

 Department of Computer Science

Compressing Labels of Dynamic XML

Data using Base-9 Scheme and

Fibonacci Encoding

Submitted for the degree of Doctor of Philosophy
(PhD Thesis)

By: Hanaa AbdulWahab Al-Zadjali

October 2017

Supervisor: Dr Siobhán North

ii

 بسم الله الرحمن الرحيم

iii

Abstract

The flexibility and self-describing nature of XML has made it the most common mark-

up language used for data representation over the Web. XML data is naturally

modelled as a tree, where the structural tree information can be encoded into labels

via XML labelling scheme in order to permit answers to queries without the need to

access original XML files. As the transmission of XML data over the Internet has

become vibrant, it has also become necessary to have an XML labelling scheme that

supports dynamic XML data. For a large-scale and frequently updated XML

document, existing dynamic XML labelling schemes still suffer from high growth rates

in terms of their label size, which can result in overflow problems and/or ambiguous

data/query retrievals.

This thesis considers the compression of XML labels. A novel XML labelling scheme,

named “Base-9”, has been developed to generate labels that are as compact as

possible and yet provide efficient support for queries to both static and dynamic XML

data. A Fibonacci prefix-encoding method has been used for the first time to store

Base-9’s XML labels in a compressed format, with the intention of minimising the

storage space without degrading XML querying performance. The thesis also

investigates the compression of XML labels using various existing prefix-encoding

methods. This investigation has resulted in the proposal of a novel prefix-encoding

method named “Elias-Fibonacci of order 3”, which has achieved the fastest encoding

time of all prefix-encoding methods studied in this thesis, whereas Fibonacci encoding

was found to require the minimum storage.

Unlike current XML labelling schemes, the new Base-9 labelling scheme ensures the

generation of short labels even after large, frequent, skewed insertions. The

advantages of such short labels as those generated by the combination of applying

the Base-9 scheme and the use of Fibonacci encoding in terms of storing, updating,

retrieving and querying XML data are supported by the experimental results reported

herein.

iv

Declaration

I hereby declare that the configuration of this thesis is entirely the result of my own

independent work/investigation, except where clearly specified otherwise. I assert that

this work has not been submitted for any other degree or professional qualification,

except as stated.

Hanaa AbdulaWahab Al-Zadjali

v

Acknowledgments

At first, I praise Allah for endowing me with the opportunity to strive for a PhD degree,

and giving me the perseverance, courage and strength to complete this research. I

am very grateful to Allah, who guided these wonderful people to my PhD journey.

My supervisor, Dr Siobhan North, to whom I express my deepest gratitude for her

time, extraordinary support, priceless advice, and boundless encouragement. She is

truly an excellent supervisor and amazingly incomparable person.

I dedicate this thesis and my success to my parents, who have always motivated me

to proceed further my education with a higher degree. I am honoured to grant my

mother her wish by pursuing this degree. Her unconditional love and continuance

prayers for me was what sustained me this far. Regretfully, I was not able to

accomplish this work in my father lifetime.

I am extremely grateful to my beloved husband (Dr. Tariq) for his superlative

understanding and great help with the kids. He has been a constant source of support

throughout the challenges of this journey. I am fortunate for having such person in my

life, who has encouraged me to work hard for what I aspire to achieve.

There is no word to express my gratitude to my lovely children (Ziyad, Sundus, and

the twin Emran and Abdul Rahman) for being patience and considerate despite their

young age. They have been and continues to be my inspiration.

Respecting my children desire for preferring to stay-at-home was the most difficult

decision I ever encountered. And so, endless thanks to my fantastic sisters (Zahiya

and Heba) and my nieces (Amira and Asmaa) for their unwavering support and

incredible assistance with the kids in my absence over the last three years. Thanks a

lot to my siblings (Nada and Mariam) and other family members for their prayers and

reassurance during my difficult times. I am also indebted to Ghazala Husain who

taught me how a stranger can be more than a sister. I am as well appreciative to my

true friend Sally for the excellent discussant and for always being there for me.

Finally, I am obliged to Sultan Qaboos University, who offered me this chance to

complete my academic studies.

vi

Table of Content

CHAPTER 1: INTRODUCTION .. 1

1.1 INTRODUCTION ... 1

1.2 IMPORTANCE OF XML ... 1

1.3 IMPORTANCE OF XML LABELLING SCHEMES ... 3

1.4 RESEARCH MOTIVATION AND HYPOTHESIS ... 3

1.5 THESIS STRUCTURE .. 4

1.6 PUBLICATION ... 6

1.7 CONCLUSION .. 6

CHAPTER 2: BACKGROUND ON XML DATA .. 7

2.1 INTRODUCTION ... 7

2.2 XML: AN OVERVIEW ... 8

2.3 XML STRUCTURE AND STORAGE .. 9

2.4 XML BASIC SYNTAX .. 10

2.4.1 XML Elements .. 11

2.4.2 XML Attributes ... 11

2.4.3 XML Document Type Definition (DTD) ... 12

2.4.4 XML Schema... 13

2.5 XML PARSERS .. 14

2.5.1 Document Object Model .. 15

2.5.2 Simple API for XML ... 15

2.6 XML TREE STRUCTURE .. 16

2.6.1 Rooted Ordered XML Trees .. 18

2.6.2 Structural Relationships between XML Nodes ... 19

2.7 QUERYING XML ... 20

2.8 XML QUERY LANGUAGES ... 21

2.8.1 XML Path language (XPath) ... 22

2.8.2 XML Query Language (XQuery) .. 24

2.8.3 XML Query Languages Weaknesses .. 25

2.9 STRUCTURAL INDEXING .. 25

2.10 CONCLUSION .. 27

CHAPTER 3: LITERATURE ON XML LABELLING SCHEMES ... 28

3.1 INTRODUCTION ... 28

3.2 XML LABELLING SCHEMES: AN OVERVIEW .. 28

3.3 INTERVAL-BASED LABELLING SCHEMES .. 30

3.3.1 Structure and Concept ... 30

3.3.2 Related Schemes .. 31

3.3.3 Summary of Interval-based Labelling Schemes ... 33

3.4 PREFIX-BASED LABELLING SCHEMES .. 34

3.4.1 Structure and Concept ... 34

3.4.2 Related Schemes .. 36

3.4.3 The SCOOTER Labelling Scheme ... 42

3.4.4 Labelling Schemes for Re-using Deleted Labels ... 49

3.4.5 Summary of Prefix-based Labelling Schemes ... 51

3.5 MULTIPLICATIVE LABELLING SCHEMES ... 51

vii

3.5.1 Structure and Concept .. 51

3.5.2 Related Schemes .. 52

3.5.3 Summary of Multiplicative Labelling Schemes ... 56

3.6 HYBRID LABELLING SCHEMES ... 57

3.7 SUMMARY AND LIMITATIONS OF XML LABELLING SCHEMES .. 59

3.8 CONCLUSION .. 60

CHAPTER 4: LITERATURE ON ENCODING METHODS .. 61

4.1 INTRODUCTION ... 61

4.2 ENCODING METHODS ... 61

4.3 THE OVERFLOW PROBLEM .. 62

4.4 LABEL STORAGE SCHEMES ... 63

4.4.1 The Length Field ... 63

4.4.2 Control Tokens .. 64

4.4.3 Separators .. 65

4.4.4 Prefix-Free Codes .. 66

4.4.5 Limitation of Label Storage Schemes ... 66

4.5 PREFIX-ENCODING METHODS ... 67

4.5.1 Fibonacci of Order 𝑚 ≥ 2 ... 67
4.5.1.1 Fibonacci coding of order 𝑚 = 2 ... 69
4.5.1.2 Fibonacci coding of order 𝑚 > 2... 70
4.5.1.3 Fibonacci Label Storage Scheme.. 71

4.5.2 Lucas Coding ... 71

4.5.3 Elias-Delta Coding .. 73

4.5.4 Elias-Fibonacci of Order 𝑚 ≥ 2 .. 74

4.6 CONCLUSION .. 76

CHAPTER 5: BASE-9 LABELLING SCHEME FOR DYNAMIC XML DATA .. 77

5.1 INTRODUCTION ... 77

5.2 PROBLEM IDENTIFICATION ... 77

5.3 RESEARCH OBJECTIVE, MOTIVATION AND HYPOTHESIS ... 78

5.4 THE PRINCIPLES OF THE BASE-9 LABELLING SCHEME ... 80

5.5 BASE-9 LABELS INITIALISATION ... 81

5.6 HANDLING INSERTIONS ... 85

5.6.1 Insertion After the Right-most Node .. 87

5.6.2 Insertion Before the Left-most Node .. 89

5.6.3 Insertion Between Two Nodes .. 95

5.6.4 Re-using Deleted Node Labels .. 102

5.7 FIBONACCI CODING .. 103

5.8 RELATIONSHIP DETERMINATION ... 107

5.9 CONCLUSION .. 108

CHAPTER 6: EXPERIMENTAL DESIGN AND IMPLEMENTATION ..109

6.1 INTRODUCTION ... 109

6.2 THE OVERALL EXPERIMENTAL DESIGN ... 109

6.3 EVALUATION OF XML LABELLING SCHEMES: AN OVERVIEW .. 110

6.3.1 Determining Relationships and Query Efficiency .. 112

6.3.2 Compact and Dynamic Labels .. 113

6.4 A REVIEW OF CURRENT EXPERIMENTAL XML DATASETS ... 114

6.4.1 Existing XML Benchmarks: An Overview .. 114

viii

6.4.2 Existing XML Real-Life Datasets: An Overview ... 119

6.5 THE GUIDELINE FOR EXPERIMENTAL ASSESSMENT ... 121

6.5.1 The Selection of Experimental Datasets and Queries .. 121

6.5.2 Experimental Objectives .. 123
6.5.2.1 Label Initialisation.. 124
6.5.2.2 Handling Insertions .. 124
6.5.2.3 Re-using Deleted Nodes’ Labels .. 125
6.5.2.4 Label Encoding ... 125
6.5.2.5 Relationships Determination ... 126
6.5.2.6 Query Performance ... 127

6.6 XML LABEL COMPRESSION USING PREFIX ENCODING .. 127

6.7 THE EXPERIMENTAL PLATFORM SETUP .. 129

6.8 CONCLUSION .. 129

CHAPTER 7: EXPERIMENTAL RESULTS AND STATISTICAL ANALYSIS .. 130

7.1 INTRODUCTION ... 130

7.2 STATISTICAL SIGNIFICANCE ANALYSIS: AN OVERVIEW ... 130

7.3 EXPERIMENTAL RESULTS FOR THE BASE-9 SCHEME .. 134

7.3.1 Label Initialisation .. 134
7.3.1.1 Analytical Strategy ... 135
7.3.1.2 Results Analysis ... 135
7.3.1.3 Conclusion ... 139

7.3.2 Handling Insertions .. 139
7.3.2.1 Analytical Strategy ... 139
7.3.2.2 Analysis of the Results ... 140
7.3.2.3 Conclusion ... 149

7.3.3 Re-using Deleted Nodes’ Labels ... 149
7.3.3.1 Analytical Strategy ... 149
7.3.3.2 Analysis of the Results ... 150
7.3.3.3 Conclusion ... 156

7.3.4 Label Encoding ... 156
7.3.4.1 Analytical Strategy ... 156
7.3.4.2 Analysis of the Results ... 158
7.3.4.3 Conclusion ... 167

7.3.5 Relationship Determination ... 167
7.3.5.1 Analytical Strategy ... 167
7.3.5.2 Analysis of the Results ... 169
7.3.5.3 Conclusion ... 176

7.3.6 Query Performance .. 176
7.3.6.1 Analytical Strategy ... 177
7.3.6.2 Analysis of the Results ... 177
7.3.6.3 Conclusion ... 180

7.4 EXPERIMENTAL RESULTS OF XML LABEL COMPRESSION ... 180

7.4.1 Analytical Strategy ... 181

7.4.2 Analysis of the Results ... 182

7.4.3 Conclusion .. 188

7.5 CONCLUSION .. 188

CHAPTER 8: EVALUATION AND FURTHER DISCUSSION .. 191

8.1 INTRODUCTION ... 191

8.2 THE BASE-9 SCHEME’S OVERALL EVALUATION .. 191

8.3 THREATS TO THE EXPERIMENTS .. 193

ix

8.3.1 Experimental Implementation .. 194

8.3.2 Reproducibility .. 194

8.3.3 Comparability ... 196

8.3.4 The Need for Statistics .. 197

8.4 EXPERIMENTAL EVALUATION .. 197

8.4.1 Label Initialisation Experiment ... 198

8.4.2 Handling Insertions Experiment ... 198

8.4.3 Re-using Deleted Node Labels Experiment ... 200

8.4.4 Label Encoding Experiment .. 200

8.4.5 Relationships Determination Experiment ... 202

8.4.6 Query Performance Experiment ... 204

8.4.7 XML Label Compression Experiment .. 205

8.5 THE VALIDATION OF THE BASE-9 SCHEME’S PROPERTIES ... 206

8.5.1 Supporting Dynamic Environment .. 206

8.5.2 Providing Compact Labels .. 208

8.5.3 Determining Relationships ... 212

8.5.4 Query Efficiency .. 214

8.5.5 Conclusion .. 216

8.6 LIMITATIONS OF THE EXPERIMENTS ... 216

8.7 THE MAIN FINDINGS OF THE EXPERIMENTS ... 217

8.8 CONCLUSION .. 217

CHAPTER 9: CONCLUSIONS AND FUTURE WORK ..218

9.1 INTRODUCTION ... 218

9.2 THESIS SUMMARY .. 218

9.3 THE MAIN CONTRIBUTIONS OF THIS RESEARCH ... 221

9.4 FUTURE WORK ... 222

9.5 CONCLUSION .. 225

REFERENCES ...227

APPENDIX A: SUMMARY OF CURRENT XML LABELLING EVALUATION FRAMEWORK260

APPENDIX B: STATISTICAL ANALYSIS GRAPHS ..264

APPENDIX C: SELF EVALUATION OF THE BASE-9 SCHEME ...292

x

List of Figures

FIGURE 2.1 AN XML SAMPLE - (SCHOOL) EXAMPLE .. 10

FIGURE 2.2 DTD FOR XML ‘SCHOOL’ SAMPLE IN FIGURE 2.1 .. 13

FIGURE 2.3 XML SCHEMA FOR 'SCHOOL' EXAMPLE .. 14

FIGURE 2.4A UNORDERED XML MODEL TREE OF FIGURE 2.1 .. 17

FIGURE 2.5 XML TREE REPRESENTATION OF THE "SCHOOL" EXAMPLE IN FIGURE 2.1 18

FIGURE 3.1 INTERVAL-BASED LABELLING SCHEME ... 32

FIGURE 3.2 PREFIX-BASED LABELLING SCHEME - DEWEY ORDER .. 35

FIGURE 3.3 DDE LABELLING SCHEME .. 37

FIGURE 3.4 LSDX LABELLING SCHEME (POSSIBLE COLLISION CASES) ... 40

FIGURE 3.5 EXAMPLE OF INITIAL SCOOTER SELF-LABELS .. 43

FIGURE 3.6 INSERT BETWEEN NODES... 45

FIGURE 3.7 XML TREE LABELLED BY THE SCOOTER SCHEME ... 49

FIGURE 3.8 REUSING QED CODE EXAMPLE ... 50

FIGURE 3.9 PRIME NUMBER LABELLING SCHEME ... 53

FIGURE 3.10 GRAPHICAL REPRESENTATIONS OF VECTORS .. 55

FIGURE 3.11 GRAPHICAL REPRESENTATION OF NODE A AND D AS SECTORS 57

FIGURE 4.1 EXAMPLE OF OVERFLOW PROBLEM ... 63

FIGURE 4.2 EXAMPLE OF A FIBONACCI LABEL STORAGE SCHEME ... 71

FIGURE 5.1 XML TREE LABELLED BY THE BASE-9 SCHEME .. 82

FIGURE 5.2 ASSIGNING BASE-9 INITIALS ALGORITHM .. 83

FIGURE 5.3 COMPUTING NEXT SIBLING LABEL ALGORITHM .. 84

FIGURE 5.4 TYPES OF INSERTIONS ... 86

FIGURE 5.5 INSERT AFTER THE RIGHT-MOST NODE ... 87

FIGURE 5.6 BASE-9 INSERT AFTER RIGHT-MOST ALGORITHM.. 87

FIGURE 5.7 EXAMPLE OF HANDLING INSERTIONS AFTER THE RIGHT-MOST NODE 88

FIGURE 5.8 INSERT BEFORE THE LEFT-MOST NODE ... 89

FIGURE 5.9 BASE-9 INSERT BEFORE LEFT-MOST NODE ALGORITHM ... 90

FIGURE 5.10 EXAMPLE OF HANDLING INSERTIONS BEFORE THE LEFT MOST NODE 94

FIGURE 5.11 INSERT BETWEEN TWO SIBLING NODES ... 95

FIGURE 5.12 INSERT BETWEEN TWO NODES LESS THAN ALGORITHM IN BASE-9 SCHEME 97

FIGURE 5.13 INSERT BETWEEN TWO NODES GREATER THAN ALGORITHM IN BASE-9 98

FIGURE 5.14 INSERT BETWEEN TWO NODES SAME LENGTH ALGORITHM IN BASE-9 99

FIGURE 5.15 INSERT BETWEEN TWO CONSECUTIVE NODES IN THE BASE-9 LABELLING SCHEME 101

FIGURE 5.16 EXAMPLE OF HANDLING INSERTIONS BETWEEN TWO NODES IN BASE-9 101

FIGURE 5.17 THE ALGORITHM FOR DECODING A BASE-9 LABEL .. 104

FIGURE 5.18 FLOWCHART TO DECODE A BASE-9 LABEL ... 105

FIGURE 5.19 THE ALGORITHM OF THE “𝐹𝑖𝑏𝐷𝑒𝑐𝑜𝑑𝑒” METHOD ... 106

FIGURE 7.1 INITIALISATION TIME COMPARISON (BASE-9 VS SCOOTER) ... 136

xi

FIGURE 7.2 BOXPLOTS OF THE BASE-9 AND THE SCOOTER INITIALISATION TIMES FOR THE XMARK

DATASET .. 137

FIGURE 7.3 INITIAL LABEL SIZE COMPARISON (BASE-9 VS SCOOTER) .. 138

FIGURE 7.4 DIFFERENCE IN LABEL SIZE BETWEEN BASE-9 AND SCOOTER 139

FIGURE 7.5 UNIFORM INSERTION TIME COMPARISON (BASE-9 VS SCOOTER) 141

FIGURE 7.6 BOX PLOT DISTRIBUTION OF 50,000 UNIFORM INSERTION TIMES 142

FIGURE 7.7 DIFFERENCE IN THE GROWTH OF LABEL SIZE (BASE-9 VS SCOOTER) 143

FIGURE 7.8 BOX PLOT DISTRIBUTION LABEL SIZES OF 500 INSERTIONS IN XMARK 144

FIGURE 7.9 TIME COMPARISON FOR SKEWED INSERTION (BASE-9 VS SCOOTER) 145

FIGURE 7.10 BOX PLOT DISTRIBUTION OF 100X10 SKEWED INSERTION TIMES IN XMARK 146

FIGURE 7.11 SIZE COMPARISON IN 100X10 INSERTIONS (BASE-9 VS SCOOTER) 147

FIGURE 7.12 SIZE COMPARISON IN 5000X10 INSERTIONS (BASE-9 VS SCOOTER) 147

FIGURE 7.13 BOX PLOT DISTRIBUTION OF TOTAL LABEL SIZES (KBYTES) IN XMARK (BASE9 VS

SCOOTER) .. 148

FIGURE 7.14 ENCODING TIME COMPARISON (XMARK) ... 158

FIGURE 7.15 BOX PLOT OF ENCODING TIME (INITIAL LABELS) DISTRIBUTION FOR XMARK DATASET .. 159

FIGURE 7.16 ENCODING SIZE COMPARISON OF INITIAL LABELS ... 160

FIGURE 7.17 ENCODING TIME COMPARISON AFTER 100 X 10 INSERTION ... 161

FIGURE 7.18 ENCODING TIME COMPARISON AFTER 5,000 X 10 INSERTION .. 162

FIGURE 7.19 BOX PLOT OF THE ENCODING TIME DISTRIBUTION AFTER 100X10 INSERTIONS (DBLP

AND XMARK) ... 163

FIGURE 7.20 BOX PLOT DISTRIBUTION OF ENCODING TIME AFTER 5000X10 INSERTIONS (XMARK) .. 163

FIGURE 7.21 ENCODED LABEL SIZE COMPARISON AFTER 100 X 10 INSERTION 164

FIGURE 7.22 ENCODED LABEL SIZE COMPARISON AFTER 5,000 X 10 INSERTIONS............................. 165

FIGURE 7.23 BOX PLOT DISTRIBUTION OF ENCODED LABELS SIZE AFTER 100X10 INSERTION 165

FIGURE 7.24 BOX PLOT DISTRIBUTION OF ENCODED LABELS SIZE AFTER 5000X10 INSERTION 166

FIGURE 7.25 DETERMINATION TIME COMPARISON BEFORE AND AFTER INSERTION 169

FIGURE 7.26 BOX PLOT DISTRIBUTION OF DETERMINATION TIME OVER INITIAL LABELS 170

FIGURE 7.27 BOX PLOT DISTRIBUTION OF DETERMINATION TIME OVER UPDATED LABELS 171

FIGURE 7.28 DECODING TIME COMPARISON OF INITIAL LABELS ... 172

FIGURE 7.29 DECODING TIME COMPARISON OF UPDATED LABELS... 172

FIGURE 7.30 DETERMINATION TIME (ALL RELATIONS) COMPARISON ON THE INITIAL LABELS 173

FIGURE 7.31 DETERMINATION TIME (ALL RELATIONS) COMPARISON ON UPDATED LABELS 173

FIGURE 7.32 BOX PLOT DISTRIBUTION OF DETERMINATION TIME (ALL RELATIONS) BEFORE AND AFTER

INSERTION ... 174

FIGURE 7.33 DECODING AND DETERMINING TIME COMPARISON ON INITIAL LABELS 175

FIGURE 7.34 DECODING AND DETERMINING TIME COMPARISON ON UPDATED LABELS 175

FIGURE 7.35 BOX PLOT DISTRIBUTION OF DECODING AND DETERMINATION TIME COMPARISON 176

FIGURE 7.36 QUERY PERFORMANCE COMPARISON OVER INITIAL LABELS ... 178

FIGURE 7.37 BOX PLOT DISTRIBUTION OF QUERY 2 RESPONSE TIME .. 178

FIGURE 7.38 QUERY PERFORMANCE COMPARISON AFTER INSERTION .. 179

FIGURE 7.39 BOX PLOT DISTRIBUTION OF RESPONSE TIME FOR QUERY 1 AFTER INSERTION 180

xii

FIGURE 7.40 MEDIAN ENCODING TIME COMPARISON FOR DEWEY LABELS ... 183

FIGURE 7.41 MEDIAN ENCODING TIME COMPARISON FOR SCOOTER LABELS 183

FIGURE 7.42 BOX PLOT DISTRIBUTION OF ENCODING TIMES OF DEWEY LABELS FOR NASA 184

FIGURE 7.43 MEDIAN DECODING TIME COMPARISON FOR DEWEY LABELS ... 185

FIGURE 7.44 MEDIAN DECODING TIME FOR SCOOTER LABELS... 185

FIGURE 7.45 BOX PLOT DISTRIBUTION OF DECODING TIMES OF DEWEY LABELS FOR NASA 186

FIGURE 7.46 CODE SIZE COMPARISON FOR DEWEY LABELS ... 187

FIGURE 7.47 CODE SIZE COMPARISON FOR SCOOTER LABELS .. 187

FIGURE 8.1 LABELLING TIME COMPARISON BETWEEN INITIALISATION AND UNIFORM INSERTIONS 207

FIGURE 8.2 LABELLING TIME COMPARISON BETWEEN INITIALISATION AND SKEWED INSERTIONS 207

FIGURE 8.3 LABELLING TIME COMPARISON BETWEEN INITIAL AND AFTER 50,000 INSERTIONS 208

FIGURE 8.4 BASE-9 LABEL SIZE COMPARISON BEFORE AND AFTER UNIFORM INSERTION 209

FIGURE 8.5 BASE-9 LABEL SIZE COMPARISON BEFORE AND AFTER SKEWED INSERTION 209

FIGURE 8.6 ENCODED LABEL SIZE COMPARISON BEFORE AND AFTER UNIFORM INSERTION USING

FIBONACCI 2 ... 210

FIGURE 8.7 ENCODED LABEL SIZE COMPARISON BEFORE AND AFTER SKEWED INSERTION USING

FIBONACCI 2 ... 211

FIGURE 8.8 RELATIONSHIPS DETERMINATION TIME COMPARISON (OF 200,000 RANDOM PAIRS) BEFORE

AND AFTER INSERTION (BASE-9 SCHEME).. 213

FIGURE 8.9 RELATIONSHIPS DETERMINATION TIME COMPARISON (OF 20,000 NODES) BEFORE AND

AFTER INSERTION (BASE-9 SCHEME) ... 214

FIGURE 8.10 COMPARISON OF QUERY RESPONSE TIMES BEFORE AND AFTER INSERTION (BASE-9

SCHEME) ... 215

FIGURE 9.1 EXAMPLE OF INSERTING A NEW PARENT NODE ... 224

xiii

List of Tables

TABLE 2.1 XPATH AXES .. 23

TABLE 3.1 INSERTED AFTER THE RIGHT-MOST-NODE, 𝑁𝑜𝑙𝑑 STARTS WITH 𝑑 = 1, 2, OR 3 43

TABLE 3.2 INSERTED AFTER THE RIGHT-MOST-NODE, 𝑁𝑜𝑙𝑑 STARTS WITH 3 ... 44

TABLE 3.3 EXAMPLE OF SKEWED INSERTIONS BEFORE THE LEFT MOST NODE IN SCOOTER 45

TABLE 3.4 INSERTED BETWEEN NODES, 𝑁𝑙𝑒𝑓𝑡 IS A PREFIX OF 𝑁𝑟𝑖𝑔ℎ𝑡 ... 46

TABLE 3.5 𝑁𝑙𝑒𝑓𝑡 SHORTER THAT, BUT NOT A PREFIX OF, 𝑁𝑟𝑖𝑔ℎ𝑡 .. 47

TABLE 3.6 𝑁𝑙𝑒𝑓𝑡 AND 𝑁𝑟𝑖𝑔ℎ𝑡 ARE THE SAME SIZE ... 48

TABLE 4.1 UTF-8 ENCODING METHOD .. 65

TABLE 4.2 SAMPLE OF FIBONACCI NUMBERS OF ORDER 2 AND 3 .. 68

TABLE 4.3 SOME FIBONACCI CODES OF ORDER 2 AND 3 ... 68

TABLE 4.4 FIBONACCI SUM FOR THE FIRST 10 VALUES OF FIBONACCI OF ORDER 3 70

TABLE 4.5 EXAMPLES OF LUCAS NUMBERS .. 72

TABLE 4.6 EXAMPLES OF LUCAS CODES... 73

TABLE 4.7 EXAMPLES OF ELIAS-DELTA CODES .. 74

TABLE 4.8 EXAMPLES OF ELIAS FIBONACCI (OF ORDER 𝑚 = 2 AND 𝑚 = 3) ... 75

TABLE 5.1 EXAMPLES OF BASE9 AND SCOOTER LABELS .. 85

TABLE 5.2 INSERT AFTER 𝑁𝑜𝑙𝑑: FIND 𝑁𝑛𝑒𝑤 WHEN 𝑁𝑜𝑙𝑑 IS 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 .. 88

TABLE 5.3 EXAMPLES OF SKEWED INSERTIONS AFTER RIGHT-MOST NODE IN BASE-9 89

TABLE 5.4 INSERT BEFORE 𝑁𝑜𝑙𝑑, FIND 𝑁𝑛𝑒𝑤 IF 𝑁𝑜𝑙𝑑 STARTS WITH DIGIT >2 91

TABLE 5.5 INSERT BEFORE 𝑁𝑜𝑙𝑑, FIND 𝑁𝑛𝑒𝑤 IF 𝑁𝑜𝑙𝑑 STARTS WITH CONSECUTIVE ‘1’𝑠 ‘2’ 92

TABLE 5.6 INSERT BEFORE 𝑁𝑜𝑙𝑑, FIND 𝑁𝑛𝑒𝑤 IF 𝑁𝑜𝑙𝑑 STARTS WITH ′1′𝑠 𝑑𝑓 … 𝑑𝐿 93

TABLE 5.7 EXAMPLES OF SKEWED INSERTIONS BEFORE THE LEFT-MOST NODE IN BASE-9 94

TABLE 5.8 INSERT BETWEEN TWO NODES (LESS THAN), FIND 𝑁𝑛𝑒𝑤 IF 𝑁𝑙𝑒𝑓𝑡 IS PREFIX OF 𝑁𝑟𝑖𝑔ℎ𝑡 96

TABLE 5.9 INSERT BETWEEN TWO NODES (GREATER THAN), FIND 𝑁𝑛𝑒𝑤 IF 𝑁𝑙𝑒𝑓𝑡 ENDS WITH ‘9’S 98

TABLE 5.10 INSERT BETWEEN TWO NODES (SAME SIZE 𝐿), FIND 𝑁𝑛𝑒𝑤 IF 𝑝 < 𝐿 100

TABLE 5.11 EXAMPLES OF SKEWED INSERTIONS BETWEEN TWO NODES IN BASE-9 102

TABLE 6.1 FEATURES OF THE MOST COMMON XML BENCHMARKS ... 118

TABLE 6.2 FEATURES OF THE MOST COMMON XML REAL-LIFE DATABASES .. 121

TABLE 6.3 THE PROPERTIES OF THE EXPERIMENTAL DATASETS SELECTED .. 122

TABLE 6.4 THE EXPERIMENTAL QUERIES SET (ADOPTED FROM (FRANCESCHET, 2005A)) 123

TABLE 7.1 TOTAL LABEL LENGTHS COMPARISON (BASE-9 VS SCOOTER).. 138

TABLE 7.2 𝑝-VALUES OF UNIFORM INSERTION TIME DISTRIBUTION ... 142

TABLE 7.3 AVERAGE REDUCTION (PERCENTAGE) IN LABEL SIZE AFTER UNIFORM INSERTIONS 144

TABLE 7.4 𝑝-VALUES OF SKEWED INSERTION TIME DISTRIBUTION .. 145

TABLE 7.5 AVERAGE DECREASE PERCENTAGE OF THE SIZE’S GROWTH RATE IN SKEWED INSERTIONS

 ... 148

TABLE 7.6 LABEL SET SAMPLE FROM DBLP ... 151

TABLE 7.7 TESTING RE-USABILITY WHEN INSERTING AFTER LAST CHILD ... 152

TABLE 7.8 TESTING RE-USABILITY WHEN INSERTING BEFORE THE FIRST CHILD 153

xiv

TABLE 7.9 TESTING RE-USABILITY WHEN INSERTING BETWEEN TWO SIBLING NODES 154

TABLE 7.10 PERCENTAGE OF RE-USED DELETED LABELS (BASE-9 VS SCOOTER) 154

TABLE 7.11 EXAMPLES OF GENERATED LABELS (INITIAL VS UPDATED) ... 155

TABLE 7.12 PERCENTAGE DIFFERENT ON TOTAL CODE SIZE BETWEEN ENCODING METHODS 161

TABLE 7.13 PERCENTAGE DIFFERENCE BETWEEN SIZES OF QED AND FIBONACCI CODES 166

TABLE 7.14 PERCENTAGE DECREASE OF MEDIAN TIME (DECODING AND DETERMINATION) 174

TABLE 8.1 FIBONACCI CODES (𝑚 =2 AND 3) FOR VARIOUS INTEGERS (ADOPTED FROM (KLEIN AND

BEN-NISSAN, 2008)) ... 202

TABLE 8.2 MAXIMUM ENCODED LABEL SIZE (BYTES) OF BASE-9 LABELS .. 212

xv

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Introduction

Managing web-based information has become fundamental to keep up with the

accelerating rate of expansion of the internet. As a result, the XML (eXtensible Mark-

up Language) (Bray et al., 1998) has become a standard for data representation and

exchange on the web (W3Schools., 2016b) (Abiteboul et al., 2000) (Ahn et al., 2017a)

(Mathis et al., 2015) (Choi et al., 2014) (Thimma et al., 2013) (Assefa and Ergenc,

2012) (Luo et al., 2009) (He, 2015) (Tatarinov et al., 2002) (Ghaleb and Mohammed,

2013) (Qin et al., 2017). Extensive research has been carried out to improve the

efficiency of storing, managing, updating and querying XML data (Liu and Zhang,

2016) (Agreste et al., 2014) (Assefa and Ergenc, 2012) (Tatarinov et al., 2001)

(Ghaleb and Mohammed, 2013). Essential to querying XML data competently and

rigorously is the use of an efficient XML labelling technique. This thesis investigates

the limitations of existing XML labelling schemes and proposes a new labelling

scheme to enhance the effectiveness of XML data management particularly in

dynamic XML environments.

To emphasise the need for the current research on the improvement of XML

performance, it is important to first highlight the significance of XML datasets and XML

labelling schemes. These issues are discussed in Sections 1.2 and 1.3, respectively.

Section 1.4 presents the research motivation and hypothesis. The structure of the

thesis is outlined in Section 1.5. A list of published work is presented in Section 1.6,

before concluding the chapter with Section 1.7.

