summarise this data across cell types. An enhanced approach would be to 

aggregate data by cell type and return the evidence for the most functionally important 

cell type using a scoring system such as RegulomeDB. Additionally, a method, such 

as ChromHMM as employed by fitCons, which could summarise at least elements 

(i.e. histone ChIP-Seq data) of the vast amount of data into well-defined functional 

classes before testing for functional importance would be beneficial from both a query 

time and resource utilisation perspective. 

3 Vitamin D Response Element Enrichment in RA 

(Publication 3) 

3.1 Background 

Complex diseases are a combination of genetics and environmental factors and there 

is evidence that the environmental factors can increase the risk of disease through 

interactions with genes (GxE)120. This is because different genotypes can respond to 

environmental changes, such as physical shock (temperature) or chemical exposure, 

in different ways. Individuals carrying a ‘high-risk’ genotype do not necessarily 

develop disease but are more sensitive to an environmental factor which causes 

disease. For example individuals with fairer skin have a higher risk of developing skin 

cancer due to exposure to sunlight than darker skin individuals due to naturally lower 

levels of melanin121. 
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However, most GWAS do not incorporate any environmental factors and rely on 

genetic evidence alone. This can be due to multiple reasons: firstly, environmental 

factors can be difficult to robustly define or measure; secondly, while GWAS have 

benefitted from increasingly lower costs and provide millions of results per individual, 

environmental factors can still be expensive and time consuming to collect and record 

thoroughly; thirdly, it is often unclear or unknown which environmental measure is 

required and therefore a specific hypothesis must be tested; and finally, statistical 

methods to detect GxE are less well defined and interaction analyses typically require 

four times the number of samples compared to analyses used to identify a main effect 

of similar magnitude122. 

Vitamin D is a steroid hormone involved in many biological processes including bone 

metabolism, muscle strength and modulation of the immune system123. The active 

form of vitamin D, 1,25-dihydroxyvitamin D3 (VitD3), modulates its biological effects 

by binding to the nuclear vitamin D receptor (VDR) which can then act as a ligand-

inducible transcription factor124 and control more than 200 genes, including ones 

involved in regulation of cellular proliferation, differentiation, apoptosis and 

angiogenesis123. It achieves this by binding to specific elements in the genome, called 

vitamin D response elements (VDREs), and subsequently regulation of its target 

genes. 

Vitamin D deficiency is common in RA125 and as vitamin D is known to induce 

immunological tolerance125, deficiency may disrupt this by inducing the development 

of disease. Vitamin D has also been shown to induce Tregs126 and inhibit the 

production of proinflammatory cytokines127, such as IL-2 and interferon-γ (IFN-γ), 

which in turn can cause a reduction in antigen presentation in antigen presenting cells 

(APCs)128, thereby reducing T cell activation. 

A study by Ramagopalan et al.33 used chromatin immunoprecipitation followed by 

next-generation sequencing (ChIP-Seq) to characterise all VDREs in lymphoblastoid 

cell lines (LCLs) from two individuals of European ancestry before and after calcitriol 

(VitD3) stimulation. The authors then tested for and showed significant enrichment of 

VDREs in known autoimmune disease (AID) loci, including RA (p<0.001). However, 

this study only tested 16 loci for RA and only 9 of these were confirmed to be 

associated with RA. Since its publication, the RA Immunochip study had also 

identified 48 non-HLA loci confirmed to be associated with RA susceptibility. 

Additionally, a study conducted in a T1D cohort identified two loci involved in vitamin 
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D metabolism (DHCR7 and CYP2R1) which were associated with disease 

susceptibility.  

3.2 Aims and achievements 

The aims of this study were, firstly, to test for a potential enrichment of VDREs in RA 

loci by combining our genetic association data with the VDRE ChIP-Seq data to 

investigate whether the functional mechanism in RA associated regions acts through 

an interaction with vitamin D and secondly, to test variants previously associated with 

vitamin D levels and disease susceptibility in T1D and RA. 

To achieve this, firstly a total of 2,776 VDREs identified after calcitriol stimulation were 

obtained from Ramagopalan et al.33 and assigned to the nearest gene within 100kb. 

RA associations were assigned to genes either by GRAIL or by position and 

compared to the VDREs to determine the number of VDREs present in RA loci. To 

identify an enrichment of VDREs in RA loci, the average number of VDREs identified 

in 100,000 comparison sets of the same number of randomly selected loci was used 

to calculate the relative risk (RR) for RA loci. To test existing vitamin D loci associated 

with T1D, genotyping was carried out as part of the RA Immunochip study restricting 

the data to UK samples only. 

Our study showed significant enrichment of VDREs in RA loci when associations were 

either assigned to genes by GRAIL (RR 5.50) or by position (RR 5.86) supporting a 

role for vitamin D in RA pathogenesis32. Additionally, evidence of association with the 

previously identified T1D locus, DHCR7, was also observed in RA (p=0.0008) 

providing further evidence supporting this conclusion. 

3.3 Contribution to the literature 

Many epidemiological studies have investigated the link between vitamin D deficiency 

and autoimmune diseases (AIDs), including T1D, multiple sclerosis (MS) and RA129–

134 but these studies have used either questionnaires or serum 25-hydroxyvitamin D 

(25(OH)D), the precursor to the active VitD3 and have not incorporated genetic 

evidence. Likewise genetics studies have also been conducted to investigate vitamin 

D deficiency but have again focused on serum levels of 25(OH)D, candidate genes 

and RA risk135,136. While Ramagopalan et al.33 decided to take a different approach 

and test for enrichment of VDREs, their approach for RA was limited by the genetic 

associations used and how VDREs were assigned to associated variants. 

Our study improved on their analysis by utilising additional, validated loci and 

accounting for the number of VDREs attributable to each genetic association using a 
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variety of methods. Using enrichment based methodology we have tested the 

potential environmental effect of vitamin D and RA susceptibility in an unbiased 

manner. This study, provides evidence that vitamin D deficiency is a cause of RA, 

although a recent study has suggested that lower levels of vitamin D present in severe 

RA patients is more likely a consequence rather than a cause and does not support 

the role of vitamin D supplementation as a direct therapeutic intervention137. 

Although at the time, our study was the most comprehensive to date, similarly to 

Ramagopalan et al., it is now limited by the genetic associations used to test for 

enrichment as there are now 101 non-HLA RA associations28. A more comprehensive 

analysis would therefore be to repeat this method using all 101 RA associations 

currently known. This however would not be an ideal approach as methodologically, 

this study has also been superseded by other methods, such as Genomic Annotation 

Shifter (GoShifter)70 and Mendelian randomisation138. 

