
GENERAL TERMINOLOGY
INDUCTION IN DESCRIPTION

LOGICS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2017

By
Viachaslau Sazonau

School of Computer Science



Contents

Abstract 12

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 17
1.1 From Scientific Explanation to Ontology Learning . . . . . . . . . 17
1.2 General Terminology Induction in Description Logics . . . . . . . 21
1.3 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . 23

2 Preliminaries 24
2.1 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Brief Background . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 A Running Example . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 Resource Description Framework . . . . . . . . . . . . . . 33
2.1.4 Web Ontology Language . . . . . . . . . . . . . . . . . . . 34
2.1.5 Open World Assumption . . . . . . . . . . . . . . . . . . . 35
2.1.6 Unique Name Assumption . . . . . . . . . . . . . . . . . . 36
2.1.7 Logic Programming . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Machine Learning and Data Mining . . . . . . . . . . . . . . . . . 37
2.2.1 Brief Background . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 How Data is Viewed . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Supervised and Unsupervised Learning . . . . . . . . . . . 39
2.2.4 Inductive Logic Programming . . . . . . . . . . . . . . . . 41
2.2.5 Association Rule Mining . . . . . . . . . . . . . . . . . . . 43

2



2.2.6 Formal Concept Analysis . . . . . . . . . . . . . . . . . . . 47
2.2.7 Probabilistic Graphical Models . . . . . . . . . . . . . . . 48

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Related Work in Ontology Learning 51
3.1 Ontology Learning Dimensions . . . . . . . . . . . . . . . . . . . . 51
3.2 Related Ontology Learning Approaches . . . . . . . . . . . . . . . 53

3.2.1 Concept Description Learning . . . . . . . . . . . . . . . . 54
3.2.2 Statistical Schema Induction . . . . . . . . . . . . . . . . . 57
3.2.3 Knowledge Base Completion . . . . . . . . . . . . . . . . . 60
3.2.4 BelNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 General Terminology Induction 69
4.1 A New Look at Ontology Learning . . . . . . . . . . . . . . . . . 69

4.1.1 Thinking in Terms of Hypotheses . . . . . . . . . . . . . . 69
4.1.2 Hypothesis Quality Dimensions . . . . . . . . . . . . . . . 70
4.1.3 Ontology Learning as a Multi-Objective Search . . . . . . 71

4.2 Designing DL-Miner . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Design Choices . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 General Assumptions . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Architecture of DL-Miner . . . . . . . . . . . . . . . . . . 74

5 Defining Hypothesis Quality Measures 76
5.1 Readability of a Hypothesis . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Syntactic Length . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 Role Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Logical Quality of a Hypothesis . . . . . . . . . . . . . . . . . . . 80
5.2.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Informativeness . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.4 Logical Strength . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.5 Dissimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Statistical Quality of a Hypothesis . . . . . . . . . . . . . . . . . 89
5.3.1 Axiom Measures . . . . . . . . . . . . . . . . . . . . . . . 90

3



5.3.1.1 Preliminary Definitions . . . . . . . . . . . . . . 90
5.3.1.2 Basic Measures . . . . . . . . . . . . . . . . . . . 93
5.3.1.3 Composite Basic Measures . . . . . . . . . . . . . 97
5.3.1.4 Main Measures . . . . . . . . . . . . . . . . . . . 100
5.3.1.5 Composite Main Measures . . . . . . . . . . . . . 104

5.3.2 Axiom Set Measures . . . . . . . . . . . . . . . . . . . . . 107
5.3.2.1 Preliminary Definitions . . . . . . . . . . . . . . 108
5.3.2.2 Fitness and Braveness . . . . . . . . . . . . . . . 115
5.3.2.3 Examples of Fitness and Braveness . . . . . . . . 116
5.3.2.4 Properties of Fitness and Braveness . . . . . . . . 118

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Computing Hypothesis Quality Measures 126
6.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Computing Readability Measures . . . . . . . . . . . . . . . . . . 128

6.2.1 Detecting and Eliminating Redundancy . . . . . . . . . . . 128
6.3 Computing Logical Quality Measures . . . . . . . . . . . . . . . . 130

6.3.1 Computing Dissimilarity . . . . . . . . . . . . . . . . . . . 131
6.3.2 Computing Complexity . . . . . . . . . . . . . . . . . . . . 132

6.4 Computing Statistical Quality Measures . . . . . . . . . . . . . . 133
6.4.1 Computing Axiom Measures . . . . . . . . . . . . . . . . . 133
6.4.2 Computing Fitness and Braveness . . . . . . . . . . . . . . 134

6.5 Evaluating Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Constructing Hypotheses 144
7.1 Hypothesis Construction at a Glance . . . . . . . . . . . . . . . . 144
7.2 Top-down Construction . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.1 Selecting a Seed Signature . . . . . . . . . . . . . . . . . . 147
7.2.2 Constructing Concepts from Templates . . . . . . . . . . . 148

7.3 Bottom-up Construction . . . . . . . . . . . . . . . . . . . . . . . 150
7.3.1 Enumerating Concepts via Refinement Operators . . . . . 150
7.3.2 Concept Support . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.3 DL-Apriori: a Concept Mining Algorithm . . . . . . . . 153
7.3.4 Correctness, Completeness, and Termination of DL-Apriori158

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4



8 DL-Miner: a Hypothesis Mining Algorithm 162
8.1 Handling Noisy Data . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.1.1 Handling Inconsistent Data . . . . . . . . . . . . . . . . . 163
8.1.2 Handling Consistent But Incorrect Data . . . . . . . . . . 165

8.2 Ordering and Ranking Hypotheses . . . . . . . . . . . . . . . . . 166
8.2.1 Single-Measure Ordering . . . . . . . . . . . . . . . . . . . 166
8.2.2 Multi-Measure Ordering . . . . . . . . . . . . . . . . . . . 167

8.3 Putting All The Pieces Together: DL-Miner . . . . . . . . . . . 170
8.3.1 The DL-Miner Algorithm . . . . . . . . . . . . . . . . . . 171
8.3.2 Correctness, Completeness, and Termination . . . . . . . . 172
8.3.3 What Hypotheses Can DL-Miner Mine? . . . . . . . . . . 174
8.3.4 DL-Miner in Ontology Learning Dimensions . . . . . . . 177

8.4 Implementation of DL-Miner . . . . . . . . . . . . . . . . . . . . 179
8.4.1 Optimisations and Heuristics . . . . . . . . . . . . . . . . 179

8.4.1.1 Incomplete Construction of Hypotheses . . . . . . 179
8.4.1.2 Incomplete Evaluation of Hypotheses . . . . . . . 180

8.4.2 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . 181
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9 Evaluation of DL-Miner 183
9.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.1.1 BioPortal and Axiom Diversity . . . . . . . . . . . . . . . 184
9.1.1.1 Experimental Design . . . . . . . . . . . . . . . . 184
9.1.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . 184

9.1.2 Ontology Metrics . . . . . . . . . . . . . . . . . . . . . . . 186
9.1.3 Handpicked Corpus . . . . . . . . . . . . . . . . . . . . . . 188
9.1.4 Principled Corpus . . . . . . . . . . . . . . . . . . . . . . . 189

9.2 Evaluating Quality Measures and Performance . . . . . . . . . . . 190
9.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 190
9.2.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . 191
9.2.3 Mutual Correlations of Quality Measures . . . . . . . . . . 192
9.2.4 Computational Performance Results . . . . . . . . . . . . 196
9.2.5 Side-observations of Interest . . . . . . . . . . . . . . . . . 199
9.2.6 Methodological Reflection . . . . . . . . . . . . . . . . . . 200

9.3 Comparing DL-Miner with Related Approaches . . . . . . . . . 201
9.3.1 Comparing DL-Miner with Concept Description Learning 201

5



9.3.1.1 Experimental Design . . . . . . . . . . . . . . . . 202
9.3.1.2 Comparison Results . . . . . . . . . . . . . . . . 204
9.3.1.3 Side Observations of Interest . . . . . . . . . . . 208

9.3.2 Comparing DL-Miner with Unsupervised Approaches . . 209
9.3.2.1 Experimental Design . . . . . . . . . . . . . . . . 209
9.3.2.2 Comparison Results . . . . . . . . . . . . . . . . 211

9.3.3 Methodological Reflection . . . . . . . . . . . . . . . . . . 211
9.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.4.1 Using DL-Miner for Rice Fertility Prediction . . . . . . . 212
9.4.1.1 Predictions in Description Logics . . . . . . . . . 212
9.4.1.2 Experimental Design . . . . . . . . . . . . . . . . 214
9.4.1.3 Prediction Results . . . . . . . . . . . . . . . . . 215
9.4.1.4 Side Observations of Interest . . . . . . . . . . . 217

9.4.2 Learning Hypotheses from the US National Transgender
Discrimination Survey . . . . . . . . . . . . . . . . . . . . 218
9.4.2.1 Experimental Design . . . . . . . . . . . . . . . . 219
9.4.2.2 User Feedback . . . . . . . . . . . . . . . . . . . 220
9.4.2.3 Indicators of Hypothesis Usefulness . . . . . . . . 222
9.4.2.4 Side Observations of Interest . . . . . . . . . . . 224

9.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10 Summary and Outlook 226
10.1 Contributions in Brief . . . . . . . . . . . . . . . . . . . . . . . . 226
10.2 Key Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.3 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

10.3.1 Defining Hypothesis Quality Measures . . . . . . . . . . . 228
10.3.2 Computing Hypothesis Quality Measures . . . . . . . . . . 229
10.3.3 Constructing Hypotheses . . . . . . . . . . . . . . . . . . . 229
10.3.4 Handling Enormous Amount of Hypotheses . . . . . . . . 230
10.3.5 Handling Inconsistent Ontologies . . . . . . . . . . . . . . 231
10.3.6 Ordering and Ranking Hypotheses . . . . . . . . . . . . . 231
10.3.7 Evaluating DL-Miner . . . . . . . . . . . . . . . . . . . . 232

10.4 Gained Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.4.1 Mutual Correlations of Hypothesis Quality Measures . . . 234
10.4.2 Computational Performance of DL-Miner . . . . . . . . . 234
10.4.3 Comparing DL-Miner with Other Approaches . . . . . . 235

6



10.4.4 Making Predictions in Description Logics Using DL-Miner 235
10.4.5 Usefulness of Hypotheses for Domain Experts . . . . . . . 236

10.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
10.5.1 Advancing DL-Miner . . . . . . . . . . . . . . . . . . . . 237

10.5.1.1 Dealing with Redundancy of Hypotheses . . . . . 237
10.5.1.2 Constructing Concepts Beyond ALC . . . . . . . 237
10.5.1.3 Scaling DL-Miner to Large Knowledge Bases . . 238

10.5.2 Investigating Other Quality Measures and Measure Com-
bination Schemes . . . . . . . . . . . . . . . . . . . . . . . 238

10.5.3 User Interaction Scenarios . . . . . . . . . . . . . . . . . . 239
10.5.4 Ontology Completion and Debugging . . . . . . . . . . . . 240
10.5.5 Comprehensible Predictors and Data Analysis Using De-

scription Logics . . . . . . . . . . . . . . . . . . . . . . . . 241

Bibliography 242

Word count: 62121

7



List of Tables

2.1 Syntax and semantics of DL constructors . . . . . . . . . . . . . . 28

2.2 Kinship data in ML . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Sales transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Formal context for sales transactions . . . . . . . . . . . . . . . . 48

3.1 Transaction table for Kinship . . . . . . . . . . . . . . . . . . . . . 59

3.2 Partial context for Kinship . . . . . . . . . . . . . . . . . . . . . . 63

3.3 OL approaches in OL dimensions . . . . . . . . . . . . . . . . . . 67

5.1 Kinship data under OWA . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Kinship projection for Example 5.24 . . . . . . . . . . . . . . . . . 118

5.3 Introduced quality measures and their properties (X– has a prop-
erty): S – designed for a set of axioms; P – positive, i.e. higher
values mean better quality; A – asymmetric, i.e. generally returns
different values for C v D and D v C; E – returns the same value
for all equivalent hypotheses; C – returns the same value for an
axiom and its contrapositive; N – does not make the UNA; T –
fully considers TBox. . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 Language biases and resulting types of hypotheses . . . . . . . . . 175

8.2 DL-Miner and other OL approaches in OL dimensions . . . . . . 177

9.1 Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded) . . . . . . . . . . . . . . . . . . . 185

9.2 Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded) . . . . . . . . . . . . . . . . . . . 185

9.3 Handpicked corpus . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.4 Principled corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8



9.5 Comparing fitness of a multi-axiom hypothesis with aggregated
fitness of its axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 195

9.6 Examples of learned hypotheses . . . . . . . . . . . . . . . . . . . 200
9.7 Comparing DL-Miner with BelNet and GoldMiner by recall

using gold standard ontologies . . . . . . . . . . . . . . . . . . . . 211
9.8 Metrics of rice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.9 Metrics of ntds (“·” stands for A, T ) . . . . . . . . . . . . . . . . . 218
9.10 Assessment of hypotheses acquired by DL-Miner for ntds: dis-

tribution of answers in Survey 1 and Survey 2 (“-” denotes zero)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9



List of Figures

2.1 ABox graph of Kinship . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Recognised handwritten digits for the NIST database (IBM Re-

search) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Bayesian network for Kinship . . . . . . . . . . . . . . . . . . . . . 49

3.1 OL dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 OL approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 BelNet for Kinship . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Architecture of DL-Miner . . . . . . . . . . . . . . . . . . . . . 75

5.1 Projection for Example 5.19 . . . . . . . . . . . . . . . . . . . . . 109
5.2 Assumption set for Example 5.20 . . . . . . . . . . . . . . . . . . 111
5.3 Minimal ABox for Example 5.22 . . . . . . . . . . . . . . . . . . . 113

7.1 Specialisation tree constructed by DL-Apriori . . . . . . . . . . 156

8.1 Comparable hypotheses: H5 ≺ H3, H3 ≺ H1, H5 ≺ H4, H4 ≺ H2;
incomparable hypotheses: H1 ‖ H2, H3 ‖ H4, H1 ‖ H4, H2 ‖ H3. . 168

8.2 Architecture of DL-Miner . . . . . . . . . . . . . . . . . . . . . 170
8.3 Architecture of DL-Miner with subroutines . . . . . . . . . . . . 173

9.1 Mutual correlations of quality measures for handpicked (a) and
principled (b) corpus: positive correlations are in blue, negative
correlations are in red, crosses mark statistically insignificant cor-
relations (significance level 0.05) . . . . . . . . . . . . . . . . . . . 193

9.2 Relative performance of hypothesis quality measures (a) and sub-
routines (b) of DL-Miner for principled and handpicked corpus . 197

9.3 Average performance of hypothesis quality measures per ontology
in handpicked corpus (a) and principled corpus (b) . . . . . . . . 198

10



9.4 Number of concept definitions of DL-Learner entailed (hits) and
not entailed (misses) by hypotheses of DL-Miner . . . . . . . . 205

9.5 Cumulative length of concept definitions of DL-Learner (hits)
and hypotheses of DL-Miner (hitting set) that entail them . . . 206

9.6 Runtime (logarithmic scale) of DL-Learner and DL-Miner for
handpicked (a) and principled (b) corpus . . . . . . . . . . . . . . 208

9.7 Prediction errors of hypotheses acquired by DL-Miner for rice
using different minimal concept support . . . . . . . . . . . . . . . 216

9.8 Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey
2 because their deviations equal zero and correlation coefficients
cannot be calculated) . . . . . . . . . . . . . . . . . . . . . . . . . 223

11



Abstract

In computer science, an ontology is a machine-processable representation of know-
ledge about some domain. Ontologies are encoded in ontology languages, such
as the Web Ontology Language (OWL) based on Description Logics (DLs). An
ontology is a set of logical statements, called axioms. Some axioms make univer-
sal statements, e.g. all fathers are men, while others record data, i.e. facts about
specific individuals, e.g. Bob is a father. A set of universal statements is called
TBox, as it encodes terminology, i.e. schema-level conceptual relationships, and
a set of facts is called ABox, as it encodes instance-level assertions.

Ontologies are extensively developed and widely used in domains such as bio-
logy and medicine. Manual engineering of a TBox is a difficult task that includes
modelling conceptual relationships of the domain and encoding those relation-
ships in the ontology language, e.g. OWL. Hence, it requires the knowledge of
domain experts and skills of ontology engineers combined together. In order to
assist engineering of TBoxes and potentially automate it, acquisition (or induc-
tion) of axioms from data has attracted research attention and is usually called
Ontology Learning (OL).

This thesis investigates the problem of OL from general principles. We formu-
late it as General Terminology Induction that aims at acquiring general, express-
ive TBox axioms (called general terminology) from data. The thesis addresses
and investigates in depth two main questions: how to rigorously evaluate the
quality of general TBox axioms and how to efficiently construct them. We design
an approach for General Terminology Induction and implement it in an algorithm
called DL-Miner. We extensively evaluate DL-Miner, compare it with other
approaches, and run case studies together with domain experts to gain insight
into its potential applications.

The thesis should be of interest to ontology developers seeking automated
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means to facilitate building or enriching ontologies. In addition, as our experi-
ments show, DL-Miner can deliver valuable insights into the data, i.e. can be
useful for data analysis and debugging.
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Chapter 1

Introduction

This chapter provides an introduction to the subject of this thesis. We start from
discussing philosophical roots of the problem and then briefly describe the topics
covered in the thesis and contributions made.

1.1 From Scientific Explanation to Ontology Learn-

ing

The importance of scientific knowledge has been long recognised. It dates back
to Antiquity when philosophers appreciated the value of scientific knowledge and
started searching for it, e.g. Aristotle in Posterior Analytics. Already at that
time, it was noticed that knowing that and knowing why are two essentially
different types of knowledge [Sal06]. For example, knowing that every day the
sun rises above the horizon is one thing and knowing why it does so is a completely
different matter. While the first type of knowledge is a mere observation, or fact,
the second one is an explanation1 that may help to understand not only the
observed phenomenon per se but also other, possibly unrelated phenomena.

For example, it is observed that every day the sun appears in the sky, moves
across it, and disappears from it. A possible explanation for this observation is
that the earth is static and the sun moves around it. It was the basis of the geo-
centric model that was prevailing for centuries. Nonetheless, this model could not
explain some other observations, e.g. that the sun and the moon rise at different
positions over the year, some planets do not rise for several months, and some

1Philosophers have identified different types of explanations depending on their purpose. We
concentrate on scientific explanations.

17
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planets even move in the direction opposite to the stars. Thus, an explanation
of one particular observation can be unable to explain other observations that
indicate the need for another, more general explanation.

A better explanation covering the observed motions of the sun, planets, and
stars was given by the heliocentric model formulated by Nicolaus Copernicus
in the 16th century. In the same way, this model was unable to explain other
observations of planetary movements (orbits) and was refined by the laws of
planetary motion formulated in Astronomia nova by Johannes Kepler in the
17th century. In this sense, science was developing as consecutive attempts to
explain more observations, i.e. build a scientific theory that provides answers to
all currently raised why questions. A scientific theory is a set of laws that are
universal, i.e. applicable to all entities under consideration.

If there are multiple competing theories explaining all observations equally
well, the choice of a theory can be guided by the principle called Occam’s razor,
named after William of Ockham who lived in the 14th century and made this
principle well known. It states that, among two theories equal by all criteria
but simplicity, the simpler one should be preferred. Various forms of it were
proposed and accepted by many philosophers and scientists, including Aristotle,
Kant, Galileo, Newton, etc.

While accepting Occam’s razor, philosophers question what simplicity of a
theory amounts to and why it should be relevant for describing the world [Sob15].
There are two types of simplicity that are commonly distinguished. The first one
is syntactic simplicity which accounts for the number of laws a theory consists of
and conciseness of those laws, e.g. to be measured by the syntactic length of a
theory. Thus, shorter theories are syntactically simpler.

The second type of simplicity is ontological simplicity, also called semantic
simplicity or parsimony, which captures the number and complexity of actual
postulates of a theory (that can be represented in different syntactic forms via re-
spective laws). Ontological simplicity can manifest itself in the assumptions that
a theory makes in addition to explaining observations. The fewer assumptions
are made beyond necessity by a theory, the semantically simpler the theory is.
Consider Example 1.1.

Example 1.1. A hospital monitors patients suffering from cold and records their
recovery times. According to the observations, patients taking vitamin C recover
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from cold within one week, while others take longer to recover. Then, the obser-
vations can be explained by the theory T1 which postulates that “a patient taking
vitamin C will recover from cold within one week”. However, the observations can
also be explained by another theory T2 stating that “a patient taking vitamin C
will recover from cold or flu within one week”. Since the hospital only monitors
patients suffering from cold, i.e. there are no observations about patients suffering
from flu, the theory T2 assumes that all patients taking vitamin C will recover
within one week not only from cold but also from flu. Thus, T2 is syntactically
and semantically more complex than T1. Therefore, according to Occam’s razor,
T1 should be preferred over T2.

In Example 1.1, the theory T1 captures a significant correlation evident from
observations. However, this does not imply that the theory is actually explan-
atory, i.e. useful for explaining not only the given observations but the whole
population as well, see Example 1.2.

Example 1.2. Suppose that, to confirm the theory T1, the hospital runs the second
round of recordings. The new observations show that patients which do not take
vitamin C recover from cold within one week, i.e. they do as well as patients
taking vitamin C. Then, all observations recorded during the first and second
round can be explained by a new theory T3 stating that “a patient will recover
from cold within one week”, i.e. regardless of taking vitamin C. Thus, in the light
of the observations of the second round, the old theory T1 seems to be an artefact
of the observations of the first round.

Example 1.2 shows the well-known fact that correlation does not imply caus-
ation (see the classic reference [HG93] and an interesting discussion in [Bar14]).
Whether a correlation is meaningful2 or not can only be tested in the presence of
population-wide observations or confirmed by knowledge about the whole popu-
lation.

Within Artificial Intelligence (AI), the process of seeking theories, or inferring
general laws (of different types and shapes), that explain observations of partic-
ular instances is called induction.3 It is usually opposed to deduction: while the
result of deduction is certain, i.e. provable, the result of induction is only tentat-
ive, i.e. probable. Importantly, the goal of induction is usually a generalisation,

2See some examples of spurious correlations at http://www.tylervigen.com.
3Induction, or inductive reasoning, should not be confused with mathematical induction

which is a type of deductive reasoning.

http://www.tylervigen.com
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i.e. a theory explaining not only the given observations but the whole popula-
tion, see Example 1.2. Clearly, the quality of generalisations varies depending
on a number of observations that support them. The problem of induction is
extensively studied in Machine Learning (ML) and Data Mining (DM), subfields
of AI.

This thesis focuses on induction. In order to automate induction (as well as
deduction), we need to formalise observations and theories in a way that makes
them machine-processable. In other words, we need to encode theories and ob-
servations in a language that can be processed by a machine. Developing such
languages is a concern of Knowledge Representation (KR), a subfield of AI.

A theory encoded in a machine-processable language is commonly called a
knowledge base, or ontology. Many ontology languages are based on logic and
encode an ontology as a set of logical statements. Being based on logic, such an
ontology can be interpreted in a certain, unambiguous way that allows for deriv-
ing logical consequences from it, i.e. deductive reasoning. A popular ontology
language is the Web Ontology Language [GHM+08] (OWL). OWL is based on
Description Logics [BCM+10] (DLs) which are typically fragments of First Or-
der Logic (FOL). OWL ontologies have been developed and extensively used in
several domains, particularly in biology and medicine.4 In the following, we only
consider OWL ontologies.

Logical statements of an ontology are called axioms. Axioms can be of two
different types: some represent universal statements, e.g. “all husbands are men
who are married”; others are facts about particular individuals, e.g. “John is
a husband”, “John is married to Ann”, “Ann is a wife”, etc. A set of universal
statements of the ontology is called TBox and represents schema-level conceptual
relationships, or a terminology. A set of facts of the ontology is called ABox and
represents instance-level assertions. Thus an ontology is generally the union of a
TBox and ABox (though any of them can be empty).

For the purpose of induction, a theory can be encoded as a TBox and ob-
servations, which are henceforth called data, can be encoded as an ABox. The
problem of inducing a TBox from an ABox is investigated in Ontology Learning5

(OL). It is the main topic of this thesis.
The research interest in OL is caused by the fact that manual engineering

4See for example http://bioportal.bioontology.org.
5The term “ontology learning” means learning ontologies from data and should not be con-

fused with studying or understanding or memorising ontologies.

http://bioportal.bioontology.org
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of a TBox is a difficult task that includes modelling conceptual relationships
of the domain and encoding those relationships in the ontology language, e.g.
OWL. Hence, it requires the knowledge of domain experts and skills of ontology
engineers combined together. Given some data, possibly from some database, one
can attempt to acquire, or learn, generalisations from it. Such generalisations can
then be used to assist ontology engineering and potentially automate constructing
ontologies to a good extent. In the realms of constantly growing data, particularly
(semi)structured data, OL could also help to bridge the “semantic gap” between
knowledge and data [LV14].

Within the broad research area of AI, OL can be seen as a point of convergence
of ML/DM and KR: the first is concerned with acquiring (learning, mining, or in-
ducing) generalisations from data and the second investigates languages to make
generalisations machine-processable. Generalisations can take different shapes
that can capture some types of knowledge and cannot capture others. Shapes of
generalisations are determined by a language which is chosen to encode general-
isations. One language can be able to encode all shapes of another language and
additionally encode shapes which that language is not able to encode. In other
words, one language can be more expressive (powerful) than another. Clearly,
more expressive languages allow for acquiring more generalisations, and possibly
more useful ones, from data than less expressive languages. However, they also
make searching for useful generalisations harder because the number of candid-
ates grows. We discuss this trade-off throughout the thesis and consider some
specific examples.

1.2 General Terminology Induction in Description

Logics

Although OL has attracted considerable research interest, current approaches
have evident limitations: they concentrate on learning restricted types of TBox
axioms in DLs, require supervision and human intervention, or disregard the
semantics of DLs. The goal of this thesis is to advance the state-of-the-art of OL
and overcome some limitations of existing approaches by considering the problem
of OL from general principles. Our objectives are as follows:

• We investigate General Terminology Induction (GTI): whether and how a
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general TBox, called general terminology , can be induced from an ABox in
DLs while respecting the standard semantics.

• We design, implement, and evaluate an approach for GTI.

A reasonable approach for GTI should be able to induce “good” generalisa-
tions. It can be formulated as search in the space of all possible generalisations
and requires constructing generalisations and evaluating their quality. Such an
approach is not straightforward to design as it faces several challenges in the
realm of DLs.

Firstly, DLs provide expressive languages for encoding generalisations and,
consequently, allow for acquiring rich knowledge. However, high expressivity
leads to a vast space of generalisations that need to be checked. Thus, there is a
trade-off between expressivity and computational feasibility.

Secondly, evaluating the quality of generalisations in DLs should work well
with, or respect, the standard semantics. More specifically, DLs permit incomplete
information about individuals in an ABox. For example, if the ontology does not
state that John is a father nor that he is not a father, it does not imply that he is
not a father. Instead, the information about John is assumed to be incomplete.
This is commonly called the Open World Assumption (OWA). In addition, while
inducing generalisations from the given ABox, we should also respect the given
TBox, i.e. background knowledge. The latter means that we should treat explicit
ABox facts in the same way as we treat implicit, entailed facts.

Thirdly, usefulness of a generalisation is not equivalent to its “correctness”.
In other words, not only correct generalisations are useful. More specifically,
there might be three types of useful generalisations: those that enrich the TBox,
those that reflect new interesting correlations, and those that indicate modelling
flaws or data errors. Therefore, any induced generalisation should be viewed as a
hypothesis whose usefulness is yet to be confirmed by a domain expert (see also
Example 1.2).
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1.3 Contributions of This Thesis

This thesis makes the following contributions .

• We formulate GTI as a multi-objective search problem in DLs.

• We propose a range of measures to evaluate quality of hypotheses in GTI.
We distinguish three quality dimensions, i.e. readability, logical quality,
and statistical quality, and define measures for each of them. The measures
are designed for DLs, i.e. respect the standard semantics and background
knowledge. We investigate general (universal) relationships between the
measures.

• We design a data-driven algorithm, called DL-Apriori, that constructs
only promising hypotheses (and avoids even considering almost all unprom-
ising ones). We prove its correctness, termination, and completeness.

• We implement all proposed techniques, i.e. computing quality measures and
constructing promising hypotheses, in one algorithm called DL-Miner.

• We empirically evaluate DL-Miner, i.e. design and run experiments, ana-
lyse their results and gain insights, as follows:

– we select and analyse experimental data;

– we investigate how the quality measures correlate with each other and
compare their correlations with their general relationships;

– we evaluate the computational performance of DL-Miner;

– we compare DL-Miner with other OL approaches;

– we design and execute two case studies to gain insight into usefulness
of all three types of hypotheses of DL-Miner and its quality measures.

This thesis explicates and elaborates ideas originally published in [SSB15].
In order to explain some performance results, we refer to the results published
in [SSB14]. The work has also been published and presented at several community
workshops.



Chapter 2

Preliminaries

In this chapter, we will introduce basic notions which are required to understand
this thesis. We will fix the terminology and explain the relevant concepts of
Description Logics, Data Mining, and Machine Learning. We will also introduce
a running example used in the following chapters. We assume the reader to be
familiar with Data Mining, First Order Logic and, ideally, Description Logics.

2.1 Description Logics

As the basis of the Web Ontology Language [GHM+08] (OWL), Descriptions
Logics [BCM+10] (DLs) provide means for encoding ontologies. The interested
reader can consult the Description Logic Handbook [BCM+10] for additional
details.

2.1.1 Brief Background

Descriptions Logics [BCM+10] (DLs) are a family of knowledge representation
formalisms that are typically decidable fragments (subsets) of First Order Logic
(FOL).1 A DL knowledge base, called a DL ontology, is a set of logical formulae,
called axioms.

Structurally, an ontology consists of terminological and assertional parts. The
terminological part represents concepts (unary predicates) and roles (binary pre-
dicates) with their relationships. It is often separated into two parts: a TBox

1There are, however, DLs which are not decidable and not fragments of FOL

24
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that encodes implications between concepts and an RBox that encodes implica-
tions between roles. For the sake of brevity, in this thesis we do not make this
distinction and call the terminological part, including both concept and role im-
plications, a TBox, or terminology. A TBox capture background knowledge as
it is general concept-level knowledge about the domain. The assertional part of
an ontology is called an ABox and encodes facts – individuals (constants) with
their relationships. An ABox captures data as it contains factual, instance-level
knowledge of the domain in the context of this thesis (but can be a means of
modelling in general).

As FOL, DLs have formal, well-defined semantics. Therefore, the expressed
knowledge is unambiguous, i.e. it is completely clear what it means based on the
semantics. Then, if a suitable calculus exists, it becomes possible to automatically
derive logical inferences of an ontology. This process is called deductive reasoning,
or automated reasoning. For example, reasoning is used to check consistency of
an ontology, i.e. to verify that it contains no contradictory axioms. In DLs logical
inferences are called entailments. Entailments are implicit relationships turned
to explicit ones by reasoning, i.e. they uncover knowledge which follows from an
ontology, yet is not explicitly stated in it.

Let us formally define the aforementioned notions that will be explained by
a running example later on. Let NC , NR, and NI be pairwise disjoint sets of
concept, role, and individual names, respectively. We call term any element in
NC ∪ NR ∪ NI . A concept A (role R) is called atomic if A ∈ NC (R ∈ NR).
Concepts and roles can be complex, see Definition 2.1.

Definition 2.1 (Complex concept, role). A concept C (role R) is called complex 2

if C /∈ NC (R /∈ NR) and C (R) is an expression built from NC ∪NR ∪NI (NR)
according to syntax rules, called constructors, of DLs.

Constructors of a DL determine its expressivity, i.e. which expressions it
permits to use. For example, the DL EL provides no role constructors and the
following concept constructors: top >, conjunction C uD, existential restriction
∃R.C. Another notable DL ALC provides all the concept constructors of EL
and, in addition, the following ones: bottom ⊥, negation ¬C, disjunction C tD,
universal restriction ∀R.C. Thus, all EL concepts can be expressed in ALC
but not vice versa. We say that ALC is more expressive than EL. Even more

2In the scope of this thesis, a complex role is any role which is not atomic.
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expressive DL SROIQ provides additional concept and role constructors, e.g.
inverse R−, composition R ◦ S, etc. In the following, we define the semantics for
the aforementioned constructors. Complex concept and roles in a given DL are
built by inductively applying its constructors, see Example 2.1.

Example 2.1. The following C and D are complex EL and ALC concepts, re-
spectively:

C := A u ∃R.(B u ∃R.>)

D := A t ∃R.(¬B u ∀R.B)

A TBox encodes relations between concepts via concept inclusions and rela-
tions between roles via role inclusions, see Definition 2.2.

Definition 2.2 (TBox). A TBox T is a finite set of general concept inclusions
and role inclusions.

• A general concept inclusion (GCI), or concept subsumption, is an expression
of the form C v D, where C and D are (possibly complex) concepts. A
concept C is said to be subsumed by a concept D. We call a GCI of the
form A v B, where A,B ∈ NC , an atomic concept subsumption.

• A role inclusion (RI), or role subsumption, is an expression of the form
R v S, where R and S are (possibly complex) roles. A role R is said to be
subsumed by a role S. We call a RI of the form R v S, where R, S ∈ NR,
an atomic role subsumption.

• C ≡ D (R ≡ S) is the abbreviation for {C v D, D v C} ({R v S, S v
R}). A concept C (role R) is said to be equivalent to a concept D (role S).

• A concept definition is a GCI of the form A ≡ C, where A ∈ NC (a concept
name defined), C is a possibly complex concept (a concept description).

In contrast to FOL, DLs have a variable-free syntax since they do not explicitly
use variables. DL axioms can usually be translated to FOL, see Example 2.2.

Example 2.2. The concepts C and D from Example 2.1 are straightforwardly
translated to FOL formulae as follows:

C(x) := A(x) ∧ ∃y(R(x, y) ∧B(y) ∧ ∃zR(y, z))

D(x) := A(x) ∨ ∃y(R(x, y) ∧ ¬B(y) ∧ ∀z(R(y, z)→ B(z)))
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The DL axiom C v D is translated to FOL as ∀x(C(x)→ D(x)).

An ABox encodes facts about individuals in the domain via concept and role
assertions, see Definition 2.3.

Definition 2.3 (ABox). An ABox A is a finite set of concept assertions and role
assertions.

• A concept assertion (CA) is an expression of the form C(a), where a ∈ NI

and C is a (possibly complex) concept.

• A role assertion (RA) is an expression of the form R(a, b), where a, b ∈ NI

and R is a (possibly complex) role.

GCIs, RIs, CAs, and RAs are called axioms. A set of all axioms, i.e. the
union of a TBox and ABox, is called a DL ontology, see Definition 2.4.

Definition 2.4 (DL Ontology). Given a TBox T and an ABox A, we call their
union O := T ∪ A a DL ontology.3

The vocabulary of an ontology is given by its signature, see Definition 2.5.

Definition 2.5 (Signature). The signature α̃ of an axiom α is a set of all terms
from NC , NR, and NI occurring in α. Then, the signature Õ of an ontology O
is defined as follows: Õ :=

⋃
{α̃ | α ∈ O}. The sets of all individual names

in(O), concept names cn(O), role names rn(O) of an ontology O are defined,
respectively, as follows: in(O) := Õ ∩NI , cn(O) := Õ ∩NC , rn(O) := Õ ∩NR.
Let crn(O) := cn(O) ∪ rn(O).

An ontology specifies a set of constraints that determine what is possible and
what is not possible in the domain. In other words, it acts like a “filter” to disallow
certain situations. Formally, the semantics of DLs is based on interpretations.

Definition 2.6 (Interpretation). An interpretation I is a structure I := (∆I , ·I),
where ∆I is a non-empty set (called domain) and ·I is a function (called interpret-
ation function) which maps every concept name A ∈ NC to a subset AI ⊆ ∆I ,
every role name R ∈ NR to a binary relation RI ⊆ ∆I × ∆I , every individual
name a ∈ NI to an element aI ∈ ∆I . The interpretation function ·I is inductively
extended to complex concepts and roles, see Table 2.1 (see [BCM+10] for the
semantics of other DL constructors).
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DL Syntax Semantics Name
> ∆I top

EL C uD CI ∩DI conjunction
∃R.C {a | ∃b : (a, b) ∈ RI ∧ b ∈ CI} existential re-

striction
⊥ ∅ bottom

ALC ¬C ∆I\CI negation
C tD CI ∪DI disjunction
∀R.C {a | ∀b : (a, b) ∈ RI → b ∈ CI} universal

restriction
≥ (≤) nR.C {a | |{b : (a, b) ∈ RI ∧ b ∈

CI}| ≥ (≤) n}
atleast(atmost)
restriction

R− {(b, a) | (a, b) ∈ RI} role inverse
SROIQ R ◦ S {(a, c) | ∃b : (a, b) ∈ RI ∧

(b, c) ∈ SI}
role composi-
tion

U ∆I ×∆I universal role
. . .

Table 2.1: Syntax and semantics of DL constructors

An interpretation that satisfies the constraints given by axioms of the ontology
is called its model, see Definition 2.7.

Definition 2.7 (Model). An interpretation I satisfies

• a GCI C v D if CI ⊆ DI ;

• a RI R v S if RI ⊆ SI ;

• a CA C(a) if aI ∈ CI ;

• a RA R(a, b) if (aI , bI) ∈ RI ;

• an ontology O if I satisfies each axiom in O.

An interpretation I that satisfies an ontology O is called a model of O.

Intuitively, a model describes a “world” which is allowed to exist according
to the knowledge expressed by the ontology. For example, given the ontology
O := {A v B} which encodes that “all A’s are also B’s”, the interpretation I1,
where ∆I1 = {a}, AI1 = {a}, BI1 = {a}, is a model of O, while the interpretation
I2, where ∆I2 = {a}, AI2 = {a}, BI2 = ∅, is not. The semantics of interpretations
determines the entailment relation denoted as |=, see Definition 2.8.

3Throughout the thesis, we use O to denote ontologies.
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Definition 2.8 (Entailment). The entailment relation |= is defined as follows.

• An ontology O entails another ontology O′, written as O |= O′, if all models
of O are models of O′.

• O ≡ O′ is the abbreviation for O |= O′ and O′ |= O. Such ontologies O
and O′ are said to be equivalent.

• O |= α is the abbreviation for O |= {α}. Such an axiom α is called an
entailment of O, or O is said to entail α.

• α |= α′ is the abbreviation for {α} |= {α′}, α ≡ α′ is the abbreviation for
{α} ≡ {α′}.

• An ontology O is called inconsistent if O has no models, i.e. O |= > v ⊥.
Otherwise, O is called consistent.

• Any entailment α of the empty ontology is called a tautology, i.e. ∅ |= α,
abbreviated as |= α or simply α.

• An individual a is called an instance of a concept C if O |= C(a).

An entailment can be an axiom of any type, i.e. a GCI, RI, CA, or RA.
Trivially, any axiom in the ontology is entailed by that ontology. Since a tautology
follows from the empty ontology, it follows from any ontology.

A GCI stating that the extensions of two concepts are disjoint in all models
is called a disjointness axiom, see Definition 2.9.

Definition 2.9 (Disjointness axiom). Let C and D be concepts, α a GCI. If
α |= C v ¬D, then α is called a disjointness axiom for C and D. A concept C
is said to be disjoint from a concept D.

In other words, a disjointness axiom enforces that there is no model where
the extensions of the given concepts have an element in common. Please note
that a disjointness axiom can take many syntactically different (but semantically
equivalent) shapes: C v ¬D, D v ¬C, C uD v ⊥, etc.

Checking, or deciding, the entailment relation |= is called reasoning. There are
several reasoning problems that are commonly distinguished in DLs, see Defini-
tion 2.10.
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Definition 2.10 (Reasoning problems). Let O be an ontology.

• The reasoning problem of testing whether O is consistent is called consist-
ency checking.

• Given concepts C and D, the reasoning problem of testing O |= C v D is
called subsumption checking.

• Given a concept C, the reasoning problem of testing O |= C v ⊥ is called
satisfiability checking. If O |= C v ⊥, C is called unsatisfiable. Otherwise,
C is called satisfiable.

• The concept hierarchy of O is defined as follows: ch(O) := {A v B | O |=
A v B ∧ A,B ∈ cn(O) ∪ {>,⊥}}. The reasoning problem of computing
ch(O) is called ontology classification.

• Given a concept C and an individual a ∈ in(O), the reasoning problem of
testing O |= C(a) is called instance checking . If O |= C(a), a is called an
instance of C in O.

• Given a concept C, the reasoning problem of retrieving all instances of C
in O is called instance retrieval .

The concept hierarchy of an ontology can be computed by checking subsump-
tions for all pairs of concept names occurring in the ontology (including > and
⊥). Hence, it can be reduced to subsumption checking.

Instance retrieval is essentially a type of query answering in DLs, where a
query is given by a concept C and potential answers are all individuals in(O)

occurring in the ontology O. It can be computed by checking for each individual
whether it is an instance of C in O. Hence, instance retrieval can be reduced to
instance checking.

Algorithms that provide decision procedures for reasoning problems in DLs
are called reasoning services. Tools that implement reasoning services for DLs
are called reasoners. Many highly-optimised reasoners have been developed, in-
cluding popular HermiT [SMH08], Pellet [SPG+07], FaCT++ [TH06], ELK

[KKS11].
There is a variety of DLs that differ in their expressivity and computational

complexity of reasoning. Higher expressivity generally, but not necessarily, im-
plies higher computational complexity. Thus, one can choose a DL according to
the required expressivity and affordable complexity.
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2.1.2 A Running Example

In order to explain the basics of DLs, let us introduce a running example, see
Example 2.3, which will also be used throughout the thesis.

Example 2.3. (Kinship) The example presents ontology Kinship := T ∪ A that
models family relations. It was adopted from the UCI Machine Learning Repos-
itory.4 The TBox T captures the following background knowledge. All men and
women are humans, all mothers are women, all fathers are men. Men are dis-
joint from women, i.e. no individual can be a man and a woman simultaneously.
Marriage is a symmetric relation, having a parent is the inverse of having a child.

T = {Man v Human, Woman v Human,

Father vMan, Mother v Woman,

Man v ¬Woman, marriedTo v marriedTo−,

hasParent v hasChild−, hasChild v hasParent−}.

The ABox A encodes the following data. Chris is married to Penelope and they
have two children, V ictoria and Arthur. James is married to V ictoria and they
have a daughter, Charlotte. Arthur is married to Margaret.

A = {Man(Arthur), Father(Chris), Father(James),

Woman(Charlotte), Woman(Margaret), Mother(Penelope),

Mother(V ictoria),

hasParent(Charlotte, James), hasParent(Charlotte, V ictoria),

hasParent(V ictoria, Chris), hasParent(V ictoria, Penelope)

hasParent(Arthur, Penelope), hasParent(Arthur, Chris),

marriedTo(Chris, Penelope), marriedTo(James, V ictoria)

marriedTo(Arthur,Margaret)}.

The TBox in Example 2.3 has the signature that consists of 5 concept names:
Human,Man,Woman, Father,Mother; and 3 role names: marriedTo, hasParent,
hasChild. The concept ¬Woman is a complex concept, the roles marriedTo−

and hasChild− are complex roles.
The TBox consists of 8 axioms: 5 GCIs and 3 RIs. For example, the GCI

4https://archive.ics.uci.edu/ml/datasets/Kinship

https://archive.ics.uci.edu/ml/datasets/Kinship
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Mother v Woman means that all mothers are women. The ABox consists
of 16 axioms: 7 CAs and 9 RAs. For example, the CA Man(Arthur) means
that the individual Arthur is an instance of the concept Man and the RA
hasParent(Arthur, Penelope) means that Arthur has a parent named Penelope.

An ABox is essentially a graph where nodes are individuals labelled with
concepts and edges represent role assertions between them. The ABox in Ex-
ample 2.3 is illustrated as a graph in Figure 2.1, where p stands for hasParent,
m for marriedTo.

Charlotte {Woman}

V ictoria {Mother}James{Father}

Penelope {Mother}Chris{Father}

Arthur {Man}Margaret{Woman}

p p

m

p p

m

p p

m

Figure 2.1: ABox graph of Kinship

The ontology Kinship is consistent, i.e. there are no contradictions. The axiom
Man v ¬Woman, which can also be written asManuWoman v ⊥, means that
men are disjoint from women. Therefore, if one adds the CA Woman(Arthur)

to the ABox, then the ontology becomes inconsistent.
Since Kinship contains axioms Mother v Woman and Woman v Human,

it entails that Mother v Human, written as Kinship |= Mother v Human.
Another example of entailment is Father v ¬Mother, i.e. mothers are disjoint
from fathers. The entailments Mother v > and Mother uWoman v Woman

are tautologies, i.e. they follow from any ontology.
An ontology can also entail instance-level facts. For example, since Kinship

states that Chris is a Father, it entails that Chris is also a Man, written as
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Kinship |= Man(Chris). Since the ontology states that having a parent is the
inverse of having a child and V ictoria has parent Chris, it entails that Chris
has child V ictoria, or Kinship |= hasChild(Chris, V ictoria).

As an example of instance retrieval, let us query for all instances of the concept
Woman u ∃marriedTo.Man, i.e. all individuals who are women and married to
some man. The answer set is {V ictoria, Penelope,Margaret}.

2.1.3 Resource Description Framework

The Resource Description Framework 5 (RDF) is a specification, standardised by
the World Wide Web Consortium (W3C), for modelling web resources. RDF
is essentially a data model that describes resources via subject-predicate-object
triples, where a subject and object are resources, a predicate defines a (directed)
relationship between them. RDF has several serialisation formats, e.g. Turtle,
N-Triples, RDF/XML. Within this thesis it is sufficient to understand RDF as
another syntax for DL ABoxes, see Example 2.4.

Example 2.4. All ABox axioms of Kinship, see Example 2.3, can be written as
RDF triples in the Turtle format as follows (some axioms are skipped for brevity):
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix kin: <http://owl.cs.manchester.ac.uk/kinship.owl#> .
kin:Arthur rdf:type kin:Man .
kin:Chris rdf:type kin:Father .
. . .
kin:Charlotte kin:hasParent kin:James .
kin:Charlotte kin:hasParent kin:Victoria .
. . .

Nonetheless, not every DL ABox can be written using RDF. In particular,
RDF is unable to encode assertions of complex concepts, i.e. C(a), where C
is a complex concept. RDF is domain-independent and users define their own
vocabulary in a schema language, called RDF Schema.6 In addition, RDF Schema
allows specifying concept and role hierarchies, i.e. expressing some TBox axioms.

5https://www.w3.org/RDF
6https://www.w3.org/TR/rdf-schema

https://www.w3.org/RDF
https://www.w3.org/TR/rdf-schema
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2.1.4 Web Ontology Language

Despite the great volumes of data on the Web, it is largely machine-processable,
yet not machine-understandable. The Semantic Web is a term referring to the
idea of machine-understandable data on the Web. It is an initiative to provide
semantics to the data, or bridge the so-called “semantic gap”. Ontologies are
considered as a key technology to achieve this goal since they provide common
vocabularies where terms can be mapped to the content of web documents.

The Web Ontology Language [HPVH03, GHM+08] (OWL) is one of the most
popular ontology languages nowadays. OWL is standardized by the World Wide
Web Consortium (W3C).7

OWL is based on DLs. The current version of OWL, OWL 2 [GHM+08],
corresponds to the expressive DL SROIQ(D).8 As reasoning in SROIQ is
computationally complex [HKS06], OWL9 provides 3 sub-languages such that
one can select a required ratio of language expressivity and reasoning complexity.
Like RDF, OWL has several serialisation formats, e.g. OWL2 XML, RDF/XML,
Manchester.

Since OWL can express all (TBox and ABox) axioms of SROIQ, OWL is
just another syntax for it, see Example 2.5.

Example 2.5. The concepts C and D from Example 2.1 can be written in OWL
in the Manchester syntax as follows:

C := A and R some (B and R some owl:Thing)

D := A or R some (not B and R only B)

where owl:Thing corresponds to > in DLs. The DL axiom C v D is written as
“C SubClassOf D”.

A significant number of OWL ontologies have been developed for academia
and industry. In particular, this is evident in bioinformatics, healthcare, and life
sciences where ontologies are found to be very useful for managing large termin-
ologies. Prominent examples of such ontologies are NCI Thesaurus, GALEN,
SNOMED CT, International Classification of Diseases (ICD). The NCBO Bio-
Portal repository10 contains a large collection of biomedical ontologies. Ontologies

7https://www.w3.org/OWL
8SROIQ(D) is more expressive than SROIQ.
9In the following, by OWL we mean OWL 2.

10http://bioportal.bioontology.org/

https://www.w3.org/OWL
http://bioportal.bioontology.org/
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have also been used in chemistry, astronomy, defence and other areas.

Ontologies, particularly their TBoxes, are often built manually by ontology
engineers.11 Tools used for ontology engineering are called ontology editors. One
of popular ontology editors is Protégé.12

Manual ontology engineering requires knowledge representation skills and do-
main expertise. Not surprisingly, the process can consume significant human
efforts. As an example, the National Cancer Institute Thesaurus13 (NCIt) is a ref-
erence terminology and biomedical ontology that provides definitions, synonyms,
and other information on more than 10,000 cancers and related diseases. NCIt
has been developed for more than a decade and is currently updated monthly.

2.1.5 Open World Assumption

The semantics of DLs permits encoding incomplete information. This permission
is commonly called the Open World Assumption (OWA). It is the opposite of
the Closed World Assumption (CWA), or the “negation as failure” semantics,
conventionally used in databases and logic programming. In contrast to the CWA,
information that is missed in the knowledge base under the OWA is considered
being just incomplete, but not false.

For a DL ontology, the OWA means that an axiom which is not entailed by
the ontology (and hence not contained in it either), can hold in some (but not
all) models of it. In other words, there are worlds where the axiom is true and
worlds where it is false. Such an axiom can be either a TBox axiom or an ABox
assertion. In practice, the OWA is the reason why an axiom which is not entailed
by the ontology is not necessarily false: the ontology may simply be incomplete.
As OWL is based on DLs, it also permits the OWA.

Within this thesis, it is important to note that the OWA in DLs implies that
it is possible that O 6|= C(a) and O 6|= ¬C(a). In other words, it can be unknown
whether an individual a is an instance of a concept C or its negation ¬C. For
example, the lack of information in Kinship does not imply that Arthur is not a
Father and Margaret is not a Mother: these facts may simply be not encoded
by the ontology.

11Some OWL ontologies are the result of translations from other formats, e.g. OBO.
12http://protege.stanford.edu
13http://www.cancer.gov/research/resources/terminology

http://protege.stanford.edu
http://www.cancer.gov/research/resources/terminology
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2.1.6 Unique Name Assumption

The Unique Name Assumption (UNA) is a simplifying assumption commonly
used in AI including KR. The UNA states that different names always refer to
different entities. Consequently, the absence of the UNA implies that different
names may refer to the same entity.

Some DLs, particularly DL-lite [CDL+05, ACKZ09], use the UNA to make
reasoning easier. Indeed, the absence of the UNA in a DL introduces additional
choices for reasoning: different individual names may refer to the same entity
(the same element in the domain) in some models and may refer to different
entities in other models. For example, the absence of the UNA in Kinship means
that there are models where Charlotte and Margaret refer to the same person.
Please note that, however, there are no models where Charlotte and Chris are
the same person because of the restriction that all men are disjoint from women,
i.e. Man v ¬Woman.

Although the UNA seems a reasonable assumption to make for Kinship, it is
not always the case. Sometimes, different names do refer to the same object, e.g.
different spelling variants, alternative forms, etc. For example, Margaret has a
spelling variant,Margareth, which would imply to be a different person in Kinship
under the UNA. A prominent example where this matters is UniProt14 which is a
heterogeneous knowledge base that contains multiple identifiers (names) for the
same protein.

Modern DLs do not normally use the UNA, excluding those that maintain
tractability of reasoning, e.g. DL-lite. In order to express that two individuals
a and b are equal (different), DLs support assertions of the form a ≈ b (a 6≈ b).
Similarly, OWL does not use the UNA but provides the language constructs
owl:sameAs (owl:differentFrom) to encode the equality (inequality).

2.1.7 Logic Programming

Logic Programming [Llo87] (LP) is another KR formalism. It is important for
this thesis to clarify the relationship between LP and DLs. LP is based on the
Horn fragment (subset) of FOL. A knowledge base in LP is called a logic program.
A logic program consists of Horn clauses. A clause in LP is typically written as
an implication of the form A ← L1, L2, . . . , Ln, where A is an atom called head

14http://www.uniprot.org/

http://www.uniprot.org/
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and L1, L2, . . . , Ln is a conjunction of literals called body.
Thus, as most DLs, LP is a fragment of FOL. However, LP has different

from DLs expressivity. In other words, some knowledge can be expressed in DLs,
but cannot be expressed in LP (the reverse is also true as LP permits predic-
ates of more than two variables). Most importantly, the head A of a clause
A ← L1, L2, . . . , Ln can only be an atom. This means that LP is unable to ex-
press GCIs C v D, where D is a complex concept. For example, it is possible
to state in DLs that “having a father implies having a mother” via the axiom
∃hasParent.Father v ∃hasParent.Mother but not possible in LP because ex-
istentially quantified variables are not allowed in the head. Another example is
“being married to a mother implies being not a mother” which can be expressed
in DLs via the axiom marriedTo.Mother v ¬Mother but cannot be expressed
in LP because negation is not allowed in the head (though it is possible to ex-
press disjointness axioms, e.g. “mothers are disjoint from fathers”). Thus, LP
clauses are similar to DL concept definitions, where a head A is defined by its
body L1, L2, . . . , Ln.