1.2 Importance of XML

XML (eXtensible Mark-up Language) (Bray et al., 1998) has emerged as a standard

for data representation and exchange on the web and in a wide variety of fields, such

as technical data, science, finance, business, healthcare, manufacture and

astronomical data (Beech, 2016) (Abiteboul et al., 2000) (Trippe and Waldt, 2008)

(Chaudhri et al., 2003) (Connolly and Begg, 2005).

Initially, the development of XML was intended to assist web designers. Nowadays,

database developers, document managers and publishers, scientists and other

researchers employ XML to manage their data (St.Laurent, 1998). XML data

Chapter 1: Introduction

2

management has been applied in many contexts, from bioinformatics, geographical

and engineering data to customer services and cash flow progress through distributed

systems and inductive databases (Chaudhri et al., 2003). This is because XML data is

self-describing. It simplifies the publication of electronic data by providing a simple

format for data that is both human and machine understandable and legible (Khare

and Rifkin, 1997) (Abiteboul et al., 2000) (Lloyd et al., 2004).

The dramatic increase in the popularity of XML is driven by its extensible, flexible, and

standardised properties that makes it possible to address, and overcome, the

restrictions of other mark-up languages such as HTML (Sonawane and Rao, 2015)

(Chaudhri et al., 2003) (Seligman and Roenthal, 2001) (Barillot and Achard, 2000).

XML offers developers the ability to set standards by defining the content of a

document separately from its formatting, which makes it easy to reuse and share

information in other applications and in different environments/organisations

(St.Laurent, 1998) (W3C, 2016b). In general, there are many benefits to using XML

(Mohr et al., 2000) (Trippe and Waldt, 2008) (Seligman and Roenthal, 2001) (Tidwell,

2002) (St.Laurent, 1998), including:

 Simplicity: the basic syntax of XML provides a friendly environment for

programmers, database’ developers and document authors. The information

encoded within XML data is easy to read for both humans and machines.

 Extensibility: XML allows for the creation of extensible tag sets that can be

employed in multiple applications. It also permits the fundamental XML set of

capabilities to be extended by any standards to add styles, linking, and/or

referencing ability.

 Openness: XML standards are open access and freely available on the web.

 Individuality: within XML, content is separated from presentation as XML

tags describe content only. The data format can be handled by XSL

stylesheets (W3C, 2016a). This supports multiple views of the same content,

as well allowing the look of a document to be changed without affecting its

content.

 Interoperability: as XML supports multilingual documents and Unicode, it can

be interpreted though a wide range of tools and used on various platforms.

 Ability to embed multiple data types: XML data can comprise any possible

type of data from multimedia data (e.g. image, video, and sound) to active

Chapter 1: Introduction

3

components (e.g., Java applets) and complex information (e.g., biological

systems and living organisms (Chaudhri et al., 2003)).

1.3 Importance of XML Labelling Schemes

The increasing significance of XML data management has intensified research work

focusing on XML storage, retrieval and querying (Liu and Zhang, 2016) (Agreste et al.,

2014) (Assefa and Ergenc, 2012). To query XML data competently and accurately,

several XML labelling schemes have recently been introduced.

Usually, the tree representation of XML documents and queries is used to process

XML data implicitly or explicitly (Tahraoui et al., 2013) (Bressan et al., 2001)

(Alghamdi et al., 2014) (Shnaiderman and Shmueli, 2015). XML labelling schemes

basically facilitate XML query processing by assigning a unique label to identify XML

tree nodes, as based on the structure of the XML document (O'Connor and Roantree,

2010a) (Li et al., 2008) (Ghaleb and Mohammed, 2015) (He, 2015) (Wang et al.,

2003). The labelling approach is implemented such that the structural relationships

between nodes can be efficiently determined by comparing their labels so that XML

queries can be processed without the need to access the original data (Liu et al.,

2013) (Zhuang et al., 2011) (Xu et al., 2009) (Fraigniaud and Korman, 2016). Hence,

XML labelling scheme provides more flexibility and require less storage space in

comparison to other XML querying techniques (Haw and Lee, 2011) (Li et al., 2006b)

(Khaing and Ni Lar, 2006) (Duong and Zhang, 2005). Moreover, the XML data

indexing process used for querying, keyword searching, and/or data retrieval

purposes relies on XML labelling schemes (Johnson et al., 2012) (Lu et al., 2011b).

As XML warehouses over the web become more extensive, XML labelling schemes

need to be dynamic such that an XML update can be permitted without causing re-

labelling of existing nodes (Liu and Zhang, 2016) (Lizhen and Xiaofeng, 2013) (Härder

et al., 2007). Labelling schemes should also generate compact labels, i.e., as small as

possible. They should efficiently support all kinds of structural relationship queries.

The identification of any structural relationship between any pair of nodes should be

easy to establish through the direct examination of their labels.

1.4 Research Motivation and Hypothesis

Due to its flexibility and simplicity, the growing popularity of XML as a standard for

data exchange has led to the extensive use of XML data updates (Liu and Zhang,

2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001). Thus, it has become

Chapter 1: Introduction

4

necessary for an XML labelling scheme to support dynamic XML data (O'Connor and

Roantree, 2010a) (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al.,

2005).

Many researchers have studied dynamic XML labelling schemes (Xu et al., 2009) (Liu

et al., 2014) (Duong and Zhang, 2008) (He, 2015) (Ghaleb and Mohammed, 2015)

(Fraigniaud and Korman, 2016) (Subramaniam et al., 2014a) (Ren et al., 2006) (Liu

and Zhang, 2016), but each of the existing schemes is limited in one way or another.

For the most part, it is the update of XML data that remains a weakness in most of

these XML labelling schemes due to their large label sizes (Liu and Zhang, 2016)

(Subramaniam and Haw, 2014b) (Yu et al., 2005). As can be seen from the literature

review presented in Chapter 3, almost all of the existing labelling schemes have

ignored the issue of size when generating XML labels. Consequently, current XML

labelling schemes still suffer from huge label sizes that can result in overflow

problems in the case of frequent insertions. This is ultimately because of the

limitations in the design of labelling algorithms when handling insertions (see Chapter

3) as well as how the labels are encoded within main memory (discussed in Chapter

4).

The current enormous growth in data has inspired the need for compression (Lohrey

et al., 2012). Motivated by this, this thesis aims to improve the efficiency of XML

labelling by introducing a new XML labelling scheme which will focus on the size of

XML labels. These labels will be stored in compressed form using a prefix Fibonacci

encoding method. As Fibonacci encoding allows for fast decoding and short labels,

the efficiency of XML query processing can be dramatically increased.

In line with the above research motivation, the research hypothesis can be stated as

follows:

“Providing compact XML labels based on lexicographical order using decimal

strings may facilitate query performance and permit multiple insertions without

causing any storage overhead. Storing such labels using a Fibonacci prefix-

encoding techniques may reduce the storage capacity required and speed up

the determination of structural relationships.”

1.5 Thesis Structure

This section outlines the structure of the thesis. The discussion in this thesis is divided

into three main parts. The first part, Chapters 1 to 4, introduces the research and

Chapter 1: Introduction

5

presents the related literature from which the research hypothesis emerged. The

second part, Chapters 5 and 6, identifies the research problems and objectives and

details the main concepts of this research work in both a theoretical and practical

sense. The last part covers the experimental results, evaluation, and the thesis

concludes in Chapters 7 to 9. The following gives a brief description of each chapter:

Chapter 1: Introduction: this chapter introduces the current research work,

motivation and hypothesis, and the thesis structure.

Chapter 2: Background on XML data: this chapter provides a general overview of

XML data and its basic concepts and related techniques, such as XML syntax,

structures, parsers, and querying approaches.

Chapter 3: Literature on XML labelling schemes: this chapter illustrates the

concepts, mechanisms, and the strengths and weaknesses of existing XML labelling

schemes.

Chapter 4: Literature on encoding methods: this chapter presents the state-of-the-

art in existing encoding techniques used to store XML labels. The chapter also

discusses several available prefix-encoding methods that can be used to compress

large XML labels.

Chapter 5: Base-9 labelling scheme for dynamic XML data: this chapter identifies

the research problems and goals based on the literature presented in the previous

three chapters. It introduces the research hypothesis as a possible solution. The

chapter also describes the underlying principles, structure, and labelling algorithms of

the proposed scheme (named “Base-9”) and describes how Fibonacci encoding is

employed to compress/decompress and store the Base-9 XML labels generated.

Chapter 6: Experimental design and implementation: this chapter explains the

design and implementation of the Base-9 scheme based on its description in Chapter

5. To justify the effectiveness of the scheme, seven different experiments are

described in this chapter. The experimental objectives, setup, datasets used are also

described.

Chapter 7: Experimental results and statistical analysis: this chapter shows the

results of the experiments described in Chapter 6. The results are analysed

statistically and presented graphically to assess the Base-9 scheme’s performance,

reliability and scalability.

Chapter 1: Introduction

6

Chapter 8: Evaluation and further discussion: this chapter evaluates the reliability

of the experimental designs and results. It provides further discussion to evaluate the

proposed scheme’s properties as a dynamic XML labelling scheme based on the

results obtained. The chapter also highlights the main findings and limitations of this

research.

Chapter 9: Conclusion and future work: this chapter summarises the thesis. It

highlights the main findings of this research, its contributions to the literature, and

suggestions for future work.

1.6 Publication

Some of the contents of this thesis were presented in a conference and published as

follows:

AL-ZADJALI, H. & NORTH, S. 2016, “XML Labels Compression using Prefix-

encodings”. In proceedings of the 12th International Conference on Web Information

Systems and Technologies, (WEBIST2016), ISBN 978-989-758-186-1, volume 1,

pages 69-75, Rome, Italy. 69-75.

1.7 Conclusion

This chapter has given an introduction to the thesis, including a short overview of XML

as the main scope of the research. The motivation and hypothesis underlying this

thesis are also stated in this chapter. In general, this thesis will focus on improving the

efficiency of XML labelling in dynamic environments by providing compressed XML

labels. Finally, the structure of the thesis was presented.

Chapter 2: Background on XML Data

7

Chapter 2: Background on XML Data

2.1 Introduction

The importance of managing web-based information has become essential to keep up

with the accelerating rate of expansion of the internet. This has resulted in the

development of XML (eXtensible Mark-up Language) (Bray et al., 1998) as a standard

for data representation and exchange on the Web (W3Schools., 2016b) (Tatarinov et

al., 2002) (Ghaleb and Mohammed, 2013) (Qin et al., 2017). Consequently, there has

been extensive research into improving the efficiency of storing, managing, updating

and querying XML data (Liu and Zhang, 2016) (Agreste et al., 2014) (Assefa and

Ergenc, 2012) (Tatarinov et al., 2001) (Ghaleb and Mohammed, 2013).

Matching structural queries within XML documents is the core of the information

retrieval function for XML data. In many XML database management systems, an

XML labelling scheme has been recommended for rapid query processing of massive

XML documents (Ahn et al., 2017a) (Zhuang and Feng, 2012a) (Xu et al., 2009) (Li

and Ling, 2005a). This is because an XML document is naturally modelled as a tree,

and labelling schemes encode the structural tree information so as to permit answers

to some queries without having to access the original XML file (Lin et al., 2013)

(Zhuang et al., 2011) (Hye-Kyeong and SangKeun, 2010) (Yu et al., 2005) (Ghaleb

and Mohammed, 2013) (Zhou et al., 2016).

This chapter provides a background to XML starting with a general overview of XML in

Section 2.2, followed by a general review of XML structure and storage in Section 2.3.

A description of XML syntax as a mark-up language is provided in Section 2.4,

including its main components:- of XML elements and attributes. Since much of

today’s Web content is written in XML, either as well-formed or valid XML documents

(Grijzenhout and Marx, 2013), this section also differentiates between the two types of

XML data via a discussion of DTD and XML schema. Section 2.5 then presents the

most common XML parser in the literature used to determine the validity of an XML

document.

The usual representation of an XML document as a tree structure is explained in

Section 2.6, along with the main structural relationships amongst XML elements, i.e.,

parent-child, ancestor-descendent, siblings, LCA, and document order. Determining

Chapter 2: Background on XML Data

8

such structural relationships between nodes plays a fundamental role in querying XML

(see Section 2.7). Several works have investigated means of improving XML query

efficiency, either by using XML query languages as illustrated in Section 2.8, or by

considering the hierarchical structure of XML data, such as in structural indexing

(Section 2.9) and XML labelling schemes (Chapter 3). Finally, the chapter is

summarised in Section 2.10.

2.2 XML: An Overview

In today’s world, almost all information is moved online, mostly in unstructured text

data format (Bertino et al., 2000) (Subramaniam et al., 2014a) (Sheng et al., 2011). As

the size and complexity of web sites grows, the need to retrieve, display, manipulate,

transfer and exchange information has similarly increased (Zisman, 2000) (Lu, 2013)

(Subramaniam et al., 2014a). To accomplish this, HTML (Hyper Text Mark-up

Language) (Graham, 1995) (W3Schools., 2016a) and XML have become standard

representations of data delivered over the Web.

While HTML provides a standard to create, display and access web pages, it is

merely a visual layer, and does not provide any mechanism for describing content, or

managing remote data. Furthermore, there is no information in an HTML tag that

enables other systems to recognise the structure and content of the data (Bertino et

al., 2000) (Ciancarini et al., 1998) (Potok et al., 2002) (Reis et al., 2004) (Sonawane

and Rao, 2015). To address this weaknesses in HTML, XML was developed in 1996

by the XML working group (previously known as SGML1 Editorial Review Board),

which was formed through the sponsorship of the World Wide Web Consortium, W3C

(W3C, 2016b).

XML is a self-describing language that separates content from formatting and

describes the structure of the text within a document by the use of start and end tags.

It also permits users to design their own tags, which makes it highly flexible (Tidwell,

2002). Because of its simplicity, flexibility and scalability, XML has become a

commonly used technology for information representation, data transformation, data

exchange, and retrieval over the Web (He, 2015) (Subramaniam and Haw, 2014b)

(Klaib and Lu, 2014) (Xu et al., 2012) (Haw and Lee, 2011) (Xu et al., 2009) (Li et al.,

2008).

Chapter 2: Background on XML Data

9

2.3 XML Structure and Storage

XML structure may vary between a flat, regular, data-centric structure to a more

complicated, irregular, document-centric structure (Fuhr et al., 2001) (Haw and Lee,

2011) (Chiew et al., 2014b) (Nambiar et al., 2002). This comprehensive range of

structural variety makes XML the most commonly used representation for all types of

data (Haw and Lee, 2011). There are two main approaches to storing XML data:

either as an XML Enabled Database (XED) or as a Native XML Database (NXD). A

hybrid has also been proposed (Hall and Strömbäck, 2010) (Haw and Lee, 2011) that

stores XML data using a mapping-to-relations technique, as in XED, that allows for

the storage of XML sub-trees in its native NXD format.

An XML-enabled database (XED): is normally used to store data-centric documents

that involve well-structured information, and uses XML to transfer data into a

traditional relational database (Nambiar et al., 2002) (Florescu and Kossmann, 1999),

Object-Oriented database (Banerjee et al., 2000) or Object-Relational database

(Klettke and Meyer, 2000). This type of database includes extensions for transferring

data between XML documents and the data structures of their underlying relational

database storage (Younas et al., 2008). Therefore, in XED querying an XML

document relies on the query engine within the underlying storage.

A native XML database (NXD): is often used to store document-centric XML (i.e., a

semi-structured XML document as a whole rather than separating out the data within)

(Meier, 2002). Since data in NXD are stored and retrieved in their original hierarchical

structure, the research study in this thesis will focus on facilitating an XML query

process that relies on a native XML database only (the terms XML and native XML

are used interchangeably in this thesis).

Data is stored for the purpose of being retrieved, and as the amount of data has

expanded in the Internet, helping users to find the required data quickly from a large-

scale XML document has become a particularly significant issue. To establish a clear

understanding of the XML querying process, a description of XML syntax is given in

the following section.

Chapter 2: Background on XML Data

10

2.4 XML Basic Syntax

An XML database can be defined as an application profile that describes a class of

data objects (named XML documents) and how computer programs can process

them, such as with the behaviour of the XML processor (Microsoft, 2016). An XML

document is a case-sensitive text file with a nested logical and physical structure

(Bray et al., 2008) (Kurtev, 2001) (Sall, 2002) (Bray et al., 1998) (Bertino et al., 2000)

(Qadah, 2016). Its physical structure consists of storage units called “entities”; each

entity may itself refer to other entities within an XML document. Every XML document

must start with a document entity, the “root”, that serves as the main storage unit

(Sall, 2002) (Bray et al., 2008). The logical structure of an XML document comprises

declarations, comments, elements, and attributes, collectively known as the mark-up.

Figure 2.1 shows an XML sample of a “School” database.

Figure 2.1 An XML sample - (School) example

Chapter 2: Background on XML Data

11

2.4.1 XML Elements

XML represents data in a textual format in which its basic components are XML

elements. Each element is a piece of text constrained by matching tags with case-

sensitive names, such as <Tutor> (as a start-tag) and </Tutor> (an-end-tag) in Figure

2.1 (W3Schools., 2016b) (Abiteboul et al., 2000) (Bray et al., 2008) (Lee and Chu,

2001) (Luo, 2007). The start-tag and end-tag indicate the start and end of an element

detail. An element can be empty (e.g., <Books> and <Library > in Figure 2.1) or may

consist of text, other element(s) called sub-element(s) (e.g., <Outline> in Figure 2.1),

or both. A root element represents the initial element in an XML document within

which all other elements are nested (e.g., <School> </School> in Figure 2.1). As XML

supports semi-structured data, repeated elements with the same tag names can be

used to represent collections (e.g., element <Tutor> in Figure 2.1). Generally, the

element tags must be balanced and nested properly in an XML document such that

their closing tags should appear in a reverse order consistent with their opening tags

(W3Schools., 2016b) (Abiteboul et al., 2000). Besides content, elements may have

zero or more attributes that give additional specifications to the elements (Kurtev,

2001) (Bray et al., 2008) (Bray et al., 1998).

2.4.2 XML Attributes

An XML attribute consists of a name and a unique key value that is embedded within

the start-tag of an element so as to provide extra information about that element

(W3Schools, 2016c) (Evjen. B., 2007) (Tidwell, 2002) (Kurtev, 2001) (Zisman, 2000).

For instance, the element <Books> in Figure 2.1 is composed of three attributes:

“Year”, with value ‘2011’, “Name” with value ‘Chemicals V.4’, and “Pages” with value

’21 – 37’. An attribute value is of “string” type and must be delimited by single or

double quotes (see Figure 2.1). Moreover, attributes can provide significant

information for data management, for example by identifying each “Tutor” in Figure

2.1 by their ID numbers.

Unlike XML elements, each XML attribute value must be distinctive and cannot be

repeated. Additionally, whilst elements can contain sub-elements, attributes cannot be

expanded. Overall, there is a general preference for the use of elements over

attributes to represent and maintain XML data (W3Schools, 2016c) (Whatley 2009)

(Abiteboul et al., 2003) (Ray, 2003) (Tidwell, 2002). When an XML document follows

the essential XML syntax that forms a tree hierarchy, it is referred to as being “well-

formed” (Abiteboul et al., 2000) (Kurtev, 2001) (Bertino et al., 2000). A well-formed

Chapter 2: Background on XML Data

12

document is limited in that it can only be parsed as a labelled tree (Abiteboul et al.,

2000) (Bertino et al., 2000) (Bray et al., 2008) (Goldman et al., 1999), but no

restriction is otherwise placed on its structure. However, if the semantics of an XML

document have to be considered as well as the syntax, then some degree of

restriction is necessary. A valid XML document is constrained as a well-formed

document by an associated Document Type Definition (DTD) (Abiteboul et al., 2000)

(Tidwell, 2002) (Walsh, 2016) (Bertino et al., 2000) (Jones et al., 2008).

2.4.3 XML Document Type Definition (DTD)

A Document Type Definition (DTD) comprises a schema for XML documents that

encompasses a set of rules used to control the structure of XML documents

(W3Schools, 2016d) (Lee and Chu, 2001) (Salminen and Tompa, 2012) (Mani and

Sundaresan, 2003). It provides a set of element names used to define an XML

document, along with their attribute types, if any. It also describes how these elements

are related and the frequency of their occurrences within the XML document, as well

as the order of their appearance (Lee and Chu, 2000) (W3Schools, 2016d) (Abiteboul

et al., 2000). In other words, a DTD is a context-free grammar that underlies XML

documentation, and can be stored either as an external file or internally within the

XML document itself (Abiteboul et al., 2000) (Harold et al., 2004) (Lee and Chu, 2000)

(Ray, 2003) (Zisman, 2000). An XML document is valid if it conforms to the rules

stated in the DTD, such that the element sequences and nesting obeys the DTD

specification, and required attributes are provided with the correct value types. Figure

2.2 shows an example of a DTD specification for the XML ‘School’ sample shown in

Figure 2.1

Chapter 2: Background on XML Data

13

Despite the ability of the DTD to provide considerable amount of control over XML

structure, particularly in terms of vocabulary, it is limited (Shirrell, 2016) (Brandes et

al., 2013). For instance, listing a set of acceptable values for the content of an

element, and detailing the values of data types other than ‘string’ data is impossible.

In order to address the shortcomings of DTDs, the W3C (W3C, 2016b) has

recommended the implementation of the XML schema to deal with more complicated

configurations only (Shirrell, 2016) (Brandes et al., 2013) (Roy and Ramanujan, 2001)

(Bex et al., 2004).

2.4.4 XML Schema

An XML schema, unlike DTD, allows users to enforce proper syntax and semantics

within XML documents rather than treating XML data as just plain text (W3C, 2016b)

(W3Schools, 2016e) (Roy and Ramanujan, 2001). The W3C specification of the XML

schema provides the capability to declare new data types to define elements values,

as well as containing other built-in data types such as string, integer, Boolean, date

and time. Moreover, an XML schema is essentially represented as an XML document

in which the inherent elements and attributes are used to state the schema

configurations (Abiteboul et al., 2000) (Harold et al., 2004) (Lee and Chu, 2000)

(W3Schools, 2016e) (Radiya, 2000) (Waldt, 2010) - see Figure 2.3. An XML schema

is more expressive than a DTD in term of supporting datatype definitions and values’

domains, and it increases the flexibility of XML whilst overcoming the weaknesses of

DTDs (Valentine; et al., 2001) (Roy and Ramanujan, 2001) (Bex et al., 2004).

Figure 2.2 DTD for XML ‘School’ sample in Figure 2.1

Chapter 2: Background on XML Data

14

2.5 XML Parsers

XML parsers can detect the validity and well-formedness of an XML document by

reading its components via Application Programming Interfaces (APIs) (Su Cheng and

Krishna Rao, 2007) (Haw and Rao, 2007) (Takase et al., 2005). An XML parser

basically converts the underlying plain textual format of an XML document into its

logical data representation by treating the XML document as an XML tree or stream

(Haw and Rao, 2007) (Rangan and Jayanthi, 2011) (Wang et al., 2007) (Nicola and

John, 2003). For the tree-based approach (e.g. DOM, JDOM, ElectricXML, and

DOM4j XML parser), it loads the whole document into memory as a collection of

objects representing the original document in tree structure. In terms of time and

memory the loading process is inefficient, and as a result this approach is unsuitable

for large-scale XML data since it can easily go beyond reasonable memory capacities

(Kiselyov, 2002) (Tong et al., 2006) (Lam et al., 2008).

The stream-based approach (also called an event-based parser; such as SAX, StAX

and XMLPull), reads the entirety of the XML document and applies user-defined

actions whenever a new XML component appears (Lu et al., 2006) (Nicola and John,

Figure 2.3 XML Schema for 'School' example

Chapter 2: Background on XML Data

15

2003). The actions can merge the received elements and XML data into custom data

structures, including the XML tree, as in DOM (Kiselyov, 2002).

Of the above the two mostly commonly used XML parsers are DOM and SAX (Nicola

and John, 2003) (Kiselyov, 2002) (Haw and Rao, 2007) (Lu et al., 2006), which are

discussed in the following sections.

2.5.1 Document Object Model

Document Object Model (DOM) (W3C, 2005) (Wang et al., 2007) (Mani and

Sundaresan, 2003) is a language and platform-independent definition purposed by

W3C as a component of the Java API designed for XML processing (Oracle, 2014).

Based on object technology, the DOM parser applies a tree-based approach that

constructs the “Document Object Model” of an entire XML document as a structured

tree (Haw and Rao, 2007) (Kiselyov, 2002) (Tong et al., 2006) (Lam et al., 2008). In

the DOM tree model, each component is an object that contains values (textual

content) and has its own methods to facilitate data access and modification.

Using DOM requires the entire XML tree to be built within main memory. This provides

better performance for XML operations in terms of data access and navigation, data

modification, and enabling XPath queries (Whitmer, 2004) (Wang et al., 2007).

However, constructing an entire XML tree in memory is not suitable for large-scale

XML documents, because the DOM tree could be up to 10 times larger than the

original XML document (Wang et al., 2007) (Kiselyov, 2002).

2.5.2 Simple API for XML

The Simple API for XML (SAX) parser (Megginson, 2000) (Nicola and John, 2003)

(Pan et al., 2008) (Matsuda, 2007) is a stream-based parser that invokes parsing

events (such as the start and end of documents/elements) using call-backs. Unlike the

DOM tree parser, SAX interacts with an application during the parsing process and

does not store any information about XML components. This enables the XML parser

to parse even large XML documents within a reasonable timeframe (Haw and Rao,

2007) (Takase et al., 2005) (Nicola and John, 2003) (Pan et al., 2008).

The SAX parser applies a depth-first traversal algorithm (Tahraoui et al., 2013) in

which event-driven methods are triggered by the occurrence of an element’s opening

or closing tags, correlated attributes of an element, or comments and processing

instructions. For instance, when an opening-tag is encountered, the start-element

Chapter 2: Background on XML Data

16

event handler is triggered releasing the data from the previous element. Although this

saves memory consumption, it makes it difficult to distinguish the structural

relationships between nodes. In order to identify the logical structural relationships,

the use of memory stacks (where the maximum size equals the maximum depth of an

XML document) is required. Whenever a start-element event is invoked, the parsed

element is stacked along with its associated nodes (siblings/children). When a closing

tag is encountered, the element is removed from the stack(s). Therefore, controlling

structural relationships in SAX is more complicated than in comparison to DOM.

2.6 XML Tree Structure

An important feature of XML is that the document itself describes the structure of the

XML data, usually represented as a tree graph (W3Schools, 2016f) (Brandes et al.,

2013) (Hachicha and Darmont, 2013) (Abiteboul et al., 2000) (Al-Khalifa et al., 2002)

(Harold et al., 2004) (Ray, 2003). The terminology comes partly from a genealogical

tree, where the root of the tree is some early ancestor, and the latest descendants

located at the bottom of the tree. In other words, an XML document can be regarded

as a tree whose nodes are the document items (elements, attributes, and/or values)

and whose edges form the structural relationships between the nodes (Brandes et al.,

2013) (Na and Guoqing, 2010) (Li et al., 2006a). The XML model tree can be either

unordered (i.e. the order of the elements within the XML document is not important) or

ordered (Deutsch et al., 1999) (Lohrey et al., 2015). Figure 2.4a and 2.4b demonstrate

the XML tree representation of the XML ‘School’ example shown in Figure 2.1

(through only the first eight lines for simplicity) as unordered and ordered trees,

respectively, where the oval-shaped boxes represent elements and the rectangular

boxes represent attributes. Since document order is essential for querying XML

(Tahraoui et al., 2013) (Hachicha and Darmont, 2013), here only the XML document

representation as a rooted, ordered XML tree is considered.

Chapter 2: Background on XML Data

17

From the ordered XML tree shown in Figure 2.4b, it can be seen that the root “School”

is the ancestor of the other tree nodes. The elements “Name”, “Library”, and “Class”

have a sibling relationship and are all children of the element “School”. Considering a

left-to-right order among siblings in the XML tree node, since the node “Name”

appears before “Library”, it is known as the pre-order sibling to “Library” and vice

versa. That is, “Library” is a post-order sibling to “Name”. This family relationship

representation between XML tree nodes makes it easier to understand an XML

document (Teorey et al., 2011) (Tizag, 2003) (Bille, 2003). To expedite XML query

processing, it is necessary to provide methods for determining the structural

relationships between nodes (Li et al., 2006a) (Al-Khalifa et al., 2002) (Li and Moon,

2001) (Subramaniam et al., 2014a) (Sheng et al., 2011). The most common structural

relationship queries among nodes are:- those of Parent-Child, Ancestor-Descendant,

Siblings, Lowest Common Ancestor (LCA), and Document Order (Lizhen and

Xiaofeng, 2013) (Xu et al., 2009) (Liu and Zhang, 2016). These relationships are

discussed below based on the following definition of a rooted ordered XML tree and

Figure 2.5, which represents the XML tree of the XML “School” sample in Figure 2.1.

Figure 2.4a Unordered XML model tree of

Figure 2.1

Figure 2.4b Ordered XML model tree of

Figure 2.1

Chapter 2: Background on XML Data

18

2.6.1 Rooted Ordered XML Trees

XML documents are often illustrated graphically as rooted trees where vertices

represent nodes and edges represent element, sub-element, element-value, and

attribute-value relationships (Bille, 2003) (Chi et al., 2003) (Reis et al., 2004) (Yun et

al., 2004) (Bousquet-Mélou et al., 2015). A rooted tree has one vertex singled out as

the root, from which the rest of the vertices descend. A rooted tree is ordered if the set

of children associated with each vertex in the tree has a predefined left-to-right order

that reflects the appearance of their tags within an XML document. In other words, a

rooted ordered tree can be defined as follows (Dalamagas et al., 2006) (Tahraoui et

al., 2013):

A rooted ordered tree 𝑇 = (𝑉, 𝐸, 𝑟) consists of a set of edges, 𝐸, a finite set of 𝑘

vertices (nodes) 𝑉 = {𝑣1, … , 𝑣𝑘}, and 𝑟 ∈ 𝑉 is a distinguished vertex called the root,

from which the rest of vertices descend. Each edge 𝑒𝑢→𝑣 ∈ 𝐸 indicates an element-

subelement or an element-attribute relationship between nodes 𝑢 and 𝑣, where

(𝑢, 𝑣) ∈ 𝑉 (Luo, 2007) (Kaushik et al., 2002a) (Han et al., 2006). The level of a node

𝑣 (𝑣 ∈ 𝑉), denoted as 𝑙(𝑣), can be defined as the number of edges along the unique

path between the root 𝑟 and the node 𝑣. The depth , 𝐷, of a rooted tree, 𝑇, is the

maximum level of any node in the tree. A rooted tree, 𝑇, is ordered if the children of

Figure 2.5 XML tree representation of the "School" example in Figure 2.1

Chapter 2: Background on XML Data

19

each node are ordered (Chi et al., 2003) (Bille, 2003) (Dalamagas et al., 2006)

(Tahraoui et al., 2013). According to the definition of 𝑇, given two nodes 𝑢 and 𝑣 in a

rooted ordered tree, 𝑇, with 𝑙(𝑢) < 𝑙(𝑣) and 𝑢 is on the path from the root to 𝑣, then 𝑣

is a descendent of 𝑢 and 𝑢 is an ancestor of 𝑣 (Yun et al., 2004). If 𝑢 and 𝑣 are

adjacent nodes; i.e., there is a direct edge 𝑒𝑢→𝑣 ∈ 𝐸 from node 𝑢 to node 𝑣 and 𝑙(𝑣) =

𝑙(𝑢) + 1, then 𝑢 is called the parent of 𝑣, and 𝑣 is a child of 𝑢 (Lin et al., 2013) (Xu et

al., 2007). If node 𝑣 can be reached from node 𝑢 through many directed edges where

𝑙(𝑣) > 𝑙(𝑢) + 1, then 𝑢 is an ancestor of 𝑣 (Luo, 2007). A set of nodes 𝑆 =

{𝑠1, 𝑠2, … , 𝑠𝑛} that share the same parent 𝑝 are called siblings, where 𝑠𝑖 is a pre-sibling

to 𝑠𝑖+1, for 1 < 𝑖 < 𝑛 (Yanghua et al., 2012). A node 𝑥 without children is called a leaf

node, and other nodes are known as “internal nodes” (Tahraoui et al., 2013) (Mani

and Sundaresan, 2003). For simplicity rooted ordered trees are referred to as trees or

XML trees in this thesis. An example of such a tree can be seen in Figure 2.5.

2.6.2 Structural Relationships between XML Nodes

Parent-child relationship: can be identified between a node and any node

immediately descending from it. A node 𝑢 is a parent of node 𝑣 if 𝑢 and v are directly

linked in an XML tree and 𝑢 appears exactly one level above 𝑣. In Figure 2.5, for

instance, the node “Tutor” is a parent of node “Outline”, which itself a parent of node

“Exam”.

Ancestor-descendant relationship: A node 𝑢 is an ancestor of a node 𝑣, and 𝑣 is a

descendent of 𝑢, if there is a linked path of nodes 𝑛1, … , 𝑛𝑦 from the root to node 𝑣

such that node 𝑢 = 𝑛𝑥 , and 𝑣 = 𝑛𝑦 , where 𝑥 < 𝑦. Thus, 𝑢 appears on the path from 𝑟

to 𝑣 but 𝑣 ≠ 𝑢. That is, node 𝑢 is the root of a subtree containing node 𝑣. Referring to

Figure 2.5, the node ““Class” is an ancestor of the nodes “Topic” and “Area”, and all

the nodes of the tree are descendants of the root node “School”.