As mentioned previously, GoShifter tests for enrichment of query features, such as 

SNPs, within a specific set of annotations, such as histone marks. GoShifter works 

by firstly, identifying all variants in LD (r2 > 0.8) with each association to define a SNP 

region. Secondly, the observed overlap of each LD SNP with the annotations is 

determined. To produce a null distribution, each region is randomly shifted and the 

proportion of overlap is determined. This shifting process is repeated many times to 

generate a distribution. The significance of the overlap for the associated SNPs can 

then be determined by where in the distribution it lies relative to the random shifts. 

This process has an advantage over other methods as it maintains the genomic 

context for each region and the authors show that this yields more power compared 

to SNP matching methods (Figure 13). This method has been used to show that 88 

RA SNPs from Okada et al. are enriched for H3K4me3 ChIP-Seq summits (±100bp) 

across all 118 cell types tested and specifically CD4+ memory T-cells. This 

association remained significant after stratification on the other 117 cell types. This 

method could therefore be applied to test for enrichment of VDREs for SNPs 

associated with RA. 
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Figure 13 Comparison of power between GoShifter and the best-performing matching strategy 

Two significance levels (p < 0.05 and p < 0.01) are shown70. Sets of 1,416 SNPs were generated with 

varying proportions within DNase I HS features (x-axis). 

This approach, however, may not necessarily prove that vitamin D deficiency is a 

cause of RA as there are multiple additional factors affecting symptom onset, such 

as other risk variants, environmental factors and the interplay between them, which 

this method would not account for. To overcome these confounding factors, 

Mendelian randomisation has been proposed as a possible approach. First 

suggested in 1986 as an approach to show the relationship between cholesterol 

levels and cancer139 and implemented by Gray and Wheatley in 1991 to study the 

effect of bone marrow transplants138, Mendelian randomisation provides a similar 

study design as a randomised control trial (Figure 14) and uses genetic variants of 

known function to test the causal effect of an exposure on disease. For example, if 

you believe that low cholesterol (the exposure) causes cancer (the outcome), simply 

testing levels of cholesterol in cancer patients would not tell you if cholesterol was a 

cause of or due to cancer and a traditional randomised control trial would not be 

possible. SNPs associated with cholesterol levels can be tested for association in 

cases because alleles are inherited randomly, due to meiosis, and the presence of a 

particular allele or genotype in the population should be unrelated to any potential 

confounding factor. If low cholesterol causes cancer then the SNPs associated with 

low cholesterol level should be more common in cancer patients than controls; if not 

then it shows that cholesterol level is an effect of cancer. 
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Figure 14 Comparison of the design of a Mendelian randomization study and a randomized 

controlled trial 

In a randomised, controlled clinical trial, participants are randomly allocated into intervention 

(exposure) and control (no exposure) arms. In a Mendelian randomisation study, this is achieved 

through random segregation at meiosis. Both groups are equally exposed to confounders140. 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology 12:486-496, 

copyright 2016. 

The use of Mendelian randomisation studies has only increased recently due to the 

ever increasing amount of GWAS data and variants associated with multiple traits. 

For example, an adequately powered Mendelian randomisation study requires large 

datasets (>10,000 individuals)141 which has only been possible for many traits with 

the increased application of GWAS. The method has been successfully applied to 

several relationships, such as coronary heart disease and C-reactive protein (CRP) 

levels, obesity and vitamin D levels and RA and levels of IL-1 and vitamin D. The 

findings of these studies are shown in Table 2. 
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Table 2 Example Mendelian randomisation studies 

Exposure Disease/outcome Conclusion Reference 

C-reactive 

protein 

Coronary heart 

disease 

“C reactive protein concentration itself is 

unlikely to be even a modest causal factor 

in coronary heart disease” 

C Reactive Protein 

Coronary Heart 

Disease Genetics 

Collaboration 

(CCGC)142 

Vitamin D Obesity “that a higher BMI leads to lower 

25(OH)D, while any effects of lower 

25(OH)D increasing BMI are likely to be 

small” 

Vimaleswaran et 

al.143 

IL-1 

inhibition 

Cardiovascular 

risk /RA 

“that long-term dual IL-1α/β inhibition 

could increase cardiovascular risk and, 

conversely, reduce the risk of 

development of rheumatoid arthritis” 

Freitag et al.144 

Vitamin D RA “the reported lower vitamin D levels in 

more severe RA are more likely to be 

consequence than cause” 

Viatte et al.137  

Mendelian randomisation therefore promises to be a powerful approach to link 

exposures, such as vitamin D, to causation in disease and indeed Viatte et al. has 

used this approach to show that lower vitamin D levels are more likely a consequence 

of RA137. However, these type of studies do have limitations. Firstly, any effect on the 

outcome must be as a direct result of the exposure and not due to any off target 

effects. Secondly, the robustness of the genetic association or associations must be 

ensured as these form the basis of subsequent tests. Since most of the genetic 

variants used in Mendelian randomisations will come from GWAS associations, the 

direct link of the association on the exposure must be ensured, otherwise more 

confounders will be introduced and any effect observed on the outcome may itself be 

due to an indirect link with the exposure. Additionally, it is usually not possible to 

include the entire genetic component of the exposure and gain sufficient power to 

identify a link. It is therefore important to ensure that the study design fully addresses 

these limitations and the power to achieve this will only increase as more genetic data 

is obtained and linked directly to particular traits. 

4 Linking variants to target genes (Publications 4, 5 and 6) 

4.1 Background 

GWAS has now been successful in identifying over 100 genetic variants associated 

with susceptibility to RA. However many of these variants, like other complex disease 

associations, lie outside traditional protein coding regions suggesting that they have 

a role in gene regulation rather than directly affecting the protein produced. One of 
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the most obvious ways which GWAS variants are likely to affect gene regulation, 

which is generally different in different cell types, is by altering the DNA binding motif 

of a transcriptional activator or repressor such as a transcription factor and indeed, 

there has been increasing evidence to suggest that gene expression and eQTLs can 

be cell type and stimulus specific13,14. 

Fairfax et al. studied the effect of stimuli on naïve CD14+ monocytes by performing 

whole-genome genotyping and mRNA expression using microarrays. They used 

hierarchical clustering to investigate changes in monocyte expression after 

stimulation, with lipopolysaccharide (LPS), a component of gram negative bacteria 

which triggers Toll-like receptor (TLR) 4 signalling and IFN-γ, a cytokine which acts 

through the JAK-STAT pathway. Ye et al. primarily studied the effect of stimulation 

duration on CD4+ T-cells using expression microarrays at 0, 0.75, 2, 4, 10, 24 and 48 

hours, stimulating the TCR receptor alone, with anti-CD3/anti-CD28 beads, or in 

combination with conditions favouring TH17 differentiation or IFN-β. Additionally, they 

followed up a subset of genes and conditions to show differences in inter-individual 

and population variability using a NanoString panel. 