In addition, LP has different from DLs semantics. For example, a DL axiom
B v A entails ¬A v ¬B, while the respective LP clause A ← B does not. In
contrast to DLs, LP normally makes the CWA, i.e. assumes that what is not
known to be true is false. LP normally assumes that the interpretation domain is
closed for individuals of the ABox (constants), while DLs permit domain elements
not mapped to any ABox individual (generally infinite number of them).

2.2 Machine Learning and Data Mining

Methods of Machine Learning (ML) and Data Mining (DM) are concerned with
tasks of automated data analysis, processing, manipulation, and organisation.
The interested reader can consult ML/DM handbooks, e.g. [Bis06, TSK13], for
additional details.

2.2.1 Brief Background

In the literature, ML is often conflated with DM. The difference relevant for this
thesis is that the first commonly aims at predictive data analysis, while the second
focuses on exploratory data analysis. In other words, ML methods usually have a
target variable (target variables) whose value they attempt to predict given values
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of other variables. To achieve that, they automatically build, or learn, a model15

of the data given training examples and then use that model for predictions. On
the other hand, DM methods focus on searching for, or mining, patterns in the
given data in order to uncover its structure and discover interesting dependencies.
Thus, DM methods do not pursue prediction as their main goal (though it can
be one of their goals), as ML methods do. In spirit, this thesis is closer to DM
than ML, however, in order to comply with the terminology used in the related
literature, the words “learn” and “mine” are used interchangeably.

In ML the process of learning is often viewed as a search, i.e. a learning
algorithm (implicitly or explicitly) searches the space of possible models. A model
is usually a function from the space of known variables to the space of target
variables, e.g. probability distribution, decision tree, set of rules, etc. Some
models are more powerful, or expressive, than others, i.e. able to encode more
data patterns (in the same way as more expressive ontologies are able to encode
more knowledge).

The quality of a model is determined by the data. Hence, any model is a
hypothesis. A seemingly good model can turn out to be bad. This can happen
due to various reasons, e.g. incorrect, noisy, or biased data. Another, not so
obvious reason is that a model, while being powerful, can overfit the data, i.e.
reproduce too many details of it. This can be caused by the mistakenly chosen
learning algorithm (that has built the model). A simple example is a model that
trivially memorises all the data.

2.2.2 How Data is Viewed

In ML, data is commonly given as a collection of objects of the same type, e.g. im-
ages, text documents, patients, customers, products, etc. An object is described
by its features, also called attributes or variables, e.g. pixel values, word counts,
age, gender, etc. Features are usually decided for the collection by human experts
and their values are specified for each object. Thus, data is normally viewed as a
table, or matrix, where rows are labelled by objects and columns are labelled by
features.

ML data is usually complete with respect to features, i.e. all feature values
are known for every given object.16 In other words, there is no object with a

15A ML model should be confused with a DL model, see Section 2.1.1.
16There are approaches that investigate handling incomplete data, e.g. [STP07, SCB14].
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missing value for one of the features. Please note that data completeness is not
assumed with respect to objects, i.e. there may be objects that are not recorded
by the data. Objects are normally assumed to be independent and identically
distributed which is the so-called i.i.d assumption.

If data is incomplete, we first have to add all missing information. To do
that in practice, we may attempt to gather missing information from relevant
resources. If it is hard or impossible to do, we may assume that what is missing
is false, or apply the CWA. In fact, this is what ML and DM approaches tend to
do (and often justifiably). Example 2.6 illustrates how data is viewed in ML.

Example 2.6. We adopt Example 2.3. Each object, a person from Example 2.3,
is described by its features of different types: categorical (Gender), Boolean
(Parent, Married), numerical (Children). Please notice that information about
relations between objects is missing. We apply the CWA, e.g. we assume that
Arthur is not a father and Margaret is not a mother. As a result, we obtain
Table 2.2. Please note that this is different from the way the data is viewed in
DLs, see Figure 2.1.

Gender Parent Married Children
Charlotte Female No No 0
James Male Yes Yes 1
V ictoria Female Yes Yes 1
Chris Male Yes Yes 2

Penelope Female Yes Yes 2
Margaret Female No Yes 0
Arthur Male No Yes 0

Table 2.2: Kinship data in ML

2.2.3 Supervised and Unsupervised Learning

In the ML literature, there is a conventional distinction of methods to supervised
and unsupervised learning. As suggested by the name, supervised learning is the
process of learning a model of the data under some supervision which is provided
by human experts. Such supervision may take different forms and often comes as
a set of desired outputs, or training examples. There is usually a learning goal,
i.e. a target variable whose value a model is aimed to predict based on values of
other variables.



40 CHAPTER 2. PRELIMINARIES

A model is aimed to generalise from the data, i.e. describe well not only seen
but also unseen inputs. Supervision is used to evaluate how well a model does. In
order to reasonably estimate its prediction error, a model is usually trained on the
training data and tested on the test data which is disjoint from the training data.
Standard evaluation techniques, such as k-fold cross-validation, ensure that the
data is used as efficiently as possible. Thus, coupled with the data, supervision
gives a clear signal when a model is right and wrong and allows to steer the search
when necessary.

In contrast to supervised learning, unsupervised learning builds a model of
the data without any supervision. It is generally harder than supervised learning
since there is no clear signal indicating how well a model performs. Consequently,
it is more difficult to evaluate the progress and guide the search accordingly. On
the other hand, supervision can be costly (or even infeasible for certain tasks) to
provide since it requires human expertise.

Let us now explain the basic notions by Example 2.7, see also [Bis06].

Example 2.7. A set of images of handwritten digits is given where all digits occur.
The task is to build a model that recognises all handwritten digits. Figure 2.2
shows images of handwritten digits from 0 to 9 (first line) which are correctly
recognised by the trained model (second line).

Figure 2.2: Recognised handwritten digits for the NIST database (IBM Research)

It is clear that a model for Example 2.7 could be constructed by manually
encoding rules describing shapes of digits on images. However, due to the high
variability of handwriting, that would be a hard task and the resulting model
would be unsuitable in most cases.

ML methods can be employed to accomplish the task of Example 2.7. If
supervision is given, e.g. images are manually labelled with corresponding digits,
a model can be learned that classifies images based on their features and labels
into distinct categories, or classes. The learned model can then be used to classify
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unlabelled images of digits. This task is called classification.17

If supervision is not available, a model can be learned that groups, or clusters,
images based on their features, i.e. similar images are placed in the same cluster.
As in the supervised learning scenario, the resulting model can be used to recog-
nise digits for unseen images, i.e. for classification. However, its quality can be
worse because similarity alone may be insufficient for recognition. This task is
called clustering which is a common type of unsupervised learning.

Thus, Example 2.7 can be approached by both supervised and unsupervised
learning. Although supervised learning may produce a better model, it is more
demanding as it requires appropriate training examples and sufficient quantities
of them for each digit.

2.2.4 Inductive Logic Programming

Inductive Logic Programming [Qui90, Mug91] (ILP) is a type of symbolic ML
that uses Logic Programming (LP), see Section 2.1.7, as a language for repres-
enting models, called hypotheses. Thus, it aims at human-readable, symbolic
models based on logic. The distinctive feature of ILP is that it can naturally use
background knowledge which is represented in the same language as hypotheses.

ILP is a type of supervised learning, i.e. it generalises from training examples.
The most common setting of ILP is learning logical definitions of predicates where
examples are tuples that belong or do not belong to a target predicate. The task is
to learn a definition that satisfies all positive examples and no negative examples,
see Definition 2.11.

Definition 2.11 (ILP learning problem). Let D be a knowledge base (logic pro-
gram), A be a target predicate, L be a language bias, E := E+ ∪ E− be a set of
examples for A, where E+ are positive and E− are negative examples. Then, an
ILP learning problem is to find a definition H for A such that H conforms to L
and

for all e ∈ E+ D ∪ {H} |= e and for all e ∈ E− D ∪ {H} 6|= e.

Any definition is called a hypothesis. A hypothesis is normally a Horn clause
(or a set of). Importantly, the head of a hypothesis clause is fixed to be A, i.e.
it consists only of the target predicate. In other words, the task is to find a

17ML classification should not be confused with ontology classification in DLs and OWL, see
Section 2.1.1.
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hypothesis body that “fits” training examples. A hypothesis H must conform to a
language bias L that determines a hypothesis space H, i.e. a set of all hypotheses
under consideration. For instance, a language bias can limit the number of literals
in the body of a hypothesis clause, thus making a hypothesis space finite.

Definition 2.11 specifies the requirement for a hypothesis to be a solution:
it must satisfy all positive and no negative examples. This requirement is of-
ten relaxed to the requirement of satisfying almost all positive and almost no
negative examples. This relaxation allows for considering hypotheses of varying
quality instead of solutions and non-solutions. The quality of a hypothesis is
calculated based on the number of satisfied training examples like in traditional
ML. Example 2.8 illustrates the basics of ILP.

Example 2.8. We adopt the Kinship ontology, see Example 2.3, and rewrite DL
axioms as LP clauses. Irrelevant information is skipped for brevity.

D = {Woman(x)← not Man(x), hasChild(x, y)← hasParent(y, x),

Man(Arthur), Man(Chris), Man(James),

Woman(Penelope), Woman(V ictoria),

Woman(Charlotte), Woman(Margaret),

hasParent(Charlotte, James), hasParent(Charlotte, V ictoria),

hasParent(V ictoria, Chris), hasParent(V ictoria, Penelope)

hasParent(Arthur, Penelope), hasParent(Arthur, Chris)}.

The task is to learn a definition of the predicate Mother, given the following
positive and negative examples:

E+ = {Mother(Penelope), Mother(V ictoria)},

E− = {Mother(Charlotte), Mother(Margaret),

Mother(Arthur), Mother(Chris), Mother(James)}.

Thus, we assume that Charlotte and Victoria are not mothers. The following
clause is a possible solution since it satisfies all positive and no negative examples:

Mother(x)← Woman(x), hasChild(x, y).

It is translated to FOL as follows: ∀x∃y(Woman(x)∧hasChild(x, y)→Mother(x)).
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An ILP algorithm methodically searches the hypothesis space. As the search
space is usually vast, the following two steps are crucial:

(i) the space is structured such that it can be unfolded systematically;

(ii) suitable heuristics navigate the search such that promising hypotheses are
considered earlier than others.

The step (i) is usually done via ordering the space of all body clauses by
their generality. Informally, a clause is more general (more specific) than another
clause if it imposes less (more) restrictions. For example, the clause Woman(x)

is more general than the clause Woman(x), hasChild(x, y) since the last one
has the additional requirement “to have a child”. A more general (specific) clause
is called a generalisation (specialisation). In practice, the syntactic notion of
generality is normally used in order to maintain computational feasibility. The
search starts from the most general clause. A clause is systematically refined, i.e.
made more specific. Refinements are specified by so-called refinement operators
that determine a set of specialisations (refinements) of a clause. A refinement
operator normally defines a set of minimal (most general) specialisations, e.g.
extensions with one additional literal in their body.

The step (ii) is done by choosing suitable heuristics to explore the search
space ordered by generality. Structurally, the ordering is a directed graph where
nodes are clauses and edges connect them to their respective refinements. While
expanding the refinement graph, there is a choice which node to refine next. This
choice is made by heuristics which are usually based on the number of satisfied
(covered) positive and negative examples. As the search space is usually large,
often only promising nodes are further refined using greedy or beam search. One
of first ILP algorithms making the aforementioned steps was FOIL [Qui90]. It has
inspired many other algorithms and their implementations, e.g. Progol [Mug95]
and Aleph.18

2.2.5 Association Rule Mining

Association Rule Mining [TSK13] (ARM) is a popular method of DM. It is a
type of unsupervised learning. One of the main applications of ARM is market
basket analysis that we will use to explain its basics.

18http://www.cs.ox.ac.uk/activities/machlearn/Aleph/

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/
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Market basket analysis is used by retailers in order to understand the pur-
chasing behaviour of customers. Retailers normally record sales transactions in
databases. Given a sequence of transactions, retailers can use analytics to inspect
recorded transactions and identify items frequently bought together. Interesting
associations, called rules, between items can be mined. This information is used
to boost sales via cross-selling, promotions, discounts, loyalty programs, inventory
planning, etc.

A transaction is usually defined as a set of items purchased by a customer in
a single order. Let T be a transaction and D be a set of transactions, i.e. T ∈ D.
Let M be a set of all items available for purchasing, i.e. any transaction T ⊆M .
Any set X ⊆ M of items is called itemset. A set of transactions can be viewed
as a table, where rows are labelled with transactions T ∈ D and columns are
labelled with items m ∈ M . Items purchased in a transaction are marked in the
respective row.

Definition 2.12 (Association rule). An association rule is an implication of the
form X ⇒ Y , where X ⊆M , Y ⊆M .

Informally, an association rule X ⇒ Y means that the presence of an itemset
X implies the presence of an itemset Y in the same transaction. The left-hand
side (LHS) of a rule, X, is called antecedent and the right-hand side (RHS), Y ,
is called consequent.

There are different measures used to evaluate the quality (or interestingness)
of an association rule. The common quality measures are given by Definition 2.13.

Definition 2.13 (Association rule quality measures). Let D be a set of transac-
tions. The frequency of an itemset X in D is defined as follows:

count(X,D) := |{T ∈ D | X ⊆ T}|.

Let X ⇒ Y be an association rule, where X, Y are itemsets in D. The coverage,
support, confidence of X ⇒ Y in D are defined, respectively, as follows:

cov(X ⇒ Y,D) := count(X,D)

sup(X ⇒ Y,D) := count(X ∩ Y,D)

conf(X ⇒ Y,D) :=
count(X ∩ Y,D)

count(X,D)
.
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The coverage counts the number of transactions containing all items from
the antecedent. The support of a rule shows how many transactions contain
all items from both the antecedent and consequent. The confidence counts how
many transactions contain all items from both the antecedent and consequent
out of those transactions that contain all items from the antecedent. The con-
fidence is in the range [0, 1]. Please note that support is a symmetric measure,
i.e. sup(X ⇒ Y,D) = sup(Y ⇒ X,D), while coverage and confidence are asym-
metric. Association rules with high support and high confidence are commonly
assumed to be of high quality.

The measures in Definition 2.13 can be given probabilistic meanings via re-
placing count(X,D) with PD(X) := count(X,D)/|D|, i.e. the probability of an
itemset X to occur in D. The latter makes coverage and support normalised, i.e.
to be in the range [0, 1], and does not affect the confidence. The measures are
written via probabilities as follows:

cov[0,1](X ⇒ Y,D) := PD(X)

sup[0,1](X ⇒ Y,D) := PD(X, Y )

conf(X ⇒ Y,D) :=
PD(X, Y )

PD(X)
.

Besides the measures given in Definition 2.13, other measures exist that high-
light different quality characteristics [GH06]. Amongst popular measures are lift
and conviction defined, respectively, as follows:

lift(X ⇒ Y,D) :=
PD(X, Y )

PD(X) ·PD(Y )

conv(X ⇒ Y,D) :=
PD(X) ·PD(¬Y )

PD(X,¬Y )
.

Lift measures how frequently X and Y occur together in comparison to the
case when X and Y are statistically independent. Conviction measures how
frequently X occurs with ¬Y (i.e. X occurs without Y ) if X and ¬Y are in-
dependent in comparison to the actual occurrence of X and ¬Y . In contrast to
support and confidence, lift and conviction can be infinite. Please note that lift is
a symmetric measure, while conviction is not. High values of lift and conviction
usually indicate an unexpected and potentially interesting rule.

The goal of ARM is to find association rules of high quality for a given set
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of transactions. A user normally defines thresholds for minimal support and
confidence. If a rule has a high support and confidence, then it is considered to
be interesting. Please note that ARM, as it is usual in DM, requires complete
data, see Section 2.2.2. Example 2.9 illustrates the basic notions of ARM.

Example 2.9. The set of transactionsD := {T1, T2, T3, T4, T5} is given by Table 2.3,
where items areM := {bread,milk, butter, beer, snacks}, “X” means that an item
is included in a transaction and the blank space means that it is not. The user-
specified minimal thresholds are supmin = 3 and confmin = 0.7. Then, the
following are examples of association rules that can be mined from D:

{milk, butter} ⇒ {bread} (sup = 3, conf = 1.0)

{beer} ⇒ {snacks} (sup = 3, conf = 1.0)

{bread} ⇒ {snacks} (sup = 3, conf = 0.75).

bread milk butter beer snacks
T1 X X X X
T2 X X
T3 X X X
T4 X X X
T5 X X X X X

Table 2.3: Sales transactions

An ARM algorithm usually performs two main steps:

(i) find all itemsets whose frequency is above a minimal support, called frequent
itemsets;

(ii) frequent itemsets are used to find all association rules whose confidence is
above a minimal confidence.

Step (ii) is rather straightforward. The challenge of step (i) is that the brute-
force search is usually infeasible since there are exponentially many itemsets to
check. Therefore, most approaches focus on step (i). One of the first algorithms
which used an intelligent search was Apriori [AS94]. It is the basis for many
state-of-the-art approaches. Apriori greatly reduces the search space by ex-
ploiting the so-called anti-monotone property of the frequency of an itemset, see
Lemma 2.1.
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Lemma 2.1 (Anti-monotone property of itemsets). Let D be a set of transac-
tions, X, Y itemsets. Then, X ⊆ Y implies count(X,D) ≥ count(Y,D).

Lemma 2.1 means that if an itemset is not frequent, then all itemsets that
contain it are also not frequent and, hence, can be pruned from the search a
priori.

2.2.6 Formal Concept Analysis

Formal Concept Analysis [GW99] (FCA) is a mathematical theory of concepts
and concept hierarchies emerged from lattice theory. It also refers to a set of tech-
niques for conceptual clustering and knowledge representation based on formal
contexts. FCA has been used in DM, ML, knowledge management, text mining,
biology, etc. Its central notion is formal context, see Definition 2.14.

Definition 2.14 (Formal context). A formal context is a structureK := (G,M, I)

where G is a set of objects, M is a set of attributes, and I is an incidence relation
I ⊆ G×M . An object g ∈ G possesses an attribute m ∈M if (g,m) ∈ I, written
as gIm.

Thus, an incidence relation I specifies dependencies between objects G and
attributes M . Importantly, information in a formal context is complete, i.e. an
object either possesses an attribute or it does not. An implication on attributes
in a formal context is defined as follows, see Definition 2.15.

Definition 2.15 (Implication). Let gI be the set of all attributes that apply to
an object g ∈ G, or formally gI := {m ∈ M | gIm}. Given an attribute set M ,
an implication, written as X → Y with X, Y ⊆ M , holds in a formal context
K := (G,M, I) if X ⊆ gI implies Y ⊆ gI for all objects g ∈ G.

Informally, an implication X → Y holds in a formal context if every object
which has all attributes in X also has all attributes in Y . An implication either
holds in a formal context or it does not.

One can notice that FCA has many similarities with ARM. Transactions can
be viewed as objects and items as attributes. An incidence relation is simply
a function that maps transactions to their items. Implications are similar to
association rules. As it follows from Definition 2.15, implications that hold in the
formal context are association rules of the confidence 1.0.
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The data in FCA is viewed exactly the same as in ARM, in particular, it is
complete. Therefore, we can use Table 2.3 to illustrate FCA, see Example 2.10.

Example 2.10. A formal context is given by Table 2.4 which is the same as
Table 2.3. Objects are transactions G := {T1, T2, T3, T4, T5} and attributes are
items M := {bread,milk, butter, beer, snacks}. “X” means that an object pos-
sesses an attribute and the blank space means that it does not. The following
are examples of implications:

{milk, butter} → {bread} (holds)

{beer} → {snacks} (holds)

{bread} → {snacks} (does not hold)

{butter, snacks} → {bread,milk} (holds)

Please note that the first three implications correspond to the rules in Example 2.9.
The third implication does not hold because of T4 (the respective rule has the
confidence lower than 1.0).

bread milk butter beer snacks
T1 X X X X
T2 X X
T3 X X X
T4 X X X
T5 X X X X X

Table 2.4: Formal context for sales transactions

A set of all implications that hold in the context is called implication theory.
An implication theory can be large and can contain implications redundant with
respect to others. Therefore, one is interested in its minimal subset which is
sufficient to derive all other implications. Such subset is called minimal implica-
tion base [GW99]. Finding a minimal implication base for the given context is a
common goal of FCA.

2.2.7 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are ML models where probabilistic de-
pendencies between variables (features) are represented by a graph. There is
a variety of PGMs in the ML literature. Here we briefly describe one of the
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most popular PGMs, Bayesian networks [Pea88] (BNs). Some approaches try
to combine structural/logical knowledge with PGMs, e.g. Relational Bayesian
Networks [Jae97], Markov Logic Networks [RD06], Probabilistic Relation Mod-
els [GT07], Multi-Entity Bayesian Networks [Las08].

A BN (G,P) is a generative model, i.e. it represents a joint probability distri-
bution P (x1, . . . , xn) of a set of variables. The structure G := (V,E) of a BN is a
directed acyclic graph (DAG) where each node is a variable xi ∈ V and an edge
represents a direct probabilistic dependence between variables. If two nodes are
not directly connected, they are conditionally independent. Nodes parents(xi)
which are connected to a given node xi via incoming edges are called its parents,
i.e. parents(xi) := {xj | 〈xj, xi〉 ∈ E}.

Each node xi in a DAG is assigned a conditional probability table (CPT) that
determines the conditional probability of xi given its parents, i.e. P (xi | par(xi)).
CPTs are called parameters P of a BN. Figure 2.3 illustrates a BN for the kinship
data from Table 2.2.

Parent 0 1 2 

Yes 0 0.5 0.5 

No 1 0 0 

Gender Married Yes No 

Female Yes 0.67 0.33 

Female No 0 1 

Male Yes 0.67 0.33 

Male No 0.5 0.5 

Gender Married 

Parent 

Children 

Female Male 

0.57 0.43 

Yes No 

0.57 0.43 

Figure 2.3: Bayesian network for Kinship

The BN in Figure 2.3 encodes that the variables Married and Gender dir-
ectly influence the variable Parent which, in turn, directly influences the variable
Children. As there are no links from Married and Gender to Children, the lat-
ter is conditionally independent from the former given Parent. In other words,
Married and Gender can only influence Children through Parent.

The same probability distribution can be represented by different structures
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(DAGs). Thus, the DAG of a BN should not be confused with a causal graph.
Since the DAG of a BN encodes independence assumptions for (usually) many
pairs of variables, it greatly simplifies computing conditional probabilities over
variables. The joint probability distribution can be effectively decomposed as
follows:

P (x1, . . . , xn) =
n∏
i=1

P (xi | par(xi)).

Both parameters and structure of a BN can be learned from data. There are
supervised and unsupervised approaches that vary in computational efficiency
and quality of their results.

2.3 Summary

We have introduced the standard notions that we will use throughout the thesis.
They should help to understand basic principles of an approach that we develop
in this thesis.

In summary, DLs provide expressive syntax for encoding ontologies and form
the basis of the commonly used OWL. Their formal semantics makes represented
knowledge unambiguous and defines the entailment relation used for reasoning,
i.e. deriving inferences (entailments). Importantly, the semantics of DLs is based
on the OWA which permits incomplete information, see Section 2.1.5. Standard
reasoning services are provided by optimised implementations called reasoners.

ML and DM provide methods for learning and mining patterns from data.
In contrast to DLs, they usually assume that data is complete, see Section 2.2.2.
The brief overview of standard ML/DM approaches, i.e. ILP, ARM, FCA, PGMs,
should help to understand state-of-the-art approaches in Ontology Learning that
we discuss in Chapter 3.



Chapter 3

Related Work in Ontology Learning

The term “ontology learning” was coined in 2001 by Mädche and Staab [MS01] for
an emerging field of research concerned with the problem of automated generation
of ontologies from data. While the task was already understood to be hard at
the moment, it has turned out to be even more challenging and diverse.

Nowadays, Ontology Learning (OL) is commonly defined as a field that com-
prises techniques for automated acquisition of ontological knowledge from data.
Thus, the paradigm has shifted such that many approaches do not aim at gener-
ating a full-fledged, gold-standard ontology from data anymore, but rather focus
on acquiring axioms of certain shapes, e.g. concept definitions, atomic subsump-
tions, disjointness axioms, etc.

In this chapter we describe OL approaches of primary interest for this thesis
and methodology they are based on. The interested reader is referred to the
surveys in [V0̈9] and [LV14].

3.1 Ontology Learning Dimensions

OL is now a diverse and interdisciplinary field of research. Its diversity springs
from the diversity of data sources and variety of ontological knowledge. Its in-
terdisciplinarity emerges from applications of ontologies in multiple fields. Thus,
one can observe the presence of dimensions that OL approaches can be located
in. We distinguish the following OL dimensions, see also Figure 3.1.

Input data Ontologies are being learned from both unstructured data, e.g.
text, and structured data, e.g. RDF datasets, DL ABoxes.

51
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Target knowledge Ontological knowledge being learned ranges from tax-
onomies to concept definitions and simple forms of GCIs.

Semantics Approaches can use own semantics during learning which can
differ from the standard DL semantics, e.g. apply the Closed World As-
sumption (CWA). Some of them ignore available background knowledge,
i.e. the TBox, others consider it only to a limited extent.

Supervision The degree of human involvement in the learning process
varies across approaches. Some approaches are supervised, i.e. require
training examples, or interactive, i.e. ask questions to a domain expert
during learning; others are unsupervised.

Ontology
Learning

Input Data Target Knowledge

Semantics Supervision

Figure 3.1: OL dimensions

The OL dimensions are important because they help to understand differences
and commonalities between approaches. Firstly, they specify what computational
problem an OL approach aims to solve, i.e. what data is used for learning, what
knowledge is being learned. Secondly, they specify what design choices an OL
approach makes, i.e. what semantics is used, what supervision (if any) is required.
A problem coupled with design choices suggests what methods an approach can
use to hit its targets and vice versa.

There is a common distinction of OL approaches by input data, i.e. structured
and unstructured data. Learning ontologies from unstructured data, in particular
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from texts and linguistic resources, was historically the first type of OL, called
lexical OL [LV14].

The main limitation of lexical OL is inadequate quality of learned ontologies
which is commonly seen as a result of inherent ambiguity of natural language.
Therefore, there is growing interest in learning ontologies from structured data,
called logical OL [LV14]. This thesis focuses on logical OL and the word “logical”
is omitted in the following. In particular, we investigate the problem of acquiring
a TBox from an ABox and hence review OL approaches concerned with this
problem.

3.2 Related Ontology Learning Approaches

Most OL approaches try to adapt standard methods of ML and DM to complete
their tasks, see Section 2.2. This is not surprising since OL is mainly the problem
of learning from data. Therefore, ML and DM are reasonably expected to provide
the basis for OL approaches. In the following, we describe main OL approaches
relevant for this thesis and locate them in the OL dimensions. We cover Concept
Description Learning, Knowledge Base Completion, Statistical Schema Induction,
and BelNet, see Figure 3.2.

Ontology Learning

Inductive Logic
Programming

Association
Rule Mining

Formal Concept
Analysis

Probabilistic
Graphical Models

Concept Descrip-
tion Learning

Statistical Schema
Induction

Knowledge Base
Completion BelNet

Figure 3.2: OL approaches
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3.2.1 Concept Description Learning

Concept Description Learning [CH94, BST07, IPF07, FDE08, LH10] (CDL) is a
popular approach in OL. The goal of CDL is to find a description, or definition, of
a target concept name, given a DL ontology. A description is a concept expression
(complex concept) which is induced from a set of examples which are instances
(and non-instances) of a target concept name. Hence, CDL is essentially a type
of supervised learning.

Most CDL approaches were inspired by inductive logic programming (ILP),
see Section 2.2.4, and have successfully adapted ILP techniques for DLs starting
from the DL CLASSIC [CH94]. The CDL problem is commonly defined as follows.

Definition 3.1 (CDL problem). Let O be a DL ontology, A ∈ NC be a target
concept name, L be a language bias, E := E+∪E− ⊆ in(O) be a set of examples
for A, where E+ are positive and E− are negative examples. Then, a CDL
learning problem is to find a concept expression C, a description of A, such that
C conforms to a language bias L and

for all e ∈ E+ O |= C(e) and for all e ∈ E− O 6|= C(e).

Definition 3.1 is the ILP learning problem, see Definition 2.11, rephrased for
DLs. Informally, the goal of CDL is to complete the axiom A ≡ C (concept
definition), where A is a fixed concept name and C is a variable concept expres-
sion, such that it satisfies all positive and no negative examples. As in ILP, see
Section 2.2.4, this requirement can be relaxed to satisfying almost all positive and
almost no negative examples. A hypothesis C must also conform to a language
bias L. For instance, a language bias L can be all ALC concepts of a maximal
length `, denoted as ALC(`). Thus, a language bias L determines a hypothesis
space H.

A CDL algorithm is driven by the same mechanics as an ILP one. A hypothesis
space is traversed by refinement operators. Those, however, have to be designed
specifically for DLs which is not straightforward [BNC00, FDE08, LH10]. A re-
finement operator can be downward and upward. A downward (upward) operator
specifies a set of specialisations (generalisations) of a concept.

Definition 3.2 (Refinement operator). A quasi-ordering is a reflexive and trans-
itive relation. Let (S,�) be a quasi-ordered space, where S is a set of concepts
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in DL, � is a quasi-ordering. A downward (upward) refinement operator ρ is a
mapping from S to 2S, such that for all concepts C ∈ S a concept C ′ ∈ ρ(C)

implies C ′ � C (C � C ′). A concept C ′ is called a specialisation (generalisation)
of C, or more specific (more general) than C.

The DL subsumption v is normally used as a quasi-ordering. Thus, a concept
C ′ is a specialisation (generalisation) of a concept C if C ′ is subsumed by (sub-
sumes) C, i.e. C ′ v C (C v C ′).1 Computational performance of a CDL al-
gorithm critically depends on instance retrieval because it is done for a usually
large number of potential solutions (concept descriptions). In order to illustrate
CDL, we alter Example 2.8 for DLs, see Example 3.1.

Example 3.1. Consider the ontology O which is a subset of the Kinship ontology,
see Example 2.3.

O = {Man v ¬Woman, hasParent v hasChild−,

Man(Arthur), Man(Chris), Man(James),

Woman(Penelope), Woman(V ictoria),

Woman(Charlotte), Woman(Margaret),

hasParent(Charlotte, James), hasParent(Charlotte, V ictoria),

hasParent(V ictoria, Chris), hasParent(V ictoria, Penelope)

hasParent(Arthur, Penelope), hasParent(Arthur, Chris)}.

Assume the task is to learn a definition of the concept name Mother. In order
to obtain negative examples automatically, CDL commonly makes the CWA. In
this example we are forced to assume that all women which are unknown to be
mothers, i.e. Charlotte and Margaret, are not mothers. The resulting sets of
positive E+ and negative E− examples are as follows:

E+ = {Penelope, V ictoria},

E− = {Charlotte, Margaret, Arthur, Chris, James}.

Given the downward refinement operator ρ for EL, a concept space is traversed
as follows:

ρ(>) = {Man, Woman, ∃hasChild.>, ∃hasParent.>}
1The statement C ′ v C is the abbreviation of |= C ′ v C.
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ρ(Man) = {Man uWoman, Man u ∃hasChild.>, Man u ∃hasParent.>}
ρ(Woman) = {Woman uMan, Woman u ∃hasChild.>,

Woman u ∃hasParent.>}
ρ(∃hasChild.>) = {Man u ∃hasChild.>, Woman u ∃hasChild.>,

∃hasParent.> u ∃hasChild.>, ∃hasChild.Man, ∃hasChild.Woman}
. . .

If we consider the TBox, the concept Man u Woman and all its further
refinements can be skipped from the search since O |= Man v ¬Woman. Thus,
the TBox can be used to optimise the search. The following concept is a possible
solution because it satisfies all positive and no negative examples:

Woman u ∃hasChild.>.

CDL approaches can learn concept descriptions of expressivity up to ALC
(with some support for number restrictions and concrete domains, see [LH10] for
details). One of commonly used (and cited) implementations is DL-Learner2

[LH07, LABT11, BLW16].

ILP has been applied to learning Datalog [AHV95] rules which are added to
a DL ontology thus creating a hybrid knowledge base [Lis08]. Yet, ILP is not
the only method for CDL. One of early CDL approaches was based on a different
method – computing the least common subsumer [BK98, BST07]. The method,
however, is only applicable to weakly expressive DLs of the EL family. There is
also an application of terminological decision trees [FdE10] to CDL where one of
the challenges is the OWA of DLs. Although CDL approaches mainly focus on
learning from DL ABoxes, there are also attempts to learn from Linked Data, i.e.
RDF triples [CRH10, BL12].

Among limitations of CDL is that it requires suitable learning examples that
can be hard and costly to prepare, as this requires domain expertise. In or-
der to obtain training examples automatically, i.e. operate in the unsuper-
vised mode, CDL applies a form of the CWA [LABT11]. More specifically,
given an ontology O and a target concept name A, its positive examples are
obtained from its instances, i.e. e ∈ E+ if O |= A(e), and its negative ex-
amples are obtained from other individuals, i.e. e ∈ E− if O 6|= A(e). Usually
E+ := {e ∈ in(O) | O |= A(e)} and E− := in(O)\E+. Clearly, such assumption

2http://dl-learner.org

http://dl-learner.org
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is not always correct because some negative examples can be unknown instances
of A (as in Example 2.3 we have assumed that Charlotte and Margaret are not
mothers).

Another limitation is that CDL by definition is unable to learn general TBox
axioms, i.e. complex GCIs C v D, where C and D are both complex concepts
(C /∈ NC and D /∈ NC). A TBox is used, yet to a limited extent, to optimise the
search. For example, DL-Learner checks the concept hierarchy and disjointness
while refining a concept.

3.2.2 Statistical Schema Induction

Statistical Schema Induction [VN11] (SSI) is an OL approach based on Associ-
ation Rules Mining (ARM), see Section 2.2.5. Hence, SSI is unsupervised. It
focuses on learning from Linked Data, i.e. RDF triples. Similar approaches are
described in [JT06, NL10, GTHS13].

As a reminder, association rules are mined from a set of transactions which
can be represented as a table. Since RDF data is structurally a labelled graph, in
order to apply ARM, it has to be transformed into a table. The general idea of
such transformation is that RDF resources that correspond to data-level objects
can be viewed as transactions, while RDF resources that correspond to schema-
level types can be viewed as items. Although there is no distinction (neither
syntactic nor semantic) between data and schema levels in RDF, under certain
assumptions such distinction can be made for some datasets [VN11].

Extracted types are treated as DL concept (role) names. The set of types is
further extended with complex concepts (and roles) of interest, e.g. with ∃R.A,
where A ∈ NC , R ∈ NR. Objects which belong to a type, i.e. its instances, are
identified via querying the RDF dataset. Importantly, as ARM requires complete
data, the CWA is made. Consequently, if a query is not able to determine whether
an object belongs to a type, then the object does not belong to that type. Once a
transaction table is constructed, association rules are mined from it in a standard
way, i.e. minimal thresholds for support and confidence are specified and an ARM
algorithm returns a set of rules satisfying those.

The basic assumption (and idea) of SSI is that mined association rules straight-
forwardly correspond to DL axioms, see Assumption 3.1.

Assumption 3.1. Let C be a set of concepts of interest. An association rule X ⇒
Y , where X, Y ⊆ C, is an axiom C v D, where C := ⊔C′∈X C

′, D := ⊔D′∈Y D
′.
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The validity of Assumption 3.1 clearly depends on minimal support and con-
fidence thresholds imposed, see Section 2.2.5.

Different types of DL axioms lead to constructing different transaction tables.
In [VN11] 6 transactions tables are constructed for 8 types of axioms, that all
belong to EL++. All axioms that SSI can generate are as follows:

• ⊔C′∈X C
′ v ⊔D′∈Y D

′, where X, Y ⊆ C and C := {A, ∃R.A, ∃R−.A | A ∈
NC ∧ R ∈ NR} (axioms with plain conjunctions of concepts of interest);

• R v S, R ◦ R v R, where R, S ∈ NR (atomic role subsumptions, role
transitivity axioms).

There are also approaches, e.g. [VVSH07, FV11], that focus on learning dis-
jointness axioms. Some use a standard ML classifier which is trained on manually
tagged examples [VVSH07].

The ideas of SSI can be applied to learning ontologies from DL ABoxes. In
order to transform an ABox to a transaction table, we view individuals as transac-
tions and concepts of interest as items. Example 3.2 demonstrates the adaptation
of SSI for learning from ABoxes.

Example 3.2. We use the Kinship ontology, see Example 2.3. Suppose we are
interested in mining all associations involving concepts

C := {Man, Woman, Father, Mother, ∃hasChild.>, ∃marriedTo.>}.

The constructed transaction table is shown in Table 3.1. Suppose that a rule
is trustworthy if its quality exceeds thresholds supmin = 2 and confmin = 0.6.
Then, the following association rules can be mined:

{Woman,∃hasChild.>} ⇒ {Mother} (sup = 2, conf = 1.0)

{Man, ∃hasChild.>} ⇒ {Father} (sup = 2, conf = 1.0)

{∃hasChild.>} ⇒ {∃marriedTo.>} (sup = 4, conf = 1.0)

{Man} ⇒ {∃marriedTo.>} (sup = 3, conf = 1.0)

{∃marriedTo.>} ⇒ {∃hasChild.>} (sup = 4, conf = 0.67).
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These association rules are straightforwardly translated to DL axioms as follows:

Woman u ∃hasChild.> vMother (1)

Man u ∃hasChild.> v Father (2)

∃hasChild.> v ∃marriedTo.> (3)

Man v ∃marriedTo.> (4)

∃marriedTo.> v ∃hasChild.> (5)

Please note that the description of concept Mother is learned unintentionally
(Axiom 1), as well as Father (Axiom 2). While these two axioms seem credible,
others do not. This additionally shows that any acquired knowledge should be
treated as a hypothesis.
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Charlotte X
James X X X X
V ictoria X X X X
Chris X X X X

Penelope X X X X
Margaret X X
Arthur X X

Table 3.1: Transaction table for Kinship

Among limitations of SSI and other ARM-based approaches is that they are
forced to apply the CWA, i.e. for each individual a and concept C, if O 6|=
C(a) and O 6|= ¬C(a), then it is assumed that O |= ¬C(a). Some approaches
force some form of the CWA, e.g. [GTHS13] makes the partial completeness
assumption which states that if one R-successor is known for an individual a, then
all R-successors are known for a. Another limitation of ARM-based approaches
is that they ignore the TBox while mining association rules. In other words,
once transaction tables are constructed, association rules are mined from them
disregarding the TBox. As a result, rules can contradict it, be superfluous with
respect to it, etc.

Moreover, it is usually hard to come up with a good set of concepts of interest,
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as this requires domain expertise. The brute-force generation of those can result
in too many concepts. Due to the mechanics of ARM, resulting axioms can only
contain conjunctions of initial concepts. In other words, new negations, disjunc-
tions, and quantifiers are not generated. As a result, ARM-based approaches
have so far been limited to produce axioms of weak expressivity.

3.2.3 Knowledge Base Completion

Knowledge Base Completion [Rud04, BGSS07, Rud08, Ser09, Dis10] (KBC) is
an interactive OL approach based on Formal Concept Analysis, FCA, see Sec-
tion 2.2.6. The goal is to complete an ontology in a certain, well-defined sense via
interactions with a human expert who possesses domain knowledge. More spe-
cifically, an ontology is systematically updated by asking questions to an expert
in order to formalise her knowledge. FCA is used to ensure that the number of
questions that a domain expert is asked is kept minimal.

In order to apply FCA, we first need to define a formal context for an on-
tology. Intuitively, objects correspond to individuals, attributes correspond to
concepts, and an incidence relation specifies which individuals are instances of
which concepts. However, it is not as straightforward as that.

As discussed in Section 2.2.6, a formal context does not permit incomplete
information. On the other hand, the semantics of DLs uses the OWA, see Sec-
tion 2.1.5, i.e. it is possible that O 6|= C(a) and O 6|= ¬C(a). This problem was
approached by defining so-called partial contexts [BGSS07] which permit incom-
plete information. More specifically, the incidence relation specifies attributes
that an object certainly does not have in addition to attributes that it certainly
has. The possession of remaining attributes is interpreted to be unknown.

In contrast to a formal context in FCA, it can be unknown whether an im-
plication holds in a partial context or it does not. Such an implication is called
undecided (and otherwise decided). In the case when an implication certainly does
not hold in a partial context, it is said to be refuted by it. In other words, there
is an object that certainly does not have an attribute forced by the implication.

The aforementioned notions are straightforwardly transferred to DLs. A par-
tial context for an ontology O is a structure KO := (G,M, I), where objects are
individuals, i.e. G = in(O), attributes are concepts C of interest, i.e. M = C,
and the incidence relation I specifies which attributes an object certainly has and
which ones it certainly does not have. Similarly to ARM, implications correspond
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to axioms as follows, see Assumption 3.2.

Assumption 3.2. Let C be a set of concepts of interest. An implication X → Y ,
where X, Y ⊆ C, is an axiom C v D, where C := ⊔C′∈X C

′, D := ⊔D′∈Y D
′.

Given an ontology O, an individual a ∈ in(O) is called a counterexample for
an axiom C v D ifO |= C(a) andO |= ¬D(a). If an axiom has a counterexample,
then the corresponding implication is refuted.

A KBC algorithm operates as follows. For each undecided implication X → Y

a domain expert is asked a question: “Is X → Y refuted?” If the answer is
“no”, then the implication is added to the computed implication base and the
corresponding axiom is added to the ontology. If the answer is “yes”, then the
expert should extend the ontology such that the implication is refuted, i.e. provide
a counterexample, e.g. add the ¬D(a) if O |= C(a). Hence, not only the TBox
but also the ABox is extended. Once all implications are decided, an ontology is
said to be complete, see Definition 3.3, and the algorithm terminates.

Definition 3.3. Let KO be a partial context of an ontology O. An ontology O
is C-complete if for any X, Y ⊆ C either

• X → Y holds in KO or

• X → Y is refuted by KO.

Informally, Definition 3.3 means that an ontology is complete if any implic-
ation is either holds in its context or refuted by it. It is possible to rewrite
Definition 3.3 in a more convenient form that uses axioms of the ontology instead
of implications of its context, see Lemma 3.1.

Lemma 3.1. An ontology O is C-complete if for any X, Y ⊆ C either

• O |= C v D or

• C v D has a counterexample in O,

where C := ⊔C′∈X C
′, D := ⊔D′∈Y D

′.

Lemma 3.1 means that an ontology is complete when any axiom involving
conjunctions of concepts of interest either follows from the ontology or has a
counterexample in it. Thus, all axioms that KBC can generate are as follows:

• ⊔C′∈X C
′ v ⊔D′∈Y D

′, where X, Y ⊆ C.
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Example 3.3 illustrates the basic notions of KBC.

Example 3.3. We use the Kinship ontology, see Example 2.3. Suppose the task is
to complete the ontology with respect to the following concepts:

C := {Man, Woman, Father, Mother, ∃hasChild.>, ∃marriedTo.>}.

The partial context is shown by Table 3.2. Please notice that it is incomplete,
i.e. there are question marks “?” when it is unknown whether an individual is an
instance of a concept (indicated by “X”) or it is not (indicated by a blank space).

The following axioms are examples of those whose implications are undecided
in the context:

Woman u ∃hasChild.> vMother (1)

Man u ∃hasChild.> v Father (2)

Woman v ∃marriedTo.> (3)

Man v ∃marriedTo.> (4)

Suppose the implications of these are suggested to the domain expert in the or-
der of appearance. She accepts Axiom 1 and then Axiom 2 which are added to
the ontology in turn. After that, she rejects Axiom 3 and is asked to supply a
counterexample. She does this via adding axiom (¬∃marriedTo.>)(Charlotte),
i.e. the question mark is turned into the blank space (negated class assertion).
Then, the domain expert rejects Axiom 4 and again is asked to provide a counter-
example: she introduces a new individual a and adds the axioms Man(a) and
(¬∃marriedTo.>)(a).

Although KBC ensures a minimal number of questions by the means of FCA,
a domain expert can still be overwhelmed because that minimal number can
be large. To be more specific, every question asks to judge some implication.
If an implication is refuted, an expert must provide a counterexample for it.
Such interactive process can be tedious and burdensome, particularly if the input
ontology is complex.

Another difficulty is that specifying relevant concepts C of interest is hard
and requires domain knowledge. The approach in [Rud04, Rud08] approaches
this problem via relational exploration. It iteratively generates additional con-
cepts (attributes) when they are required by the KBC algorithm. All generated
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Charlotte X ? ? ?
James X X X X
V ictoria X X X X
Chris X X X X

Penelope X X X X
Margaret X ? ? X
Arthur X ? ? X

Table 3.2: Partial context for Kinship

concepts are from FLE3 with a maximal role depth δ, denoted as FLE(δ). Due
to the mechanics of FCA, GCIs are only constructed from those concepts using
conjunctions. Thus, resulting axioms are all from FLE(δ), i.e. weakly expressive.

There are also approaches to KBC that are not based on FCA. The ap-
proach in [KLOW14] is based on Angluin’s framework of exact learning via quer-
ies [Ang88]. An ontology is learned not from data, but from an oracle, e.g. a
human expert, which possesses domain knowledge. An oracle has the “target
TBox in mind” and is able to answer queries in order to formalise its knowledge.
Queries are of two types: “Is an axiom entailed by the target TBox?” and “Is a
TBox equivalent to the target TBox?”. The approach considers weakly expressive
DLs, i.e. EL and DL-lite.

3.2.4 BelNet

Bayesian Description Logic Network, or BelNet [ZGP+13, ZGP+15], is an OL
approach based on Bayesian Networks (BNs), see Section 2.2.7. BelNet combines
DLs and BNs. The basic assumption (and idea) of BelNet is that a TBox can be
transformed to the structure (DAG) of a BN and vice versa. More specifically,
BelNet is defined as follows, see Definition 3.4.

Definition 3.4 (BelNet). Let O be an ontology and C a set of concepts of

3FLE only allows for u, ∃, ∀.
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interest. Let eq(C,O) := {C ′ ∈ C | O |= C ≡ C ′}. Let

parents(C,O,C) := {C ′ ∈ C | O |= C ′ v C ∧ @C ′′ ∈ C :

O |= C ′ v C ′′ ∧ O |= C ′′ v C}.

Then, the BelNet of O is a BN (G,P), where structure G := (V,E) is such that

V := {eq(C,O) | C ∈ C},

E := {〈eq(C ′,O), eq(C,O)〉 | C ′ ∈ parents(C,O,C)}.

Parameters P are CPTs over variables V .

Informally, the correspondence between an ontology and a DAG is based on
the following assumptions:

• each equivalence-representative concept corresponds to a binary variable;

• subsumptions between concepts correspond to probabilistic dependencies
between their variables;

• equivalent concepts are represented by a single node.

BelNet is learned from the ABox. Since BNs use the standard ML view of data,
see Section 2.2.2, so does BelNet. All individuals are assumed to be independent
and different from each other. The ABox is viewed under the CWA, i.e. for a
concept C its probability in an ontology O is estimated as follows:

P (C = true) :=
|{a ∈ in(O) | O |= C(a)}|

|in(O)|
,

P (C = false) := 1− P (C = true).

Once BelNet is learned, it is translated to a set of DL axioms as follows.
For each link from concept C to concept D in the DAG the axiom C v D is
added. Additionally, disjointness axioms are extracted by means of probabilistic
inference in the underlying BN. More specifically, for any two concepts C,D ∈ C
if P (C = true, D = true) < tdisj, i.e. their joint probability does not exceed a
user-defined threshold, then the axiom C u D v ⊥ is added. Thus, all axioms
that BelNet generates are as follows:
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• C v D, C uD v ⊥, where C,D ∈ C and C := {A, ∃R.> | A ∈ NC ∧ R ∈
NR}.

Please note that additional axioms involving conjunctions of concepts from
C can be extracted using probabilistic inference similarly to disjointness axioms.
However, this requires running many probabilistic queries and specifying addi-
tional thresholds that can be difficult to choose. Example 3.4 illustrates BelNet.

Example 3.4. We use the Kinship ontology, see Example 2.3. Suppose we are
interested in finding all dependences involving concepts

C := {Man, Woman, Father, Mother, ∃hasChild.>, ∃marriedTo.>}.

The data table is identical to Table 3.1. A possible BelNet learned from Table 3.1
is shown by Figure 3.3. Its structure represents the following DL axioms:

Father vMan (1)

Mother v Woman (2)

Father v ∃hasChild.> (3)

Mother v ∃hasChild.> (4)

∃hasChild.> v ∃marriedTo.> (5)

Please notice that Axiom 1 and 2 are already in the TBox, hence, they are
uninformative. Additionally, for any tdisj > 0 the following disjointness axioms
are extracted: ManuWoman v ⊥, FatheruMother v ⊥, ManuMother v ⊥,
Woman u Father v ⊥. Please notice that all of these are entailed by the TBox
and, therefore, uninformative.

Among the limitations of BelNet is that its core assumptions seem to be
too strong. Firstly, the correspondence of probabilistic dependencies C → D

to subsumption axioms C v D is not obvious. For example, the link C → D

can also correspond to the disjointness axiom C v ¬D (links for disjointness
are, in fact, introduced in [ZGP+15]). Secondly, the ABox is viewed under the
CWA. Since only subsumption and disjointness axioms for concepts of interest
are learned, resulting ontologies are of weak expressivity.

The aforementioned assumptions are coupled with some shortcomings in the
results of learning. For example, equivalence axioms C ≡ D cannot be learned,
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∃hasChild.>

Father Mother

Man Woman

∃marriedTo.>

Figure 3.3: BelNet for Kinship

despite the fact that the formalism itself can represent equivalences via repres-
entative nodes. In addition, there is a little appreciation of the TBox (only
consistency is checked) which results in many uninformative axioms. Finally, a
BN learned from the ABox represents a single, “optimal” solution which may not
be true considering the problem of learning from data. To be more specific, since
there is no guarantee that the data faithfully represents the domain knowledge,
any part of the learned ontology can simply be the result of data idiosyncrasies,
e.g. noise or bias, see Example 3.2. Another example of applying probabilistic
graphical models to OL is [DLK+08].

3.3 Summary

We have briefly reviewed related work in OL focusing on learning from structured
data (logical OL). To summarise, we place each approach in the OL dimensions,
see Table 3.3.

What have we learned? All approaches try to employ standard methods from
ML and DM, i.e. ILP, ARM, FCA, and PGMs. However, adapting ML and DM
methods also results in limitations of OL approaches. This happens because of
significant differences between ML/DM and DLs, see Chapter 2. Firstly, they
differ in data representation: ML and DM use the tabular view under the CWA,
while DLs use the labelled graph under the OWA. Secondly, they differ in know-
ledge representation: ML and DM use rules and networks, while DLs use axioms.
Although LP, a language for hypotheses in ILP, uses logical formula, it differs
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Input
Data

Target Knowledge Semantics Supervision

CDL ABox,
TBox,
target
A

A ≡ C, where A ∈ NC , C
is a concept from ALC(`)

OWA, partial
consideration
of TBox

supervised: positive
and negative ex-
amples; unsupervised:
CWA

SSI RDF ⊔C′∈X C ′ v ⊔D′∈Y D
′,

where X,Y ⊆ C and C :=
{A, ∃R.A, ∃R−.A | A ∈
NC ∧ R ∈ NR}; R v S,
R ◦ R v R, where R,S ∈
NR

CWA, no TBox unsupervised

KBC ABox,
TBox

⊔C′∈X C ′ v ⊔D′∈Y D
′,

where X,Y are sets of con-
cepts from FLE(δ)

OWA, full
consideration
of TBox

supervised: interact-
ive learning where a
domain expert veri-
fies axioms or provides
counterexamples

BelNet ABox,
TBox

C v D, C u D v ⊥,
where C,D ∈ C and C :=
{A, ∃R.> | A ∈ NC ∧ R ∈
NR}

CWA, mostly
disregards
TBox

unsupervised

Table 3.3: OL approaches in OL dimensions

from DLs in expressivity and semantics, see Section 2.1.7. As a consequence, OL
approaches have the following common limitations.

(i) Weak expressivity of acquired knowledge OL approaches can only
learn axioms of restricted shapes, i.e. concept definitions or axioms with
plain conjunctions of concepts of interest. Good concepts of interest are
hard to specify, as this requires domain expertise. Automated generation
of concepts of interest is essentially brute-force and, hence, can result in
too many concepts. As a consequence, approaches can only produce weakly
expressive axioms.

(ii) Disregard for the standard semantics An ABox is represented in the
form of a binary table and viewed under the CWA (or some form of the
CWA is used). A TBox is either respected to a limited extent or ignored.
Any logical interaction between learned axioms is usually ignored.

(iii) High degree of human involvement Supervised OL approaches require
specifying training examples. Interactive OL approaches require the in-
tense involvement of a domain expert that answers questions and provides
counterexamples.
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This thesis addresses all of these challenges. In contrast to other OL ap-
proaches, we do not attempt to adapt a method from ML or DM for OL, but
design an approach specifically for DLs to overcome the aforementioned limita-
tions. While the approach is guided by basic principles of ML and DM, it is aimed
at learning in the realm of DLs. This calls for introducing a general computational
problem for OL and making suitable design choices.



Chapter 4

General Terminology Induction

In this chapter, we discuss the problem of Ontology Learning (OL) from general
principles. In particular, we discuss what is an output of OL, how much should
we trust it, and how to evaluate its quality. As a result of that discussion,
we introduce a new computational problem for OL, called General Terminology
Induction. We discuss how to design a reasonable approach and outline the
architecture of its implementation.