Lowest Common Ancestor (LCA): the lowest common ancestor node, 𝐿, exists

between two nodes 𝑢 and 𝑣 if 𝐿 is the deepest node in an XML tree, 𝑇, that has both 𝑢

and 𝑣 as descendants (Na and Guoqing, 2010). In other words, the LCA 𝐿 is the

shared ancestor of nodes 𝑢 and 𝑣 located farthest from the root in 𝑇. For example, in

Figure 2.5, the LCA for both nodes “Area= science” and “Topic=chemical” is node

“Tutor of ID=13”; even though nodes “Class” and “School” are also ancestors to both

nodes.

Chapter 2: Background on XML Data

20

Sibling relationship: nodes 𝑢 and 𝑣 are siblings if both nodes share the same parent

and are at the same level in an XML tree, 𝑇. If 𝑢 appears to the left of 𝑣 in an ordered

XML tree 𝑇, then 𝑢 is called a pre-order sibling to node 𝑣, whereas 𝑣 is a post-order

sibling to node 𝑢. In Figure 2.5, the nodes “Name”, “Library”, and “Class” are siblings

because they all share the same parent “School”, where “Library” is a pre-order sibling

to “Class” and a post-order sibling to “Name”.

Document order: is preserved in the order of the elements as they appear in an

XML tree, where the hierarchical structure is considered to be from top to bottom and

the siblings from left to right (i.e., corresponding to depth-first left-most) (Härder et al.,

2007). For instance, the nodes in the “School” XML tree shown in Figure 2.5 are

ordered corresponding to the node order within the “School” XML document (see

Figure 2.1).

Determining the structural relationships between XML tree nodes and locating all

occurrences of these relationships lies at the very core of XML querying efficiency (Al-

Khalifa et al., 2002) (Xu et al., 2012) (Hachicha and Darmont, 2013) (Chien et al.,

2002) (Sheng et al., 2011).

2.7 Querying XML

As XML became a standard for data exchange and representation on the Internet,

extensive research into the retrieval of XML and semi-structured data began to be

carried out (Florescu and Kossmann, 1999) (Li and Moon, 2001) (Subramaniam and

Haw, 2014b) (Sheng et al., 2011) (An and Park, 2011) (Schmidt et al., 2001b)

(Sonawane and Rao, 2015) (Wang et al., 2003). Usually the tree representation of

XML documents and queries are used to process XML data implicitly or explicitly

(Tahraoui et al., 2013) (Al-Khalifa et al., 2002) (Bressan et al., 2001) (Alghamdi et al.,

2014) (Shnaiderman and Shmueli, 2015), whereby retrieving XML data is achieved

via a tree-pattern matching approach (Lu et al., 2011a) (Lu et al., 2005a) (Bruno et al.,

2002) between the query tree and the document tree (Tahraoui et al., 2013) (Al-

Khalifa et al., 2002) (Florescu et al., 2000) (Gheerbrant et al., 2013). Tree patterns are

graphical representations of XML queries over an XML tree data model (Hachicha and

Darmont, 2013) (Czerwinski et al., 2016). To answer a query, the semantics of tree

pattern are obtained by mapping from the pattern nodes to the nodes in the XML

document, such that the main structural relationships (Section 2.5) are satisfied (Lu et

al., 2011a). Numerous XML query languages such as XPath (Robie, 2007), Lorel

(Abiteboul et al., 1997), XIRQL (Fuhr and Großjohann, 2000), NEXI (Trotman and

Chapter 2: Background on XML Data

21

Sigurbjörnsson, 2004), TeXQuery (Amer-Yahia et al., 2004), Quilt (Chamberlin et al.,

2000), XQuery (Boag, 2007), and XQBE (Braga et al., 2005) primarily use tree

patterns to identify the relevant data parts in an XML document. These are discussed

below.

2.8 XML Query Languages

Due to the extensive use of XML (Bray et al., 1998) in today’s applications, several

XML query languages have been proposed to analyse the semantics (content) and

syntax (structure) of XML queries (Li and Moon, 2001) (Bonifati and Ceri, 2000) (Al-

Khalifa et al., 2002) (Kamps et al., 2006) (Sheng et al., 2011) (Wang et al., 2003)

(Qadah, 2016) (Choi and Wong, 2015). Queries in these languages basically specify

patterns to be matched to elements and specifies their structural relationships

(Alghamdi et al., 2014) (Deutsch et al., 1999) (Fuhr et al., 2001) (Thonangi, 2006). In

general, at each node in the query tree pattern, there is a node predicate that

identifies a number of bases depending on the content of the user’s request (Al-

Khalifa et al., 2002). A major focus in designing XML query language is the ability to

express complex structural queries (Wang et al., 2003) (Choi and Wong, 2015).

According to Amer and Lalmas (Amer-Yahia and Lalmas, 2006) and Tahraoui

(Tahraoui et al., 2013), XML query languages can be classified into three main

categories, as based on their queries’ structure :-

 Tag-based queries: permit users to specify simple conditions about a tag that

will contain the required content, such as in XSEarch (Cohen et al., 2003)

query language. For example, the query “Topic: algebra” means that the user

is searching for a “Topic” element about “algebra”.

 Path-based queries: refer to XML element nodes as a path-like syntax. This

family of query languages includes XPath, XIRQL, and NEXI (CAS), and

presents more sophisticated content conditions on structural XPath-based

syntax. An example of XPath query is “/School/*/Tutor[@ID=”13”]”, which

indicates the fact that the user needs to know all tutors in the school with

identification number “13”.

 Clause-based queries: inspired by SQL syntax, these comprise nested

clauses that allow users to express more complicated requirements. Examples

of XML query languages built on clause-based queries are:- Lorel (Abiteboul et

al., 1997), Quilt, TeXQuery, and XQuery, where XQuery supports path

expressions similar to those of XPath (Connolly and Begg, 2005). For

Chapter 2: Background on XML Data

22

instance, the XQuery path expression “/School[Name .’Plus’]//Exam[. ‘Feb’]”

matches the “School” element with child name that includes the word ‘Plus’

and has “Exam” as a descendent element with a content string value ‘Feb’.

Although most of the available query languages vary in the details of their

grammatical representations, they typically use regular path expressions (or simply

regular expressions) to evaluate XML queries and are capable of extracting and

manipulating data directly from XML documents (Haw and Lee, 2011) (Lassila et al.,

2015) (Huang et al., 2015) (Li and Moon, 2001). Regular path expressions allow users

to navigate through arbitrarily long paths in semi-structured XML data by traversing

the logical XML hierarchal tree structure (Ives et al., 2000) (Fernandez and Suciu,

1998) (Li and Moon, 2001). In the XML context, a regular expression is defined as a

series of location steps in the XML tree linked by ‘/’ or ‘//’ to identify the location of a

node starting from the root node (Robie, 2007) (Al-Badawi, 2010) (Almelibari, 2015)

(Hidders and Paredaens, 2014). Every step includes an axis that defines the direction

of navigation (Ramanan, 2003), and a ‘node test’ that selects nodes based on their

type and name. Based on the document order, axes can be classified as forward axes

(e.g. descendent, descendent-or-self, child, following, and following-siblings) and

reverse axes (such as ancestor, parent, preceding, and preceding-sibling) (Robie,

2007).

Based on regular path expressions, XPath (Robie, 2007) and XQuery (Boag, 2007)

are the standard XML query languages (Catania et al., 2005a) (Hsu and Liao, 2013),

with the rest acting so similarly and that they can be eliminated from further discussion

at this stage. Both the XPath and XQuery languages are defined by the W3C (World

Wide Web Consortium) in terms of the manner in which they query XML data and

follow the requirements for an XML query language (Chamberlin et al., 2001) (W3C,

2007) (Hidders and Paredaens, 2014). The W3C development teams have enhanced

the XPath2.0/XQuery1.0 query languages to support the Full Text Search (FTS)

functionality (W3C, 2011) (Al-Badawi, 2010).

2.8.1 XML Path language (XPath)

XPath models the XML document as a rooted-ordered tree that consists of seven

distinct types of node: elements, attributes, text, comments, processing instructions,

namespace nodes, and a root node. XPath navigates and selects the whole, or parts,

of an XML document based on regular path expressions that are expressed using

thirteen principle axes types identified by the appropriate structural relationship. A

Chapter 2: Background on XML Data

23

description of an XPath axes is given in Table 2.1 (adapted from (Al-Badawi, 2010)

(Almelibari, 2015) and (Robie, 2007)) along with XPath query examples (quoted from

XPathMark (Franceschet, 2005)) that are based on the XMark benchmark (Schmidt et

al., 2002). To express complex queries, XPath use predicates and other logical and

arithmetic operators to facilitate the identification of specific nodes and values (Robie,

2007) (Connolly and Begg, 2005) (Elmasri, 2008) (Harold et al., 2004) (Gupta and

Suciu, 2003).

Table 2.1 XPath Axes

Axis name Objective Example

child Indicates all

children of the

current node

/site/regions/*/item

Means returns all the products items.

Parent Refers to the

parent of the

current node

/site/regions/*/item[parent::namerica or

parent::samerica]

Find the American items

descendent Contains the

descendants of the

current node

//keyword

Means return all the keywords in the document

descendent-or-

self

Contains the

current node itself

along with all its

descendants

/descendant-or-self::listitem//descendant-or-

self::keyword

Requests the return of certain keywords in a

paragraph item

ancestor Contains all the

ancestors of the

current node

//keyword/ancestor::listitem

Requests the return of the paragraph items

containing a keyword

ancestor-or-

self

Contains current

node and all its

ancestors

//keyword/ancestor-or-self::mail

Ask for a mail containing a keyword

following Refers to all nodes

following the

current node in

document order.

/site/regions/*/item[@id='item0']/following::item

Ask for the items that follow, in document order,

for a given item

following-

sibling

Contains the

following siblings

(i.e. post-order

siblings) of the

current node

/site/open auctions/open

auction[bidder[personref/@person=

'person0']/following-

sibling::bidder[personref/@person='person1']]

Find all open auctions in which bidder(s) issued a

bid before a specified person with reference

Chapter 2: Background on XML Data

24

‘person1’.

preceding Refers to all nodes

appearing in a

document before

the current node

starting from the

root.

/site/open auctions/open

auction/bidder[personref/

@person='person1']/preceding::bidder

[personref/@person='person0']

Find the bids issued (in document order) before a

certain person with reference ‘person0’.

Preceding-

sibling

Refers to the

preceding (i.e. pre-

order) siblings of

the current node.

/site/open auctions/open auction[@id='open

auction0']

/bidder/preceding-sibling::bidder

Requests the past bidders of a given open auction

self Represents the

current node

//*[self::open auction]

Means select the current open auction.

attribute Indicates the

attributes of the

current node

id(/site/closed auctions/closed

auction[buyer/@person='person4']

/itemref/@item)

Means items bought by a given person

namespace Contains the

namespace of the

current node

[namespace-uri() = 'http://example.com']

Returns namespace URIs matching ‘example.com’

2.8.2 XML Query Language (XQuery)

XQuery (Boag, 2007) (W3C, 2014) is a clause-based declarative language that has

some SQL-like semantic features. This is because XQuery is derived from Quilt XML

query language (Chamberlin et al., 2000), which itself borrowed characteristics from

XPath (Robie, 2007) and other languages supporting the SQL syntax, such as XML-

QL (Deutsch et al., 1998), XQL (Robie et al., 1999), and SQL itself (Date and Darwen,

1993). Apart from the path expression adopted from XPath, XQuery has developed

‘FLWOR’ expressions to perform SQL-like transactions. ‘FLWOR’ is an abbreviation

for “For, Let, Where, Order by, and Return” clauses. There are many advantages to

using the ‘FLWOR’ syntax of XQuery over XPath syntax (W3C, 2014); for instance,

“For, Let, and Where” clauses provide more expressiveness and flexibility in forming

complex queries, which allows multiple XML documents to be joined during result

construction (Boag, 2007). The “Order by” clause helps to organise results during the

XML reconstruction (Al-Badawi, 2010). The “Return” clause controls the evaluation of

the structure of the returned XML nodes by adding further meanings to the data or

conditional statements (e.g. IF-THEN-ELSE).

Chapter 2: Background on XML Data

25

Generally, the XPath and XQuery query languages provide a wide range of XML

queries that cover almost all XML querying functionalities (Bressan et al., 2001)

(Franceschet, 2005) (Jones et al., 2008). However, querying XML via query

languages has a number of drawbacks, as illustrated in the next section.

2.8.3 XML Query Languages Weaknesses

As XML (Bray et al., 2008) has become the standard representation of data over the

Internet, a wide range of users need to interact with XML documents to obtain their

desired information. Despite the rich expressive power of XML query languages, their

complexity has become a major difficulty for users in formulating appropriate queries,

and for software applications to process the queries efficiently (Choi and Wong, 2015)

(Wang et al., 2003). In order to design a query, the user must be familiar with the

semantics of the query languages as well as the underlying concepts of XML data

structure, such as DTD, XML schema, elements and attributes names (Choi and

Wong, 2015) (Fuhr et al., 2001). Given that the hierarchical structure of XML data can

be heterogeneous, any slight misinterpretation of the document structure whilst

formulating a query would result in an incorrect or misleading answer (Liu and Yan,

2016). Such problems emerge when various types of documents with different

structures are queried, as such queries often generate long, complicated path

expressions. Moreover, the operating cost of traversing the hierarchy of XML data can

be significant if the path lengths are very large, and so retrieving data directly from

very large XML documents can be inefficient (Li and Moon, 2001) (Hakuta et al.,

2014) (Choi and Wong, 2015) (Lassila et al., 2015) (Liu and Gawlick, 2015) (Fan et

al., 2015), especially when the XML database is update-intensive (Qadah, 2016).

To overcome these limitations and improve the efficiency of XML querying, two main

approaches have been proposed to facilitate query processing based on the

hierarchical structure of XML data: structural indexing and labelling schemes (Li

and Ling, 2005b) (Li et al., 2006b) (Khaing and Ni Lar, 2006) (Duong and Zhang,

2005). The next section gives a brief overview of structural indexing approaches.

Since this thesis focuses on XML labelling schemes, the next chapter will present the

state-of-the-art on XML labelling schemes particularly for dynamic XML data.

2.9 Structural Indexing

As discussed in the previous section, several XML query languages have been

developed to evaluate path expressions that rely on XML tree traversal. Scanning and

Chapter 2: Background on XML Data

26

extracting the user’s required nodes directly from large-scale XML data is

computationally expensive (Li et al., 2012) (Catania et al., 2005a) (Chen et al., 2003)

(Kaushik et al., 2002a). This inefficiency has led to the development of structural

indexing in order to speed up XML query processing (Hsu and Liao, 2013) (Li et al.,

2012) (Catania et al., 2005a) (Alghamdi et al., 2014) (Han et al., 2006) (Shichuan et

al., 2012). Structural indexing significantly reduces the portion of the XML data to be

scanned during the query processing by constructing an index that summarises the

structure (path information) of an XML data tree (Li et al., 2006b) (He and Yang, 2004)

(Hsu and Liao, 2013). Here, the idea is to conserve an XML data tree in the form of a

summarised tree, which is defined using a specific equivalence relation to the nodes

of the original data tree. Thus, identical sub-structures in an XML document are

merged to form the summarised tree, which is then used as the structural index to

evaluate path expressions without the need to refer to the original data (Chen et al.,

2003) (Hsu and Liao, 2013) (Li et al., 2012) (Zou, 2004).

Two common methods used to summarise an XML document into a structural index

(Hsu and Liao, 2013) are:- those of path equivalence (Zou, 2004) (Chung et al., 2002)

(Cooper et al., 2001) (Goldman and Widom, 1997) (Zhang et al., 2008) and bi-

simulation (Kaushik et al., 2002a) (Chen et al., 2003) (Chen et al., 2008). In path

equivalence, nodes with identical traversal paths are merged to construct a structural

index. For instance, “the strong DataGuide” (Wu and Liu, 2008) holds all the direct

edges representing parent-child relationships in an XML tree. As a result, the parent-

child and ancestor-descendent relationships of a path expression can be evaluated

directly from the structural index (Hsu and Liao, 2013). Index Cache (Li et al., 2012)

and ToXin (Rizzolo and Mendelzon, 2001) indexing techniques have been proposed

based on DataGuides (Wu and Liu, 2008) (Goldman and Widom, 1997) (Goldman

and Widom, 1999).

A bi-simulation scheme (Henzinger et al., 1995) basically captures the local structures

of an XML data tree and accordingly groups the nodes with the same set of incoming

paths, forming collections of equivalence classes which are then stored as structural

summaries (He and Yang, 2004) (Chen et al., 2003) (Alghamdi et al., 2014) (Hsu and

Liao, 2013). In this scheme, XML data is partitioned into equivalence classes based

on the backward path bi-similarity from the root to the indexed node (Milo and Suciu,

1999), forward path bi-similarity from the indexed node to the root (Kaushik et al.,

2002a) (Chen et al., 2003), or in both directions, as in F&B-Index (Kaushik et al.,

2002b).

Chapter 2: Background on XML Data

27

In comparison to XML query languages, structural indexing reduces the query

processing time by avoiding direct access to the original XML data whilst evaluating

path expressions. However, as the size of an XML document increases, index sizes

tend to rise dramatically (Alghamdi et al., 2014). In general, structural indices are

large since each node of an XML database is referenced within the index along with

its path summary from the root to that particular node (Haw and Lee, 2011). Thus, the

traversal process applied to construct these indices is costly (Khaing and Ni Lar,

2006) (Li and Ling, 2005b). Furthermore, when XML data are updated it is necessary

to re-build the structural indices (Duong and Zhang, 2005). Generally, structural

indexing does not support complex queries (Alghamdi et al., 2014) and for long

queries it requires a large part of the index (if not all) to exist in main memory in order

to establish ancestor-descendent relationships between two nodes based on their

structure summary (Na and Guoqing, 2010).

Unlike structural indexing, labelling schemes can efficiently establish the structural

relationships between two nodes by using the nodes as the fundamental unit by which

to query XML. Hence, labelling schemes provide greater flexibility and require

reduced storage compared to structural indexing (Haw and Lee, 2011) (Li et al.,

2006b). Therefore, this thesis focuses mainly on labelling scheme approaches, which

are discussed in the next chapter.

2.10 Conclusion

This chapter has presented an overview of the basic concepts of XML data. Since

XML is a vast subject, the main points covered in this chapter are limited, but are

nevertheless sufficient to provide the necessary background to comprehend the

research objectives. The main focus of this thesis is that of XML labelling schemes,

and as such the focus of the next chapter will be to illustrate the state-of-the-art in

XML labelling schemes.

Chapter 3: Literature on XML Labelling Schemes

28

Chapter 3: Literature on XML Labelling

Schemes

3.1 Introduction

Due to the growing significance of managing XML data, a considerable amount of

research has been dedicated to XML storage and querying (Liu and Zhang, 2016)

(Agreste et al., 2014) (Ghaleb and Mohammed, 2013). To query XML data

competently and rigorously, several XML labelling schemes have been introduced.

An XML labelling scheme can handle a rooted ordered XML tree data model such that

structural information can be encoded into labels. The essential metrics for a labelling

scheme are the speed at which these labels can be generated and used, as well as

the compactness of the encoded labels. As the transmission of XML data over the

Internet has become vibrant, it has also become necessary to have an XML labelling

scheme that supports dynamic XML data (O'Connor and Roantree, 2010a) (Liu and

Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005). The challenge to

developing such labelling schemes, which can handle dynamic updates to XML data

without affecting the initial labels has become the main focus of many researchers (Xu

et al., 2009) (Liu et al., 2014) (Duong and Zhang, 2008) (He, 2015) (Ghaleb and

Mohammed, 2015) (Qin et al., 2017).

This chapter presents the state-of-the-art in research into XML labelling schemes.

First, an overview on XML labelling schemes is given in Section 3.2; this includes

XML labelling schemes’ main principles, and their desirable properties, types and

classifications. Generally, XML labelling schemes can be categorised into four groups:

- interval-based, prefix-based, multiplicative, and hybrid, as discussed in Sections 3.3,

3.4, 3.5, and 3.6, respectively. Finally, Section 3.7 concludes the chapter with an

illustration of the problems encountered with current research work on XML labelling

schemes.

3.2 XML Labelling Schemes: An Overview

XML labelling schemes (also referred to as numbering schemes) can efficiently

establish the structural relationships between two nodes by using the nodes as the

Chapter 3: Literature on XML Labelling Schemes

29

fundamental unit for querying XML, and so provide more flexibility, as well as requiring

less storage space in comparison to other XML querying approaches (Haw and Lee,

2011) (Li et al., 2006b) (Khaing and Ni Lar, 2006) (Duong and Zhang, 2005).

XML Labelling schemes typically facilitate XML query processing by assigning a

unique label to identify XML tree nodes according to the structure of the XML

document (O'Connor and Roantree, 2010a) (Li et al., 2008) (Ghaleb and Mohammed,

2015) (He, 2015) (Wang et al., 2003). In this way, the structural relationships between

nodes can be efficiently determined by comparing their labels so that XML queries

can be processed without accessing the original data (Liu et al., 2013) (Zhuang et al.,

2011) (Xu et al., 2009) (Fraigniaud and Korman, 2016). The existing labelling

schemes can be categorised into two groups (Mirabi et al., 2012) (Thonangi, 2006)

(Rusu et al., 2006) (Ghaleb and Mohammed, 2015): static labelling schemes (Dietz,

1982) (Li and Moon, 2001) (Tatarinov et al., 2002) that are adequate for non-

updatable XML documents, and dynamic labelling schemes (Xu et al., 2009) (Liu et

al., 2014) (Duong and Zhang, 2008), which are used to label XML documents that are

frequently updated.

Much of today’s Web content is written in well-formed or valid XML data format

(Grijzenhout and Marx, 2013). The growing popularity of XML as a data exchange

format due to its flexibility has led to an enormous amount of XML data update (Liu

and Zhang, 2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001). As the XML

repositories over the web become more extensive as well changeable, the need for

dynamic labelling schemes has become essential to support efficient XML queries

and update (O'Connor and Roantree, 2010a) (Liu and Zhang, 2016) (Subramaniam

and Haw, 2014b) (Yu et al., 2005). According to (Lizhen and Xiaofeng, 2013) (Härder

et al., 2007) and (Wu et al., 2004) a good dynamic labelling scheme should have the

following desirable characteristics:

 Deterministic: the structural relationships between two nodes can be quickly

established by examining their labels.

 Efficient: it should support all kinds of structural relationship queries.

 Compact: the labels should be sufficiently compact, as small as possible.

 Dynamic: it should completely avoid the need to re-label XML trees nodes

when XML files are updated.

Many works have studied dynamic XML labelling schemes, but each of the existing

labelling schemes is limited through at least one of these characteristics. For the most

part, updating XML data remains the weakness in the majority of these XML labelling

Chapter 3: Literature on XML Labelling Schemes

30

schemes (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005).

The remainder of this chapter will focus on dynamic XML labelling schemes reported

in the literature, and will present the strengths and weaknesses of these labelling

approaches. In general, current XML labelling schemes can be classified into four

categories (Su-Cheng and Chien-Sing, 2009) (Chiew et al., 2014a) (Liu and Zhang,

2016) (Subramaniam et al., 2014a) (Chen et al., 2011):- interval-based labelling

schemes, prefix-based labelling schemes, multiplicative labelling schemes, and hybrid

labelling schemes.

3.3 Interval-based Labelling Schemes

3.3.1 Structure and Concept

Interval-based labelling schemes (also known as Containment labelling schemes,

Range-based labelling schemes, or Region Encoded labelling schemes) (Xu et al.,

2012) (O'Connor and Roantree, 2010a) utilise the properties of tree traversal (Dietz,

1982) (Li and Moon, 2001) (Subramaniam and Haw, 2014b) to preserve document

order and to establish structural relationships among nodes. Tree traversal (Tahraoui

et al., 2013) is the process of sequentially visiting each node in a tree data structure,

and can proceed in different directions (O'Connor and Roantree, 2010a) (Qadah,

2016). A pre-order (also called DFS: depth-first search) traversal of an ordered tree

constitutes visiting a tree starting from the root (top-bottom) and processing each level

from left to right, while post-order traversal start visiting the leaf nodes from left to

right, and then processing their parent level (bottom-up) (Dietz, 1982).

(Kannan et al., 1992) introduced the idea of efficiently encoding the ancestry relation

in a tree using interval-based schemes (Fraigniaud and Korman, 2016) (Peleg, 2000).

This contains a mechanism of assigning the shortest possible labels to an XML tree

nodes in such a way that information concerning any two nodes can be obtained

directly from their labels (Fraigniaud and Korman, 2016). Accordingly, (Kannan et al.,

1992) suggested an ancestry-labelling scheme, which is defined as follows: given a

rooted tree, 𝑇, with 𝑛 nodes, process depth-first traversal on 𝑇, starting from the root,

and assign each node 𝑣 ∈ 𝑇 a 𝐷𝐹𝑆 number 𝐷𝐹𝑆(𝑣) ∈ [1, 𝑛] sequentially. Since in a

depth-first traversal each node 𝑣 is reached before all of its descendants, 𝑣 has

smaller 𝐷𝐹𝑆 number than of any of its children. Then a node 𝑣 is given an interval

label (𝑣) = [𝐷𝐹𝑆(𝑣), 𝐷𝐹𝑆(𝑣′)], where 𝑣′ is the last descendent of 𝑣.

Chapter 3: Literature on XML Labelling Schemes

31

Given two nodes 𝑢 and 𝑣 with interval labels 𝐼(𝑢) and 𝐼(𝑣), respectively, an ancestry

query between 𝑢 and 𝑣 can be determined as follows: a node 𝑢 is an ancestor of a

node 𝑣 if, and only if, both 𝐷𝐹𝑆(𝑢) ≤ 𝐷𝐹𝑆(𝑣) and 𝐷𝐹𝑆(𝑢′) ≥ 𝐷𝐹𝑆(𝑣′); where 𝑢’ and 𝑣’

are the last descendants of 𝑢 and 𝑣, respectively. Using this scheme to label a tree

with 𝑛 nodes, each of the resulting interval labels is of size 2𝑙𝑜𝑔 (𝑛) bits. Similar to

work of (Kannan et al., 1992), considerable research has been carried out on interval-

based labelling schemes to enhance the performance of XML querying where labels

are even shorter than 2𝑙𝑜𝑔 (𝑛) (Abiteboul et al., 2001) (Peleg, 2000) (Fraigniaud and

Korman, 2016) (Alstrup and Rauhe, 2002).

3.3.2 Related Schemes

Dietz’s numbering scheme (Dietz, 1982) was the first to use traversal to number tree

nodes as a linked list to determine the order of elements within a tree in a constant

time (Su-Cheng and Chien-Sing, 2009). Each node is labelled as an interval <pre-

order, post-order>, where the pre-order value of a node 𝑢 is the pre-order traversal

rank position of 𝑢 before its descendants are visited. Similarly, the post-order value of

a node 𝑣 is the post-order traversal rank position before the ancestors of node 𝑣 are

visited. According to (Dietz, 1982) the ancestor/descendant relationships between tree

nodes can be maintained by exploring the pre-order and post-order values of tree

nodes, where for any pair of nodes (say 𝑢 and 𝑣) in a tree, 𝑇, 𝑢 is an ancestor of 𝑣 if,

and only if, 𝑢 appears before 𝑣 in the pre-order traversal of 𝑇 and after 𝑣 in the post-

order traversal of 𝑇. To determine the parent-child relationship between two nodes,

the level value is also added to each node label (i.e. in as 3-tuple <

𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑙𝑒𝑣𝑒𝑙 >). Although the main structural relationships can be determined

efficiently, the insertion of a new node causes the re-labelling of all its ancestors.

Figure 3.1 shows the XML tree of the ‘School’ example labelled using the interval-

based labelling scheme and the re-labelling cost (indicated by the black nodes) when

a new node (𝑎) is inserted.

Chapter 3: Literature on XML Labelling Schemes

32

Many researchers have tried to solve the re-labelling problem: (Li and Moon, 2001)

and (Zhang et al., 2001) have both assigned each node a pair of an extended pre-

order and a range of descendants. (Li and Moon, 2001) alleviated the re-labelling

problem by leaving gaps at the initial labels; the reserved space allocated within the

range can either allow a limited number of insertions or result in wasted storage space

if no insertions occur. (Amagasa et al., 2003) represented the start and end positions

as floating-point values to extend the intervals. In a practical sense, the representation

of floating-point numbers in a computer is limited to a fixed numbers of bits (Li and

Ling, 2005b) (Li et al., 2008). Therefore, the approach of (Amagasa et al., 2003) does

not eliminate re-labelling because a fixed place can execute up to 18 insertions when

the initial labels are consecutive integers (Liu and Zhang, 2016) (Tatarinov et al.,

2002).

(Yun and Chung, 2008) introduced the idea of adding a nested-tree structure to the

interval-based labelling scheme, whereby the XML data insertion must be considered

as adding a new sub-tree into the original XML tree. To insert a nested-tree structure

into the original interval-based labelling scheme, each node is labelled as a 4-tuple <

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑠𝑡𝑎𝑟𝑡 𝑙𝑖𝑠𝑡, 𝑒𝑛𝑑 𝑙𝑖𝑠𝑡, 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑑𝑒𝑝𝑡ℎ >, leading to very long labels.

Nevertheless, when the insertion size of a new sub-tree is larger than the available

space, the entire post-order sibling sub-trees must be re-labelled.

To overcome these limitations, (Min et al., 2009) introduced the EXEL binary encoding

algorithm to generate ordinal bit strings as start and end values. EXEL stores the

Figure 3.1 Interval-based labelling scheme

Chapter 3: Literature on XML Labelling Schemes

33

parent start value instead of the node level value to enhance the query processing

time. However, including the parent-start value increases the label size (Al-Shaikh et

al., 2010) and so, in the case of frequent insertions occurring repeatedly before or

after a particular node (known as skewed insertions) the EXEL label size increases

rapidly and leads to overflow problems (discussed in Section 4.3).

In (Lizhen and Xiaofeng, 2013), a Triple-code is generated by a depth first traversal in

the form of 3-tuples < 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑒𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑑 >. In this approach, the

level number within label intervals is replaced by the node’s ‘parent-id’, making it

straightforward to obtain parent/child and sibling relationships. Ancestor/descendant

and document order can be determined, as in (Li and Moon, 2001). To identify the

LCA between two nodes 𝑢 and 𝑣 in the Triple-code approach, all the ancestors of 𝑢

and 𝑣 must be traversed in order to create the paths from 𝑢 and 𝑣 to identify their

LCA. So, for an XML tree of size, 𝑁, and depth, 𝐷,, the worst-case scenario for

determining the LCA querying cost is 𝑂(𝐷). The authors reduced this cost by

proposing the iTriple-code which creates ordered ancestor lists for leaf nodes that

include the start value of all the ancestors from the root to the leaf’s parent node. A

pointer to the ancestor list is added as a fourth component of the Triple-code label

value. Although this procedure reduces the LCA query performance cost to 𝑂(log 𝐷),

when an XML tree is updated ancestor lists need to be updated too.

The Region-based Labelling scheme (ReLab) introduced by (Subramaniam et al.,

2014a) uses < 𝑙𝑒𝑣𝑒𝑙, 𝑜𝑟𝑑𝑖𝑛𝑎𝑙, 𝑟𝐼𝐷 > to label XML tree nodes, where 𝑙𝑒𝑣𝑒𝑙 is level

number of the node. The 𝑜𝑟𝑑𝑖𝑛𝑎𝑙 value is the unique 𝐼𝐷 assigned to the node using a

depth-first traversal, and 𝑟𝐼𝐷 is the ordinal of the rightmost sibling. In comparison to

some other interval-based labelling schemes, such as Dietz’s labelling scheme (Dietz,

1982) and the region-numbering scheme (Zhang et al., 2001), ReLab generates

labels faster due to its greater simplicity in computing the intervals (Haw and Amin,

2015). However, ReLab (Subramaniam et al., 2014a) is a static labelling scheme, and

does not support dynamic XML data (Haw and Amin, 2015) (Liu and Zhang, 2016).

3.3.3 Summary of Interval-based Labelling Schemes

In general, interval labelling schemes seek to determine structural relationships

between nodes by using containment information, whereby node identifiers are

represented as intervals (Liu and Zhang, 2016) (Zhuang et al., 2011) (Yu et al., 2005).

Furthermore, these approaches generate very long labels, and so require and

consume, large amounts of storage. It is difficult to decide the initial size of the

Chapter 3: Literature on XML Labelling Schemes

34

intervals that minimises storage cost whilst avoiding repetitive re-labelling in a

dynamic XML environment (Sans and Laurent, 2008) (Ghaleb and Mohammed, 2015)

(Li and Moon, 2001) (Liu and Zhang, 2016) (Yu et al., 2005). With the extent of

available data on frequently updated XML applications, it is difficult to determine in

advance either the actual data size or the number of possible updates. In addition,

although interval-based labelling schemes establish ancestor/descendant, parent/child

and document order more efficiently than other schemes, they cannot process sibling

or LCA structural relationships (Lizhen and Xiaofeng, 2013) (Ghaleb and Mohammed,

2015) (Subramaniam et al., 2014a). Due to these limitations, an interval-based

labelling scheme typically is not ideal for use with dynamic XML data (Liu and Zhang,

2016) (Ghaleb and Mohammed, 2015) (Kaplan et al., 2002) (Haw and Amin, 2015)

(Su-Cheng and Chien-Sing, 2009).

