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PCIeHLS: an OpenCL HLS framework
Malte Vespera, Dirk Kocha, and Khoa Phama

aUniversity of Manchester, United Kingdom

Abstract

One of the goals of high level synthesis (HLS) is to make designing hardware accelerators running on FPGAs accessi-
ble to developers with a software background (usually implying developers with little foundations in hardware design).
While high level synthesis generates accelerator kernels, it generally does not assist with integrating the generated kernels
into a system. In this paper we introduce PCIeHLS, a framework which helps in providing the required infrastructure
consisting of memory, PCIe interface, ICAP for partial reconfiguration, and clock managers. PCIeHLS provides several
partial regions, allowing to load multiple modules at the same time. Consequently, multiple kernels can be used simulta-
neously for multi threading or to run several independent applications. Moreover, regions can be combined to host larger
accelerators and accelerators can be relocated at the bitstream level.

1 Introduction

High level synthesis (HLS) makes hardware acceleration
accessible to programmers without knowledge of hardware
design. HLS allows to program in popular and prevalent
languages, like C, C++, or OpenCL [6], or even to reuse ex-
isting code (with minor adaptations) to generate hardware
accelerators. And with OpenCL, there exists a widely ac-
cepted industry standard that allows programming for dif-
ferent accelerator targets including CPUs, GPUs and FP-
GAs. OpenCL for FPGAs is supported by the major FPGA
vendors, and in addition, by third party EDA tools. How-
ever, while there exists a sophisticated tool ecosystem for
building accelerators from OpenCL, these accelerators still
have to be integrated into a system. This comprises two
major tasks: the hardware integration and the software in-
tegration. Unfortunately, both steps come with a significant
complexity and it needs profound hardware design skills as
well as skills in writing drivers for interfacing an FPGA to
a CPU when using protocols such as PCIe (which is the de
facto standard for interfacing FPGA accelerators). In this
paper, we present the PCIeHLS framework that fills this
gap by providing a hardware interface and corresponding
software libraries for generating, integrating and running
applications that call OpenCL accelerator kernels.
The overall idea of the framework is that OpenCL can be
used to build accelerators with a fixed interface definition
(in our example, we started with 32-bit datapaths). And
having accelerators using identical interfaces is then used
to build an I/O infrastructure for those accelerators that can
be reused by literally any OpenCL hardware module (as
long as it fits the resources allocated on the target FPGA).
Similarly, standardized interfaces allow in turn to provide
generic drivers such that it is very easy to build Applica-
tions that use those OpenCL accelerators. Finally in or-
der to provide more flexibility, the framework is support-
ing partial reconfiguration for loading accelerator modules
at run-time.

While most of the mentioned features are provided by the
frameworks from the major FPGA vendors Altera and Xil-
inx, PCIeHLS comes with some distinct features including:

• Module Encapsulation. The OpenCL accelerators are
implemented stand-alone without the need to have a
static system. In PCIeHLS, we use hardmacros for
interfacing reconfigurable modules with a static sys-
tem (which is providing the I/O infrastructure). This
allows 1) building the static system with the macro, 2)
building reconfigurable modules with the macro, or 3)
implementing everything in one run.

• Multi Module Support, meaning that the PCIeHLS
framework can host and run multiple OpenCL mod-
ules in parallel.

• Module Relocation and Multi OpenCL Kernel Instan-
tiation. PCIeHLS supports running the same module
accelerator bitstream at different reconfigurable re-
gions on the FPGA and, if resources permit, the same
accelerator can be configured more than once (e.g., for
running multiple instances of the same application).

Module Encapsulation enormously simplifies the design of
OpenCL accelerators as reconfigurable modules are built
without the rather complex static system. This removes
many possible pitfalls and one feature enabled by this
flow is that even different FPGA CAD tool versions can
be used to compile and implement the modules. This is
possible as we integrate modules at the bitstream level.
This also means that accelerators can easily be reused or
shared among different PCIeHLS setups. This is very na-
tive for software developers that are used to simply ex-
change/install software binaries instead of compiling each
application from ground up with all possible obstacles.
The paper continues with an overview on the PCIeHLS
framework with all its components. In Section 3 we com-
pare the PCIeHLS framework with existing work. The sys-



tem is presented in Section 4 followed by revealing imple-
mentation details in Section 5