Specifically, they both found either eQTLs or expression of certain genes, which were 

shared across cell states, whereas for other genes, the eQTL or expression was only 

present after stimulation. These findings show the importance of performing eQTL or 

expression experiments in the correct cell state as results based on naïve cells may 

not represent a stimulated or disease relevant cell state or reflect the true state of 

cells used in related experiments. 

Fairfax et al. also found eQTLs were effected by stimulus type, either showing only 

significance under one stimulatory condition or showing different effect sizes between 

stimulatory types, for example, IL8 and TRAF6 eQTLs were only significant in LPS 

and IFN-γ stimulated cells respectively. The same was also true for gene expression. 

Ye et al. found 289 and 270 genes which were only expressed upon co-stimulation 

with TH17-biased conditions and IFN-β respectively (Figure 15a and b). This shows 

that while stimulation is an important consideration, which stimulation is just as 

important to ensure relevancy when comparing between experiments. Additionally, 

Ye et al. showed an inter-individual variation in expression between genes (Figure 

15c), with some genes, such as IL2 and TNF showing little variation whilst others, 

such as IL3 and IL17A showed much more variation between individuals. These 

findings could be attributable to genotype or environment. Indeed the authors 

sampled a subset of individuals on different dates and showed that generally, T-cell 
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response is reproducible, with common cis genetic effects accounting for ~25% and 

physiological effects for ~4% of the observed variation. Although an in-depth eQTL 

study would need to be performed to fully resolve the effect of genotype on gene 

expression in these samples. 

 

Figure 15 CD4+ T-cell time course gene expression profiles from Ye et al. 

Cell states are colour coded as follows: black – naïve; blue – anti-CD3/anti-CD28 stimulated; red – 

TH17-biased co-stimulation and green – IFN-β co-stimulation. a) Clustering of genes across time 

points and stimulatory conditions. b) Expression profiles for each cluster identified. c) NanoString 

expression profiles of 16 cytokines showing cell state specificity, stimulatory duration specificity and 

inter-individual variation. From Ye et al., Science 345:1254665 (2014). Reprinted with permission 

from AAAS. 

Both studies found that changing the duration of stimulation affected not only, which 

genes were expressed (Figure 15b), but also how the expression of certain genes is 

affected by genotype such LTA and TNF (Figure 16) and while the time course 

performed by Ye et al. offered a more complete picture, Fairfax et al. were also able 

to identify the importance of duration of stimulation and its effect on gene expression, 

with additional influence by genotype. Importantly, they were also able to show that 

eQTLs specific to a cell state are found further away from the transcription start site 

(TSS) relative to those shared across cell states (Figure 17a), with stimulation specific 

eQTLs showing increased distance from the TSS (Figure 17b). Interestingly, for a 
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minority of eQTLs, which were observed across conditions, the direction of effect was 

reversed between conditions (Figure 18). These findings highlight the complexity 

involved in gene regulation and suggest a potential mechanism of gene regulation 

which is dependant or defined by distance from the TSS. 

a) b)

 

Figure 16 Duration of stimulation by LPS affects significance of certain eQTLs 

Results are shown for a) LTA and b) TNF13. From Fairfax et al., Science 343:1246949 (2014). 

Reprinted with permission from AAAS. 
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a) b)

 

Figure 17 Distance of eQTL from TSS 

 Results are shown by a) number of cell states the eQTL is observed in and b) by cell treatment 

status13. From Fairfax et al., Science 343:1246949 (2014). Reprinted with permission from AAAS. 

a) b) 

  

Figure 18 eQTLs showing opposing direction of effect 

Results are shown for HIP1 and STEAP4 after stimulation with b) LPS and b) IFN-γ respectively13. 

From Fairfax et al., Science 343:1246949 (2014). Reprinted with permission from AAAS. 

GWAS variants have also been shown to be enriched for epigenetic marks indicative 

of enhancer elements which can also be cell type and stimulus specific. To fine map 
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GWAS associations and link them to transcription and cis-regulatory element 

annotations, Farh et al.12 developed an algorithm, Probabilistic Identification of Causal 

SNPs (PICS), which uses the haplotype structure and pattern of associations at a 

locus, to estimate the probability of a SNP being causal. The PICS algorithm was 

applied to 21 autoimmune disease datasets and the authors showed that the majority 

(~90%) of candidate causal SNPs did not affect protein coding genes. Next they 

investigated the functions of these non-coding variants by mapping them to a set of 

specialised cis-regulatory elements, defined by H3 lysine 27 acetylation (H3K27ac), 

a mark indicative of active promoters and enhancers, for 56 individual cell types, 

including CD4+ T-cells, Tregs, B-cells and monocytes. This revealed enrichment of 

the candidate enhancers in B-cells and T-cells (Figure 19). This finding highlights the 

differences in enhancers between cell types and also shows enrichment for stimulus 

dependant enhancers. Indeed, by coinciding PICS SNPs with cis-regulatory 

elements, Farh et al. predicted cell types contributing to disease (Figure 20). 

 

Figure 19 PICS enhancer mapping 

Heatmaps for H3K27ac and H3K4me1 signals for 1,000 candidate enhancers (rows) in 12 immune 

cell types (columns). Enhancers are clustered by the cell type-specificity of their H3K27ac signals. 

The adjacent heatmap shows the average RNA-Seq expression for the genes nearest to the 

enhancers in each cluster. Greyscale (right) depicts the enrichment of PICS autoimmunity SNPs in 

each enhancer cluster12. Reprinted by permission from Macmillan Publishers Ltd: Nature 518:337-

343, copyright 2015. 
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Figure 20 Heatmap showing cell type specificity of 39 human diseases in acetylated cis-

regulatory elements of 33 cell types 

Colour represents the P-value from 10-30 (dark red) to 1 (dark blue)12. Reprinted by permission from 

Macmillan Publishers Ltd: Nature 518:337-343, copyright 2015. 

Additionally, they showed enrichment in super-enhancers, large regions with several 

enhancers in clusters, as well as evidence for different diseases mapping to distinct 

elements within a super-enhancer. For example, a candidate SNP lying in the IL2RA 

super-enhancer for MS has no effect on autoimmune thyroiditis risk, and vice versa 

for another candidate SNP, even though the SNPs are in close proximity. This 

suggests that some enhancer elements are specific to certain diseases and can 

effect, even a shared locus, in different ways. Interestingly, they also found GWAS 

SNPs associate with areas of the genome indicative of transcription factor occupancy, 

the specificity of which is dependent on disease and that many eQTL SNPs identified 

in peripheral blood do not correspond to enhancer elements (Figure 21), suggesting 

that many disease SNPs exhibit subtle and highly context-specific effects. These 

findings further highlight the cell type and stimulus type dependency of enhancer 

elements effecting gene regulation in disease. 