4.1 A New Look at Ontology Learning

This thesis investigates the problem of acquiring TBox axioms (generalisations)
from an ABox (data). TBoxes can be of different shape and expressivity. For
example, a TBox can be a simple concept hierarchy. Yet, it can also be a sophist-
icated terminology with complex conceptual relationships encoded in expressive
DLs, such as SROIQ. Then, the following questions arise:

• How should an acquired TBox look like in general?

• How can we know whether it is of good or bad quality?

These questions are discussed below.

4.1.1 Thinking in Terms of Hypotheses

Suppose we can evaluate the quality of an acquired TBox via some automated
means, e.g. measuring how well it is inductively supported by the data (as OL ap-
proaches normally do). Then, given that an acquired TBox has the best possible

69
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quality (perfect score), can we take it as an ultimate solution and stop searching?
We argue that the answer is clearly “no”. The reason is that OL is essentially

a problem of learning from data and data does not guarantee to be domain-
representative in general. Therefore, an acquired output, even with a perfect
score, can simply be the result of data idiosyncrasies, e.g. noise or bias, see
Example 3.2. Those idiosyncrasies can lead away from the true conceptualisation
of the domain which is the primary purpose of any ontology (and its TBox).

Therefore, we treat any result of OL as a hypothesis regardless of its measured
quality. As discussed in Chapter 3, OL approaches learn axioms of restricted
shapes, see Table 3.3: concept definitions (CDL), axioms with plain conjunctions
(SSI and KBC), simple subsumption and disjointness axioms (BelNet). However,
in the most general sense, a hypothesis is a TBox,1 i.e. a set of general concept
inclusions (GCIs) and role inclusions (RIs), see Definition 4.1.

Definition 4.1 (Hypothesis). A set H of axioms is called a hypothesis if H is a
TBox.

In contrast to other OL approaches, see Section 3.2, we argue that it is im-
possible to decide automatically whether a hypothesis is a solution or it is not.
All we can do is to order the set of all hypotheses, or hypothesis space, by their
measured quality and hope that such ordering resembles their true quality order-
ing. The verdict whether a hypothesis is valid, interesting, or useful should be
left for human experts. An expert can use the ordering of hypotheses to navigate
through them.

4.1.2 Hypothesis Quality Dimensions

Let us discuss which quality we can use to compare hypotheses in a reasonable
way. Clearly, quality should evaluate how well the data supports a hypothesis. We
call it statistical quality. Is this quality sufficient to compare hypotheses? While it
may be sufficient for standard ML and DM problems, we think it is not sufficient
for OL in DLs. As discussed in Section 2.1, DLs have a formal semantics. Hence,
hypotheses in DLs can have different logical quality, e.g. they can be consistent
or inconsistent with the ontology, informative or uninformative to it. In addition,
a hypothesis should be readable since it is intended to be examined by humans.
Hence, the third, human-centric quality is readability which evaluates how easily

1There are approaches that learn an ABox from text resources.
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a hypothesis can be read by humans, e.g. how long it is. Thus, we can talk about
different quality dimensions :2

• statistical quality

• logical quality

• readability

While we think these are essential quality dimensions of a hypothesis in OL,
we do not claim that the list is exhaustive. There may be other dimensions, e.g.
application-specific ones. In the context of this thesis, quality dimensions are
rather abstract notions that define criteria which hypotheses can be compared
by. The actual comparison requires measuring quality along its dimensions in
some way, i.e. quality measures are required. Each quality dimension can be
evaluated by multiple quality measures.

4.1.3 Ontology Learning as a Multi-Objective Search

In ML and DM the process of learning is often considered as a search in the
hypothesis space. A learning algorithm normally searches for a hypothesis that
maximises a single objective. Thus, the result of a single-objective search is
usually one, “best” hypothesis (unless multiple hypotheses share the best value).

Since OL seems to require evaluating a hypothesis along multiple quality
dimensions, we consider the process of learning as a multi-objective search. In
contrast to a single-objective search, the result of a multi-objective search is
usually many “best” hypotheses because one hypothesis can be maximal on one
objective, while another hypothesis can be maximal on another objective.

Moreover, quality measures only estimate the actual quality of a hypothesis.
Therefore, instead of returning only best hypotheses and ignoring all others, we
suggest ordering all hypotheses by their quality values. Such ordering allows for
navigating through hypotheses starting from most promising ones. Of course,
hypotheses of high quality can still be selected using their quality values.

In the light of the above considerations, we introduce a new computational
problem for OL, called General Terminology Induction (GTI), see Definition 4.2.

2Hypothesis quality dimensions should not be confused with OL dimensions, see Section 3.1.
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Definition 4.2 (General Terminology Induction). Given an ontology O, a lan-
guage bias L, and a set of quality measures Q, General Terminology Induction is
the problem of

• constructing hypotheses H for O that conform to L;

• evaluating H by Q; and

• computing an ordering (H,≺O,Q), where ≺O,Q is a binary relation on H.

Thus, the goal of GTI is to construct, evaluate, and order (rank) hypotheses
for an ontologyO. In other words, GTI consists of three sub-problems: hypothesis
construction, hypothesis evaluation, and hypothesis ranking. Please note that
GTI is rather underspecified since only an input ontology O is completely clear.
A language bias L and quality measures Q are rather abstract at that point. In
the following, we will make these notions precise and suggest how they can be
specified.

Let us discuss relationships between GTI and other OL approaches described
in Chapter 3. In fact, if we consider each approach as a computational problem,
each of those problems can be seen as a version of GTI as follows. The language
bias for each problem is given by the column “Target Knowledge” in Table 3.3.
The set of quality measures consists of a single, binary measure q such that q = 1

if a hypothesis satisfies the requirements, e.g. minimal thresholds, and q = 0

otherwise. The quality measure q can be based on supervision, e.g. positive and
negative examples. Then, the goal of each computational problem is to rank all
hypotheses by q and select top ones which are treated as solutions.

Thus, GTI is more general than existing computational problems in OL in
two aspects. Firstly, GTI permits a hypothesis to be a general TBox, i.e. unres-
tricted. Secondly, GTI considers multiple competing quality measures. We argue
that each OL approach can, in principle, consider multiple quality measures (in-
cluding measures defined in this thesis) and improve its results since multiple
quality measures provide additional information about hypothesis quality. Such
information can be used to better compare hypotheses and identify most prom-
ising ones.
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4.2 Designing DL-Miner

The generality of GTI suggests that there are many ways to approach the problem.
An approach can make various design choices and assumptions. In this section,
we design an approach for GTI. We discuss its general assumptions and outline
the architecture of its implementation.

4.2.1 Design Choices

In Section 3.3, we have discussed common limitations of OL approaches. We
argue that these limitations can be (at least partly) overcome by a carefully
designed approach. We call its implementation DL-Miner, as it aims at mining
hypotheses in DLs. We make the following design choices :

(i) A language bias L permits GCIs C v D and RIs R v S, where C,D ∈ C,
R, S ∈ R, C and R are finite sets of possibly complex concepts and roles,
respectively.

(ii) The standard DL semantics is respected, i.e. the OWA is permitted and
the TBox is fully taken into account during learning.

(iii) Learning is unsupervised in the sense that human experts only intervene at
the final stage to examine the results of learning (though they may need
to specify input parameters). Preparing training examples or providing
counterexamples is not required.

Thus, DL-Miner aims at acquiring more expressive hypotheses, respecting
the standard semantics of DLs, and unsupervised learning, simultaneously. This
is a challenging design which has never been pursued by any other OL approach.
Firstly, the hypothesis space becomes significantly larger, and, hence, good hy-
potheses are harder to find. Secondly, the search is not guided by supervision.
Finally, the problem is not simplified by disregarding the semantics and hypo-
thesis evaluation is likely to require reasoning that can be costly.

4.2.2 General Assumptions

In addition to the above design choices, we make the following assumptions.
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(i) The input ontology O belongs to a DL for which the problems of subsump-
tion checking and instance checking are decidable, i.e. any popular DL such
as EL, ALC, SHIQ, SROIQ.

(ii) The input ontology O := T ∪A contains a non-empty ABox A, i.e. A 6= ∅.

(iii) The input ontology O is consistent.

The assumption (i) ensures that we can use reasoning since reasoning services
are guaranteed to terminate and implemented by reasoners. As we focus on
learning from an ABox, the assumption (ii) guarantees that it is non-empty, i.e.
there is some data to learn from. As we aim at respecting the semantics and,
hence, using reasoning, the assumption (iii) guarantees that reasoning is sensible.
If an ontology is inconsistent, reasoning is useless because everything follows from
the ontology. While the assumptions (i) and (ii) are firm in the scope of this thesis,
the assumption (iii) is not: we show how to cope with inconsistent inputs in the
following.

4.2.3 Architecture of DL-Miner

Having made the design choices and general assumptions, we now outline the
high-level architecture of DL-Miner. First, let us describe its input parameters.
There is one mandatory input parameter, i.e. an ontology O, and three optional
parameters, i.e. a language bias L, a signature Σ of interest (a set of focus terms),
and a set Q of quality measures. The architecture of DL-Miner consists of the
following functional blocks, see Figure 4.1.

• Ontology Cleaner repairs an input ontology O from inconsistency. The
result is a consistent ontology O′.

• Hypothesis Constructor, given an optional language bias L and sig-
nature Σ of interest, constructs suitable concepts C and roles R from Σ

conforming to L. Then, hypotheses H are generated from C and R.

• Hypothesis Evaluator, given an optional set Q of quality measures and
a consistent ontology O′, evaluates hypotheses H. The result is the quality
function qf(H, q) that returns the quality value for a hypothesis H ∈ H
given a quality measure q ∈ Q.
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Ontology CleanerO

Hypothesis ConstructorL, Σ

Hypothesis EvaluatorQ

Hypothesis Sorter rf(H)

H

qf(H, q)

DL-Miner

Figure 4.1: Architecture of DL-Miner

• Hypothesis Sorter, given the quality function qf(·),3 orders hypotheses
H according to the binary relation ≺.4 The result is the ranking function
rf(H) that returns the quality rank of a hypothesis H ∈ H.

The output of DL-Miner is a set H of hypotheses, quality function qf(·), and
ranking function rf(·). Domain experts and ontology engineers are supposed to
navigate through the hypotheses using the quality and ranking functions. Thus,
all hypotheses can be methodically examined. Clearly, it is possible to select only
best hypotheses if necessary. As the reader will find in the following, hypotheses
of DL-Miner can, in fact, be used for various purposes and in different scenarios.

In the following, we clarify the parameters and unfold the functionality of each
block. Hypothesis Evaluator is covered in Chapter 5, where we define quality
measures that can be used in Q, and Chapter 6, where we develop techniques
to compute those measures. Hypothesis Constructor is explained in Chapter 7
where we show how to construct suitable concepts C (roles R) given a language
bias L and generate hypotheses H from C (R). Ontology Cleaner and Hypothesis
Sorter are both covered in Chapter 8 where we also integrate all techniques in
DL-Miner. Finally, we empirically evaluate DL-Miner in Chapter 9.

3The symbol “·” stands for the arguments of the function if they are clear or irrelevant.
4When O and Q are clear from the context, we denote the binary relation ≺O,Q by ≺.



Chapter 5

Defining Hypothesis Quality
Measures

As discussed in Chapter 4, Ontology Learning (OL) can be seen as a search in
the space of hypotheses. While enumerating hypotheses, we need to test their
quality. In the context of DLs, OL seemingly requires evaluating multiple qual-
ity dimensions of a hypothesis. We have introduced three quality dimensions:
readability, logical quality, and statistical quality.

In this chapter, we address the question how to evaluate hypothesis quality
in a reasonable way. We introduce several quality measures for each quality
dimension. Those quality measures can be used as input parameters for DL-

Miner, see Figure 4.1. We investigate formal properties of quality measures and
establish relationships between them.

5.1 Readability of a Hypothesis

DLs can encode complex knowledge. Not only can axioms involve multiple terms
plainly connected by logical operators, but they can also include multi-level nest-
ings due to role quantifiers, thus forming tree-like structures. This affects com-
putational complexity, i.e. performance of reasoning algorithms, and cognitive
complexity, i.e. understandability of ontologies by humans. In addition to syn-
tactic complications, humans can also experience semantic complications, e.g.
when comprehending entailments of the ontology. Some questions of cognitive
complexity of DLs are discussed in [HBPS11, NS13, WMCM14].
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As a hypothesis in OL consists of axioms, we can talk about its cognitive com-
plexity in the standard sense. In this thesis, we are concerned with a particular
aspect of cognitive complexity – readability. Readability of a hypothesis is the
ease with which it can be read by a human. The process of reading is considered
to be tightly connected with parsing. Thus, in the scope of this thesis, readability
is concerned with the syntactic side of cognitive complexity.

5.1.1 Syntactic Length

A possible measure of readability of a hypothesis is its syntactic length, Informally,
it counts how many terms and logical operators are used to write a hypothesis.
We first define the syntactic length of an axiom. This is the common measure,
e.g. used in [HPS08, NS13], which we straightforwardly extend with additional
types of axioms, e.g. role chains S ◦ P v R, see Definition 5.1.

Definition 5.1 (Syntactic Length of an Axiom). Let A ∈ NC be a concept
name, C,D complex concepts, R ∈ NR a role name, S, P complex roles, o ∈ NI

an individual name. The syntactic length of a role is defined as follows:

`(R) := 1, `(S−) := 1 + `(S),

`(S ◦ P ) := 1 + `(S) + `(P ).

The syntactic length of a concept is defined as follows:

`(>) = `(⊥) = `(A) = `({o}) := 1,

`(¬C) := 1 + `(C),

`(C uD) = `(C tD) := 1 + `(C) + `(D),

`(∃S.C) = `(∀S.C) = `(≥ nS.C) = `(≤ nS.C) := `(S) + `(C).

The syntactic length of an axiom is defined as follows: `(C v D) := `(C) + `(D),
`(S v P ) := `(S) + `(P ), `(C(a)) := `(C), `(R(a, b)) := `(R), `(a ≈ b) = `(a 6≈
b) := 1.

The syntactic length of a hypothesis is simply the summary length of its
axioms, see Definition 5.2.
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Definition 5.2 (Syntactic Length of a Hypothesis). The syntactic length of a
hypothesis H is defined as follows:

`(H) :=
∑

α∈H `(α).

We sometimes omit “syntactic” for the sake of brevity when we talk about
syntactic length. Example 5.1 shows how length is calculated.

Example 5.1. Consider the axiom α := Au ∃R.B v C t ∀R.(¬D u ∃S.B), where
A,B,C,D are concept names. Its length is calculated as follows:

`(α) = `(A u ∃R.B) + `(C t ∀R.(¬D u ∃S.B))

= `(A) + 1 + `(∃R.B) + `(C) + 1 + `(∀R.(¬D u ∃S.B))

= `(A) + 1 + `(B) + 1 + `(C) + 1 + 1 + `(¬D u ∃S.B))

= `(A) + 1 + `(B) + 1 + `(C) + 1 + 1 + `(¬D) + 1 + `(∃S.B)

= `(A) + 1 + `(B) + 1 + `(C) + 1 + 1 + 1 + `(D) + 1 + 1 + `(B)

= 12.

There is some evidence, e.g. in [HPS08, HBPS11, NS13], that shorter axioms
are easier to understand for humans. This supports (yet not fully justifies) the
intuition that we should prefer shorter hypotheses over longer ones. We will
justify this intuition via experiments in Section 9.1.1.

5.1.2 Role Depth

The length of a hypothesis is not the only readability measure. In particular,
axioms can have a plain structure, i.e. propositional shape. On the other hand,
axioms can involve nestings due to role quantifiers. Therefore, a readability meas-
ure that quantifies the complexity of nestings would be helpful. It is the standard
measure called role depth [BST07]. We first define the role depth of an axiom,
see Definition 5.3.

Definition 5.3 (Role Depth of an Axiom). Let A ∈ NC be a concept name, C,D
complex concepts, R ∈ NR a role name, S, P complex roles, o ∈ NI an individual
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name. The role depth of a role is defined as follows:

δ(R) := 1, δ(S−) := δ(S),

δ(S ◦ P ) := δ(S) + δ(P ).

The role depth of a concept is defined as follows:

δ(>) = δ(⊥) = δ(A) = δ({o}) := 0,

δ(¬C) := δ(C),

δ(C uD) = δ(C tD) := max{δ(C), δ(D)},

δ(∃S.C) = δ(∀S.C) = δ(≥ nS.C) = δ(≤ nS.C) := δ(S) + δ(C).

The role depth of a GCI and RI is δ(C v D) := max{δ(C), δ(D)} and δ(S v
P ) := max{δ(S), δ(P )}, respectively.

Informally, the role depth of a concept is the depth of its parsing tree, i.e. the
length of the longest path from the root to leaves. The role depth of a GCI (RI)
is the maximal role depth of its left-hand side (LHS) and right-hand side (RHS).
The role depth of a hypothesis is simply the maximal role depth of its axioms,
see Definition 5.4.

Definition 5.4 (Role Depth of a Hypothesis). The role depth of a hypothesis H
is defined as follows:

δ(H) := max{δ(α) | α ∈ H}.

Example 5.2 shows how role depth is calculated.

Example 5.2. Consider the axiom α := A u ∃R.B v C t ∀R.(¬D u ∃S.B) from
Example 5.1. Its role depth is calculated as follows:

δ(α) = max{δ(A u ∃R.B), δ(C t ∀R.(¬D u ∃S.B))}

= max{δ(A), δ(∃R.B), δ(C), δ(∀R.(¬D u ∃S.B))}

= max{δ(A), 1 + δ(B), δ(C), 1 + δ(¬D u ∃S.B))}

= max{δ(A), 1 + δ(B), δ(C), 1 + δ(¬D), 1 + δ(∃S.B)}

= max{δ(A), 1 + δ(B), δ(C), 1 + δ(D), 1 + 1 + δ(B)}

= 2.
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The role depth is just one of possible characteristics of axiom’s parsing tree.
One can think of alternative characteristics, such as the summary length of all
paths from the root to leaves. Intuitively, axioms of higher role depth seem to be
harder to read. As for the syntactic length, we will give experimental evidence
for this intuition in Section 9.1.1.

5.2 Logical Quality of a Hypothesis

Since a hypothesis is generally a DL TBox, i.e. a logical theory, it is worthwhile to
consider its logical quality. We observe several aspects of logical quality which can
be measured. A hypothesis can be more or less general than another hypothesis,
i.e. have different logical strength. It can also be redundant or non-redundant.
Since a hypothesis can interact with the ontology, its logical quality should also
quantify that interaction. In particular, a hypothesis can be either consistent
or inconsistent with the ontology. A hypothesis can carry new information with
regard to the ontology or just repeat its knowledge. A hypothesis can be more
or less complex and surprising with respect to the ontology. In the following, we
introduce measures for all mentioned aspects of logical quality and investigate
their properties.

5.2.1 Consistency

An evident measure of logical quality of a hypothesis is its consistency with the
ontology. Informally, consistency checks whether a hypothesis contradicts the
ontology or not, see Definition 5.5. Consistent hypotheses should be preferred over
inconsistent ones. Nevertheless, inconsistency is not a verdict for the hypothesis
to be rejected. The reason is that an ontology can contain erroneous data (even
if the ontology is consistent).

Definition 5.5 (Consistency). A hypothesis H of an ontology O is called con-
sistent with O if O ∪H is consistent. Otherwise, H is called inconsistent.

Thus, a hypothesis is consistent with the ontology if the ontology augmented
by it is consistent. Intuitively, if a hypothesis is inconsistent with the ontology,
this may indicate that the hypothesis is incorrect, see Example 5.3.

Example 5.3. Consider the ontology O := Kinship, see Example 2.3. The hypo-
thesis H := {Father vMother} is inconsistent with O.
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As a consequence of Definition 5.5, if a hypothesis is inconsistent with O, then
all equivalent hypotheses are inconsistent with O, see Lemma 5.1.

Lemma 5.1. Let O be an ontology, H and H ′ hypotheses. If H is inconsistent
with O and H ≡ H ′, then H ′ is inconsistent with O.

Proof. Follows from Definition 5.5 since H ≡ H ′ implies O ∪H ≡ O ∪H ′.

5.2.2 Informativeness

A hypothesis can be informative or uninformative with respect to the ontology.
We call a hypothesis informative if it does not repeat what is already known from
the ontology, see Definition 5.6. Informative hypotheses should be preferred over
uninformative ones.

Definition 5.6 (Informativeness). Given an ontology O := T ∪ A, an axiom α

is called informative for T if T 6|= α. A hypothesis H is called informative for
T if H 6= ∅ and every axiom α ∈ H is informative for T . Otherwise, H is called
uninformative for T .

Thus, a hypothesis is informative for the TBox if the hypothesis is not empty
and does not contain entailments of the TBox. If a hypothesis contains at least
one axiom which follows from the TBox, then it is uninformative, see Example 5.4.

Example 5.4. Consider the TBox T of Kinship, see Example 2.3. The hypo-
thesis H1 := {Man u ∃hasChild.> v Father} is informative for T , while
H2 := {Father v Human} is not.

An uninformative hypothesis can trivially be turned into informative one via
detecting and removing uninformative axioms unless it contains only uninform-
ative axioms. In the latter case a hypothesis is entailed by the TBox, i.e. T |= H,
and removing all uninformative axioms gives the empty hypothesis which is unin-
formative by Definition 5.6. Please note that, unlike consistency, informativeness
is not the same for all equivalent hypotheses, see Example 5.5.

Example 5.5. Consider the TBox T := {A v C} and two hypotheses H1 := {A v
B, B v C} and H2 := {A v B, B v C, A v C}. Although H1 ≡ H2, H1 is
informative for T and H2 is not.
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5.2.3 Redundancy

A hypothesis can contain axioms which are superfluous, or redundant, within
the hypothesis. Axioms in a hypothesis can also have redundant parts, see
[HPS08, Hor11]. We call a hypothesis redundant if it contains redundant ax-
ioms or axioms with redundant parts, see Definition 5.7. Clearly, non-redundant
hypotheses should be preferred over redundant ones.

Definition 5.7 (Redundancy). Let H be a hypothesis.

• An axiom α ∈ H is called redundant in H if H\{α} ≡ H.

• An axiom α ∈ H is said to have redundant parts in H if there exists an
axiom α′ ∈ pi(H)\H such that H ∪ {α′}\{α} ≡ H, where pi(H) returns
all weaker and shorter forms of axioms in H (see Definition 19 at page 177
in [Hor11]).

• A hypothesis H is called redundant if there is an axiom α ∈ H which is
redundant or has redundant parts. Otherwise, H is called non-redundant.

Redundancy can be detected and eliminated, i.e. a redundant hypothesis
can be turned into a non-redundant one, as we describe in detail in Chapter 6.
Example 5.6 illustrates redundant hypotheses.

Example 5.6. The following hypotheses are given:

H1 := {A v B, B v C, A v C}

H2 := {A v B, ¬B v ¬A}

H3 := {A v B uD, A v C uD}

The axiom A v C is redundant in H1, the axiom ¬B v ¬A is redundant in H2.
While H3 does not contain redundant axioms, its axiom A v C uD contains the
redundant part D. The following hypotheses are equivalent to the listed above,
respectively, and non-redundant:

H ′1 := {A v B, B v C}

H ′2 := {A v B}

H ′3 := {A v B uD, A v C}
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As it follows from Definition 5.7, if a hypothesis is redundant, then there is
an equivalent hypothesis of a smaller length, see Lemma 5.2.

Lemma 5.2. If a hypothesis H is redundant, then there is a hypothesis H ′ such
that H ′ ≡ H and `(H ′) < `(H).

Proof. By Definition 5.7, if H is redundant, then there is α ∈ H such that α
is (i) redundant or (ii) has redundant parts. In the case (i) H ′ = H\{α} and
`(H ′) < `(H). In the case (ii) H ′ = H ∪ {α′}\{α} and `(H ′) < `(H) since
`(α′) < `(α).

The reverse direction in Lemma 5.2 does not hold, see Example 5.7.

Example 5.7. Consider the following hypotheses:

H1 := {A v B, B v C}

H2 := {> v (¬A tB) u (¬B t C)}

They are equivalent, i.e. H1 ≡ H2, both of them are non-redundant by Defini-
tion 5.7, and `(H1) = 4 < 10 = `(H2) by Definition 5.1. Thus, the existence of
an equivalent hypothesis of a smaller length does not imply that the hypothesis
is redundant.

Please note that Definition 5.7 only defines redundancy which is caused by
excessive length. However, there are other causes for redundancy in DLs, see
Example 5.8.

Example 5.8. Consider the hypothesis H := {∃R.A u ∀R.A v B}. It is non-
redundant by Definition 5.7. However, the restriction ∃R.A can be simplified
given ∀R.A. In other words, there is H ′ := {∃R.> u ∀R.A v B} such that
H ′ ≡ H, `(H ′) = `(H), and H ′ expresses less restrictions than H.

Definition 5.7 does not consider an ontology O, i.e. a hypothesis is redundant
or non-redundant regardless of its ontology O. The reason is that an axiom α ∈
H, which is not redundant in H but redundant in O∪H can be interesting. Such
an axiom can reveal yet only implicit (and possibly unknown) relations between
classes. In addition, checking redundancy would require checking entailments of
O ∪H instead of H. The latter could be much more costly for computationally
hard ontologies.

Hypotheses can be redundant not only on their own but with respect to other
hypotheses as well. In particular, one hypothesis can be equivalent to another
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hypothesis. We call such hypotheses syntactic variations since they capture the
same knowledge but differ syntactically, see Definition 5.8.

Definition 5.8 (Syntactic variation). An axiom α′ is called a syntactic variation
of an axiom α if α′ 6= α and α′ ≡ α. A hypothesis H ′ is called a syntactic
variation of a hypothesis H if H ′ 6= H and H ′ ≡ H.

In general, a hypothesis can have infinitely many syntactic variations. Clearly,
if we intend to explore a set H of hypotheses, we would like to avoid syntactic
variations of already explored hypotheses because the former simply repeat know-
ledge already encoded by the latter.

5.2.4 Logical Strength

A hypothesis can be logically stronger or weaker than another hypothesis. Intu-
itively, a stronger hypothesis is more constrained, or more specific, and a weaker
hypothesis is less constrained, or more general, see Definition 5.9. Logical strength
allows for ordering hypotheses and navigating through them in a methodical way.

Definition 5.9 (Logical strength). An ontology O is said to be weaker than
another ontology O′ (or O′ is said to be stronger than O), written as O′ BO, if
O′ |= O and O 6|= O′. An axiom α is said to be weaker than another axiom α′

if {α′} B {α}, abbreviated as α′ B α. A hypothesis H is said to be weaker than
another hypothesis H ′ if H ′ BH.

There is a similar notion of logical strength in CDL, see Section 3.2.1, called
generality, but defined for concepts. Similarly, we call a weaker hypothesis more
general and a stronger hypothesis more specific. Informally, a hypothesis H is
weaker than a hypothesis H ′ if H follows from H ′ and they are not equivalent,
see Example 5.9.

Example 5.9. The following hypotheses are given:

H1 := {A v C}

H2 := {A uB v C}

H3 := {A v B t C}

Then, H2 is weaker than H1, since H1 |= H2, and H3 is weaker than H1, since
H1 |= H3. Hypotheses H2 and H3 are incomparable with respect to their logical
strength since none of them follows from another.
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Please note that, unlike the aforementioned quality measures, logical strength
is a binary relation, i.e. it can only be evaluated with regard to another hypo-
thesis. Another difference is that hypotheses can be incomparable with respect
to logical strength. Hence, logical strength imposes a partial order (H,B) on
hypotheses H. Logical strength has the following properties, see Lemma 5.3.

Lemma 5.3. Let O be an ontology, H, H1, H2 hypotheses. Then

(i) H1 ⊂ H2 and H1 6≡ H2 implies H2 BH1;

(ii) H1 BH and H1 ≡ H2 implies H2 BH;

(iii) H1 is inconsistent with O and H2 BH1 implies H2 is inconsistent with O;

(iv) H2 BH1 implies either O ∪H2 BO ∪H1 or O ∪H2 ≡ O ∪H1.

Proof. (i) Since DLs are monotonic,1 H1 ⊂ H2 implies H2 |= H1 and H1 6≡ H2

implies H1 6|= H2. Hence H2 BH1 by Definition 5.9.

(ii) follows from Definition 5.9 since H1 |= H and H 6|= H1 and H1 ≡ H2 implies
H2 |= H and H 6|= H2.

(iii) follows from Definition 5.9 since H2 |= H1 implies O ∪ H2 |= O ∪ H1, i.e.
O ∪H2 has no models because O ∪H1 has no models.

(iv) follows from Definition 5.9 since H2 |= H1 implies O ∪ H2 |= O ∪ H1 and
H1 6|= H2 implies either O ∪H1 6|= O ∪H2 or O ∪H1 |= O ∪H2.

Informally, Lemma 5.3 states the following properties: (i) equivalent hypo-
theses have the same logical strength; (ii) adding axioms to a hypothesis never
produces a weaker hypothesis; (iii) if a hypothesis is inconsistent with the onto-
logy, then all stronger hypotheses are inconsistent with it; (iv) adding the same
ontology to a stronger and weaker hypotheses either preserves their ordering or
makes them equivalent.

1A logic is monotonic if adding a formula to a theory never removes its consequences.
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5.2.5 Dissimilarity

For a single axiom, one can measure how “dissimilar” its LHS and RHS are with
respect to the TBox. Intuitively, the more dissimilar the LHS and RHS are, the
more “surprising” the axiom is for the TBox. This is a useful notion because
a domain expert might wish to view the most surprising hypotheses first. In
principle, any concept similarity measure, e.g. [APS14, EPT15], can be adapted
for measuring the dissimilarity of a GCI. We adapt the concept similarity measure
from [APS14], see Definition 5.10.

Definition 5.10 (Dissimilarity). Let O := T ∪ A be an ontology, C a finite set
of concepts. Let the set of all subsumers of a concept C in C given T be

subs(C, T ,C) := {C ′ ∈ C ∪ {C} | T |= C v C ′}.

Then, the dissimilarity of a GCI C v D is defined as follows:

dsim(C v D, T ,C) := 1− |subs(C, T ,C) ∩ subs(D, T ,C)|
|subs(C, T ,C) ∪ subs(D, T ,C)|

.

Informally, the dissimilarity of C v D measures how many subsumers in C the
concepts C and D have in common given the TBox T . The dissimilarity of a RI
is defined analogously and omitted for the sake of brevity. The quality measure
is in the range [0, 1]. The minimal value implies that all subsumers are the same,
i.e. the LHS and RHS are equivalent, and the maximal value implies that all
subsumers are different. Example 5.10 illustrates calculating dissimilarity.

Example 5.10. Consider the following TBox:

T := {C1 v B1, B1 v A1, A1 v A,

C2 v B2, B2 v A2, A2 v A}.

Given C := T̃ , the dissimilarity of the axiom α1 := C1 v C2 is calculated as
follows:

subs(C1, T ,C) = {A,A1, B1, C1}, subs(C2, T ,C) = {A,A2, B2, C2}

dsim(α1, T ,C) = 1− |{A}|
|{A,A1, B1, C1, A2, B2, C2}|

=
6

7
.

To compare, the dissimilarity of the axiom α2 = A1 v C2 (please notice that A1
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is more general than C1 according to T ) is as follows:

dsim(α2, T ,C) = 1− |{A}|
|{A,A1, A2, B2, C2}|

=
4

5
.

Thus, dsim(α1, T ,C) > dsim(α2, T ,C).

Please note that dissimilarity is a symmetric measure, i.e. it does not change
if the LHS and RHS are swapped. In principle, the dissimilarity of a multi-axiom
hypothesis H could be defined as the sum of the dissimilarities of its axioms:
dsim(H, T ,C) :=

∑
α∈H dsim(α, T ,C). However, that definition would disregard

the semantics of DLs. As a result, the measure could overestimate the quality
value, see Example 5.11.

Example 5.11. Consider the hypothesis H3 := {C1 v C2, C1 v B2, C1 v A2}
in Example 5.10. Although H3 is equivalent to the hypothesis H1 := {C1 v C2}
given T , i.e. H3 ∪ T ≡ H1 ∪ T , H3 would have a considerably higher aggregated
dissimilarity than H1, i.e. dsim(H3, T ,C) > dsim(H1, T ,C).

5.2.6 Complexity

While uninformative hypotheses do not bring new knowledge to the ontology,
informative ones do. Yet, some informative hypotheses may bring more new
knowledge than others do. We aim at quantifying how much new knowledge a
hypothesis contains for the given ontology via the measure called complexity .
More complex hypotheses presumably carry more knowledge for the TBox. For
example, the simplest hypotheses are ones entailed by the TBox, i.e. they are
uninformative. Such hypotheses carry no new knowledge for the TBox and hence
are useless. On the other hand, a hypothesis can be overcomplicated. Occam’s
razor, see Section 1.1, suggests that a hypothesis should not be more complex
than necessary. The challenge is to determine when it is exactly as complex as
necessary. Complexity is intended to show which hypotheses are more complex
than others and quantify by how much, thus potentially identifying overcomplic-
ated ones.

In the context of the philosophy of science, a scientific theory explains some
observations, see Section 1.1. Besides explaining observations, a theory can have
implications which reflect its complexity such that a theory having more implica-
tions is more complex. Given an ontology O := T ∪A and a hypothesis H, we can
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consider the TBox T as an existing theory and T ∪H as a new theory. Then, we
can compare the complexity of the new theory T ∪H with the complexity of the
old theory T by quantifying how many new entailments (implications) the new
theory has. In the same way, given another hypothesis H ′, we can compare the
complexity of T ∪H ′ with the complexity of T . After that, we can compare the
quantified complexities of T ∪H and T ∪H ′ to determine which hypothesis, H or
H ′, is more complex with respect to T . As the set of new entailments is infinite
in general, we only consider a certain finite subset of them, see Definition 5.11.

Definition 5.11 (Complexity). Let O := T ∪ A be an ontology, C and R finite
sets of concepts and roles, η := C1 v C2 or η := R1 v R2, where C1, C2 ∈ C,
R1, R2 ∈ R. The complexity of a hypothesis H is defined as follows:

com(H, T ,C,R) := |{η | T ∪H |= η ∧ T 6|= η}|.

Thus, we only count new entailments that are subsumptions between con-
cepts from a fixed set C or between roles from R. Complexity has the following
properties, see Lemma 5.4.

Lemma 5.4. Let O := T ∪ A be an ontology, H and H ′ hypotheses, C and R
finite sets of concepts and roles. Then

(i) H ′ ≡ H implies com(H ′, T ,C,R) = com(H, T ,C,R);

(ii) H ′ BH implies com(H ′, T ,C,R) ≥ com(H, T ,C,R);

(iii) T |= H if and only if com(H, T ,C,R) = 0;

(iv) com(∅, T ,C,R) = 0.

Proof. (i) follows from Definition 5.11 becauseH ′ ≡ H implies T ∪H ′ ≡ T ∪H,
i.e. T ∪H ′ and T ∪H have the same entailments.

(ii) follows from Definition 5.11 because H ′ B H implies H ′ |= H and, hence,
T ∪H ′ |= T ∪H, i.e. all entailments of T ∪H are also entailments of T ∪H ′,
but T ∪H ′ can have more entailments than T ∪H.

(iii) follows from Definition 5.11 because T |= H if and only if the set of new
entailments is empty.



5.3. STATISTICAL QUALITY OF A HYPOTHESIS 89

(iv) follows from (iii).

Informally, Lemma 5.4 states the following properties: (i) equivalent hypo-
theses have equal complexity; (ii) a stronger hypothesis cannot have lower com-
plexity; (iii) the complexity equals zero if and only if a hypothesis is entailed
(uninformative); (iv) the complexity of the empty hypothesis equals zero;

At first, complexity resembles dissimilarity: both show how surprising a hy-
pothesis is with respect to the TBox. However, complexity is applicable to a set
of axioms, while dissimilarity is only to a single axiom. In contrast to dissim-
ilarity, complexity is asymmetric. In addition, the properties of Lemma 5.4 do
not hold for dissimilarity. As a result, they are rather independent measures, see
Example 5.12.

Example 5.12. Let us calculate the complexity of the hypotheses H1 := {α1},
where α1 := C1 v C2, and H2 := {α2}, where α2 := A1 v C2, from Example 5.10
(C is the same, R := ∅) and compare it with the calculated dissimilarity:

com(H1, T ,C,R) = |{C1 v C2, C1 v B2, C1 v A2}| = 3,

com(H2, T ,C,R) = |{C1 v C2, C1 v B2, C1 v A2,

B1 v C2, B1 v B2, B1 v A2,

A1 v C2, A1 v B2, A1 v A2}| = 9.

Thus, H1 has lower complexity than H2 but higher dissimilarity. In addition, con-
sider the hypothesisH3 := {α3}, where α3 := B1 u C2 v A1: com(H3, T ,C,R) =

0 since T |= α3 but

dsim(α3, T ,C) = 1− |{A,A1}|
|{A,B1, A1, C2, B2, A2}|

=
2

3
.

5.3 Statistical Quality of a Hypothesis

Given the inductive nature of the OL problem, statistical quality of a hypothesis
appears to be crucial. However, it is challenging to measure in DLs. One of the
challenges is the standard OWA which permits incomplete information, see Sec-
tion 2.1.5. As discussed in Chapter 3, existing OL approaches tend to disregard
the OWA and make the CWA. Although the CWA greatly simplifies measuring
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statistical quality, it can be misleading. In the following, we propose statist-
ical quality measures that respect the standard DL semantics and its OWA. We
separate measures which are designed for a single axiom, i.e. axiom measures,
from those which are designed for an axiom set (arbitrary TBox), i.e. axiom set
measures.

5.3.1 Axiom Measures

We first introduce basic axiom measures that evaluate different aspects of statist-
ical quality of a TBox axiom which is either a GCI or RI. After that, we introduce
main axiom measures that respect the semantics of DLs better than basic axiom
measures. We define most axiom measures based on the standard measures used
in Association Rule Mining (ARM), see Section 2.2.5, but adjust them specifically
for DLs respecting the semantics and the OWA.

5.3.1.1 Preliminary Definitions

Definitions of statistical quality measures use some auxiliary notions that we
define below. According to the standard OWA of OWL, for each individual
a ∈ in(O) the following cases are possible:

(i) a is an instance of C, i.e. O |= C(a);

(ii) a is an instance of ¬C, i.e. O |= ¬C(a);

(iii) a is neither an instance of C nor ¬C, i.e. O 6|= C(a) and O 6|= ¬C(a).

Within this thesis, it is important to note the difference between the case (ii)
and (iii). While the case (ii) states that an individual is a known instance of ¬C,
the case (iii) states that an individual is neither a known instance of C nor ¬C,
i.e. information is incomplete. Please note that the OWA separates the cases (ii)
and (iii), while the CWA treats the case (iii) as (ii), i.e. what is not known to be
true is assumed to be false, see Section 2.1.5. If quality measures are aimed at
respecting the OWA, they should also separate the cases (ii) and (iii).

In the following, we use the notion of instance function, see Definition 5.12.

Definition 5.12 (Instance function). Let O be an ontology, C a (possibly com-
plex) concept, C̊ ∈ {C, ?C} a concept variable. Then, the instance function is
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defined as follows:

inst(C̊,O) :=

{
{a ∈ in(O) | O |= C(a)} if C̊ = C

{a ∈ in(O) | O 6|= C(a) ∧ O 6|= ¬C(a)} if C̊ = ?C

According to Definition 5.12, inst(C,O) is the set of instances of C, called
positive instances ; inst(¬C,O) is the set of instances of ¬C, called negative in-
stances ; and inst(?C,O) is the set of individuals which are instances of neither
C nor ¬C, called unknown instances. Thus, the instance function performs the
instance retrieval2 of either C, ¬C, or ?C.

As it follows from Definition 5.12, the union of instances of C, ¬C, and ?C

gives the set of all individuals, see Lemma 5.5. In other words, the instances of
?C are all individuals which are instances of neither C nor ¬C.

Lemma 5.5. inst(C,O) ∪ inst(¬C,O) ∪ inst(?C,O) = in(O).

Proof. Immediately follows from Definition 5.12.

The instance function of some complex concepts can be represented via in-
stance functions of simpler concepts, see Lemma 5.6.

Lemma 5.6. Let O be an ontology, C and D are concepts. Then

(i) inst(C uD, O) = inst(C,O) ∩ inst(D,O)

(ii) inst(C tD, O) = inst(C,O) ∪ inst(D,O)

(iii) inst(?(¬C), O) = inst(?C,O)

(iv) inst(?(C tD), O) = inst(?C,O) ∪ inst(?D,O)\(inst(C,O) ∪ inst(D,O))

(v) inst(?(C uD), O) = inst(?C,O) ∪ inst(?D,O)\(inst(¬C,O) ∪ inst(¬D,O))

Proof. (i) inst(C u D, O) = {a ∈ in(O) | O |= (C uD)(a)}
(by Definition 5.12)

= {a ∈ in(O) | O |= C(a) ∧ O |= D(a)}
(since O |= (C uD)(a) if and only if O |= C(a) and O |= D(a))

= {a ∈ in(O) | O |= C(a)} ∩ {a ∈ in(O) | O |= D(a)}

= inst(C,O) ∩ inst(D,O) (by Definition 5.12).

2Instance retrieval is a type of query answering in DLs where a query is specified by a
concept, see Section 2.1.1.
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(ii) is analogous to (i).

(iii) By Definition 5.12 inst(?(¬C), O) = {a ∈ in(O) | O 6|= ¬C(a) ∧ O 6|=
(¬¬C)(a)} = inst(?C, O).

(iv) inst(?(C tD), O) = {a ∈ in(O) | O 6|= (C tD)(a) ∧ O 6|= (¬(C tD))(a)}
(by Definition 5.12)

= {a ∈ in(O) | (O 6|= C(a) ∧ O 6|= D(a)) ∧ O 6|= (¬C u ¬D)(a)}
(since O 6|= (C tD)(a) if and only if O 6|= C(a) and O 6|= D(a))

= {a ∈ in(O) | (O 6|= C(a) ∧ O 6|= D(a)) ∧ (O 6|= ¬C(a) ∨ O 6|= ¬D)(a))}
(since O 6|= (¬C u ¬D)(a) if and only if O 6|= ¬C(a) or O 6|= ¬D(a))

= {a ∈ in(O) | (O 6|= C(a) ∧O 6|= D(a) ∧O 6|= ¬C(a)) ∨ (O 6|= C(a) ∧O 6|=
D(a) ∧ O 6|= ¬D)(a))} (by propositional distribution)

= {a ∈ in(O) | O 6|= C(a)∧O 6|= ¬C(a)∧O 6|= D(a)} ∪ {a ∈ in(O) | O 6|=
D(a) ∧ O 6|= ¬D)(a) ∧ O 6|= C(a)}

= {a ∈ in(O) | O 6|= C(a)∧O 6|= ¬C(a)} ∪ {a ∈ in(O) | O 6|= D(a)∧O 6|=
¬D)(a)} \ ({a ∈ in(O) | O |= C(a)} ∪ {a ∈ in(O) | O |= D(a)})

= inst(?C,O)∪ inst(?D,O)\(inst(C,O)∪ inst(D,O)) (by Definition 5.12).

(v) is analogous to (iv).

In the following, we use the notion of joint probability distribution of concept
variables which is the relative size of the intersection of the instances of the given
concept variables, see Definition 5.13.

Definition 5.13 (Joint probability distribution of concept variables). Given an
ontology O, the joint probability distribution of concept variables C̊1, . . . , C̊n is
defined as follows:

PO(C̊1, . . . , C̊n) :=
1

|in(O)|
|
n⋂
i=1

inst(C̊i,O)|.

The value of the distribution for given values of C̊1, . . . , C̊n is called probability.
As a consequence of Definition 5.13, the following properties hold for any concept,
see Lemma 5.7.

Lemma 5.7. Let C be a concept. The following properties hold for C:
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(i) PO(C) + PO(¬C) + PO(?C) = 1,

(ii) PO(>) = 1, (iii) PO(⊥) = 0.

Proof. The property (i) follows from Definition 5.13 and Lemma 5.5, (ii) and (iii)
from Definition 5.13 and Definition 5.12.

The probability of conjunctions and disjunctions can be written via probabil-
ities of their operands, see Lemma 5.8.

Lemma 5.8. Let O be an ontology, C and D are concepts. Then

(i) PO(C uD) = PO(C,D)

(ii) PO(C tD) = PO(C) + PO(D)−PO(C,D)

Proof. (i) PO(C uD) = |inst(CuD,O)|
|in(O)| (by Definition 5.13)

= |inst(C,O)∩inst(D,O)|
|in(O)| (by Lemma 5.6)

= PO(C,D) (by Definition 5.13)

(ii) PO(C tD) = |inst(CtD,O)|
|in(O)| (by Definition 5.13)

= |inst(C,O)∪inst(D,O)|
|in(O)| (by Lemma 5.6)

= |inst(C,O)|+|inst(D,O)|−|inst(C,O)∩inst(D,O)|
|in(O)|

(since |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2| for any sets S1, S2)

= PO(C) + PO(D)−PO(C,D) (by Definition 5.13)

5.3.1.2 Basic Measures

Let us consider a GCI C v D. The axiom states that all instances of C are also
instances of D. Given an ontology O, we can check how well its data (ABox) sup-
ports this statement. We define 4 basic quality measures, namely basic coverage,
support, contradiction, assumption, using simple counting of relevant instances,
see Definition 5.14. The basic measures are intended to capture the following
notions.

• Coverage shows the area of applicability of an axiom, i.e. the number of
individuals directly involved in the implication.
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• Support shows how many individuals support an axiom. Axioms with higher
support have more evidence for their validity.

• Contradiction shows how many individuals contradict an axiom, i.e. how
many counterexamples it has. As a reminder, given an ontology O, an
individual a ∈ in(O) is called a counterexample for a GCI C v D if O |=
(Cu¬D)(a), see Section 3.2.3. Axioms with higher contradiction have more
evidence of their invalidity.

• Assumption shows how many “guesses” an axiom makes due to the OWA.
Axioms with lower assumption are less suspicious according to Occam’s
razor, see Section 1.1.

Definition 5.14 (Basic measures). Let O be an ontology, α := C v D a GCI.
The basic coverage, support, contradiction, assumption of α are defined, respect-
ively, as follows:

bcov(α,O) := |inst(C, O)|

bsup(α,O) := |inst(C uD, O)|

bcnt(α,O) := |inst(C u ¬D, O)|

basm(α,O) := |inst(C, O) ∩ inst(?D, O)|

In the following, we omit “basic” in the names of the basic measures for the
sake of brevity when it is clear from the context. According to Definition 5.14,
the basic measures count individuals as follows: coverage counts instances of C;
support counts common instances of C and D; contradiction counts instances of
C which are instances of ¬D; assumption counts instances of C which are neither
known instances of D nor ¬D. Hence, coverage is simply the sum of support,
contradiction, and assumption, see Lemma 5.9.

Lemma 5.9. Let O be an ontology, α := C v D a GCI. Then

bsup(α,O) + bcnt(α,O) + basm(α,O) = bcov(α,O).

Proof. bsup(α,O) + bcnt(α,O) + basm(α,O)

= |inst(C u D,O)|+ |inst(C u ¬D,O)|+ |inst(C,O) ∩ inst(?D,O)|
(by Definition 5.14)
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= |inst(C,O)∩inst(D,O)|+|inst(C,O)∩inst(¬D,O)|+|inst(C,O)∩inst(?D,O)|
(by Lemma 5.6)

= |inst(C, O)| (an individual is either D, ¬D, or ?D)
= bcov(α,O) (by Definition 5.14).

Thus, support is presumably a positive measure, i.e. higher values indicate
better quality of a hypothesis, while contradiction and assumption are presum-
ably negative ones, i.e. lower values indicate better quality of a hypothesis. Since,
coverage is the sum of support, contradiction, and assumption, it is neither pos-
itive nor negative. Please note that support is a symmetric measure, i.e. it is the
same for C v D and D v C, while others are not.

Please note that the basic measures only consider the “forward” direction of an
axiom C v D, i.e. how many instances of C are also instances of D. According
to the semantics of DLs, an axiom C v D has also the “backward” direction,
i.e. how many instances of ¬D are also instances of ¬C. In the following, we
introduce axiom measures that take this into account.

It is also worth noticing that the basic measures are based on the instance
function that counts only named individuals. The semantics of DLs allows for
anonymous individuals, i.e. those that are not explicitly named in the ontology.
In some cases, anonymous individuals could be counted that would make the
measures considerably more complex, both conceptually and computationally.
In other cases, it is not even possible to count all anonymous individuals, see
Example 5.13.

Example 5.13. Consider the ontology O := {(∃R.A)(a)}. The concept A has zero
instances in O: |inst(A, O)| = 0. However, there is one element (anonymous
individual) which is A in every model of O. Consider another ontology O′ :=

T ∪A, where T := {A v ∃R.A, A v ≤ 1R−.A} and A := {A(a), (≤ 0R−.A)(a)}.
The concept A has one instance inO′: |inst(A, O′)| = 1. However, in every model
of O′, there are infinitely many elements that belong to A.

While coverage, support, and contradiction have their counterparts in ARM,
assumption does not. We introduce assumption to respect the OWA such that
an axiom, even if it has no counterexamples, can assume many facts that may be
wrong. Example 5.14 illustrates the basic measures.

Example 5.14. Consider the Kinship data shown in Table 5.1 (which is the same as
Table 3.2). It respects the OWA: a question mark “?” shows that it is unknown
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whether an individual is an instance of a concept (indicated by “X”) or it is
not (indicated by a blank space). Consider the axioms α1 := ∃marriedTo.> v
Mother and α2 := ∃hasChild.> vMother. Their basic measures are calculated
as follows:

bsup(α1,O) = |{V ictoria, Penelope}| = 2 bsup(α2,O) = 2

bcnt(α1,O) = |{James, Chris, Arthur}| = 3 bcnt(α2,O) = 2

basm(α1,O) = |{Margaret}| = 1 basm(α2,O) = 0

bcov(α1,O) = 2 + 3 + 1 = 6 bcov(α2,O) = 4

According to the basic measures, α2 has better quality than α1 because its support
is the same but its contradiction and assumption are lower (better).
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Charlotte X ? ? ?
James X X X X
V ictoria X X X X
Chris X X X X

Penelope X X X X
Margaret X ? ? X
Arthur X ? ? X

Table 5.1: Kinship data under OWA

The basic measures can be defined for a RI R v S in the same way as it is
done for a GCI C v D. The only difference is that, instead of returning instances
of a concept C, the instance function would return instances of a role R, i.e.
individual pairs (a, b) which are connected by R according to the ontology O.

The basic measures depend on the number of individuals occurying in an on-
tology. In order to compare quality of axioms with respect to different ontologies,
one can normalise the basic measures to the fixed range [0, 1]. This can be done
simply via dividing their values by the total number of individuals, see Defin-
ition 5.15. Moreover, the normalised basic measures can be given probabilistic
meanings that facilitates their understanding.
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Definition 5.15 (Normalised basic measures). Let O be an ontology, α := C v
D a GCI. The normalised basic coverage, support, contradiction, assumption of
α are defined as follows:

bcov[0,1](α,O) :=
bcov(α,O)

|in(O)|
, bsup[0,1](α,O) :=

bsup(α,O)

|in(O)|
,

bcnt[0,1](α,O) :=
bcnt(α,O)

|in(O)|
, basm[0,1](α,O) :=

basm(α,O)

|in(O)|
.

Normalised coverage is the sum of normalised support, contradiction, and
assumption, see Lemma 5.10.

Lemma 5.10. bcov[0,1](α,O) = bsup[0,1](α,O) + bcnt[0,1](α,O) + basm[0,1](α,O).

Proof. It is a consequence of Definition 5.15 and Lemma 5.9.

The normalised basic measures can be given probabilistic meanings, i.e. be
represented via probabilities, see Lemma 5.11.

Lemma 5.11. Let O be an ontology, α := C v D a GCI. Then

bcov[0,1](α,O) = PO(C), bsup[0,1](α,O) = PO(C,D),

bcnt[0,1](α,O) = PO(C,¬D), basm[0,1](α,O) = PO(C, ?D).

Proof. We only proof for support as others are analogous:
bsup[0,1](α,O) = bsup(α,O)

|in(O)| (by Definition 5.15)
= |inst(CuD,O)|

|in(O)| (by Definition 5.14)
= |inst(C,O)∩inst(D,O)|

|in(O)| (by Lemma 5.6)
= PO(C,D) (by Definition 5.13).

Thus, the normalised basic measures have the following probabilistic mean-
ings: coverage, support, contradiction, assumption are the probabilities of an
individual to be an instance of C, C and D, C and ¬D, C and neither D nor
¬D, respectively.

5.3.1.3 Composite Basic Measures

The basic measures capture basic aspects of statistical quality of an axiom. In
order to capture further aspects of statistical quality, we can benefit from related
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work in ARM, see Section 2.2.5. Indeed, an axiom in DLs is similar to an as-
sociation rule in ARM. Hence, we can attempt to transfer quality notions that
are identified in ARM to DLs via adapting rule quality measures. The challenge
of that adaptation is to respect the OWA of DLs, i.e. to consider the fact that
there is ?C in addition to C and ¬C. Hence, the fact that an individual a is
not an instance of C can be interpreted in two possible ways: a is an instance
of ¬C; a is neither an instance of C nor ¬C, i.e. it belongs to ?C. We translate
rule measures to axiom measures via replacing PD(X1, . . . , Xn) with respective
PO(C̊1, . . . , C̊n) as follows:

• if a rule measure contains no negations, then each occurrence of Xi is re-
placed with Ci;

• if a rule measure contains negations, then each occurrence of Xi is replaced
with Ci, each occurrence of ¬Xi is replaced with ¬Ci in the first translation
and by ?Ci in the second translation.