2 The PCIeHLS Framework

PCIeHLS is designed for Xilinx FPGAs. Xilinx’s High
Level Synthesis for OpenCL framework SDAccel [4] gen-
erates kernels with two AXI interfaces [7], 1) an AXI Lite
slave interface to control the kernel, and 2) an AXI Mem-
ory Mapped Master interface which is used by the kernel
for fetching operands and for writing back results when
running a kernel.
SDAccel comes with very restricted license policies and
there are only very few hardware platforms supported by
SDAccel. The last holds in particular for many very
popular FPGA-boards used in research projects. This is
where PCIeHLS provides an academic alternative that is
not based on SDAccel, but that uses Vivado HLS (which
is also used by SDAccel). While Vivado HLS provides
us with a compiler to implement accelerator kernels from
OpenCL specifications, it is in the default flow from the
vendor Xilinx up to the user to provide the remaining in-
frastructure. The bare minimum required is a memory with
an AXI interface together with a controller that config-
ures and launches the kernel. On top of that, there should
be a way to access the memory from the outside to load
data into the accelerators workspace and to retrieve results.
PCIeHLS provides a system with the memory and an exter-
nal connection through PCI express at 8 lanes gen3 perfor-
mance. In addition, it allows to swap the kernels through
partial reconfiguration. As OpenCL kernels tend to run sig-
nificantly slower than the rest of the system (e.g., PCIe and
memory) and at different speeds, each kernel runs in a sep-
arate clock domain. This allows to run the kernels at their
respective maximum frequencies to optimize performance.
A high-level view on the PCIeHLS framework is shown
in Figure 1. The user provides OpenCL specifications and
the application code. PCIeHLS then uses the standard Vi-
vado HLS compilation flow (with some constraints needed
to ensure that the AXI master interface is generated accord-
ing to the standard defined by PCIeHLS (currently 32bit
datapaths). After the OpenCL compilation, the resulting
RTL netlist is physicaly implemented using the Vivado tool
flow. This is done through compile scripts that are provided
with the PCIeHLS framework. The place and route pro-
cess is constrained such that the accelerator modules will
be placed into bounding boxes. As described in more detail
in Section 4 and Section 5, our prototype system provides
four reconfigurable regions with identical layout of the
FPGA resource primitives (i.e. the relative position of logic
slices, memory blocks, and multiplier blocks). Any differ-
ences between the fabric in the reconfigurable regions are
marked as PROHIBIT, and thus effectively voided. By de-
fault, the module bounding box dimension is set to host an
accelerator in one of those regions. However, if resources
are not sufficient, it is possible to increase the bounding
box of the module in order to use two adjacent reconfig-
urable regions for hosting one larger accelerator. In the
latter case, one interface will be left unused.

After placement and routing, a full bitstream is generated
and the tool BitMan [10] is used to cut out the region that
was used for the implementation of the accelerator. All
the steps described so far are carried out at system design-
time and the result is a set of applications and configuration
bitstream binaries that form a library that is later used by
the run-time system.
At run-time, an application firstly has to ensure that all
needed accelerators are configured to the FPGA. For this
step, the BitMan tool is used by the run-time system to re-
locate accelerator bitstreams to the target reconfigurable re-
gion. Placement positions are mainly determined by a sim-
ple first possible region fit policy (because all regions are
identical). The only exception to this is the case were only
a single slot module is present. In this case a new single
slot module is placed next to the loaded module, to allow
loading a module spanning two slots. The functionality of
BitMan can be seen as a run-time linker for configuration
bitstreams.
After configuration is completed, compute data is up-
loaded by DMA to the DDR3 memory of the FPGA board.
Then the control registers inside the OpenCL kernels are
set with all needed parameters (typically the begin pointers
of all arrays) and the execution is started through writing
a control register inside the accelerator module. The sys-
tem then polls a status register to detect if computation of
a workgroup completed. This process may repeat over and
over again in a system.
In summary, PCIeHLS eases the use of OpenCL HLS re-
sults with Xilinx FPGAs by providing the required infras-
tructure. PCIeHLS is the first academic OpenCL run-time
environment to our knowledge that takes care of:

• Building run-time reconfigurable relocatable acceler-
ator modules

• Interfacing the kernels to user software

• Providing local memory for the kernels

• Enabling partial reconfiguration of the kernels

• Automatic optimization and adaptation of the clock
frequency for the running kernels

3 Related Work

The large FPGA vendors Intel and Xilinx both offer tool
flows to generate accelerators from OpenCL specifications
as well as the required infrastructure to run these accel-
erators. The tool flow often uses PCIe to communicate
with the drivers and allows for partial reconfiguration of
the different kernels. However, the kernels need to be
implemented once for each region they are used in. Xil-
inx’s SDAccel [4] while providing drivers and infrastruc-
ture, is limited to a handful of boards. In particular the
VC707, VC709 and the Sume board, which are popular
in academia, are not supported. Intel’s FPGA SDK for
OpenCL [3] shares similar limitations. LegUp [5] is an-
other alternative that provides high level synthesis com-
bined with the necessary infrastructure. It either gener-
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Figure 1 Logical system overview.