3.4 Prefix-based Labelling Schemes

3.4.1 Structure and Concept

Prefix-based labelling schemes (Sans and Laurent, 2008) (Tatarinov et al., 2002) (Liu

and Zhang, 2016) (Haw and Lee, 2011) (Ghaleb and Mohammed, 2015) (Xu et al.,

2009) (O'Connor and Roantree, 2010a) (Liu et al., 2013) directly encode a node’s

parent label in an XML tree as the prefix of its label. Each node label in the tree

comprises the parent’s label concatenated with the node’s identifier (self-label), and a

delimiter, “.”, is used to separate the label of the ancestor nodes at every level. Thus,

determining the ancestor/descendant and parent/child relationships between two

nodes is simply one of finding if one label is a prefix to the other. As containment of

the path information within each prefix-based label facilitates the query processing, it

has been the common choice for XML keyword querying (Sun et al., 2007) (Guo et al.,

2003) (Sans and Laurent, 2008) (Li et al., 2014) (Zhang and Sun, 2011) (Bo et al.,

2012) (Lu et al., 2011b). In particular, the Dewey Order labelling scheme (Tatarinov et

al., 2002) has recently become common for research in XML query processing and

indexing schemes (Zhou et al., 2016) (Li et al., 2014) (Liu and Chen, 2012) (Lou et al.,

2012) (Zeng et al., 2013), due to its simplicity.

The Dewey Order labelling scheme was proposed by (Tatarinov et al., 2002) based

on the Dewey decimal classification system for the organisation of library collections

(Dewey, 1876). When using Dewey Order, each node is labelled as a vector denoting

the path from the root node in an XML tree to the current node, whereby, the number

of delimiters in a node’s prefix-label is equal to the level number of that node. If the

Chapter 3: Literature on XML Labelling Schemes

35

root level is 0, then number of delimiters in a label is equivalent to the node’s level

number. Based on this mechanism, the structural relationships between nodes can be

directly determined from their labels as follows: given two nodes 𝑢 and 𝑣 in a rooted

ordered tree, 𝑇, if 𝑙𝑎𝑏𝑒𝑙(𝑢) is a prefix of 𝑙𝑎𝑏𝑒𝑙(𝑣), then 𝑢 is an ancestor of 𝑣. If node 𝑢

is an ancestor of 𝑣 and 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑢) + 1, then 𝑢 is a parent of node 𝑣. Nodes

that share the same parent label as their prefixes and are in the same level of the

XML tree are sibling nodes. Figure 3.2 below shows an XML tree labelled by the

Dewey Order scheme.

Despite the popularity of Dewey Order (Ghaleb and Mohammed, 2015) (Cohen et al.,

2010) (Xu et al., 2009), it is not applicable for dynamic XML data. For example,

inserting a new sibling node requires re-labelling all its right sibling nodes along with

their descendants, as shown in Figure 3.2 (black circles indicate the re-labelled nodes

after inserting node “𝑎”). Several researchers (Li and Ling, 2005b) (Li and Ling,

2005a) (O’Connor and Roantree, 2012) (Mirabi et al., 2012) (Duong and Zhang, 2005)

have proposed prefixed labelling schemes to support dynamic XML. Others (O'Neil et

al., 2004) (Lu et al., 2005b) (Xu et al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016)

have investigated Dewey Order labelling properties to convert them into a dynamic

XML labelling approach. The next section presents the strength and weakness of the

existing dynamic prefix labelling schemes.

Figure 3.2 Prefix-based labelling scheme - Dewey Order

Chapter 3: Literature on XML Labelling Schemes

36

3.4.2 Related Schemes

With the intention of enhancing Dewey Order, (O'Neil et al., 2004) designed the

ORDPATH labelling scheme that reserves negative-even integers for later nodes

insertions to avoid re-labelling. Although this technique allows for a limited number of

insertions, such gaps left between label values waste half of the storage (Liu et al.,

2013) (Härder et al., 2007) (Li and Ling, 2005b) (Xu et al., 2009) (Haw and Lee,

2011). In addition, the complexity of the decoding mechanism in ORDPATH has a

detrimental effect on XML query processing (Xu et al., 2009) (Li et al., 2006a) (Li et

al., 2008) (Hye-Kyeong and SangKeun, 2010).

Later, (Lu et al., 2005b) proposed an extended Dewey labelling scheme that basically

adds the elements tag names as a part of their Dewey labels. This feature speeds up

twig pattern query matching (Hachicha and Darmont, 2013) (Lu et al., 2005a) by

accessing only the leaf nodes that contain the labels of elements satisfying the query.

In order to include elements tag names within node labels, the DTD of the XML data

must be known. Otherwise, before assigning XML tree nodes labels, the whole XML

document must be scanned at least once by a depth-first traversal in order to know

the document’s schema information called “child names clue”. Such a process is time

consuming (Yun and Chung, 2008).

The extended Dewey labelling scheme performs well in evaluating twig pattern query

matching using the TJFast (which stands for “Twig Join Fast” algorithm) (Lu et al.,

2005b) (Lu et al., 2005a) proposed by the same authors. However, the extended

Dewey labelling has a number of disadvantages. The mapping process is a

requirement to determine if an element name from its integer value makes the

computation methods very expensive (Chiew et al., 2014a) (Haw and Lee, 2011).

Apart from this, including XML tree elements names within their labels increases the

label size even further, and most importantly this labelling scheme still does not

support dynamic updates in XML trees since this requires the reconstruction of the

“child names clue” data after insertions (Yun and Chung, 2008) (Liu and Zhang,

2016).

(Xu et al., 2009) revisited the notion of the Dewey Order encoding scheme, proposing

two fully dynamic labelling schemes named DDE and CDDE (which stands for

Compact DDE). DDE generalises the concept of vector order and vector equivalence

over Dewey labels. Although the initial DDE labels are the same as those of the

Dewey Order, the semantics of a DDE label are a sequence of vector codes

Chapter 3: Literature on XML Labelling Schemes

37

represented in the form 𝑣1. 𝑣2 … 𝑣𝑚 , where 𝑣1 = (𝑥, 𝑦1), 𝑣2 = (𝑥, 𝑦2), … , 𝑣𝑖 =

(𝑥, 𝑦𝑖), … 𝑣𝑚 = (𝑥, 𝑦𝑚), and whereby all the vector codes of a DDE label share a

common 𝑥-axis component (Xu et al., 2012). In order to support dynamic updates, the

authors (Xu, Ling et al. 2009) defined appropriate DDE labelling order properties

(such as the pre-order relation and equivalence/in-equivalence relation) between DDE

labels. Therefore, based on mathematical and logical equations, the determination of

the structural relationships between nodes from their label values is preserved. DDE

considers four cases of insertion, as shown in Figure 3.3:

Case A: Inserting before the leftmost sibling (e.g., node 𝑢): the new label is

created by decrementing the local order value of the leftmost sibling by 1;

here negative values are permitted.

Case B: Inserting after the rightmost sibling (e.g., node 𝑤): the new label is

created by incrementing the local order value of the rightmost sibling by

1.

Case C: Inserting between two siblings (say 𝑋 and 𝑌; e.g., node v): the new label

is assigned as the midpoint vector 𝑋 + 𝑌 (which is equal to 𝑥1 + 𝑦1. 𝑥2 +

𝑦2. … . 𝑥𝑚 + 𝑦𝑚); i.e., adding each 𝑚 component in 𝑋 to its corresponding

component in 𝑌.

Case D: Inserting a child into a leaf node (e.g., node 𝑧): where the new label is

created by concatenating the parent label and the digit “1”.

Figure 3.3 DDE labelling scheme

Chapter 3: Literature on XML Labelling Schemes

38

CDDE is a modified version of DDE introduced to improve the performance of DDE for

insertions by allowing initial labels to be negative values. Nevertheless, as shown by

(Xu et al., 2009), the enhancement of DDE performance via CDDE is insignificant in

terms of updating time and label size. Overall, DDE and CDDE generate large labels

at the cost of extra storage (Liu et al., 2013) (Yanghua et al., 2012) especially when

frequent insertions occur between consecutive siblings due to the large gap generated

by applying the midpoint vector 𝑋 + 𝑌 technique. Furthermore, DDE is not suitable for

determining the structural relationships in multiple XML documents and requires an

extra document identifier to distinguish labels within several XML documents (Liu et

al., 2013) (Liu and Zhang, 2016) (Assefa and Ergenc, 2012).

More recent work by (Liu et al., 2013) has led to the proposal of the DFPD labelling

scheme, which represents Dewey labels by float-point numbers. As in DDE, DFPD

initially labels the XML tree based on Dewey labels and handles insertions before the

leftmost sibling, after the rightmost sibling, and under a leaf node by applying the

same techniques used in DDE (i.e. cases A, B, and D above). To insert a new sibling

between two consecutive nodes 𝑋 (labelled 𝑥1. 𝑥2. … . 𝑥𝑚) and 𝑌 (labelled 𝑦1. 𝑦2. … . 𝑦𝑚),

the new label is computed by:

(𝑎1. 𝑎2 … 𝑎𝑚−1.
(𝑘𝑎 ∗ 𝑎𝑚) + (𝑘𝑏 ∗ 𝑏𝑚)

𝑘𝑎 ∗ 𝑘𝑏
) Equation 1

Where 𝑘𝑖 is the smallest possible integer that makes the result of (𝐾𝑖 ∗ 𝑖𝑚) a float-

point number such that its decimal part is 0. This makes the last digit of the new label

to be stored a real number. For instant, assume a new node, 𝑍, is inserted between

node 𝑋 = (1.45. (302 3⁄)) and node 𝑌 = (1.45. (503 5⁄)), then:

𝐿𝑎𝑏𝑒𝑙 (𝑍) = (1.45.
805

8
) = (1.45. (3 𝑋

302

3
 + 5 𝑋

503

5
) / (3 + 5))

Recently, the authors enhanced the performance of DFPD by introducing the DPLS

labelling scheme (Liu and Zhang, 2016) that re-uses deleted label values -if they

exist-to lower the growth rate of label sizes when insertion and deletion take place

alternatively. The DPLS basically computes the fractional part of the self-label

component in the case of an insertion between two consecutive siblings through

equation (2) instead of equation (1):

(𝑎1. 𝑎2 … 𝑎𝑚−1.
(𝑎𝑚 + 𝑏𝑚)

(𝑘𝑎 + 𝑘𝑏)
) Equation 2

Chapter 3: Literature on XML Labelling Schemes

39

As in (Amagasa et al., 2003), the floating point numbers generated by DFPD and

DPLS are of limited accuracy since the mantissa is actually represented by a fixed

number of bits and can be extended by as many as 2 bits per insertion, leading to

overflow problems (see Chapter 4, Section 4.3) (Xu et al., 2012). To address this

limitation, when storing the fractional part DFPD and DPLS have adopted the

ORDPATH (O'Neil et al., 2004) encoding technique, in which the labels can be

assigned by a successive variable-length storage format (see Chapter 4, Section

4.4.4). However, as in ORDPATH, the complexity of decoding decelerates the XML

querying process.

Similarly, (Mirabi et al., 2012) proposed a labelling scheme based on fractional

numbers. Here, encoding 𝑛 ordinal decimal numbers by recursively assigning the

middle fractional number in the range [0, 1] to the middle decimal number between 1

and 𝑛 using the author’s proposed algorithm, which is called fractional number

generation (FNG). For example, for 𝑛 = 16, the middle number is (16 2⁄)= 8, which

corresponds to the middle fraction number ((0 + 1) 2⁄) = (1 2⁄). Then, the fractional

number assigned to the decimal number 8 is (1 2⁄); to 4, it is (1 4⁄); to 6, it is (3 8⁄),

and so on. After the fraction values are generated, they are mapped into bit-string

codes, which are used to label an XML tree. Nonetheless, according to the authors,

the bit string codes generated by their FNG algorithm differ depending on the value of

𝑛. For instance, bit string codes for a set of ordinal decimal numbers between 1 and

3 differ from those generated for a set of decimal numbers between 1 and 10.

Determining the original value of 𝑛 is not clear in the work of (Mirabi et al., 2012).

Moreover, when it is applied over prefix labelling schemes (e.g., Dewey IDs) it has

shown poor performance in comparison to other labelling schemes in terms of storage

space, querying time and updating XML data. As the authors stated a possible reason

of this is including the delimiter “.” within the label values.

A more recent XML prefix-based labelling scheme that is also based on fractions,

called DPESF Encoding, was proposed by (He, 2015), in which the mid-point of self-

labels between two consecutive sibling nodes is stored in Numeric-Character format.

To achieve this, (He, 2015) defined the rule to map each digit 𝑛 ∈ 𝑁 =

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} in the numerator to a matching character 𝑐 ∈ 𝐶 =

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽}. For instance, (125 14)⁄ is expressed as 𝐵𝐶𝐹14. The author

indicated the need to adjust their DPESF labelling scheme in order to fully support

dynamic updates in XML data (He, 2015). Furthermore, as with other alpha-numeric

prefix-based labelling schemes (presented next), (Duong and Zhang, 2005) (Duong

Chapter 3: Literature on XML Labelling Schemes

40

and Zhang, 2008) (Khaing and Ni Lar, 2006) (Assefa and Ergenc, 2012), DPESF is

prone to overflow problems due to repetitive long labels that can lead to collisions

during XML querying (Subramaniam and Haw, 2014b) (Assefa and Ergenc, 2012)

(Khaing and Ni Lar, 2006) (O'Connor and Roantree, 2010a) (Su-Cheng and Chien-

Sing, 2009).

Alphanumeric prefix-based labelling schemes (Duong and Zhang, 2005) (Duong and

Zhang, 2008) (Khaing and Ni Lar, 2006) utilise both integers and letters to construct

XML tree node labels. Usually the number represents the level of an XML tree node

followed by letter(s) representing the positional identifier of a parent node,

concatenated with the separator “.” before adding letter(s) signifying the current

node’s self-label. As the number of siblings within the same level increases, using the

alphanumeric update technique may lead to redundancy in some label values during

arbitrary insertions (Sans and Laurent, 2008) (Subramaniam and Haw, 2014b)

(Khaing and Ni Lar, 2006). For example, consider the labelled XML tree shown in

Figure 3.4; according to the LSDX (Labelling Scheme for Dynamic XML data) (Duong

and Zhang, 2005) labelling algorithm, there are two possible values that can be

assigned to the new node, 𝑧, but both possible values cause collisions. As shown in

Figure 3.4, 𝑧 can be assigned the label value “2𝑎𝑐𝑏. 𝑐𝑏”, which causes a collision with

node 𝑦 or 𝑧 = “2𝑎𝑐𝑏. 𝑏” as this is a duplicate of the label of node 𝑚. Likewise, when

node 𝑣 is inserted before node 𝑥, a duplicate label value “1𝑎. 𝑐𝑏” is generated.

To prevent such collisions, Assefa and Ergenc (Assefa and Ergenc, 2012) have

proposed the OrderBased labelling scheme. The main concept of this scheme is to

keep a global level based on horizontal order and parent order. OrderBased differs

Figure 3.4 LSDX labelling scheme (possible collision cases)

Chapter 3: Literature on XML Labelling Schemes

41

from other prefix-based labelling schemes by initialising the node labels for the whole

tree on a level-by-level basis, irrespective of ancestors. For each level of the XML tree

starting from the most left node OrderBased starts assigning letters as node self-

labels from “𝑏”, “𝑐”, … , “𝑧”, “𝑧𝑏” … etc. Unlike other alphanumeric prefix-based labelling

schemes, this numbering technique ensures the uniqueness of label values. However,

because letters representing nodes’ self-labels are assigned according to the nodes’

horizontal distance from the left-most node in the same level, finding the ancestors of

a given node requires repeated visits to all parent nodes of the previous levels.

Therefore, determination of ancestor-descendant and LCA relationships is costly in

this labelling scheme (Silberstein et al., 2005) (Haw and Amin, 2015).

Instead of using alphanumeric values, various prefix labelling schemes have been

proposed that use binary strings to represent label values lexicographically (see

Section 5.4 for lexicographical order definition). In ImprovedBinary (Li and Ling,

2005a), the root is first labelled as an empty string. Then, the leftmost child and the

rightmost child of the root are labelled as “01” and “011”, respectively. This is to

ensure positions for new node insertions as first sibling and last sibling (Duong and

Zhang, 2008). Afterwards, the middle nodes are sequentially labelled based on two

main rules:

 If 𝑙𝑒𝑓𝑡 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙 𝑠𝑖𝑧𝑒 ≤ 𝑟𝑖𝑔ℎ𝑡 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙 𝑠𝑖𝑧𝑒 then the label of the middle node is

formed by changing the last digit of the right self-label to zero and is concatenated

to the digit “1”.

 Otherwise, the middle node label is the same as the left self-label, and

concatenated to the digit “1”.

When updating an XML tree, repeated insertions before the first rightmost child may

cause duplicate node labels. Hence, ImprovedBinary cannot completely avoid re-

labelling (O'Connor and Roantree, 2010a) (Duong and Zhang, 2008) (Li and Ling,

2005b).

To overcome the limitation of the ImprovedBinary scheme several prefix labelling

schemes have been proposed based on lexicographical order (Section 5.4) over

binary strings. These include:- Cohen’s labelling scheme (Cohen et al., 2010), P-

PBiTree (Yu et al., 2005), VLEI (Kobayashi et al., 2005), IBSL (Hye-Kyeong and

SangKeun, 2010), EBSL (O’Connor and Roantree, 2010b), V-CDBS (Li et al., 2008),

XDAS (Ghaleb and Mohammed, 2013), and dynamic XDAS (Ghaleb and Mohammed,

2015). However, as with the ImprovedBinary approach all these schemes suffer from

Chapter 3: Literature on XML Labelling Schemes

42

huge label sizes and require re-labelling after frequent insertions (Kobayashi et al.,

2005) (O'Connor and Roantree, 2010a) (Duong and Zhang, 2008) (Li and Ling,

2005b) (Duong and Zhang, 2005).

Other prefix-based labelling schemes have used quaternary codes that are also

based on the lexicographical order between node self-labels to support dynamic XML

data. That of (Li and Ling, 2005b) is the first to use quaternary encoding (QED) to

overcome the re-labelling problem in dynamic XML trees. QED encoding replaces the

delimiter “.” with the digit “0”, and used only the digits “1”, “2”, and “3” to generate

self-labels by applying a recursive division function. However, such quaternary labels

increase in size dramatically in the case of skewed insertion; by 2-bits per insertion.

To control the growth rate of quaternary labels, (O’Connor and Roantree, 2012)

introduced the SCOOTER labelling scheme.

According to (Chiew et al., 2014a), SCOOTER (O’Connor and Roantree, 2012) is the

most compact of dynamic labelling schemes, which controls the growth of label size

when an XML database is updated via automatic reuse of the smallest deleted node

label available. Based on this observation, this thesis is developed using the

SCOOTER scheme in order to address the research question and objective

(discussed in Chapter 5). Therefore, for a comprehensive understanding of this thesis,

it is necessary to review the SCOOTER labelling scheme in some detail.

3.4.3 The SCOOTER Labelling Scheme

The SCOOTER scheme (O’Connor and Roantree, 2012) provides Scalable, Compact,

Ordered, Orthogonal, Ternary Encoded, and Reusable labels (and hence the acronym

SCOOTER). This section presents the initialisation and insertion mechanisms of the

SCOOTER labelling scheme (here labels and self-labels are used interchangeably).

This scheme initialises labels by first obtaining the maximum possible label size

(called 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) based on the total number of child nodes (called 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡)

using a logarithmic function in base-3. The first (left-most) child is assigned a label

that consists of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 – 1) copies of digit 1, followed by the digit 2. Then, the

labels of the remaining sibling nodes were determined lexicographically based on the

label of the node to their immediate left. Figure 3.5 shows an example of initial self-

labels generated by the SCOOTER scheme to represent the six child nodes of an

element 𝑝 (i.e. 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 = 6 and so the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 2).

Chapter 3: Literature on XML Labelling Schemes

43

The SCOOTER labelling scheme controls the expansion of the quaternary labels by a

compact adaptive growth mechanism to handle insertions. Three types of sibling node

insertions are considered by this scheme: inserting after the right most node, inserting

before the left most node, and inserting between two consecutive nodes.

When inserting after the right-most node, labelled 𝑁𝑜𝑙𝑑, the new node is assigned a

𝑁𝑛𝑒𝑤 label based on the start digit value of 𝑁𝑜𝑙𝑑, as shown in Table 3.1:

Table 3.1 Inserted after the right-most-node, 𝑵𝒐𝒍𝒅 starts with 𝒅 = 1, 2, or 3

Insert after (the right most node) 𝑁𝑜𝑙𝑑 that starts with 𝑑 ∈ {1, 2, 3}𝐼𝑛𝑡𝑒𝑟

Condition Rule Example

If 𝑑 = 1 𝑁𝑛𝑒𝑤 is “2” 𝑁𝑜𝑙𝑑 = “112”
then 𝑁𝑛𝑒𝑤 = “2”

If 𝑑 = 2 𝑁𝑛𝑒𝑤 is “3” 𝑁𝑜𝑙𝑑 = “22”
then 𝑁𝑛𝑒𝑤 = “3”

If 𝑑 = 3 Apply adaptive growth
mechanism

𝑁𝑜𝑙𝑑 = “3312”
then 𝑁𝑛𝑒𝑤 = “3313”

Basically the SCOOTER’s growth-adaptive mechanism treats a node’s label (say

𝑁𝑜𝑙𝑑) as a combination of a prefix and a postfix string. The prefix string represents all

consecutive ‘3’s at the beginning of 𝑁𝑜𝑙𝑑, and the rest are the postfix string. Based on

the value and length of the 𝑁𝑜𝑙𝑑 postfix string, 𝑁𝑛𝑒𝑤 is allocated as described in

Table 3.2:

Figure 3.5 Example of initial SCOOTER self-labels

Chapter 3: Literature on XML Labelling Schemes

44

Table 3.2 Inserted after the right-most-node, 𝑵𝒐𝒍𝒅 starts with 3

Insert after 𝑁𝑜𝑙𝑑 that starts with 𝑑 = 3; use adaptive growth mechanism

Condition Rule/Action Example

If 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 is empty

i.e. 𝑁𝑜𝑙𝑑 consists of

all ‘3’s

1 𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 prefix

length + 1

2 Compute 𝑁𝑛𝑒𝑤 postfix by calling the

SCOOTER’s initialisation method

passing 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 equals to 𝑁𝑛𝑒𝑤

postfix length.

3 𝑁𝑛𝑒𝑤 = 𝑁𝑜𝑙𝑑 𝑁𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥

𝑁𝑜𝑙𝑑 = “33”

then 𝑁𝑛𝑒𝑤 =

 “3312”

If 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 is NOT

empty

1 𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 postfix

length

2 Compute 𝑁𝑛𝑒𝑤 postfix by calling the

SCOOTER’s initialisation method on

the basis that 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 equals to

𝑁𝑜𝑙𝑑 postfix length.

3 𝑁𝑛𝑒𝑤 =

 𝑁𝑜𝑙𝑑 𝑝𝑟𝑒𝑓𝑖𝑥 𝑁𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥

𝑁𝑜𝑙𝑑 = “3312”

then 𝑁𝑛𝑒𝑤 =

 “3313”

Notice that after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions the label size increases

by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1). This is because when 𝑁𝑜𝑙𝑑 consists completely of ‘3’s, the

new 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 allocated for 𝑁𝑛𝑒𝑤 is increased as follows:

 𝑁𝑛𝑒𝑤 prefix length = 𝑁𝑜𝑙𝑑 prefix length + 𝑁𝑜𝑙𝑑 postfix length; i.e., length of

𝑁𝑜𝑙𝑑

 𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 prefix length + 1

 New maximum label size = 𝑁𝑛𝑒𝑤 prefix length + 𝑁𝑛𝑒𝑤 postfix length

The same adaptive growth mechanism is applied for insertion before the left-most

node, but takes into account the number of consecutive ‘1’s at the beginning of 𝑁𝑜𝑙𝑑

instead of consecutive ‘3’s. Table 3.3 shows some examples of SCOOTER labels

generated when 10 new nodes are inserted repeatedly before the left most node,

𝑛𝑜𝑙𝑑.

Chapter 3: Literature on XML Labelling Schemes

45

Table 3.3 Example of skewed insertions before the left most node in SCOOTER

 Node labels Node labels Node labels Node labels

Insert after node 1123 1112 22313 3333

1 1122 11112 22312 3332

2 112 111112 223 333

3 1112 1111112 222 332

4 11112 11111112 22 33

5 111112 111111112 2 32

6 1111112 1111111112 12 3

7 11111112 11111111112 112 2

8 111111112 111111111112 1112 12

9 1111111112 1111111111112 11112 112

10 11111111112 11111111111112 111112 1112

The SCOOTER scheme has also provided an

adaptive growth mechanism to handle insertions

between the two nodes nleft and nright, labelled

as 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively (see Figure

3.6). In this case, generating a new label (say

𝑁𝑛𝑒𝑤) relies on the length of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡

as follows:

 If 𝑵𝒍𝒆𝒇𝒕 is shorter than 𝑵𝒓𝒊𝒈𝒉𝒕:

In this case, 𝑁𝑙𝑒𝑓𝑡 could be a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡. If it is, then 𝑁𝑛𝑒𝑤 is allocated based

on an 𝑁𝑡𝑒𝑚𝑝 value which corresponds to the remains of 𝑁𝑟𝑖𝑔ℎ𝑡 after trimming the

prefix part that matches that of 𝑁𝑙𝑒𝑓𝑡. The algorithm then locates 𝑁𝑛𝑒𝑤 based on the

first digit (say 𝑑𝑓) in 𝑁𝑡𝑒𝑚𝑝 as follows (see Table 3.4):

Figure 3.6 Insert between

nodes

Chapter 3: Literature on XML Labelling Schemes

46

Table 3.4 Inserted between nodes, 𝑵𝒍𝒆𝒇𝒕 is a prefix of 𝑵𝒓𝒊𝒈𝒉𝒕

When 𝑁𝑙𝑒𝑓𝑡 is a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡; where 𝑁𝑟𝑖𝑔ℎ𝑡 = 𝑁𝑙𝑒𝑓𝑡 𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑡𝑒𝑚𝑝 starts

with a digit 𝑑𝑓 ∈ {1, 2, 3}

Condition Rule/Action Example

If 𝑑𝑓 = 3 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 ‘2’ 𝑁𝑙𝑒𝑓𝑡 = “23” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “2333”

then 𝑁𝑛𝑒𝑤 = “232”

If 𝑑𝑓 = 2 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 ‘12’ 𝑁𝑙𝑒𝑓𝑡 = “23” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “232”

then 𝑁𝑛𝑒𝑤 = “2312”

If 𝑑𝑓 = 1 1 𝑁𝑛𝑒𝑤 = 𝑁𝑙𝑒𝑓𝑡

2 Locate the position 𝑝 of the first not ‘1’

digit 𝐷 in 𝑁𝑡𝑒𝑚𝑝

3 Add the ‘1’s at the beginning of 𝑁𝑡𝑒𝑚𝑝

to end of 𝑁𝑛𝑒𝑤.

4 If 𝐷 is ‘3’, 𝑁𝑛𝑒𝑤 ‘2’

5 If 𝐷 is ‘2’, 𝑁𝑛𝑒𝑤 ‘12’

𝑁𝑙𝑒𝑓𝑡 = “23” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “23112”

then 𝑁𝑛𝑒𝑤 = “231112”

However, if 𝑁𝑙𝑒𝑓𝑡 is not a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 but is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡, this indicates

that there is at least one deleted node between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡. To re-use such a

deleted label for 𝑁𝑛𝑒𝑤, first the position (𝑝 ≥ 1) of first different digit between 𝑁𝑙𝑒𝑓𝑡

and 𝑁𝑟𝑖𝑔ℎ𝑡 is detected, and accordingly the following actions are taken (see Table

3.5):

Chapter 3: Literature on XML Labelling Schemes

47

Table 3.5 𝑵𝒍𝒆𝒇𝒕 shorter that, but not a prefix of, 𝑵𝒓𝒊𝒈𝒉𝒕

When 𝑁𝑙𝑒𝑓𝑡 is not a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 but is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡, where the first

different digit 𝐷 between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 in position 𝑝 ≥ 1

Condition Rule/Action Example

If 𝑝 = 1;

i.e. 𝑁𝑙𝑒𝑓𝑡 and

𝑁𝑟𝑖𝑔ℎ𝑡 differ by their

first digit.

𝑁𝑛𝑒𝑤 is the SCOOTER self-label

after 𝐷; obtained by call SCOOTER

next-sibling method used in the

initialisation process assuming

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1.

𝑁𝑙𝑒𝑓𝑡 = “12” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “2112” ;

so 𝐷 = "1"

then 𝑁𝑛𝑒𝑤 = “2”

If 𝑝 > 1 1 𝑁𝑛𝑒𝑤 is assigned the substring of

𝑁𝑙𝑒𝑓𝑡 from its start up to 𝑝 − 1;

i.e. the similar digits at the

beginning of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡.

2 𝑆 = is the SCOOTER self-label

after 𝐷; obtained by call

SCOOTER next-sibling method

used in the initialisation process

assuming 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1.

3 𝑁𝑛𝑒𝑤 = 𝑁𝑛𝑒𝑤 𝑆

𝑁𝑙𝑒𝑓𝑡 = “212” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “2232” ;

so 𝐷 = “1”, and 𝑝 =

 2

then 𝑁𝑛𝑒𝑤 = “22”

 If 𝑵𝒍𝒆𝒇𝒕 is longer than 𝑵𝒓𝒊𝒈𝒉𝒕:

In this case, the adaptive growth method applied for insertion after the right most node

is used to allocate 𝑁𝑛𝑒𝑤 as a new node inserted after 𝑁𝑙𝑒𝑓𝑡. As an example, when

𝑁𝑙𝑒𝑓𝑡 = “1333” and 𝑁𝑟𝑖𝑔ℎ𝑡 = “2”, then 𝑁𝑛𝑒𝑤 = “13332”.

 If both 𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 are the same size:

When both 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are the same size, there are two possible scenarios, as

illustrated in Table 3.6:

Chapter 3: Literature on XML Labelling Schemes

48

Table 3.6 𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 are the same size

When 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are the same size, where the first different digit at position 𝑝

Condition Rule/Action Example

If 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are

lexicographically

immediate neighbours

(i.e. differ only in their

last digit).

𝑁𝑛𝑒𝑤 = 𝑁𝑙𝑒𝑓𝑡 “2” 𝑁𝑙𝑒𝑓𝑡 = “12” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “13” ;

then 𝑁𝑛𝑒𝑤 = “122”

Otherwise; i.e. 𝑁𝑙𝑒𝑓𝑡 and

𝑁𝑟𝑖𝑔ℎ𝑡 are not

lexicographically

neighbours. This

indicates there is a

deleted label between

𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡.

1 𝑁𝑡𝑒𝑚𝑝 =

substring(𝑁𝑙𝑒𝑓𝑡, 0, 𝑝 −

1). This makes 𝑁𝑡𝑒𝑚𝑝

shorter than 𝑁𝑟𝑖𝑔ℎ𝑡.

2 The SCOOTER’s algorithm

used for insertion between

𝑁𝑡𝑒𝑚𝑝 shorter than 𝑁𝑟𝑖𝑔ℎ𝑡

(illustrated earlier) is invoked

to generate 𝑁𝑛𝑒𝑤.

𝑁𝑙𝑒𝑓𝑡 = “122” , and

𝑁𝑟𝑖𝑔ℎ𝑡 = “133” ;

 𝑁𝑡𝑒𝑚𝑝 = “1”,

then 𝑁𝑛𝑒𝑤 = “13”

In general, the adaptive growth-rate mechanism allows SCOOTER to generate more

compact labels than the QED encoding method, but after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1)

insertions the label size increases by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1) leading to very large labels.

Thus, as with most of prefix-based labelling schemes, SCOOTER also suffers from

overflow problems (Section 4.3), especially in skewed insertions where the label size

grows rapidly (Ghaleb and Mohammed, 2015) (Chiew et al., 2014a) (Ghaleb and

Mohammed, 2013). Figure 3.7 shows an XML tree labelled by SCOOTER with the

new node labels (the black nodes) after 100 skewed insertions to the right of node 𝑛1.

Chapter 3: Literature on XML Labelling Schemes

49

3.4.4 Labelling Schemes for Re-using Deleted Labels

A substantial amount of research has focused on the development of dynamic

labelling schemes that are capable of supporting XML updates. Most of this research

has been confined to the impact of XML updates on label size and the computational

complexity of the update cost while ignoring node deletion as part of XML updates.

So, in these labelling schemes, when a node is deleted its label is just marked as

deleted (O’Connor and Roantree, 2010b).

Due to the possible occurrence of the overflow problem that may result from large

labels being generated when updating XML data, there are very few XML labelling

schemes that consider reusing deleted nodes’ labels to control the growth of label size

during insertions (Hye-Kyeong and SangKeun, 2010) (O’Connor and Roantree,

2010b) (Li et al., 2006b) (Liu and Zhang, 2016) (O’Connor and Roantree, 2012).