57 
 

 

Figure 21 Functional effects of disease variants on gene expression 

Pie charts showing of proportion of PICS SNPs (left) and eQTLs (right) explained by the genomic 

features shown12. Reprinted by permission from Macmillan Publishers Ltd: Nature 518:337-343, 

copyright 2015. 

Since a large proportion of GWAS SNPs are found outside protein coding genes, it is 

imperative to identify which gene or genes they effect. Variants identified by GWAS 

have traditionally been annotated to the closest most biologically relevant genes and 

while this strategy may seem sensible, it could also be incorrectly implicating genes 

which are not involved in disease or masking additional effects with other genes. For 

example, the locus containing the CTLA4, CD28 and ICOS genes contains two SNPs 

independently associated with RA, one of which has been assigned to CD28, the 

other to CTLA428 based on biological plausibility (Figure 22). However, all three genes 

are involved in T-cell activation and therefore represent ideal candidates for RA. 

There is therefore the possibility that either all three genes are regulated by these 

SNPs, and operate together to affect T-cell activation, only one is regulated or indeed, 

the two candidates assigned are the functionally relevant genes for RA. 

 

Figure 22 CD28-CTLA4-ICOS locus 

Lead SNP associations are shown as well as SNPs in LD (r2≥0.8). 

Furthermore, Musunuru et al. showed a SNP, rs12740374, associated with levels of 

low-density lipoprotein cholesterol (LDL-C), which is located within the 3’ UTR of the 

CELSR2 gene, actual regulates the expression of the SORT1 gene145. Additionally, 

Davison et al. showed that SNPs, located predominately in intron 19 of the CLEC16A 

gene, and associated with T1D and MS, modify the expression of the DEXI gene 

using chromosome conformation capture (3C)146. 
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An increasing number of studies, including Davison et al. have also shown that 

enhancers do not necessarily regulate the nearest gene (Figure 23a). In a study 

investigating the pilot ENCODE regions, Sanyal et al. showed that only 7% of 

elements regulate the nearest gene147. Additionally, elements were shown to regulate 

genes located some distance away, with a peak distance of 120kb, although further 

distances, up to 1.5Mb or more, have also been observed148–150. This long-range gene 

regulation, is achieved through chromatin looping (Figure 23b), thought to be 

mediated by cohesin and other protein complexes151, which brings distant genomic 

regions into close proximity to regulate expression in a cell type and stimulus specific 

manner (Figure 23c). 

 

Figure 23 Long-range gene regulation 

(a) Enhancers are distinct regions which bind transcription factors (TFs). These can be located at any 

distance from their target genes. However, when active (b), enhancers can be brought close to and 

interact with their target gene allowing them to regulate expression. These interactions can be tissue 

specific (c). (d-f) Patterns of gene expression. Source: Shlyueva et al.101. Reprinted by permission 

from Macmillan Publishers Ltd: Nature Reviews Genetics 15:272-286, copyright 2014. 

Chromosome conformation capture methods, such as 3C, 4C, 5C and Hi-C, identify 

regions of the genome, such as enhancers and promoters, which physically interact 
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in the nucleus. This is achieved using formaldehyde to crosslink the two interacting 

regions together, preserving any physical interactions present in the nucleus, followed 

by digestion with a restriction enzyme. The ‘free ends’ produced by the digest are 

then ligated together such that the interacting regions form a ligation junction which 

can be detected by assays designed for the particular technique. These early 

chromosome conformation capture techniques, such as 3C, 4C and 5C were 

successful in identifying chromatin interactions. Using 3C, Tolhuis et al. investigated 

interactions between the β-globin locus and the locus control region (LCR) in 

mouse152. They showed that in erythroid cells, the LCR, located 40-60kb away, comes 

into close contact with active β-globin genes to control their expression. Furthermore, 

Stadhouders et al. showed that an intergenic region interacts with the promoter of the 

Myb gene to up-regulate gene expression in proliferating cells153. However, these 

methods were low throughput and interaction targets had to be considered a priori. 

Later, chromosome conformation capture was coupled with next-generation 

sequencing (Hi-C) to provide researchers with a high-throughput, hypothesis-free 

way to investigate chromatin interactions. Hi-C has been used to study the three-

dimensional structure of the genome, identifying large, megabase-sized local 

chromatin interaction domains, such as topologically associated domains (TADs), 

large contiguous regions of the genome which associate in the nucleus and partition 

the genome into discrete domains154. TAD boundaries have been shown to be 

enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs 

and short interspersed element (SINE) retrotransposons. This suggests they may 

have a role in establishing the three-dimensional structure of the genome. They are 

conserved across cell types and are highly species specific. The frequency of 

chromatin interactions within the TAD boundaries is much higher compared to across 

TAD boundaries. This may have implications on how GWAS SNPs regulate genes, 

predominantly affecting genes within the same TAD allowing discrete control of 

clusters of functionally related genes. Additionally, disruptions of TADs in the human 

WNT6/IHH/EPHA4/PAX3 locus have been linked to various limb malformations, such 

as brachydactyly and polydactyly155, showing the functional importance of TADs and 

how variations within TAD boundaries could lead to a disease phenotype. However, 

Hi-C suffers from limited resolution and cannot resolve fine promoter-enhancer 

interactions. 

Capture Hi-C was recently developed156 to provide researchers with a high-

throughput method to study interactions at high resolution for a defined set of targets, 

such as promoter or enhancer regions. The first step in a Capture Hi-C experiment is 
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to generate a standard Hi-C library containing all the interactions present in the 

original sample (Figure 24). Using sequence capture technology157, RNA baits, which 

are specifically designed to the targeted restriction fragment ends, are used to capture 

all the interactions involving the desired restriction fragments. These are then purified, 

enriched and sequenced at a much higher depth relative to a Hi-C library and can 

result in between a 19 to 130 fold enrichment over a Hi-C library depending on the 

number of targets selected and sequencing depth156,158,159. 