Thus, if a rule measure contains no negations, it has one translation. If a
rule measure contains negations, it has two translations that interpret negations
differently: the first one as ¬Ci and the second one as ?Ci. Following this pro-
cedure, we translate confidence, lift, and conviction from Section 2.2.5 as follows,
see Definition 5.16. Please notice that, since conviction contains negations, it has
two translations: bconv¬ and bconv?.

Definition 5.16 (Composite basic measures). Let O be an ontology, α := C v D

a GCI. The basic confidence, lift, conviction of α are defined, respectively, as
follows:

bconf(α,O) :=
PO(C,D)

PO(C)
, blift(α,O) :=

PO(C,D)

PO(C) ·PO(D)

bconv¬(α,O) :=
PO(C) ·PO(¬D)

PO(C,¬D)
bconv?(α,O) :=

PO(C) ·PO(?D)

PO(C, ?D)
.

The composite basic measures capture further aspects of statistical quality
of an axiom in DLs and have meanings similar to their counterparts in ARM as
follows.

• Confidence measures the proportion of instances of C which are also in-
stances of D.
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• Lift measures how frequently an individual is an instance of both C and
D in comparison to the case when C and D are statistically independent
events.

• Negated conviction (bconv¬) measures how frequently an individual is an
instance of both C and ¬D when C and ¬D are statistically independent
events in comparison to the actual frequency of being an instance of both
C and ¬D.

• Assumed conviction (bconv?) measures how frequently an individual is an
instance of C and unknown instance of D when C and ?D are statistic-
ally independent events in comparison to the actual frequency of being an
instance of C and unknown instance of D.

Confidence is in the range [0, 1] and, hence, normalised by definition. Lift and
conviction are in the range [0,∞]. All measures are expected to be positive, i.e.
higher values indicate better quality. While lift is symmetric, others are not. The
composite basic measures can be written using basic measures, see Lemma 5.12.

Lemma 5.12. Let O be an ontology, α := C v D a GCI. Then

bconf(α,O) =
bsup(α,O)

bcov(α,O)
, blift(α,O) =

bsup(α,O)

bcov(α,O) ·PO(D)
,

bconv¬(α,O) =
bcov(α,O) ·PO(¬D)

bcnt(α,O)
, bconv?(α,O) =

bcov(α,O) ·PO(?D)

asm(α,O)
.

Proof. We only proof for confidence as others are analogous:
bconf(α,O) = PO(C,D)

PO(C)
(by Definition 5.16)

=
bsup[0,1](α,O)
bcov[0,1](α,O)

(by Lemma 5.11)

= bsup(α,O)
bcov(α,O) (by Definition 5.15).

Other rule measures can be translated from ARM in the same way. For rule
measures with negations other ways of translation are possible, i.e. some ¬Xi

can be replaced with ¬Ci and others by ?Ci. However, this translations may
produce measures which are harder to interpret due to the mixed meanings of
negation. Like the basic measures, the composite basic measures can be defined
for a RI in the same way as they are defined for a GCI. Example 5.15 illustrates
the composite basic measures.
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Example 5.15. Recall Example 5.14 where we use the Kinship data and calculate
the basic measures of two axioms: α1 := ∃marriedTo.> v Mother and α2 :=

∃hasChild.> vMother. We now calculate the composite basic measures of these
axioms using Lemma 5.12. We first calculate required probabilities (M stands
for Mother): PO(M) = 2

7
, PO(¬M) = 3

7
, PO(?M) = 2

7
.

Then, we use the computed probabilities along with the basic measures in
Example 5.14 to calculate the composite measures.

bconf(α1,O) =
2

6
=

1

3
bconf(α2,O) =

2

4
=

1

2

blift(α1,O) =
2

6 · 2
7

=
7

6
blift(α2,O) =

2

4 · 2
7

=
7

4

bconv¬(α1,O) =
6 · 3

7

3
=

6

7
bconv¬(α2,O) =

4 · 3
7

2
=

6

7

bconv?(α1,O) =
6 · 2

7

1
=

12

7
bconv?(α2,O) =

4 · 2
7

0
=∞

Thus, according to the composite basic measures, α2 has better quality than α1,
since all its measures are higher and one is the same. This coincides with the
evaluation by the basic measures.

5.3.1.4 Main Measures

Let us consider α := C v D and α′ := ¬D v ¬C. According to the semantics of
DLs, α ≡ α′, which is commonly called the law of contraposition. The axiom α′

is called the contrapositive of α. Hence, not only does the axiom C v D imply
that all instances of C are instances of D but also that all instances of ¬D are
instances of ¬C. Please note that this is different for association rules in ARM,
see Section 2.2.5. All statistical measures defined so far do not take this fact into
account since they assume that α and α′ are independent and generally return
different values for them.

In order to respect the semantics of DLs better and take the law of contra-
position into account, we define main measures . Let us consider α := C t ¬D v
¬C tD which is yet another syntactic variation of α := C v D, i.e. α ≡ α (this
is easy to show, e.g. via truth tables). In contrast to α, the LHS and RHS of α
can be used to retrieve all instances relevant for quality measuring of both α and
α′. We call α the cover 3 of α, as its LHS and RHS “cover” all relevant instances.

3The cover of an axiom should not be confused with a covering axiom in OWL.
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We refine the basic measures in Definition 5.14 as follows, see Definition 5.17.

Definition 5.17 (Main Measures). Let O be an ontology, α := C v D a GCI,
and α := C t ¬D v ¬C t D the cover of α. The main coverage, support,
contradiction, assumption of α are defined, respectively, as follows:

cov(α,O) := bcov(α,O)

sup(α,O) := bsup(α,O)

cnt(α,O) := bcnt(α,O)

asm(α,O) := basm(α,O)

In the following we omit “main” from the names of the main measures when it
is clear from the context. In comparison to the basic measures, see Definition 5.14,
their respective main measures additionally count individuals relevant for the
contrapositive. They have similar meanings: support is positive; contradiction
and assumption are negative; coverage is neither positive nor negative; support
is symmetric and others are not. Example 5.16 shows how a measure can differ
from its basic measure.

Example 5.16. Recall Example 5.14 where we evaluate the following axiom via
the basic measures:

α2 := ∃hasChild.> vMother.

According to the calculated values, α2 makes no guesses, i.e. its basic assumption
basm(α2,O) = 0. However, its main assumption asm(α2,O) = |{Arthur}| = 1.
Indeed, as Arthur is an instance of ¬Mother, the axiom α2 assumes that Arthur
has no children, i.e. he is an instance of ¬(∃hasChild.>). This is not counted
by the basic assumption of α2. As a result, α2 is actually worse according to its
main assumption than it is according to its basic assumption.

Main coverage, like basic coverage, equals the sum of main support, contra-
diction, and assumption, see Lemma 5.13.

Lemma 5.13. cov(α,O) = sup(α,O) + cnt(α,O) + asm(α,O).

Proof. Follows from Definition 5.17 and Lemma 5.9.

In contrast to the basic measures, the main measures always return the same
values for an axiom and its contrapositive, see Lemma 5.14. In other words, the
main measures respect the semantics of DLs better than the basic measures.
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Lemma 5.14. Let α′ := ¬D v ¬C be the contrapositive of α. Then

cov(α,O) = cov(α′,O) sup(α,O) = sup(α′,O)

cnt(α,O) = cnt(α′,O) asm(α,O) = asm(α′,O)

Proof. Follows from Definition 5.14 because any axiom α and its contrapositive
α′ have the same cover α.

The main measures can be represented via their respective basic measures,
see Lemma 5.15.

Lemma 5.15. Let O be an ontology, α := C v D a GCI, and α′ := ¬D v ¬C
the contrapositive of α. Then

(i) cov(α,O) = bcov(α,O) + bcov(α′,O)− bcnt(α,O)

(ii) sup(α,O) = bsup(α,O) + bsup(α′,O)

(iii) cnt(α,O) = bcnt(α,O) = bcnt(α′,O)

(iv) asm(α,O) = basm(α,O) + basm(α′,O)

Proof. (i) Let α := C t ¬D v ¬C tD be the cover of α. Then

cov(α,O) = bcov(α,O) (by Definition 5.17)

= |inst(C t ¬D,O)| (by Definition 5.14)

= |inst(C,O) ∪ inst(¬D,O)| (by Lemma 5.6)

= |inst(C,O)|+ |inst(¬D,O)| − |inst(C,O) ∩ inst(¬D,O)|
(since |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2| for any sets S1, S2)

= |inst(C,O)|+ |inst(¬D,O)| − |inst(C u ¬D,O)| (by Lemma 5.6)

= bcov(α,O) + bcov(α′,O)− bcnt(α,O) (by Definition 5.14).

(ii) is proved similarly to (i) using (Ct¬D)u(¬CtD) ≡ (CuD)t(¬Cu¬D).

(iii) is proved similarly to (i) using (C t ¬D) u (C u ¬D) ≡ C u ¬D.
By Lemma 5.14 bcnt(α,O) = bcnt(α′,O).

(iv) asm(α,O) = basm(α,O) (by Definition 5.17)

= |inst(C t ¬D,O) ∩ inst(?(¬C tD),O)| (by Definition 5.14)
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= |(inst(C,O) ∪ inst(¬D,O)) ∩ (inst(?(¬C),O)

∪ inst(?D,O) \ inst(¬C,O) \ inst(D,O))| (by Lemma 5.6)

= |(inst(C,O) ∪ inst(¬D,O)) ∩ (inst(?(¬C),O) ∪ inst(?D,O))|
(since instances of ¬C and D are removed by inst(C,O) ∪ inst(¬D,O))

= |(inst(C,O) ∩ inst(?D,O)) ∪ (inst(¬D,O) ∩ inst(?C,O))|
(by propositional distribution)

= |inst(C,O) ∩ inst(?D,O)|+ |inst(¬D,O) ∩ inst(?C,O)|
− |inst(C,O) ∩ inst(?D,O) ∩ inst(¬D,O) ∩ inst(?C,O)|
(since |S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2| for any sets S1, S2)

= |inst(C,O) ∩ inst(?D,O)|+ |inst(¬D,O) ∩ inst(?C,O)|
(since an individual cannot be C and ?C simultaneously)

= basm(α,O) + basm(α′,O) (by Definition 5.14).

Lemma 5.15 implies that it is sufficient to have a function calculating the basic
measures and reuse that function to calculate the main measures. This is one
of the reasons why we have presented and discussed the basic measures above.
Another reason is that, while respecting the semantics better, the main measures
require counting additional instances, i.e. they are more computationally costly.
In Chapter 9, we investigate the difference in computation time between the main
and basic measures.

As a consequence of Lemma 5.15, each main measure is greater than or equal
to its respective basic measure. In other words, the basic measures are approx-
imations from below for their respective main measures, see Lemma 5.16.

Lemma 5.16.

cov(α,O) ≥ bcov(α,O) sup(α,O) ≥ bsup(α,O)

cnt(α,O) = bcnt(α,O) asm(α,O) ≥ basm(α,O)

Proof. Follows from Lemma 5.15 since bcov(α′,O) ≥ bcnt(α′,O) and
bcnt(α′,O) = bcnt(α,O).

Like the basic measures in Definition 5.15, the main measures can be norm-
alised via dividing them by the total number of individuals, see Definition 5.18.
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As for the basic measures, normalising the main measures facilitates their under-
standing and gives them probabilistic meanings.

Definition 5.18 (Normalised main measures). Let O be an ontology, α := C v
D a GCI. The normalised main coverage, support, contradiction, assumption are
defined as follows:

cov[0,1](α,O) :=
cov(α,O)

|in(O)|
, sup[0,1](α,O) :=

sup(α,O)

|in(O)|
,

cnt[0,1](α,O) :=
cnt(α,O)

|in(O)|
, asm[0,1](α,O) :=

asm(α,O)

|in(O)|
.

The normalised main measures are represented via probabilities as follows,
see Lemma 5.17.

Lemma 5.17. Let O be an ontology, α := C v D a GCI, C := C t ¬D,
D := ¬C tD. Then

cov[0,1](α,O) = PO(C) = PO(C) + PO(¬D)−PO(C,¬D)

sup[0,1](α,O) = PO(C,D) = PO(C,D) + PO(¬C,¬D)

cnt[0,1](α,O) = PO(C,¬D) = PO(C,¬D)

asm[0,1](α,O) = PO(C, ?D) = PO(C, ?D) + PO(¬D, ?C)

Proof. Let α′ := ¬D v ¬C, α := C v D. We only show for support as others
are analogous:

sup[0,1](α,O) = sup(α,O)
|in(O)| (by Definition 5.18)

= bsup(α,O)
|in(O)| (by Definition 5.17)

= bsup[0,1](α,O) (by Definition 5.15)
= PO(C,D) (by Lemma 5.11)
= bsup(α,O)+bsup(α′,O)

|in(O)| (by Lemma 5.15)
= bsup[0,1](α,O) + bsup[0,1](α

′,O) (by Definition 5.15)
= PO(C,D) + PO(¬C,¬D) (by Lemma 5.11).

5.3.1.5 Composite Main Measures

Like the basic measures, the composite basic measures in Definition 5.16 can be
refined to respect the semantics of DLs better, i.e. take the law of contraposition
into account. For this purpose, we define composite main measures . Like the
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composite basic measures in comparison to the basic measures, the composite
main measures are aimed at capturing further aspects of statistical quality of an
axiom in comparison to the main measures. As for the main measures, given an
axiom α := C v D, we use its cover α := C t ¬D v ¬C tD. In Definition 5.16,
we simply substitute C for C t ¬D and D for ¬C tD, see Definition 5.19.

Definition 5.19 (Composite main measures). Let O be an ontology, α := C v D

a GCI, α := C v D the cover of α, where C := C t ¬D, D := ¬C t D. The
main confidence, lift, conviction of α are defined, respectively, as follows:

conf(α,O) :=
PO(C,D)

PO(C)
, lift(α,O) :=

PO(C,D)

PO(C) ·PO(D)

conv¬(α,O) :=
PO(C) ·PO(¬D)

PO(C,¬D)
conv?(α,O) :=

PO(C) ·PO(?D)

PO(C, ?D)
.

Like the main measures, the composite main measures respect the law of
contraposition, i.e. treat an axiom α as being equivalent to its contrapositive α′,
see Lemma 5.18.

Lemma 5.18. Let α′ := ¬D v ¬C be the contrapositive of α. Then

conf(α,O) = conf(α′,O) lift(α,O) = lift(α′,O)

conv¬(α,O) = conv¬(α′,O) conv?(α,O) = conv?(α′,O)

Proof. Follows from Definition 5.19 because any axiom α and its contrapositive
α′ have the same cover α.

Like the composite basic measures, the composite main measures are repres-
entable via the main measures and, hence, via the basic measures, see Lemma 5.19.

Lemma 5.19. Let O be an ontology, α := C v D a GCI. Then

(i) conf(α,O) =
sup(α,O)

cov(α,O)
, (ii) lift(α,O) =

sup(α,O)

cov(α,O) ·PO(D)
,

(iii) conv¬(α,O) = cov[0,1](α,O), (iv) conv?(α,O) =
cov(α,O) ·PO(?D)

asm(α,O)
.

Proof. (i) conf(α,O) = PO(C,D)

PO(C)
(by Definition 5.19)

=
sup[0,1](α,O)
cov[0,1](α,O)

(by Lemma 5.17)
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= sup(α,O)
cov(α,O) (by Definition 5.18)

(ii) is analogous to (i).

(iii) conv¬(α,O) = PO(C)·PO(¬D)

PO(C,¬D)
(by Definition 5.19)

= PO(C)·PO(¬D)
PO(C,¬D)

(by Lemma 5.17)

= PO(C)·PO(Cu¬D)
PO(C,¬D)

(by substituting D with ¬C tD)

= PO(C)·PO(C,¬D)
PO(C,¬D)

(by Lemma 5.8)

= PO(C)

= cov[0,1](α,O) (by Lemma 5.17)

(iv) is analogous to (i).

Please notice that the results of Lemma 5.19 are structurally similar to the
results of Lemma 5.12, excluding the case (iii). Using Lemma 5.17, the composite
main measures can also be written via the probabilities of C and D instead of C
and D.

While the main measures and the composite main measures take the law
of contraposition into account, they do not respect other consequences of the
semantics of DLs. More specifically, they do not guarantee to return the same
value for all semantically equivalent axioms, see Example 5.17.

Example 5.17. Consider the axioms α1 := A u B v ⊥ and α2 := A v ¬B. They
are equivalent, i.e. α1 ≡ α2. The covers of α1 and α2 are, respectively, as follows:

α1 := > v ¬A t ¬B

α2 := A tB v ¬A t ¬B

Please notice that they are syntactically different, i.e. α1 6= α2, while equivalent,
i.e. α1 ≡ α2, since α1 ≡ α2. In particular, their LHSs, i.e. > and A t B,
differ both syntactically and semantically. Consequently, they can have different
instances that would result in different values for main measures, e.g. coverage,
confidence, lift. For example, consider the ontology O := {A(a),¬B(a), C(b)}
(the TBox is empty).
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5.3.2 Axiom Set Measures

The axiom measures defined above are rather simple: their calculation only re-
quires instance retrieval. However, they are not semantically faithful : they do
not return the same value for all logically equivalent axioms, i.e. α ≡ α′ does
not imply q(α,O) = q(α′,O), where q is an axiom measure. For example, this
happens for the basic measures if α = C v D and α′ = ¬D v ¬C. While the
main measures take this case into account, they are still not semantically faithful,
see Example 5.17. Please note that the latter rather ascertains a general prop-
erty of the aforementioned measures and does not imply that they are useless.
They may still capture useful quality aspects that are hard to quantify in a fully
semantically faithfull way. In fact, as our case study in Chapter 9 shows, these
measures turn out to be crucial.

The axiom measures implicitly make the UNA, see Section 2.1.6, since they
assume that all individuals are different while counting instances. This can be
fixed by modifying the instance function, see Definition 5.12, such that it checks
equality of individuals pairwise and counts equal individuals as one. However,
this modification makes quality measuring computationally harder.

In addition, the axiom measures are only applicable to an axiom, but not to
a set of axioms, i.e. an arbitrary hypothesis. At first, this seems easy to fix.
For each axiom measure q, a respective axiom set measure q′ can be defined as
follows:

q′(H,O) :=
∑
α∈H

q(α,O).

However, q′ is not semantically faithful because axioms are not independent
within the set and can interact with each other, see Example 5.18. In the fol-
lowing, we give more examples of complex interactions within an axiom set that
influence its quality.

Example 5.18. Consider the hypotheses H := {A v B, B v C, A v C} and
H ′ := {A v B, B v C} which are equivalent, i.e. H ′ ≡ H, but q′(H,O) 6=
q′(H ′,O) in general. As a corner case, one can imagine a hypothesis H that
consists of n syntactic variations of the same axiom α: its quality q′(H,O) =

n · q(α,O) is deceptively high.

Preserving quality under equivalence, i.e. semantic faithfulness, is a good
property for a quality measure because it ensures that all syntactic variations of
a hypothesis are evaluated equally. In other words, no syntactic variation can be



108 CHAPTER 5. DEFINING HYPOTHESIS QUALITY MEASURES

evaluated higher than others and, consequently, perturb the hypothesis ordering.
This may hide other interesting hypotheses.

We aim at defining semantically faithful measures for an axiom set (and hence
for an axiom). In the following, we introduce two measures: fitness and brave-
ness. Intuitively, fitness is similar to support: it accounts for the number of
“facts” supporting the hypothesis. Braveness resembles assumption: it counts the
number of “guesses” made by the hypothesis in the ABox due to the OWA.

5.3.2.1 Preliminary Definitions

To define fitness and braveness, we use some auxiliary notions: ontology projec-
tion, hypothesis assumption set, and ABox description length. These are defined
below.

Ontology projection In order to formalise fitness, we need to specify which
“facts” can be counted as supporting ones for a hypothesis. In DLs, besides
explicit facts (ABox assertions), there are infinitely many implicit facts. Since
we are unable to consider all of them, some focus is necessary. Such focus is
provided by concepts C and roles R of interest which an ontology is “projected”
to, see Definition 5.20.

Definition 5.20 (Ontology projection). The projection π(O,C,R) of an ontology
O to concepts C and roles R is defined as follows:

πC(O,C) := {C(a) | O |= C(a) ∧ C ∈ C¬ ∧ a ∈ in(O)}

πR(O,R) := {R(a, b) | O |= R(a, b) ∧ R ∈ R ∧ a, b ∈ in(O)}

π(O,C,R) := πC(O,C) ∪ πR(O,R)

where C¬ := {neg(C) | C ∈ C}; neg(C) := D if there is D such that C = ¬D
and neg(C) := ¬C otherwise.

Thus, an ontology projection consists of (entailed) concept assertions over C¬,
which is C closed under negation, and role assertions over R. It is essentially a
fully materialised ABox with respect to C¬ and R, i.e. all implicit assertions
of C¬ and R in O are made explicit. Given concepts C and roles R, equivalent
ontologies have the same projections, see Lemma 5.20.
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Lemma 5.20. Let O and O′ be ontologies, C concepts, R roles. Then, O ≡ O′

implies π(O,C,R) = π(O′,C,R).

Proof. Follows from Definition 5.20 because equivalent ontologies have the same
models and, hence, the same entailments.

Since a projection is an ABox, it can be illustrated as a graph, see Ex-
ample 5.19.

Example 5.19. Consider the ontology O := Kinship from Example 2.3. Concepts
C and roles R are as follows (F , M , c, m stand for Father, Mother, hasChild,
marriedTo, respectively):

C := {F, M, ∃c.>}, R := {m, c}.

The projection of O to C and R is shown in Figure 5.1. Please compare
Figure 5.1 with Figure 2.1 and notice that, while some assertions are ignored,
e.g. the assertions of Human and hasParent, others are made explicit, e.g. the
assertions of ∃c.> and c. The assertions of ∃c.> encode information of having a
c relation which is lifted from the instance to concept level.

Charlotte {¬F}

V ictoria {M ;¬F ;∃c.>}James{F ;¬M ;∃c.>}

Penelope {M ;¬F ;∃c.>}Chris{F ;¬M ; ∃c.>}

Arthur {¬M}Margaret{¬F}

c

m

c
m

c

m

c

c

m

c

m

m

Figure 5.1: Projection for Example 5.19
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Hypothesis Assumption Set Similarly to fitness, in order to formalise brave-
ness, we first need to specify what “guesses” a hypothesis can make. Similarly to
data projection, those “guesses” are assertions and there are infinitely many of
them. Therefore, a focus is required which is again given by concepts C and roles
R, see Definition 5.21.

Definition 5.21 (Hypothesis assumption set). The assumption set ψ(H,O,C,R)

of a consistent hypothesis H in an ontology O given concepts C and roles R is
defined as follows:

ψ(H,O,C,R) := π(O ∪H,C,R) \ π(O,C,R).

Thus, an assumption set4 is the difference between the projection of O ∪ H
and the projection of O. In other words, it is a set of concept assertions over C¬

and role assertions over R which an ontology alone does not entail but, together
with a hypothesis, does entail. Consequently, an assumption set never overlaps
with a projection. Lemma 5.21 states the properties of an assumption set.

Lemma 5.21. Let O be an ontology, H a hypothesis, C concepts, R roles. Then

(i) ψ(H,O,C,R) ∩ π(O,C,R) = ∅;

(ii) O |= H implies ψ(H,O,C,R) = ∅;

(iii) ψ(∅,O,C,R) = ∅.

Proof. (i) follows immediately from Definition 5.21.

(ii) O |= H implies O ∪ H ≡ O. Hence π(O ∪ H,C,R) = π(O,C,R) by
Lemma 5.20. Therefore ψ(H,O,C,R) = ∅ by Definition 5.21.

(iii) follows from (ii).

Please notice that an assumption set is only defined for a hypothesis consistent
with the ontology, i.e. O ∪ H is consistent, since otherwise entailments are not
useful.5 Since an assumption set is an ABox, it can be illustrated as a graph, see
Example 5.20.

4The assumption set of a hypothesis should not be confused with its measured assumption
even though these capture similar notions. We describe the relationship between them in the
following.

5An inconsistent ontology entails everything.
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Example 5.20. Consider the ontology O := Kinship, sets C and R from Ex-
ample 5.19, and the hypothesis

H := {¬F vM, M v ∃c.>},

where F , M , c stand for Father, Mother, hasChild. The assumption set of H
is as follows:

ψ(H,O,C,R) = {M(Charlotte),M(Margaret), F (Arthur),

(∃c.>)(Charlotte), (∃c.>)(Margaret)}.

It is illustrated in Figure 5.2. Charlotte and Margaret are assumed to be in-
stances of M , since they are instances of ¬F . In addition, they are assumed to
have some children, i.e. to be instances of ∃c.>, since they are assumed instances
of M . Please notice that, due to contraposition, Arthur is assumed to be an
instance of F since he is an instance of ¬M .

Charlotte {M ;∃c.>}

Arthur {F}Margaret{M ;∃c.>}

Figure 5.2: Assumption set for Example 5.20

Role assertions (edges) can be assumed in the same way due to RIs. For
example, imagine if the relation c between Chris and Arthur is unknown and
consider the hypothesis H ′ := {m ◦ c v c} (m stands for marriedTo) that states
“if x is married to y and y has a child z, then x has a child z”. Then, the relation
c between Chris and Arthur would be assumed by H ′.

An assumption set resembles the main assumption measure in Definition 5.17.
One might expect that the size of the assumption set of an axiom α equals
its main assumption, i.e. |ψ({α},O,C,R)| = asm(α,O). However, this is not
true because, in contrast to the main assumption measure, the assumption set is
semantically faithful, i.e. the same for all equivalent hypotheses, see Lemma 5.22.

Lemma 5.22. Let O be an ontology; C and R concepts and roles, respectively;
H and H ′ hypotheses consistent with O. Then, H ≡ H ′ implies ψ(H,O,C,R) =

ψ(H ′,O,C,R).
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Proof. By Definition 5.21 ψ(H,O,C,R) := π(O ∪H,C,R)− π(O,C,R). If H ≡
H ′, then O ∪ H ≡ O ∪ H ′. Hence π(O ∪ H,C,R) = π(O ∪ H ′,C,R) by
Lemma 5.20, ψ(H,O,C,R) = ψ(H ′,O,C,R) by Definition 5.21.

Another difference between the size of an assumption set and the main as-
sumption measure is that ψ depends on O,C,R. More specifically, an axiom
α := C v D can assume more assertions of C (R) due to the TBox of O, see
Example 5.21.

Example 5.21. Consider the ontology O := {B v C, A(a), B(a), A(b)}, concepts
C := {A,B,C}, roles R := ∅, and axiom α := A v B. Its main assumption
is asm(α,O) = |{b}| = 1, while its assumption set size is |ψ({α},O,C,R)| =

|{C(a), B(b), C(b)}| = 3.

Description Length In order to evaluate the statistical quality of a set of ax-
ioms, we use the idea that axioms can encode regularities in the data. Those
regularities can be used to “compress” the data, i.e. to present it in a shorter
way. This is the fundamental principle of the minimum description length induc-
tion [CW94, VL08] in ML. According to it, the better a hypothesis fits the data,
the shorter description of the data it provides. In other words, facts that become
redundant in the presence of a hypothesis support it. Thus, we need to measure
redundancy of the data (ABox) with respect to a hypothesis in DLs.

A standard way of measuring description length in ML is using syntactic
measures. However, syntactic measures do not respect interactions between ax-
ioms within the set. Therefore, we introduce a semantic measure of description
length,6 see Definition 5.22.

Definition 5.22 (Description length). The description length of an ABox B with
respect to an ontology O = T ∪ A is defined as follows:

dlen(B,O) := min{`(B′) | B′ ∪ O ≡ B ∪O}.

Please notice that an ABox B is different from an ABox A of O. An ontology
O can contain a TBox only, i.e. O = T , and can be empty, i.e. O = ∅. Informally,
the description length of B with respect to O is the length of a minimal ABox B′

which, if paired with O, is equivalent to B paired with O. In other words, it is

6Description length of an ABox should not be confused with syntactic length of a hypothesis.
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the length of a non-redundant counterpart of B given O. Hence, the description
length can be used to measure redundancy of any ABox B given an ontology O
as follows: `(B)− dlen(B,O). In general, a minimal ABox B′ is not unique and
not a subset of B, see Example 5.22.

Example 5.22. Consider the ABox B in Figure 5.1 and the TBox T of Kinship,
see Example 2.3. A minimal ABox B′ for B with respect to T (not the full onto-
logy) is shown in Figure 5.3 (F , M , c, m stand for Father, Mother, hasChild,
marriedTo, respectively). Please notice that some information becomes redund-
ant and can be discarded in the presence of the TBox: ¬M because T |= F v ¬M ,
¬F because T |= M |= ¬F , m because T |= m v m− (a symmetric role). The
size of B′ is `(B′) = 20, hence dlen(B, T ) = 20. A minimal ABox is not unique:
each hasChild (c) relation can be replaced with the hasParent (p) relation going
in the opposite direction because T |= c v p−.

Charlotte {¬F}

V ictoria {M ;∃c.>}James{F ;∃c.>}

Penelope {M ; ∃c.>}Chris{F ; ∃c.>}

Arthur {¬M}Margaret{¬F}

c

m

c

c

m

c

c

c

m

Figure 5.3: Minimal ABox for Example 5.22

Description length has the following properties: (i) description length is the
same with respect to all equivalent ontologies; (ii) equivalent ABoxes have the
same description length; (iii) the description length given a stronger ontology
cannot be lower than the one given a weaker ontology, see Lemma 5.23.

Lemma 5.23. Let O, O1, O2 be ontologies, B, B1, B2 ABoxes. Then
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(i) O1 ≡ O2 implies dlen(B,O1) = dlen(B,O1);

(ii) B1 ≡ B2 implies dlen(B1,O) = dlen(B2,O);

(iii) O1 BO2 implies dlen(B,O1) ≤ dlen(B,O2).

Proof. (i) dlen(B,O1) = min{`(B′) | B′ ∪ O1 ≡ B ∪O1}
(by Definition 5.22)

= min{`(B′) | B′ ∪ O2 ≡ B ∪O2}
(since O1 ≡ O2 implies B ∪ O1 ≡ B ∪O2)

= dlen(B,O2) (by Definition 5.22).

(ii) (by contradiction) Let B′1 and B′2 be minimal ABoxes for B1 and B2, respect-
ively, given O. Assume dlen(B1,O) 6= dlen(B2,O). Hence `(B′1) 6= `(B′2)
by Definition 5.22. If `(B′1) < `(B′2), then B′2 is not minimal for B2 because
B′1 ∪ O ≡ B2 ∪ O (by Definition 5.22 and B1 ≡ B2). Hence `(B′1) > `(B′2).
However, `(B′1) > `(B′2) cannot happen which can be shown by analogy with
`(B′1) < `(B′2). Therefore `(B′1) = `(B′2). Hence dlen(B1,O) = dlen(B2,O)

by Definition 5.22.

(iii) (by contradiction) Let B1 and B2 be minimal ABoxes for B given O1 and
O2, respectively. Assume dlen(B,O1) > dlen(B,O1). Hence `(B1) > `(B2)
by Definition 5.22. Then

B1 ∪ O1 ≡ B ∪O1 (by Definition 5.22)

B1 ∪ O1 ∪ O2 ≡ B ∪O1 ∪ O2 (by the semantics of DLs)

B1 ∪ O1 ∪ O2 ≡ B2 ∪ O1 ∪ O2 (since B2 ∪ O2 ≡ B ∪O2 by Definition 5.22)

B1 ∪O1 ≡ B2 ∪O1 (since O1 |= O2 by Definition 5.9 and O1 ∪O2 ≡ O1 by
the semantics of DLs)

B ∪ O1 ≡ B2 ∪ O1 (since B1 ∪ O1 ≡ B ∪O1 by Definition 5.22)

Hence, B1 is not minimal for B given O1. Therefore `(B1) ≤ `(B2). Hence
dlen(B,O1) ≤ dlen(B,O2).

Thus, description length is a semantically faithful measure. Moreover, de-
scription length does not make the UNA since it measures the size of a minimal
ABox: if some individuals are known to be equal, their assertions are minimised.
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5.3.2.2 Fitness and Braveness

We use the ontology projection to count facts supporting a hypothesis, i.e. to
measure its fitness, and the assumption set of the hypothesis to count its guesses,
i.e. to measure its braveness. In this context the description length provides a
semantically faithful way of counting. The fitness and braveness of a hypothesis
are defined as follows, see Definition 5.23.

Definition 5.23 (Fitness and braveness). Let O := T ∪ A be an ontology,
C concepts, R roles, H a hypothesis consistent with O, π := π(O,C,R) the
projection of O, ψH := ψ(H,O,C,R) the assumption set of H. Then, the fitness
and braveness of H are defined as follows:

fit(H,O,C,R) := dlen(π, T )− dlen(π, T ∪H)

bra(H,O,C,R) := dlen(ψH ,O)

According to Definition 5.23, the fitness of a hypothesis measures how much
the projection shrinks in the presence of the hypothesis. The more it shrinks,
the more redundant the data becomes and the better the hypothesis “explains”
it. Thus, fitness shows the explanatory power of a hypothesis. While measuring
how well a hypothesis fits known facts (the projection), fitness assumes that the
hypothesis is correct on unknown facts, i.e. its guesses are right.

The braveness of a hypothesis is the number of its “native” guesses which
are counted by the description length of the hypothesis assumption set. Indeed,
as Example 5.21 shows, some guesses of a hypothesis can be the result of its
interaction with the TBox. Therefore, we should minimise an assumption set
with respect to the ontology.

Intuitively, fitness resembles support and braveness resembles assumption,
see Definition 5.17. Nonetheless, there are noticeable differences. In contrast to
the axiom measures, fitness and braveness count the length of assertions, while
support and assumption count individuals. In addition, fitness is asymmetric, i.e.
swapping the LHS and RHS of an axiom can change the value, while support is
symmetric. In contrast to support and assumption, fitness and braveness avoid
the UNA since they are based on description length avoiding it.

Although fitness seems to be similar to support, it has a different meaning:
fitness evaluates how well a hypothesis explains the ABox given the TBox. More
specifically, the TBox can enforce a hypothesis such that the latter explains more
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facts and, hence, has higher fitness together with the TBox than alone. The
TBox can also explain many facts by itself and make a hypothesis less supported.
In other words, fitness evaluates how many facts a hypothesis together with the
TBox can explain that the TBox alone cannot explain.

Another difference with the axiom measures is that fitness and braveness
are only defined for a hypothesis consistent with the ontology. While this is
unavoidable for assumption, it can be relaxed for fitness: a hypothesis H should
only be consistent with π ∪ T , i.e. the projection along with the TBox instead
of the ontology. It is a relaxation because π ∪ T can be weaker than O, since
π is determined by C and R. Therefore, H can be consistent with π ∪ T and
inconsistent with O (but not vice versa).

5.3.2.3 Examples of Fitness and Braveness

Let us illustrate fitness and braveness by examples comparing them with support
and assumption. Example 5.23 shows how these measures are calculated for the
hypothesis in Example 5.20 given the ontology Kinship.

Example 5.23. Consider the projection π of the ontology O := Kinship, see Ex-
ample 5.19. Its description length with respect to the TBox T ofO is dlen(π, T ) =

20, see Example 5.22. Consider the hypothesis in Example 5.20 (F , M , c stand
for Father, Mother, hasChild, respectively):

H := {¬F vM, M v ∃c.>}.

The description length of π with respect to T ∪ H is dlen(π, T ∪ H) = 18

because assertions of ∃c.> for Penelope and V ictoria become redundant as they
are instances of M . A possible minimal ABox is the one shown in Figure 5.3,
where assertions of ∃c.> are discarded for Penelope and V ictoria. Thus

fit(H,O,C,R) = dlen(π, T )− dlen(π, T ∪H) = 2.

Please notice that the axiom α1 := ¬F v M does not make any assertions
redundant: assertions of ¬F are redundant due to T since T |= M v ¬F . This
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is different for support:

fit({α1},O,C,R) = 0

sup(α1,O) = |inst(¬F uM,O)|+ |inst(F u ¬M,O)| = 4

Thus, the support of α1 is higher than its fitness. The axiom α2 := M v ∃c.>
has the same fitness and support:

fit({α2},O,C,R) = 2

sup(α2,O) = |inst(M u ∃c.>,O)| = 2

The assumption set ψH of H is listed in Example 5.20. Its description length
dlen(ψH ,O) = 5 as O does not force H to make additional guesses (see Ex-
ample 5.21 where it does). Thus

bra(H,O,C,R) = dlen(ψH ,O) = 5.

The braveness of α1 and α2 coincides with the assumption of α1 and α2,
respectively. However, the sum of the assumptions of α1 and α2 is lower than the
braveness of H = {α1, α2} because guesses of α1 cause additional guesses of α2:

bra({α1},O,C,R) = 3, asm(α1,O) = 3,

bra({α2},O,C,R) = 0, asm(α2,O) = 0,

asm(α1,O) + asm(α2,O) < bra({α1, α2},O,C,R)

Thus, axioms within the set can make more guesses than they make separately.

Example 5.24 shows other differences between fitness and support.

Example 5.24. Consider the ontology O := Kinship, see Example 2.3. Suppose
we are only interested in evaluating hypotheses consisting of GCIs, i.e. we set
R := ∅, and the following concepts C are of interest to us (H, M , p stand for
Human, Man, hasParent, respectively):

C := {H,∃p.M,∃p.H}.

Since R := ∅,7 the projection π of O to C can be illustrated as a table, see
7We would normally include p in R as it occurs in C but do not do so for the sake of brevity.
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Table 5.2. A question mark “?” shows that it is unknown whether an individual
is an instance of a concept (indicated by “X”) or it is not (indicated by a blank
space). It is the same notation as we used above, e.g. in Table 5.1.

H ∃p.M ∃p.H
Charlotte X X X
James X ? ?
V ictoria X X X
Chris X ? ?

Penelope X ? ?
Margaret X ? ?
Arthur X X X

Table 5.2: Kinship projection for Example 5.24

Consider the axiom α := H v ∃p.H stating that “every human has a parent
who is a human”. Let us calculate the fitness and support for α. Please recall
that T |= M v H. Hence T |= ∃p.M v ∃p.H. Therefore dlen(π, T ) = 10 and
dlen(π, T ∪ {α}) = 10 because all assertions of ∃p.H are redundant due to T .
Consequently, the hypothesis {α} does not explain any additional facts, while
the axiom α does have supporting instances. The fitness and support of α are as
follows:

fit({α},O,C,R) = dlen(π, T )− dlen(π, T ∪ {α}) = 0

sup(α,O) = |inst(H u ∃p.H, O)| = 3

Thus, fitness shows how many additional facts a hypothesis explains given the
TBox, while support simply counts supporting instances. Since α explains the
same facts as T does, the fitness of α equals zero, while its support equals 3.

5.3.2.4 Properties of Fitness and Braveness

In contrast to axiom measures, fitness and braveness are semantically faithful,
i.e. return the same value for all equivalent hypotheses. In other words, fitness
and braveness are preserved under equivalence, see Theorem 5.1.

Theorem 5.1 (Fitness and braveness preserved under equivalence). Let O be an
ontology, C concepts, R roles, H and H ′ hypotheses. Then, H ≡ H ′ implies

(i) fit(H,O,C,R) = fit(H ′,O,C,R) and
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(ii) bra(H,O,C,R) = bra(H ′,O,C,R).

Proof. Let π := π(O,C,R), ψH := ψ(H,O,C,R), ψH′ := ψ(H ′,O,C,R).

(i) fit(H,O,C,R) = dlen(π, T )− dlen(π, T ∪H) (by Definition 5.23)

= dlen(π, T )− dlen(π, T ∪H ′)
(by Lemma 5.23 because H ≡ H ′ implies T ∪H ≡ T ∪H ′)

= fit(H ′,O,C,R) (by Definition 5.23).

(ii) bra(H,O,C,R) = dlen(ψH ,O) (by Definition 5.23)

= dlen(ψH′ ,O) (by Lemma 5.22)

= bra(H ′,O,C,R) (by Definition 5.23).

Theorem 5.1 guarantees that all syntactic variations of a hypothesis are eval-
uated equally by fitness and braveness, i.e. no syntactic variation is evaluated
higher than others. This implies that a redundant hypothesis always has the
same quality as its non-redundant counterpart.

According to Definition 5.23, fitness and braveness are based on counting
new entailments in a projection and assumption set, respectively. In this sense,
they resemble complexity, even though the latter is a measure of logical quality,
see Definition 5.11. Moreover, despite the fact that fitness and braveness are
measures of statistical quality, they have similar logical properties as complexity
has, see Lemma 5.24.

Lemma 5.24. Let O be an ontology, C concepts, R roles, H and H ′ hypotheses.

(i) H ′ BH implies fit(H ′,O,C,R) ≥ fit(H,O,C,R) and bra(H ′,O,C,R) ≥
bra(H,O,C,R);

(ii) O |= H implies fit(H,O,C,R) = 0 and bra(H,O,C,R) = 0;

(iii) fit(∅,O,C,R) = 0, bra(∅,O,C,R) = 0;

(iv) fit(H,O,C,R) ≥ 0, bra(H,O,C,R) ≥ 0.

Proof. (i) For fitness:

fit(H ′,O,C,R)− fit(H,O,C,R)
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= dlen(π, T )− dlen(π, T ∪H ′)− dlen(π, T ) + dlen(π, T ∪H)

(by Definition 5.23)

= dlen(π, T ∪H)− dlen(π, T ∪H ′)

≥ 0 (by Lemma 5.23 because H ′ B H implies either T ∪ H ′ B T ∪ H or
T ∪H ′ ≡ T ∪H by Lemma 5.3).

For braveness:

bra(H ′,O,C,R)− bra(H,O,C,R)

= dlen(ψH′ ,O)− dlen(ψH ,O) (by Definition 5.23)

≥ 0 (since H ′ BH implies ψH ⊆ ψH′ by Definition 5.21).

(ii) For fitness:

fit(H,O,C,R) = dlen(π, T )− dlen(π, T ∪H) (by Definition 5.23)

= dlen(π, T )− dlen(π, T ) (since O |= H implies T ∪H ≡ T )

= 0.

For braveness:

bra(H,O,C,R) = dlen(ψH ,O) (by Definition 5.23)

= dlen(∅,O) (by Lemma 5.21)

= 0 (by Definition 5.22).

(iii) follows from (ii) because any O |= ∅.

(iv) follows from (i) and (ii) because either H B ∅ or H ≡ ∅.

Informally, fitness and braveness have the following properties according to
Lemma 5.24: (i) a stronger hypothesis cannot have lower fitness or braveness;
(ii) the fitness and braveness of an entailed hypothesis equal zero; (iii) fitness and
braveness of the empty hypothesis equal zero; (iv) fitness and braveness cannot be
below zero. These properties can be explained by the monotonicity8 of DLs. For
example, (iv) holds because adding a hypothesis to the ontology cannot remove
its entailments, i.e. this either causes new entailments or makes no changes.

As fitness and braveness capture similar quality characteristics as support and
assumption, respectively, it is worthwhile to investigate whether there is a formal

8A logic is monotonic if adding a formula to a theory never removes its consequences.
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relationship between them. Since support and assumption belong to the axiom
measures, we can only compare them with fitness and braveness of a single-axiom
hypothesis, see Lemma 5.25.

Lemma 5.25. Let O := A ∪ T be an EL ontology, C := {A,B} concepts, R
roles, α := A v B, where A,B ∈ NC. Then

(i) fit({α},O,C,R) ≤ sup(α,O).

(ii) bra({α},O,C,R) ≤ asm(α,O).

Proof. (i) sup(α,O) = bsup(α,O) + bsup(α′,O) (by Lemma 5.15)

= |inst(A uB,O)|+ |inst(¬A u ¬B,O)|
(by Definition 5.14 since α′ := ¬D v ¬C)

= |inst(A uB,O)| (since O is in EL and A,B ∈ NC).

fit({α},O,C,R) = dlen(π, T )− dlen(π, T ∪ {α})
(by Definition 5.23)

= `(π1) − `(π2) (by Definition 5.22), where π1 and π2 are the minimal
ABoxes of π given T and T ∪ {α}, respectively.

By Definition 5.20, besides role assertions of R, the projection π only con-
tains concept assertions of A and B. Consider an individual a ∈ in(O).

– π1 differs from π2 for a if and only if A(a) ∈ π1 and B(a) ∈ π1 (since
α := A v B).

– A(a) ∈ π1 and B(a) ∈ π1 if and only if A(a) ∈ π2 and B(a) /∈ π2 (since
π2 is minimal).

– A(a) ∈ π1 and B(a) ∈ π1 implies O |= A(a) and O |= B(a) (by
Definition 5.20 and Definition 5.22). The reverse is not true, e.g. if
T |= A v B.

– A(a) ∈ π2 and B(a) /∈ π2 implies O |= A(a) and O |= B(a), i.e.
a ∈ inst(A uB,O).

– `(π1) − `(π2) ≤ |inst(A u B,O)| (since π1 differs from π2 by at most
one assertion per instance of A uB).

– fit({α},O,C,R) ≤ sup(α,O).
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(ii) asm(α,O) = basm(α,O) + basm(α′,O) (by Lemma 5.15)

= |inst(A, O) ∩ inst(?B, O)|+ |inst(¬B, O) ∩ inst(?A, O)|
(by Definition 5.14 since α′ := ¬D v ¬C)

= |inst(A, O) ∩ inst(?B, O)| (since O is in EL and A,B ∈ NC).

bra({α},O,C,R) = dlen(ψα,O) (by Definition 5.23).

By Definition 5.21 the assumption set ψα can only contain concept asser-
tions of B. Consider an individual a ∈ in(O).

– B(a) ∈ ψα if and only if O ∪ {α} |= B(a) and O 6|= B(a) (by Defini-
tion 5.21).

– O∪{α} |= B(a) and O 6|= B(a) if and only if O |= A(a) and O 6|= B(a)

(since α := A v B).

– B(a) ∈ ψα if and only if a ∈ inst(A,O) and a ∈ inst(?B,O) (since O
is in EL).

– |ψα| = |inst(A, O) ∩ inst(?B, O)|.

– dlen(ψα,O) ≤ |inst(A, O)∩inst(?B, O)| (since dlen(ψα,O) ≤ `(ψα) =

|ψα| and some individuals can be equal).

– bra({α},O,C,R) ≤ asm(α,O).

Lemma 5.25 states that support and assumption are upper bounds for fitness
and braveness, respectively, if certain conditions hold: an ontology is in EL,
a hypothesis is an atomic subsumption, concepts of interest are its signature.
These restrictions are necessary because of the differences between the respective
measures.

To be more specific, fitness and braveness are based on measuring the length
of ABoxes, while support and assumption count individuals. For example, if an
ontology is in ALC, the projection and assumption set can contain assertions
of negated concepts which are longer than assertions of atomic concepts, e.g.
`(¬A(a)) = 2 and `(A(a)) = 1. In contrast, an individual a is counted just once
as an instance of ¬A. A hypothesis is restricted to be an atomic subsumption (not
a GCI) for the same reason. Concepts of interest only contain the signature of an
atomic subsumption because additional concepts can bring additional supporting
facts for fitness.
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Roles R are not restricted since they cannot affect the result. Lemma 5.25
can be stated for an atomic role inclusion α := R v S, where R, S ∈ NR, and
proved analogously. The only difference is that concepts C should be restricted,
e.g. C := ∅, because they can affect the result, e.g. consider C := {∃R.>, ∃S.>}
that increases the fitness of α.

5.4 Summary

We have defined hypothesis quality measures for all quality dimensions, i.e. read-
ability, logical quality, and statistical quality. The readability measures are length
and role depth. These are the standard measures used in the DL literature. We
have straightforwardly extended them to some complex concepts and roles.

The logical quality measures are consistency, informativeness, redundancy,
logical strength, complexity, and dissimilarity. Some of these measures capture
similar notions from the related work. Redundancy is based on axiom superfluity
investigated in [HPS08]. Logical strength (weakness) is similar to specificity
(generality) used in CDL for concepts, see Section 3.2.1. Concept similarity is
explored in [APS14, EPT15]. The notion of complexity has not been investigated
so far, to the best of our knowledge. While some measures are easy to define,
e.g. consistency and informativeness, others are tricky, particularly complexity.
These measures, except consistency and informativeness (see Section 3.2.3), have
not been used for evaluating hypothesis quality in OL.

The statistical quality measures comprise the axiom measures, designed for
an axiom, and the axiom set measures, designed for a set of axioms. The axiom
measures, except assumption, are based on the rule quality measures from ARM,
see Section 2.2.5. In contrast to the rule measures, they are suited for DLs, i.e.
respect the OWA and take the law of contraposition into account. The axiom
set measures are fitness and braveness which fully respect the DL semantics, i.e.
return the same values for all equivalent hypotheses. They have no analogous
notions in the related work, to the best of our knowledge.

We have investigated properties of the introduced quality measures which are
summarised in Table 5.3. Some measures satisfy more properties than others.
For statistical measures, we consider all properties as favourable. Any negative
measure can easily be converted to positive by simply reversing its sign, i.e.
multiplying its value by -1. There are symmetric and asymmetric measures that



124 CHAPTER 5. DEFINING HYPOTHESIS QUALITY MEASURES

respect and do not respect, respectively, the direction of an implication. Other
properties are semantic, i.e. show how semantically faithful a measure is in DLs.

Quality Quality Property
dimension measure S P A E C N T
Readability Syntactic length X X

Role depth X X
Consistency X X X X X X X
Informativeness X X X X X X

Logical Redundancy X X X
Logical strength X X X X X X
Dissimilarity X X
Complexity X X X X X X X
Basic support X
Basic lift X
Basic contradiction X X
Basic assumption X
Basic confidence X X
Basic conviction X X

Statistical Main support X X
Main lift X X
Main contradiction X X
Main assumption X X
Main confidence X X X
Main conviction X X X
Fitness X X X X X X X
Braveness X X X X X X

Table 5.3: Introduced quality measures and their properties (X– has a property):
S – designed for a set of axioms; P – positive, i.e. higher values mean better
quality; A – asymmetric, i.e. generally returns different values for C v D and
D v C; E – returns the same value for all equivalent hypotheses; C – returns the
same value for an axiom and its contrapositive; N – does not make the UNA; T
– fully considers TBox.

As Table 5.3 shows, the main measures satisfy more properties than the basic
measures.9 In comparison to the main measures, fitness and braveness satisfy
all semantic properties: they are designed for a set of axioms, preserved under
equivalence, do not make the UNA, and fully consider the given TBox. The
latter means that the TBox can interact with a hypothesis beyond materialising

9We do not list the basic and main coverage in Table 5.3 as these are rather auxiliary
measures that are used to define others and both of them are neither positive nor negative.
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the ABox, see Example 5.23 and Example 5.24.
Unlike the statistical measures, other measures satisfying fewer properties are

not necessarily less faithful: they are simply defined so to capture the respect-
ive notions. In particular, the readability measures are concerned with syntactic
evaluation of a hypothesis and do not satisfy any semantic properties by defini-
tion. With regard to the logical measures, redundancy tests syntactic superfluity
of a hypothesis, i.e. whether there is an equivalent hypothesis of a shorter length.
Hence, it is senseless (and impossible) to make redundancy preserved under equi-
valence. Additionally, as discussed in Section 5.2.3, there are reasons to define
redundancy irrespective of the TBox. The same is true for logical strength. An
example when a measure satisfying more properties than another measure is, in
fact, more semantically faithful is complexity in comparison to dissimilarity.

As some statistical measures have better properties than others, should we use
only better measures and disregard others? In particular, fitness and braveness
have better properties than other statistical measures. So, should we just use fit-
ness and braveness? As Example 5.24 shows, we should not since fitness captures
different from support quality characteristics. Another concern is computational
performance since more faithful measures are expected to be more expensive to
compute. In Chapter 6, we discuss how to compute all the proposed measures.

It is also important to note that the introduced measures are of different signi-
ficance for hypothesis evaluation. In other words, some measures are primary and
should be used in all cases, while others are rather secondary and provide sup-
plementary information about hypothesis quality. Since we investigate the prob-
lem of learning from data, a hypothesis should certainly be evaluated using the
ABox. Therefore, the primary measures are key statistical measures. These are
support, assumption, contradiction, and confidence for single-axiom hypotheses;
fitness and braveness for multi-axiom hypotheses. The secondary measures sup-
ply other useful information, e.g. consistency, informativeness, redundancy, etc.
One should keep this in mind while selecting measures for hypothesis evaluation
in DL-Miner, see Figure 4.1. In addition, if the supplementary measures are
included in the hypothesis ordering, they can perturb it, see Chapter 8.



Chapter 6

Computing Hypothesis Quality
Measures

In Chapter 5, we have defined the hypothesis quality measures. In this chapter
we show how to compute these measures. Indeed, while some measures are rather
straightforward to compute, e.g. length, consistency, basic support, others are
not, e.g. redundancy, complexity, fitness, braveness. In addition, since a hypo-
thesis space is usually vast, we should evaluate each hypothesis as efficiently as
possible.

As a reminder, the architecture of DL-Miner consists of the following func-
tional blocks, see Figure 4.1: Ontology Cleaner, Hypothesis Constructor, Hypo-
thesis Evaluator, and Hypothesis Sorter. Hypothesis Evaluator takes (a subset
of) the defined quality measures as input parameters. In this chapter we describe
how Hypothesis Evaluator computes these measures.

6.1 Preliminary Definitions

In order to explain how the measures are computed, we need to define some
auxiliary notions. In Chapter 5, we frequently use sets C and R of concepts
and roles. Computing some measures, e.g. dissimilarity, requires figuring out
subsumption relations within each of these sets according to the given ontology
O := T ∪A. In other words, we need to obtain the following sets of entailments:

ch(T ,C) := {C v D | T |= C v D ∧ C,D ∈ C},

rh(T ,R) := {R v S | T |= R v S ∧ R, S ∈ R}.