ates a pure hardware accelerator or a hardware-/software-
codesign. In case of the codesign the program runs on a
MIPS softcore or the ARM built-in on the Cyclone V-SoC.
LegUp focuses on running everything on the FPGA. This
means for the use case we target, accelerators for programs
running on a host PC, the user has to create the infrastruc-
ture to establish the link.
PCIeHLS implements accelerators as run-time reconfig-
urable relocatable modules which has been demonstrated
several times before. For instance, early work included the
PARBIT approach from Horta [11]. Later, Kalte demon-
strated this in his REPLICA work on an Xilinx XCV2000E
device [12]. More modern approaches were presented by
Koch with the ReCoBus-Builder [13] and by Beckhoff
with the GoAhead tool [14]. However, all these approaches
do not work together with the Vivado tool suite that intro-
duced a new TCL interface for applying constraints. More-
over, newer devices got substantially more complex and
in particular constraining the clock network is in a system
of the complexity that we aim for quite a challenging task
(see also Section 4.1 and 4.2). Nevertheless, for carrying
out the communication between the static system and the
partial modules, we adopted the bus macro concept in this
work. This was originally introduced in [15] (by using tris-
tate drivers) and later in [16] using LUTs as connection
points.

4 System

We implemented the system as a block design, since we
use Xilinx IPs for a majority of the required components.
The design is shown in Figure 2. It contains a PCIe block,
which we use to interface to the host system. From there,
we use the AXI bus for the on-chip communication. The
AXI bus interface feeds into the ICAP module allowing for
partial reconfiguration of the FPGA and thus the HLS ker-
nels. Furthermore, there is a direct connection to a Mixed
Mode Clock Manager (MMCM), through which the clocks
for the different kernels can be adjusted. We derive the
MMCM parameters from a table that is looked up with
the maximum operating frequency reported after the final
place and route. The decoupler is also controlled directly
through AXI. It decouples slots of unused modules from
the bus to avoid invalid bus transactions from toggles dur-
ing reconfiguration. Furthermore, it applies a reset to the
module once it has been (re)configured, in order to ensure
proper startup of the module. The AXI Lite control port of
each kernel is connected to the PCIe allowing the host PC
to control the kernels.

4.1 Memory
Since we use two memory DIMMs, the memory interface
generator (MIG) [1] generates a memory controller with
two AXI interfaces. To hide this from the user, we have
added an AXI crossbar directly in front of the controller.
Therefore, the rest of the system sees only one large mem-
ory. The memory is a slave to each HLS kernel and the
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Figure 3 Coarse floorplan, showing the physical place-
ment of the functional blocks and the reconfigurable re-
gions allocated for the modules.

AXI-PCIe bridge. This allows the host PC to access the
memory on the FPGA-board directly.

4.2 Clock domains
The system uses a multitude of clock domains. Both mem-
ory controllers require their own 200 MHz domains; PCIe
3 with 8 lanes requires 250 Mhz for maximum throughput,
and ICAP is limited to 100 Mhz in Virtex 7 devices. On top
of that, there are extra clock domains for the different HLS
modules. The individual domains for the HLS modules al-
low us to tune the frequency for the loaded kernel, and thus
run each kernel at its respective maximum frequency. The
crossings between the different clock domains are handled
by Xilinx’s AXI clock converter [2] for the AXI buses, and
by our own IP for simple wires (i.e. reset). The Xilinx AXI
IP is based on Fifo’s, while we use two resynchronization
stages for wires. Furthermore, our IP has the ability to en-
sure that a pulse is registered in the other clock domain,
which we need to reliably reset the kernels.
Figure 3, shows the coarse floorplan of PCIeHLS. Please
note that each block in this picture runs in its individual
clock domain.

HLS

decoupler

Figure 4 User module surroundings.

4.3 User modules
Figure 4, shows the immediate surrounding of each user
module. Each module is placed between two axi clock
domain converters, and a decoupler. To generate the user
modules, it is sufficient to provide an IP from Vivado HLS.
Since our system is geared towards OpenCL, we provide
the standard interface used for OpenCL by Vivado HLS:
an AXI Lite slave port for control of the kernel and an AXI
Memory Mapped master port for memory accesses by the
module.

4.4 Partial reconfiguration
For implementing the system reconfigurable, such that
OpenCL accelerators can be loaded dynamically at run-
time, we created dedicated macros that act as interfaces
between the static system (with the PCIe and memory in-
frastructure) and the actual accelerator modules (see also
Figure 5). We then used constraints to allocate some FPGA
resources for the static system while leaving larger areas
empty that will later host the accelerator modules in the
run-time system. The only communication between the
accelerator modules and the static system is through the
macro that we created.
So far, we reserved only a few hundred wires as a proof
of concept using 32-bit AXI connections. However, the
principle should scale up to wider buses delivering higher
throughput.
A distinct feature of the PCIeHLS framework is that mod-
ules can be relocated at the bitstream level. This is done
at run-time by the tool BitMan [10]. The tool internally
keeps an image of the present FPGA configuration (which
is the initial bitstream at system start). Then bitstreams



Figure 5 Bridge between a slot and the static system.

are loaded into that image by BitMan and the tool then
generates a bitstream that provides the configuration for an
accelerator at exactly the desired target reconfigurable re-
gion.
This bitstream is then sent through PCIe to an AXI4 slave
port that ultimately connects to internal configuration ac-
cess port ICAP. However, before sending the actual config-
uration data, the AXI bus connecting the region that is due
to be reconfigured is decoupled. After the configuration
process has been completed, the module is reset and the
bus is enabled. With this, the accelerator module is ready
to be used by the application.