 

Figure 24 Capture Hi-C Overview 

The first step in Capture Hi-C is to generate a standard Hi-C library by cross-linking DNA, digestion, 

re-ligation, reversal of cross-links, followed by purification. This provides a library containing all 

interactions in the cell. After adaptor ligation, RNA baits, designed to restriction fragment ends, are 

used to capture interactions specific to the targeted regions. This is followed by PCR and paired-end 

sequencing. Source: Schoenfelder et al.156 

This method was initially used to study the chromatin interactions involving regions 

associated with breast cancer159 which demonstrated the power of Capture Hi-C to 

identify high-resolution interaction maps for three breast cancer gene deserts 

mapping to 2q35, 8q24.21 and 9p31.2. The authors used a low LD cut-off (r2>0.1) 

with the associated SNPs to define the regions to target, with the aim to identify 

interactions between regulatory elements and protein coding genes which could 

potentially be hundreds of kilobases apart. They identified 27 and 45 significant 

interactions for the BT483 and SUM44 breast cancer cell lines respectively. The 

majority of the interactions identified were tissue specific but there was also evidence 

of some interactions being common across the cell types studied and interactions 

were identified between both protein coding genes and long non-coding RNAs 

(lncRNAs). Additionally, using Hi-C data for one of the cell lines, they were able to 
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show a 30-60 fold enrichment of the target loci by incorporating the sequence capture 

step. 

Capture Hi-C was also used to study 14 loci associated with colorectal cancer158 and 

also identified complex interaction networks and multiple long range interactions. 

Similar to Dryden et al. the authors defined capture regions using a low LD cut-off 

(r2>0.2) and obtained an enrichment in excess of 130 fold over Hi-C data. Their data 

not only confirmed documented interactions, such as the one between rs6983267, a 

colorectal cancer risk loci, and the MYC gene, but also novel interactions involving 

plausible biological candidates, such as CCAT1 and CCAT2 which, together with 

MYC, suggest a network involving Wnt-feedback signalling. 

These studies focused on a small number of large regions to test specific hypotheses 

related to cancer risk but do not offer a genome-wide method to provide a systematic 

and unbiased approach to study the chromatin interactions influencing gene 

regulation for thousands of targets, such as promoters. This led Mifsud et al. to design 

baits to study whole-genome promoter-enhancer interactions in two human cell lines 

by targeting all restriction fragments overlapping the promoters of Ensembl 

transcripts160. The authors discovered that the majority of interactions were between 

promoter and ‘non-promoter’ fragments, promoters would typically interact with tens 

of other ends, irrespective of transcriptional activity and other ends would interact with 

one or two promoter fragments. These results suggest that gene regulation involves 

a complex interplay between multiple genomic regions and that regulatory elements 

are shared between genes. Additionally, they also discovered that GWAS SNPs are 

enriched in fragments which interact with promoters, strengthening the role of GWAS 

SNPs in gene regulation. 

In addition, promoter-enhancer interactions in mouse embryonic stem cells (ESCs) 

and mouse foetal liver cells (FLCs) have been investigated using this method156 and 

the authors found similar observations as in humans. Their data also showed that 

genes with higher numbers of enhancer interactions tended to be enriched in 

developmental pathways for ESCs and metabolic pathways for FLCs supporting the 

hypothesis that the three-dimensional promoter-enhancer landscape is highly cell 

type specific. While whole-genome promoter capture experiments, such as these, 

offer a comprehensive view of genome regulation at high-resolution, a disease 

focused approach would yield interactions which are specific to disease associated 

loci, helping to inform gene candidature. 
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Similar methods to Capture Hi-C have been developed that incorporate a sequence 

capture step to 3C libraries, Targeted Chromatin Capture (T2C)161 and Capture-C162. 

T2C follows essentially the same method as Capture Hi-C but is based on a 3C library 

and as such does not employ the enrichment step for biotinylated ligation products or 

di-tags. This step is crucial in removing ‘invalid’ interactions and DNA fragments left 

after sonication that would otherwise be sequenced unnecessarily. Capture-C, like 

T2C, suffers from the lack of enrichment for valid di-tags but does allow better 

resolution than both Capture Hi-C and T2C as it utilises a 4bp cutter as opposed to a 

6bp cutter. Whilst no studies have performed a direct comparison of these methods, 

it is thought that the addition of the enrichment step in Capture Hi-C would offer 

superior signal to noise ratio and surpass the advantage of added resolution158. 

Additionally, other studies have employed 4bp cutters to Hi-C libraries163 and, 

although this has yet to be applied to Capture Hi-C libraries, it therefore has the 

potential to offer both the benefit of high-resolution interactions and low signal to noise 

ratio. This approach does however also cause added statistical analysis 

considerations. 

While Capture Hi-C does not offer a truly hypothesis free way to study chromatin 

interactions, it provides researchers with the ability to identify all chromatin 

interactions involving thousands of target fragments in a cost-effective, high-

throughput manner. Additionally, the flexibility of this approach provides opportunities 

to study a wide variety of potential targets and aims. 

4.2 Aims and achievements 

The aim of this work was to use Capture Hi-C to characterise the physical interactions 

of associated loci for four autoimmune diseases: RA, JIA, PsA and T1D, with the 

objective of linking associated variants with causal genes. Uniquely, this was 

achieved using two Capture Hi-C experiments: the first targeted the associated 

regions for each disease, defined by LD; the second targeted promoters of genes 

within 500kb of each lead association (Index SNP) (Figure 25). 
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Figure 25 Capture Hi-C Experimental Design 

HindIII restriction fragments targeted in the region capture are shown in green. HindIII restriction 

fragments targeted in the promoter capture experiment are shown in orange. 

This study provides compelling evidence that GWAS SNPs may regulate genes 

located some distance away, SNPs associated with different AIDs may well regulate 

the same genes with different enhancer mechanisms and a number of interactions 

also show evidence of cell type specificity34. 

Following on from this study, comprehensive analysis of one RA locus, 6q23, 

revealed a complex pattern of interactions, implicating multiple immune related 

genes, such as TNFAIP3, IL20RA, IFNGR1 and IL22RA2. Additional work on this 

region has confirmed these interactions, obtained bioinformatics evidence to narrow 

down the potential causal SNPs and shown allele specific histone marks and binding 

of the NFκB transcription factor. This work is the first study to comprehensively 

interrogate the chromatin interactions within this region and has highlighted the 

importance of gene assignment for translating GWAS findings to improve our 

knowledge of disease mechanisms and identify potential therapeutic targets. 

This work on the 6q23 region also led to the identification of chromatin interactions 

involving regions not associated with RA and not in LD with these associations. 

Instead, these regions contained variants uniquely associated with multiple sclerosis 

(MS), an autoimmune disease affecting the central nervous system. It was therefore 

reasoned that our Capture Hi-C data could be used to investigate the mechanisms 

specifically affecting MS at this locus. The aim of this study was therefore to link the 

MS associations to potentially causal genes using Capture Hi-C data within this region 
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and refine variants further using bioinformatics. While this study identified the reported 

GWAS genes as potential candidates, it also identified other related genes suggesting 

that MS associated variants could regulate not just one but multiple causal genes. 