126
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Thus, we need to check T |= C v D and T |= R v S for every C,D ∈ C and
R, S ∈ R. If sets C and R contain only concept and role names, i.e. C ⊂ NC , R ⊂
NR, the task is accomplished by computing the concept and role hierarchies, see
Definition 2.10. These can be computed efficiently using the standard means since
reasoners are specifically optimised for computing concept and role hierarchies.

Nonetheless, sets C and R can contain complex concepts and roles. There-
fore, computing concept and role hierarchies can be insufficient. Since checking
entailments for role inclusions seems to be cheap, we directly check all remain-
ing entailments in rh(T ,R). The same procedure, however, can be much more
costly for computing ch(T ,C) because checking entailments for concept inclu-
sions seems to be harder and there are usually many more complex concepts in
C than complex roles in R.

Considering the aforementioned factors, we suggest the following optimisation
for computing ch(T ,C). The idea is that, if we name complex concepts from C
in the TBox T , we can benefit from optimisations of reasoners for computing
concept hierarchies. Let na(C, T ) be the function that returns for a concept C
a fresh and unique name from NC with respect to T . Then, for each complex
concept C ∈ C we add the auxiliary definition na(C, T ) ≡ C to T as follows:

ce(T ,C) := T ∪ {na(C, T ) ≡ C | C ∈ C\NC}.

Given a TBox T and a set C of concepts, the function ce(T ,C) extends T
with auxiliary definitions for complex concepts in C. Let T + := ce(T ,C). Then,
a reasoner can be run on T + to compute the concept hierarchy ch(T +), see
Definition 2.10, of T + instead of T . As a result, instead of checking T |= C v D

for every C,D ∈ C, we simply query the concept hierarchy of T + which can
be easily done using the OWL API.1 Formally, a reasoning operation checking
whether T |= C v D is replaced by the query checking whether AC v AD ∈
ch(T +), where AC := na(C, T ), AD := na(D, T ). Thus, the function ch(T ,C)

can be rewritten as follows:

ch(T ,C) := ch(T ) ∪ {C v D | na(C, T ) v na(D, T ) ∈ ch(ce(T ,C))}.

We normally use this definition of ch(T ,C) and assume that the concept
hierarchy of the extended TBox is computed. As said above, rh(T ,R) is computed

1http://owlapi.sourceforge.net

http://owlapi.sourceforge.net
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directly.

In the following, we use the notion of a unique representative of equivalent
concepts. Let eq(D, T ,C) := {C ∈ C | T |= C ≡ D}. Thus, it is the set of all
concepts in C which are equivalent to a concept D given a TBox T . Let ur(S)

be the function that returns some fixed element e ∈ S, i.e. if e = ur(S), then
e′ = ur(S) implies e′ = e. Then, a unique representative is defined as follows, see
Definition 6.1.

Definition 6.1 (Unique representative). Let T be a TBox and C a set of con-
cepts. A concept C is called the unique representative for a concept D given
T and C if C = urc(D, T ,C), where urc(D, T ,C) := ur(eq(D, T ,C)). Let
urc(T ,C) := {urc(D, T ,C) | D ∈ C} and urc(C) := urc(∅,C).

Thus, urc(D, T ,C) = D′ implies T |= D′ ≡ D which, in turn, implies
urc(D, T ,C) = urc(D′, T ,C). Given a TBox T and a set R of roles, a role
R is called the unique representative for a role S if R = urr(S, T ,R), where
urr(S, T ,R) is defined analogously.

6.2 Computing Readability Measures

Syntactic length, see Definition 5.1, and role depth, see Definition 5.3, are simple
syntactic measures that can be computed straightforwardly. They do not use
reasoning and do not require any optimisations. The situation is different for
redundancy, see Definition 5.7, which we discuss in detail.

6.2.1 Detecting and Eliminating Redundancy

According to Definition 5.7, a hypothesis is redundant if it contains an axiom
which is redundant or has redundant parts. Hence, in order to detect redundancy,
it is sufficient to find at least one such axiom. The task of eliminating redundancy
is harder since all such axioms must be either removed (if an axiom is redundant)
or replaced by shorter axioms (if an axiom contains redundant parts) such that
the resulting hypothesis is equivalent to the original one and as short as possible.



6.2. COMPUTING READABILITY MEASURES 129

Detecting and eliminating redundancy is investigated in [HPS08, Hor11]. Su-
perfluous (redundant) parts of axioms, see Definition 5.7, are detected and elim-
inated with the help of structural transformations. In particular, the π transform-
ation2 transforms a set of axioms such that the resulting set, besides the given
axioms, contains all weaker and shorter forms of those axioms, see Definition 19
at page 177 in [Hor11] for details. It avoids introducing new terms in the output
and defined for the DL SHOIQ. Similarly to justifications, this transformation
can be used to detect and eliminate redundancy of a hypothesis.

Let pi(T ) be the function computing the π transformation [Hor11] of a TBox
T . Given a hypothesis H, we compute pi(H). Then, we search for a shorter hypo-
thesis Hmin ⊆ pi(H) such that Hmin ≡ H, see Algorithm 1. Instead of checking
all possible subsets of pi(H), the algorithm iteratively attempts to remove the
longest axiom from pi(H). If the removed axiom is not redundant in the current
set, it is added back to the set.

Algorithm 1 getMinimalHypothesis(H)

1: inputs
2: H: a hypothesis
3: outputs
4: Hmin: a shortest hypothesis equivalent to H
5: do
6: Hπ ← pi(H) % compute the π transformation of H
7: Hmin ← (α1, . . . , αk), where αi, i ∈ {1, . . . , k}, are all axioms of Hπ in

descending order of their length
8: for each i ∈ {1, . . . , k} do
9: Hmin ← Hmin\{αi} % remove an axiom
10: if Hmin 6|= αi then
11: Hmin ← Hmin ∪ {αi} % if an axiom is not redundant, add it back
12: end if
13: end for
14: return Hmin

Please notice that, at each iteration i of the loop (Lines 8 – 13), the current
set of axioms Hmin either decreases, if αi is redundant, or stays unchanged, if αi
is not redundant. In other words, H i+1

min ⊆ H i
min. Once the algorithm terminates,

it returns a non-redundant hypothesis Hmin equivalent to H, see Lemma 6.1.

Lemma 6.1. Given a hypothesis H, Algorithm 1 returns a non-redundant hypo-
thesis Hmin equivalent to H.

2The π transformation should not be confused with a projection π.



130 CHAPTER 6. COMPUTING HYPOTHESIS QUALITY MEASURES

Proof. (By contradiction) Assume Hmin is redundant. Hence, by Definition 5.7,
there is α ∈ Hmin which is redundant (i) in Hmin or has redundant parts (ii). The
case (i) means that Hmin\{α} |= α after the termination. However, this is not
possible because of Lines 9 – 12. The case (ii) means that there is α′ such that
`(α′) < `(α) and Hmin ∪ {α′}\{α} ≡ Hmin. Since the π transformation produces
all weaker and shorter forms of α including α′, α cannot be in Hmin due to Lines
9 – 12. Thus, there is no such α ∈ Hmin.

If the found hypothesis Hmin is shorter (by syntactic length) than the original
hypothesis H, i.e. `(Hmin) < `(H), then H is redundant. The found hypo-
thesis Hmin is a non-redundant counterpart of H. Please note that Algorithm 1
only guarantees to eliminate redundancy which is caused by excessive length, see
Definition 5.7, but there are other causes of redundancy in DLs, see Example 5.8.

Algorithm 1 returns a single non-redundant hypothesis. However, a non-
redundant hypothesis is not unique in general, see Example 6.1. As long as there
is no need to obtain all non-redundant hypotheses, the result of Algorithm 1 is
satisfactory.

Example 6.1. Consider the hypothesis H := {A ≡ B, A v C, B v C}. It is
redundant since either second or third axiom can be removed, i.e. there are two
non-redundant hypotheses for H: H1 := {A ≡ B, A v C} and H2 := {A ≡
B, B v C}.

6.3 Computing Logical Quality Measures

The logical quality measures are computed using the standard reasoning services
of DLs. Consistency, see Definition 5.5, is straightforwardly computed by checking
the consistency of the ontology O := T ∪A augmented with a hypothesis H, i.e.
O ∪ H. Informativeness, see Definition 5.6, is computed by checking whether a
hypothesis H contains axioms entailed by the TBox T , i.e. for each α ∈ H we
check whether T |= α. If there is at least one axiom which is found to be entailed
by T , then H is uninformative. As discussed in Section 5.2.2, an uninformative
hypothesis H can be transformed to the informative hypothesis H ′ by simply
removing all entailed axioms, i.e. H ′ = {α ∈ H | T 6|= α}, and ensuring that
H ′ 6= ∅.

Given two hypotheses H and H ′, logical strength, see Definition 5.9, is easily
computed by checking H |= H ′ and H ′ |= H. By Definition 5.9, if H |= H ′
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and H ′ 6|= H, then H B H ′; if H 6|= H ′ and H ′ |= H, then H ′ B H; otherwise
H and H ′ are incomparable. However, computing a partial order (H,B) on the
hypothesis space H requires additional care because H can be large. The naive
algorithm checks logical strength for every unordered pair of hypotheses from H
and runs in quadratic time with respect to |H|. There are algorithms to efficiently
compute a partial order, i.e. to build its Hasse diagram, using transitivity of
B, see [BHN+92]. The efficiency of such algorithms, however, depends on the
structure of H: the longer B-chains are, the more checks the algorithm can avoid
and the more efficient it is in comparison to the naive algorithm.

6.3.1 Computing Dissimilarity

According to Definition 5.10, the dissimilarity of an axiom is determined by the
number of common and distinct subsumers that the left-hand side (LHS) and
right-hand side (RHS) of the axiom have in a set C of concepts given a TBox
T . In order to use more information for dissimilarity, by default we include in C
all concept names from T , i.e. in the following we assume that cn(T ) ⊆ C. By
Definition 5.10, the set of subsumers of a concept D in a set C of concepts given
a TBox T is defined as follows:

subs(D, T ,C) := {C ∈ C ∪ {D} | T |= D v C}.

A naive algorithm for computing subsumers checks T |= D v C for each
C ∈ C. However, as discussed in Section 6.1, this can be inefficient because a
set C can be large. Therefore, we use optimisations of reasoners to efficiently
compute all necessary entailments, see Algorithm 2.

We are normally interested in computing dissimilarity for all hypotheses in the
set H. However, we would like to avoid extending and classifying the TBox for
each hypothesis in H. Algorithm 2 can be straightforwardly adjusted such that
the latter is done just once for all hypotheses in H. More specifically, instead
using D as an input concept, the algorithm would use a set D of input concepts
that consists of LHSs and RHSs of all axioms appearing in H. Lines 8 – 10 would
then use D instead of {D} and Lines 11 – 16 would be run in the loop over all
concepts in D.

Computing the dissimilarity of a RI is analogous to the dissimilarity of a GCI.
In Algorithm 2 the concept hierarchy CH is replaced by the role hierarchy RH



132 CHAPTER 6. COMPUTING HYPOTHESIS QUALITY MEASURES

Algorithm 2 computeSubsumers(D, T ,C)

1: inputs
2: D: a concept
3: C: a set of concepts
4: T : a TBox
5: outputs
6: subs: the set of subsumers of D in C given T
7: do
8: T + ← ce(T , C ∪ {D}) % extend T with auxiliary definitions
9: classify T + % build the concept hierarchy of T +

10: CH ← ch(T , C ∪ {D}) % gather necessary entailments
11: subs ← {D}
12: for each C ∈ C do
13: if D v C ∈ CH then
14: subs ← subs ∪ {C} % add a subsumer
15: end if
16: end for
17: return subs

which we compute via rh(T , R∪{S}) without extending the TBox with auxiliary
definitions for complex roles.

6.3.2 Computing Complexity

Definition 5.11 of complexity requires finding new entailments, i.e. those which
are entailed by the ontology with a hypothesis but not by the ontology alone. As
the set of all new entailments is infinite in general, we only consider a certain
finite subset of them, i.e. only those which are subsumptions between concepts in
a finite set C (roles in a finite set R). New entailments can be efficiently computed
using the optimisation technique suggested in Section 6.1 as a difference of the
concept (and role) hierarchy of T ∪H and T :

com(H, T ,C,R) := |(ch(T ∪H, C)\ch(T ,C)) ∪ (rh(T ∪H, R)\rh(T ,R))|.

Algorithm 3 implements computing complexity. Like Algorithm 2 for com-
puting subsumers, it can be straightforwardly adjusted to the case of multiple
hypotheses. More specifically, the extension T + is built and classified just once
for all hypotheses. For each hypothesis H ∈ H the concept hierarchy is updated
and new entailments are found, i.e. Lines 11 – 14 are run in the loop.
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Algorithm 3 computeComplexity(H, T ,C,R)

1: inputs
2: H: a hypothesis
3: T : a TBox
4: C, R: sets of concepts and roles
5: outputs
6: com(H, T ,C,R): the complexity of H
7: do
8: T + ← ce(T , C) % extend T with auxiliary definitions
9: classify T + % build the concept and role hierarchy of T +

10: CH ← ch(T , C); RH ← rh(T , R)
11: classify T + ∪H
12: CHH ← ch(T ∪H, C)
13: RHH ← rh(T ∪H, R)
14: S ← (CHH\CH) ∪ (RHH\RH) % find new entailments
15: return |S|

6.4 Computing Statistical Quality Measures

Like the logical measures, the statistical measures contain measures which are
straightforward to compute, i.e. the axiom measures, and measures which are
not, i.e. the axiom set measures.

6.4.1 Computing Axiom Measures

The axiom measures essentially compare instances of the LHS with instances of
the RHS of an axiom, see Section 5.3.1. Computing these only requires finding
all instances of a concept C in an ontology O, i.e. instance retrieval. Given an
axiom C v D and an ontology O, the basic axiom measures, see Definition 5.14
and Definition 5.16, can be calculated after retrieving instances for each of the
concepts C, D, and ¬D. For example, the basic support of C v D is simply the
number of instances that concepts C and D have in common.

The main axiom measures, see Definition 5.17 and Definition 5.19, like the
basic ones, only require instance retrievals. By Lemma 5.15 and Lemma 5.19, the
main measures of an axiom C v D can be written via the basic measures using its
contrapositive ¬D v ¬C. Therefore, in order to compute the main measures, we
need to retrieve instances of C, D, ¬D, and ¬C. Thus, one additional instance
retrieval is required.
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6.4.2 Computing Fitness and Braveness

Unlike the axiom measures, the axiom set measures, i.e. fitness and braveness, are
not straightforward to compute. By Definition 5.23, computing fitness and brave-
ness requires computing the description length dlen(B,O), see Definition 5.22, of
an ABox B with respect to an ontology O, i.e. finding a minimal ABox B′. This
can be approached using hitting set tree algorithms [Rei87], where tree nodes
represent ABoxes and edges are labelled with assertions. The root node is the
initial ABox B. The tree construction includes the following steps.

1. Given a node B, choose an assertion α ∈ B such that α does not connect B
to any of the successors of B.

2. Check whether O∪B\{α} |= α holds, or perform a superfluity check for α.

3. If it does, create a new node B′ := B\{α} since α is superfluous and can
be discarded. If it does not, create an empty node B′ := ∅ since α is not
superfluous and all subsets of B′ := B\{α} can be pruned from the search,
i.e. the node is not expanded further.

4. Connect B to B′ via the edge α.

The algorithm terminates once all leaf nodes are empty, i.e. no assertion can be
discarded any more. Non-leaf nodes of the smallest size contain minimal ABoxes.
Please notice that such algorithm returns a minimal subset B′ of the given ABox
B, which is not necessarily a shortest ABox. Hence, it is an approximation.
However, the described algorithm can be infeasible even for moderate ABoxes
since it requires exponentially many superfluity checks in the worst case and each
check is expensive.

Therefore, we suggest a different approach. We compute approximations for
fitness and braveness considering that we can estimate the size of a minimal ABox
B′ avoiding costly superfluity checks. More specifically, superfluity can be checked
just once for each assertion in B and each check can be done cheaply. The idea
is illustrated by Example 6.2.

Example 6.2. Consider the TBox T and the ABox B:

T := {A v B}, B := {A(a), B(a)}.
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Since T |= A v B and A(a) ∈ B, the assertion B(a) is superfluous in B and can
be discarded. Thus, the minimal ABox B′ := {A(a)}. Thus, we use the concept
hierarchy of T and assertions in B to check superfluity. Nevertheless, one should
be careful if the TBox contains equivalent concepts. In this case some assertions
can be mistakenly discarded. Consider the TBox T ′ := {A ≡ B}. Given T ′,
any of the assertions A(a) and B(a) is superfluous in B, but not both of them
simultaneously. Thus, there are two minimal ABoxes in this case: B′ := {A(a)}
and B′′ := {B(a)}.

Since a given ABox B contains complex concept assertions in general, com-
puting the simple concept hierarchy is insufficient. Therefore, we again use the
concept hierarchy of the extended TBox, i.e. the optimisation technique from
Section 6.1.

Let O := T ∪A be an ontology, C a set of concepts (closed under negation as
in Definition 5.20), R a set of roles, and B an ABox such that D(a) ∈ B implies
D ∈ C and S(a, b) ∈ B implies S ∈ R, i.e. all assertions in B are “covered” by
C and R. Then, considering Example 6.2, we define the redundancy of concept
assertions (CAs) in B given O as follows:

redC(B,O,C) := {D(a) ∈ B | D(a) ∈ A ∨ ∃C ∈ C :

(i) (C v D ∈ ch(T ,C) ∧ D v C /∈ ch(T ,C) ∧ C(a) ∈ B ∪ A) ∨

(ii) (C v D ∈ ch(T ,C) ∧ D v C ∈ ch(T ,C) ∧ D /∈ urc(T ,C))}.

Informally, the function redC(·)3 returns a set of CAs redundant due to other
CAs. Clearly, if a CA D(a) from B is also contained in O, then it is superfluous in
B. Otherwise, the cases (i) and (ii) include superfluous assertions illustrated by
Example 6.2. Please notice that no reasoning is used, once the concept hierarchy
of the extended TBox is computed.

As the ABox B can contain superfluous role assertions, we also define the
redundancy redR(·) of role assertions (RAs) which is analogous to the redundancy
redC(·) of CAs, but uses the function rh(·) instead of ch(·). It returns a set of

3The symbol “·” stands for the arguments of the function if they are clear from the context
or irrelevant.
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RAs redundant due to other RAs as follows:

redR(B,O,R) := {S(a, b) ∈ B | S(a, b) ∈ A ∨ ∃R ∈ R :

(i) (R v S ∈ rh(T ,R) ∧ S v R /∈ rh(T ,R) ∧ R(a, b) ∈ B ∪ A) ∨

(ii) (R v S ∈ rh(T ,R) ∧ S v R ∈ rh(T ,R) ∧ S /∈ urr(T ,R))}.

Nevertheless, the functions redC(·) and redR(·) do not account for all cases
of superfluity. In particular, they consider CAs and RAs independently. How-
ever, those can interact with each other which causes additional assertions to be
superfluous, see Example 6.3.

Example 6.3. Consider the TBox T and the ABox B:

T := {∃R.A v B, A v ∀R.B},

B := {A(a), A(b), B(a), B(b), R(a, b)}.

The assertion B(a) is superfluous in B because a is connected to b, an instance of
A, via the role assertion R(a, b) and the axiom ∃R.A v B in T states that having
at least one R-successor which is an instance of A implies being an instance of
B. In addition, the assertion B(b) is superfluous because a is an instance of A
connected to b via the role assertion R(a, b) and the axiom A v ∀R.B in T states
that being an instance of A implies having only R-successors which are instances
of B. Thus, B′ := {A(a), A(b), R(a, b)} is the (only) minimal ABox of B.

In order to respect the interactions shown in Example 6.3, we define the
redundancy redCR(·) which returns a set of CAs superfluous due to interacting
CAs and RAs. Let us first define the following entailment sets:

es∃(T ,C) := {∃R.C v D | T |= ∃R.C v D ∧ R ∈ rn(T ) ∧ C,D ∈ C},

es∀(T ,C) := {C v ∀R.D | T |= C v ∀R.D ∧ R ∈ rn(T ) ∧ C,D ∈ C}.

Using the entailment sets es∃(·) and es∀(·), the redundancy redCR(·) is defined
as follows:

redCR(B,O,C) := {D(a) ∈ B |

(i) (∃R.C v D ∈ es∃(T ,C) ∧ R(a, b) ∈ B ∪ A ∧ C(b) ∈ B ∪ A) ∨

(ii) (C v ∀R.D ∈ es∀(T ,C) ∧ R(b, a) ∈ B ∪ A ∧ C(b) ∈ B ∪ A)}.
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The cases (i) and (ii) cover the superfluous assertions B(a) and B(b), respect-
ively, from Example 6.3. The entailment sets es∃(·) and es∀(·) are precomputed
using a reasoner. Then, they are simply queried while computing redCR(·), i.e.
no additional reasoning is required afterwards.

Thus, certain entailment sets need to be precomputed in all cases: ch(·) and
rh(·) are required for redC(·) and redR(·), respectively; es∃(·) and es∀(·) are re-
quired for redCR(·). Otherwise, reasoning would need to be triggered multiple
times for each assertion in the ABox B. More specifically, computing the intro-
duced redundancy functions would require the following number of entailment
checks:

• up to 2 · |B| · |C| for redC(·);

• up to 2 · |B| · |R| for redR(·);

• up to 2 · |B| · |C| · |rn(O)| for redCR(·).

Reusing the aforementioned entailments makes identifying superfluous asser-
tions relatively independent of |B| as reasoning is used for T ∪H. Moreover, we
reuse the entailments for all hypotheses in a similar manner as it is suggested for
computing dissimilarity and complexity above.

Let us gather all described kinds of redundancy and define the overall redund-
ancy function red∗(·) as follows:

red∗(B,O,C,R) := redC(B,O,C) ∪ redR(B,O,R) ∪ redCR(B,O,C).

Once necessary entailment sets are computed, the function red∗(·) is relatively
cheap to calculate. Essentially, it covers the cases of superfluity that can be
easily identified. Nonetheless, it still does not cover all cases of superfluity, see
Example 6.4.

Example 6.4. Consider the TBox T and the ABox B:

T := {∃R.(∃S.A) v B},

B := {A(c), B(a), R(a, b), S(b, c)}.

The assertion B(a) is superfluous in B because a is connected to b which is
connected to c, an instance of A, and T states that having at least one R-
successor which has at least one S-successor which is an instance of A implies
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being an instance of B. This is not detected by red∗(·).

Example 6.4 shows that “chains” of assertions are not considered by red∗(·).
Indeed, it is easy to extend Example 6.4 to chains of arbitrary length. A similar
effect of missing a superfluous assertion can be illustrated for T containing axioms
with universal restrictions. In contrast to the above examples, such “misses” seems
to be hard to cover since there are infinitely many of them. In principle, the
definition of red∗(·) could be adjusted to cover two-step chains as in Example 6.4.
However, the computation would require checking many additional entailments.
Moreover, if the DL under consideration is more expressive than ALC, additional
undetected cases of superfluity can appear, see Example 6.5.

Example 6.5. Consider the TBox T := {> v (≤ 1R.>)} and the ABox B :=

{A(a), B(b), B(c), R(a, b), R(a, c)}. It follows that the individuals b and c are the
same. Therefore, either B(b) or B(c) is superfluous in B which would not be
detected by red∗(·).

Thus, the redundancy function red∗(·) finds some, but not necessarily all,
superfluous assertions. Hence, it is an approximation from below for a maximal
set of superfluous assertions. Using red∗(·), we define the approximation dlen∗(·)
of the description length dlen(·), see Definition 5.22, as follows:

dlen∗(B,O,C,R) := `(B)− `(red∗(B,O,C,R)).

As red∗(·) is an approximation from below, dlen∗(·) is an approximation from
above, i.e. dlen∗(·) ≥ dlen(·). Finally, by analogy with Definition 5.23, we define
the approximations fit∗(·) and bra∗(·) of fitness and braveness, respectively, see
Definition 6.2.

Definition 6.2 (Fitness and braveness approximations). Let O := T ∪ A be an
ontology, C concepts, R roles, H a hypothesis consistent with O, π := π(O,C,R)

the projection of O, ψH := ψ(H,O,C,R) the assumption set of H. Then, the
approximations of fitness and braveness of H are defined as follows:

fit∗(H,O,C,R) := dlen∗(π, T ,C,R)− dlen∗(π, T ∪H,C,R)

bra∗(H,O,C,R) := dlen∗(ψH ,O,C,R)

The approximations in Definition 6.2 can be rewritten using the redundancy
red∗(·), see Lemma 6.2.
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Lemma 6.2. Let O := T ∪A be an ontology, C concepts, R roles, H a hypothesis
consistent with O. Then

(i) fit∗(H,O,C,R) = `(red∗(π, T ∪H,C,R))− `(red∗(π, T ,C,R))

(ii) bra∗(H,O,C,R) = `(ψH)− `(red∗(ψH ,O,C,R))

Proof. (i) fit∗(H,O,C,R) = dlen∗(π, T ,C,R) − dlen∗(π, T ∪ H,C,R) (by
Definition 6.2)

= (`(π)− `(red∗(π, T ,C,R)))− (`(π)− `(red∗(π, T ∪H,C,R)))

(by the definition of dlen∗(·))

= `(red∗(π, T ∪H,C,R))− `(red∗(π, T ,C,R)).

(ii) bra∗(H,O,C,R) = dlen∗(ψH ,O,C,R) (by Definition 6.2)

= `(ψH)− `(red∗(ψH ,O,C,R)) (by the definition of dlen∗(·)).

Since red∗(·) underestimates the true redundancy, fit∗(·) can only underestim-
ate fit(·) and bra∗(·) can only overestimate bra(·), respectively, see Lemma 6.3.

Lemma 6.3. Let O be an ontology, C concepts, R roles, H a hypothesis consistent
with O. Then

(i) fit∗(H,O,C,R) ≤ fit(H,O,C,R)

(ii) bra∗(H,O,C,R) ≥ bra(H,O,C,R)

Proof. (i) fit∗(H,O,C,R) = `(red∗(π, T ∪ H,C,R)) − `(red∗(π, T ,C,R)) by
Lemma 6.2. Due to the monotonicity of DLs, red∗(π, T ∪ H,C,R) either
misses the superfluous assertions missed by red∗(π, T ,C,R) or misses ad-
ditional assertions. Therefore, fit∗(·) cannot be bigger than fit(·).

(ii) bra∗(H,O,C,R) = `(ψH) − `(red∗(ψH ,O,C,R)) by Lemma 6.2. Since
red∗(ψH ,O,C,R) is an approximation from below, bra∗(·) is an approx-
imation from above.

Thus, these approximations are pessimistic: we can only underestimate the
hypothesis quality. In other words, we tend to evaluate a hypothesis worse
than it actually is. The approximations are based on the following simplifying
assumptions .
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• A minimal ABox B′ is a subset of the given ABox B, i.e. B′ ⊆ B.

• The given ABox B contains no “chains” that, due to the TBox T , make
some assertions in B superfluous, see Example 6.4.

• The DL under consideration is at most as expressive as ALC, see Ex-
ample 6.5.

If all aforementioned assumptions are true, then the approximations coincide
with the exact values of fitness and braveness. On the other hand, the further
these assumptions are from the truth, the further the approximations are from the
exact values. Informally, the assumptions are true if an ontology is moderately
expressive and not structurally complex, i.e. neither contains complex concept
assertions nor role assertion “chains” propagating concept information due to the
TBox (this is true for the majority of our experimental ontologies described in
Chapter 9).

Algorithm 4 computes the approximation of fitness. The projection π is com-
puted by Definition 5.20 using instance retrievals. Please note that, if the stat-
istical axiom measures, e.g. support, are computed before fitness, the results of
their instance retrievals are cached and reused to compute the projection (the
reverse is also true).

Algorithm 4 computeF itness(H,O,C,R)

1: inputs
2: H: a hypothesis
3: O := T ∪ A: an ontology
4: C, R: sets of concepts and roles
5: outputs
6: fit∗(H,O,C,R): the fitness approximation of H
7: do
8: T + ← ce(T , C) % extend T with auxiliary definitions
9: classify T + % build the concept and role hierarchy of T +

10: CH ← ch(T , C); RH ← rh(T , R)
11: es∃ ← es∃(T ,C); es∀ ← es∀(T ,C)
12: π ← π(O,C,R)
13: red ← red∗(π, T ,C,R) % use CH, RH, es∃, es∀
14: update CH, RH, es∃, es∀ for T ∪H
15: redH ← red∗(π, T ∪H,C,R) % use CH, RH, es∃, es∀
16: return `(redH)− `(red)
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Algorithm 4 can straightforwardly be altered to efficiently compute fitness
for all hypotheses in a set. More specifically, Lines 8 – 13 are performed just
once for all hypotheses. The redundancy redH in the presence of a hypothesis H
is recalculated for each hypothesis. It requires checking additional entailments
that can be done using optimisations of reasoners, particularly the incremental
mode of reasoning. Computing the approximation of braveness is analogous to
fitness. The main difference is that the assumption set of a hypothesis needs to
be computed instead of the projection.

6.5 Evaluating Hypotheses

We have defined the hypothesis quality measures in Chapter 5 and described how
these measures can be computed in this chapter. We are now ready to present
the overall hypothesis evaluation algorithm and thus uncover how Hypothesis
Evaluator in Figure 4.1 works, see Algorithm 5.

Algorithm 5 evaluateHypotheses(H, Q,O)

1: inputs
2: H: a finite set of hypotheses
3: Q: a finite set of quality measures
4: O: an ontology
5: outputs
6: qf(H, q): the quality function
7: do
8: C ← {C | C v D ∈ H ∨ D v C ∈ H} % get concepts
9: R ← {R | R v S ∈ H ∨ S v R ∈ H} % get roles
10: for each H ∈ H do
11: for each q ∈ Q do
12: qf(H, q) ← computeQuality(H, q,O,C,R) % evaluate H by q
13: end for
14: end for
15: return qf(H, q)

In Algorithm 5, the function computeQuality(·) computes a quality measure
q for a hypothesis H. In addition to a hypothesis to be evaluated, the quality
measures can require other arguments to be specified, e.g. sup(H,O) requires
an ontology O, fit(H,O,C,R) requires an ontology O, concepts C, and roles R.
Therefore, the arguments O, C, R in computeQuality(H, q,O,C,R) are provided
in all cases, but used only if necessary. The function computeQuality(·) also
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computes and caches all necessary objects, i.e. ch(·), rh(·), es∃(·), es∀(·), π(·),
ψ(·), red∗(·), which are reused when necessary.

Algorithm 5 returns the quality function qf(H, q) that returns the quality
value of H ∈ H given q ∈ Q. The quality function can be used to rank hypotheses
according to their quality values. We will discuss this in detail in Chapter 8.

6.6 Discussion

We have shown how to compute all measures (or their approximations) proposed
in Chapter 5. Not surprisingly, some measures are relatively easy to compute
while others require elaborated optimisations. Let us locate the quality measures
on the “complexity spectrum” in terms of the number of standard reasoning op-
erations, e.g. entailment checks, they require. The easiest measures are length
and role depth as they do not require any reasoning. The middle group contains
consistency, informativeness, logical strength, redundancy, as they depend only
on a TBox and hypothesis, and the statistical axiom measures, as they require
only instance retrievals. The most complex measures are dissimilarity, complex-
ity, fitness, and braveness, as they additionally depend on the size of sets C and
R. In particular, fitness and braveness depend on a TBox, ABox, sizes C and R
through the projection and assumption set.

The aforementioned considerations, however, should not be taken as direct
anticipations of computational performance of the respective measures because
some reasoning operations can be more costly than others. For example, instance
retrieval can be (significantly) more expensive than entailment checking. We
evaluate and discuss computational performance of the measures in Chapter 9.

While dissimilarity and complexity are computed exactly, fitness, and brave-
ness are approximated to achieve their feasibility. In order to improve computa-
tional performance of the complex measures, we use the optimisation step from
Section 6.1. Please note that it can be done just once to compute all complex
measures for all hypotheses. One can observe that the measures respecting the
DL semantics more than others, i.e. satisfying more properties in Table 5.3, seem
to be harder for computation. Thus, although the measures with better semantic
properties can be used to evaluate hypotheses thoroughly, they may come with
higher computation price.

One should consider the aforementioned factors while selecting which set of
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measures to use for hypothesis evaluation. If an ontology is relatively simple,
i.e. neither large in size nor hard for reasoning, one can compute all measures
in order to evaluate all sides of hypothesis quality. Otherwise, one can use only
cheap measures (that we identify in Chapter 9).



Chapter 7

Constructing Hypotheses

Until now, we have discussed how to evaluate hypotheses, i.e. which quality meas-
ures can be used and how to compute those measures. However, little attention
has been given to the problem of constructing hypotheses so far. The latter is
discussed in detail in this chapter. From the perspective of the DL-Miner archi-
tecture, see Figure 4.1, this chapter uncovers the functionality and optimisations
of Hypothesis Constructor.

7.1 Hypothesis Construction at a Glance

At first, the problem of constructing hypotheses seems to be trivial. Given a set C
of concepts, we can generate all possible general concept inclusions (GCIs) using
concepts from C as a left-hand side (LHS) or right-hand side (RHS). Analogously,
given a set R of roles, we can generate all possible role inclusions (RIs) using
roles from R. As a result, we get all possible subsumption axioms “connecting”
either two different concepts from C or two different roles from R. Those axioms
constitute all possible single-axiom hypotheses. After that, we can generate all
possible multi-axiom hypotheses from the generated axioms. This gives the set
H of all hypotheses. Then, we can evaluate each hypothesis H ∈ H by quality
measures Q.

However, the method described above is infeasible in all but trivial cases. The
reason is that the number of hypotheses grows rapidly with the sizes of sets C
and R, see Lemma 7.1.

Lemma 7.1. Let C and R be sets of concepts and roles, respectively. Then, the
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size of the set H of all hypotheses generated from C and R is as follows:

|H| = 2m, where m = |C|2 + |R|2.

Proof. The number of all GCIs generated from C equals |C|2 since they include
all possible concept pairs from C. Analogously, the number of all RIs equals |R|2.
Thus, the total number of generated axioms is m := |C|2 + |R|2. Since H is the
set of all subsets of those axioms (the power set), its size equals |H| = 2m.

For example, given |C| = 5 concepts and |R| = 3 roles, the number of hy-
potheses equals |H| = 17, 179, 869, 184 according to Lemma 7.1. Thus, even
relatively small numbers of concepts and roles lead to a vast hypothesis space
(even if we exclude redundant, uninformative, and inconsistent hypotheses).

In order to maintain feasibility, we should prune the hypothesis space. One
way to do that is to limit the number of axioms that a hypothesis is allowed
to contain. This is reasonable because a shorter hypothesis is presumably easier
to parse and understand, considering the results in Section 9.1.1. If the limit
is sufficiently small, the number of hypotheses grows significantly slower, see
Lemma 7.2.

Lemma 7.2. Let C and R be sets of concepts and roles, respectively. Then, the
size of the set Hn of all hypotheses of at most n axioms generated from C and R
is as follows:

|Hn| =
n∑
k=1

(
m

k

)
, where m = |C|2 + |R|2.

Proof. The total number of axioms is m := |C|2 + |R|2, see Lemma 7.1. The
number of combinations to select k items from m items is equal to the binomial
coefficient

(
m
k

)
. As we can select from 1 to n axioms, the total number of combina-

tions is the sum of the respective binomial coefficients, i.e. |Hn| =
∑n

k=1

(
m
k

)
.

According to Lemma 7.2, the size |Hn| varies from m for n = 1 to |H| for
n ≥ m, i.e. m ≤ |Hn| ≤ |H|. Let us calculate the number of hypotheses for
the same sizes |C| = 5 and |R| = 3, but with the limit of n = 3 axioms in a
hypothesis. The size is |Hn| = 6, 579. Thus, |Hn| is 2,611,319 times smaller than
|H|.

Algorithm 6 generates hypotheses containing at most n axioms from sets
C and R. It makes use of the functions ura(·) and urh(·) that return unique
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representatives of equivalent axioms and hypotheses, respectively, and defined
analogously to urc(·), see Definition 6.1. Thus, hypotheses which are syntactic
variations, see Definition 5.8, of unique representatives are discarded.

Algorithm 6 generateHypotheses(C,R, n)

1: inputs
2: C, R: sets of concepts and roles
3: n ≥ 1: a maximal number of axioms in a hypothesis
4: outputs
5: Hn: the set of hypotheses
6: do
7: SC ← {C v D | C 6= D ∧ C,D ∈ C} % all concept inclusions
8: SR ← {R v S | R 6= S ∧ R, S ∈ R} % all role inclusions
9: S ← SC ∪ SR
10: S ′ ← ura(S) % discard syntactic variations
11: H ← ∅
12: for each k from 1 to n do
13: Hk ← getCombinations(S ′, k)

% get all subsets that contain exactly k elements
14: H ← H ∪Hk

15: end for
16: H′ ← urh(H) % discard syntactic variations
17: return H′

Nevertheless, Algorithm 6 does not solve the hypothesis construction problem.
It requires a set C of concepts and a set R of roles to be specified. Until now, we
have assumed that these sets are given. For example, they can be specified by
a domain expert. Unfortunately, this is a difficult problem on its own and may
require significant human effort. In the following, we discuss how to construct
sets C and R semi-automatically and fully automatically.

7.2 Top-down Construction

The simplest way of building concepts C and roles R is just selecting all concept
and role names from the ontology, i.e. C := cn(O), R := rn(O). However, using
these sets for further hypothesis generation, see Algorithm 6, leads to hypotheses
that only contain atomic subsumptions. In other words, the result of learning
is solely concept and role hierarchies. Although such hypotheses are presumably
useful as a good starting point, there may be many more useful hypotheses to ac-
quire since DLs offer expressivity far beyond atomic subsumptions, see Table 2.1.
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To acknowledge the expressivity of DLs, we should develop a procedure that
constructs complex concepts and roles besides atomic ones. A possible way to do
that is building concepts C and roles R from some “seed” signature using certain
construction rules. We call this top-down construction.

7.2.1 Selecting a Seed Signature

A seed signature can be specified by a domain expert. For example, one can be
interested in acquiring hypotheses about some terms of interest. These terms,
however, can be difficult to pick if the signature (vocabulary) of the ontology is
large or the domain expertise is scarce, i.e. it is hard to decide which terms are
likely to be related to each other. If this is the case, a seed signature Σ can simply
be a set of all concept and role names occurring in the ontology, i.e. Σ := crn(O).

Nonetheless, including all concept and role names in the seed signature can
be excessive. Some of them can occur only in the TBox and have no “evidence”
in the ABox. Hypotheses built from such terms can hardly be evaluated using
the ABox because it contains no information about them. Therefore, in order to
reduce the hypothesis space, it is reasonable to discard those terms from the seed
signature. While identifying them, we should be careful because the TBox can
semantically “connect” some terms to the ABox, see Example 7.1.

Example 7.1. Consider the ontology O := T ∪ A, where T := {A v B, C v D}
and A := {A(a), A(b)}. Although there is only one concept name A occurring
in A, the axiom A v B in T implies that the individuals a and b are instances
of B. Hence, B is present in A implicitly. On the contrary, the concept names
C and D have no connection to A and therefore can be excluded from the seed
signature.

Data-connected terms can be identified by the means of the standard DL se-
mantics. We use the modular structure of the ontology for this purpose. Formally,
given an ontology O := T ∪ A, we select a seed signature Σ as follows:

Σ := crn(M) ∪ {>}, whereM := ⊥-module(O, crn(A)).

The function ⊥-module(O, σ) returns the ⊥-module, see [GHKS08], of an
ontology O given a signature σ. Informally, a module is a subset of the ontology
which preserves all knowledge about the signature. It is aimed to be as small as
possible but can contain some excessive axioms, i.e. it is not necessarily minimal.
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As the seed signature Σ includes all concept and role names from the moduleM,
it may still contain some useless terms. Yet, the expectation is that the majority
of them are contained in the excluded set crn(O)\crn(M). We always include
> in Σ because all individuals are its instances, i.e. it always has evidence in the
data.

7.2.2 Constructing Concepts from Templates

Given a seed signature Σ, we can use various construction rules to build complex
concept and role expressions of C and R. In the following, we discuss only concept
construction as role construction is analogous. We define construction rules in
the form of templates which are structurally complex concepts where concept and
role names are variables.

We can obtain a set Dg of concepts conforming to a template g by substituting
its variables with concept and role names from Σ. Clearly, a set Dg can contain
many concepts that are syntactic variations of other concepts. Analogously to
Definition 5.8 for hypotheses, we define syntactic variations for concepts, see
Definition 7.1.

Definition 7.1 (Syntactic variation). A concept C ′ is called a syntactic variation
of a concept C if C ′ 6= C and C ′ ≡ C.1

We would like to avoid syntactic variations of concepts since they produce
syntactic variations of hypotheses. Given a set of templates G, the set C of
concepts is obtained from G using Σ as follows:

C :=
⋃
g∈G

Cg, where Cg := urc(Dg).

Thus, the set Cg contains all unique representatives, see Definition 6.1, for Dg

and, hence, no syntactic variations. Example 7.2 illustrates constructing concepts
from templates.

Example 7.2. Consider the signature Σ = {>, A,B,R}, where A,B ∈ NC , R ∈
NR, and templates G = {X, X u Y, ∃S.X}. The concept and role names are as
follows: ΣC := Σ∩NC = {>, A,B}, ΣR := Σ∩NR = {R}. The concept variables
X, Y in G are substituted with concept names A,B and the role variable S in

1The statement C ′ ≡ C is not an axiom but the abbreviation of ∅ |= C ′ ≡ C.
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G is substituted with the role name R. The set C of concepts is constructed as
follows:

C = {X | X ∈ ΣC} ∪ {X u Y | X, Y ∈ ΣC} ∪ {∃S.X | X ∈ ΣC ∧ S ∈ ΣR}

= {>, A, B, A uB, ∃R.>, ∃R.A, ∃R.B}.

Please notice that the concepts A u >, A u A, B u A, etc. are not in C because
they are syntactic variations of their respective unique representatives.

Algorithm 7 implements the top-down construction of concepts from tem-
plates. The top-down construction of roles from templates is analogous and
skipped for the sake of brevity.

Algorithm 7 buildConceptsTopDown(Σ, G)

1: inputs
2: Σ: a finite set of terms such that > ∈ Σ
3: G: a finite set of templates for concepts
4: outputs
5: C: the set of concepts
6: do
7: ΣC ← Σ ∩NC % get concept names
8: ΣR ← Σ ∩NR % get role names
9: C ← ∅
10: for each g ∈ G do
11: Dg ← buildConceptsForTemplate(g,ΣC ,ΣR) % build concepts using g
12: Cg ← urc(Dg) % remove syntactic variations
13: C← C ∪ Cg

14: end for
15: return C

In essence, the top-down construction is a semi-automatic procedure since it
requires a seed signature and templates to be specified, see Algorithm 7. While a
seed signature can be selected automatically, see Section 7.2.1, templates should
be defined by a human expert which possesses domain knowledge and basic on-
tology engineering skills. This is a trivial task if it is known which templates
are required or interesting, e.g. atomic concepts, pairwise conjunctions, simple
existential restrictions as in Example 7.2. However, it can be hard to know which
templates are likely to produce useful hypotheses. If a set of templates is too
small, i.e. easily definable, the resulting set C of concepts can miss many useful
concepts. On the other hand, a large set of templates can be tedious to define.
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In addition, it increases the hypothesis space tremendously, see Lemma 7.2.

7.3 Bottom-up Construction

Since the hypothesis space grows rapidly with the number of concepts C, we
should attempt to make C as small as possible and ensure that good hypotheses
are not missing as a consequence of that minimisation. In other words, we need to
predict which concepts are suitable, i.e. can potentially be useful for constructing
good hypotheses. Instead of employing a domain expert to get this job done, we
can consult the data (ABox) and make informed guesses. We call the process of
constructing suitable concepts from the data bottom-up construction. In contrast
to the top-down construction guided by a human, the bottom-up construction is
guided by the data, i.e. it is data-driven.

In principle, the bottom-up construction can be done via the top-down con-
struction, see Algorithm 7, that additionally tests the suitability of concepts using
the data and removes unsuitable ones. However, this approach is probably infeas-
ible. Indeed, the high expressivity of DLs requires specifying a large number of
templates and leads to an enormous amount of concepts, unless a seed signature
is tiny. This is true even for inexpressive DLs, e.g. EL. For example, given n

concept and m role names, a number of all EL complex concepts of length up
to 5 grows as fast as O(n3 + n2 ·m2 + n ·m4) (and a number of all GCIs grows
quadratically faster). Many constructed concepts are likely to be useless because
they are generated ignoring the ABox. Therefore, we design an approach that
does not require templates and produces only suitable concepts via consulting
the ABox.

7.3.1 Enumerating Concepts via Refinement Operators

The space of concepts can be enumerated (and generated if necessary) without
using templates. Instead of defining multiple templates of increasing expressivity,
we can use refinement operators to traverse the space of concepts.

As a reminder, refinement operators are commonly used in Concept Descrip-
tion Learning (CDL), see Section 3.2.1. A downward refinement operator ρ for
DL specifies a set ρ(C) of specialisations of a concept C in DL. In the following,
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we only consider downward refinement operators and omit “downward” for brev-
ity. A concept C ′ is called a specialisation of a concept C if C ′ v C.2 We do not
require C 6v C ′, i.e. a concept is a specialisation of itself, due to the reasons that
become clear in the following.

Each specialisation C ′ ∈ ρ(C) can further be specialised by the refinement
operator ρ. Thus, if we start from the most general concept >, we can enumerate
all specialisations by repeatedly applying ρ, see Example 3.1. Clearly, we should
use a seed signature in order to produce useful specialisations.

A refinement operator can satisfy certain properties that inform how useful
it is. In particular, refinement operators can be proper and complete, see Defini-
tion 7.2.

Definition 7.2 (Proper and complete refinement operator [LH10]). A refinement
operator ρ for DL is called

• proper if for every C, C ′ in DL, C ′ ∈ ρ(C) implies C ′ 6≡ C;

• complete if for every C, C ′ in DL, C ′ v C and C 6v C ′ implies there is C ′′

such that C ′′ ≡ C ′ and C ′′ ∈ ρn(C);

where ρn(C) denotes a chain of n applications of ρ starting from C, n ≥ 1.

Thus, a proper operator ρ never produces a specialisation C ′ ∈ ρ(C) which is
equivalent to the specialised concept C, i.e. ρ guarantees C 6v C ′. A complete
operator guarantees that all specialisations modulo equivalence, i.e. at least their
syntactic variations, can be reached from the specialised concept via some chain
of applications of the operator. Properness and completeness are desirable prop-
erties for us because we would like to avoid syntactic variations, see Section 7.2.2,
and ensure that we do not miss suitable concepts.

In [LH10], the authors prove that proper and complete refinement operators
exist for the DLs ALC, ALCQ, SHOIN , SROIQ. Nevertheless, they design
such operator only for ALC (and hence less expressive DLs such as EL). Besides
properness and completeness, there are other desirable properties of a refinement
operator: finiteness and non-redundancy [LH10]. These are handled not by op-
erator’s design, but by a CDL algorithm that restricts the operator in some way,
e.g. limits the maximal length of a specialisation.

2The statement C ′ v C is not an axiom but the abbreviation of ∅ |= C ′ v C.



152 CHAPTER 7. CONSTRUCTING HYPOTHESES

In addition, the operator for ALC in [LH10] is defined such that it generates
specialisations only in negation normal form (NNF).3 It also guarantees to gen-
erate shortest specialisations. Thus, besides being proper and complete, it holds
two additional properties. We call such operator suitable, see Definition 7.3.

Definition 7.3 (Suitable refinement operator). A proper and complete refine-
ment operator ρ for DL is called suitable if the following properties hold:

• for every C, C ′ in DL, C ′ ∈ ρ(C) implies C ′ is in NNF;

• for every C in DL, C is in NNF implies there is C ′ ∈ ρn(>), where n ≥ 0,
such that C ′ ≡ C and `(C ′) ≤ `(C).

Please notice that a proper and complete refinement operator ρ that holds the
first property can still lack the second one, i.e. be not suitable, see Example 7.3.

Example 7.3. Consider a proper and complete refinement operator ρ that pro-
duces specialisations only in NNF such that for every A ∈ NC A u A ∈ ρn(>)

for some n and A /∈ ρm(>) for all m. Informally, ρ does not generate special-
isations which are atomic concepts A. This does not affect its properness and
completeness because it generates (superfluous) syntactic variations AuA. Thus,
specialisations of ρ are not shortest. Therefore, ρ is not suitable by Definition 7.3.
Please notice that Definition 7.3 does not require that ρ must avoid superfluous
specialisations, i.e. ρ′ generating A along with A u A is suitable.

Intuitively, a refinement operator ρ is suitable if ρ “works well” for length
`(·), i.e. ensures that useful specialisations are not pruned if we restrict the
maximal length `max of specialisations in order to make their set finite. What
that means exactly and why it is important is clarified in the following. If a
refinement operator ρ is proper and complete, the suitability conditions for ρ is
rather easy to ensure by its design (as it is done in [LH10]). In the following,
we use only suitable refinement operators. Please note that, although we employ
refinement operators to enumerate concepts, we do not use any CDL algorithm
as it is supervised and solves a different problem.

7.3.2 Concept Support

Refinement operators allow for enumerating concepts using only a seed signature,
i.e. templates or similar human-defined inputs are not required. Nevertheless,

3A DL concept is in NNF if the negation operator ¬ is only applied to concept names, e.g.
¬A t ¬B is in NNF and ¬(A uB) is not in NNF.
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they can still produce too many specialisations, unless a seed signature is tiny.
Therefore, we consult the ABox in order to enumerate only suitable concepts.
Thus, the data informs the choice of concepts and only those are specialised via
operators.

Let us discuss when a concept is suitable and how it can be identified. By
suitable concepts we mean those which are at least minimally supported by the
data and therefore can potentially be the LHS or RHS of an axiom in a good
hypothesis. Since there are generally many concepts to check, the procedure
of testing the suitability of a concept should be computationally efficient. We
suggest to identify suitable concepts (and unsuitable ones) based on the number
of their instances, or support, see Definition 7.4.

Definition 7.4 (Concept support). Let O be an ontology, C a concept. The
support p of C in O is defined as follows:

p(C,O) := |inst(C,O)|.

Concepts with very low support are deemed to have insufficient evidence in
the data, i.e. unsuitable for hypothesis construction. The support of a concept
determines an upper bound for the basic support of any single-axiom hypothesis
with that concept on the LHS or RHS, see Lemma 7.3.

Lemma 7.3. Let O be an ontology, C a concept. For any hypothesis H := {C v
D} or H := {D v C} it holds that bsup(H,O) ≤ p(C,O).

Proof. By Definition 5.14 bsup(H,O) = |inst(C u D, O)|, by Definition 7.4
p(C,O) := |inst(C,O)|. By Lemma 5.6 |inst(C uD, O)| ≤ |inst(C,O)|. There-
fore bsup(H,O) ≤ p(C,O).

From now on, we call a concept suitable if its support exceeds a certain
threshold (discussed in the following) and unsuitable otherwise.

7.3.3 DL-Apriori: a Concept Mining Algorithm

Definition 7.4 of concept support can be used to efficiently construct suitable con-
cepts via refinement operators. In particular, the majority of unsuitable concepts
can be detected in advance and pruned from the search a priori. This becomes
possible due to the mechanics of refinement operators. Indeed, a specialisation
of a concept cannot have more instances than the concept has, see Lemma 7.4.
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Lemma 7.4 (Anti-monotone property of concepts). Let O be an ontology, C, D
concepts. Then, C v D implies p(C,O) ≤ p(D,O).

Proof. Follows from Definition 5.12 because C v D implies that every instance
of C is also an instance of D.

Considering Definition 7.4, Lemma 7.4 implies that, if a concept is unsuit-
able, then all its specialisations are also unsuitable. Therefore, they can be safely
pruned from the search. We call Lemma 7.4 the anti-monotone property of con-
cepts because it resembles Lemma 2.1 which is the anti-monotone property of
itemsets in Association Rule Mining, ARM, see Section 2.2.5. Thus, it is essen-
tially the same property which we have defined for DL concepts.

We combine refinement operators and the anti-monotone property of con-
cepts in one algorithm. We call it DL-Apriori because, like Apriori, see
Section 2.2.5, it makes use of the anti-monotone property to prune unsuitable
candidates a priori. Specifically, DL-Apriori methodically traverses concepts
via refinement operators and discards multiple unsuitable concepts using the anti-
monotone property instead of explicitly testing the suitability for each of them,
i.e. it performs an informed enumeration.

DL-Apriori, see Algorithm 8, operates as follows. It uses two sets of con-
cepts. The first one, C, is the final set of suitable concepts. The second one,
D, is the set of concepts yet to be specialised which is initialised to contain >.
The main loop of DL-Apriori consists of the following steps. First, we pick
and remove from D a concept C to be specialised and add C to the final set
C. Then, using a suitable refinement operator ρ for DL, we generate the set ρC
of all specialisations of C, where each specialisation is built from Σ and is not
longer than `max (therefore ρC is finite). After that, we discard specialisations in
ρC which are syntactic variations, taking C and D into account. Then, we check
the support of each specialisation and identify suitable ones, i.e. those whose
support is at least pmin. These specialisations are added to the concepts D to be
further specialised. The steps are made in this order because discarding syntactic
variations saves checking their support that can be computationally costly. In
addition, it ensures that each concept is specialised only once thus saving even
more checks. Once the set D is empty, DL-Apriori terminates and returns the
final set C.