5 Implementation

In this section we describe the implementation flow used
to generate the static system and the partial bitstreams in
such a way that we can relocate them.

5.1 Static system
The static system is placed in a pblock, with the CON-
TAIN_ROUTING constraint set to true. This forces the
placer to position all cells in to the area we designated for
the static system. However, some cells are placed outside
this pblock due to other constrains. This is the PCIe reset
IOPAD and clocking resources.
The clocking resources are placed outside the pblock, since
the required clocking resources (i.e. BUFHs) are located
in the clock spline, which is in the center of the FPGA [8].
Since we can not partially reconfigure the clockspine [9],
we have to configure it correctly for our partial modules
in the static system, despite not implementing the partial
modules in this stage. To ensure this, we preroute the clock
for the partial modules onto the horizontal wires as Xilinx
does. However, in contrast to Xilinx’s PR flow, we route
the clock for each partial module onto the same horizontal

Figure 6 Floorplan of the static system.

wire. This enables modules to connect their clock from the
same wire in each partial region. In other words, the static
system provides clock routing to all reconfigurable regions
using the same relative clock routing resources. The mod-
ules are then build accordingly which enables module re-
location without the need to manipulate the clock routing.
We can not move the I/O-Pad, as we can not change the
physical connection of the FPGA to the PC. To minimize
the impact of the PAD we manually route the connection of
the PAD. This allows us to pick the shortest route through
the area of the partial module. Because this I/O column
is not used by the module, there will be no interference of
the used I/O pin with the accelerator modules. The rout-
ing used to connect the I/O pad is occupied in all partial
regions, preventing use in a partial module. This way, we
can still relocate modules in vertical direction.

5.2 Partial modules
To save implementation time for the partial modules, we
do not generate them in the context of the static system.
While generating them separately from the static system
reduces complexity, care has to be taken to ensure that the
module fits into the regions left by the static system. To en-
sure this, we implement the module in a pblock, containing
the placement and routing.
While this ensures proper placement and routing, we have
to take care of the clocks. We block all BUFHs except
for the BUFH belonging to the horizontal wire on which
the static system drives the clock. Afterwards we route
the clock for the module explicitly onto the horizontal wire



Resource Count Percentage

LUTs 77 K 17.6 %
BRAM 41 2.8 %
FlipFlops 85 K 9.8 %

Table 1 Resource utilization.

chosen in the static system.
In addition to taking care of the clocks, collisions with
cells leaked into the area of the partial module have to be
avoided (i.e. PCIe Reset I/O-Pad). For this purpose we
generate blockers by checking the region of each partial
module for cells and nets. Every cell and net is copied to
the relative positions in our module implementation box.
This intersection of obstacles ensures that a module does
not conflict with the static system in any slot.

5.3 Resource utilization
Table 1 gives an overview of the resource utilization. As
can be seen in Figure 6, the static system uses a lot of the
space assigned to it. However, the main reason forcing us
to size the static pblock as we did is not the resource uti-
lization (maximum of 50 % for the flip flops), but rather
the routing. Due to the physical locations of the memory
controllers and the PCIe block visible in Figure 3, a lot of
wires have to converge next to the PCIe block. Wires from
the AXI buses of the partial modules for memory access,
the buses to the memory controllers, and the PCIe bus con-
verge here.

6 Conclusion

In this paper we presented PCIeHLS, a framework to run
Vivado HLS kernels as partial modules in several slots with
a single bitstream. The fixed static system alleviates the
user from issues such as timing closure, yet allows the user
to port designs to other boards. Due to the separate gen-
eration of the bitstreams for the partial modules, the user
is free to use a newer version of Vivado without the need
to regenerate the static system. Generation of the partial
modules is not impacted by timing closure, since the mod-
ules run in their own clockdomains as fast (or slow) as the
implementation allows.

6.1 Future work
In an attempt for more open source tools in the flow, we
aim to support LegUp as an alternative input tool. Evicting
kernels to enable preemptive multitasking is another area
for research, however, it would require to read back the
states of the modules. Finally, we tested PCIeHLS only
with relatively simple vector operations so far and more
advanced test cases are needed. While we assume that this
will not pose a problem, it still has to be proven.
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