Indeed, this work identified two clusters of chromatin interactions involving four lead 

MS associations within this region: one containing neurologically related genes and 

the other containing immunologically related genes. There is also evidence that 

independent disease associations interact with each other suggesting a complex 

regulatory mechanism where multiple regions associated with MS act cooperatively 

to regulate the expression of several genes. These findings could help us to 

understand the mechanisms of disease and also suggest potential novel therapeutic 

targets. 

4.3 Contribution to the literature 

This application of the Capture Hi-C method is the first to target the full known genetic 

component of four related AIDs at a much higher depth of sequencing (average 

10,000 interactions per restriction fragment) compared to previous studies. 

Additionally, our unique, complementary study design allowed us to investigate 

chromatin interactions in a comprehensive, self-validating manner. This 

complementary approach is now being utilised by other studies to validate 

interactions observed in whole-genome promoter capture experiments164 and offers 

a robust high-throughput method to confirm findings. 

We have redefined how GWAS variations are assigned to genes, showing that it is 

often more complicated than simply the closest gene and that Capture Hi-C can be 

used to interrogate a large number of GWAS loci in a systematic and unbiased 

manner to identify potential gene targets and to further the understanding of complex 

diseases. 

Our data has identified both existing and novel potential gene targets of disease 

associations giving the potential to inform future experiments to undercover the 

molecular mechanisms underpinning disease. Indeed, for the 6q23 region, this has 

already transpired as interactions identified in these experiments have already been 

utilised and expanded on to increase our understanding of how the genetic 

associations in the region not only interact with their target genes but also each other 

and between related diseases. Our work in the 6q23 region has also provided support 

for a new anti-IL-20 therapy which has been shown to be effective in the treatment of 

RA and psoriasis165,166, showing that this method could be effective in identifying other 

novel or existing drug targets. Further work on our Capture Hi-C data has identified 
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41 genes which are targets for 109 existing drugs for RA alone, of these only nine are 

currently used in the treatment of RA96. 

While our work has focused on the four AIDs previously mentioned, it has the potential 

to also inform gene regulation in other related AIDs as considerable overlap has been 

observed between AIDs. For example, the 6q23 region also contains multiple 

associations to other AIDs such as MS, celiac and SLE and, while not targeted 

directly, our data may provide insight into genetic associations with these diseases. 

Further exploration of this region has shown that variants which are only associated 

with MS, interact with two regions, the first implicating neurologically related genes 

including AHI1, SGK1 and BCLAF1 and the second implicating immunologically 

related genes such as IL20RA, IL22RA2, IFNGR1 and TNFAIP336. 

Despite the success of this and similar studies, it is clear that the interactions 

identified are highly cell type and even stimulus specific and further work will be 

required to fully explore GWAS associations to identify the genes they regulate. 

Future Capture Hi-C studies should be conducted in primary cells, preferably patients, 

to fully explore the regulatory mechanisms which exist and underpin disease. This 

approach, coupled with matching eQTL data, would help to resolve which genes are 

affected by GWAS associations and how they act to cause disease. 

5 Discussion 

It is clear that whilst GWAS has been tremendously successful in identifying variants 

associated with common complex diseases, not least in RA, it is only the beginning 

in understanding disease and how these common variants act together with each 

other and the environment to increase an individual’s risk to develop disease. 

Improvements in genomics technologies, increased sample sizes and larger, more 

collaborative research has driven this success but has also driven the evolution of 

bioinformatics. Only up to relatively recently, the initial GWAS generally did not 

include any bioinformatic analysis and simply presented the significant associations 

annotated to the closest or most biologically plausible gene. As GWAS became more 

and more common, bioinformatic analysis was gradually introduced and now 

comprises a substantial portion of GWAS publications. For example, only 

approximately one third of the publication by Okada et al. discussed the association 

results and trans-ethnic analysis. The remainder of the article described further 

bioinformatics analyses including epigenetic marks, functional annotation, overlap 

with disease, pathway and PPI networks and drug target evaluation. 
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Once it was clear that many of the genetic associations were outside of protein coding 

regions, the challenge was to determine how these variants could influence disease 

susceptibility. The obvious mechanism was gene regulation and projects such as 

ENCODE and the epigenomics roadmap project allowed researchers to annotate 

potential functional variants with regulatory elements, such as histone marks and 

DNase I HS sites. This presented a new challenge for researchers due to the wealth 

of data available and limited methods to query, integrate and investigate the functional 

elements in relation to disease associations. This led to the development of several 

bioinformatics tools to integrate this data to allow researchers to fully utilise the 

resource. 

Furthermore, many techniques to study the regulation of genes, either by measuring 

the expression directly or identifying regulatory elements, require sequencing to 

produce high-throughput and cost efficient data. Prior to the development and 

widespread adoption of next generation sequencing (NGS), Sanger sequencing was 

used. This technology was low-throughput and expensive, costing around $5,000 per 

megabase (Mb) in 2001 (the completion of the human genome sequence167,168, ~$95 

million/genome) and although dropping significantly to around $400/Mb in 2007, still 

suffered from poor throughput and technological limitations (Figure 26). Importantly, 

sequencing costs within this period roughly followed Moore’s law, an observation that 

compute power roughly doubles every year. However, with the advent of NGS in 

2008, it triggered not only a rapid decline in the cost of sequencing, falling from 

$0.52/Mb in 2010 to $0.014/Mb or $1,245 per genome in 2015 and surpassing 

Moore’s law, but also a rapid increase in the rate of sequence production. As the cost 

continued to drop and throughput continued to increase, NGS was applied to more 

techniques, such as RNA-Seq, ChIP-Seq and Hi-C, allowing researchers to study 

genome-wide regulation for the first time. This rapid increase of data coupled with the 

range of techniques, has cemented the role of bioinformatics in research and also 

has led to the establishment of many companies offering specific bioinformatics 

analysis solutions. Indeed, bioinformatics is now commonplace and many 

researchers are required to have at least a basic understanding of bioinformatics 

knowledge. 
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Figure 26 Cost per raw megabase of sequencing in US dollars between 2001 and 2015 

Prices between 2001 and 2007 are for Sanger sequencing. From 2008 onwards, costs are based on 

NGS. Source: https://www.genome.gov/sequencingcostsdata/. 

Importantly, since the introduction of NGS, cost and rate of sequence data generation 

has surpassed developments in compute power. This has meant that data analysis 

has moved away from large workstations and small clusters to large shared compute 

farms with thousands of cores and large amounts of memory. In addition, this has 

meant that analysis solutions require complex multi-core solutions, efficient 

algorithms and efficient sharing of data between processes. Almost all NGS tools 

employ some sort of multi-threading allowing them to utilise a set number of cores to 

reduce the overall compute time needed. 