When a new node is inserted at the same position as a deleted node in an XML tree,

the new label generated is usually larger than the deleted label. If a deleted label with

a smaller size is used instead, then the increase of label size can be better controlled.

Motivated by this concept, the IBSL (Hye-Kyeong and SangKeun, 2010) and EBSL

(O’Connor and Roantree, 2010b) XML labelling schemes were implemented to re-use

deleted nodes’ labels of the type binary strings. Similarly, (Li et al., 2006b) introduced

re-used QED code, which has been applied on quaternary strings as an enhancement

to the QED labelling scheme (Li and Ling, 2005b). Nonetheless, these schemes have

not only failed to generate the smallest available deleted label, but also were

Figure 3.7 XML tree labelled by the SCOOTER scheme

Chapter 3: Literature on XML Labelling Schemes

50

unreliable and have produced duplicated labels that may cause ambiguity during the

XML query process. For example, Figure 3.8 (adapted from (O’Connor and Roantree,

2010b)) shows how the re-used QED scheme (Li et al., 2006b) generates duplicated

labels when nodes 𝐶 and 𝐷 are inserted in that order before node 𝐴.

Recently, the DPLS (Liu and Zhang, 2016) XML labelling scheme was developed to

re-use deleted labels using their proposed technique, named “Reduction of a fraction

operation” to minimise the storage space cost. This scheme focused on re-using

deleted labels, in particular insertion cases, mainly when insertions and deletions take

place alternatively between adjacent sibling nodes. Nonetheless, the complexity of

decoding the fractional part of DPLS labels slows down the XML querying process, as

discussed in Section 3.4.2.

On the other hand, the SCOOTER labelling scheme (O’Connor and Roantree, 2012)

was successfully designed to support dynamic XML and reuses deleted labels.

However, the insertion methods applied by SCOOTER attempt to re-use only the

smallest quaternary codes “2” and “3” if available, and do not guarantee the re-use of

every deleted labels. The adaptive growth mechanism used in the SCOOTER scheme

treats node labels as a combination of a prefix and a postfix string. As a result, after

(3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions, the label size increases by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1), leading

to very large labels, particularly in the case of skewed insertions (Ghaleb and

Mohammed, 2015) (Chiew et al., 2014a) (Ghaleb and Mohammed, 2013). For

example, it might be noticed from Table 3.3 in Section 3.4.3, that after relatively few

insertions before the first child node, a newly generated label always starts with

consecutive ‘1’s followed by a ‘2’, and then it begins to grow rapidly (by at least one

digit per insertion).

Figure 3.8 Reusing QED code example

Chapter 3: Literature on XML Labelling Schemes

51

3.4.5 Summary of Prefix-based Labelling Schemes

Prefix-based labelling schemes directly encode the parent of a node in an XML tree

as the prefix of its label (Sans and Laurent, 2008) (Almelibari, 2015). The containment

of the path information within each prefix-based label facilitates query processing, but

because it is verbose prefix label sizes increases rapidly as the XML tree goes deeper

(Haw and Lee, 2011) (O'Connor and Roantree, 2010a) (Kaplan et al., 2002) (Qin et

al., 2017). Unfortunately, prefix labels naturally extend when XML data is updated via

frequent insertions, causing overflow problems (Section 4.3).

Many researchers have presented dynamic prefix-based labelling schemes based on

several data types such as integers (Tatarinov et al., 2002) (O'Neil et al., 2004) (Xu et

al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016), alphanumeric (Duong and Zhang,

2005) (Duong and Zhang, 2008) (Khaing and Ni Lar, 2006) (Assefa and Ergenc,

2012), binary strings (Li and Ling, 2005a), (Hye-Kyeong and SangKeun, 2010)

(O’Connor and Roantree, 2010b) (Ghaleb and Mohammed, 2015) and quaternary

codes (Li and Ling, 2005b) (Li et al., 2006b) (O’Connor and Roantree, 2012).

Amongst these approaches, quaternary codes produce the most compact labels,

except in the case of multiple skewed insertions. However, decoding large labels in

quaternary labelling schemes is costly and slows down the query processing

(O’Connor and Roantree, 2013) (Härder et al., 2007).

In spite of the drawbacks of prefix-based labelling schemes, this class of labelling

scheme appears to be more suitable for encoding large-scale dynamic XML data than

other categories of labelling scheme (Sans and Laurent, 2008) (Li et al., 2006a)

(Alkhatib and Scholl, 2009). Furthermore, prefix-based labelling schemes can support

all structural relationship types, but they are less efficient in determining the

ancestor/descendant and parent/child relationships than interval-based labelling

schemes. Whereas interval-based schemes need extra information to support sibling

relationships (Lin et al., 2013) (Yun and Chung, 2008).

3.5 Multiplicative Labelling Schemes

3.5.1 Structure and Concept

Multiplicative labelling schemes (Weigel et al., 2005) (Yanghua et al., 2012) (An and

Park, 2010) (Noor Ea Thahasin and Jayanthi, 2013) (Almelibari, 2015) (Subramaniam

and Haw, 2014b) (Lee et al., 1996) (Kha et al., 2002) (Al-Shaikh et al., 2010) label

Chapter 3: Literature on XML Labelling Schemes

52

XML tree nodes in such a way that the structural relationships between nodes can be

determined based on arithmetic computations (Haw and Lee, 2011) (Chiew et al.,

2014a) (Su-Cheng and Chien-Sing, 2009) (Assefa and Ergenc, 2012). The main

concept in these schemes is to allocate node labels using atomic numbers defined by

arithmetic properties based on their labels. Accordingly, determining the structural

relationships between nodes is achieved by analysing the arithmetic properties of the

numerical labels using mathematical principles (Almelibari, 2015) (Assefa and Ergenc,

2012).

In the prime numbering scheme (Wu et al., 2004) and the group-based prime number

labelling scheme (An and Park, 2010), each node is given a unique (unrepeated)

prime number as a self-label based on a top-down approach. A node label is the

product of a node’s self-label and its parent’s label (see Figure 3.9). Structural

relationships between nodes in these schemes are established by applying modular

functions on node labels, as explained below. Alternatively, the Me-labelling scheme

(Subramaniam and Haw, 2014b) uses odd numbers and the multiplication-division

operation to interpret the structural relationships between XML tree nodes (Haw and

Amin, 2015). On the other hand, Vector-based (Noor Ea Thahasin and Jayanthi,

2013), DDE (Xu et al., 2009), Vector-encoding (Xu et al., 2007), LSVP (Zhang and

Dong, 2010), Order-Centric (Xu et al., 2012), and Vector Order-Based (Zhuang and

Feng, 2012b) labelling schemes have been proposed based on the mathematical

principles of vector order.

Usually, multiplicative labelling schemes have the ability to simultaneously determine

structural relationships and facilitate query processing (Liu and Zhang, 2016).

However, the main drawback of this labelling scheme class is that they carry a high

computational cost (Härder et al., 2007) (Min et al., 2007) (Liu and Zhang, 2016) (Haw

and Lee, 2011) (Zhuang and Feng, 2012b) (Li and Ling, 2005b) (O’Connor and

Roantree, 2012). Therefore, such labelling schemes are inappropriate for labelling

large-scale XML documents.

3.5.2 Related Schemes

The most common multiplicative labelling scheme is the prime number labelling

scheme introduced by (Wu et al., 2004). A prime number is a positive integer greater

than 1 that it can only be divided by itself and 1. Based on this feature the prime

number labelling scheme applies a depth-first traversal on XML tree to give each node

a unique (unrepeatable) prime number as its self-label. Figure 3.9 shows an XML tree

Chapter 3: Literature on XML Labelling Schemes

53

labelled by the prime number labelling scheme. Starting from the root labelled with

number “1” each node is labelled as a product of the node’s self-label and its parent’s

label.

In the prime-number labelling scheme, the ancestor-descendant relationship between

two nodes can be determined using a modular function. For any two nodes 𝑢 and 𝑣, 𝑢

is an ancestor of 𝑣 if, and only if, 𝐿𝑎𝑏𝑒𝑙(𝑢) 𝑚𝑜𝑑 𝐿𝑎𝑏𝑒𝑙(𝑣) = 0. To preserve the

document order when the XML document is updated, the prime number labelling

scheme uses the Simultaneous Congruence (SC) values based on Chinese

Remainder Theorem (Martins, 2009). The document order then can be obtained by:

𝑆𝐶 𝑚𝑜𝑑 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙 = 𝑔𝑙𝑜𝑏𝑎𝑙 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑜𝑟𝑑𝑒𝑟 Equation 3

The SC value differs depending on the total number of nodes in the XML tree.

Although the method used in the prime number labelling scheme (Wu et al., 2004)

completely avoids re-labelling in case of XML updates, it requires the SC values to be

re-computed when a node is inserted or deleted which consumes even more time

than just re-labelling the appropriate nodes (Min et al., 2009) (Hye-Kyeong and

SangKeun, 2010). In order to prevent SC values from growing overly large a list of SC

values is indexed where each SC value represents the global document order for at

least five nodes. However, for large-scale XML documents, the list of SC values is

extremely large, which makes it costly in terms of storage and maintenance (Xu et al.,

2009) (Mirabi et al., 2012) (Ahn et al., 2017b). Furthermore, to derive the whole

sequence of a node’s ancestors using the prime labelling scheme, additional SC index

accesses are required which slows query processing (Härder et al., 2007).

Nevertheless, the label’s values are limited to prime numbers and so big gaps left

between label values result in wasted of storage.

Figure 3.9 Prime number labelling scheme

Chapter 3: Literature on XML Labelling Schemes

54

Another multiplicative labelling scheme also uses modular functions and multiplication

operations to determine structural relationships is Branch code (Yanghua et al., 2012).

Each node in the Branch code scheme is labelled as a quad-tuple < 𝑏, 𝑔, ℎ, 𝑑 > that

encodes information about its ancestors. For a node 𝑣, 𝑏(𝑣) is the 𝑏-code of the node

𝑣, which is used as its self-label; this is obtained as the summation of 𝑔(𝑣) and ℎ(𝑣).

The 𝑔(𝑣) value preserves the number of the siblings of node 𝑣’s ancestors, whereas

the ℎ(𝑣) value holds the order of 𝑣’s ancestor within its siblings. Both 𝑔(𝑣) and ℎ(𝑣)

values are computed using recursive functions tracing the node 𝑣’s ancestor’s

siblings. Finally, 𝑑(𝑣) is the depth of node 𝑣 within an XML tree, 𝑇.

Despite the fact that Branch code accelerates query processing by providing each

node an informative label in terms of its ancestors, the recursive functions used to

construct these labels are complicated and time consuming (Lizhen and Xiaofeng,

2013). The authors of Branch code (Yanghua et al., 2012) asserted that their

proposed scheme has an inaccurate estimate of the probability of producing false

positive results representing the structural relationships in very large or very deep

XML trees. In addition, Branch code does not support document order and is not

applicable for dynamic XML documents because it requires re-computing 𝑔 and ℎ

values in the instance of new insertions (Lin et al., 2013).

Chapter 3: Literature on XML Labelling Schemes

55

Other multiplicative labelling schemes (Noor

Ea Thahasin and Jayanthi, 2013) (Xu et al.,

2009) (Xu et al., 2007) (Zhang and Dong,

2010) (Xu et al., 2012) (Zhuang and Feng,

2012b) have been introduced based on the

arithmetical principles of vector order (Assefa

and Ergenc, 2012). A vector, 𝑉, is an object

with magnitude (weight) and direction (path)

that can be represented as a binary tuple, 𝑉 =

 (𝑥, 𝑦), where 𝑥 and 𝑦 are positive integers as illustrated in Figure 3.10; adapted from

(Xu et al., 2007).

In (Xu et al., 2007) Vector-encoding for labelling dynamic XML trees was designed

using the interval-based labelling approach, as based on the following vectors

properties:

1. A vector 𝑉 = (𝑥, 𝑦) has an angle ∅ with respect to the 𝑥-axis, the gradient of 𝑉

(denoted by 𝐺(𝑉)) is computed as 𝐺(𝑉) = 𝑦 𝑥⁄ ; where 𝐺(𝑉) ≡ tan (∅)

2. For vectors 𝐴 = (𝑥𝑎 , 𝑦𝑎), 𝐵 = (𝑥𝑏 , 𝑦𝑏), and 𝐶 = 𝐴 + 𝐵 = (𝑥𝑎 + 𝑥𝑏 , 𝑦𝑎 + 𝑦𝑏), then

𝐺(𝐴) > 𝐺(𝐶) > 𝐺(𝐵), where 𝐺(𝐴) > 𝐺(𝐵) if, and only if, (𝑦𝑎 ∗ 𝑥𝑏) > (𝑥𝑎 ∗ 𝑦𝑏)

Vector-encoding (Xu et al., 2007) represents interval-based labels in vector form.

Each node is labelled as < 𝑠𝑡𝑎𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑒𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 >, whereas the

vectors’ gradient values are used to preserve the order of the assigned vectors. When

a new node 𝐶 is inserted between nodes 𝐴 and 𝐵, a vector value is allocated to 𝐶

according to the second property above.

In (Xu et al., 2012), the authors have shown how Vector-encoding (Xu et al., 2007)

can be applied to prefix-based labelling schemes as well. They have also stated that

Vector-encoding performs better than QED (Li and Ling, 2005b) in skewed insertions.

However, because each vector, 𝑉, is stored successively as start-vector and end-

vector in UTF-8 encoding, the vector based labelling scheme suffers from overflow

when the label size grows beyond the storage limit (O’Connor and Roantree, 2012).

Figure 3.10 Graphical
representations of vectors

Chapter 3: Literature on XML Labelling Schemes

56

To minimize the size of vector values so as to avoid overflow problems (Ni et al.,

2012) introduced a numeric-based XML labelling scheme. In this approach, a positive

pair value. (𝑥, 𝑦). of a vector, 𝑉, is referred to as a radical sign value defined by √yx =

𝑥. For two nodes 𝐴 = (𝑥𝑎 , 𝑦𝑎) and 𝐵 = (𝑥𝑏 , 𝑦𝑏):

 𝐴 < 𝐵 if and only if √𝑦𝑎
𝑥𝑎 < √𝑦𝑏

𝑥𝑏

 𝐴 = 𝐵 if and only if √𝑦𝑎
𝑥𝑎 = √𝑦𝑏

𝑥𝑏

In a numeric-based labelling scheme, the insertion mechanism between two nodes

depends on whether the two radical sign labels to be compared have the same root;

i.e. √𝑦𝑥 = 𝑥. Since there is no integer between two consecutive integers, the new

node label must take a root value, 𝑥, greater than 𝑥𝑎 and/or 𝑥𝑏 to properly maintain

the document order. However, this procedure leaves bigger gaps between vector

values than in the Vector-encoding labelling scheme (Xu et al., 2007). Furthermore,

when comparing two radical sign labels with different roots, the query time becomes

expensive because of the “power (𝑥, 𝑦)” operation, as shown in the experimental

results of (Ni et al., 2012).

Many researchers (Noor Ea Thahasin and Jayanthi, 2013) (Xu et al., 2009) (Zhang

and Dong, 2010) (Zhuang and Feng, 2012b) have minimised the size of vector labels

as well as supporting XML updates. However, labelling schemes based on vector

principles are not suitable for encoding extensive dynamic XML data (Sans and

Laurent, 2008) (Noor Ea Thahasin and Jayanthi, 2013) (Xu et al., 2010) (O'Connor

and Roantree, 2010a) for the reasons discussed below.

3.5.3 Summary of Multiplicative Labelling Schemes

Multiplicative labelling schemes can uniquely identify structural relationships directly

from node labels using mathematical computations (Haw and Lee, 2011) (Chiew et

al., 2014a) (Su-Cheng and Chien-Sing, 2009) (Assefa and Ergenc, 2012). However,

such arithmetic computations are expensive and complex, which slows down XML

query processing (Yanghua et al., 2012) (Lizhen and Xiaofeng, 2013) (Min et al.,

2007) (Mirabi et al., 2012). This category of XML labelling scheme also suffers from

large label sizes because it leaves big gaps between node label values that may lead

to overflow problems (Ahn et al., 2017b) (Xu et al., 2009) (O’Connor and Roantree,

2012) (Haw and Amin, 2015) (Al-Shaikh et al., 2010). In general, this class of labelling

schemes is inappropriate for dynamic XML data (Jiang et al., 2009) (Catania et al.,

Chapter 3: Literature on XML Labelling Schemes

57

2005b) (Li and Ling, 2005b) (Silberstein et al., 2005) since they usually require label

values to be re-computed when new nodes are inserted.

3.6 Hybrid Labelling Schemes

Hybrid labelling schemes use combinations of existing labelling methods to balance

the weaknesses of one labelling technique with the strengths of another in order to

develop faster query processing (Qin et al., 2017) (Haw and Amin, 2015) (Haw and

Lee, 2011) (Su-Cheng and Chien-Sing, 2009) (O'Connor and Roantree, 2010a).

Thonangi proposed the Sector-based labelling scheme (Thonangi, 2006) to minimise

the label size of the interval-based labelling scheme (Li and Moon, 2001) by

representing the labels intervals as sectors (Sans and Laurent, 2008). The sectors are

assigned to node labels so that the angle created by the sector of a parent node at

the origin totally encloses all of its descendants. In order to determine ancestor-

descendant and document order relationships quickly, Sector-based labelling

schemes use mathematical formulae similar to those modelled in multiplicative

labelling schemes.

In the Sector-based labelling scheme a

node A is labelled as an interval < 𝐴𝑟, 𝐴𝑠 >,

where 2𝐴𝑟 is the radius of the sector

assigned to the node A, and 𝐴𝑠 is the

smallest radial distance from the node A to

the reference 𝑥-axis, as shown in Figure

3.11 (adapted from (Thonangi, 2006)). Such

a representation reduces the interval label

size by storing only the logarithm of a

sector, 𝐴𝑟, rather than the sector’s radius,

2𝐴𝑟. To label the descendants of node A through depth-first traversal, first the smallest

value, k, such that 2k is the minimum possible number of children of node A, is found.

Then, each child of A (e.g., node 𝐷 in Figure 3.11) is assigned a sector within an

expanded sector of A (denoted A′ in Figure 3.11) to ensure the parent/child and

ancestor/descendant relationships are represented.

The Sector-based labelling scheme can recognise the ancestor-descendant

relationship between node A =< Ar, As > and node D =< Dr, Ds > using arithmetic

comparison, as follows:

Figure 3.11 Graphical representation

of node A and D as sectors

Chapter 3: Literature on XML Labelling Schemes

58

A is ancestor of D if, and only if, A s ≤ Ds X
2Ar

2Dr
 ≤ A s + 1

The Sector-based labelling scheme manages the parent/child relationship as

ancestor/descendant relationship, but does not consider the sibling relationship.

Furthermore, this scheme does not support dynamic XML documents and requires

expensive arithmetic computations as in multiplicative labelling schemes (O’Connor

and Roantree, 2010b) (O'Connor and Roantree, 2010a).

The VASLS -prime labelling scheme (VASLS stands for "Valid ASCII String labelling

scheme”) (Qin et al., 2013) is a hybrid labelling approach that adapts the prime

number labelling scheme (Wu et al., 2004) to represent the structural information of

XML tree nodes using VAS (Valid ASCII String). The VAS labelling scheme is applied

to manage the node’s document order. The valid ASCII strings are those from the

33𝑟𝑑 to 126𝑡ℎ described in VAS labelling scheme as 𝑆 =

(𝑠1𝑠2 … 𝑠𝑚|33 ≤ 𝐴𝑆𝐶𝐼𝐼(𝑠𝑖) ≤ 126) in lexicographical order (Chapter 5, Section 5.4).

The intention in designing the VASLS-prime labelling scheme was to avoid re-labelling

in a dynamic XML environment without sacrificing XML query performance. However,

as the experimental results of (Qin et al., 2013) have shown, VASLS-prime labels are

larger than the labels generated by Dewey (Tatarinov et al., 2002), DDE (Xu et al.,

2009), QED (Li and Ling, 2005b) and ORDPATH (O'Neil et al., 2004). In terms of

frequent updates at the leaf level retaining document order, VASLS-prime does not

show any improvement in update time because of the need to re-calculate SC values

in the prime number labelling scheme. Overall, the VASLS-prime labelling scheme

suffers from large label sizes and does not support updating XML data.

A more recent hybrid labelling scheme is that of Dynamic XDAS (XML Documents

Addressing and Sub-netting), as proposed by (Ghaleb and Mohammed, 2015).

Dynamic XDAS generates binary labels using the masking technique of the XDAS

labelling scheme (Ghaleb and Mohammed, 2013), whereas IBSL (Improved Binary

String Labelling Scheme) (Hye-Kyeong and SangKeun, 2010) has been employed to

avoid re-labelling when an XML document is updated. However, this scheme

increases storage cost as storage required for dynamic XDAS labels increases rapidly

in the case of frequent skewed insertions (Liu and Zhang, 2016) (Haw and Amin,

2015).

In summary, hybrid labelling schemes (Qin et al., 2017) (Kaplan et al., 2002) (He et

al., 2005) (Chen et al., 2004) (Ghaleb and Mohammed, 2015) (Qin et al., 2013)

(Thonangi, 2006) have the potential to support faster query processing by combining

the advantages of two or more labelling schemes (Haw and Amin, 2015). However,

Chapter 3: Literature on XML Labelling Schemes

59

besides the fact that this class of labelling schemes do not support XML updates,

constructing labels using hybrid approaches has so far proved to be computationally

expensive (Haw and Lee, 2011) (Su-Cheng and Chien-Sing, 2009) (O'Connor and

Roantree, 2010a) (Duong and Zhang, 2005) (Yun and Chung, 2008).

3.7 Summary and Limitations of XML Labelling Schemes

XML repositories available over the Internet have become more extensive and

volatile. Consequently, dynamic labelling schemes have become essential to support

efficient XML queries and updates (O'Connor and Roantree, 2010a) (Liu and Zhang,

2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005). Several XML labelling

schemes have been introduced to facilitate searching updatable XML data. In general,

these schemes are categorised into four main classes based on their structure and

the concepts used for generating node labels: interval-based, prefix-based,

multiplicative, and hybrid labelling schemes.

Consistent with the fundamental properties required for a complete dynamic labelling

scheme (identified in Section 3.2), each of the existing labelling schemes is limited in

one regard or another. A complete dynamic labelling scheme must be simultaneously

updatable and efficiently support XML querying by determining the main structural

relationships directly from node labels (Lizhen and Xiaofeng, 2013) (Härder et al.,

2007). Updating XML data remains the weakness in most of the current XML labelling

schemes (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005)

due to the natural conflict between the necessary requirements of update efficiency

and those of query optimisation. Consequently, a labelling scheme must sacrifice one

of the essential properties that make it a good dynamic labelling approach. As can be

seen from the literature presented in this chapter, almost all of the existing labelling

schemes suffer from large labels, which contribute to overflow problems; particularly

after frequent skewed insertion.

Motivated by this observation, it is important to understand the main reasons behind

the occurrence of overflow problems and how the encoding techniques may provide a

solution. Therefore, the next chapter will consider some of the background to

encoding methods applied to store XML labels, and from which the research

hypothesis of this thesis is derived.

Chapter 3: Literature on XML Labelling Schemes

60

3.8 Conclusion

This chapter has presented the concept of XML labelling schemes and the state-of-

the-art in research into XML labelling schemes, particularly within a dynamic XML

environment. The chapter highlighted the limitations and strengths of the four main

categories of XML labelling schemes: interval-based, prefix-based, multiplicative, and

hybrid. The main disadvantage of the current dynamic XML labelling schemes is their

large label sizes, which can contribute to overflow problems. The next chapter

considers the literature available on existing label storage schemes.

Chapter 4: Literature on Encoding Methods

61

Chapter 4: Literature on Encoding Methods

4.1 Introduction

As can be seen from the state-of-the-art of dynamic XML labelling schemes illustrated

in Chapter 3, all of the existing labelling schemes encounter difficulties when XML

data are updated. For instance, when re-labelling existing nodes, inefficient structural

relationship determination, wasteful storage size, and/or overflow problems. This is

mainly due to the design of the labelling algorithms or the limitations of the encoding

techniques used to store the XML labels.

This chapter gives a degree of background to the encoding methods used for the

storage of XML labels. The next section identifies the concept of the encoding scheme

in the context of XML, followed by an explanation of the overflow problem in Section

4.3. Section 4.4 presents a comprehensive overview of different label storage

schemes that describe the storage consumption of label values, namely length field

(Section 4.4.1), control tokens (Section 4.4.2), separators (Section 4.4.3) and prefix-

free codes (Section 4.4.4). In Section 4.5, several prefix-encoding methods are

illustrated that have not, to date, been applied to XML labelling. Finally, Section 0

concludes this chapter.

4.2 Encoding methods

Usually in the context of XML, the terms “labelling scheme” and “encoding scheme”

are used interchangeably. Therefore, it is important to clarify and differentiate between

the meaning of the term “encoding” as a labelling approach or as a storage

mechanism. In the concept of a labelling scheme, an encoding scheme is referred to

as codifying the node structure within an XML tree (O'Connor and Roantree, 2010a),

whereas in terms of storage mechanisms, an encoding method represents how data

is physically stored on disk (O’Connor and Roantree, 2013). In this thesis, the term

“encoding method” is used to indicate the notion of the storage mechanism.

A key factor for all XML dynamic labelling schemes is how their labels are physically

encoded, decoded, and stored on a computer (O’Connor and Roantree, 2013) (Xu et

al., 2012). In implementation, labels are actually stored on disk as binary numbers

with either a fixed length (i.e., fixed number of bits for all label values) or variable

Chapter 4: Literature on Encoding Methods

62

length format (depending on the size of the labels’ binary representation) (Mirabi et

al., 2012). However, the logical representation of a label value is quite different; for

instance, in prefix labelling schemes the delimiter “.” is encoded and stored separately

from the label value (Li et al., 2008) (Tatarinov et al., 2002). Therefore, the logical

interpretation of a label in the computer immediately affects the label size on disk and

the computational cost of encoding/decoding between logical and physical

representations (O’Connor and Roantree, 2013).

In a dynamic labelling scheme where the labels change, there are two main reasons

that may cause the re-labelling of nodes when XML is updated (O’Connor and

Roantree, 2013). The first is when arbitrary insertions are not enabled by the node

insertion algorithms within a labelling scheme, such as in Dewey Order encoding

(Tatarinov et al., 2002) and extended Dewey (Lu et al., 2005b); the second is the

overflow problem produced by a labelling scheme that allows limited number of

insertions, such as in QED (Li and Ling, 2005b), the Vector-order labelling scheme

(Xu et al., 2007), SCOOTER (O’Connor and Roantree, 2012) and ImprovedBinary (Li

and Ling, 2005a).

4.3 The Overflow Problem

The overflow problem is relevant to the label storage scheme used to encode and

store the values of the labels in a computer system, where all nodes labels are stored

either as fixed-length or variable length binary numbers at implementation. Fixed-

length labels are subject to overflow and are not scalable (Li and Ling, 2005b)

(O’Connor and Roantree, 2013), because re-labelling of all existing labels is required

if all the assigned bits have been used up by frequent insert processes (O'Connor and

Roantree, 2010a). On the other hand, using variable length labels necessitate storing

the size of the label in addition to the label itself (O’Connor and Roantree, 2012).

Therefore, as the label size increases due to insertions into an XML tree, the fixed

length field (e.g., 4 bits) assigned to store the size of the label length becomes

inadequate, and leads to the overflow problem (Mirabi et al., 2010). Even though this

problem can be solved by increasing the size of the length field (e.g., from 4 bits to 6

bits), it cannot avoid re-labelling entirely and may waste storage space (Mirabi et al.,

2010) (Li et al., 2008).

If there is insufficient storage space to accommodate a new node label, in practice a

part of the new label might be missed and so it will appear as a duplicated label (Li

and Ling, 2005a) (Liu et al., 2013). Otherwise, it might cause data corruption by

Chapter 4: Literature on Encoding Methods

63

overwriting the content of an adjacent memory location. This is known as the overflow

problem (Li and Ling, 2005b). Figure 4.1 illustrates an example of the overflow

problem, assuming QED labels and a limited storage capacity of 2-bytes (for

simplicity).

Because prefix-based labelling schemes keep the ancestor labels attached to the

node self-label for rapid determination of structural relationships, many prefix labelling

schemes, such as ImprovedBinary (Li and Ling, 2005a), LSDX (Duong and Zhang,

2005), ORDPATH (O'Neil et al., 2004) and Dewey Order (Tatarinov et al., 2002),

suffer from overflow problems due to the verbosity of their labels.

4.4 Label Storage Schemes

This section gives a comprehensive review on label storage schemes, and

demonstrates the storage consumption of label values, i.e., how labels values are

actually presented in the computer and their effects on the dynamic labelling

mechanism.

As illustrated in Section 4.3, fixed-length labels are always subject to the overflow

problem and are not scalable, therefore, this section considers only variable length

representation. According to (Härder et al., 2007), all existing dynamic (variable

length) label storage schemes can be categorised into four classes: length fields,

control tokens, separators and prefix-free code.

4.4.1 The Length Field

The fundamental concept of length fields is to store the length of a node label, 𝐿𝑖,

directly before the nodes’ label value, 𝑂𝑖 (Härder et al., 2007). The lengths of nodes’

Figure 4.1 Example of overflow problem

Chapter 4: Literature on Encoding Methods

64

labels can vary depending on the node position within the XML tree. A simple

approach is to assign a fixed length bit number, 𝐿𝑖, to specify the length of the label

(O’Connor and Roantree, 2013). However, in reality there is rarely advance

knowledge of the possible number of node insertions that may subsequently occur. As

a consequence, in dynamic XML the number of node insertions is limited to the

capacity implied by the fixed-length field, leading to the overflow problem, such as in

V-CDBS (Variable-length Compact Dynamic Binary String) labelling schemes (Li et

al., 2006a).

4.4.2 Control Tokens

The key concept of control tokens is their use to indicate the position of a label value

within a specific-level interval. These tokens are then used to determine how the

subsequent bit sequence of a label value can be interpreted (by some form of

metadata) (Härder et al., 2007) (O’Connor and Roantree, 2013).

An example of control tokens is UTF-8 (Yergeau, 2003), which is employed in Dewey

Order (Tatarinov et al., 2002) to encode Dewey labels, where each component of the

Dewey path is encoded in UTF-8 and then concatenated in the same path order

(Tatarinov et al., 2002). In UTF-8, a binary number representing the Dewey ID is of

variable length depending on the size of the Dewey ID integer value. For instance, an

integer value between 0 and 27 is stored in a maximum of 8-bits, starting from

0xxxxxxx, where x represents the bits used for the integer value (Li et al., 2008). Here,

the first bit sequence in the label is the control token “0”, denoting that the label length

is 1 byte. If the first bit is the control token it starts with “1”, then the number of bytes

used to represent the label can be calculated by counting the total number of 1s

before the control token “0” bit is encountered. Table 4.1 (adapted from (O’Connor

and Roantree, 2013)) demonstrates the use of control tokens in the UTF-8 encoding

method. However, as can be seen from Table 4.1, the UTF-8 used to encode Dewey

IDs can only code up to 231 labels (Li and Ling, 2005b) (O’Connor and Roantree,

2013) (O’Connor and Roantree, 2012). Similarly, the Vector-order labelling (Xu et al.,

2007) and extended Dewey labelling schemes (Lu et al., 2005b) use UTF-8 encoding,

and therefore only permit a limited number of insertions (O’Connor and Roantree,

2012).

Chapter 4: Literature on Encoding Methods

65

Table 4.1 UTF-8 encoding method

Value range Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

0 – (27 -1) 0xxxxxxx

27 – (211 – 1) 110xxxxx 10xxxxxx

211 – (216 -1) 1110xxxx 10xxxxxx 10xxxxxx

…

…

…

…

…

…

226 – (231 – 1) 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

4.4.3 Separators

In prefix-based labelling schemes, the (separator) delimiter “.” is encoded and stored

separately from the label itself (Li et al., 2008) (Tatarinov et al., 2002). A separator

reserves a predefined bit sequence to indicate its interpretation as a delimiter, rather

than a part of the label value.

An encoding approach to symbolise the separator is to reserve an m-bit code as a

number in base k (Härder et al., 2007). For example, if k = 3, which has a maximum

number of 2 bits, this represents the codes: “0” = 00, “1” = 01, “2” = 10, and 3 =

 “11”, then “11” is a possible code to encode the separator. For example, a prefix label

of value “1.5.11” is encoded as (01 11 01 01 11 01 00 10) (spaces added for clarity),

where “11” indicates a separator.

Unlike the control token approach, separators do not preserve comparability (Härder

et al., 2007). Suppose node N1 has a value “1.5.11” = (01 11 01 01 11 01 00 10), and

node N2 = “1.5.7”, encoded as (01 11 01 01 11 10 01). Then, bit-by-bit comparison

implies N1 < N2 whereas “1.5.11” > “1.5.7”. Therefore, during decoding, the

separators must be detected from the actual label value components. To remove such

ambiguity, the quaternary encoding QED (Li and Ling, 2005b) and SCOOTER

(O’Connor and Roantree, 2012) have employed their own separator storage scheme.