The run cycle of DL-Apriori can be illustrated as the construction of a
specialisation tree where nodes are concepts and edges connect specialisations to
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Algorithm 8 DL-Apriori (O,Σ,DL, `max, pmin)

1: inputs
2: O := T ∪ A: an ontology
3: Σ: a finite set of terms such that > ∈ Σ
4: DL: a DL for concepts
5: `max: a maximal length of a concept such that 1 ≤ `max <∞
6: pmin: a minimal concept support such that 0 < pmin ≤ |in(O)|
7: outputs
8: C: the set of suitable concepts
9: do
10: C ← ∅ % initialise the final set of suitable concepts
11: D ← {>} % initialise the set of concepts yet to be specialised
12: ρ ← getOperator(DL) % initialise a suitable operator ρ for DL
13: while D 6= ∅ do
14: C ← pick(D) % pick a concept C to be specialised
15: D ← D\{C} % remove C from the concepts to be specialised
16: C ← C ∪ {C} % add C to the final set
17: ρC ← specialise(C, ρ,Σ, `max) % specialise C using ρ
18: DC ← {D ∈ urc(ρC) | @D′ ∈ C ∪ D : D′ ≡ D} % discard variations
19: D ← D ∪ {D ∈ DC | p(D,O) ≥ pmin} % add suitable specialisations
20: end while
21: return C

the respective specialised concept. The construction begins from the root node >.
It repeatedly specialises every leaf node which satisfies the restrictions and is not
a syntactic variation. Once there is no such leaf node, the algorithm terminates.
All nodes, except leaf nodes, of the constructed tree constitute the final set of
suitable concepts. Example 7.4 illustrates the bottom-up concept construction
using DL-Apriori.

Example 7.4. Consider the ontology O used in Example 3.1.

O := {Man v ¬Woman, hasParent v hasChild−,

Man(Arthur), Man(Chris), Man(James),

Woman(Penelope), Woman(V ictoria),

Woman(Charlotte), Woman(Margaret),

hasParent(Charlotte, James), hasParent(Charlotte, V ictoria),

hasParent(V ictoria, Chris), hasParent(V ictoria, Penelope)

hasParent(Arthur, Penelope), hasParent(Arthur, Chris)}.
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We illustrate DL-Apriori with the following input parameters: the seed signa-
ture is Σ := {>, Man, Woman, hasChild}, the target DL is EL (the refinement
operator can only use EL constructors, i.e. ∃ and u), the minimal support is
pmin := 1 (every concept must have at least one instance), the maximal length
is `max := 4 (length of every concept must not exceed 4). Figure 7.1 shows the
constructed tree, where M,W, c stand for Man, Woman, hasChild, respectively.
All leaf nodes of the constructed tree are omitted for the sake of brevity, i.e. all
nodes (including new leaf nodes) in Figure 7.1 are suitable.

>

WM ∃c.>

M u ∃c.> W u ∃c.> ∃c.M∃c.W

M u ∃c.WM u ∃c.M W u ∃c.M W u ∃c.W

∃c.∃c.>

∃c.∃c.W

Figure 7.1: Specialisation tree constructed by DL-Apriori

Let us examine the leaf nodes of the tree in Figure 7.1. The concept C1 :=

W u ∃c.W , a descendant of W u ∃c.>, represents all women that have at least
one daughter. Its length `(C1) = 4 and support p(C1,O) = 2 since C1 has two
instances, Penelope and V ictoria. The concept C2 := ∃c.∃c.W represents all
grandparents that have at least one granddaughter. Its length `(C2) = 3 and
support p(C1,O) = 2 since C2 has two instances, Penelope and Chris. All
specialisations of C1 and C2 violate the maximal length restriction. Although
the concepts M uW and ∃c.∃c.M satisfy the maximal length restriction, they
are absent because they do not meet the minimal support, i.e. they have no
instances. The concept ∃c.W does not have the descendant ∃c.W uW because it
is a syntactic variation of W u∃c.W which is a descendant of W u∃c.>. Another
descendant ∃c.W uM of ∃c.W and descendants of ∃c.M are absent due to the
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same reason. All nodes of the tree in Figure 7.1 constitute the set C of concepts
returned by DL-Apriori.

Let us discuss the parameters of DL-Apriori and how they affect the con-
structed set C of concepts. We call the parameter values legal if they satisfy
the constraints of Algorithm 8. The seed signature Σ plays the same role as in
the top-down construction. It can be automatically selected as discussed in Sec-
tion 7.2.1 and should include >. The target DL DL determines the expressivity
of concepts in C, i.e. which DL constructors are allowed. In Example 7.4 we use
the EL refinement operator which produces specialisations via EL constructors.
In principle, any DL is acceptable for which a suitable refinement operator exists,
e.g. ALC.

The constraint `max specifies the maximal (finite) length of concepts under
consideration. It can significantly reduce the search space and the resulting set C
of concepts and hence improve the computational performance of the algorithm.
Considering the results of the experiment in Section 9.1.1, people tend to use short
concepts. Therefore, in order to avoid constructing hardly readable concepts, we
suggest to set `max to sufficiently small values, e.g. `max := 5.

The minimal support pmin determines the minimal number of instances that
a concept must have to be considered as suitable. It is required to be from 1 to
|in(O)| because, if pmin < 1, then it does not play any role and, if pmin > |in(O)|,
then no concept satisfies it. This threshold should be chosen carefully because
the support of a concept is just an estimate of concept’s usefulness for hypothesis
construction. More specifically, it should be sufficiently low to avoid missing
potentially useful concepts. The safest value is 1, i.e. all concepts having at
least one instance are suitable, and can be always chosen under the absence
of information about quantity of individuals. However, if it is known that an
ontology contains numerous individuals, slightly increasing the threshold may
help to rule out many unpromising concepts and thus decrease the search space
massively. In this sense, it may be helpful to view pmin as a “noise threshold”, i.e.
concepts which do not reach it can be seen as “noisy” and unlikely to be useful,
e.g. M uW in Example 7.4.
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7.3.4 Correctness, Completeness, and Termination of DL-

Apriori

DL-Apriori, see Algorithm 8, always terminates. Another important property
of DL-Apriori is that it guarantees to return all concepts modulo equivalence
satisfying the constraints, i.e. it is complete, and only concepts satisfying the
constraints, i.e. it is correct. The constraints are given not only by the min-
imal support pmin and maximal length `max but also by the target DL and seed
signature Σ.

We prove these properties in Lemma 7.5. In order to make its presentation and
proof easier to grasp, let us first discuss what reasons could cause Algorithm 8 to
violate the aforementioned properties and consider some examples. In particular,
we discuss what could break termination and completeness.

Algorithm 8 does not terminate if it enumerates an infinite set of specialisa-
tions or specialises the same concept infinitely many times. Hence, to ensure
termination, we need to prevent these cases. The first case can be prevented
by the finite input parameters Σ and `max. The second case can be prevented
via avoiding infinite loops during traversal of the specialisation tree, i.e. when a
concept or its syntactic variation is visited infinitely many times.

Algorithm 8 looses completeness if it misses some concepts. Clearly, this can
happen if a refinement operator ρ is not complete. This can also happen if ρ is
complete but not suitable. Consider `max := 2 and ρ from Example 7.3. Despite
the fact that ρ is complete, it does not generate specialisations which are atomic
concepts A but generates A u A instead. Since `max := 2, specialisations of
the form A u A violate `max and, consequently, the algorithm misses all atomic
concepts A. Another example is generating specialisations ∀R.C u ∀R.D instead
of ∀R.(C uD) given `max := 4.

In addition, we should consider completeness only for concepts in NNF be-
cause some of them can be rewritten in a shorter syntactic form. For example, if
`max := 4, Algorithm 8 misses the concept ¬(A uB) because its NNF ¬A t ¬B,
generated by ρ, violates `max, even if ρ is complete. If we choose a normal form
different from NNF, we should change Definition 7.3 of a suitable refinement op-
erator respectively such that the aforementioned cases are prevented. Thus, a
suitable refinement operator should “work well” for a chosen normal form and
definition of length in the DL it is designed for.
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Lemma 7.5 (Correctness, completeness, termination). Let O, Σ, DL, `max,
pmin be legal parameters of DL-Apriori, where DL ≤ SROI and ρ is a suitable
refinement operator for DL. Let (i) – (iv) be the following conditions for a concept
C:

(i) C is in NNF and in DL;

(ii) C̃ ⊆ Σ;

(iii) `(C) ≤ `max;

(iv) p(C,O) ≥ pmin.

Then, all following properties hold for DL-Apriori:

• it terminates;

• it is correct: it returns a set C of concepts such that C ∈ C implies C
satisfies (i) – (iv);

• it is complete: if a concept D satisfies (i) – (iv), then there is C ∈ C such
that C ≡ D.

Proof. (Termination) The set of all concepts in SROI over Σ which are not
longer than `max is finite. Hence, the specialisation tree that Algorithm 8 traverses
is finite. Additionally, the algorithm visits each concept at most once: this is
ensured by checking whether the concept or its syntactic variation is already
visited, see Line 18 in Algorithm 8. Therefore, Algorithm 8 always terminates.

(Correctness) The concept > obviously satisfies (i) – (iv). Every C ∈ C\{>}
satisfies (i) because a refinement operator ρ is suitable for DL. C satisfies (ii) –
(iv) due to Lines 17 and 19 in Algorithm 8. Therefore, Algorithm 8 is correct.

(Completeness) Assume a concept D satisfies (i) – (iv). Since ρ is complete,
by Definition 7.2 there is some concept C such that C ≡ D and C ∈ ρn(>).
Since ρ is suitable, C satisfies (i) and (ii) by Definition 7.3. Moreover `(C) ≤
`(D) by Definition 7.3. Therefore, if D satisfies (iii), then C satisfies (iii), i.e.
`(C) ≤ `(D) ≤ `max. Since C ≡ D and D satisfies (iv), C satisfies (iv), i.e.
p(C,O) = p(D,O) ≥ pmin. Thus, C satisfies (i) – (iv) and hence C ∈ C.
Therefore, Algorithm 8 is complete.
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Please notice that the properties of DL-Apriori, see Lemma 7.5, do not hold
for DLs with number restrictions ≥ k.C and ≤ k.C, e.g. SROIQ. The reason
is that, by Definition 5.1, syntactic length of ≥ k.C and ≤ k.C is the same for
any k. Hence, given a finite Σ, the maximal length restriction `max does not
guarantee to make the number of specialisations finite. In particular, infinite
specialisation chains are possible, e.g. ≥ (k + n).C = ρn(≥ k.C), where n = ∞.
This can be fixed by adapting Definition 5.1 such that `(≥ k.C) = `(≤ k.C) :=

f(k) + `(C), where f(k) is some increasing function of k, i.e. f(k + 1) > f(k).
Alternatively, we can add the parameter kmax to Algorithm 8 which bounds k
in number restrictions, like `max bounds length of concepts. Both ways regain
termination, correctness, and completeness of DL-Apriori for SROIQ, but
complicate the presentation.

7.4 Discussion

In order to construct concepts, we can use either the top-down, see Algorithm 7,
or bottom-up construction, see Algorithm 8. The top-down construction requires
templates to be defined by a human and does not consult the data. This may
cause missing many useful concepts and constructing an overwhelming number of
useless concepts. In contrast, the bottom construction does not require templates,
as it methodically enumerates all concepts, and produces only suitable concepts
given the suitability threshold. Therefore, for concepts, we favour the bottom-up
construction.

To the best of our knowledge, refinement operators for specialising roles are
not investigated. Therefore, we do not define DL-Apriori for roles as it is
done for concepts. Instead, we use the top-down construction, see Algorithm 7,
analogously implemented for roles. In practice, roles, unlike concepts, can easily
be generated via the top-down construction. The reason is that DLs normally
allow for much greater structural variability in concepts than in roles. As a
result, templates are usually easier to specify for roles than for concepts and
the top-down construction produces much fewer roles than concepts. If there
are too many roles constructed, we use the notion of role suitability and discard
unsuitable roles. Role suitability is defined analogously to concept suitability
using instances of a role, or its support, i.e. individual pairs that are connected
by the role according to the ontology.
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We automatically select a seed signature as described in Section 7.2.1 for
constructing concepts and roles. Once concepts and roles are constructed, we
use them to build hypotheses via Algorithm 6. We normally set the maximal
number n of axioms in a hypothesis to be a sufficiently small number because the
hypothesis space grows quickly with n, see Lemma 7.2. Moreover, it is hard for
a human expert to comprehend and judge large sets of axioms.



Chapter 8

DL-Miner: a Hypothesis Mining
Algorithm

We have discussed hypothesis construction and evaluation and proposed ap-
proaches that can be used to solve these problems. In the architecture of DL-

Miner, see Figure 4.1, these approaches are implemented by two core functional
blocks: Hypothesis Constructor and Hypothesis Evaluator.

In this chapter, we discuss two remaining functional blocks of DL-Miner:
Ontology Cleaner and Hypothesis Sorter. The purpose of Ontology Cleaner is
to prepare the ontology for processing, i.e. identify inconsistency and repair the
ontology. The purpose of Hypothesis Sorter is to order hypotheses according
to their quality values measured by the respective quality measures. Finally,
we combine all functional blocks in one system and their subroutines in one
algorithm. We discuss its parameters, properties, and implementation.

8.1 Handling Noisy Data

Until now, we have assumed that any input ontology is consistent. On the one
hand, this assumption makes sense because high quality, curated ontologies should
be consistent. For example, most ontologies in the BioPortal repository1 are
consistent, see Section 9.1.1. On the other hand, inconsistent ontologies do exist.
Moreover, an ABox is sometimes automatically extracted from the data, but not
manually engineered. In this case, inconsistencies can easily creep in since the

1http://bioportal.bioontology.org/
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data can contain noise or errors. Therefore, it is worthwhile to consider the
situation when an input ontology is inconsistent.

8.1.1 Handling Inconsistent Data

If an ontology is inconsistent, it is not sensible to use reasoning with respect to
that ontology. Consequently, no techniques based on such reasoning work cor-
rectly. In particular, it is not possible to reasonably evaluate hypotheses. More
specifically, most logical measures, i.e. informativeness, consistency, dissimilarity,
complexity, are useless. The statistical measures are also worthless as they use
instance retrieval. Although one can try to approximate their values by ignoring
the TBox, such approximations can be considerably misleading. Not only does
hypothesis evaluation become hardly possible, but so does hypothesis construc-
tion. Indeed, since the bottom-up construction uses instance checking, it cannot
be used for an inconsistent ontology, unless instance checking is reasonably ap-
proximated. Thus, given an inconsistent ontology, the core functional blocks do
not operate appropriately.

Instead of ignoring an inconsistent input, we can attempt to repair it, i.e.
make the ontology consistent by eliminating causes of inconsistency. As repairing
ontologies manually can be a tedious and error-prone task, automated approaches
to assist repairing are investigated [HS05, HPS09]. The approach in [HPS09] uses
justifications, see Definition 8.1.

Definition 8.1 ([HPS09]). Let O be an ontology and η an entailment of O, i.e.
O |= η. A set J of axioms is called a justification for η in O if J ⊆ O, J |= η,
and for every J ′ ( J it holds that J ′ 6|= η.

Informally, a justification for a given entailment is a minimal subset of the
ontology that entails the entailment. Justifications provide explanations for an
entailment as they contain only axioms causing that entailment. Multiple justi-
fications can exist for a given entailment.

Although justifications can help to repair the inconsistency manually, they
are not straightforward to employ for automatic repair [HPS09]. In practice,
the manual repair can be difficult because one needs to remove axioms from the
ontology such that all justifications for inconsistency, i.e. O |= > v ⊥, are
broken. Of course, one can simply remove or weaken all axioms that occur in at
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least one justification. However, such approach can remove a lot of axioms that
do not need to be excluded to prevent inconsistency.

In our scenario, we assume that an ontology is inconsistent because of some
erroneous, contradictory assertions in the ABox. We also assume that such as-
sertions constitute a small fraction (noise) of the ABox. Otherwise, the ABox is
unlikely to be useful for evaluating hypotheses anyway. Under these assumptions,
we can repair an inconsistent ontology via removing all assertions that occur in
at least one justification for inconsistency. We call those assertions a data repair,
see Definition 8.2.

Definition 8.2 (Data repair). Let O := T ∪A be an inconsistent ontology, where
T is consistent. Let just(O, η) be the set of all justifications for an entailment η
in O. The data repair rep(O) of O is defined as follows:

rep(O) := A ∩
⋃

just(O, > v ⊥).

The ontology O′ := O\rep(O) is called repaired.

The repaired ontology O′ is the result of removing the repair rep(O) from
the inconsistent ontology O. Please notice that the data repair rep(O) is unique
because the set of all justifications for an entailment is unique. The repaired
ontology O′ is guaranteed to be consistent, see Lemma 8.1.

Lemma 8.1. Let O := T ∪A be an inconsistent ontology, where T is consistent.
Then, O′ := O\rep(O) is consistent.

Proof. Let S := just(O, > v ⊥). Since T is consistent, each J ∈ S overlaps
with A, i.e. J ∩ rep(O) 6= ∅. Hence, each J ∈ S is “broken” in O′ and hence O′

is consistent.

Clearly, a data repair can contain excessive axioms, i.e. it is not minimal. In
principle, it can be improved to include only axioms necessary for breaking all
justifications. In the most extreme case, all justifications share the same axiom.
In this case, it is sufficient to include only that axiom in the repair because, once
it is removed from the ontology, no justification remains to cause inconsistency.
Nevertheless, finding a minimal data repair is computationally more expensive.
It requires judging axioms in all justifications, which can be numerous for a large
ABox. Thus, it is easier to throw out all axioms which are potentially responsible
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for inconsistency. Since an inconsistent ontology contains presumably few noisy
assertions, the number of removed axioms due to the repair is small in comparison
to the size of the ontology. Algorithm 9 implements the data repair.

Algorithm 9 repairOntology(O)

1: inputs
2: O := T ∪ A: an ontology
3: outputs
4: O′: the repaired ontology
5: do
6: S ← just(O, > v ⊥) % compute all justifications for inconsistency
7: O⊥ ← ∅
8: for each J ∈ S do
9: O⊥ ← O⊥ ∪ J % collect axioms of all justifications
10: end for
11: A⊥ ← A∩O⊥ % retain only ABox axioms
12: O′ ← O\A⊥
13: return O′

8.1.2 Handling Consistent But Incorrect Data

Even if an ontology is consistent, it can still contain some erroneous data. Those
errors are harder to detect than inconsistencies. In particular, such data can
cause good hypotheses to be inconsistent with the ontology. In principle, we
can consider the ontology augmented with the hypothesis as a new ontology and
repair it as discussed above in Section 8.1.1. Formally, given a consistent ontology
O and a hypothesis H such that OH := O ∪ H is inconsistent, we compute
O′H := O\rep(OH) and use O′ := O′H\H to evaluate H. Nonetheless, this can
be considerably more expensive computationally than handling an inconsistent
input (which is already costly) because it needs to be done for every inconsistent
hypothesis.

There are other kinds of errors in the data which are not possible to detect
using inconsistency. Interestingly, those can be spotted by a domain expert ex-
ploring the acquired hypotheses, as we discuss in Chapter 9. This opens another
potential application for DL-Miner.
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8.2 Ordering and Ranking Hypotheses

Once hypotheses H are evaluated, the quality function qf(H, q) is returned by
Algorithm 5. Then, we can order hypotheses by their quality values using qf(·).
Since we evaluate hypotheses by multiple quality measures in general, there are
different ways to order them.

8.2.1 Single-Measure Ordering

The easiest way to order hypotheses H is just sorting them by a single quality
measure q ∈ Q, see Definition 8.3.

Definition 8.3 (Single-measure ordering). Let H be a hypothesis space, Q a set
of positive2 quality measures, qf(H, q) the quality function, where H ∈ H, q ∈ Q.
Given a quality measure q ∈ Q, a hypothesis H is better on q than a hypothesis
H ′, written as H ′ ≺q H, if qf(H ′, q) < qf(H, q).

Informally, given a quality measure, one hypothesis is better than another if
its quality value is greater. Please note that any negative measure can be turned
into a positive one by simply reversing its sign, i.e. multiplying it by -1. One
can compute (H,≺q) for each quality measure q ∈ Q and navigate through the
hypotheses H switching the measures when necessary. The best hypotheses are
those which have the maximal value of q among all.

As we generally evaluate hypotheses by multiple quality measures, one hypo-
thesis can be better than another hypothesis on one measure and be worse on
another measure. In this case, it can be hard to conclude which one is better
overall, i.e. hypotheses are incomparable. Thus, one can opt to order hypotheses
not by each measure separately, but by a set of measures jointly.

In order to consider all measures Q simultaneously, we can aggregate them
into a single, collective measure q0 and then use the single-measure ordering ≺q0 ,
see Definition 8.3. Based on ≺q0 , we can rank hypotheses, i.e. define a ranking
function rf(H), such that a hypothesis of the highest rank has the maximal value
of q0.

Since the quality measures have different scales, each measure q ∈ Q should
first be normalised. More specifically, all values returned by qf(·) should be

2A measure is positive if a greater value indicates a hypothesis of better quality. Otherwise,
it is negative. This should not be confused with the sign of a measure, i.e. whether it is greater
or below zero.
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scaled such that each measure q ∈ Q can be compared on the same scale with
other measures. We denote the scaled quality function as q̂f(·). In addition, we
can specify a weight wq ≥ 0 for each measure q ∈ Q that indicates how important
it is in the set. If all measures in Q are equally important, we can simply set
wq = 1 for each q ∈ Q. Various aggregation schemes can be used. For example,
the collective quality measure can be defined as follows:

q0(H) :=
∑
q∈Q

wq · q̂f(H, q).

Nonetheless, some quality measures are not straightforward to scale because
they have unbounded values, e.g. lift, conviction. In addition, even if scaled,
the measures can have different distributions of values. As a result, a measure
having mostly low values becomes unimportant since it has little influence on the
collective measure.

8.2.2 Multi-Measure Ordering

As mentioned above, if we consider multiple quality measures, hypotheses can
be incomparable. Nevertheless, some hypotheses are comparable. A hypothesis
H can be compared to another hypothesis H ′ if H is better than H ′ on some
measures and not worse on others. In this case, we say that a hypothesis H
dominates a hypothesis H ′. Thus, it is possible to compare hypotheses using the
dominance relation, see Definition 8.4, instead of a collective quality measure.

Definition 8.4 (Multi-measure ordering). Let H be a hypothesis space, Q a set
of positive quality measures, qf(H, q) the quality function, where H ∈ H, q ∈ Q.
A hypothesis H dominates a hypothesis H ′, written as H ′ ≺ H, if

• there is q ∈ Q such that qf(H ′, q) < qf(H, q);

• for all q′ ∈ Q, q′ 6= q implies qf(H ′, q′) ≤ qf(H, q′).

Two hypothesesH andH ′ are called comparable ifH ′ ≺ H orH ≺ H ′. Otherwise,
H and H ′ are called incomparable, denoted as H ′ ‖ H.

Clearly, if there is only one quality measure, i.e. Q = {q}, the multi-measure
ordering (H,≺) coincides with the single-measure ordering (H,≺q). Figure 8.1
illustrates comparable and incomparable hypotheses.
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q1

q2

H1

H2

H3

H4

H5

Figure 8.1: Comparable hypotheses: H5 ≺ H3, H3 ≺ H1, H5 ≺ H4, H4 ≺ H2;
incomparable hypotheses: H1 ‖ H2, H3 ‖ H4, H1 ‖ H4, H2 ‖ H3.

In order to identify best hypotheses across all measures, we can use the stand-
ard notion of a Pareto front [Deb01]. The Pareto front is the set of all hypotheses
which are not dominated by any other hypothesis. Such hypotheses are called
optimal. If a hypothesis H is optimal, there is no other hypothesis H ′ which
improves some quality of H without degrading others. Formally, the Pareto front
is defined as follows:

pareto(H, Q, qf) := {H ∈ H | @H ′ ∈ H : H ≺ H ′}.

In Figure 8.1, the hypotheses H1 and H2 are optimal, i.e. they constitute
the Pareto front. As discussed in Section 4.1.3, it is reasonable to consider not
only optimal hypotheses but suboptimal ones as well, i.e. navigate through the
ordering (H,≺). In order to support the navigation, we can slice the hypothesis
space H into layers, or ranks, of incomparable hypotheses such that hypotheses
of a higher rank dominate hypotheses of a lower rank. The Pareto front contains
hypotheses of the highest rank (and only those hypotheses). Algorithm 10 ranks
hypotheses with respect to the dominance relation.

Algorithm 10 computes the Pareto front Hp of the current set H of hypotheses
and assigns each hypothesis H ∈ Hp the current rank r. Then, it removes the
Pareto front Hp from H and increases the rank r. The algorithm terminates once
H is empty. Algorithm 10 always terminates, see Lemma 8.2.

Lemma 8.2. Algorithm 10 is terminating.

Proof. If H is empty, the algorithm never enters the main loop and terminates.
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Algorithm 10 rankHypotheses(H, Q, qf)

1: inputs
2: H: a finite set of hypotheses
3: Q: a finite set of quality measures
4: qf(H, q): a quality function, where H ∈ H, q ∈ Q
5: outputs
6: rf(H): the ranking function, where H ∈ H
7: do
8: r ← 0 % initialise the current rank
9: while H 6= ∅ do
10: Hp ← pareto(H, Q, qf) % compute a new Pareto front
11: for each H ∈ Hp do
12: rf(H) ← r % set the rank for each hypothesis in the front
13: end for
14: H ← H \ Hp % remove the current front
15: r ← r + 1 % increase the current rank
16: end while
17: return rf(H)

If H is not empty, we show that there is always at least one optimal hypothesis
since H is finite. Assume there are no optimal hypotheses in H. Then, for every
H ∈ H there is H ′ ∈ H such that H ≺ H ′. Pick any H1 ∈ H. Then, there is H2 ∈
H\{H1}, such that H1 ≺ H2. In turn, there is H3 ∈ H\{H1, H2} such that H2 ≺
H3. Let k := |H|. Then, there is Hk ∈ H′, where H′ := H\

⋃k−1
i=1 {Hi} = {Hk}

such that Hk−1 ≺ Hk. Thus, Hk is optimal and the contradiction is obtained.
Therefore, there is always an optimal hypothesis in a finite H. Consequently, the
Pareto front is never empty and at least one hypothesis is removed from H at
each iteration of the main loop. Hence, the loop terminates after at most k := |H|
iterations.

Algorithm 10 would rank the hypotheses in Figure 8.1 as follows: rf(H1) = 0,
rf(H2) = 0, rf(H3) = 1, rf(H4) = 1, rf(H5) = 2. The ranking function rf(·)
can be viewed as a quality measure derived from other quality measures, i.e. a
collective quality measure.

It is important to note that ordering hypotheses by the dominance relation
has some limitations. In particular, if multiple measures (many more than 2)
are used to compare hypotheses, a hypothesis easily reaches the top rank if it is
best on just one measure, regardless of all other measures. Therefore, we should
carefully select measures to order hypotheses. More specifically, we can use the
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set Q of measures to evaluate hypotheses H and then select the set Q′ ⊆ Q of
critical measures to order H.

Considering aggregation problems of the single-measure ordering, see Sec-
tion 8.2.1, we prefer to use the multi-measure ordering for hypothesis ranking.
As the critical measures Q′ for ranking, we usually use support, assumption,
and confidence. Algorithm 10 can be straightforwardly adjusted to take these
considerations into account.

8.3 Putting All The Pieces Together: DL-Miner

We have discussed all tasks that DL-Miner is designed to accomplish. For the
reader’s convenience, we remind the architecture of DL-Miner, see Figure 8.2,
and how it is covered in the thesis (please note that the order is different).

Ontology CleanerO

Hypothesis ConstructorL, Σ

Hypothesis EvaluatorQ

Hypothesis Sorter rf(H)

H

qf(H, q)

DL-Miner

Figure 8.2: Architecture of DL-Miner

In Chapter 5, we have proposed a range of quality measures that can be used
to rigorously evaluate hypotheses in DLs. In Chapter 6, we have described how
these measures can be computed. These two chapters uncover the functional-
ity of Hypothesis Evaluator, see Figure 8.2. In Chapter 7, we have discussed
how hypotheses can be constructed and proposed a data-driven algorithm called
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DL-Apriori. The latter chapter explicates the functionality of Hypothesis Con-
structor. In the current Chapter 8, we have discussed how to handle an incon-
sistent input ontology, see Section 8.1, and how to order and rank the evaluated
hypotheses using (multiple) quality measures, see Section 8.2. Thus, Section 8.1
and Section 8.2 describe the functionality of Ontology Cleaner and Hypothesis
Sorter, respectively.

The aforementioned chapters and sections present algorithms aimed at im-
pementing the respective tasks. Now, in order to implement the architecture
shown in Figure 8.2, we combine all respective algorithms in one algorithm called
DL-Miner.

8.3.1 The DL-Miner Algorithm

The input parameters of DL-Miner, see Algorithm 11, are an ontology O, a seed
signature Σ, a language bias L, and a setQ of quality measures. If a seed signature
Σ is not provided, it is selected automatically as described in Section 7.2.1. A
language bias L is defined as follows, see Definition 8.5.

Definition 8.5 (Language bias). A language bias is a tuple L := (DL, `max,
pmin, GR, n), where

• DL ≤ SROI is a DL which is used for constructing concepts and for which
a suitable refinement operator exists;

• `max is a finite maximal length of a concept such that `max ≥ 1;

• pmin is a minimal concept support such that 0 < pmin ≤ |in(O)|;

• GR is a finite set of templates that specify the shape of constructed roles;

• n is a maximal number of axioms in a hypothesis such that n ≥ 1.

A language bias L specifies constraints for hypotheses, i.e. determines which
of them are constructed by the algorithm. It includes the parameters DL, pmin,
`max for concept construction, see Algorithm 8 and Lemma 7.5, and the parameter
GR for role construction, see Algorithm 7 which is straightforwardly adapted for
roles. The parameter n of L specifies how many axioms a hypothesis is permitted
to contain.

Given an ontology O, Algorithm 11 checks its consistency and, if it is incon-
sistent, repairs it. The result is the consistent ontology O′. Then, the algorithm
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Algorithm 11 DL-Miner (O,Σ,L, Q)

1: inputs
2: O := T ∪ A: an ontology
3: Σ: a finite set of terms such that > ∈ Σ
4: L := (DL, `max, pmin, GR, n): a language bias, see Definition 8.5
5: Q: a finite set of quality measures
6: outputs
7: H: the set of hypotheses
8: qf(H, q): the quality function, where H ∈ H, q ∈ Q
9: rf(H): the ranking function, where H ∈ H
10: do
11: O′ ← repairOntology(O) % see Algorithm 9
12: C ← DL-Apriori (O′,Σ,DL, `max, pmin) % see Algorithm 8
13: R ← buildRolesTopDown(Σ, GR) % see Algorithm 7
14: H ← generateHypotheses(C,R, n) % see Algorithm 6
15: qf ← evaluateHypotheses(H, Q,O′) % see Algorithm 5
16: rf ← rankHypotheses(H, Q, qf) % see Algorithm 10
17: return (H, qf , rf)

constructs concepts C in the bottom-up way and roles R in the top-down way,
according to the language bias L. The concepts C and roles R are used to gen-
erate hypotheses H. After that, the hypotheses H are evaluated by the quality
measures Q. As a result, the quality function qf(·) is computed. Finally, qf(·)
is used to rank hypotheses by their quality, i.e. to compute the ranking func-
tion rf(·). The algorithm returns the hypotheses H, quality function qf(·), and
ranking function rf(·). Figure 8.3 places these subroutines on the architecture of
DL-Miner.

8.3.2 Correctness, Completeness, and Termination

We now discuss the properties of DL-Miner. Algorithm 11 is correct in the sense
that it never returns an incorrect output, i.e. violating the constraints given by the
input parameters. Correctness ensures that DL-Miner only returns hypotheses
which conform to the language bias L and use the signature Σ. Correctness of
DL-Miner is similar to correctness of Algorithm 8.

Algorithm 11 is complete, i.e. it returns and evaluates all hypotheses modulo
equivalence which conform to the language bias L and use the signature Σ. Com-
pleteness ensures that potentially useful hypotheses are not missed. Completeness
of Algorithm 11 is similar to completeness of Algorithm 8.



8.3. PUTTING ALL THE PIECES TOGETHER: DL-MINER 173

repairOntology(·)O

DL-Apriori (·)
buildRolesTopDown(·)
generateHypotheses(·)

L, Σ

evaluateHypotheses(·)Q

rankHypotheses(·) rf(·)

H

qf(·)

DL-Miner

Figure 8.3: Architecture of DL-Miner with subroutines

Another property of Algorithm 11 is that it always terminates. This ensures
that the algorithm returns an output (even though it may take long) for any legal
input parameters, i.e. satisfying the respective constraints of Algorithm 11. The
properties of correctness, completeness, and termination of Algorithm 11 follow
from the same properties of its subroutines, see Theorem 8.1.

Theorem 8.1 (Correctness, completeness, termination). Let O, Σ, L := (DL,
`max, pmin, GR, n), Q be legal parameters of DL-Miner. Let (i) – (iii) be the
following conditions for a hypothesis H:

(i) H conforms to L;

(ii) H is in NNF;

(iii) H̃ ⊆ Σ.

Then, all following properties hold for DL-Miner:

• it terminates;

• it is correct: it returns a set H of hypotheses such that H ∈ H implies H
satisfies (i) – (iii);
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• it is complete: if a hypothesis H ′ satisfies (i) – (iii), then there is H ∈ H
such that H ≡ H ′.

In addition, it returns the quality function qf(H, q) and ranking function
rf(H), where H ∈ H, q ∈ Q.

Proof. (Termination) Algorithm 11 is terminating because all its subroutines are
terminating. Algorithm 9 terminates because there are finitely many justifications
for any ontology, see Definition 8.1, since a power set of a finite set is finite.
Algorithm 8 terminates by Lemma 7.5. Algorithm 7 terminates because Σ and
GR are finite sets. Algorithm 6 terminates because C and R are finite sets, n is a
finite number. Algorithm 5 terminates because H is a finite set and every quality
measure is computed in a finite time. Algorithm 10 terminates by Lemma 8.2.

(Correctness, completeness) By Lemma 7.5, Algorithm 8 is correct and com-
plete forDL, Σ, `max, pmin and constructs a set C of concepts in NNF. Algorithm 7
constructs a set R of all roles such that R ∈ R if and only if R conforms to a
template from GR and R̃ ⊆ Σ. Given C and R, Algorithm 6 generates a set H
of all hypotheses that have at most n axioms. Therefore, Algorithm 10 is correct
and complete.

8.3.3 What Hypotheses Can DL-Miner Mine?

The language bias L := (DL, `max, pmin, GR, n) is a parameter of DL-Miner

which, along with the seed signature Σ, specifies the set H of hypotheses under
consideration. The language bias L is a “flexible” parameter because it allows
for constructing concepts of arbitrary shapes (up to a certain length). In the
following, we give some examples of L and show what types of hypotheses the
algorithm subsequently constructs. In particular, we fix `max := ` and pmin := p,
but vary DL, GR, and n, see Table 8.1.

As Table 8.1 shows, the language bias L1 produces EL GCIs where each
concept is not longer than `. In addition to the GCIs of L1, L2 adds RIs where
each role conforms to the templates GR := {R, R ◦ R}, i.e. RIs of the form
R v S and R ◦R v S, where R, S ∈ NR. In addition to those, L3 produces ALC
GCIs (not longer than `) and RIs with inverse roles. Finally, the language bias
L4 generates the same axioms as L3 does, but additionally combines them in pair
sets, i.e. allows for two-axiom hypotheses.
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Language bias Types of hypotheses
DL GR n

L1 EL ∅ 1 {α}, where α := C1 v C2, C1, C2 are concepts from
EL(`)

L2 EL {R, R ◦R} 1 {α}, where α := C1 v C2 or α := S1 v S2, C1, C2 are
concepts from EL(`), S1, S2 ∈ GR, R ∈ NR

L3 ALC {R, R−, R ◦ S} 1 {α}, where α := C1 v C2 or α := S1 v S2, C1, C2 are
concepts from ALC(`), S1, S2 ∈ GR, R,S ∈ NR

L4 ALC {R, R−, R ◦ S} 2 {α1}, {α1, α2}, where αi := C1 v C2 or αi := S1 v S2,
i ∈ {1, 2}, C1, C2 are concepts from ALC(`), S1, S2 ∈
GR, R,S ∈ NR

Table 8.1: Language biases and resulting types of hypotheses

Considering Table 8.1, if we denote a set of hypotheses of Li, i ∈ {1, 2, 3, 4},
by Hi, then the following holds: H1 ⊆ H2 ⊆ H3 ⊆ H4. We say that a language
bias L2 is more expressive than L1 if H1 ⊆ H2. We can continue Table 8.1
and define new language biases that are more expressive than the listed ones,
i.e. we can further extend GR, increase n, and use a more expressive DL, e.g.
SROI. Since suitable refinement operators are so far designed for DL ≤ ALC,
the current implementation of DL-Miner is able to construct hypotheses of the
following shape:

• {α1, . . . , αn}, where αi := C1 v C2 or αi := S1 v S2, i ∈ {1, . . . , n}, C1, C2

are concepts from ALC(`), S1, S2 ∈ GR.

Example 8.1 shows some of the hypotheses acquired by DL-Miner for the
Kinship ontology. We have eyeballed the acquired hypotheses and picked those
that have a good quality and look interesting.

Example 8.1. Consider the Kinship ontology in Example 2.3. We run DL-Miner

with the following parameters:

Σ := {Man, Woman, Father, Mother, hasChild, marriedTo},

DL := ALC, `max := 4, pmin := 1, GR := ∅, n := 1, Q := {support, assump-
tion, confidence}.
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Given these input parameters, DL-Miner mines 536 hypotheses whose con-
fidence exceeds 0.9. The following are some examples of them:

Woman u ∃hasChild.> vMother (H1)

Man u ∃hasChild.> v Father (H2)

∃hasChild.> v ∃marriedTo.> (H3)

∃marriedTo.> v ∃hasChild.> (H4)

∃marriedTo.Woman vMan (H5)

∃marriedTo.Mother v Father (H6)

Father v ∃marriedTo.(∃hasChild.>) (H7)

Mother v ∃marriedTo.(∃hasChild.>) (H8)

∃hasChild.> vMother t Father (H9)

∃hasChild.> vMan tWoman (H10)

∃hasChild.> v Father tWoman (H11)

The hypotheses H1 and H2 provide descriptions for Mother and Father.
The hypotheses H3 and H4 indicate interesting correlations in the data: being
married implies having children and vice versa. The hypotheses H1, H2, H3, H4

are already discussed in Chapter 3, as they can be obtained by other approaches.
In addition to these hypotheses, DL-Miner acquires the hypotheses H5, H6,
H7, H8, H9, H10, H11 (and many others) due to the flexible language bias. The
hypothesis H5 provides a description for Man, while the hypotheses H6 – H9

encode additional knowledge about Father and Mother.

The hypotheses H10 and H11 show some issues that can arise while mining hy-
potheses using DL-Miner. More specifically, the hypothesis H10 seems carrying
no useful knowledge in comparison to H9. The reason is that the input onto-
logy Kinship (its TBox) does not capture that everyone is either a man or woman,
i.e. Kinship 6|= > vMan tWoman. If the ontology captured this information, the
hypothesis H9 would be uninformative and would not be mined (as DL-Miner

returns only informative hypotheses by default). On the other hand, the hypo-
thesis H11 seems to be superfluous given H9 since Kinship |= Mother v Woman.
Thus, acquired hypotheses can appear to be superfluous due to a poor input
TBox and due to other hypotheses considered in the context of the given TBox.
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8.3.4 DL-Miner in Ontology Learning Dimensions

In Chapter 3 we introduced the ontology learning (OL) dimensions and located
OL approaches in these dimensions, see Table 3.3. We now place DL-Miner

in the OL dimensions so that it can be compared with other approaches, see
Table 8.2.

Input
Data

Target Knowledge Semantics Supervision

CDL ABox,
TBox,
target
A

A ≡ C, where A ∈ NC , C
is a concept from ALC(`)

OWA, partial
consideration
of TBox

supervised: positive
and negative ex-
amples; unsupervised:
CWA

SSI RDF ⊔C′∈X C ′ v ⊔D′∈Y D
′,

where X,Y ⊆ C and C :=
{A, ∃R.A, ∃R−.A | A ∈
NC ∧ R ∈ NR}; R v S,
R ◦ R v R, where R,S ∈
NR

CWA, no TBox unsupervised

KBC ABox,
TBox

⊔C′∈X C ′ v ⊔D′∈Y D
′,

where X,Y are sets of con-
cepts from FLE(δ)

OWA, full
consideration
of TBox

supervised: interact-
ive learning where a
domain expert veri-
fies axioms or provides
counterexamples

BelNet ABox,
TBox

C v D, C u D v ⊥,
where C,D ∈ C and C :=
{A, ∃R.> | A ∈ NC ∧ R ∈
NR}

CWA, mostly
disregards
TBox

unsupervised

DL-
Miner

ABox,
TBox

{α1, . . . , αn}, where αi :=
C1 v C2 or αi := S1 v
S2, i ∈ {1, . . . , n}, C1, C2

are concepts from ALC(`),
S1, S2 ∈ GR

OWA, full
consideration
of TBox

unsupervised

Table 8.2: DL-Miner and other OL approaches in OL dimensions

As Table 8.2 shows, in comparison to other approaches, DL-Miner advances
the expressivity of hypotheses under consideration. In contrast to CDL, complex
concepts are permitted to be on both the LHS and RHS of a GCI, see H3, H4, H9

in Example 8.1. In contrast to SSI, KBC, and BelNet, DL-Miner can acquire
more expressive GCIs with concepts from ALC(`) and more expressive RIs.

Besides constructing expressive hypotheses, DL-Miner evaluates them rig-
orously. Multiple measures are used to evaluate different aspects of hypothesis
quality. Not only an axiom can be evaluated, but also a set of axioms jointly.

One of the main differences between DL-Miner and other approaches is that
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it respects the standard semantics of DLs and fully considers the TBox. In par-
ticular, the conventional OWA is respected. As a result, it evaluates hypotheses
more cautiously than approaches using the CWA, i.e. SSI and BelNet, whose
quality measures can be misleading. An evident example of this is the evaluation
of disjointness axioms, see Example 8.2.

Example 8.2. Consider the ontology O := {A(a1), . . . , A(am), B(b1), . . . , B(bn)}.
Under the CWA the individuals a1, . . . , am are assumed to be the instances of
¬B and the individuals b1, . . . , bn are assumed to be the instances of ¬A. As
a consequence, the disjointness axiom α := A v ¬B (A is disjoint from B)
is assumed to be of high quality. However, it is possible that information in
O is just incomplete and many of a1, . . . , am are unknown instances of B, as
well as many of b1, . . . , bn are unknown instances of A. In this case, the qual-
ity of α is significantly overestimated and misleading. In contrast, under the
OWA α is evaluated cautiously: sup(α,O) = 0, asm(α,O) = m + n. For
comparison, under the CWA sup(α,O¬) = m + n, asm(α,O¬) = 0, where
O¬ := O ∪ {¬B(a1), . . . ,¬B(am),¬A(b1), . . . ,¬A(bn)}.

By its design DL-Miner is unsupervised, i.e. it constructs and evaluates all
hypotheses without any human intervention. No training examples are required
from a domain expert. A user only interacts with the output of the algorithm,
i.e. at the final stage once all hypotheses are constructed and evaluated.

According to Theorem 8.1, DL-Miner guarantees completeness, i.e. con-
structs and evaluates all hypotheses satisfying the input restrictions. In this
sense, the approach resembles KBC, see Section 3.2.3, that also guarantees a
certain form of completeness, see Lemma 3.1. Please note that completeness is
rather hard to achieve for a flexible language bias that permits arbitrary concepts.
To be more specific, completeness is easy to achieve if concepts are specified by
some templates GC , see Example 8.3.

Example 8.3. Consider the templates GC := {X, ∃S.X}. We can easily generate
all GCIs of the form A v B, A v ∃R.B, ∃R.A v B, ∃R.A v ∃R.B, where
A,B ∈ NC , R ∈ NR. In other words, we straightforwardly achieve completeness
for these forms of GCIs specified by GC .

However, as discussed in Section 7.2.2, it is hard to enumerate all shapes of
GCIs, where concepts are from some DL and at most as long as `max. A brute-
force procedure that generates all such concepts is doomed even for inexpressive
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DLs, e.g. EL. Clearly, it can result in many unsuitable concepts unnecessary
increasing the hypothesis space.

8.4 Implementation of DL-Miner

DL-Miner (including all its subroutines) is implemented in Java (version 8.91)
using the OWL API3 (version 3.5.0). As said above, the implementation currently
supports DLs up to ALC since suitable refinement operators are available for
these DLs. To perform the required reasoning tasks, we use Pellet [SPG+07]
(version 2.3.1) as it shows better performance on our experimental ontologies
than other popular reasoners that support the OWL API. The implementation is
publicly available.4 In the following, we discuss optimisations used and possible
user interaction scenarios for DL-Miner.

8.4.1 Optimisations and Heuristics

In general, DL-Miner constructs a vast set H of hypotheses. According to
Lemma 7.2, the size of H grows rapidly with the number of concepts in C and
roles in R. In practice, these sets, particularly C, can be large. Indeed, the
algorithm constructs all concepts modulo equivalence satisfying the input con-
straints. Consequently, if the constraints are not extremely limiting, a set C of
concepts is likely to be large. This results in a set H of hypotheses which is even
larger. Since, besides constructing hypotheses, DL-Miner also evaluates them,
this can be computationally costly for a vast set H.

8.4.1.1 Incomplete Construction of Hypotheses

There are several ways to deal with a vast set H of hypotheses. One possibility is
to construct a smaller set H′ ( H of hypotheses, i.e. sacrifice completeness. As
the size of H is normally determined by the size of C, we can construct only most
promising concepts C′ ( C amongst all suitable concepts C (where promisingness
is estimated by concept support). The standard heuristic which can be employed
for this task is beam search. Beam search expands only k currently most promising
nodes in a search tree instead of expanding all of them, where k is a predefined

3http://owlapi.sourceforge.net
4https://github.com/slava-sazonau/dlminer

http://owlapi.sourceforge.net
https://github.com/slava-sazonau/dlminer
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number. DL-Apriori, see Algorithm 8, can be easily adjusted to perform beam
search such that only k most promising specialisations are added to the queue of
candidates for further refinement. One can also limit the maximal role depth of
a concept in addition to the maximal length. This is reasonable if we consider
the experimental results in Section 9.1.1.

Another possibility for reducing a set H of hypotheses is to handle redundancy
while constructing concepts C. To be more specific, some concepts can contain
superfluous parts with respect to the TBox, see Example 8.4.

Example 8.4. Consider the ontology O := T ∪ A, where the TBox T := {A v
B, B v C}. Assume we are specialising the concept A. Then, the specialisations
of A include A u B and A u C. However, T |= A ≡ A u B and T |= A ≡ A u C.
In other words, the concepts A u B and A u C contain the superfluous parts B
and C, respectively, with respect to T .

Specialisations with superfluous parts can be detected via subsumption check-
ing. Given a concept C, a specialisation C ′ ∈ ρ(C) of C contains superfluous parts
with respect to the TBox T if T |= C ≡ C ′. Such a specialisation is not spe-
cialised further and not included in the final set C of concepts. DL-Apriori

can be straightforwardly altered to take this into account. Please notice that a
proper refinement operator ρ handles superfluous parts automatically if the TBox
is empty. Since the TBox is not empty in general, we need to check specialisations
with respect to it in order to avoid concepts with superfluous parts.

Another way of reducing the number of hypotheses is using the logical and
readability measures to filter out deficient hypotheses. In particular, if a hypo-
thesis is inconsistent, uninformative, or redundant, it is sensible to discard it.
In other words, we save computing other quality measures for such hypotheses.
Please recall that syntactic variations are already avoided during hypothesis con-
struction in Algorithm 6.

8.4.1.2 Incomplete Evaluation of Hypotheses

As an alternative to neglecting some hypotheses, we can construct all hypotheses
H but evaluate them only partially. The simplest way is to pick cheap quality
measures and only evaluate hypotheses by those measures ignoring others. In this
case, however, we risk overlooking some important information about hypothesis
quality.
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A more careful approach is to evaluate all hypotheses by cheap quality meas-
ures, identify a certain number k < |H| of most promising ones based on their
values, and fully evaluate those hypotheses. Hence, cheap measures can act as
heuristics for promisingness of hypotheses. Instead of specifying a number k of
hypotheses, we can specify some thresholds for heuristics and only completely
evaluate hypotheses that satisfy those thresholds. The basic axiom measures,
such as support and confidence, can be used as heuristics.

Finally, hypothesis evaluation can be run as an anytime algorithm5 such that
it aims at evaluating all hypotheses but can be interrupted at any time to return
hypotheses evaluated so far. In this case, it is important to evaluate promising
hypotheses as soon as possible. As above, promising hypotheses can be identified
by the basic axiom measures acting as heuristics.

8.4.2 User Interaction

Once DL-Miner terminates, it returns hypotheses H, the quality function qf(·),
and ranking function rf(·). There are many possible ways for a domain expert
to use the output of DL-Miner. In the simplest scenario, she uses the ranking
function to explore hypotheses. She starts from the best rank, i.e. optimal
hypotheses, and then reviews hypotheses of the next rank. The expert proceeds
so until a certain number of hypotheses is reviewed.

The domain expert can use the quality values directly to navigate through the
set of hypotheses. She picks some quality measure of interest, e.g. confidence,
and orders all hypotheses by that measure. Then, she reviews the hypotheses in
descending order of quality values and stops once a certain number of hypotheses
is reviewed.

The expert can also combine both aforementioned ways of interaction, i.e.
use the ranking and quality function simultaneously. More specifically, she can
order hypotheses in each rank by a quality measure of choice. The latter is
more complex but more reliable because the ranking ensures that dominating
hypotheses are reviewed before dominated ones.

In order to reduce the total number of hypotheses to be examined, the user
can skip those which do not meet minimal quality thresholds. For example, the
confidence threshold confmin = 0.9 selects all hypotheses that have a confidence

5An anytime algorithm is an algorithm that returns a valid result even if it is interrupted
before it ends. The longer it runs, the better result it is expected to return.
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value greater than 0.9 (which is relatively high). Such thresholds, however, should
be chosen cautiously as they may prune useful hypotheses. We investigate useful-
ness of hypotheses acquired by DL-Miner and gain insight into user interaction
in our case study with domain experts in Section 9.4.2.

8.5 Summary

This chapter concludes conceptual contributions of this thesis. We have pro-
posed an approach for General Terminology Induction. Its architecture consists
of four functional blocks: Ontology Cleaner, Hypothesis Constructor, Hypothesis
Evaluator, and Hypothesis Sorter. We have described respective techniques and
algorithms throughout the thesis and combined all of them in the algorithm called
DL-Miner in this chapter. We have proved its correctness, completeness, and
termination. We have compared its general properties with ones of related OL
approaches. We have suggested optimisations and heuristics for DL-Miner and
discussed some user interaction scenarios. The next chapter is devoted to in-depth
empirical evaluation of DL-Miner and case studies.



Chapter 9

Evaluation of DL-Miner

We have discussed the design, implementation, and properties of DL-Miner, an
approach for General Terminology Induction, see Definition 4.2. This chapter
is devoted to the empirical evaluation of the approach. We start by describing
the data used in our experiments. In the first experiment, we investigate correl-
ations between hypothesis quality measures and computational performance of
the algorithm. Then, we compare DL-Miner with related approaches to On-
tology Learning (OL). Finally, we run case studies with human experts to gain
insight into usefulness of hypotheses acquired by DL-Miner and its potential
applications.

All experiments are implemented in Java (version 8.91) using the OWL API
(version 3.5.0). The experiments are executed on the following machine: Linux
Ubuntu 14.04.2 LTS (64 bit), Intel Core i5-3470 3.20 GHz, 8 GB RAM. We use
Pellet (version 2.3.1) for reasoning.

9.1 Experimental Data

As part of our experimental data, we have chosen BioPortal1 which is a large re-
pository of biomedical ontologies constantly curated and maintained by domain
experts. In other words, BioPortal is a corpus of great significance for the com-
munity. We first analyse BioPortal and describe axioms occurying in it with the
aim to justify our conjecture, see Section 5.1, that people tend to write short and
readable axioms while building ontologies.

1http://bioportal.bioontology.org
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In order to evaluate DL-Miner, we construct two disjoint corpora of ontolo-
gies. The first one, called handpicked corpus, consists of ontologies hand-picked
from related work. The second one, called principled corpus, is automatically
constructed from BioPortal. We define suitable ontology metrics and then use
them to describe ontologies in both corpora.

9.1.1 BioPortal and Axiom Diversity

BioPortal (snapshot 27.01.2015 [MP15]) contains 329 ontologies of various sizes
and expressivity. There are 311 consistent ontologies, 7 inconsistent ontologies,
and the rest have caused the reasoner, Pellet (version 2.3.1), to halt due to an
internal error. In order to gain insight into readability and motivate some design
choices made for the readability measures in Section 5.1, we design and conduct
an experiment. We aim at answering the following research question:

RQ Do domain experts use short and simple axioms more frequently than long
and complex axioms?

If the research question can be answered positively, shorter and simpler hy-
potheses should be preferred as suggested in Section 5.1.