The increase in the use of newer techniques, such as single cell RNA-Seq and mass 

cytometry by time of flight (CyTOF) has provided new challenges to the field of 

bioinformatics. Single cell RNA-Seq has shown that a homogeneous population of 

cells can actually represent multiple cell sub-types, each exhibiting slightly different 

expression profiles and reacting differently to their environment. Macosko et al. 

showed that mouse retinal cells are comprised of 39 transcriptionally different sub-

types using novel combinations of clustering techniques169. Following a similar trend 

as other NGS techniques, such as RNA-Seq, Pollen et al. showed that sub-types of 

https://www.genome.gov/sequencingcostsdata/
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developing cortex cells could be identified with as few as 10,000 reads per cell, 

compared to the 100,000 minimum read limit imposed by Macosko et al., although to 

obtain finer distinctions between categories, 50,000 reads per cell were necessary170. 

This does however highlight how techniques can develop and the importance of 

bioinformatics to achieve this. 

CyTOF provides a different challenge to single cell RNA-Seq as no sequence data is 

generated. Instead it uses mass spectrometry to measure more than forty cell surface 

markers on individual cells. Cell surface markers are labelled with a unique 

combination of metal-tagged reagents, such as antibodies. The time taken from 

excitation to detection allows the mass to be determined and therefore the 

corresponding antibody and the signal strength represents the frequency of markers 

on the cell. This technique has the ability to profile individual cells of a heterogeneous 

population and classify them into sub-types. However, analysis of the data is complex 

and requires a host of bioinformatics solutions, including new clustering methods, 

cloud based analysis solutions and visualisation methods. 

Perhaps as significant a task as developing novel methods to evaluate the vast 

amounts of data being currently generated is the ability to combine these ‘omics data 

sets and to compare across cell types. The bioinformatics, and analysis fields, are 

now moving into areas of how to handle the enormous data sets, how to integrate the 

multi-level data and how to determine sensible conclusions from this data. For 

example, determining how variation relates to transcription factor binding, gene 

expression and protein levels, has the capacity to infer cause and effect, and the 

mechanism by which an associated variant increases risk of disease. This is 

obviously not trivial, requiring novel analysis tools, powerful computing resources and 

robust statistics. 

The work presented here has used high level bioinformatics to solve specific research 

problems. Firstly to assist researchers to integrate a vast array of data to functionally 

annotate and select potential causal SNPs from GWAS associations. Secondly, to 

test for enrichment of specific genomic features, VDREs, in SNPs associated with RA 

to ascertain the involvement of vitamin D in RA pathogenesis. Thirdly, to analyse the 

complex three-dimensional chromatin interactions between disease associated 

regions and their target gene promoters to explore disease mechanisms and finally 

to show that, by combining Capture Hi-C results with subsequent bioinformatics tools 

and experiments, it has the potential to uncover disease mechanisms and therapeutic 

targets. 
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Although largely superseded by other tools, such as HaploReg and RegulomeDB, 

ASSIMILATOR was the first tool developed to mine the ENCODE data and proved to 

be a useful tool to select potentially functional variants from GWAS associations. 

However the increase in the amount of epigenomic data over the last few years and 

the number of diverse sources, favours the use of pre-processed static datasets, such 

as those used by HaploReg and RegulomeDB, rather than a ‘real-time’, up to date, 

data retrieval method due to speed considerations. Additionally, with the increased 

numbers of cell types and experiments, researchers should consider looking at 

specific sub-types relevant to the disease of interest or methods to summarise 

experimental results into functionally relevant categories. The ChromHMM method, 

used to classify regions of the genome into chromatin states, offers an ideal solution 

to summarise experiments and allows researchers to concentrate on cell types 

instead. As such, prioritisation tools, such as ASSIMILATOR, should base their initial 

searchers on ChromHMM data and then integrate other resources, such as 

transcription factor binding, which as yet has not been achieved. Similarly, methods 

to explore genomic feature enrichment and linking environmental factors with disease 

causality have evolved and methods, such as Mendelian randomisation offer the 

potential to fully explore disease causality. 

However, the current challenge, to translate GWAS findings to functional 

mechanisms, knowing the majority are regulatory, is to identify which gene or genes 

the variants act on to regulate their expression. Although this has historically been 

assumed to be the closest, most biologically plausible gene, we have shown, using 

Capture Hi-C, that this may not always be the case and variants may actually have 

several gene targets. Capture Hi-C has proved that gene regulation involves a 

complex interplay of several factors and bioinformatics has been crucial in all aspects 

of these experiments: in their design, analysis and interpretation. Although previous 

studies have used Capture Hi-C to study chromatin interactions, our Capture Hi-C 

experiment was the first to systematically and comprehensively investigate chromatin 

interactions between all regions associated with four autoimmune diseases and their 

target genes. Our approach to target both disease associated regions and selected 

promoters allowed us to explore in much greater detail, compared with a whole-

genome promoter capture, how disease variants may effect gene regulation. 

Unexpectedly the observed interactions were much further than originally thought and 

although our complementary experimental design was unique to this study and 

offered to be a powerful approach to self-validate chromatin interactions, it did not 

yield as much potential as hoped. As such, our experimental design for future studies 
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has been adapted slightly and instead of performing both capture experiments in 

parallel, they will be performed sequentially, with the first experiment informing the 

second. We believe that whilst this approach will take longer to execute it offers the 

most comprehensive way to validate findings and is therefore being adopted for future 

studies both by our group and others. 

One of the main limitations of this study however, is the use of cell lines as opposed 

to human primary cells, either healthy controls or affected individuals. Cells lines are 

much more amenable than primary cells, as they overcome technical limitations with 

regards to cell number and availability. But despite not being alone in the use of cell 

lines in Capture Hi-C experiments, they do not necessarily represent a true cellular 

state and as such, any findings may not be comparable to an in vivo system. Ideally, 

50 million cells are required to produce a Hi-C library to ensure complexity in the final 

library. For cell lines this number is easily achievable but for primary cells, less so. 

We have produced data showing comparable results with lower cell numbers 

(unpublished), which will aid the use of primary cells in future Capture Hi-C 

experiments. It is however imperative that future studies are performed in primary 

cells relevant to disease. 