For example, QED uses digit “0” for encoding the separators only, and therefore the

separator code size remain constant regardless of label size. However, this approach

decelerates a bit-by-bit or byte-by-byte comparison operation during decoding

because of the process needed to recognize bit “0” or “00” as a separator, rather than

the binary representation of the code itself (Härder et al., 2007). Consequently,

identifying “0” as a separator slows down query performance due to the associated

Chapter 4: Literature on Encoding Methods

66

expensive decoding time, particularly when an XML document has a deep tree

representation (Ghaleb and Mohammed, 2013). Nevertheless in the case of frequent

skewed insertions, the size of new nodes self-label codes will overflow (Ghaleb and

Mohammed, 2015) (Liu and Zhang, 2016) (Chiew et al., 2014a) (Ghaleb and

Mohammed, 2013).

4.4.4 Prefix-Free Codes

Prefix-free codes are based on the proposition of (Elias, 1975) that a prefix set, S, is

said to be a prefix code if, and only if, no member of S is the beginning of another. In

other words, a prefix set, S, is uniquely identifiable where no member in the set, S, is a

prefix to any other member in S (O’Connor and Roantree, 2013). For example, set 𝑆 =

{0, 1, 2, 3, 4, 5,6, 7} is a prefix set, while the set 𝑋 = {1, 2, 3, 4, 22} is not a prefix set

since “2” is a prefix of “22”. Therefore, a prefix-free code approach often requires

fewer bits to represent a label than a control token scheme. This is because the

prefix-free codes can be adjusted according to the number of members within a prefix

set if a suitable assignment of codes and value ranges are defined (Härder et al.,

2007).

An example of a dynamic labelling scheme that uses prefix-free codes is ORDPATH

(O'Neil et al., 2004). The compressed binary string representing an ORDPATH label

are consecutive 𝐿𝑖 𝑄𝑖⁄ bit-strings stored with variable length (O'Neil et al.,

2004). 𝐿𝑖 𝑄𝑖⁄ represents the ith-component of an ORDPATH label, where the Li sub-

string identifies the length of bits in which the binary number representing the ith-

component of an ORDPATH label exists within an Oi range value. For example,

consider the ORDPATH label value “1.5.3”, a compressed binary string representing

the second component “5” (where i = 1, note that component count starts from 0) is

𝐿1 𝑄1⁄ = 01 101⁄ (= 3/5, i.e., the binary number equivalent to integer number 5 is

“101”, which is of 3-bits length). This encoding method was further compressed by

omitting further unnecessary bit-spaces, considering that the Li bit-string “01” requires

Oi of length 0 to represent the binary digit 1. However, this technique makes the

decoding process in ORDPATH more time consuming (Mirabi et al., 2012).

4.4.5 Limitation of Label Storage Schemes

Variable length field and separator storage scheme work properly if the XML

document is rarely updated. However, when these storage schemes are used in

dynamic labelling schemes such as ImprovedBinary (Li and Ling, 2005a), and CDBS

Chapter 4: Literature on Encoding Methods

67

(Li et al., 2006a), the overflow problem occurs because of the bit sequence reserved

for a separator as well for the label length value. Consequently, all length field label

storage schemes are exposed to re-labelling when frequent node insertions occur.

On the other hand, control tokens and prefix-free code storage schemes are widely

applied in dynamic XML labelling schemes for encoding numerical and alphanumeric

labels such as: LSDX (Duong and Zhang, 2005), Dewey Order (Tatarinov et al.,

2002), extended Dewey (Lu et al., 2005b), Vector-order labelling scheme (Xu et al.,

2007), and ORDPATH (O'Neil et al., 2004). Such labelling schemes are not scalable

due to the long labels generated by control token and prefix-free code schemes

(O’Connor and Roantree, 2013) (O’Connor and Roantree, 2012) (Chiew et al., 2014a)

(Ghaleb and Mohammed, 2015).

To overcome with such limitations, there have been many prefix-encoding methods

that can be used to store XML labels. These are presented in the next section.

4.5 Prefix-encoding Methods

Currently, one of the most common data compression techniques are prefix codings

(Gagie et al., 2015) (Karpinski, 2009). A prefix code is a variable-length code suitable

for coding a set of text or integers whose size is unknown beforehand. Research has

shown that prefix-encoding methods give a higher compression ratio than other

encoding schemes (Walder et al., 2012) (Klein and Ben-Nissan, 2010) (Bača et al.,

2010) (Fredriksson and Nikitin, 2007) (Somasundaram and Domnic, 2007). Although

many prefix-encoding methods exist in the literature, they have never been applied to

code XML labels. Motivated by this, some of these encoding methods have been

tested to compress XML labels in this thesis. This section presents such encoding

schemes.

4.5.1 Fibonacci of Order 𝒎 ≥ 𝟐

Fibonacci code, as a well-known representative of prefix code, was introduced by

(Fraenkel and Klein, 1985), and is based on Fibonacci numbers (Knott, 1998).

Generalised Fibonacci code of order 𝑚 ≥ 2 was introduced by (Apostolico and

Fraenkel, 1987) as follows:

Definition 1: Fibonacci numbers of order 𝒎 ≥ 𝟐 :

𝐹𝑖
(𝑚)

= 𝐹𝑖−1
(𝑚)

+ 𝐹𝑖−2
(𝑚)

+ ⋯ + 𝐹𝑖−𝑚
(𝑚)

 , for 𝑖 ≥ 1, Equation 4.1

Chapter 4: Literature on Encoding Methods

68

where 𝐹𝑗
(𝑚)

= 0, for 𝑗 ≤ −2 and 𝐹−1
(𝑚)

= 𝐹0
(𝑚)

= 1

Examples of Fibonacci numbers of order 𝑚 = 2 and 𝑚 = 3 are presented in Table 4.2

below (adapted from (Walder et al., 2012)).

Table 4.2 Sample of Fibonacci numbers of order 2 and 3

i -2 -1 0 1 2 3 4 5 6 7 8 9 10

𝐹𝑖
(2)

 0 1 1 2 3 5 8 13 21 34 55 89 144

𝐹𝑖
(3)

 0 1 1 2 4 7 13 24 44 81 149 274 504

Definition 2: Binary representation of Fibonacci code:

Generalised Fibonacci code of order 𝑚 ≥ 2 (Apostolico and Fraenkel, 1987) states

that for each non-negative integer value, 𝑁, there is an exact unique binary encoding

of the form:

𝑁 = ∑ 𝑑𝑖𝐹𝑖 , 𝑑𝑖 ∈ {0, 1}, 0 ≤ 𝑖 ≤ 𝑘

𝑘

𝑖=0

 Equation 4.2

Such that there are no 𝑚 consecutive 1-bits within the summation result of Fibonacci

numbers of order 𝑚, whereas each Fibonacci code ends up with exactly 𝑚

consecutive 1-bits. This is called the 𝐹(𝑚) numeration system (Fraenkel, 1985). Table

4.3 below shows some examples of Fibonacci code of order 2 and 3 for various

values (spaces are added for clarity).

Table 4.3 Some Fibonacci codes of order 2 and 3

x 𝐹(2)(𝑥) 𝐹(3)(𝑥)

1 11 111

2 011 0111

3 0011 00111

4 1011 10111

5 00011 000111

6 10011 010111

7 01011 100111

…

100 00101000011 00000110111

112 01000010011 00100100111

Many researchers have used Fibonacci code for data compression. (Bača et al.,

2010) applied Fibonacci code of order 2 and order 3 to code for the compression of

XML node stream arrays. (Gog, 2009) has shown that the use of Fibonacci code for

Compressed Suffix Arrays (CSAs) can provide fast access times and minimal space

Chapter 4: Literature on Encoding Methods

69

for text of low compressibility. Whereas, in (Fischer, 2009) the author applied

Fibonacci coding and ternary coding to examine if prefix-free code could lead to

shorter labels for Lowest Common Ancestors in trees. (Lelewer and Hirschberg, 1987)

has proved that Fibonacci coding is a good choice for compressing small integers and

for fast decoding. Fibonacci codes can not only be used as a simple alternative to

Huffman codes as studied in (Przywarski et al., 2006), but also to dense codes for

large text-based compression systems (Klein and Ben-Nissan, 2010). (Apostolico and

Fraenkel, 1987) have suggested Fibonacci codes as compression codes for the

unbounded transmission of strings.

The following two sections describe encoding integers 𝑥 > 0 in Fibonacci codes of

order 2 and order 3, respectively.

4.5.1.1 Fibonacci coding of order 𝒎 = 𝟐

A Fibonacci encoding algorithm of order 2 utilises a stack for bit storage since it stores

the bits in reverse order. For an integer, 𝑥, the Fibonacci code of order 𝑚 = 2

(referred to as 𝐹(2)(𝑥)) algorithm is described as follows:

1 Initialise 𝐹(2)(𝑥) to empty.

2 Find the 𝑖𝑡ℎ index of the largest Fibonacci number, such that 𝐹𝑖
(2)

≤ 𝑥.

3 If 𝐹𝑖
(2)

≤ 𝑥 , compute 𝑥 = 𝑥 − 𝐹𝑖
(2)

 and push the 1-bit to the stack. Otherwise,

push the 0-bit to the stack.

4 Set 𝑖 = 𝑖 − 1 , if 𝑖 ≥ 0 repeat step 3.

5 While the stack is not empty, remove a bit from the stack and place it at the

end of 𝐹(2)(𝑥).

6 Add the 1-bit at the end of 𝐹(2)(𝑥).

Example 1: Suppose integer x = 112. Because 𝐹9
(2)

= 89 ≤ 112 < 144 = 𝐹10
(2)

 , i is

set to 9. So, bit 1 is pushed to the stack (i.e., stack = 1). Then, a new x is computed

such that x = 112 – 89 = 23, and 𝑖 = 𝑖 − 1 = 8. Since 𝐹8
(2)

= 55 > 23, a 0-bit is

pushed to the stack (i.e., stack = 10) and i = 7. Going back to step 3, again a 0-bit is

pushed to the stack (i.e., stack = 100) since 𝐹7
(2)

= 34 > 23 and i = 6. Since 𝐹7
(2)

=

21 < 23 , 1-bit is pushed to the stack (i.e., stack = 1001) and the new x = 23 – 21 =

 2, and i = 5. Since 𝐹5
(2)

, 𝐹4
(2)

, 𝐹3
(2)

, and 𝐹2
(2)

 are < 2, 0-bits are pushed to the stack

(stack = 10010000) until i = 1, where 𝐹1
(2)

= 2 ≤ 𝑥 = 2. Then, push 1-bit to the stack

(i.e. stack = 100100001) and x = 2 − 2 = 0. However, i still > 0, so 0-bit(s) are

Chapter 4: Literature on Encoding Methods

70

pushed to the stack until i = 0; i.e., stack = 1001000010. Then, the bits are popped

out of the stack in reverse order and assigned to 𝐹(2)(𝑥) = 0100001001. Finally, 1-bit

is added to the end of 𝐹(2)(𝑥) , thus the result of 𝐹(2)(112) = 01000010011. Table

4.3 above shows some examples of the Fibonacci code of order 2 for various

integers.

4.5.1.2 Fibonacci coding of order 𝒎 > 𝟐

To generate Fibonacci code of an order greater than 2, the Fibonacci sum 𝑆𝑥
(𝑚)

introduced by (Apostolico and Fraenkel, 1987) must be used.

Definition 3: Fibonacci sum

𝑆𝑥
(𝑚)

= {

0, 𝑓𝑜𝑟 𝑥 < −1

∑ 𝐹𝑖
(𝑚)

𝑥

𝑖=−1

, 𝑓𝑜𝑟 𝑥 ≥ −1
 Equation 4.3

Subsequently, the Fibonacci code of order 𝑚 > 2 encoding algorithm is as follows:

1 If 𝑥 = 1, then 𝐹(𝑚)(𝑥) = 𝑚 consecutive 1-bits END.

2 If 𝑥 = 2, then 𝐹(𝑚)(𝑥) = 0 followed by 𝑚 consecutive 1-bits END.

3 For 𝑥 > 2, find 𝑘 such that 𝑆𝑘−2
(𝑚)

< 𝑥 ≤ 𝑆𝑘−1
(𝑚)

, then let 𝑄 = 𝑥 − 𝑆𝑘−2
(𝑚)

− 1.

4 Compute 𝐹(𝑚)(𝑄).

5 Reverse the bit ordering in 𝐹(𝑚)(𝑄), then append 01𝑚 as a suffix to the reversed

𝐹(𝑚)(𝑄). If the length of 𝐹(𝑚)(𝑄) < 𝑚 + 𝑘, append 0-bits to the beginning of the

𝐹(𝑚)(𝑄) code to make an 𝐹(𝑚)(𝑥) of length 𝑚 + 𝑘.

Table 4.4 demonstrates the first 10 values of 𝑆10
(3)

.

Table 4.4 Fibonacci sum for the first 10 values of Fibonacci of order 3

i -1 0 1 2 3 4 5 6 7 8 9 10

𝐹𝑖
(3)

 1 1 2 4 7 13 24 44 81 149 274 504

𝑆𝑖
(3)

 2 4 8 15 28 52 96 177 326 600 1104 2031

Example 2: Assume integer 𝑥 = 112. Since 𝑆5
(3)

= 96 < 112 ≤ 177 = 𝑆6
(3)

, thus 𝑘 =

7. Consequently, 𝑄 = 112 – 96 – 1 = 15. As 15 = 2 + 13 = 𝐹1
(3)

+ 𝐹4
(3)

; therefore

𝐹(3)(15) = 01001. Finally, to compute 𝐹(3)(112), first reverse 𝐹(3)(15) bits = 10010.

Then append 0111 to the end. That is; 𝐹(3)(112) = 100100111. Since length of

(100100111) is 9 < 𝑚 + 𝑘 = 3 + 7 = 11, then append 0-bits to the beginning of

Chapter 4: Literature on Encoding Methods

71

the code. Thus, 𝐹(3)(112) in binary = 00100100111. More examples of Fibonacci

code of order 3 for various integers can be seen in Table 4.3.

4.5.1.3 Fibonacci Label Storage Scheme

The Fibonacci label storage approach proposed by (O’Connor and Roantree, 2013)

represents the middle ground between the length field and the control token scheme.

It computes the variable length size of an XML label value based on the Fibonacci

sequence (Chandra, 1999) and the Zeckendorf representation (Weisstein, 1999a).

The main principle is that any positive integer n can be represented as the sum of one

or more distinct discrete Fibonacci numbers that satisfies the Zeckendorf

representation of n. For example, integer number 112 can be represented as

summation of Fibonacci numbers as (112 = 89 + 13 + 5 + 3 + 2) or (112 =

 89 + 21 + 2). However, only the second representation is Zeckendorf since the first

one has three consecutive Fibonacci numbers (i.e., 2, 3, 5).

(O’Connor and Roantree, 2013) used the Fibonacci-Zeckendorf principle for the

encoding and decoding of the length field of a label value; which is stored on the disc

directly before the label value itself. For example, to encode the length of a node label

value “101101” (length = 6 𝑏𝑖𝑡𝑠), the Zeckendorf representation of the label length is

first found (𝑒. 𝑔. , 6 = 5 + 1), after which each number in the Fibonacci sequence is

compared and assigned bit “1” for those that match a member of the Zeckendorf

representation; otherwise, value “0” is assigned. Therefore, for a length value 6, the

binary string of Fibonacci encoding is “1001”, as explained in Figure 4.2. The

decoding is simply the reverse procedure.

4.5.2 Lucas Coding

Lucas numbers were introduced by Edouard Lucas (MacTutor, 1996) based on

Fibonacci sequence properties. The Lucas numbers, {𝐿𝑛}0
∞ are defined by

Figure 4.2 Example of a Fibonacci label storage scheme

Chapter 4: Literature on Encoding Methods

72

𝐿𝑛+2 = 𝐿𝑛+1 + 𝐿𝑛 ; 𝑓𝑜𝑟 𝑛 ≥ 0, 𝑤ℎ𝑒𝑟𝑒 𝐿0 = 2, 𝑎𝑛𝑑 𝐿1 = 1. Equation 4.4

The first ten Lucas numbers are shown in Table 4.5.

Table 4.5 Examples of Lucas numbers

𝑛 0 1 2 3 4 5 6 7 8 9
𝐿𝑛 2 1 3 4 7 11 18 29 47 76

Each positive integer can be uniquely represented in binary as sums of distinct Lucas

numbers (Brown Jr, 1969). In (Association, 2011), the authors approved that coding

theorems for Lucas numbers correspond to Fibonacci code of order 2 coding

theorems (i.e., using Zeckendorf states) (Keller, 1972). (Chergui, 2015) also provided

the proof for using Zeckendorf theorems for Lucas numbers to generate unique binary

representations for any positive integer.

Definition 4: Zeckendorf theorem for Lucas numbers

Every natural number, 𝑥, satisfying 0 ≤ 𝑥 ≤ 𝐿𝑘, for 𝑘 ≥ 1, has a unique binary

representation in the form:

𝑥 = ∑ 𝛼𝑖𝐿𝑖
𝑘−1
𝑖=0 , 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖 ∈ {0,1} ,

Such that {
𝛼𝑖𝛼𝑖+1 = 0, 𝑓𝑜𝑟 𝑖 ≥ 0
𝛼0𝛼2 = 0

Equation 4.5

Like Fibonacci (order 2), Lucas coding stores the bits in reverse order and so it uses

stacks. Before starting the coding algorithm, the position of the first two Lucas

numbers are swapped after computing all the necessary Lucas sequences

(Association, 2011), as follows:

𝐿1 𝐿0 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7

1 2 3 4 7 11 18 29

For each integer, 𝑥, the Lucas code (referred to as 𝐿(𝑥)) is described as follows:

1 Initialise 𝐿(𝑥) to empty.

2 Find the 𝑖𝑡ℎ index of the largest Lucas number such that 𝐿𝑖(𝑥) ≤ 𝑥.

3 If 𝐿𝑖(𝑥) ≤ 𝑥 , compute 𝑥 = 𝑥 − 𝐿𝑖(𝑥) and push the 1-bit to the stack. Otherwise

push the 0-bit to the stack.

4 Set 𝑖 = 𝑖 − 1 , if 𝑖 ≥ 0 repeat step 3.

5 While the stack is not empty remove a bit from the stack and place it at the

end of 𝐿(𝑥).

Chapter 4: Literature on Encoding Methods

73

6 Add the 1-bit at the end of 𝐿(𝑥).

For example, let 𝑥 = 24. Since 24 < 29, 𝑖 = 6. So bit 1 is pushed to the stack (i.e.,

stack = 1). Then new 𝑥 is computed such that 𝑥 = 24 – 18 = 6, and 𝑖 = 𝑖 − 1 = 5.

Since 𝐿5 = 11 > 6, push 0 to the stack and decrement 𝑖. Since 𝐿4 = 7 > 6, push 0 to

the stack (now stack = 100) and 𝑖 = 𝑖 − 1 = 3. For 𝐿3 = 4 < 6, push 1 to the stack

(i.e., stack = 1001) and thus the new 𝑥 = 6 − 4 = 2, 𝑖 = 2. Since 𝐿2 = 3 > 2, push

1 to the stack (i.e., stack = 10010), and 𝑖 = 1. Since 𝐿1 = 2 ≤ 2, push 1 to the stack

(now stack = 100101) and 𝑥 = 2 − 2 = 0. Since 𝑖 > 0 keep decreasing 𝑖 and

pushing 0-bit to the stack until 𝑖 = 0. That is, the stack = 1001010. Finally, 𝐿(𝑥)

equals the reverse of the stack and add 1-bit at the end. As a result, 𝐿(24) =

 01010011. For more clarity, Table 4.6 below shows the performance of Lucas code

for various values 18 < 𝑥 < 29:

Table 4.6 Examples of Lucas codes

Lucas sequence
𝐿1 𝐿0 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 Extra

1-bit 1 2 3 4 7 11 18
𝐿(24) 0 1 0 1 0 0 1 1
𝐿(21) 0 0 1 0 0 0 1 1
𝐿(19) 1 0 0 0 0 0 1 1

4.5.3 Elias-Delta Coding

Introduced by Peter Elias (Elias, 1975), the Elias-delta code is one of the most

commonly used prefix code. It is defined as follows. For each integer value, 𝑥, the

Elias-delta code 𝐸(𝑥) can be obtained by these steps:

1 Let 𝐵(𝑥) be the binary representation of 𝑥 excluding insignificant 0-bits (at the

left of the binary number). Let 𝐵’(𝑥) be 𝐵(𝑥) without the foremost 1-bit (most-

left 1-bit).

2 Let 𝐿𝑁(𝑥) be the length of 𝐵(𝑥); i.e., number of bits of 𝐵(𝑥).

3 Let 𝐿(𝑥) be the binary representation of 𝐿𝑁(𝑥).

4 Let 𝑆(𝑥) be a sequence of 0-bits of size equals to the (length of 𝐿(𝑥)) − 1.

5 The Elias-delta code is then generated as 𝐸(𝑥) = 𝑆(𝑥) 𝐿(𝑥) 𝐵’(𝑥), where

 means concatenating.

Table 4.7 shows some examples of Elias-delta codes 𝐸(𝑥) for various values (spaces

are added for clarity)

Chapter 4: Literature on Encoding Methods

74

Table 4.7 Examples of Elias-delta codes

Integer 𝒙 𝑩(𝒙) 𝑺(𝒙) 𝑳(𝒙) 𝑩’(𝒙) 𝑬(𝒙) = 𝑺(𝒙) 𝑳(𝒙) 𝑩’(𝒙)

1 1 - 1 - 1

2 10 0 10 0 0 10 0

3 11 0 10 1 0 10 1

4 100 0 11 00 0 11 00

10 1010 00 100 010 00 100 010

19 10011 00 101 0011 00 101 0011

50 110010 00 110 10010 00 110 10010

100 1100100 00 111 100100 00 111 100100

Williams (Williams and Zobel, 1999) applied Elias-delta and Elias-gamma codes to

store integers in compressed form in order to improve the performance of disk access

and data retrieval. Elias-delta code was also utilised by (Scholer et al., 2002) to

compress inverted indices to speed up the query performance and query evaluation.

Moreover, (Walder et al., 2009) used Elias-delta code to generate a compression

scheme for an R-tree (Guttman, 1984) data structure in order to minimise the index

file and reduce the query processing time.

4.5.4 Elias-Fibonacci of Order 𝒎 ≥ 𝟐

Elias-Fibonacci code was introduced by (Walder et al., 2012) as a combination of

Elias-delta code and Fibonacci code of order 2, and is defined as follows:

𝐸𝐹(𝑥) = 𝐹(2)(𝐿(𝑥)) 𝐵(𝑥) Equation 4.6

Where 𝐵(𝑥) is the binary representation of 𝑥, 𝐿(𝑥) is the length of 𝐵(𝑥), and

𝐹(2)(𝐿(𝑥)) is the Fibonacci of order 2 of 𝐿(𝑥). Elias-delta, Fibonacci of order 2 and

order 3, and Elias-Fibonacci codes have been applied for the compression of XML

node stream arrays by (Bača et al., 2010) and for the compression of the R-tree in

(Chovanec et al., 2010).

Chapter 4: Literature on Encoding Methods

75

Table 4.8 Examples of Elias Fibonacci (of order 𝒎 = 2 and 𝒎 = 3)

Integer (𝑥) Elias Fib 2 = 𝐹(2)(𝐿(𝑥)) 𝐵(𝑥): Elias Fib 3 = 𝐹(3)(𝐿(𝑥)) 𝐵(𝑥):

1 1 1 11 1

2 01 10 011 10

3 01 11 011 11

4 001 100 0011 100

5 001 101 0011 101

10 101 1010 1011 1010

19 0001 10011 00011 10011

50 1001 110010 01011 110010

100 0101 1100100 10011 1100100

500 10001 111110100 000011 111110100

In this thesis, a new Elias-Fibonacci (of order 3) code is purposed. The purposed

algorithm basically uses of Fibonacci of order 3 instead of order 2; i.e., 𝐸𝐹(𝑥) =

 𝐹(3)(𝐿(𝑥)) 𝐵(𝑥). The Fibonacci code of order 3 here adds 0111 at the end, instead

of 011. Examples of Elias-Fibonacci of order 2 and order 3 is given in Table 4.8

(spaces added for clarity). A generalised method of Elias-Fibonacci (order 𝑚 > 2) is

illustrated below.

Definition 5: Elias-Fibonacci (𝒎 > 𝟐):

Similar to the Elias-Fibonacci code presented by (Walder et al., 2012), the new Elias-

Fibonacci (𝑚 > 2) is a universal code for positive integers. Each Elias-Fibonacci (𝑚 >

2) code consists of two main parts. The second part is the binary representation of the

integer, 𝑥, denoted as 𝐵(𝑥). The first part represents the length of 𝐵(𝑥) (referred to as

𝐿(𝑥)) coded using Fibonacci code of order 𝑚 > 2, where the Fibonacci code of order

𝑚 > 2 is ends with ‘0’ ′1’𝑚−1 bits instead of ‘01’. The purposed Elias-Fibonacci of

order 𝑚 > 2 is described as follows:

1. Compute 𝐵(𝑥), and let 𝐿(𝑥) be the length of 𝐵(𝑥).

2. Compute 𝐹(𝑚)(𝐿(𝑥)); Fibonacci of order m code of 𝐿(𝑥), where 𝐹(𝑚) is ended

by 01𝑚−1.

3. The Elias-Fibonacci code of order 𝑚 > 2 is 𝐸𝐹(𝑚)(𝑥) = 𝐹(𝑚)(𝐿(𝑥)) 𝐵(𝑥), (

means concatenation).

In this thesis, Elias-Fibonacci (of order 𝑚 ≥ 2) have been applied to compress the

XML labels. The study has also covered the behaviour of the resulting codes in

relation to the increment of the order value 𝑚. Chapters 6 and 7 present the details of

the implimentation and discussion of this study, which has already been published at

the WEBIST 2016 conference (Al-Zadjali and North, 2016).

Chapter 4: Literature on Encoding Methods

76

4.6 Conclusion

Whilst XML material has became more abundant, its heterogeneity and structural

irregularity limit the management of the querying and update process within large-

scale XML databases. Although many XML labelling schemes have been proposed in

the literture to facilitate XML querying, most of these have ignored the compactness of

the labels generated. Consequently, current XML labelling schemes still suffer from

huge label sizes that may lead to overflow problems in the case of frequent insertions.

This is due to the design of the labelling algorithm and how it handles insertions as

illustrated in detail in Chapter 3.

An overview of the existing labelling storage schemes and their limitations have been

presented in this chapter. Several perfix encoding methods have also been illustarted

in this chapter. Although research (Williams and Zobel, 1999) (Chovanec et al., 2010)

(Bača et al., 2010) (Scholer et al., 2002) (Walder et al., 2009) (Guttman, 1984) has

shown the usefulness of some of these prefix-encoding methods for compression

systems, they have never been applied to XML label compression. Motivated by this

observation and the literture review represented in this chapter and Chapter 3, the

research hypothesis of this thesis has thus been derived. The following chapter

presents the research problem in detail, and gives a possible solution to the

maniuplation and management of dynamic XML data, namely via the Base-9 XML

labelling scheme proposed in this thesis.

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

77

Chapter 5: Base-9 Labelling Scheme for

Dynamic XML Data

5.1 Introduction

The importance of dynamic XML labelling schemes has been established for

accommodating the increasing significance of XML data management (Ghaleb and

Mohammed, 2015) (Almelibari, 2015). Several XML labelling schemes have been

introduced to process queries efficiently with minimum label size as well as to address

the ability to process order-sensitve updates effecitively. Therefore, designing a

dynamic labelling scheme that can preserve such properties whilst handling as many

insertions as possible without re-labelling the existing labels is a challenging task, as

demonstrated in the literature (Chapters 3 and 4).

This chapter starts by specifing the research problem in the following section. Section

5.3 presents the motivation and research hypothesis derived from the literture review

presented earlier (Chapters 2, 3, and 4). This is followed by an overview of the

proposed dynamic XML labelling scheme, named “Base-9”, in Section 5.4. Based on

the lexicographical order defined in Section 5.4, the Base-9 labels initialisation

algorithm and the insertion techniques are proposed in Sections 5.5 and 5.6,

respectively. In Section 5.7, the use of Fibonacci coding for compressing and storing

Base-9 labels is described. This chapter also describes the ability of the Base-9

scheme to determine the structural relationships in Section 5.8. Finally, the chapter

ends with a general conclusion in Section 5.9.

5.2 Problem Identification

During the lifecycle of an XML document there can be arbitrary insertions of new

nodes. Various XML labelling schemes have been proposed to improve the storage

and retrieval of XML data in a dynamic XML environment. According to (Härder et al.,

2007) and (Wu et al., 2004), a good dynamic XML labelling scheme must be compact,

updatable and at the same time support the main operations of XML query processing

by determining the common structural relationships efficiently and directly from the

label values. However, there is a natural conflict between the requirements of update

efficiency and those of query optimisation and, consequently, a labelling scheme

usually sacrifices one of the essential properties that otherwise would have made it a

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

78

good dynamic labelling approach. As can be seen from the above-mentioned

research literture in Chapter 3, all the existing labelling schemes suffer from the large

labels that contribute to the overflow problem, particularly under frequent skewed

node insertions. This is either due to a failure to consider the size of the labels

generated whilst designing the labelling algorithms or due to the inadequacies of the

encoding techniques used to store the XML labels.

The current encoding mechanisims used to store XML labels are illustrated in Chapter

4. These encoding methods have limited storage capacity and do not support frequent

insertions in large-scale XML data, particularly in prefix-based labelling schemes.

Therefore, there is a need to develop an efficient dynamic XML labelling approach

that generates compressed XML labels not only during intialisation but also when the

XML is subsequently updated. In order to achieve this, it is essential to investigate the

possibility of storing XML labels in a compressed format, such as via prefix-encodings.

5.3 Research Objective, Motivation and Hypothesis

The main aim of this thesis is to develop an efficient XML labelling scheme focusing

on the size of XML labels. A possible way to achieve this is using Fibonacci encoding

to store XML labels in a form that is compact but will still support XML data updates.

The efficiency of query processing can be dramatically increased because this allows

for both fast decoding and short labels.

In Chapter 4, several prefix-encoding methods were described such as Fibonacci

encoding, Elias-delta, and Elias-Fibonacci coding (Walder et al., 2012). In spite of the

existence of these methods and the research supporting their usefulness for data

compression (see Chapter 4), prefix encodings have never been applied as an

alternative encoding technique for XML labels. Motivated by this, all the presented

prefix-encoding techniques described in Chapter 4 have been studied. The

experimental implementation and results of this study are presented later in Chapter 6

and Chapter 7, respectively. The comparison between these prefix-encoding methods

in terms of the compression performance has been published at the WEBIST-2016

conference (Al-Zadjali and North, 2016).

As stated in Chapter 4, one of the properties of Fibonacci codes that there are no 𝑚

consecutive 1-bits within the summation result of Fibonacci numbers of order 𝑚,

whereas each Fibonacci code ends up with exactly 𝑚 consecutive 1-bits. Thus, for an

integer, 𝑥, the appearance of 𝑚-consecutive 1-bits in Fibonacci codes 𝐹(𝑚)(𝑥)

indicates the ends of the binary representation of 𝑥. Motivated by this, Fibonacci

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

79

encoding is considered a viable alternative storage mechanism for XML labels. The

criteria of the existence of exactly 𝑚-consecutive 1-bits only at the end of each

Fibonacci code can be used to indicate the separators in prefix-based labels, and so

avoiding the need to store the delimiters separately. Nevertheless, the Fibonacci

decoding process has the capability to facilitate the query processing as examined in

this thesis.

Seeing that Fibonacci coding represents non-negative integers 𝑥 > 0 into binary-string

(see Section 4.5.1), it is fundamental to consider an XML labelling scheme that

generates integer labels. However, at present, such schemes do not fully support

node insertion, especially between two consecutive sibling nodes such as in Dewey

(Tatarinov et al., 2002), DDE (Xu et al., 2009), DFPD (Liu et al., 2013), Vector-order

(Xu et al., 2007), and ORDPATH (O'Neil et al., 2004). This is because the

computation of a new integer label value between two consecutive siblings depends

on the remaining integers that satisfy the XML labelling scheme properties. Similar to

interval-based labelling schemes, the problem is obviously that there is a finite

number of integers between two consecutive integer values (Ren et al., 2006) (Sans

and Laurent, 2008) (Amagasa et al., 2003).

On the other hand, XML labelling schemes that consider node order lexicographically

(see Section 5.4) rather than numerically are more capable of handling skewed

insertions (O’Connor and Roantree, 2013) (Chiew et al., 2014a), such as in QED (Li

and Ling, 2005b), SCOOTER (O’Connor and Roantree, 2012), and ImprovedBinary

(Li and Ling, 2005a). Both QED and SCOOTER use quaternary strings to label XML

data, whereas ImprovedBinary employs binary strings. Recently, DPLS (Liu and

Zhang, 2016) have enhanced the DFPD scheme (Liu et al., 2013) to handle node

insertions based on lexicographical order. The DPLS labels initialisation algorithm

concurs with the Dewey order labelling scheme (Tatarinov et al., 2002). In case of

insertions, DPLS represents self-label values of the new nodes as fractions, which are

then encoded in a similar manner to ORDPATH labels. Consequently, DPLS labels

are subject to overflow problems, as with other floating-point labelling schemes (Liu et

al., 2013) (Amagasa et al., 2003). Furthermore, the decoding process in DPLS inherits

the complexity of ORDPATH coding, so the XML querying is relatively slow as stated

in Section 4.4.4.