9.1.1.1 Experimental Design

In order to answer the research question, we measure syntactic complexity of each
TBox axiom, i.e. a GCI or RI, in the corpus. We only consider TBox axioms
because a hypothesis can contain only TBox axioms. To measure the complex-
ity of an axiom, we calculate the standard metrics commonly used in DLs and
OWL, i.e. the number of complex concepts occurring in the axiom, the number
of existential restrictions, universal restrictions, conjunctions, disjunctions, nega-
tions, etc. In addition, we measure the length, see Definition 5.1, and role depth,
Definition 5.3, of an axiom. We also record the ontology that contains the axiom.

9.1.1.2 Results

In order to interpret the results correctly, we need to take the corpus bias into
account. As we have found out, 81 out of 329 ontologies do not use complex
concepts, i.e. they are used to model solely concept and role hierarchies. Since
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they constitute ≈ 25% of the corpus, it is considerably biased towards easy on-
tologies. To make the analysis more rigorous, we exclude all ontologies which do
not use complex concepts from the results. Thus, 248 ontologies are retained.
We gather all axioms of those ontologies, which results in 9,133,219 axioms in
total, and extract their metrics. Table 9.1 shows the proportion of axioms using
a particular DL constructor.

DL constructor C ∃R.C C uD ∀R.C C tD ¬C
Axioms, % 99.73 67.82 1.15 0.46 0.09 0.01

Table 9.1: Use of DL constructors by axioms in BioPortal (ontologies without
complex concepts are excluded)

According to Table 9.1, 99.73% of axioms are concept inclusions. Hence, all
role inclusions constitute just 0.27% of axioms. GCIs constitute around 69% of
axioms. Interestingly, almost all of them, 98.2%, use existential restrictions that
occur in 67.82% of axioms overall. This is much more than all other construct-
ors (in descending order): conjunctions occur in 1.15%, universal restrictions in
0.46%, disjunctions in 0.09%, negations in 0.01% of all axioms. In addition,
disjointness axioms, which constitute 1.22% of all axioms, augment the fraction
of conjunctions, if interpreted as C u D v ⊥, or the fraction of negations, if
interpreted as C v ¬D.2

While Table 9.1 shows how frequently common DL constructors are used
in the axioms, it does not show how complex the axioms are. To investigate
this, we measure the length and depth of the axioms using Definition 5.1 and
Definition 5.3, respectively. In particular, we compare the proportions of short
and long axioms, the proportions of shallow and deep axioms, see Table 9.2.

mean mode 5% 25% 50% 75% 95% 99% 99.9%
length 2.63 3 2 2 3 3 3 3 5
depth 0.69 1 0 0 1 1 1 1 3

Table 9.2: Length and role depth of axioms in BioPortal (ontologies without
complex concepts are excluded)

In Table 9.2 mean and mode are the standard statistical notions which are
calculated across all gathered axioms. For length, the mean is 2.63 and mode is

2In the OWL API disjointness axioms are handled not as concept inclusions, but as a separate
type of axioms.
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3, i.e. the most frequently appearing length of axioms is 3. For depth, the mean
is 0.69 and mode is 1, i.e. the most frequently appearing depth of axioms is 1.
Considering the results in Table 9.1, those are likely to be axioms with existential
restrictions.

The numbers with the “%” sign are percentiles.3 As Table 9.2 shows, 99% of
axioms have the length at most 3 and the role depth at most 1, 99.9% of axioms
have the length at most 5 and the role depth at most 3. Hence, both long and
deep axioms are used extremely rarely. Thus, we can answer the research question
positively : domain experts do tend to write short and simple axioms.

9.1.2 Ontology Metrics

In order to describe our experimental ontologies, we define the following metrics
which are grouped with respect to the attribute they account for. Let O := T ∪A
be an ontology.

• Ontology expressivity The metric DL shows the expressivity4 of O, i.e.
the DL used.

• ABox size The metrics |in(A)|, CA, RA count the numbers of individuals,
concept and property assertions, respectively, in the ABox A. These jointly
describe the size of the ABox, i.e. the higher the values are, the bigger the
size is.

• Average ABox vertex degree Let G := (V,E) be the graph of the ABox
A, where V := in(A), E := {〈a, b〉 | R(a, b) ∈ A ∧ a, b ∈ V }. The degree
of a vertex a in G is defined as follows: deg(a,G) := |{〈a, b〉 | 〈a, b〉 ∈ E}|.
As the first metric for ABox graph complexity, we use the average vertex
degree, i.e. deg(A) := 1

|V |
∑

a∈V deg(a,G).

• Average ABox connected component size Besides the average vertex
degree of the graph, we measure how many individuals a connected com-
ponent of the graph contains on average. We say that vertices a and b

are connected in the ABox graph G := (V,E) if there is a path between
a and b in G. Let con(a, b,G) := true if a and b are connected in G and

3A percentile indicates the value below which a given percentage of observations fall.
4Expressivity is determined via the standard OWL API implementation which performs only

syntactic analysis.
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con(a, b,G) := false otherwise. A connected component of a ∈ V is the
number of all vertices connected to a in G, i.e. con(a,G) := {b ∈ V | con(a, b,G)}.
If a and b are connected, then a and b are in the same connected connec-
ted component. Thus, we can count the total number of unique connected
components in G as the number of unique sets, i.e. k := |

⋃
a∈V {con(a,G)}|

(please notice that k is the size of the set of sets but not the size of the
union set). Then, the average size of a connected component is as follows:
con(A) := |V |

k
.

• Ontology vocabulary size The set of all concept and role names of O
is called the vocabulary of O, i.e. voc(O) := crn(O). Thus, the metrics
|voc(A)| and |voc(T )| measure the size of the vocabulary of the ABox A
and TBox T , respectively. Please notice that individual names are excluded
as they describe the size of the ABox, but not its vocabulary.

• Jaccard index of ABox and TBox vocabularies The metric jvoc(A, T ) :=
|voc(A)∩voc(T )|
|voc(A)∪voc(T )| is the Jaccard index 5 of the ABox and TBox vocabularies. It
shows how many terms the ABox A and TBox T share, i.e. the higher the
value is, the more terms are shared.

Why are these ontology metrics informative? They capture how many hy-
potheses can possibly be learned from an ontology and how hard an ontology is
for learning. The ABox size, ABox graph complexity, and ABox vocabulary size
describe how rich the ABox is. The richer the ABox is, the more hypotheses can
possibly be acquired from it. However, finding good hypotheses becomes harder
because the hypothesis space is larger. Moreover, there is an evidence that the
size of an ontology is a good indicator of computational performance of reason-
ing [SSB14]. Hence, evaluating the quality of each hypothesis is expected to be
computationally more expensive for larger ontologies. Expressivity of an ontology
additionally informs how costly reasoning operations can be for that ontology.

The overlap of TBox and ABox vocabularies suggests how much knowledge
they share. A low overlap shows that little of the ABox knowledge is represented
by the TBox. In this case, acquired hypotheses can potentially “fill the gap”.
On the other hand, a high overlap may mean that the TBox sufficiently “covers”
the knowledge encoded in the ABox. Consequently, little new knowledge can be
acquired from the ABox to supplement the TBox. Nonetheless, hypotheses can

5The size of the intersection divided by the size of the union
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still reveal some missing bits. Please note that all these metrics are syntactic, e.g.
they neglect the fact that TBox terms can be connected to the ABox implicitly, see
Example 7.1. We use them as a guidance for assessing and comparing ontologies.

9.1.3 Handpicked Corpus

The handpicked corpus is composed of ontologies frequently used in related work,
in particular in [FDE08, LABT11]. Additional ontologies are taken from the DL-

Learner repository,6 Protégé OWL repository,7 and TONES repository.8

We have selected the ontologies based on the following criteria: each ontology
should contain at least minimal data to learn from (at least 15 individuals and
15 role assertions). We also ensure that a reasoner can handle every ontology.
The resulting corpus is available online [Saz17] and shown in Table 9.3 where the
metrics are as described in Section 9.1.2.
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alzh AL 150 106 854 5.7 150 40 0 0
arch ALC 19 26 26 1.4 3.8 10 13 0.77
carc ALC(D) 22,372 22,372 40,666 1.8 65.8 113 146 0.77
cin ALCOF 45 45 76 1.7 45 7 37 0.19
eart ALCHOF(D) 58 58 55 0.9 14.5 23 2,482 0.01
econ ALCH 482 649 555 1.2 5.3 29 380 0.04
fam AL 202 1,052 728 3.6 20.2 18 18 0.56
fin ALCOIF 17,941 17,941 47,248 2.6 8,970.5 52 76 0.68
heart AL(D) 280 275 1,080 3.9 280 9 11 0.82
krk SHI 420 525 1,508 3.6 4 25 40 0.55
lubm AL(D) 1,555 1,623 4,115 2.6 1,555 26 68 0.38
mam AL(D) 975 975 2,883 3 975 18 22 0.82
mdm ALCHOF(D) 112 130 169 1.5 2 82 215 0.38
mut AL(D) 14,145 14,145 26,533 1.9 61.5 60 91 0.66
ntn SHOIN (D) 724 724 1,636 2.3 2.8 64 78 0.82
sur AL(D) 2,979 2,979 6,008 2 175.2 20 49 0.41

Table 9.3: Handpicked corpus

Table 9.3 shows that the ontologies fin, carc, mut have the largest ABoxes.
fin has the most complex ABox graph and carc has the largest ABox vocabulary.
Please notice that the corpus contains expressive ontologies, e.g. ntn, mdm, fin,

6https://github.com/AKSW/DL-Learner
7http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
8http://owl.cs.manchester.ac.uk/repository

https://github.com/AKSW/DL-Learner
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository
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Eart, along with inexpressive “toy” ontologies, e.g. alzh, fam, heart, lubm. All
ontologies are consistent.

9.1.4 Principled Corpus

The principled corpus is automatically constructed from BioPortal. As in Sec-
tion 9.1.1, we use snapshot 27.01.2015 that consists of 329 ontologies. We select
all ontologies which contain at least 100 individuals and 100 role assertions. As
for the handpicked corpus, this is to ensure that there is some data in each on-
tology for learning. The resulting corpus is available online [Saz17] and shown in
Table 9.4 where the metrics are as described in Section 9.1.2.
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bof ALCF(D) 315 267 166 0.5 1.7 78 245 0.32
brid SROIN (D) 250 255 239 1 22.7 6 1,708 0
clo SHIN (D) 17,597 17,597 17,762 1 2 8 10 0.80
ctx ALCOIN (D) 282 282 1,123 4 16.6 129 312 0.41
derm ALUF(D) 6,101 6,101 6,099 1 3,050.5 2 6,109 0
gly SHOIQ(D) 1,784 3,011 29,405 16.5 77.6 109 282 0.37
heio ALCHIF(D) 1,605 4,895 2,982 1.9 20.3 119 134 0.89
iceci AL(D) 2,229 2,229 243 0.1 1.1 3 2,233 0
icf ALCHOIF(D) 4,807 3,353 3,244 0.7 3.1 20 1,637 0.01
icps SHOIQ(D) 763 1,540 701 0.9 1.6 65 567 0.11
mo ALEOF(D) 698 744 136 0.2 1.1 100 314 0.31
natp SHOIN (D) 22,012 22,012 20,751 0.9 2.2 538 9,478 0.06
ncit SH(D) 40,069 0 89,292 2.2 607.1 12 110,815 0
oad ALH 2,465 0 10,889 4.4 85 178 5,899 0
ogdi SHIN (D) 363 363 645 1.8 14 162 459 0.33
piero ALRI+ 73,891 71,844 216,637 2.9 671.7 19 107 0.18
sitb ALCON (D) 163 284 230 1.4 4 103 217 0.47
sse SHIF 1,323 1,109 1,214 0.9 12.1 223 260 0.86
sso ALIF(D) 158 159 356 2.3 31.6 16 182 0
sweet SHOIN (D) 2,152 2,448 794 0.4 1.2 246 4,791 0.05
swo ALRI + (D) 116 349 13,506 116.4 116.0 15 3,827 0

Table 9.4: Principled corpus

Table 9.4 shows that the ontologies piero, ncit, natp, clo have the largest
ABoxes. piero, ncit, gly have relatively complex ABox graphs and natp has the
largest ABox vocabulary. For 7 ontologies TBox and ABox signatures do not
overlap, e.g. brid, ncit, swo. Please notice that, in comparison to the handpicked
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corpus, see Table 9.3, the principled corpus consists of considerably more ex-
pressive ontologies. In addition, while all ontologies in the handpicked corpus are
consistent, the principled corpus contains two inconsistent ontologies: bof and
ogdi.

9.2 Evaluating Quality Measures and Performance

In Chapter 5 we have defined the hypothesis quality measures quantifying readab-
ility, logical quality, and statistical quality. While some measures capture similar
aspects of quality, others are supposed to be rather orthogonal. As examples of
the former, the basic statistical measures are simplified versions of the main stat-
istical measures. As examples of the latter, the logical and statistical measures
are designed to evaluate different dimensions of quality; support, assumption,
and contradiction are designed to capture independent, complementary aspects
of statistical quality.

9.2.1 Research Questions

It is worthwhile to investigate whether the quality measures behave in practice
in the same way as it is suggested by their definitions. This can be clarified by
examining their mutual correlations. In particular, if there is an evidence that a
measure q1 strongly correlates with a measure q2, it suggests (but does not imply)
that only one of them should be used. Such a fact could be valuable information
if computing q1 is more expensive than q2 or vice versa.

In addition to correlations between the measures, we investigate how expensive
their computation is and which factors influence its performance. That evidence
coupled with correlations should inform the choice of measures for evaluating
hypotheses. We also compare the computational performance of the subroutines
of DL-Miner. Thus, the experiment is aimed at investigating the following
research questions.

RQ1 How do the quality measures correlate? Do related measures strongly cor-
relate? Do unrelated measures not correlate?

RQ2 How costly are the quality measures? Which factors influence computa-
tional performance of hypothesis evaluation?



9.2. EVALUATING QUALITY MEASURES AND PERFORMANCE 191

RQ3 Which subroutines of DL-Miner are more expensive than others?

9.2.2 Experimental Design

We design the experiment as follows. As experimental data, we use the hand-
picked and principled corpus, see Table 9.3 and Table 9.4. We run the experiment
on each corpus independently and compare the results. For each ontology O, we
run DL-Miner, see Algorithm 11, with the following parameters:

• the seed signature Σ is automatically extracted from O as suggested in
Section 7.2.1;

• the language bias L is specified as follows:

– DL = ALC (determines what complex concepts are constructed),

– pmin = 10 (determines which concepts are deemed to be insufficiently
supported by the data and therefore skipped),

– `max = 4 (sets the maximal permitted length for concepts),

– GR = {R, R−, R ◦ S} (determines what complex roles are construc-
ted),

– n = 1 (sets the maximal number of axioms in a hypothesis);

• the set Q of quality measures comprises all measures defined in Chapter 5.

As we run the experiment for multiple ontologies (including relatively com-
plex ones), we fully evaluate at most 500 random hypotheses per ontology for
feasibility considerations (the total number of evaluated hypotheses acquired for
all ontologies is much greater). Ideally, we would vary this threshold and invest-
igate how results change, i.e. run sensitivity analysis. However, the latter would
be hardly feasible as we run the experiment for multiple ontologies. In addition,
we have reasons to believe that results would not change significantly for higher
thresholds since 500 is a sufficiently high number of hypotheses sampled randomly
for each ontology.

For each hypothesis, we record the time it took to evaluate its quality meas-
ures. We also record the time of running the subroutines, e.g. concept con-
struction, role construction, hypothesis evaluation, etc. We also capture the time
of computing entailments required to compute the complex measures, see Sec-
tion 6.1.
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Once the algorithm terminates, we discard inconsistent, uninformative, and
redundant hypotheses from the output as mentioned in Section 8.4.1. For all
experimental ontologies, the algorithm has terminated and returned evaluated
hypotheses. We first discuss correlations between the quality measures (RQ1)
and then computational performance (RQ2, RQ3).

9.2.3 Mutual Correlations of Quality Measures

In order to answer RQ1, we compute mutual correlations of the quality measures
across all hypotheses in a corpus. We present the results in the form of a correla-
tion matrix, which is a symmetric matrix9 of correlation coefficients. In addition,
for each mutual correlation, we run a statistical significance test with significance
level 0.05.10

Figure 9.1 shows correlation matrices for the handpicked and principled cor-
pus. Positive correlations are shown in blue, negative correlations are shown in
red, colour intensity shows correlation strength, i.e. a higher intensity indicates
a higher correlation coefficient (by absolute value). Insignificant correlations are
marked by crosses.

The quality measures are abbreviated in Figure 9.1 as follows: (B)SUPP –
(basic) support, (B)ASSUM – (basic) assumption, (B)CONF – (basic) confidence,
(B)LIFT – (basic) lift, (B)CONVN – (basic) negated conviction, (B)CONVQ –
(basic) assumed conviction, CONTR – contradiction, FITN – fitness, BRAV –
braveness, COMPL – complexity, DISSIM – dissimilarity. Please recall that basic
contradiction equals main contradiction by Lemma 5.15. Therefore, only main
contradiction is shown.

Let us now discuss the results in Figure 9.1. We highlight strong and weak
correlations and discuss which of them are expected and unexpected.

Perhaps, the most evident observation is that all main measures, except neg-
ated conviction for the principled corpus, strongly and positively correlate with
their basic counterparts. We observe this for both corpora by noticing lines of
dark blue squares parallel to the main diagonal. This result is expected because
the basic measures are approximations of the respective main measures. Another
strong and positive correlation occurs between assumption and braveness which

9A symmetric matrix is a square matrix which is equal to its transpose, i.e. its elements are
symmetric with respect to the main diagonal.

10If the p-value is higher than the significance level, the null hypothesis stating that the
correlation is insignificant is not rejected.
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(a) Handpicked corpus
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Figure 9.1: Mutual correlations of quality measures for handpicked (a) and prin-
cipled (b) corpus: positive correlations are in blue, negative correlations are in
red, crosses mark statistically insignificant correlations (significance level 0.05)
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is also expected since these measures count guesses (though differently) that a
hypothesis makes in the data.

The difference between the basic and main measures is worth additional in-
vestigation. Overall, the basic and main measures differ for ≈ 3.6% of hypotheses
in the handpicked corpus and for ≈ 4.1% of hypotheses in the principled corpus.
In order to uncover what causes the differences, we have identified ontologies
where the basic and main measures differ. Those are 5 and 8 ontologies in the
handpicked and principled corpus, respectively. It turns out that all of those on-
tologies contain explicit or implicit negative information in their ABoxes. More
specifically, we have extracted the bottom module of each ontology given the sig-
nature of its ABox, see Section 7.2.1, and found out that in all cases this module
contains negations or disjointness axioms, i.e negative information. Moreover, it
turns out that a module contains negative information mainly for those ontolo-
gies where the basic and main measures differ (the exceptions are explained by
the fact that hypotheses are sampled randomly and by the parameters of the
algorithm). This observation suggests that negative information in the ABox
causes differences between the basic and main measures. This also follows from
their definitions, see Section 5.3.1.4.

Another noticeable result is that lift (main and basic) positively correlates
with length and depth which is rather unexpected. In other words, longer hy-
potheses are likely to be of higher quality if it is measured by lift. Hence, it
seems beneficial to construct and evaluate them. According to Definition 5.16,
this shows that a greater length of an axiom increases the chance that its LHS
and RHS have common instances divided by the chance that the LHS and RHS
are (statistically) independent. Among other observations are the positive correl-
ations between conviction and confidence (particularly for the principled corpus)
that capture similar aspects of quality, i.e. the direction and strength of the
association between the LHS and RHS of an axiom.

Besides positive correlations, Figure 9.1 shows some negative correlations, e.g.
between confidence and lift. By Definition 5.16 confidence equals lift multiplied
by the chance of the RHS to have an instance. On the other hand, axioms with the
RHS covering more instances are likely to be more confident. Therefore, higher
confidence is likely to cause lower lift and vice versa. Since lift positively correlates
with length and depth, confidence negatively correlates with these measures.

Another observation worth highlighting is the insignificant correlation between
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fitness and support for the handpicked corpus, see Figure 9.1a. This is expected
since these measures are designed to capture different aspects of hypothesis “fit”
to the data, see Example 5.23 and Example 5.24. Please notice that, in fact,
fitness and support do correlate for the principled corpus, see Figure 9.1b.

Overall, the principled corpus shows more correlations which are statistically
insignificant than the handpicked one. This happens probably because the prin-
cipled corpus consists of more expressive ontologies than the handpicked one. In
particular, as discussed above, its ontologies contain more negative information.
As a consequence, the measures tend to diverge more often and occasional correl-
ations are less likely to appear. This also explains why the correlations between
the basic and main measures are stronger for the handpicked corpus than for the
principled corpus.

Thus, we can answer RQ1 as follows: related measures do correlate signific-
antly, while unrelated measures do not (except the correlations between lift and
length and between lift and depth). In particular, strong correlations are evident
between the basic and main statistical measures and between assumption and
braveness.

In addition, we explore the axiom set measures for multi-axiom hypotheses.
For each ontology, we generate and evaluate 500 hypotheses of two axioms (n = 2)
and 500 hypotheses of three axioms (n = 3), where axioms are sampled ran-
domly from single-axiom hypotheses acquired from the ontology. Thus, a multi-
axiom hypothesis is obtained via putting together several single-axiom hypo-
theses. We investigate how frequently the fitness fit(H, ·) of a multi-axiom hy-
pothesis H differs from the sum of fitnesses of its axioms, i.e. its aggregated
fitness fitsum(H, ·) :=

∑
α∈H fit({α}, ·), where “·” stands for O,C,R. We count

the number of ontologies where the values of fit and fitsum differ for at least one
generated hypothesis and the total fraction of generated hypotheses with unequal
values. Table 9.5 shows the results.

Corpus Case Ontologies Hypotheses (%)
Handpicked fit > fitsum 16 48.6

(16 ontologies) fit < fitsum 14 1.4
Principled fit > fitsum 19 43.8

(21 ontologies) fit < fitsum 20 2.6

Table 9.5: Comparing fitness of a multi-axiom hypothesis with aggregated fitness
of its axioms
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According to Table 9.5, the measures differ for nearly half of all hypotheses
and for almost all ontologies. For most of those hypotheses, the fitness is higher
than the aggregated fitness. The case fit > fitsum can happen because axioms
can “interact”, i.e. a set of axioms entails all entailments of its axioms and can
additionally have entailments that are not entailed by any of its axioms inde-
pendently. Hence, a set of axioms can “earn” additional value of fitness. The case
fit < fitsum can happen because axioms within the set can repeat entailments
counted by fitness, e.g. consider the hypothesis H := {A v C, B v C} and the
ontology O := {A(a), B(a), C(a)}. As Table 9.5 shows, the first case is much
more likely to happen than the second one. Thus, aggregated fitness usually
underestimates fitness.

9.2.4 Computational Performance Results

In order to find out which quality measures are more computationally expensive
than others (the first part of RQ2), we investigate their relative performance.
More specifically, for each hypothesis, we record what fraction of its evaluation
time is spent to compute each measure. Then, we aggregate respective fractions
for all hypotheses in a corpus and calculate their means and confidence intervals
with confidence level 95%. In the same way, we investigate relative performance
of subroutines of the algorithm across ontologies (RQ3). Clearly, measuring rel-
ative computation time has its advantages and disadvantages. On the one hand,
it allows for aggregating results across all ontologies and comparing computation
costs irrespective of an input ontology. On the other hand, computation time
may vary significantly across ontologies and we are also interested in compar-
ing absolute (not relative) computation time. This will be investigated in the
following.

Figure 9.2 shows the results of measuring relative computation times. The
abbreviations in Figure 9.2a are as follows: AXM1 – the axiom measures which do
not consider negation, i.e. basic support, assumption, confidence, lift, assumed
conviction; AXM2 – the axiom measures which consider negation, i.e. main
support, assumption, confidence, lift, assumed conviction, contradiction, (basic
and main) negated conviction; FITN, BRAV – fitness and braveness; CONS, IN-
FOR, STREN – consistency, informativeness, logical strength; REDUN, DISSIM,
COMPL – redundancy, dissimilarity, complexity. As Figure 9.2a shows, the most
expensive quality measures are (in descending order) consistency, fitness, logical
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strength, and the statistical axiom measures.
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Figure 9.2: Relative performance of hypothesis quality measures (a) and sub-
routines (b) of DL-Miner for principled and handpicked corpus

According to Figure 9.2a, consistency is the most expensive measure which
is rather unexpected. Please recall that consistency tests whether the union
of a hypothesis and the ontology is consistent. Hence, it can be costly if the
ontology is large and/or expressive. Indeed, consistency is considerably more
costly for the principled corpus than for the handpicked one which is likely to be
a consequence of higher expressivity of the former. The higher cost of consistency
for the principled corpus decreases the relative contributions of other measures
for this corpus, i.e. fitness, logical strength, etc.

The relatively high computational cost of logical strength is explained by the
fact that its performance is measured by comparing a given hypothesis to all
others (in the worst case). Hence, it grows with the number of hypotheses to be
evaluated. Therefore, it should be compared with other measures cautiously.

As Figure 9.2a shows, considering negation in the statistical axiom measures
is relatively expensive. Therefore, given the strong correlation between the basic
and main measures, see Figure 9.1, it is sensible to replace the main measures
with their basic counterparts in certain cases, particularly if the ontology does not
contain negative information in the ABox. On the other hand, if other expensive
measures need to be computed, the relative cost of computing all axiom measures
is not so big.

The abbreviations in Figure 9.2b stand for the respective running times as
follows: OC – ontology parsing and classification; HC – hypotheses construction
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including concept and role construction; HP – entailment checks for subsequent
computation of the complex quality measures, i.e. fitness, braveness, dissimilarity,
and complexity, see Section 6.1; HE – hypothesis evaluation including computing
all quality measures. As the results show, the most expensive procedure of the al-
gorithm is hypothesis evaluation (given that all quality measures are computed).
Its cost can be significantly reduced if some expensive measures, shown in Fig-
ure 9.2a, are not computed. The cost of checking entailments for the complex
measures is relatively low in comparison to the hypothesis evaluation cost.

In order to gain insight into factors affecting the performance of hypothesis
evaluation (the second part of RQ2), we now consider each ontology independ-
ently. It is known that ontology properties influence performance of reason-
ing [GPS12]. In particular, one of the most influential factors is the size of an
ontology [SSB14]. Hence, ontology properties should also affect the performance
of hypothesis evaluation since it uses reasoning. To test this conjecture, we calcu-
late means and confidence intervals of the runtime of all costly measures except
logical strength (it is independent of the ontology) per ontology. Figure 9.3 shows
the results (please notice that the runtime scales are different).
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Figure 9.3: Average performance of hypothesis quality measures per ontology in
handpicked corpus (a) and principled corpus (b)

As Figure 9.3 shows (the abbreviations are the same as above), for most onto-
logies, it is relatively quick to evaluate a hypothesis: the average runtime is just
slightly above zero. Yet, there are clear outliers. The outliers for the handpicked
corpus, see Figure 9.3a, are carc, fin, mdm, mut. According to Table 9.3, carc, fin,
and mut have the largest ABoxes which explains the higher costs of computing
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the statistical axiom measures (AXM1 and AXM2) for them. The ontologies carc
and fin are relatively expressive that, along with their large ABox size, seems to
increase the cost of consistency checking. The high computation cost of fitness for
mdm may be caused by its high expressivity and relatively large ABox signature.

The outliers for the principled corpus, see Figure 9.3b, are gly, icf, piero. Ac-
cording to Table 9.4, these ontologies have relatively large ABoxes, particularly
piero. Although gly and icf have much smaller ABoxes than piero, they are more
expressive and have larger signatures. This may cause higher costs of computing
the statistical axiom measures for these ontologies. The low costs for ncit and
oad are explained by the absence of concept assertions (CAs) in their ABoxes.
The low costs for clo and natp may be caused by the simplicity of their ABoxes.
Interestingly, the costs of the axiom measures are higher for sitb than for piero,
despite the fact that sitb has a much smaller ABox (but larger vocabulary and
higher expressivity) than piero. Thus, the ABox size, structure, signature, and
expressivity are likely to affect computational performance of reasoning and, con-
sequently, performance of hypothesis evaluation. Yet, considering the example of
sitb, these are not the only factors.

It is worth noticing that runtime differences in computing the statistical axiom
measures which do not consider negation (AXM1) and those which do consider
negation (AXM2) are relatively small for the outliers in both corpora, see Fig-
ure 9.3. Thus, for these ontologies, computing the latter is not (significantly)
more expensive than computing the former, despite the results in Figure 9.2a. It
is likely that factors other than the presence or absence of negative information,
e.g. a large and complex ABox, determine the performance of instance retrievals
and, hence, computing the axiom measures for the outliers.

9.2.5 Side-observations of Interest

Besides the numeric evaluation of the quality measures and computational per-
formance of the algorithm, we examine the learned hypotheses by eyeballing
them. In other words, we act as domain experts and seek hypotheses which seem
interesting. As a guidance, we use the quality values and ranking, i.e. we only
search among those hypotheses which are ranked highly. Table 9.6 shows some
acquired hypotheses which, according to our opinion, look interesting.

Since all hypotheses in Table 9.6 are informative with respect to their onto-
logies, the knowledge they capture is not entailed by the respective ontologies.
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Ontology Examples of hypotheses
carc ∃hasBond.> v ∃hasAtom.>
cin Movie v ∃cast.Actor
eart Cyclone v ∃hasAssociatedPhenomena.AtmosphericCirculation
fam married ◦ hasChild v hasChild
fin OKRunningLoan v ∃hasLoanStatusV alue.(¬ProblemStatus)
heart Patient u ∃hasThalV alue.ReversableDefect v ∃hasChestPain.>
lubm AssociateProfessor v ∃teaches.TeachingCourse
mam Patient u ∃hasShape.Irregular v ∃hasDensity.Illdefined
ntn ∀siblingof.Human v Human
gly BetaSugar u ∃hasRingForm.> v Pyranose
oad clinicallySimilar ◦ hasSeverity v hasSeverity
sweet PlanetaryLayer v ∃hasAstronomicalBody.>

Table 9.6: Examples of learned hypotheses

Some hypotheses look useful for TBox enrichment. Please notice the role chains
in Table 9.6, e.g. married ◦hasChild v hasChild stating that “if x is married to
y and y has a child z, then x has a child z”. Clearly, this hypothesis is not true
in general but it indicates that many ABox individuals conform to it, given its
high quality. Likewise, the hypothesis ∀siblingof.Human v Human expressing
that “everyone who can have only human siblings is a human” is incorrect since it
implies that every object without a siblingof relation is also a human. Nonethe-
less, given its high quality, the hypothesis indicates that the ABox individuals
are mostly humans. Thus, these examples hint that, besides TBox enrichment,
acquired hypotheses can potentially be useful for data analysis and exploration.
In the following, we investigate potential use cases by running case studies with
domain experts.

9.2.6 Methodological Reflection

Although we believe that the results of this experiment are generalisable, some
caution should be exercised. A potential threat to the validity of the results is
the choice to evaluate only 500 hypotheses instead of evaluating all hypotheses.
This is done to achieve feasibility of the experiment since we run the algorithm for
many ontologies. In practice, one is likely to be interested in acquiring hypotheses
for one or few ontologies and this restriction can be omitted. Another concern
is the input parameters of the algorithm which are set to be the same for all
ontologies, but ideally should be ontology-sensitive.
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9.3 Comparing DL-Miner with Related Approaches

The following experiments are aimed at comparing DL-Miner with other OL
approaches. Please recall that some comparison of designs and capabilities is
already done in Section 8.3.4 where we have located the approaches in the OL
dimensions, see Table 8.2. Nonetheless, it is worthwhile to investigate whether
and how their results differ in practice.

Please note that, since the approaches operate in different settings, direct
comparison of their results is not possible. In particular, some approaches are
supervised, while others are not. Some respect the standard semantics, while
others make the CWA and disregard the TBox. Such differences in design imply
that certain hypotheses can be learned by one approach and cannot be learned
by another, even if the latter has more expressive language bias than the former.

9.3.1 Comparing DL-Miner with Concept Description Learn-

ing

As discussed in Section 3.2.1, Concept Description Learning (CDL) is mainly a
supervised approach based on ILP. It normally requires positive and negative
examples to be specified in order to learn a concept description that conforms
to those examples, i.e. entails (almost) all positive and (almost) no negative
examples.

DL-Learner11 [BLW16] is a popular implementation of CDL. Besides the
standard supervised mode, it can operate in an unsupervised mode such that,
given an ontology O and a target concept name A, it attempts to select positive
and negative examples for A in O by applying a form of the CWA, see Sec-
tion 3.2.1. We use DL-Learner in the unsupervised mode and compare it with
DL-Miner. We investigate the following research questions.

RQ1 Can DL-Miner learn hypotheses, i.e. concept definitions, learned by DL-

Learner? How many of them are learned?

RQ2 Do concept definitions of DL-Miner and DL-Learner differ? How do
they differ?

11http://dl-learner.org

http://dl-learner.org


202 CHAPTER 9. EVALUATION OF DL-MINER

RQ3 How does the computational performance of DL-Miner and DL-Learner

compare?

Please notice that we do not investigate the reverse version of RQ1, i.e.
whether DL-Learner can learn hypotheses learned by DL-Miner. The reason
is that it is clear that DL-Miner can learn GCIs with a complex LHS and RHS,
while DL-Learner cannot because of its design. Besides finding out whether
DL-Miner learns any hypotheses of DL-Learner, we quantify how many of
them are learned (either explicitly or implicitly).

9.3.1.1 Experimental Design

As above, we use the handpicked and principled corpus as our experimental data,
see Table 9.3 and Table 9.4. For each ontology O and each concept name A ∈
cn(O), DL-Learner (version 1.1) is run in the unsupervised mode with default
parameters to find the best concept description for A. The parameters of DL-

Miner which are different from the parameters in Section 9.2 are as follows:
pmin = 1, `max = 6, the set Q of quality measures includes only the basic measures
which do not consider negation, i.e. AXM1, see Section 9.2. Thus, we adjust the
input parameters to construct and evaluate more hypotheses.

In order to answer RQ1, one can simply find common hypotheses learned by
both algorithms. Since a hypothesis can have many syntactic variations, we make
use of the entailment relation |= to compare hypotheses. Instead of finding only
exact matches, we find concept definitions of DL-Learner which are entailed
by hypotheses of DL-Miner, i.e. learned explicitly or implicitly by DL-Miner.
In order to count partly entailed definitions, we write each concept definition
A ≡ CA of DL-Learner as two axioms A v CA, CA v A, where A ∈ cn(O) is
a concept name, CA is a concept description of A. Formally, we are interested in
finding the hit set of concept definitions, see Definition 9.1.

Definition 9.1 (Hits, misses). Let O := T ∪ A be an ontology; Hm and Hl :=

{A v CA, CA v A | A ∈ cn(O)} sets of hypotheses of DL-Miner and DL-

Learner,12 respectively, learned forO; TH :=
⋃

Hm∪T . Then, the set Hhit
l ⊆ Hl

of hits (or simply hits) of Hm is defined as follows:

Hhit
l := {α ∈ Hl | TH |= α}.

12m in Hm stands for “miner”, l in Hl stands for “learner”
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The set Hmis
l := Hl\Hhit

l is called the set of misses (or simply misses) of Hm.

Thus, hits are those concept definitions of DL-Learner which are entailed
by all hypotheses of DL-Miner together with the given TBox. Let us explain
why hits are defined in this way. Firstly, we join hypotheses of DL-Miner

with the TBox because DL-Miner only learns informative hypotheses while
DL-Learner does not. Secondly, we consider all hypotheses of DL-Miner as a
union, despite the fact that they are supposed to be independent of each other.
This is done in order to find out whether DL-Miner is capable of learning hypo-
theses that capture the same knowledge as concept definitions of DL-Learner

do. The latter can be true even if the set of all hypotheses of DL-Miner and
the set of all concept definitions of DL-Learner do not intersect. Therefore,
simple counting of coinciding hypotheses would not be informative. In the fol-
lowing, we compare all hypotheses of DL-Miner against all concept definitions
of DL-Learner simultaneously (RQ2).

According to Definition 9.1, TH can be inconsistent and, hence, can unfairly
“hit” all definitions in Hl. Therefore, in order to check which definitions are
actually learned, for each α ∈ Hl we test whether there is a consistent subset
of TH that entails α. More specifically, we first check whether α ∈ TH , i.e.
learned explicitly. If α /∈ TH , we check whether the module13 for α̃, i.e. Mα :=

⊥-module(TH , α̃), is consistent and entails α, i.e. Mα |= α. If this is not true,
we assume that TH 6|= α (even though α may actually have been learned). As
one module can be suitable for checking multiple definitions, we group definitions
by their modules in order to optimise such tests. Please note that the described
“trick” is made solely for the purpose of comparing hypotheses of DL-Miner with
concept definitions of DL-Learner. Normally, we consider all hypotheses of DL-

Miner independently of each other and the problem of their joint inconsistency
with respect to the TBox does not arise.

In order to figure out differences between hypotheses of DL-Miner and
concept definitions of DL-Learner (RQ2), we identify which hypotheses of DL-

Miner are responsible for “hitting” definitions of DL-Learner. Indeed, it is
possible that only a (small) subset of Hm is sufficient for entailing Hhit

l . There-
fore, we find such a minimal subset Hhit

m , called a hitting set, see Definition 9.2.

Definition 9.2 (Hitting set). Let O := T ∪ A be an ontology, Hhit
l ⊆ Hl the

13Modules are discussed in Section 7.2.1.
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set of hits of Hm. Then, a set Hhit
m ⊆ Hm is called a hitting set for Hhit

l if⋃
Hhit
m ∪ T |= Hhit

l and for every H′m ( Hhit
m it holds that

⋃
H′m ∪ T 6|= Hhit

l .

Informally, a hitting set is simply a minimal subset of Hm which, if joined with
the TBox, entails all hits Hhit

l . A hitting set can also be defined using justifica-
tions, see Definition 8.1. It is similar to a hitting set used in diagnosis [Rei87] and
justification-finding algorithms [HPS08]. However, a hitting set of hypotheses of
DL-Miner is only used to compare it with DL-Learner.

We search for a hitting set using a procedure similar to the redundancy elim-
ination implemented by Algorithm 1, i.e. we remove axioms one by one in des-
cending order of their length and ensure that a resulting subset still entails all the
definitions. Since the found hitting set captures all knowledge of the hits (and
possibly more), we can compare hypotheses in both sets on the common grounds.

9.3.1.2 Comparison Results

We have run DL-Miner and DL-Learner on our corpora as described above.
DL-Miner has terminated and produced hypotheses for each ontology. A set of
hypotheses along with the TBox has turned out to be inconsistent (and we have
used the trick described above to identify learned definitions) for 3 ontologies in
the handpicked corpus, i.e. arch, mdm, ntn, and for 5 ontologies in the principled
corpus, i.e. ctx, glyco, icps, sitb, sse. DL-Learner has terminated for each
ontology in both corpora but failed to produce any hypotheses for 4 ontologies
which all belong to the principled corpus: derm, iceci, ncit, oad. These ontologies
are excluded from the results.

It turns out that many concept definitions of DL-Learner are, in fact, en-
tailed by the TBox alone, i.e. they are uninformative. To be more specific, ≈ 45%

for the handpicked corpus and ≈ 43% for the principled corpus of concept defin-
itions are uninformative on average per ontology. Since those concept definitions
are actual hits of the TBox, but not DL-Miner, we exclude them from the results
because the comparison would unfairly favour DL-Miner otherwise. We address
RQ1 by counting concept definitions of DL-Learner which are entailed (hits)
and not entailed (misses) by hypotheses of DL-Miner along with the TBox (but
not by the TBox alone), see Figure 9.4.

As Figure 9.4a shows, in the handpicked corpus, DL-Miner learns 100 % of
concept definitions for 13 out of 16 ontologies and more than 97 % of concept
definitions for the remaining three ontologies, i.e. eart, mdm, ntn. For eart,
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Figure 9.4: Number of concept definitions of DL-Learner entailed (hits) and
not entailed (misses) by hypotheses of DL-Miner

1 out of 35 concept definitions is missed because it uses concrete domains, i.e.
datatypes14 in the OWL specification, currently unsupported by DL-Miner. For
ntn, 1 out of 45 definitions is missed because the set of hypotheses is inconsistent
and the search for a consistent subset entailing that definition has failed. For
mdm, 2 out of 109 concept definitions are missed. The first definition is missed
because a consistent entailing subset has not been found. The second definition
is missed because it contains the concept C := DiseaseTypesu¬CancerTypesu
¬EndometrialAbnormality whose length exceeds the maximal length restriction,
i.e. `(C) = 7 > 6 = `max.

Figure 9.4b shows that, in the principled corpus, DL-Miner learns 100 % of
concept definitions for 14 out of 17 ontologies (4 ontologies are excluded because
DL-Learner has failed to learn any definitions for them). For icps and sse, 1 out
of 63 and 1 out of 236 definitions, respectively, are missed because a consistent en-
tailing subset has not been found. For sitb, 23 out of 97 definitions are missed be-
cause they contain concepts whose length exceeds the maximal length restriction,
e.g. C := HospitalDepartment u ¬GeneralDepartment u ¬OutPatientClinic.

Thus, the main reason for missing a concept definition by DL-Miner is the
maximal length restriction. In comparison, DL-Learner also imposes the max-
imal length restriction but increases it if necessary. Considering the results in
Figure 9.4, we argue that increasing the maximal length restriction of DL-Miner

would allow it to learn those missing definitions. Another reason for missing a

14https://www.w3.org/TR/owl2-syntax/#Datatypes

https://www.w3.org/TR/owl2-syntax/#Datatypes
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definition is the presence of datatypes in that definition. This can be fixed by
extending the current implementation of DL-Miner to support datatypes. Fi-
nally, for some definitions, we were unable to check whether they are actually
learned by DL-Miner or not because the set of its hypotheses was inconsistent.
We considered those definitions as missing, even though they may, in fact, have
been learned.

In order to gain insight into differences between concept definitions learned
by DL-Miner and DL-Learner (RQ2), we examine the hitting set of DL-

Miner, i.e. a minimal subset Hhit
m of its hypotheses Hm entailing all hits Hhit

l ,
see Definition 9.2. In particular, we intend to find out whether Hhit

m is different
from Hhit

l . We compare the cumulative length of all hypotheses in both sets, i.e.
the length `(Hhit

m ) :=
∑

H∈Hhit
m
`(H) of a hitting set and the length `(Hhit

l ) :=∑
H∈Hhit

l
`(H) of hits, see Figure 9.5. Please note that, as above, hits of the TBox

are excluded from the results.
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Figure 9.5: Cumulative length of concept definitions of DL-Learner (hits) and
hypotheses of DL-Miner (hitting set) that entail them

Figure 9.5 shows that the cumulative length of hits differs from the cumulative
length of a hitting set. Hence, these sets are not equal. The length of a hitting
set never exceeds the length of hits. In fact, it is smaller for most ontologies: for
13 out of 16 ontologies in the handpicked corpus, see Figure 9.5a, and for 15 out
of 17 ontologies in the principled corpus, see Figure 9.5b. Interestingly, for some
ontologies the hitting set is significantly shorter than its hits, e.g. carc, fin, mdm,
ctx, icps.

Thus, the results show that DL-Miner is able to learn shorter hypotheses
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than DL-Learner learns. This happens because DL-Learner is not aimed
at learning concept definitions minimised with respect to the TBox and minim-
ised with respect to each other. In other words, concept definitions are learned
independently and, therefore, tend to repeat knowledge encoded by the TBox
and other concept definitions, see Example 9.1. As the results show, they even
sometimes replicate the TBox knowledge, i.e. they are uninformative.

Example 9.1. Consider the TBox T := {A v B} and the concept definition
α := A ≡ B u C viewed as two axioms α1 := A v B u C and α2 := B u C v A.
The length of the definition is `(α) = `(α1) + `(α2) = 4 + 4 = 8. However,
given T , α is redundant because α1 can be replaced by shorter α′1 := A v C, i.e.
T ∪ {α′1, α2} |= α and `(α′1) + `(α2) = 2 + 4 = 6 < 8 = `(α). Clearly, the TBox is
not the only reason of excessive length since some definitions can repeat knowledge
encoded by others, e.g. consider the set of definitions {A ≡ B, B ≡ C, C ≡ A},
where any of the definitions is redundant given other two.

In contrast to concept definitions of DL-Learner, hypotheses of DL-Miner

are not restricted to be of the form A ≡ C. Therefore, the hypothesis H1 :=

{A v C} in Example 9.1 can easily be learned by the algorithm. In addition,
as we search for a minimal subset, hypotheses which are entailed by others are
discarded. This results in a shorter cumulative length of the hitting set in com-
parison to its hits.

Finally, we compare the total runtime of DL-Miner and DL-Learner for
each ontology (RQ3), see Figure 9.6.

According to Figure 9.6, DL-Miner is slower than DL-Learner only for
one ontology, i.e. krk, in both corpora. In fact, for several ontologies the former
is significantly faster than the latter: consider arch, carc, heart in Figure 9.6a
and clo, icf, icps, mo, natp, piero in Figure 9.6b. In order to interpret these
results correctly, one should keep in mind two things. Firstly, DL-Miner only
computes the cheap basic measures in this experiment. Considering the results
in Section 9.2, the total runtime would probably be much greater if we computed
some costly quality measures as well. Secondly, to the best of our knowledge,
DL-Learner is not currently optimised to learn definitions of multiple concept
names in the ontology, i.e. it runs independently for each concept name. To
be more specific, the algorithm is likely to process the same concepts, including
retrieving their instances, across multiple runs, even though it avoids processing
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Figure 9.6: Runtime (logarithmic scale) of DL-Learner and DL-Miner for
handpicked (a) and principled (b) corpus

equivalent concepts within a run. In contrast, DL-Miner processes all concepts
just once per ontology. Therefore, the difference in performance grows with the
number of concept names, as the likelihood of encountering equivalent concepts
grows, and with the number of individuals in the ontology, as computational
performance of instance retrieval degrades.

9.3.1.3 Side Observations of Interest

As mentioned above, DL-Learner has failed to learn any concept definitions
for 4 ontologies in the principled corpus. It turns out that DL-Miner learns
not only GCIs for these ontologies but also some concept definitions (which
are missed by DL-Learner). For example, for derm15 the concept definition
RadlexMetaclass ≡ RadlexMetaclass u ∃IsA.RadlexMetaclass (a good ex-
ample of identifying modelling flaws) is learned by DL-Miner but not learned
by DL-Learner.

We have also looked at the quality of concept definitions of DL-Learner

using the quality measures introduced in this thesis. It turns out that the as-
sumption of those concept definitions is relatively high on average per ontology.
Hence, given a concept definition A ≡ C, the concept description C is usually far
from being the “perfect description” of A that would have the assumption equal
to zero. This is not surprising because the data can be insufficient to find the

15The Dermatology Lexicon is a standardized terminology of dermatologic diagnoses, ther-
apies, subroutines, and laboratory tests, see http://bioportal.bioontology.org.

http://bioportal.bioontology.org
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“perfect description”. For example, consider the task of learning the description of
Father from the data containing no information about children. In this case, the
best description might be Man and the result definition Father ≡ Man would
probably have a high assumption.

9.3.2 Comparing DL-Miner with Unsupervised Approaches

We compare DL-Miner with other unsupervised approaches from Table 8.2,
i.e. BelNet (Bayesian Description Logic Network), see Section 3.2.4, and SSI
(Statistical Schema Induction), see Section 3.2.2. We do not compare it with
KBC (Knowledge Base Completion) because the latter is supervised and requires
domain expert guidance, see Section 3.2.3. We investigate the following research
question.

RQ Can DL-Miner learn hypotheses learned by BelNet and SSI? How many
of them are learned?

9.3.2.1 Experimental Design

In [ZGP+15], the authors evaluate BelNet and compare its results with DL-

Learner and GoldMiner.16 The latter is an implementation of SSI aimed at
generating ontologies from RDF data. GoldMiner is not compliant with the
OWL API. For each input dataset, it needs to be run using the console commands,
requires manually loading the data into a SPARQL17 endpoint and configuring
an auxiliary relational database. Due to these reasons, it is hard to use the tool
for multiple OWL ontologies in the same way as we have used DL-Learner.
The implementation of BelNet is not available. Therefore, we rely on the results
in [ZGP+15] for comparisons.

In [ZGP+15], the authors use 4 ontologies in their experiments which include
the ontologies fam, lubm, ntn of the handpicked corpus, see Table 9.3. Instead
of comparing the results of the algorithms directly, they manually extend the
experimental ontologies with the goal to obtain “gold standard” ontologies. Gold
standard ontologies are aimed to be complete in a certain sense, see [ZGP+15]
for details.

16https://code.google.com/archive/p/gold-miner
17SPARQL is a query language for RDF.

https://code.google.com/archive/p/gold-miner
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The algorithms are run on the experimental ontologies and their results are
compared by consulting the respective gold standard ontologies. More specifically,
the gold standard ontologies are used to count “correct” and “wrong” hypotheses
via the measures called precision and recall, see Definition 9.3

Definition 9.3 ([ZGP+15]). Let T ′ and T s be a learned TBox and gold standard
TBox, respectively. Precision and recall of T ′ given T s are calculated as follows:

precision(T ′, T s) :=
|{α ∈ T ′ | T s |= α}|

|T ′|

recall(T ′, T s) :=
|{α ∈ T s | T ′ |= α}|

|T s|

Precision counts how many axioms in the learned TBox T ′ are entailed by
the gold standard TBox T s, relative to the size of T ′. In other words, a high
precision ensures that only knowledge encoded by T s is learned and penalises
any additional knowledge acquired, regardless of whether the data supports that
knowledge or not. Thus, the more extra knowledge the learned TBox T ′ contains,
the lower the value of precision is. Hence, precision penalises approaches capable
of learning expressive hypotheses. We argue that such approaches should be
rewarded, not penalised. Therefore, we exclude this measure (and F-measure
calculated using it) from our comparison.

Recall counts how many axioms in the gold standard TBox T s are entailed by
the learned TBox T ′, relative to the size of T s. In other words, recall evaluates
“coverage” of the approach, i.e. the higher the value is, the more axioms in the
gold standard TBox are learned (explicitly or implicitly). In fact, recall is the
relative number of hits, see Definition 9.1, of the learned TBox T ′ in the gold
standard TBox T s, ignoring the fact that T ′ can be inconsistent. We deal with
inconsistency as in Section 9.3.1 and use this measure for further comparisons.

We use the experimental ontologies from [ZGP+15], i.e. fam, lubm, ntn (for
one ontology we have not found its gold standard extension). These ontologies
lack negative information in their ABoxes. Since DL-Miner respects the OWA,
it does not acquire disjointness axioms for these ontologies, see Example 8.2,
in contrast to BelNet and SSI. Therefore, we artificially impose the CWA for
these ontologies in order to compare the results with [ZGP+15]. To be more
specific, given an ontology O, we extend it as follows: O¬ := O ∪ {¬A(a) | O 6|=
A(a)}, where A ∈ cn(O), a ∈ in(O). Although such an extension can easily be
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inconsistent, this does not happen for the given ontologies.

9.3.2.2 Comparison Results

DL-Miner is run for each ontology with the same parameters as in Section 9.3.1.
Once the algorithm terminates for an input ontology O := T ∪ A, we use the
acquired hypotheses Hm to construct the learned TBox as above, i.e. T ′ :=⋃

Hm∪T . Then, given the gold standard TBox T s for T , we calculate the recall
using Definition 9.3 and compare it with the values reported in [ZGP+15]. As
T ′ is inconsistent for ntn (and only for it), we test whether an axiom of the gold
standard ontology is learned like we do for a concept definition in Section 9.3.1.
Table 9.7 shows the results.

BelNet GoldMiner DL-Miner
fam 0.83 0.93 1.0
lubm 0.53 0.39 0.88
ntn 0.78 0.86 0.98

Table 9.7: Comparing DL-Miner with BelNet and GoldMiner by recall using
gold standard ontologies

According to Table 9.7, DL-Miner shows higher recalls than BelNet and
GoldMiner do, i.e. it “hits” more axioms in the gold standard ontologies. All
misses in lubm are disjointness axioms where at least one of the concepts has no
instances, i.e. no evidence in the data. Those concepts are not considered by
the algorithm because the parameter pmin = 1 sets that a concept must have
at least one instance to be considered. All misses in ntn are axioms with nom-
inals, e.g. {Jesus} v SonOfGod. Nominals are not supported by the current
implementation of DL-Miner.

Thus, as Table 9.7 shows, DL-Miner has outperformed both BelNet and
GoldMiner on all three ontologies. This means that DL-Miner can learn
hypotheses that BelNet and GoldMiner cannot, which is expected considering
their design.

9.3.3 Methodological Reflection

The results show that DL-Miner is able to learn most hypotheses of DL-Learner,
BelNet, and GoldMiner (and hypotheses that these tools cannot learn because
of their design). Nonetheless, one should consider these results with caution
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because of considerable differences between the approaches. For the sake of
comparison, DL-Learner has been used in the unsupervised mode, while it
is primarily a supervised approach. It is possible that, given carefully prepared
training examples, DL-Learner can learn concept definitions which an unsu-
pervised approach cannot, regardless of expressivity of the language bias of the
latter. Another important difference is that DL-Miner respects the OWA, while
BelNet and GoldMiner rely on the CWA. As a result, some hypotheses are not
acquired by DL-Miner, unless the CWA is imposed (and the CWA is not always
a right assumption to make if information is incomplete).

9.4 Case Studies

Until now, we have evaluated DL-Miner on our experimental ontologies, i.e. in-
vestigated correlations between the quality measures, evaluated its computational
performance, compared it with other approaches. In this section, we explore how
the approach works in some practical scenarios, whether its results are useful,
and gain insight into potential applications.