The final two papers not only highlight what could be achieved using Capture Hi-C, 

coupled with further validatory and exploratory experiments, but also the importance 

of cell type specificity in establishing a link between expression and genotype. They 

demonstrate the ability of Capture Hi-C to identify chromatin interactions which affect 

disease and how these findings have led to a better understanding of how the 

associated variants contribute to disease. Although, further validation would be 

required in primary cells and the direct effects of genotype specificity explored, 

Capture Hi-C has also demonstrated potential utility in identifying pathways involved 

in disease and identification of new and existing drug targets which could provide a 

real clinical impact and patient benefit. Recent advances in genome editing, 

specifically the CRISPR/Cas9 system, will allow researchers to explore the direct 

effect of genotype on cellular phenotype, either by directly modifying the genome or 

by altering gene regulation, for example the effect of the enhancer (Figure 27). 
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Figure 27 Applications of the CRISPR/Cas9 system 

Precise genome editing (a) can be achieved by targeting a single locus. The DNA is repaired using 

either an error prone non-homologous end-joining (NHEJ) to produce indels or the precise homology-

directed repair (HDR). Chromosomal rearrangements (b) and large chromosomal deletions (c) can 

be performed by targeting two different sites of the genome. The desired effect can be altered by 

varying the distance between the two sites. Finally, a functionally inactive or dead Cas9 (dCas9) can 

be fused with different functional modifier domains to induce transcriptional control, epigenetic 

modification or DNA labelling. Modified from Heidenreich et al.171. Adapted by permission from 

Macmillan Publishers Ltd: Nature Reviews Neuroscience 17:36-44, copyright 2016. 

It is clear that post-GWAS, bioinformatics has informed the steps we need to take to 

refine, prioritise, integrate and translate GWAS findings into a complete 
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understanding of disease. It will continue to be invaluable in future efforts to uncover 

these mechanisms and to inform new therapies and to better inform treatment 

options. 

The exponential progression in the cost and throughput of data accumulation, 

particularly related to sequence data, has been matched by an exponential 

requirement to integrate robust statistical bioinformatics into genetic pipelines. 

Already we can see how bioinformatics has informed such diverse discoveries as the 

cell types important in disease, the histone marks enriched in GWAS loci, pathways 

important in disease, how expression changes with cell type and state, how SNPs 

influence the expression of certain transcript isoforms, how enhancers are defined, 

the genes they are linked to and the mechanism by which an implicated SNP may 

change expression, for example through TF binding. Bioinformatics, therefore, 

although still evolving, has made many positive impacts on our understanding of 

complex disease, and will continue to do so in the future. 

6 Scientific Impact 

Publication 1 was published in Bioinformatics (Oxford University Press), a leading 

journal in its field. In 2011 it had an impact factor of 5.468 and was ranked the number 

1 journal, out of 47, in the category of mathematical and computational biology. 

Publication 2 was published in Arthritis and Rheumatology (Wiley-Blackwell), an 

official journal of the American college of rheumatology. Arthritis and Rheumatology 

was previously known as Arthritis and Rheumatism and in 2014 was ranked 3rd out of 

31 journals in the category of rheumatology, behind Annals of Rheumatology and 

Nature Reviews Rheumatology with an impact factor of 7.764. Publication 3 was 

published in Genes and Immunity (Nature Publishing Group), a journal dedicated to 

functional genetics of the immune response. In 2013 it was ranked 47th out of 165 in 

the category of genetics and heredity and 45th out of 144 in the category of immunity, 

with an impact factor of 3.789. Publication 4 was published in Nature 

Communications, an open access journal that publishes high-quality research in 

biology, physics, chemistry, Earth sciences, and related areas. In 2015 it had an 

impact factor of 11.329 and was ranked 3rd out of 63 in the category of 

multidisciplinary sciences behind Nature and Science. Publication 5 was published in 

Genome Biology (Biomed Central Ltd), an online only, open access journal publishing 

outstanding research in all areas of biology and biomedicine studied from a genomic 

and post-genomic perspective. No impact factors or journal ranking have been 

released for 2016 but in 2015 it had an impact factor of 11.313 and was ranked 5th 
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out of 161 and 7th out of 165 in the categories of biotechnology & applied microbiology 

and genetics & heredity respectively. Publication 6 was published in PLoS One 

(Public Library of Science), the world’s first multidisciplinary Open Access journal, 

publishing reports of original research from all disciplines within science and 

medicine. Again, no impact factors or journal ranking have been released for 2016 

but in 2015 it had an impact factor of 3.057 and was ranked 11th out of 63 in the 

category of multidisciplinary sciences. All impact factors and category rankings are 

based on Thomson Reuters™ InCites™ Journal Citation Reports® 

(http://jcr.incites.thomsonreuters.com). 

In total, as of November 2016, the work presented here has been cited 45 times. 

Publication 1 has been cited seven times31,32,103,104,172–174 and publication 2 has been 

cited seventeen times175–191. Publication 3 has been cited seven times137,192–197. 

Publication 4 has been cited fourteen times35,36,164,175,198–207. This publication is still 

relatively recent and the number of citations is expected to rise. However, the 

measure of online attention, Altmetric, scores this article 78, placing it in the 97th 

percentile of tracked articles of a similar age in all journals. Additionally, it has been 

viewed over 6,600 times as of November 2016. Publications 5 & 6 have only recently 

been published and therefore do not currently have any citations, although the 

number is expected to rise and publication 5 has an Altmetric score of 27 putting it in 

the top 5% of all tracked research outputs and the 92nd percentile of all outputs of a 

similar age. 

In addition to the publications and citations, the work presented here has also been 

selected for presentation at national and international conferences. Publication 1 has 

been presented at a North of England Genetic Epidemiology Group meeting in Leeds, 

UK in November 2010. Publication 2 was selected for an oral presentation in the 

“Genetics” session at the British Society of Rheumatology conference in 2012 held in 

Glasgow, UK. Publication 3 was selected for an oral presentation in the “Genomics, 

genetics and epigenetics of rheumatic diseases” session at the European League 

Against Rheumatism (EULAR) conference in 2012 held in Berlin, Germany208. 

Publication 4 was selected for a platform (oral) presentation at the 65th American 

Society of Human Genetics conference held in Baltimore, MD, USA in the “Going All 

In: Experimental Characterization of Complex Trait Loci” session in 2015209. 

Publication 5 was selected for a poster presentation at the 65th American Society of 

Human Genetics conference held in Baltimore, MD, USA in 2015210 obtaining a 

reviewers’ choice award and oral presentations at the Target Validation using 

Genomics and Informatics conference held at the Wellcome Trust Genome Campus, 

http://jcr.incites.thomsonreuters.com/
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Hinxton in 2015, the Be The Cure Functional Genomics Workshop held in London, 

UK in 2016 and the European Human Genetics Conference 2016 held in Barcelona, 

Spain in the “Complex traits” session211. Publication 6 was selected for a poster 

presentation at the European Human Genetics Conference 2016 held in Barcelona, 

Spain212, obtaining a poster award. It was also selected for a platform (oral) 

presentation at the 66th American Society of Human Genetics conference held in 

Vancouver, BC, Canada in the “Chromatin Architecture, Fine Mapping, and Disease” 

session in 2016213. 
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