According to (Chiew et al., 2014a), the SCOOTER labelling scheme is the most

compact dynamic labelling scheme, which controls the growth of label size when XML

is updated by automatically reusing the smallest deleted node label if available. As

discussed in Section 3.4, in spite of the advantages of the SCOOTER labelling

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

80

scheme, as with other prefix-based labelling schemes it suffers from the overflow

problem during skewed insertions, where the label size grows rapidly (Chiew et al.,

2014a) (Ghaleb and Mohammed, 2013).

To enhance the performance of XML updates and simultaneously reduce label size

via Fibonacci coding, a new XML labelling scheme is proposed in this thesis called

“Base-9”. The main objective of the Base-9 scheme is to allocate as many integer

labels as possible between any two consecutive nodes. Motivated by the SCOOTER

labelling scheme (O’Connor and Roantree, 2012), the Base-9 scheme considers node

order lexicographically using decimal strings rather than quaternary strings in order to

enable a larger range of integers. The next section presents in detail the main

principles of the new proposed Base-9 labelling scheme.

5.4 The Principles of the Base-9 Labelling Scheme

The aim of proposing the Base-9 scheme in this thesis is to facilitate the querying and

updating process of dynamic XML trees without sacrificing storage overhead,

especially in the case of recurrent node insertions. Therefore, whilst designing the

Base-9 scheme, it is important to consider the desirable properties of a good dynamic

XML labelling scheme (Chapter 3, Section 3.2): i.e., deterministic, efficient, compact,

and dynamic. Accordingly, the principles of the Base-9 scheme are stated as follows:

 The Base-9 labelling scheme uses decimal strings to represents XML labels as

with a prefix-based labelling scheme. The initialisation process, as well as the

structural relationship determination, are based on a lexicographical order (Hye-

Kyeong and SangKeun, 2010) (Li et al., 2008) rather than a numerical one.

 The initialisation process verifies the compactness of Base-9 labels by considering

the maximum number of child per node; this mechanisim is adapted from the

SCOOTER labelling scheme (O’Connor and Roantree, 2012) and enhanced to

use all the decimal strings including ‘0’ as part of the label values (explained in

detail in the next section).

 To preserve the node order lexicographically when XML is updated, the insertion

algortihms generate labels by obtaining the nearest possible lexicographical

number to the current label, where the new node is inserted immediately before or

after the current label. This principle not only maintains the efficiency of structural

relationship determination after XML updates, but also provides for the re-use of

deleted nodes labels if they exist.

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

81

 Base-9 labels are encoded using Fibonacci coding, which is updated to include

integer ‘0’ (see Section 5.7). The Fibonacci encoding conserves minimum memory

space by omitting the storage of delimaters, “.”. Nevertheless, the Fibonacci

decoding process facilitates the XML query processing.

In order to present a comprehensive understanding of the Base-9 initialisation,

insertion and determination process, it is important to first present the definition of

lexicographical order (Li et al., 2008) (Li and Ling, 2005b) (Li et al., 2006a) (Hye-

Kyeong and SangKeun, 2010) (Min et al., 2007) between Base-9 labels.

Definition 5.1: Lexicographical Order

Let ≺ denote a lexicographical ordering relation on the set {1, 2, … , 𝑛} such that 𝑖 ≺ 𝑗

implies 𝑖 < 𝑗. The main principle of generating labels in the Base-9 scheme is

basically that of generating all permutations 𝑎1𝑎2 … 𝑎𝑛 of the decimal number set

{0,1, 2, … ,9} such that 𝑖 < 𝑗 implies 𝑎𝑖 < 𝑎𝑗. Given two Base-9 labels 𝐵𝐿= 𝑎1𝑎2 … 𝑎𝑛 (as

the left node label) and 𝐵𝑅= 𝑏1𝑏2 … 𝑏𝑛 (as the right node label), then 𝐵𝐿 ≼ 𝐵𝑅 if, and

only if, 𝐵𝐿 and 𝐵𝑅 both satisfy the following conditions:

 𝐵𝐿 is lexicographically equal to 𝐵𝑅 if they are exactly the same.

 𝐵𝐿 is lexicographically smaller than 𝐵𝑅 (i.e., 𝐵𝐿 ≺ 𝐵𝑅) if:

o During the lexicographical comparison from left to right of 𝐵𝐿 and 𝐵𝑅,

the current digit of 𝐵𝐿 is smaller than the current digit of 𝐵𝑅.

o 𝐵𝐿 is a prefix of 𝐵𝑅.

5.5 Base-9 Labels Initialisation

Similar to the SCOOTER labelling scheme (O’Connor and Roantree, 2012), the Base-

9 labelling scheme generates labels based on the combinatorial number system

(Knuth, 1979). The combinatorial number system of degree 𝑘 > 0 is a correlation

between positive natural numbers 𝑁 and 𝑘-combinations represented as strings in

strictly increasing sequences 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑘−1 < 𝑎𝑘 whereby, distinct numbers

corresponding to distinct 𝑘-combinations are produced in lexicographic order (Knuth,

1979). More formally, if a set 𝑆 𝑁, such that 𝑆 = {0, 1, … , 𝑛}, then a 𝑘-combination is

a subset of 𝑘 distinct elements of 𝑆. Unlike SCOOTER, which uses a set of quaternary

numbers 𝑆 = {0, 1, 2, 3}, Base-9 uses the decimal number set 𝑆 = {0, 1, … , 9} to

generate distinct labels in lexicographical order.

The algorithm used to assign the initial labels of the SCOOTER labelling scheme was

adapted and enhanced to use the set of decimal numbers including ‘0’ rather than

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

82

quaternary numbers excluding ‘0’. In SCOOTER, the maximum number of labels with

length 𝑘 is (3𝑘 − 1) labels. If (3𝑘 − 1) corresponds to the minimum number of digits

needed to represent child nodes (referred to as childCount) in base 3, then a

maximum label length 𝑘 (referred to as 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) can be computed by the

formula ⌈𝑙𝑜𝑔3(𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1)⌉. Each child node is then assigned a SCOOTER label

of a size no greater than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒.

Similarly, in Base-9 the maximum label size 𝑘 was determined based on the minimum

number of digits required to represent 𝑥 child nodes using the formula 𝑘 = ⌈𝑙𝑜𝑔9(𝑥 +

1)⌉. Mathematically, there is a unique number 𝑘 such that 𝑏𝑘 = 𝑥 > 1 can be denoted

as the logarithm of 𝑥 to base 𝑏; i.e., 𝑘 = 𝑙𝑜𝑔𝑏(𝑥). Base-9 was chosen here because

during label initialisation only the set of 9 elements {1, … ,9} were used. The digit ‘0’

was reserved for later node insertions except for the root node, which is the only node

labelled as “0”, due to the Fibonacci code properties (discussed in Section 5.7). To

verify the compactness of the Base-9 labels, each label must be no longer than the

permissible maximum label size (refered to as 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒). Starting with the first

child node (the left most), this node will always have a Base-9 label of length equal to

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Figure 5.1 shows the XML tree of the XML “School” sample in Figure

2.1 labelled here using the Base-9 scheme as a prefix-based labelling scheme. The

root node (School) is assigned a label value “0”.

As with the SCOOTER labelling scheme, in the Base-9 scheme the first child node’s

label must not end with a digit less than ‘2’. Consequently, a node label must not

consist entirely of consecutive ‘1’ digits. This is in order to maintain the lexicographical

Figure 5.1 XML tree labelled by the Base-9 scheme

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

83

order between sibling nodes and support XML updates, particularly in the case of

skewed insertions before the first child. To justify this rule, let us assume that the left

most child node’s label can end with digit ‘0’ or ‘1’, as shown in the following example.

Example: Suppose that 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 3, and the first child node, 𝑛1, has the self-

label “112”. When a new node, 𝑛𝑛𝑒𝑤, is added before 𝑛1, a possible Base-9 self-label

(say 𝑁𝑛𝑒𝑤) is generated that corresponds to the immediate preceding lexicographical

value to the 𝑛1 self-label; i.e., 𝑁𝑛𝑒𝑤 = ”111”. Accordingly, if 𝑗 > 1, new nodes are

inserted before 𝑛1, then each 𝑛𝑗 is assigned a Base-9 self-label 𝑁𝑛𝑒𝑤 as follows:

𝑁𝑛𝑒𝑤1 = ”111”, 𝑁𝑛𝑒𝑤2 = ”110”, 𝑁𝑛𝑒𝑤3 = ”11”, 𝑁𝑛𝑒𝑤4 = ”10”, 𝑁𝑛𝑒𝑤5 = ”1” , 𝑁𝑛𝑒𝑤6 =

”0" . Since only the root node can be labelled as “0”, the number of new sibling node

insertions before the left most node is limited, in this example to 𝑗 = 5.

In general, there are a total of 𝑛𝑘 𝑘-combinations representing the lexicographically

ordered permutations of a set 𝑆 (with 𝑛 elements) and of length 𝑘; i.e., 9𝑘 in the Base-

9 scheme. Since there are restrictions on how often the digit ‘1’ can appear, in which

the total number of 𝑘-combinations has to be adjusted to (9𝑘 − 1) in order to exclude

the possible label value of all consecutive ‘1’s within a set of 𝑘-combinations.

Therefore, the actual total number of 𝑥 nodes that fit within maximum label size 𝑘 in

base 9 is (9𝑘 − 1). Accordingly, the computation of the maximum label length 𝑘 (=

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) in SCOOTER is modified to 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = ⌈𝑙𝑜𝑔9(𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1)⌉,

as illustrated in line 1 of the assigning Base-9 initials algorithm (refered to

“AssignBase9Initials”) in Figure 5.2.

Like the SCOOTER labelling scheme, in the Base-9 scheme the XML data has to be

parsed to determine the number of child nodes (i.e. 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡) for each XML

element before assigning the initial Base-9 labels. Then, by applying the

Figure 5.2 Assigning Base-9 Initials algorithm

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

84

“AssignBase9Initials” algorithm, the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 of possible label values to be

assigned to the child nodes of an element are computed in line 1. Notice that for each

element 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 value differ depending on its 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 number. Based on

this 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the label value of the first child (left-most) is allocated (lines 2-6) by

generating a sequence of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) of ‘1’s followed by ‘2’. As the node

order between sibling nodes is lexicographic, the rest of the child nodes from left to

right (as represented in the XML tree) are then labelled, as based on the label of the

adjacent left sibling, by calling the “nextSiblingLabel” algorithm in line 9. Notice that

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 can either be stored with parent node label or computed based on first

child node as in first line of “AssignBase9Initials” algorithm.

Figure 5.3 presents the algorithm used to compute the next sibling label (refered to as

“nextSiblingLabel”) given the label value of the immediate left child node. The

“nextSiblingLabel” algorithm is adapted from SCOOTER labelling scheme and

enhanced to consider the set of 9 elements {1, … ,9} instead of the quaternary string

set {1, 2, 3}.

Table 5.1 presents an example of Base-9 and SCOOTER initial self-labels generated

assuming the number of child nodes is 50. The algorithms to assign initial labels of

Base-9 and SCOOTER start by obtaining a 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 of 50 nodes’ labels (in line-

1); which matches with 2 in Base-9 and 4 in SCOOTER. According to the first two

rules, the first child label is assigned the digit ‘2’ preceded by a sequence of

(𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) of digit ‘1’. This corresponds to the label “12” in Base-9 and

“1112” in SCOOTER (as shown in Table 5.1). The labels of the remaining child nodes

are then each generated by incrementing the label of their immediate preceding node

lexicographically using the set {1, … ,9} in Base-9 and {1, 2, 3} in SCOOTER.

Figure 5.3 Computing next sibling label algorithm

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

85

Table 5.1 Examples of Base9 and SCOOTER labels

Child number Base-9 SCOOTER Child number Base-9 SCOOTER

1 (1st from left) 12 1112 26 37 1333

2 13 1113 27 38 2

3 14 112 28 39 2112

4 15 1122 29 4 2113

5 16 1123 30 41 212

6 17 113 31 42 2122

7 18 1132 32 43 2123

8 19 1133 33 44 213

9 2 12 34 45 2132

10 21 1212 35 46 2133

11 22 1213 36 47 22

12 23 122 37 48 2212

13 24 1222 38 49 2213

14 25 1223 39 5 222

15 26 123 40 51 2222

16 27 1232 41 52 2223

17 28 1233 42 53 223

18 29 13 43 54 2232

19 3 1312 44 55 2233

20 31 1313 45 56 23

21 32 132 46 57 2312

22 33 1322 47 58 2313

23 34 1323 48 59 232

24 35 133 49 6 2322

25 36 1332 50 61 2323

Maximum Label Size: in Base-9 is 2 and in SCOOTER is 4

The node order between any two sibling nodes is determined lexicographically. For

instance, assume nodes 𝑢 and 𝑣 share the same parent prefix-label and have self-

labels in Base-9 of “43” and “2193”, respectively. Since in digit-by-digit comparison the

first digit in 𝑣 = ’2’ < ’4’, thus 𝑣 ≺ 𝑢 implies that node 𝑣 is a precedent sibling to node

𝑢 in the XML tree.

5.6 Handling Insertions

This section describes how the Base-9 labelling scheme supports XML updates by

controlling insertions based on the lexicographical relation between node labels,

similar to the initialisation principles. In most cases, three distinct insertion scenarios

are considered (see Figure 5.4):

 Insert a new node after the right most child.

 Insert a new node before the left most child.

 Insert a new node between two consecutive sibling nodes.

All these types of insertions focus on adding a sibling node in an XML tree, whereas,

a child (i.e., leaf) node in the Base-9 labelling scheme is treated by

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

86

AssignBase9Initials algorithm. This thesis does not cover the case of inserting a

node 𝑝 between a parent node 𝐴 and a child node 𝐵, where nodes 𝐴 and 𝐵 are linked

directly in an XML tree (e.g., as in Figure 5.4).This process is a very expensive as it

requires the re-labelling all of the new node descendants. (Liu et al., 2014) has

investigated the possibility of minimising the number of re-labelling events in such a

case by using a dynamic state transducer (DST) to decode node names during the

on-line processing step. Nevertheless, the results of (Liu et al., 2014) study has

shown that this case is still time consuming and requires the re-labelling of all the

descendants of the new node 𝑝. In addition, (Mirabi et al., 2012) have shown that

when a new parent node is inserted into an XML tree, all the prefix labelling schemes

tested (O'Neil et al., 2004) (Mirabi et al., 2012) (Li and Ling, 2005b) required the re-

labelling of all the descendants of the newly inserted parent node.

Unlike the SCOOTER scheme, the Base-9 labelling scheme handles insertions by

finding the most immediate obtainable lexicographical value in comparison to the label

of the node, 𝑛𝑜𝑙𝑑, where 𝑛𝑜𝑙𝑑 is the adjacent sibling to the new node, 𝑛𝑛𝑒𝑤. This

approach also allows Base-9 to re-use the deleted labels (if any) automatically, as

illustrated in the following sections. Notice here the terms “label” and “self-label” are

used interchangeably.

Figure 5.4 Types of insertions

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

87

5.6.1 Insertion After the Right-most Node

When a new node 𝑛𝑛𝑒𝑤 is inserted after the right

most node, 𝑛𝑜𝑙𝑑 , within an XML sub-tree (see

Figure 5.5), the Base-9 labelling scheme computes

the 𝑛𝑛𝑒𝑤 self-label (say 𝑁𝑛𝑒𝑤) by incrementing the

self-label of 𝑛𝑜𝑙𝑑 (say 𝑁𝑜𝑙𝑑) lexicographically using

the “InsertAfterRightMost” algorithm presented in

Figure 5.6. The algorithm allocates a 𝑁𝑛𝑒𝑤 value

following a similar notion to the “nextSiblingLabel”

algorithm. That is, 𝑁𝑛𝑒𝑤 is generated by first

comparing the length of 𝑁𝑜𝑙𝑑 with 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, as follows:

If 𝑁𝑜𝑙𝑑 is less than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the algorithm generates the 𝑁𝑛𝑒𝑤 value simply by

extending 𝑁𝑜𝑙𝑑 with the digit ‘1’. However, if the 𝑁𝑜𝑙𝑑 size equals 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, then

𝑁𝑛𝑒𝑤 is obtained by first tracing 𝑁𝑜𝑙𝑑 in reverse order (i.e., starting from the end) to

locate the position (𝑝) of the first non ‘9’ (if any) from the end of 𝑁𝑜𝑙𝑑, and accordingly

𝑁𝑛𝑒𝑤 is allocated as described in Table 5.2:

Figure 5.5 Insert after the

right-most node

Figure 5.6 Base-9 Insert after right-most algorithm

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

88

Table 5.2 Insert after 𝑵𝒐𝒍𝒅: find 𝑵𝒏𝒆𝒘 when 𝑵𝒐𝒍𝒅 is 𝒎𝒂𝒙𝑳𝒂𝒃𝒆𝒍𝑺𝒊𝒛𝒆

When 𝑁𝑜𝑙𝑑 is of size 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒.

Condition Rule Example

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is less

than ‘9’

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿

replaced by 𝑑𝐿 + 1

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 = “254”

then 𝑁𝑛𝑒𝑤 = “255”

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘9’

and 𝑝 < 0; i.e., 𝑁𝑜𝑙𝑑 consists of

all consecutive ‘9’s

Increase

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 by 1

and

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑

appended by digit “1”

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 = “999”

then 𝑁𝑛𝑒𝑤 = “9991”

and new

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 4

if the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘9’

and 𝑝 ≥ 0. Notice that 𝑝 = 0

indicates the position of first non

‘9’ digit. 𝐷 is the first digit in 𝑁𝑜𝑙𝑑

𝑁𝑛𝑒𝑤 is substring of

𝑁𝑜𝑙𝑑 up to digit 𝐷;

whereas 𝐷 value is

incremented by 1

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

5 and 𝑁𝑜𝑙𝑑 = “49699”

then 𝑁𝑛𝑒𝑤 = “497”

In contrast, the “nextSiblingLabel” algorithm does not deal with the case when 𝑁𝑜𝑙𝑑

consists of all consecutive ‘9’s, since initially the nodes are labelled based on the

premise that they all fit within 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Moreover, when 𝑁𝑜𝑙𝑑 is smaller than

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the “nextSiblingLabel” algorithm allocates an initial Base-9 label by

adding a sequence of ‘1’ digits at the end of 𝑁𝑜𝑙𝑑 up to 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒.

To demonstrate an example of how the Base-9 labelling scheme handles insertions

Figure 5.7 shows labels generated by the the “InsertAfterRightMost” algorithm when

new nodes 𝑛𝑎 , 𝑛𝑏 , and 𝑛𝑐 are inserted, respectively, after the element “Class” in the

XML tree of the “School” sample shown in Figure 5.1.

Figure 5.7 Example of handling insertions after the right-most node

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

89

The “InsertAfterRightMost” algorithm also supports skewed insertions after the right

most node. For simplicity, Table 5.3 shows up to 10 new node insertions after the right

most node, 𝑛𝑜𝑙𝑑 , labelled as 𝑁𝑜𝑙𝑑 = "56", “1254”, “9999” 𝑜𝑟 “4969”; assuming

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑜𝑙𝑑).

Table 5.3 Examples of skewed insertions after right-most node in Base-9

 Node labels Node labels Node labels Node labels

Label of the
right most
node

56 254 9999 49699

1 57 255 99991 497

2 58 256 99992 4971

3 59 257 99993 49711

4 6 258 99994 49712

5 61 259 99995 49713

6 62 26 99996 49714

7 63 261 99997 49715

8 64 262 99998 49716

9 65 263 99999 49717

10 66 264 999991 49718

Notice that Base-9 controls the growth of the label size during insertions by

considering the availability of the nearest lexicographical value to 𝑁𝑜𝑙𝑑 whilst

generating the new labels. This leads to smaller increments in label size compared to

the SCOOTER scheme (see Section 3.4.3). In SCOOTER, for any 𝑁𝑜𝑙𝑑 value the

new labels generated are controlled via the growth-adaptive mechanism by which new

label values after at most two insertions will always start with consecutive “3” digits,

and so after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions the label size increases

by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1).

5.6.2 Insertion Before the Left-most

Node

The algorithm for insertion before the left most

node in Base-9 is named

“InsertBeforeLeftMost” and is presented in

figure 5.9. This algorithm is designed to

generate Base-9 self-labels that are

lexicographically smaller than 𝑁𝑜𝑙𝑑, where 𝑁𝑜𝑙𝑑

is the self-label value of the current left most

node 𝑛𝑜𝑙𝑑 within an XML sub-tree (see Figure 5.8). When a new node, 𝑛𝑛𝑒𝑤 , is

inserted before 𝑛𝑜𝑙𝑑, there are two main factors that affect the newly generated label

(say 𝑁𝑛𝑒𝑤): the current 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 (must be ≥ 1) and the start value of 𝑁𝑜𝑙𝑑.

Figure 5.8 Insert before the left-
most node

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

90

Figure 5.9 Base-9 insert before left-most node algorithm

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

91

According to the Base-9 initialisation process, a minimum self-label value assigned to

the left-most node, 𝑛𝑜𝑙𝑑 , is 𝑁𝑜𝑙𝑑 = “2” if 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1. If not, then for

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 greater than 1 𝑁𝑜𝑙𝑑 must start with the digit ‘1’ (see Section 5.5). If

𝑛𝑛𝑒𝑤 is added before 𝑁𝑜𝑙𝑑 = “2”, then 𝑁𝑛𝑒𝑤 is given the value “19”, which is the

immediate preceding lexicographical value to “2”. However, if 𝑁𝑜𝑙𝑑 starts with a digit

greater than ‘2’, this indicates there is a deleted node’s label available that can be re-

used for 𝑁𝑛𝑒𝑤 as follows (Table 5.4):

Table 5.4 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with digit >2

When 𝑁𝑜𝑙𝑑 starts with a digit greater than ‘2’

Condition Rule Example

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is greater

than ‘2’

𝑁𝑛𝑒𝑤 is

𝑁𝑜𝑙𝑑 with 𝑑𝐿

replaced by

𝑑𝐿 − 1

if 𝑁𝑜𝑙𝑑 = “456”

then 𝑁𝑛𝑒𝑤 = “455”

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘2’ and

𝑁𝑜𝑙𝑑 size is less than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒

𝑁𝑛𝑒𝑤 is

𝑁𝑜𝑙𝑑 with 𝑑𝐿

replaced by

“19”

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

4 and 𝑁𝑜𝑙𝑑 =

 “232”

then 𝑁𝑛𝑒𝑤 =

 “2319”

Otherwise; i.e., if the last digit 𝑑𝐿 in

𝑁𝑜𝑙𝑑 is ‘2’ and 𝑁𝑜𝑙𝑑 size is the

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Or the last digit 𝑑𝐿 in

𝑁𝑜𝑙𝑑 is less than ‘2’

𝑁𝑛𝑒𝑤 is

𝑁𝑜𝑙𝑑 with 𝑑𝐿

is trimmed

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 =

 “232”

then 𝑁𝑛𝑒𝑤 = “23”

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

92

When initialising Base-9 labels where 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is greater than 1, 𝑁𝑜𝑙𝑑 starts

initially with consecutive ‘1’s followed by the digit ‘2’. In this case, to avoid the scenario

of generating a self-label comprised entirely of consecutive ‘1’s that might limit the

number of insertions before the first child node (explained in Section 5.5), 𝑁𝑛𝑒𝑤 is

allocated based on the 𝑁𝑜𝑙𝑑 size as follows (Table 5.5):

Table 5.5 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with consecutive ‘𝟏’𝒔 ‘𝟐’

When 𝑁𝑜𝑙𝑑 starts with consecutive ‘1’s followed by the last digit 𝑑𝐿 = ‘2’

Condition Rule Example

If 𝑁𝑜𝑙𝑑 size ≤

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿

replaced by “19”. This

might make the 𝑁𝑛𝑒𝑤

size greater than

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 (next

condition)

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

2 and 𝑁𝑜𝑙𝑑 = “12”

then 𝑁𝑛𝑒𝑤 = “119”

If 𝑁𝑜𝑙𝑑 size >

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿

replaced by “09”

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

2 and 𝑁𝑜𝑙𝑑 =

 “112”

then 𝑁𝑛𝑒𝑤 = “109”

Another possible situation to consider is when 𝑁𝑜𝑙𝑑 starts with the digit ‘1’ but the first

non ‘1’ digit is not the last digit, 𝑑𝐿 , of 𝑁𝑜𝑙𝑑 = (′1′𝑠 𝑑𝑓 … 𝑑𝐿). In this case, different

scenarios are considered based firstly on the 𝑑𝐿 value and then on 𝑑𝑓 , as shown in the

following steps (Table 5.6) that are triggered to allocate 𝑁𝑛𝑒𝑤:

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

93

Table 5.6 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with ′𝟏′𝒔 𝒅𝒇 … 𝒅𝑳

When inserting before 𝑁𝑜𝑙𝑑 that starts with the digit ‘1’ but there is a non ‘1’ digit 𝑑𝑓 in

position 𝑝 ≥ 2 of 𝑁𝑜𝑙𝑑 where 𝑝 is not the last digit 𝑑𝐿 of 𝑁𝑜𝑙𝑑; notice that 𝑑𝐿 must be ≥

 ‘2’

Condition Rule Example

If 𝑑𝐿 > ‘2’ 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 reduced

by 1

𝑁𝑜𝑙𝑑 = “1124”

then 𝑁𝑛𝑒𝑤 = “1123”

If 𝑑𝐿 = ‘2’ The following cases are considered relying on 𝑑𝑓:

Condition Rule Example

If 𝑑𝑓 = 1 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 is

trimmed

If 𝑁𝑜𝑙𝑑 = “11341”

then 𝑁𝑛𝑒𝑤 = “1134”

If 𝑑𝑓 ≥ 2 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 is

reduced by 1

If 𝑁𝑜𝑙𝑑 = “1134”

then 𝑁𝑛𝑒𝑤 = “1133”

If 𝑁𝑜𝑙𝑑 starts with “10”. In

this case, there must be a

non ‘0’ digit (say 𝐷) from

the start of 𝑁𝑜𝑙𝑑, where

𝐷 ∈ {1, 2}. Notice here 𝑑𝑓 =

0.

Trace the first non ‘0’ digit 𝐷.

For 𝐷 = ‘1’; 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with

𝐷 replaced by “0”

If 𝑁𝑜𝑙𝑑 = “10112”

then 𝑁𝑛𝑒𝑤 = “10012”

For 𝐷 = ‘2’; 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with

𝐷 replaced by “19” and the

rest of 𝑁𝑜𝑙𝑑 is trimmed

If 𝑁𝑜𝑙𝑑 = “10022”

then 𝑁𝑛𝑒𝑤 = “10019”

Otherwise; if 𝑑𝑓 is ‘0’ and

𝑝 > 2

𝑁𝑛𝑒𝑤 is assigned a substring

of one less consecutive ‘1’s at

the start of 𝑁𝑜𝑙𝑑 concatenated

by “09”

If 𝑁𝑜𝑙𝑑 = “11102”

then 𝑁𝑛𝑒𝑤 = “1109”

Figure 5.10 illustrates an example of how the Base-9 labelling scheme handles the

insertion of new nodes 𝑛𝑎, 𝑛𝑏 , and 𝑛𝑐, respectively, before the element “Name” (the

left-most child) in the XML tree of the “School” sample (Figure 5.1).

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

94

To maximise the availability of Base-9 self-labels for more skewed insertions before

the left-most node, 𝑛𝑜𝑙𝑑, the control skewed insertion statement is added assuming

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 exceeds the length of 𝑁𝑜𝑙𝑑. Table 5.7 displays new Base-9 self-labels

generated when 10 new nodes are inserted repeatedly before the left-most node,

𝑛𝑜𝑙𝑑, labelled as 𝑁𝑜𝑙𝑑 = 232", “112”, “100112” , "1002" 𝑜𝑟 “19”, assuming

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑜𝑙𝑑).

Table 5.7 Examples of skewed insertions before the left-most node in Base-9

 Node
labels

Node
labels

Node
labels

Node
labels

Node
labels

Insert before
node

232 112 100112 1002 19

1 23 1119 100012 10019 18

2 229 1118 100002 10018 17

3 228 1117 1000019 10017 16

4 227 1116 1000018 10016 15

5 226 1115 1000017 10015 14

6 225 1114 1000016 10014 13

7 224 1113 1000015 10013 12

8 223 1112 1000014 10012 119

9 222 1109 1000013 10002 118

10 22 1108 1000012 100019 117

As can be seen from Table 5.7, the length of a newly generated label grows by at

most one digit per 10 repeated insertions before the left-most node. On the contrary,

in the SCOOTER labelling scheme (see Section 3.4.3), after a few insertions before

the left-most node, the new labels generated by the adaptive growth mechanism start

to form a pattern of consecutive ‘1’s followed by a ‘2’. This leads to rapid increases in

the label size up to at least 1 digit per insertion (e.g., see Table 3.3 in Section 3.4.3).

Figure 5.10 Example of handling insertions before the left most node

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

95

5.6.3 Insertion Between Two Nodes

When inserting a new node, nnew, between two

consecutive sibling nodes, nleft and nright, with

self-labels 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively (see

Figure 5.11), the Base-9 labelling scheme

considers three different cases depending on

the label size of nleft and nright, similar to the

SCOOTER scheme (see Section 3.4.3):

1. 𝑁𝑙𝑒𝑓𝑡 is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡.

2. 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡.

3. Both 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 have the same size.

In all these cases, the Base-9 labelling scheme provides an insertion mechanism that

generates the shortest label 𝑁𝑛𝑒𝑤 such that 𝑁𝑙𝑒𝑓𝑡 ≺ 𝑁𝑛𝑒𝑤 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡. Each case is

described below.

 Case 𝑵𝒍𝒆𝒇𝒕 Shorter Than 𝑵𝒓𝒊𝒈𝒉𝒕

The “InsertBetweenLessThan” algorithm (Figure 5.12) is designed to obtain a new

node label (say 𝑁𝑛𝑒𝑤) inserted between two nodes, where 𝑁𝑙𝑒𝑓𝑡 is shorter than

𝑁𝑟𝑖𝑔ℎ𝑡. When generating the initial Base-9 labels, 𝑛𝑙𝑒𝑓𝑡 has a shorter label than the

adjacent next sibling node 𝑛𝑟𝑖𝑔ℎ𝑡 if, and only if, the 𝑛𝑙𝑒𝑓𝑡 label (say 𝑁𝑙𝑒𝑓𝑡) is a prefix

string of the 𝑛𝑟𝑖𝑔ℎ𝑡 label (say 𝑁𝑟𝑖𝑔ℎ𝑡) (for examples, see Table 5.1). In order to

preserve the lexicographical relation between sibling nodes, 𝑁𝑙𝑒𝑓𝑡 also has to be a

prefix string to 𝑁𝑛𝑒𝑤 (i.e., 𝑁𝑛𝑒𝑤 = 𝑁𝑙𝑒𝑓𝑡 𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥). Determining the postfix

value of 𝑁𝑛𝑒𝑤, relies on the 𝑁𝑡𝑒𝑚𝑝 value which corresponds to 𝑁𝑟𝑖𝑔ℎ𝑡 after

excluding the prefix part matching 𝑁𝑙𝑒𝑓𝑡. If 𝑁𝑡𝑒𝑚𝑝 starts with a digit 𝑑 > 1, then 𝑁𝑛𝑒𝑤

is assigned 𝑁𝑙𝑒𝑓𝑡 “1”. For instance, let 𝑁𝑙𝑒𝑓𝑡 = “3” and 𝑁𝑟𝑖𝑔ℎ𝑡 = “364”. Since

𝑁𝑙𝑒𝑓𝑡 is a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 and 𝑁𝑡𝑒𝑚𝑝 = “64” starts with the digit 6 > 1, thus 𝑁𝑛𝑒𝑤 =

”31”. However, if 𝑁𝑡𝑒𝑚𝑝 starts with a digit 𝑑 ≤ 1, then 𝑁𝑡𝑒𝑚𝑝 is updated by removing

all ‘1’ digits from the end of 𝑁𝑡𝑒𝑚𝑝 (if any). Based on the remaining value in 𝑁𝑡𝑒𝑚𝑝,

𝑁𝑛𝑒𝑤 is allocated as follows (see Table 5.8):

Figure 5.11 Insert between two

sibling nodes

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

96

Table 5.8 Insert between two nodes (less than), find 𝑵𝒏𝒆𝒘 if 𝑵𝒍𝒆𝒇𝒕 is prefix of 𝑵𝒓𝒊𝒈𝒉𝒕

When 𝑁𝑙𝑒𝑓𝑡 is prefix of 𝑁𝑟𝑖𝑔ℎ𝑡; where 𝑁𝑟𝑖𝑔ℎ𝑡 = 𝑁𝑙𝑒𝑓𝑡 𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑡𝑒𝑚𝑝 starts

with a digit 𝑑 ≤ 1. 𝑁𝑡𝑒𝑚𝑝 here is generated by removing all ‘1’s from its end (if any);

so 𝑁𝑡𝑒𝑚𝑝 cannot end with the digit 𝑑 =‘1’

Condition Rule Example

If 𝑁𝑡𝑒𝑚𝑝 is empty;

(means that 𝑁𝑡𝑒𝑚𝑝

originally consists of

consecutive ‘1’s

only)

𝑁𝑛𝑒𝑤 is assigned 𝑁𝑙𝑒𝑓𝑡 “01” If 𝑁𝑙𝑒𝑓𝑡 = "3" and

𝑁𝑟𝑖𝑔ℎ𝑡 = “3111”

 𝑁𝑡𝑒𝑚𝑝 = “111”

 updated 𝑁𝑡𝑒𝑚𝑝

is empty

then 𝑁𝑛𝑒𝑤 = “301”

If 𝑁𝑡𝑒𝑚𝑝 ends with a

digit 𝑑 = ‘0’

𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 𝑁𝑡𝑒𝑚𝑝 "01" If 𝑁𝑙𝑒𝑓𝑡 = "3" and

𝑁𝑟𝑖𝑔ℎ𝑡 = “3101”

 𝑁𝑡𝑒𝑚𝑝 = “101”

 updated

𝑁𝑡𝑒𝑚𝑝=”10”

then 𝑁𝑛𝑒𝑤 =

 “31001”

If 𝑁𝑡𝑒𝑚𝑝 ends with a

digit 𝑑 > ‘1’

Decrease the last digit 𝑑 in 𝑁𝑡𝑒𝑚𝑝 by 1

and then 𝑁𝑛𝑒𝑤 is located

as 𝑁𝑙𝑒𝑓𝑡 𝑁𝑡𝑒𝑚𝑝.