9.4.1 Using DL-Miner for Rice Fertility Prediction

So far, we have considered DL-Miner as a tool for acquiring knowledge to be
reviewed by a human expert. In this case study, we investigate another potential
use of DL-Miner – making predictions. We investigate the following research
question:

RQ Can DL-Miner be used to obtain useful predictions?

9.4.1.1 Predictions in Description Logics

Let us formalise the notion of predictions in DLs. In principle, hypotheses learned
from the data in DLs can act as prediction rules. Specifically, if an ontology O is
enriched with hypotheses H acquired from it, then an individual in O can become
a new instance of some concepts, see Definition 9.4.

Definition 9.4 (Prediction). Let O be an ontology, H a set of hypotheses ac-
quired from it, OH :=

⋃
H ∪ O. An individual a ∈ in(O) is called a predicted

instance of a concept C if O 6|= C(a) and OH |= C(a). The class assertion C(a)

is called a prediction.
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Informally, predictions are class assertions that are not entailed by the on-
tology alone but entailed by the union of the ontology and hypotheses acquired
from it. Presumably, in order to make sensible predictions, we should use hypo-
theses of sufficiently high quality. Please notice that, in Definition 9.4, the union
of acquired hypotheses is used for predictions, despite the fact that hypotheses
are supposed to be independent of each other. The reason is that hypotheses
are considered as being complementary but not alternatives. In particular, it
is possible that two hypotheses individually do not make a prediction but their
union does. Thus, by combining all acquired hypotheses together, we obtain the
strongest possible “predictor” (that however causes other problems discussed in
the following).

In this case study, we concentrate on the binary classification18 problem, where
for a target concept name A ∈ cn(O) we aim to make predictions of the form
OH |= A(a) andOH |= ¬A(a), i.e. classify individuals into two mutually exclusive
categories: A and ¬A. Nonetheless, turning a set of hypotheses into a classifier
(prediction model) is not straightforward due to the following problems.

1. Due to the OWA, an individual a ∈ in(O) can be left unpredicted, i.e. it is
possible that OH 6|= A(a) and OH 6|= ¬A(a). Informally, a set of hypotheses
can be insufficient to make a prediction.

2. A individual a ∈ in(O) can be predicted to be an instance of both mutually
exclusive concepts, i.e. it is possible that OH |= A(a) and OH |= ¬A(a).
We call such an individual a clash. The presence of a clash implies that OH
is inconsistent. Informally, a set of hypotheses can be contradictory.

Both problems are rather challenging and we leave their detailed investigation
for future work. In this study, we deal with the first problem by simply assigning
an unpredicted individual a random label, i.e. either A or ¬A. The second
problem is handled as follows.

• In order to avoid dealing with inconsistency of OH , we substitute a concept
¬A for a fresh concept name A¬ in O (without loosing any data relevant
for the task at hand).

• Given a set H of hypotheses, we first discard all hypotheses which would be
(individually) inconsistent with O, i.e. O ∪H |= A(a) and O ∪H |= A¬(a)

18Classification is used in the Machine Learning sense, see also Section 2.2.
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implies H /∈ H. Then, we identify all clashes by simply retrieving instances
of A u A¬ in OH , i.e. cl(A,OH) := inst(A u A¬, OH).

• For each clash a ∈ cl(A,OH), we find all hypotheses that make a prediction
for a, i.e. Ha := {H ∈ H | O ∪ H |= A(a) ∨ O ∪ H |= A¬(a)}. Please
notice that this is a simplification because, in general, multiple hypotheses
can be necessary to make a prediction.

• Given Ha, we find hypotheses with the highest confidence in Ha and, if
there are many of those, pick one with the highest support, i.e. Ha ∈ Ha

such that conf(Ha,O) = max{conf(H,O) | H ∈ Ha} and sup(Ha,O) =

max{sup(H,O) | H ∈ Ha ∧ conf(H,O) = conf(Ha,O)}.

• Finally, we resolve the clash using Ha, i.e. assume that OH |= A(a) if
O ∪ Ha |= A(a) and OH |= A¬(a) if O ∪ Ha |= A¬(a). This heuristic is
chosen for the sake of simplicity but can, in principle, be based on multiple
hypotheses and other quality measures.

9.4.1.2 Experimental Design

To address our research question, we investigate the problem of predicting fertility
of rice varieties based on their genetic information. This study is conducted in col-
laboration with colleagues from the School of Computer Science and Manchester
Institute of Biotechnology.19 We thank Oghenejokpeme Orhobor for the data
provided and helpful discussions. The data20 has been translated to OWL in
order to produce the input ontology, called rice. The metrics of rice are shown in
Table 9.8.

DL |in(A)| CA RA deg(A) con(A) |voc(A)| |voc(T )| jvoc(A, T )
ALC 252 500 3968 15.75 252 270 0 0

Table 9.8: Metrics of rice

Table 9.8 shows that rice has the empty TBox and relatively small but highly
connected ABox. The ontology encodes 248 rice varieties along with their genetic
information and states whether each variety is fertile or infertile. In other words,
the data is complete with respect to fertility. Moreover, it is perfectly balanced:
124 varieties are fertile and 124 varieties are infertile.

19http://www.mib.ac.uk
20The data is not public and we are not allowed to disclose it due to IP reasons.

http://www.mib.ac.uk


9.4. CASE STUDIES 215

We aim at using hypotheses of DL-Miner to predict fertility and infertility
of rice varieties using their composite genetic features, i.e. it is a binary classi-
fication problem discussed in Section 9.4.1.1. We build a prediction model from
hypotheses as described in Section 9.4.1.1. In order to evaluate its usefulness, we
measure how accurate a model is, i.e. we estimate its prediction errors via stand-
ard evaluation techniques from ML, see Section 2.2.3. In addition, we investigate
how parameters of DL-Miner, see Algorithm 11, influence prediction errors. In
particular, we concentrate on the minimal concept support pmin because it de-
termines how “specific” acquired hypotheses can be. We vary pmin in the range
from 1 to 20. For each value, we train and test a prediction model via 10-fold
cross-validation. Hence, we run DL-Miner 200 times in total. Other parameters
are fixed as in Section 9.3.1. We do not investigate another critical parameter
`max considering the high computational cost of training and testing a prediction
model.

9.4.1.3 Prediction Results

The algorithm has terminated and produced hypotheses in all cases. Thus, 200
prediction models have been trained and tested overall. Let us first discuss some
observations. On the one hand, we observe that no varieties are left unpredicted,
i.e. the case OH 6|= F (v) and OH 6|= F¬(v), where F stands for fertility, never
happens. On the other hand, we observe clashes for all varieties, i.e. the case
OH |= F (v) and OH |= F¬(v) always happens. This is explained by the fact
that DL-Miner is complete, i.e. it produces all hypotheses which have any
evidence in the data. In particular, HF := {> v F} and HF¬ := {> v F¬} are
amongst them. These hypotheses predict every variety to be fertile and infertile
simultaneously which implies clashes for all varieties. We deal with clashes as
described in Section 9.4.1.1. Figure 9.7 shows the prediction results, i.e. mean
training and validation errors with confidence intervals (confidence level 95%) for
different values of the parameter pmin.

As Figure 9.7 shows, the mean training error steadily increases with the min-
imal concept support pmin. The mean validation error slowly decreases with pmin,
reaches its minimum at pmin = 14, and rises again. This is a typical behaviour of
a prediction model. Low values of pmin lead to hypotheses capturing too many de-
tails of the data, or overfitting. High values of pmin result in hypotheses ignoring
too many details of the data, or underfitting.



216 CHAPTER 9. EVALUATION OF DL-MINER

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8 10 12 14 16 18 20

Minimal concept support

P
re

di
ct

io
n 

er
ro

r

Training

Validation

Figure 9.7: Prediction errors of hypotheses acquired by DL-Miner for rice using
different minimal concept support

The optimal value of the parameter pmin seems to be pmin = 14, where the
mean validation error has its minimum ≈ 0.24. Yet, it is hard to conclude given
considerably wide confidence intervals. Nonetheless, given that the upper bound
of the confidence interval for pmin = 14 is 0.2734661, we can conclude with con-
fidence level 95% that the true test error is lower than 0.28 (or the true accuracy
is higher than 0.72). Thus, a prediction model demonstrates potential to make
reasonable predictions.

Finally, prediction accuracy is not the only goal: a prediction model itself
can potentially help domain experts to understand phenomena. To be more
specific, hypotheses of high quality may hint at genetic factors that are likely to
be indicators of fertility, see Example 9.2.

Example 9.2. Consider one of the hypotheses acquired by DL-Miner for rice:

H := {∃s2Zygosity.c1Homozygote u ∃s10Zygosity.c2Homozygote v Fertile}

The hypothesis states that “if a rice variety has some s2Zygosity relations to
c1Homozygote and some s10Zygosity relations to c2Homozygote, then it is
Fertile”. If we look at the quality values of this hypothesis, we find out that its
support sup(H, ·) = 21, assumption asm(H, ·) = 3, and confidence conf(H, ·) =

0.875, where “·” denotes the remaining arguments as above. Thus, 21 out of 24
varieties with genetic features given by the LHS of H are, in fact, fertile. Hence,
these genetic factors seem to be good indicators of fertility.
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Example 9.2 suggests that, besides prediction accuracy, comprehensibility of
hypotheses is also an important concern. In fact, prediction accuracy and compre-
hensibility are viewed as two orthogonal performance axes of ML models since the
1980s, see [Mic88]. As DLs and OWL are initially designed to be comprehensible
knowledge representation formalisms, hypotheses acquired by DL-Miner offer
an interesting opportunity for further research in this direction.

Thus, we can answer our research question (RQ) positively: DL-Miner can
potentially be used for prediction purposes in DLs. This is sensible when data is
naturally representable as a DL ABox, i.e. a labelled graph with typed relations.
An example of such data is genetic information about rice varieties used in this
case study. Besides predictions, DL-Miner can potentially assist human experts
in understanding phenomena. Consequently, it allows for reading and refining
the built prediction model as it is comprehensible.

9.4.1.4 Side Observations of Interest

In addition, we observe that a prediction model is more accurate for predicting
infertility than fertility. In other words, it seems easier to predict a true negative
than a true positive. We use the standard ML measures, sensitivity and specificity
to check this. The first one, also called true positive rate, is the fraction of true
positives amongst all positives. The second one, also called true negative rate,
is the fraction of true negatives amongst all negatives. The average values of
sensitivity and specificity across all runs of the algorithm are, respectively, as
follows: 0.64 and 0.81. This confirms that infertility is, in fact, easier to predict
than fertility on average.

Besides using DL-Miner, we have attempted to employ DL-Learner to
make predictions. More specifically, we have configured it to learn the best de-
scription of the concept name F (fertility) given all instances of F as positive
examples and all instances of ¬F as negative examples (DL-Learner does not
require a maximal length restriction to be specified but internally increases it
when necessary). However, the best description returned by the algorithm is
>, i.e. the learned definition is F ≡ >. Clearly, this prediction model has the
prediction error of 0.5 and, hence, it is not better than a random guesser. This
result is probably caused by the inherent structure of the data. To be more spe-
cific, there is no “feature”, i.e. a genetic relation, that distinguishes most fertile
varieties from infertile ones. All genetic relations seem to be required to produce
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a meaningful prediction model. For example, there are at least 252 hypotheses
of DL-Miner which are responsible for predictions in the case of pmin = 20

(and even more hypotheses for the lower values of the parameter). Therefore,
to match the accuracy of DL-Miner on the given data, DL-Learner probably
needs to produce a very long concept description (much longer than the longest
descriptions reported in [LH10] that have the average length around 30).

9.4.2 Learning Hypotheses from the US National Trans-

gender Discrimination Survey

Until now, we have been evaluating the approach mainly via the means independ-
ent of human opinion. In order to receive human feedback, we run a case study
with researchers from the University of Florida (Health Outcomes and Policy Col-
lege of Medicine) and the University of Arkansas for Medical Sciences (Myeloma
Institute). We thank Amanda Hicks and Michael Rutherford for providing the
data for this study, participating in it, and giving valuable feedback.

The subject of the study is the ontology,21 in the following called ntds, created
by the domain experts using data from the US National Transgender Discrimin-
ation Survey.22 Table 9.9 shows the metrics of ntds.

DL |in(A)| CA RA deg(A) con(A) |voc(A)| |voc(T )| jvoc(·)
SROIQ 169,058 169,058 404,219 2.39 26.08 93 522 0.16

Table 9.9: Metrics of ntds (“·” stands for A, T )

The case study is aimed at investigating whether DL-Miner is able to learn
hypotheses which are useful or interesting for the domain experts. According
to Table 9.9, ntds is an ontology with a large ABox and expressive TBox. For
this ontology, DL-Miner is expected to be useful for finding axioms which are
missing in the TBox but supported by the ABox. Presumably, those axioms can
help the domain experts to enrich the TBox, reveal modelling errors, or discover
new phenomena. In addition, we intend to find out whether and which quality
measures are helpful for finding good hypotheses, i.e. indicators of hypothesis
usefulness. Thus, we investigate the following research questions.

21The ontology is not public yet.
22http://www.transequality.org/issues/national-transgender-discrimination-survey

http://www.transequality.org/issues/national-transgender-discrimination-survey
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RQ1 Can DL-Miner learn hypotheses which are useful or interesting for the
domain experts?

RQ2 Which quality measures (if any) are good indicators of hypothesis useful-
ness?

9.4.2.1 Experimental Design

To answer the research questions, we run DL-Miner to produce hypotheses from
the ontology, evaluate them, and ask the domain experts to assess them. Expert
opinion needs to be quantified such that we can compare values of expert-assessed
quality with values of machine-assessed quality, i.e. hypothesis quality measures.
The comparison can then be done via measuring correlations between expert
opinion and quality measures.

We run DL-Miner on ntds with the same parameters as in Section 9.2. Since
the algorithm generates a large number of hypotheses, we cannot ask the domain
experts to judge all of them. Therefore, we sample some specified number of hy-
potheses that the experts can comfortably handle. Considering possible outcomes
of expert feedback, i.e. optimistic, pessimistic, expected, we have estimated that
we require judgements of at least 60 hypotheses in order to achieve statistically
significant results in the expected case. Those hypotheses are sampled such that
one half of them consists of high-quality hypotheses and another half consists of
middle- and low-quality hypotheses. To be more specific, we identify high-quality
hypotheses using one of the quality measures (we have picked confidence because
it is easy to interpret). Then, we randomly sample 30 hypotheses from those and
30 hypotheses from all the rest. This way we ensure both variability of hypothesis
quality and sufficient presence of high-quality hypotheses (which are presumably
most promising).

We concentrate on two aspects of expert opinion about a hypothesis: validity
and interestingness.

• Validity assesses whether a hypothesis captures a general truth about the
domain and can be perceived as an axiom to be added to the ontology.

• Interestingness assesses how interesting a hypothesis is for a domain expert.
In contrast to validity, it does not evaluate the general correctness of a
hypothesis, but rather expert’s curiosity and attention that she pays to it.
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Thus, validity and interestingness are different notions. On the one hand, a
hypothesis can be valid but uninteresting if it captures unimportant or irrelevant
knowledge with respect to the ontology. On the other hand, a hypothesis can
be invalid but interesting if it indicates a data bias or modelling error worth
investigating, i.e. it looks useful for ontology debugging.

To quantify validity, we ask the domain experts to judge a hypothesis by
choosing one of the following three options: “correct”, “wrong”, “don’t know”. The
first (second) option should be chosen if the hypothesis is mostly correct (wrong)
according to the expert’s knowledge. The third option should be chosen when
it is hard to decide between the first two options. An undecided, or unknown,
hypothesis is interesting if it seems to capture new domain knowledge or phenom-
ena and encourages new investigations. To quantify interestingness, we ask the
experts to rate how interesting a hypothesis is on the linear scale from 0 (lowest)
to 4 (highest). We collect feedback using an online survey.

9.4.2.2 User Feedback

Once DL-Miner terminated and returned hypotheses for ntds, we sampled 60
hypotheses and composed a survey as described above. The survey was shared
with the domain experts and one of them fully completed it. In the feedback that
we received the expert expressed interest in reviewing additional hypotheses, more
specific than the ones presented in the survey. She was particularly interested in
exploring hypotheses about various gender identities. Thus, we were implicitly
given focus terms, i.e. a signature of interest Σ, which was previously extracted
automatically and included the majority of terms from the ontology.

Considering the expert’s response, we decided to make another survey consist-
ing of hypotheses about the focus terms. In the following, we refer to the initial,
unfocused survey as Survey 1 and the follow-up, focused survey as Survey 2. To
acquire hypotheses for Survey 2, DL-Miner was run with the same parameters
as for Survey 1, but with the seed signature Σ consisting of the focus terms (all
concept names representing gender identities and all role names). We sampled 60
new hypotheses as above and made Survey 2 from them which was shared with
the domain expert. She completed the survey and gave us further feedback.

We present the results of Survey 1 alongside the results of Survey 2 and
compare them. Table 9.10 shows the distribution of the expert’s answers along
the validity and interestingness axes.



9.4. CASE STUDIES 221

Validity Interestingness
0 1 2 3 4

Wrong 6 11 30 - -
Survey 1 Don’t know - 1 - 2 4
(unfocused) Correct - - - 6 -

Wrong 1 - 1 - 5
Survey 2 Don’t know - - - - 49
(focused) Correct - - - - 4

Table 9.10: Assessment of hypotheses acquired by DL-Miner for ntds: distribu-
tion of answers in Survey 1 and Survey 2 (“-” denotes zero)

As Table 9.10 shows, Survey 1 contains 47 hypotheses deemed to be wrong,
7 hypotheses unknown, and 6 hypotheses correct. The majority of wrong hypo-
theses are of average interestingness (marked by 2) and the rest of wrong hypo-
theses are less interesting (marked by 0 or 1). As the domain expert points out
in her feedback, wrong hypotheses which are marked by the interestingness of 2
indicate data bias, i.e. those are incorrect but strongly supported by the data.
According to the results, unknown and correct hypotheses appear to be much
more interesting than wrong ones: all of them, except one, have high values of
interestingness (marked by 3 and 4). Amongst those, unknown hypotheses are
marked to be the most interesting and, according to the expert’s response, re-
quire further analysis. Overall, 12 out of 60 hypotheses (20%) are found to be
interesting.

The results of Survey 2 are much different from the results of Survey 1, see
Table 9.10. While most hypotheses in Survey 1 are deemed to be wrong, most
hypotheses (49 out of 60) in Survey 2 are marked as unknown. Another noticeable
difference is that all hypotheses, except two, in Survey 2 are marked by the highest
value of interestingness, i.e. 58 out of 60 hypotheses (≈ 96.7%), including wrong
ones, are very interesting in expert’s opinion. Moreover, the expert informed
us in her response that one of the wrong hypotheses, besides indicating data
bias, revealed an error in the ontology. Thus, if focus terms are specified by the
domain expert, the resulting focused hypotheses appear to be significantly more
interesting than unfocused ones. This is not surprising because, by providing
focus terms, the expert expresses her interest in exploring hypotheses about those
terms. In addition, the expert is likely to inquire into the domain area which she
knows less about. As a result, the majority of focused hypotheses are deemed to
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be unknown.
Considering the results of Survey 1 and Survey 2, we can conclude that DL-

Miner is able to acquire hypotheses that are useful and interesting for domain
experts (and answer RQ1 positively). Wrong hypotheses are found to be useful for
ontology debugging. Correct hypotheses are helpful for enriching the TBox. Un-
known hypotheses can encourage investigations and help to discover new domain
knowledge.

9.4.2.3 Indicators of Hypothesis Usefulness

We have described the usefulness of hypotheses for ntds by collecting their judge-
ments made by the domain expert, i.e. the validity and interestingness scores, see
Table 9.10. We now investigate which quality measures indicate hypothesis use-
fulness (RQ2). As mentioned above, this can be done via estimating correlations
between values of machine-assessed quality, i.e. hypothesis quality measures, and
values of expert-assessed quality, i.e. validity and interestingness. The results are
shown in Figure 9.8.

As Figure 9.8 shows, there are positive and negative correlations, which is to
be expected. In other words, there are positive and negative indicators. Positive
(negative) indicators are those measures which show positive (negative) correla-
tions with hypothesis usefulness, i.e. validity or interestingness.

According to Figure 9.8a, there is no best positive indicator for validity in
Survey 1: length, strength, dissimilarity, confidence, and depth have approxim-
ately equal values. However, complexity seems to be the best negative indicator
followed by support and assumption. The fact that support is a negative indic-
ator is rather unexpected since the measure evaluates how much evidence the
data contains about the hypothesis. A possible explanation is that hypotheses
with more evidence seem to be easier to reject for the domain expert because
“counterexamples” are easier to recall from the data.

In contrast to validity, see Figure 9.8a, interestingness in Survey 1 has a clearly
best positive indicator which is confidence (basic and main), see Figure 9.8b.
In other words, the domain expert treats more confident hypotheses as more
interesting ones. Like validity, interestingness has complexity, assumption, and
support as its best negative indicators. Fitness turns from a non-indicator for
validity to a negative indicator for interestingness. Support appears to be a strong
negative indicator for interestingness because hypotheses with high support are
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(a) Survey 1: Validity
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(b) Survey 1: Interestingness
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(c) Survey 2: Validity
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(d) Survey 2: Interestingness

Figure 9.8: Correlations (in descending order) between hypothesis quality meas-
ures and expert’s judgements (4 measures are not shown for Survey 2 because
their deviations equal zero and correlation coefficients cannot be calculated)

likely to be “general”, i.e. reflecting known, easily seen patterns of the data.
Those hypotheses are not as surprising as “specific” ones which, on the contrary,
are likely to reflect uncommon, hardly seen patterns of the data.

The results in Figure 9.8c are similar to the results in Figure 9.8a: the correla-
tions for validity look almost equally distributed. The main difference is that lift
turns from a non-indicator in Survey 1 to a strong positive indicator in Survey
2. One possible reason is that Survey 2 consists of “specific” hypotheses. Such
hypotheses are likely to have a higher lift than “general” hypotheses in Survey 1
(since the denominator decreases faster than the numerator, see Definition 5.16).

In comparison to Figure 9.8b for Survey 1, Figure 9.8d for Survey 2 shows
considerably stronger correlations for interestingness. This may be caused by
the much higher fraction of interesting hypotheses in Survey 2 in comparison to
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Survey 1, see Table 9.10. While the best negative indicators remain mostly the
same, the best positive indicators change: confidence is not in the top which
includes length, depth, dissimilarity, and lift, see Figure 9.8d. Thus, lift and
dissimilarity, which are non-indicators for interestingness in Survey 1, become
strong positive indicators for it in Survey 2. Both of them may indicate (by high
values) “specific” hypotheses comprising Survey 2. The same reason may facilitate
length and depth to become the top positive indicators (please recall that length
and depth strongly correlate with lift according to Figure 9.1).

Overall, the results in Figure 9.8 show that good positive indicators are con-
fidence for Survey 1 (unfocused), lift, dissimilarity, length, and depth for Survey
2 (focused). Good negative indicators are complexity, assumption, and support.
Importantly, the results suggest that there is no single best indicator of hypo-
thesis usefulness. Hence, we probably need to consider multiple quality measures
while selecting promising hypotheses.

9.4.2.4 Side Observations of Interest

Besides examining correlations between the hypothesis quality measures and hu-
man judgements, i.e. validity and interestingness, we checked the correlation
between validity and interestingness. It turns out that, despite being different
notions, these correlate relatively strongly: their correlation coefficient equals
0.61 for Survey 1 and 0.39 for Survey 2. The correlation is stronger for Survey 1
because, according to Table 9.10, most interesting hypotheses are either correct
or unknown.

9.5 Discussion

The results presented in this chapter look promising. Despite the fact that DL-

Miner uses reasoning, it is feasible, even for relatively big and complex ontologies.
Its computational performance strongly depends on the choice of quality measures
to be computed. This choice should be made considering the input ontology and
task at hand. One can choose only cheap quality measures if performance is a
concern or detailed hypothesis evaluation is not required.

DL-Miner seems to be capable of learning most hypotheses that other unsu-
pervised approaches can possibly learn. In addition, it is able to learn hypotheses
that other approaches cannot learn. This is a consequence of more expressive,
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flexible language bias and completeness of DL-Miner.
In our case study on rice fertility prediction, we have found out that acquired

hypotheses can be used to build a prediction model capable of making sufficiently
good predictions for highly relational genetic data. As we have learned from the
case study with domain experts, a hypothesis can be interesting regardless of
its validity, i.e. an interesting hypothesis can be correct, wrong, or unknown.
Specifically, a correct hypothesis can enrich the TBox; a wrong hypothesis can
indicate a modelling error or data bias; an unknown hypothesis can capture an
interesting, novel piece of domain knowledge. Focus terms specified by a domain
expert can help to acquire hypotheses of higher interestingness. It turns out
that there is no one best indicator of hypothesis usefulness, i.e. multiple quality
measures probably need to be considered. This is not surprising since a hypothesis
in DLs clearly has several quality dimensions. Further investigations are required
to make conclusions about possible applications of the approach.



Chapter 10

Summary and Outlook

This thesis focuses on advancing the state-of-the-art of Ontology Learning (OL).
In this chapter, we summarise the main results of the thesis and contributions
made. We also discuss some outstanding issues and make suggestions for future
work.

10.1 Contributions in Brief

This thesis investigates whether and how a general TBox (terminology) can be
induced from an ABox in DLs, respecting the standard semantics. The problem
is formulated as General Terminology Induction and opens a new perspective on
OL. Before the work presented in this thesis, it was not clear how to efficiently
construct expressive hypotheses and how to rigorously evaluate them. We think
that these are two fundamental questions in OL. The thesis investigates both of
them in detail.

We have designed an approach for General Terminology Induction and imple-
mented it in an algorithm, called DL-Miner. In contrast to other approaches,
it is not a direct adaptation of an existing method from other areas of Artificial
Intelligence, but an approach which is specifically designed for DLs respecting the
standard semantics and background knowledge. We contribute the foundations
of the approach, its implementation, optimisation, and evaluation including case
studies.

226
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10.2 Key Ideas

There are several ideas behind the approach presented in this thesis. We consider
them as part of our contribution. In the following, we summarise main ideas
which, as we think, should be of interest to the OWL and DL community.

• Measuring multi-dimensional hypothesis quality In order to rigor-
ously evaluate hypothesis quality, we should ideally consider all its aspects.
We propose that there are multiple dimensions of hypothesis quality in
DLs. The data, i.e. ABox, can inform statistical quality of a hypothesis,
e.g. the number of instances supporting it (support), the number of in-
stances “guessed” by it (assumption), etc. The background knowledge, i.e.
existing TBox, can inform logical quality of a hypothesis, e.g. whether it
is consistent or informative with respect to the TBox. In addition, some
hypotheses are harder to read than others because they are longer or re-
dundant. We introduce multiple quality measures to evaluate these and
other aspects of hypothesis quality.

• Respecting the standard DL semantics Hypothesis quality measures
should respect the standard semantics of DLs. In particular, they should
permit its OWA and thus avoid the CWA, unless the latter is rational for
the given data. This can be achieved by careful definitions of hypothesis
quality measures.

• Acquiring hypotheses, not solutions We view OL as a process of con-
structing and evaluating hypotheses, rather than searching for solutions.
The decision which hypotheses are useful should rather be made by a hu-
man expert than by an automated procedure. According to our case studies,
hypotheses of high quality can be uninteresting and hypotheses of average
quality can be interesting. We acquire a set of all suitable hypotheses and
use hypothesis quality measures to order and navigate through them.

• Reaching expressive hypotheses Instead of focusing on particular types
of DL axioms, e.g. concept definitions, we suggest to acquire general ax-
ioms, i.e. GCIs and RIs. It is generally unknown which axiom types lead
to interesting hypotheses. Therefore, we suggest to target as flexible hypo-
theses as possible, though they are still limited by a certain language bias
to maintain feasibility.
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• Achieving completeness In order to avoid missing interesting hypotheses,
we should ideally construct and evaluate all hypotheses conforming to the
given language bias. This is achieved via the principled bottom-up construc-
tion of concepts and then generating all hypotheses from those concepts
according to the language bias.

As we demonstrate in this thesis, it is possible to implement all of the afore-
mentioned ideas in one algorithm. Moreover, it does not require any supervision
or human intervention to deliver its results.

10.3 Main Challenges

Nonetheless, realising the listed ideas was not straightforward. We faced both
conceptual and implementation challenges along the way which are discussed
below.

10.3.1 Defining Hypothesis Quality Measures

As the approach is aimed at expressive and flexible hypotheses, it is not clear
how to rigorously evaluate such hypotheses. Other approaches mainly focus on
learning hypotheses of certain types, e.g. concept definitions, disjointness axioms,
etc. They can simplify measuring hypothesis quality by considering only those
axiom types. In particular, they tend to use quality measures from ML and DM
that disregard the OWA of DLs. Moreover, a hypothesis is commonly evaluated
against the data, i.e. ABox, only. In other words, there is a lack of measures
evaluating a hypothesis against the available background knowledge, i.e. TBox.

We introduce and define the quality measures that evaluate arbitrary (sets of)
GCIs and RIs while respecting the standard DL semantics and background know-
ledge. Some of these measures are straightforward to define as they capture the
standard notions in DLs, i.e. consistency, informativeness, logical strength. The
statistical axiom measures are based on similar measures from DM but defined
to respect the semantics of DLs. Not only do they take the TBox into account
while retrieving instances, but also respect the standard OWA and treat GCIs
like the classic implications, i.e. being equivalent to their contraposition.

Some measures are aimed at quantifying novel aspects of hypothesis quality,
i.e. complexity, fitness, braveness. These are rather difficult to formalise as they,
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in turn, require introducing and measuring non-standard notions, e.g. description
length (the length of a minimal ABox with respect to a given TBox and ABox).
We investigate, both theoretically and empirically, properties of the proposed
quality measures and relationships between them.

10.3.2 Computing Hypothesis Quality Measures

As it turns out, not all quality measures are straightforward to compute given
their definitions: there are both conceptual and performance challenges. It is
important that the measures are computed efficiently because there are generally
numerous hypotheses to be evaluated. Eliminating redundancy is challenging
because redundancy can take various shapes, i.e. not only whole axioms can
be redundant but also their parts. We deal with redundancy of a hypothesis
via computing its structural transformation and then finding its minimal subset
which is equivalent to the hypothesis.

The naive computation of dissimilarity and complexity is computationally ex-
pensive because it requires performing multiple reasoning operations with respect
to the TBox. The definition of fitness and braveness requires finding a minimal,
shortest ABox with respect to a given TBox and ABox, i.e. considering all reasons
of relative redundancy of the former with respect to the latter. For the aforemen-
tioned measures, we suggest approximations and optimisations which are based
on checking and then reusing certain entailments when necessary.

10.3.3 Constructing Hypotheses

Not only evaluating, but also constructing expressive and flexible hypotheses is
challenging. At first, it may not seem so because one can specify axiom shapes
of interest (templates) and generate all hypotheses of those shapes in a top-down
fashion. This is what the unsupervised OL approaches normally do.

However, this method is likely to be infeasible for expressive hypotheses. Since
it is generally unknown which axiom shapes produce good hypotheses, a human
expert should specify templates for as many of them as possible. This can be a
tedious task even for not expressive DLs. Moreover, some interesting shapes can
still be overlooked. On the other hand, templates of all shapes, even if specified,
can lead to a tremendous number of hypotheses the majority of which may have
no sufficient evidence in the data and, hence, cannot be reasonably evaluated
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anyway.

We suggest constructing hypotheses in a bottom-up fashion. Instead of hand-
crafting templates, we enumerate all concepts in a principled way. In particular,
we use the mechanics of refinement operators to enumerate all concepts according
to the language bias, i.e. ensure completeness. In order to identify and discard
unsuitable concepts, we consult the data. Specifically, we formalise the notion
of suitability for a concept based on the instances of that concept in the data
and use that notion to prune the majority of unsuitable concepts a priori. This
procedure is implemented by the algorithm called DL-Apriori.

10.3.4 Handling Enormous Amount of Hypotheses

As our experiments show, for some ontologies, especially ones with a large vocabu-
lary, even the bottom-up construction of concepts results in an enormous number
of hypotheses. We suggest several optimisation techniques that can help to narrow
down the set of acquired hypotheses. Those techniques can be categorised into
two groups: incomplete construction and incomplete evaluation of hypotheses.

As the name suggests, techniques of the first group are used to construct
some, but not all, hypotheses, i.e. sacrifice completeness. They include limiting
the maximal role depth of a concept in addition to its length, discarding concepts
with superfluous parts with respect to the TBox, constructing only most prom-
ising concepts via beam search. Techniques of the second group are used to eval-
uate hypotheses partly. They include evaluating all hypotheses via cheap quality
measures and evaluating completely only suitable or most promising hypotheses.
In particular, one can consider only consistent, informative, and non-redundant
hypotheses. Most promising hypotheses can be identified by cheap quality meas-
ures acting as heuristics. Finally, hypothesis evaluation can be run as an anytime
algorithm.

Of course, a set of hypotheses can be reduced by adjusting the parameters of
DL-Miner. In particular, this can be done by decreasing the maximal concept
length, increasing the minimal concept support, or specifying terms of interest,
i.e. a seed signature.
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10.3.5 Handling Inconsistent Ontologies

If an input ontology is inconsistent, hypotheses cannot be correctly evaluated be-
cause most quality measures use reasoning and thus return trivial, useless values.
Even the bottom-up construction of concepts makes no sense in this case since
all individuals are instances of all concepts. We use an automated procedure to
repair an inconsistent ontology based on justifications. It guarantees to return a
consistent ontology but may remove too many assertions. The latter should not
mislead hypothesis construction and evaluation unless the number of erroneous
assertions is relatively big (that would make the results of learning questionable
anyway).

10.3.6 Ordering and Ranking Hypotheses

Although multiple measures offer profound evaluation of hypothesis quality, they
can also cause difficulties in ordering and navigating through the evaluated hypo-
theses. The reason is that, if multiple quality measures are used, one hypothesis
can be better than another hypothesis on one measure and be worse on another
measure, i.e. hypotheses can be incomparable. There are several ways to ap-
proach this problem.

Firstly, one can aggregate multiple quality measures into a single, collective
measure and rank hypotheses by that measure. This, however, requires nor-
malising quality values to ensure fair comparisons. Such normalisation is not
straightforward to perform for some measures. Another concern is that some
measures are more important than others. This can be resolved by weighted
aggregation schemes where weights for measures should be chosen carefully.

Secondly, one can define a dominance relation on hypotheses such that one
hypothesis dominates another hypothesis if it is better on at least one measure
and not worse on other measures. We suggest ranking each hypothesis using the
standard notion of a Pareto front (though this can cause many hypotheses to be
in the same rank). One should carefully choose measures for ranking because a
hypothesis reaches the top rank if it is better than all other hypotheses on one
measure and worse on all other measures.

Finally, the evaluated hypotheses can be explored without ranking them. A
user can navigate through the hypotheses switching between the measures and
each time sorting all hypotheses by the chosen measure. Alternatively, a user can
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specify some quality thresholds, e.g. the minimal confidence is 0.7, and retrieve
all hypotheses satisfying them.

10.3.7 Evaluating DL-Miner

Both the implementation of DL-Miner and its evaluation present new challenges.
The first experiment, where we investigate mutual correlations of the quality
measures and computational performance of DL-Miner, is rather straightfor-
ward to design and execute. On the contrary, the second experiment comparing
DL-Miner with other OL approaches is not easy to accomplish. Its main chal-
lenge is that the approaches operate in different settings: some of them are super-
vised, others are unsupervised but neglect the DL semantics. Moreover, all related
approaches are aimed at hypotheses that are less expressive than hypotheses that
DL-Miner is designed to acquire. These reasons make direct comparisons hardly
possible.

In order to compare DL-Miner with DL-Learner, we use the latter in
the unsupervised mode, despite the fact that it is a supervised algorithm for
CDL. As DL-Learner learns concept definitions, it is not clear how to compare
them with hypotheses of DL-Miner which are GCIs in general. We introduce
the notion of hits (and misses) to identify concept definitions of DL-Learner

which are learned, either explicitly or implicitly, by DL-Miner. As DL-Miner

generally produces (significantly) more hypotheses than DL-Learner does, we
identify a minimal set of DL-Miner hypotheses, i.e. a hitting set, that capture
all knowledge of the hit concept definitions of DL-Learner. Then, we are able
to compare both sets on the common grounds.

Nonetheless, the aforementioned comparison strategy incurs additional diffi-
culties. Firstly, a set of hypotheses of DL-Miner can be inconsistent. Hence,
it makes no sense to consider which concept definitions of DL-Learner are en-
tailed. As a workaround, we test (using modules) whether there is a consistent
subset of hypotheses that entails a given concept definition. Secondly, as research
on justifications in OWL and DLs demonstrate, finding a minimal subset (hitting
set) of axioms that entails given axioms (hits) is computationally costly. For
this purpose, we reuse the procedure of redundancy elimination suggested in this
thesis.

Another challenge is comparing DL-Miner with other unsupervised OL ap-
proaches, i.e. BelNet and SSI. Since these apply the CWA to learn disjointness
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axioms from ontologies where the data lacks any negative information, we are
forced to do the same to be able to acquire such hypotheses. Therefore, we ex-
plicitly add all negative assertions “assumed” by the CWA to the ABox. Please
recall that this is done solely for the sake of comparison.

The case studies also turn out to be challenging to design and run. In the
first case study, we investigate whether DL-Miner can be useful for rice fertility
prediction. Constructing a prediction model from acquired hypotheses is not
straightforward. Firstly, an individual can be left unpredicted due to the OWA.
Secondly, an individual can be predicted to be an instance of disjoint concepts,
e.g. F (fertile) and ¬F (infertile), i.e. a clash can occur, since a prediction model
is built from a set of hypotheses. At it turns out, the first case never happens in
our experiment. The second case is handled via finding hypotheses causing the
clash and trusting the one which has the highest quality according to confidence
and support.

The second case study is aimed at collecting and analysing human opinion
about hypotheses acquired by DL-Miner. The first question that arises is how
to quantify human opinion in order to make numerical analysis possible. For this
purpose, we introduce the notions of validity and interestingness for a hypothesis.
The first captures whether a hypothesis is true in the domain and is assessed by
a domain expert via choosing one out of three options: “correct”, “wrong”, “don’t
know”. The second captures how interesting a hypothesis is for a domain expert
and is marked on the linear scale from 0 to 4. Another question is how to sample
hypotheses for the study since the algorithm usually generates a large number of
hypotheses. We sample one half of hypotheses from high-quality ones and another
half from all the rest to ensure sufficient presence of promising hypotheses in the
study and variability of hypothesis quality. Feedback from a domain expert is
collected via online surveys.

10.4 Gained Insights

The thesis gains several insights into the problem of OL which we view in the
broad sense as General Terminology Induction. Overall, the results of empirical
evaluation of DL-Miner show that the algorithm mainly works as specified by
its design. The case studies open opportunities for further investigations. The
main empirical outcomes are discussed below.
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10.4.1 Mutual Correlations of Hypothesis Quality Meas-

ures

The experiments show that the introduced quality measures mainly correlate as
expected, considering their definitions and properties. In other words, related
measures correlate, while unrelated do not. The main axiom measures positively
correlate with their respective basic axiom measures. The differences between
them are mainly caused by the presence of negative information in the ABox.
Hence, if negative information is not present in the ABox, the main measures can
be replaced with their basic counterparts, which also follows from their definitions.
While braveness strongly correlates with assumption, the correlation between fit-
ness and support is weak, confirming that these measures capture different no-
tions. There are also some unexpected correlations, e.g. between lift and length,
suggesting that longer hypotheses are likely to have higher quality according to
lift.

10.4.2 Computational Performance of DL-Miner

As it turns out, consistency of a hypothesis with respect to the ontology is the
most expensive quality measure on average. The cost of comparing hypotheses by
logical strength is also high, as it grows with the number of hypotheses. Comput-
ing the axiom measures that do not consider negation (most basic measures) is
considerably more expensive than computing the axiom measures that consider
negation (all main measures and some basic ones). As the difference between
the main and basic measures is mainly caused by negative information in the
ontology, it is worthwhile to compute only the basic measures when negative in-
formation is absent. Overall, considering that hypothesis evaluation is the most
expensive operation, the computational performance of DL-Miner can be signi-
ficantly improved if costly measures are skipped. Nonetheless, we advise doing
that only if some measures are clearly irrelevant or performance is a concern,
e.g. the ontology is particularly hard for reasoning. Otherwise, one would risk
overlooking important information about hypothesis quality, e.g. consistency.
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10.4.3 Comparing DL-Miner with Other Approaches

As the comparison with related approaches shows, DL-Miner is able to acquire
almost all hypotheses learned by other OL approaches. Moreover, DL-Miner

acquires many hypotheses that other approaches cannot learn. This is a con-
sequence of realising its design principles. Specifically, DL-Miner is designed
to acquire more expressive hypotheses than other approaches can possibly learn,
i.e. handle an expressive and flexible language bias. Completeness of DL-Miner

with respect to its language bias ensures that the algorithm does not miss any
hypotheses conforming to the language bias.

While comparing DL-Miner with DL-Learner, we find out that concept
definitions of DL-Learner can, in fact, be represented by (significantly) shorter
hypotheses of DL-Miner. Hence, concept definitions, if considered as a set,
are prone to contain redundancy. This happens because, as a CDL approach,
DL-Learner fixes axiom shapes for its hypotheses, see Example 9.1. Moreover,
DL-Learner is not optimised for learning multiple concept definitions. This
makes it (sometimes significantly) slower than DL-Miner if the latter uses only
the cheap quality measures.

Comparing DL-Miner with BelNet and GoldMiner (the implementation
of SSI) requires the adaptation of the CWA because disjointness axioms cannot
be acquired by DL-Miner for the experimental ontologies otherwise. On the one
hand, this shows the difference between the approaches, i.e. the consequences
of respecting and neglecting the standard OWA, see Example 8.2. On the other
hand, this demonstrates that DL-Miner can also operate under the CWA which
is made by adding respective negative assertions to the ABox. However, this
relies on the ability to correctly “close” the ABox.

10.4.4 Making Predictions in Description Logics Using DL-

Miner

As the case study on rice fertility prediction shows, hypotheses acquired by DL-

Miner can be used to build a prediction model. Such a prediction model exhibits
a behaviour typical for ML models, including the effects of underfitting and over-
fitting. It demonstrates a potential to make accurate predictions as it achieves
the accuracy around 76% on highly relational genetic data. Importantly, a predic-
tion model is comprehensible since it consists of hypotheses which are DL axioms.
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Hence, it can potentially help domain experts to gain insight into their data and
understand phenomena, see Example 9.2.

10.4.5 Usefulness of Hypotheses for Domain Experts

Our case study with the domain experts demonstrates that DL-Miner is able
to acquire useful hypotheses. Moreover, the results show that a hypothesis can
be useful regardless of its validity, i.e. whether it is correct, wrong, or unknown.
Correct hypotheses can enrich the TBox. Wrong hypotheses appear to be useful
for ontology debugging as they can help a domain expert to identify modelling
errors. Unknown hypotheses can spark investigations and help to discover new
phenomena in the domain.

As it turns out, “focused” learning can produce significantly more interesting
hypotheses than “unfocused” one. More specifically, if an expert specifies terms
of interest, i.e. a seed signature, the resulting hypotheses appear to be much
more interesting than the hypotheses acquired using automatically selected terms.
This is not surprising since an expert shows her interest in hypotheses about focus
terms by providing them. Please note that a “boring” hypothesis can still be useful
as it can enrich the TBox. This is why we separate the notions of interestingness
and validity in Section 9.4.2.

Another important observation is that there is no single best indicator of hy-
pothesis usefulness amongst the quality measures. Good positive indicators are
confidence, lift, dissimilarity, and length. Good negative indicators are complex-
ity, assumption, and support. This shows that we probably need to consider
multiple quality measures in order to select useful hypotheses in DLs.

10.5 Future Work

This thesis presents a new, generalised vision of the OL problem and lays the
foundations of an approach that seems capable of fulfilling that vision. The
proposed methodology and empirical evaluation of the implementation open op-
portunities for further research in this direction. Some avenues for future work
are presented and discussed below.
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10.5.1 Advancing DL-Miner

Although the empirical results of DL-Miner look promising, there are still op-
portunities for further enhancements. In the following, we discuss outstanding
issues that need to be addressed.

10.5.1.1 Dealing with Redundancy of Hypotheses

Definition 5.7 and Algorithm 1 deal with redundancy of a hypothesis caused by its
excessive length. More specifically, redundant axioms and axioms with redundant
parts are detected in a hypothesis and subsequently eliminated from it. Although
these are frequent signs of redundancy (also noticed for justifications), there are
other, less obvious types of redundancy, see Example 5.7 and Example 5.8.

In order to handle all possible types of redundancy, we need to extend Defini-
tion 5.7 accordingly. Besides requiring that a non-redundant hypothesis is shortest
amongst all syntactic variations, such definition should also state that all parts of
a non-redundant hypothesis are as weak as possible. Detecting and eliminating
redundancy according to that definition would probably require a procedure more
sophisticated than Algorithm 1. It is also expected that such procedure would
be more expensive computationally.

10.5.1.2 Constructing Concepts Beyond ALC

The current implementation of DL-Miner supports constructing complex con-
cepts for ALC (and hence less expressive DLs). Please recall that it also con-
structs complex roles given their templates. Hence, depending on role templates,
the resulting hypotheses can be as expressive as SHI to allow for complex role
hierarchies and inverses. Nevertheless, there are more expressive DLs which are
used to build ontologies. In particular, as mentioned in Section 2.1.4, the current
version of OWL is based on SROIQ(D). Therefore, it is sensible to construct
complex concepts as expressive as that.

The capabilities of DL-Miner to construct complex concepts depend on avail-
ability of suitable refinement operators that are currently proposed for ALC.
Thus, in order to construct concepts beyond ALC, we need to design suitable
refinement operators for more expressive DLs (or wait until they are designed by
other researchers, e.g. in CDL). Of course, we can generate expressive concepts
for any DL using respective concept templates. However, this is likely to make
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the algorithm incomplete for that DL, i.e. many interesting hypotheses might be
missed. Once a suitable refinement operator is designed for a DL of choice, it
can be straightforwardly embedded into the implementation of DL-Miner. The
latter may require some additional optimisations since reasoning operations are
likely to be more computationally costly for more expressive DLs.

10.5.1.3 Scaling DL-Miner to Large Knowledge Bases

As our experiments show, DL-Miner is computationally feasible even for large
domain ontologies. Its performance strongly depends on performance of instance
retrieval. Hence, instance retrieval should be as efficient as possible. It is known
that, while OWL reasoners are proved to be efficient for large TBoxes, their
performance degrades significantly for large ABoxes.

The poor performance of OWL reasoners on large ABoxes has inspired devel-
oping hybrid systems, such as PAGOdA [ZCGNH15], that use a standard OWL
reasoner to perform TBox reasoning and a specialised, data-focused reasoner
(query engine) to perform ABox reasoning, i.e. instance retrieval. A similar
approach is implemented in the latest version of DL-Learner [BLW16], where
instance retrieval is executed by an optimised RDF query engine.

In order to scale DL-Miner to large knowledge bases, we can take the same
path, i.e. replace an OWL reasoner with a data-focused reasoner to perform
instance retrievals. This is even more sensible in the light of rapidly growing
Linked Data which is essentially a collection of RDF ontologies with large ABoxes.
The applicability of DL-Miner would then be expanded and enable learning
expressive hypotheses for large RDF knowledge bases.

10.5.2 Investigating Other Quality Measures and Measure

Combination Schemes

One of the main questions addressed in this thesis is how to rigorously evaluate
expressive hypotheses in DLs. We have discussed three dimensions of hypothesis
quality, i.e. readability, logical quality, statistical quality, and introduced several
quality measures to evaluate a hypothesis in these dimensions. Although we argue
that the proposed quality measures allow for thorough evaluation of a hypothesis,
they do not form the “complete list” of hypothesis quality measures. Clearly, there
are other possible measures.
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Firstly, the notion of readability is not only syntactic, as it is measured by
syntactic length and depth. Although redundancy captures some semantic as-
pects of readability, there are other aspects to consider. For example, some DL
constructors, e.g. ∀R.C, seem to be harder to understand than others irrespective
of their length [WMCM14]. In addition, logical interactions between axioms can
come into play [HBPS11]. Clearly, some hypotheses can be easier or harder to
understand depending on the TBox.

Amongst the proposed logical measures, logical strength can be defined re-
specting the TBox. TBox-aware logical strength would facilitate finer, more com-
plete ordering of hypotheses but would be much more costly to compute for a
hard TBox. Additional statistical axiom measures can be derived from measures
used in ML/DM, e.g. cosine, Gini index, J-measure, etc. [GH06], respecting the
standard DL semantics and its OWA as it is done in this thesis.

Finally, other strategies of ranking hypotheses can be investigated. In par-
ticular, we can refine the single-measure ordering, see Section 8.2.1. This needs
developing techniques for normalising (scaling) the quality measures. There are
also various measure aggregation schemes. Considering the results of our case
study with the human experts, it is likely that a weighted aggregation scheme
is most suitable as some measures are better indicators of hypothesis usefulness
than others. The importance, i.e. weight, of each measure could be estimated
empirically by running additional case studies using the methodology described
in Section 9.4.2. The results would allow estimating the weight of a measure
based on its correlation with interestingness and validity of hypotheses.

10.5.3 User Interaction Scenarios

In Section 8.4.2, we suggest several ways how an output of DL-Miner can pos-
sibly be used. To recap, a user can explore hypotheses using their ranking, sort
them by a measure of choice, select most promising hypotheses via thresholds.
Considering the results of our case study with the domain experts, it is not clear
which way of interaction is most convenient. To be more specific, although we
have revealed some good indicators of hypothesis validity and interestingness,
they are not constant, i.e. they differ for the surveys. Therefore, it is hard to
conclude which set of measures and, hence, which way of interaction should be
used generally. Perhaps, a user should be given different options of interaction
with hypotheses so that she can try them out and choose the one which suits
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best for the given hypotheses and the task at hand. Further case studies can
shed light on this question.

10.5.4 Ontology Completion and Debugging

Besides sequentially examining the acquired hypotheses, a user can use DL-

Miner for interactive ontology completion and debugging. In the ontology com-
pletion scenario, a domain expert judges a certain number of hypotheses and
annotates them respectively, e.g. using the validity marks as we do in our case
study. She adds some hypotheses, e.g. all correct ones, to the ontology and reruns
DL-Miner on the enriched ontology. This gives another set of hypotheses dif-
ferent from the initial one since the added hypotheses become uninformative and
may affect the quality values of other hypotheses. Then, she repeats these steps
for new hypotheses. She carries on until the ontology is sufficiently enriched, i.e.
complete, that can be verified via standard techniques of ontology engineering,
e.g. competency questions [UG96, Vra09].

As our case study with the domain experts shows, hypotheses, particularly
wrong ones, can be useful for ontology debugging as they can reveal modelling
errors. Similarly to the ontology completion scenario, DL-Miner can be used to
debug the ontology interactively. More specifically, a user marks hypotheses that
indicate some data bias or error worthwhile to fix. Then, she fixes those errors in
the ontology and reruns DL-Miner on the fixed ontology. If the error-indicating
hypotheses are not in the new set, the errors are fixed. Otherwise, she attempts
new fixes and then repeats the test until all error indicators are removed. After
that, she may explore and mark the hypotheses once again as fixing some errors
might cause other errors.

It is also reasonable to combine ontology completion and debugging into one
interactive scenario because enriching an ontology may reveal errors in it. To fix
the errors, the ontology debugging scenario can be triggered. Once all errors are
fixed, a user can proceed with ontology completion until she detects new errors
that need to be fixed. The aforementioned scenarios are subjects of further case
studies.
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10.5.5 Comprehensible Predictors and Data Analysis Us-

ing Description Logics

In Section 9.4.1.1, we have introduced the problem of making predictions in DLs.
By Definition 9.4, predictions are all new assertions in the data caused by hypo-
theses learned from it that act as prediction rules. Using this definition, we can
straightforwardly formalise the binary classification problem in DLs as predicting
instances of a given concept name A and its negation ¬A.

Nevertheless, transforming a set of hypotheses into a binary prediction model
(classifier) is not straightforward. Firstly, a set can be too weak, i.e. insufficient
to make any prediction for some individuals. Secondly, a set can be too strong
(contradictory), i.e. can predict that some individuals are both A and ¬A, or
clashes. The first problem does not occur in our case study due to completeness
of DL-Miner which acquires the hypotheses HA := {> v A} and H¬A := {> v
¬A}. However, these hypotheses mutually imply that all individuals are clashes,
i.e. the second problem always occurs.

In principle, we can always handle the first problem by adding the hypotheses
HA and H¬A to the set of acquired hypotheses. Then, we can concentrate on the
second problem which becomes a major issue as all individuals are affected. In this
thesis we have proposed a simplified solution to this problem, see Section 9.4.1.1.
In short, in order to resolve a clash, we identify hypotheses causing the clash
and trust the prediction of the most confident hypothesis (taking its support
into account). Of course, it is a simplification since multiple hypotheses can
be necessary to make a prediction. In addition, multiple hypotheses can be
considered to resolve the clash, e.g. via weighted voting. Moreover, clashes
may be harder to resolve for multiple mutually exclusive concepts. Therefore,
the problem requires further analysis and empirical investigations.

As it is pointed out in our case study on rice fertility prediction, making
predictions is not the only use case for hypotheses acquired by DL-Miner. They
are comprehensible since they are encoded in DLs and OWL which are originally
designed to be readable and understandable. Hence, hypotheses of high quality
can potentially be used by human experts to explore correlations in the data,
understand phenomena, identify factors indicating accurate predictions, and, as
a consequence, refine a prediction model, see Example 9.2. Further case studies
are required to address this conjecture.
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