If 𝑁𝑙𝑒𝑓𝑡 = "3" and

𝑁𝑟𝑖𝑔ℎ𝑡 = “3151”

 𝑁𝑡𝑒𝑚𝑝 = “151”

 updated

𝑁𝑡𝑒𝑚𝑝=”15”

then 𝑁𝑛𝑒𝑤 = “314”

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

97

There is also a possibility that 𝑁𝑙𝑒𝑓𝑡 could be shorter than 𝑁𝑟𝑖𝑔ℎ𝑡 but not a prefix of

𝑁𝑟𝑖𝑔ℎ𝑡. This will happen if, and only if, there are is at least one deleted sibling node

between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡. Because the Base-9 labelling scheme attempts to re-use

deleted labels if available, in this case the “InsertAfterRightMost” method (see

Section 5.6.1) is invoked assuming the new node is inserted after the right-most node

labelled as 𝑁𝑙𝑒𝑓𝑡. For instance, if 𝑁𝑙𝑒𝑓𝑡 = ”254” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”5711”, then 𝑁𝑛𝑒𝑤 is

obtained by inserting after the right-most node labelled as 𝑁𝑙𝑒𝑓𝑡 = ”254”, resulting in

𝑁𝑛𝑒𝑤 = ”255” (see example in Table 5.3).

 Case 𝑵𝒍𝒆𝒇𝒕 Greater Than 𝑵𝒓𝒊𝒈𝒉𝒕

Considering the initialisation process of the Base-9 labelling scheme, 𝑁𝑙𝑒𝑓𝑡 can be

lexicographically smaller than 𝑁𝑟𝑖𝑔ℎ𝑡 but have a longer label than 𝑁𝑟𝑖𝑔ℎ𝑡 if, and only

if, the last possible combinations of 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 that start with digit 𝑑 have been

used for 𝑁𝑙𝑒𝑓𝑡. In other words, this occurs when 𝑁𝑙𝑒𝑓𝑡 starts with a digit 𝑑 < 9

followed by a sequence of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) ‘9’ digits, and 𝑁𝑟𝑖𝑔ℎ𝑡 is labelled as the

next digit (i.e., (𝑑 + 1) ≤ 9). The “InsertBetweenGreaterThan” algorithm (see Figure

5.13) was developed to generate a new self-label for a node inserted between two

consecutive nodes 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡, where 𝑛𝑙𝑒𝑓𝑡 has a self-label, 𝑁𝑙𝑒𝑓𝑡, that is longer

than the 𝑛𝑟𝑖𝑔ℎ𝑡 self-label, 𝑁𝑟𝑖𝑔ℎ𝑡.

Figure 5.12 Insert between two nodes less than algorithm in Base-9 scheme

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

98

This is different to the “InsertBetweenLessThan” algorithm, as here 𝑁𝑡𝑒𝑚𝑝 is

created as 𝑁𝑙𝑒𝑓𝑡 excluding the sequence of ‘9’ digits from the end. Let us assume

𝑑𝑖𝑓𝑓 is the difference between the last digit in 𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑟𝑖𝑔ℎ𝑡, then 𝑁𝑛𝑒𝑤 is

allocated as follows (see Table 5.9):

Table 5.9 Insert between two nodes (greater than), find 𝑵𝒏𝒆𝒘 if 𝑵𝒍𝒆𝒇𝒕 ends with ‘9’s

When 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡) > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑟𝑖𝑔ℎ𝑡), and 𝑁𝑙𝑒𝑓𝑡 ends with ‘9’s. Then 𝑁𝑡𝑒𝑚𝑝 is

𝑁𝑙𝑒𝑓𝑡 after removing all ‘9’s from the end and 𝑑𝑖𝑓𝑓 =

 𝑙𝑎𝑠𝑡 𝑑𝑖𝑔𝑖𝑡 𝑜𝑓 𝑁𝑟𝑖𝑔ℎ𝑡 – 𝑙𝑎𝑠𝑡 𝑑𝑖𝑔𝑖𝑡 𝑜𝑓 𝑁𝑡𝑒𝑚𝑝

Condition Rule Example

If 𝑑𝑖𝑓𝑓 = 1;

indicates that 𝑁𝑡𝑒𝑚𝑝 and

𝑁𝑟𝑖𝑔ℎ𝑡 are lexicographically

immediate neighbours

𝑁𝑛𝑒𝑤 = 𝑁𝑙𝑒𝑓𝑡 “1” If 𝑁𝑟𝑖𝑔ℎ𝑡 = “65” and

𝑁𝑙𝑒𝑓𝑡 = “6499”

𝑁𝑡𝑒𝑚𝑝 = “64” 𝑑𝑖𝑓𝑓

= 5 - 4 = 1

then 𝑁𝑛𝑒𝑤 = “64991”

If 𝑑𝑖𝑓𝑓 > 1 𝑁𝑛𝑒𝑤 is 𝑁𝑡𝑒𝑚𝑝 after

incrementing its last digit

by 1

If 𝑁𝑟𝑖𝑔ℎ𝑡 = “67” and

𝑁𝑙𝑒𝑓𝑡 = “6499”

𝑁𝑡𝑒𝑚𝑝 = “64” 𝑑𝑖𝑓𝑓

= 7 - 4 = 3

then 𝑁𝑛𝑒𝑤 = “65”

Figure 5.13 Insert between two nodes greater than algorithm in Base-9

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

99

In further consideration of the existence of a deleted node between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡,

the “InsertBetweenGreaterThan” algorithm presents the codes to re-use deleted

labels when 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡. These cases are treated by giving 𝑁𝑛𝑒𝑤 the

value of 𝑁𝑙𝑒𝑓𝑡 after incrementing its last digit by 1. For example, let 𝑁𝑙𝑒𝑓𝑡 = “496”

and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”5”, then 𝑁𝑛𝑒𝑤 is given the value “497”, which is

lexicographically 𝑁𝑙𝑒𝑓𝑡 = 496 ≺ 𝑁𝑛𝑒𝑤 = 497 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡 = 5.

 Case 𝑵𝒍𝒆𝒇𝒕 Same Length of 𝑵𝒓𝒊𝒈𝒉𝒕

Once more, to analyse the possible cases where 𝑁𝑙𝑒𝑓𝑡 could have the same length of

𝑁𝑟𝑖𝑔ℎ𝑡, the Base-9 initialisation process has to be examined. Accordingly, 𝑁𝑙𝑒𝑓𝑡 and

𝑁𝑟𝑖𝑔ℎ𝑡 can both have the same size if, and only if, they are immediate sibling nodes

where 𝑁𝑙𝑒𝑓𝑡 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡. Either 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ by their last digit only, or there

are some deleted nodes between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡. The algorithm

“InsertBetweenSameLength” illustrated in Figure 5.14 shows how the Base-9

labelling scheme handles inserting a new node 𝑛𝑛𝑒𝑤 between two consecutive nodes

with the same label size.

Suppose that there are no deleted nodes between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 with the self-labels

𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively. In this case, 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ by their last digit,

whereby the difference between their last digit is 1. Therefore, to compute the 𝑁𝑛𝑒𝑤

value such that 𝑁𝑙𝑒𝑓𝑡 ≺ 𝑁𝑛𝑒𝑤 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡, 𝑁𝑛𝑒𝑤 is assigned the 𝑁𝑙𝑒𝑓𝑡 value after

Figure 5.14 Insert between two nodes same length algorithm in Base-9

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

100

concatenating it with the digit “1”, which consequently increases the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 by

1. For instance, if 𝑁𝑙𝑒𝑓𝑡 = “535” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”536” then 𝑁𝑛𝑒𝑤 = ”5351”.

However, if 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ in their last digit, and the difference between their

last digits is greater than 1, this indicates there is at least one available deleted label

to be re-used. Thus, 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 after incrementing its last digit by 1. For example,

if 𝑁𝑙𝑒𝑓𝑡 = “535” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”538” then 𝑁𝑛𝑒𝑤 = ”536”

The “InsertBetweenSameLength” algorithm also recognises the existence of a

deleted node label by identifying whether the position (𝑝) of the first different digit

between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 is before the last digit. That is, 0 ≤ 𝑝 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡), and

accordingly 𝑁𝑛𝑒𝑤 is assigned based on the last digit value of 𝑁𝑙𝑒𝑓𝑡, as explained in

Table 5.10:

Table 5.10 Insert between two nodes (same size 𝑳), find 𝑵𝒏𝒆𝒘 if 𝒑 < 𝑳

When 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑟𝑖𝑔ℎ𝑡), and 𝑝 is position of the first different digit

between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 is not the last digit

Condition Rule Example

If the last digit of 𝑁𝑙𝑒𝑓𝑡 is

𝑑 < 9

𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 after

incrementing its last digit by 1

𝑁𝑙𝑒𝑓𝑡 = ”4256” and

𝑁𝑟𝑖𝑔ℎ𝑡 = ”4395”, then

𝑁𝑛𝑒𝑤 = ”4257”.

If the last digit of 𝑁𝑙𝑒𝑓𝑡 is

𝑑 = 9

Allocate 𝑁𝑡𝑒𝑚𝑝 = 𝑁𝑙𝑒𝑓𝑡 with

all ‘9’s digits removed from

the end (i.e. 𝑁𝑡𝑒𝑚𝑝 ends with

digit 𝐷 < 9)

𝑁𝑛𝑒𝑤 is 𝑁𝑡𝑒𝑚𝑝 after

incrementing its last digit 𝐷 by

1

if 𝑁𝑙𝑒𝑓𝑡 = “2199” and

𝑁𝑟𝑖𝑔ℎ𝑡 = ”4123” then

𝑁𝑡𝑒𝑚𝑝 = ”21” and so

𝑁𝑛𝑒𝑤 = ”22”.

The Base-9 labelling scheme supports skewed insertions between any two nodes by

repeatedly calling the “InsertBetweenNodes” algorithm (see Figure 5.15). This

algorithm invokes the appropriate method to generate a new node label based on a

comparison between the length of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, as discussed previously.

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

101

For example, Figure 5.16 shows how the Base-9 labelling scheme handles the

insertion of new nodes 𝑛𝑎, 𝑛𝑏 , and 𝑛𝑐 , in that order, between the elements “Library”

and “Class” in the XML tree representing the “School” XML sample in Figure 5.1.

Since both self-labels of “Library” and “Class” are of same size, the

“InsertBetweenSameLength” algorithm is called, and consequently 𝑛𝑎 is given a

label value of “0.31”. When 𝑛𝑏 is inserted between “Library” and 𝑛𝑎 , the

“InsertBetweenLessThan” algorithm is triggered as 𝑙𝑎𝑏𝑒𝑙(“𝐿𝑖𝑏𝑟𝑎𝑟𝑦”) is shorter than

𝑙𝑎𝑏𝑒𝑙(𝑛𝑎), then 𝑛𝑏 is labelled as “0.301”. Alternatively, the

“InsertBetweenGreaterThan” method is called when 𝑛𝑐 is inserted between 𝑛𝑎 and

node “Class” due to their label sizes. Thus, 𝑛𝑐 is assigned as “0.32”.

Figure 5.15 Insert between two consecutive nodes in the Base-9 labelling scheme

Figure 5.16 Example of handling insertions between two nodes in Base-9

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

102

Table 5.11 shows further examples of Base-9 labels generated when 10 nodes are

inserted successively between two nodes considering 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 to be of the

same or different sizes.

Table 5.11 Examples of skewed insertions between two nodes in Base-9

 Node labels Node labels Node labels

𝑵𝒍𝒆𝒇𝒕 64 (same length of

𝑵𝒓𝒊𝒈𝒉𝒕)

496 (greater size than

𝑵𝒓𝒊𝒈𝒉𝒕)

3 (less size than

𝑵𝒓𝒊𝒈𝒉𝒕)

𝑵𝒏𝒆𝒘 1 641 497 301

𝑵𝒏𝒆𝒘 2 642 498 302

𝑵𝒏𝒆𝒘 3 643 499 303

𝑵𝒏𝒆𝒘 4 644 4991 304

𝑵𝒏𝒆𝒘 5 645 4992 305

𝑵𝒏𝒆𝒘 6 646 4993 306

𝑵𝒏𝒆𝒘 7 647 4994 307

𝑵𝒏𝒆𝒘 8 648 4995 308

𝑵𝒏𝒆𝒘 9 649 4996 309

𝑵𝒏𝒆𝒘
10

6491 4997 31

𝑵𝒓𝒊𝒈𝒉𝒕 65 5 311

5.6.4 Re-using Deleted Node Labels

As mentioned previously, the Base-9 labelling scheme handles insertion by finding the

nearest available lexicographical value to the label of the current node, which is the

adjacent sibling to the new node. The insertion algorithms of Base-9 are designed to

automatically re-use the deleted labels, if any, as explained in previous section.

When inserting after the right-most child node, the insertion mechanism of Base-9

allocates a new label considering the obtainability of the immediate next

lexicographical value to the current right-most node’s label (

see Section 5.6.1). This consequently allows automatic re-use of any available

deleted labels. For insertion before the left-most child node, the algorithm starts by

finding the availability of deleted labels to be re-used for new nodes, see lines 2-22 in

figure 5.9.

Similarly, when inserting between two consecutive sibling nodes in the Base-9

scheme (section 5.6.3), the insertion algorithms deliberate the re-use of deleted

node’s labels as follows:

 In case 𝑁𝑙𝑒𝑓𝑡 is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 16-18 of

“InsertBetweenLessThan” algorithm (figure 5.12).

 In case 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 13-15 of

“InsertBetweenGreaterThan” algorithm (figure 5.13)

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

103

 In case 𝑁𝑙𝑒𝑓𝑡 is the same length as 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 7-9 of

“InsertBetweenSameLength” algorithm (figure 5.14)

An experimental test has been carried out investigating the ability to re-use the

deleted node labels in the Base-9 scheme as well as in the SCOOTER scheme. The

implementation details of the test and the results obtained are provided later in

Chapters 6 and 7. The following section explains how the Fibonacci coding is used to

encode Base-9 labels to minimise the storage space cost.

5.7 Fibonacci coding

The generalised Fibonacci code of order 𝑚 ≥ 2 was introduced by (Apostolico and

Fraenkel, 1987), but to date has never been used for XML labels. In this thesis,

Fibonacci coding is applied for the first time to encode Base-9 XML labels. The

Fibonacci encoding of orders 𝑚 = 2 and 𝑚 = 3 are illustrated in detail in Section

4.5.1. Both methods were applied separately to encode the Base-9 labels in order to

study the effect of different order values, 𝑚, over the resulting codes.

The Base-9 scheme is a prefix-based labelling scheme in which a node’s self-label is

preceded by its parent’s label where a delimiter “.” is used to separate the label of the

ancestor nodes at every level. Each component of the Base-9 prefix-label is encoded

separately by Fibonacci coding and then concatenated, though with the separators

omitted. Since there is no Fibonacci code for integer ‘0’ in the Base-9 labelling

scheme, the label “0” representing the root node is encoded as the bit ‘0’.

One of the criteria of Fibonacci codes is that there are no 𝑚 consecutive 1-bits within

the summation result of Fibonacci numbers of order 𝑚 ≥ 2, but each Fibonacci code

ends up with exactly 𝑚 consecutive 1-bits. Thus, the appearance of 𝑚-consecutive 1-

bits in Fibonacci codes plays the role of a separator by indicating the ends of the

binary code representing a component self-label in the Base-9 scheme, so avoiding

the need to store the delimiters.

To demonstrate the encoding mechanism on Base-9 labels, let us consider encoding

the label of the element “Outline” (in Figure 5.1), which is “0.4.2.3”, as follows:

 Using Fibonacci code of order 𝒎 = 𝟐: “0.4.2.3” is encoded as “0 1011 011

0011” (the spaces are added for clarification – see Table 4.3). The first bit ‘0’

represents the root label. Then, starting from the second bit until two

consecutive ‘1’s signifies the next component of the Base-9 label (i.e.,

𝐹(2)(4) = “1011”) , and so on.

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

104

 Using Fibonacci code of order 𝒎 = 𝟑: “0.4.2.3” is represented as “0 10111

0111 00111” (the spaces are added for clarification – see Table 4.3). As in the

Fibonacci encoding of order 2, the first bit ‘0’ here also stands for the root

label. The following bits, up to the appearance of three consecutive ‘1’s,

indicate the next component of the Base-9 label (i.e., 𝐹(3)(4) = “10111”), and

so on.

The Fibonacci decoding mechanism is simply the reverse of the encoding process

(Walder et al., 2012). The algorithm for decoding the Fibonacci binary code of order

𝑚 ≥ 2 (say 𝐵9𝐶𝑜𝑑𝑒) into a Base-9 label is given in Figure 5.17.

Knowing that the possible minimum 𝐵9𝐶𝑜𝑑𝑒 is “0”, corresponding to the root node

label, the algorithm works as shown in the following flowchart (Figure 5.18). To

simplify the demonstration, these abbreviations are used:

 𝐵9𝐶𝑜𝑑𝑒 is Fibonacci code input to be decoded into a Base-9 label (referred to

as 𝑙𝑎𝑏𝑒𝑙).

 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is the current component’s Fibonacci code.

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 indicates the position of the last bit of 𝐹𝑖𝑏𝐶𝑜𝑑𝑒.

 Array 𝑏𝑖𝑡 of size 𝑚 to trace the end (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) of a 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 within 𝐵9𝐶𝑜𝑑𝑒.

 The integer, 𝑥, matches the Fibonacci number representing the Base-9 self-

label of the current component by calling the “FibDecode” method (Figure

5.19).

Figure 5.17 The algorithm for decoding a Base-9 label

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

105

A Fibonacci code 𝐵9𝐶𝑜𝑑𝑒 representing the Base-9 label of a node, 𝑢, is basically a

concatenated sequence of Fibonacci codes starting from the root code “0” up to the

code of the node, 𝑢. A 𝐵9𝐶𝑜𝑑𝑒 must consist of at least one code indicating the root

node, i.e., “0”. Thus, the first ‘0’ bit in the 𝐵9𝐶𝑜𝑑𝑒 is trimmed and the Base-9 𝑙𝑎𝑏𝑒𝑙 is

set to “0”. After that, if the 𝐵9𝐶𝑜𝑑𝑒 is not empty, this implies there are more

descendant codes to be decoded. Thus, the decoding process allocates the end of

each component’s code 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 by the appearance of 𝑚 consecutive ‘1’s. Then, the

𝐹𝑖𝑏𝐶𝑜𝑑𝑒 value is truncated from the start of 𝐵9𝐶𝑜𝑑𝑒. Next, the summation of 𝐹(𝑚)

represented by 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is found by calling the “FibDecode” method and assigned it

to 𝑥. Afterwards, to obtain the full prefix-based Base-9 label of the node 𝑢, 𝑙𝑎𝑏𝑒𝑙 is

appended by a delimiter “.” followed by 𝑥 as a decimal string. The whole process is

repeated until the 𝐵9𝐶𝑜𝑑𝑒 is empty which means all components within the Base-9

label are attained.

The “FibDecode” method (see Figure 5.19) presents the generalised decoding

algorithm for any Fibonacci code (here referred to as 𝐹𝑖𝑏𝐶𝑜𝑑𝑒) of order 𝑚 ≥ 2 for any

positive integer 𝑥 > 0. In the Fibonacci encoding process, the bit ‘1’ is appended to a

Fibonacci code of order 𝑚 = 2 to indicate the end of the code, whereas, a Fibonacci

code of order 𝑚 > 2 is concatenated with ‘0’ followed by 𝑚 consecutive ‘1’s as its

suffix; that is, “0111” for order 𝑚 = 3. Therefore, the first step in the “FibDecode”

method is the removal of the suffix of 𝑚 consecutive ‘1’s from the end of 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 if

Figure 5.18 Flowchart to decode a Base-9 label

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

106

the Fibonacci code is of order 𝑚 > 2. After that, if 𝑚 > 2, the last bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 will be

either ‘0’ for any integer 𝑥 > 1 or empty for 𝑥 = 1, since 𝐹(𝑚)(1) is exactly 𝑚-

consecutive ‘1’s, whereas for order 𝑚 = 2, the last bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is always ‘1’.

According to the remaining value of the 𝐹𝑖𝑏𝐶𝑜𝑑𝑒, the “FibDecode” method processes

by these steps to obtain the integer, 𝑥:

1. Set 𝑥 to 0.

2. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size 0, this indicates 𝑥 is 1.

3. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size 1, then 𝑥 is 2.

4. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size greater than 1, parse 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 bit by bit (except for the last

bit) and if the 𝑖𝑡ℎ bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is ‘1’ then keep incrementing 𝑥 by the 𝑖𝑡ℎ

Fibonacci number of order 𝑚; i.e., 𝐹𝑖
(𝑚)

 (see Section 4.5.1).

5. If 𝑥 > 2 , then consider the Fibonacci sum (Section 4.5.1) and add 𝑆𝑝𝑜𝑠−1
(𝑚)

 to 𝑥,

where 𝑝𝑜𝑠 is the position of the last ‘1’ bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒.

The Fibonacci decoding process has the capability to facilitate query processing as

examined in this thesis (see Chapters 6 and 7). As discussed in Chapter 2, the core of

the query processing is the determination of the structural relationships between any

Figure 5.19 The algorithm of the “𝑭𝒊𝒃𝑫𝒆𝒄𝒐𝒅𝒆” method

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

107

two nodes directly through their XML labels. The next section shows how the Base-9

labelling scheme handles the determination of the main structural relationships.

5.8 Relationship Determination

Being a prefix-based labelling scheme, Base-9 follows the same technique for

identifying the structural relationships as described in Section 3.4. The containment of

the path information within each Base-9 label facilitates query processing. The

determination of the main structural relationships works as follows:

Level order: assuming the first level is the root level, which is counted as level 0, then

the number of delimiters “.” within the Base-9 label of a node corresponds to the level

of that node. For example, the element “Outline” (in the XML tree in Figure 5.1)

labelled as “0.4.2.3” is located in level 3 because the label contains a total of three

delimiters.

Parent-child relationship: a node 𝑢 is the parent of a node 𝑣 if, and only if, 𝑙𝑎𝑏𝑒𝑙(𝑢)

is the prefix of 𝑙𝑎𝑏𝑒𝑙(𝑣) and 𝑙𝑒𝑣𝑒𝑙(𝑣) = 𝑙𝑒𝑣𝑒𝑙(𝑢) + 1. For example, in Figure 5.1 the

element “Outline” with label “0.4.2.3” is the father of the element “Topic” labelled

“0.4.2.3.2”.

Ancestor-descendant relationship: a node 𝑢 is an ancestor of a node 𝑣 and the

node 𝑣 is descendant of the node 𝑢 if, and only if, 𝑢 ≠ 𝑣, 𝑙𝑎𝑏𝑒𝑙(𝑢) is the prefix of

𝑙𝑎𝑏𝑒𝑙(𝑣), and 𝑙𝑒𝑣𝑒𝑙(𝑣) > 𝑙𝑒𝑣𝑒𝑙(𝑢) + 1. For example, in Figure 5.1 the element

“Class” labelled “0.4” is an ancestor of the elements “Outline” and “Topic”, labelled

“0.4.2.3” and “0.4.2.3.2”, respectively.

Lowest common ancestor (LCA): the LCA node 𝑤 is the shared ancestor of nodes

𝑢 and 𝑣 located farthest from the root. The LCA relationship between nodes 𝑢 and 𝑣 is

only determined when neither node is an ancestor of another, and both 𝑙𝑎𝑏𝑒𝑙(𝑢) and

𝑙𝑎𝑏𝑒𝑙(𝑣) start with the same longest prefix, which is equal to 𝑙𝑎𝑏𝑒𝑙(𝑤). For instance, in

Figure 5.1 the element “Class”, labelled “0.4”, is the LCA between the element

“Outline”, labelled “0.4.2.3” and the element “Books”, labelled “0.4.3.3.4”.

Sibling relationship: nodes 𝑢 and 𝑣 are siblings if both nodes share the same

parent and are at the same level in an XML tree. Determining the pre-order sibling

among nodes 𝑢 and 𝑣 is based on the lexicographical order of their self-labels. As an

example, in Figure 5.1 the elements “Area” and “Outlines” are siblings because both

are in the same level and share the same parent “Tutor”. However, “Area” is a pre-

Chapter 5: Base-9 Labelling Scheme for Dynamic XML Data

108

order sibling to “Outline” since 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙(“𝐴𝑟𝑒𝑎”) = “2” is lexicographically less than

𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙(“𝑂𝑢𝑡𝑙𝑖𝑛𝑒”) = “3”.

Document Order: there are three scenarios where a node 𝑢 appears before a node 𝑣

in an XML tree: if the node 𝑢 is either a parent, an ancestor or a pre-order sibling to

the node 𝑣. If none of these relationships exist between 𝑢 and 𝑣, then determining

which node appears before the other depends on their labels, as follows:

1. First, remove any shared prefix from 𝑙𝑎𝑏𝑒𝑙(𝑢) and 𝑙𝑎𝑏𝑒𝑙(𝑣).

2. Then, compare the self-label of the first remaining components

lexicographically. The smaller value indicates that the first node appears in

document order.

For instance, let us consider the elements “Outline” (labelled “0.4.2.3”) and “Books”

(labelled “0.4.3.3.4”). After removing the longest shared prefix “0.4”, the remaining

labels of “Outline” and “Books” are “2.3” and “3.3.4”, respectively. Now, the first

component’s self-label in “Outline” is “2” and in “Books” is “3”. As “2” is

lexicographically smaller than “3”, “Outline” appears before “Books” in the XML tree.

5.9 Conclusion

This chapter has presented a newly proposed dynamic XML labelling scheme named

the Base-9 scheme, referring to the set of 9 decimal digits {1, 2, … , 9} used to initialise

XML labels. The initialisation and the insertion mechanisms are designed based on

lexicographical order, whereby digit ‘0’ is used for generating new labels when the

XML is updated. This chapter also covered how the insertions methods of the Base-9

scheme support re-using any available deleted node labels. Then, it was

demonstrated how the Fibonacci coding can be applied for encoding and decoding

the Base-9 labels. Finally, the determination of different structural relationships in the

Base-9 scheme was described. The next chapter discusses the implementation of the

proposed Base-9 labelling scheme as regards the various aspects presented in this

chapter.

Chapter 6: Experimental Design and Implementation

109

Chapter 6: Experimental Design and

Implementation

6.1 Introduction

The previous chapter introduced a new XML labelling scheme based on the principles

of the SCOOTER labelling scheme (discussed in Chapter 3) but with an emphasis on

enhancing the compact and dynamic aspects. In order to evaluate the performance

and reliability of the proposed scheme, several experiments were carried out over

various XML datasets. Each experiment was run on both the proposed Base-9

scheme and the SCOOTER scheme for optimal comparison of their performances.

This chapter describes the design details and objectives of these experiments as well

as the datasets used for the evaluation process.

As mentioned in Chapters 1 and 4, this thesis also studies the possibility of

compressing XML labels using the prefix-encoding methods presented in Chapter 4.

Hence, further experiments were conducted to test these methods on some of the

existing labelling schemes, as explained in this chapter.

The remainder of this chapter is structured as follows: the next section presents a

general description of the strategy behaind the experimental design. Section 6.3

provides an overview of the current evaluation system of XML labelling schemes.

Section 6.4 gives a review on the existing experimental XML datasets used for

assessment purposes. In Section 6.5, the evaluation framework is set out, and then

presented in detail as follows: the selection of datasets in Section 6.5.1, and the

experimental design and objectives in Section 6.5.2. The implementation of the XML

label compression study is explained in Section 6.6. The implementation platform

setup is given in Section 6.7. Finally, this chapter is concluded with Section 6.8.

6.2 The Overall Experimental Design

The main aim to running the experiments explained in this chapter was to assess the

research hypothesis stated in Chapters 1 and 5. These experiments were designed to

test whether the Base-9 scheme introduced in Chapter-5 met the standards required

to be classified as a fully dynamic XML labelling scheme (see Chapter-3). The setup

of the experiments was constructed based on the details illustrated in Chapter-5 to

Chapter 6: Experimental Design and Implementation

110

confirm that the proposed scheme’s design and implementation met the objectives

and requirements discussed in Chapter-1. Six main experiments were conducted to

evaluate the Base-9 scheme’s validity, functionality, scalability, efficiency, and

performance:

 Label Initialisation

 Handling insertions

 Re-using deleted node’s labels

 Label encoding

 Relationship determination

 Querying performance

For the performance comparison between other XML dynamic labelling schemes, the

SCOOTER labelling scheme (O’Connor and Roantree, 2012) was chosen, as it is the

foundation on which the Base-9 scheme is formed (see Chapter-5). Thus, the

SCOOTER labelling scheme was also implemented from scratch following its design

details, as presented in the work of (O’Connor and Roantree, 2012) and discussed in

Section 3.4.3. All the six experiments were run using each scheme to test their

characteristics and performance against each other. Section 6.8 presents the design

details of these experiments, as based on their objectives.

To gain a fair assessment of the Base-9 scheme, it must be compared with other

existing labelling schemes over the same test-bed. Therefore, it is important to first

investigate the existing evaluation framework.

6.3 Evaluation of XML Labelling Schemes: An Overview

Obviously, from the XML labelling schemes discussion in Chapter-3 it can be seen

that no two labelling methods share exactly the same characteristics. According to the

fundamental properties required for a complete dynamic labelling scheme (see

Section 3.2), each labelling scheme available in the literature is limited in one aspect

or another. Unfortunately, there is no existing standard evaluation framework that can

be used by XML labelling scheme designers to provide a comprehensive analysis of

their labelling approaches’ properties.

In (O'Connor and Roantree, 2010a), the authors outlined the general advantages and

disadvantages of a number of XML labelling schemes. The aim of O'Connor and

Roantree’s work (O'Connor and Roantree, 2010a) was to generate a list of essential

properties for XML update mechanisms. Based on these properties, those authors

Chapter 6: Experimental Design and Implementation

111

presented a possible evaluation framework to compare a number of the existing XML

labelling schemes. However, the feature classification of the schemes was based on

the experimental results presented by the designers of these labelling schemes. As

there is no standard evaluation method in the literature; researchers evaluated their

own labelling schemes according to the main objectives underlying the design of their

particular labelling method. Consequently, many researchers ignored the evaluation of

all the desirable properties required for an effective labelling scheme (see Section

3.2). For example, LSDX’s authors (Duong and Zhang, 2005) only illustrated the

query performance in a theoretical sense, and did not evaluate it experimentally.

Based on their theoretical concept, (O'Connor and Roantree, 2010a) indicated in their

evaluation framework that LSDX fully supports XPath evaluation properties. However,

later (Sans and Laurent, 2008) and (Khaing and Ni Lar, 2006) have shown that LSDX

generates redundant labels leading to ambiguous XPath query expressions.

Furthermore, the properties listed by (O'Connor and Roantree, 2010a) are very

general and do not state the means by which each labelling scheme should be

evaluated to unify the experimental mechanism and ensure a reliable comparison

between the existing labelling schemes in terms of their required dynamic properties.

There is no existing standard framework for evaluating dynamic XML labelling

schemes. Since all the available labelling schemes are built to enhance one or more

aspects of other labelling schemes, the evaluation process is basically one of

comparing the performance of these aspects only between the proposed scheme and

other labelling schemes. For example, in (Assefa and Ergenc, 2012), the authors

compared the label sizes and labelling time of their proposed OrderBased labelling

method with the LSDX (Duong and Zhang, 2005) and Com-D (Duong and Zhang,

2008) schemes purely because all these labelling schemes are of an alphanumeric

data type (see Section 3.4), whereas, (O’Connor and Roantree, 2012) compared the

performance of their proposed SCOOTER labelling scheme with QED (Li and Ling,

2005b), Vector-based (Xu et al., 2007), and V-CDBS (Li et al., 2008) because they all

have the ability to process frequent skewed insertions.

As mentioned in Chapter 3, a dynamic XML labelling scheme is considered effective if

it is deterministic, efficient, compact and dynamic. The following sections illustrate the

state-of-the-art of different evaluation approaches applied to dynamic XML labelling

schemes.

Chapter 6: Experimental Design and Implementation

112

6.3.1 Determining Relationships and Query Efficiency

Determining the common structural relationships between nodes is a core process in

facilitating XML queries. Most of the XML labelling schemes have described how each

structural relationship can be established from their labels from a theoretical

perspective, but not all of them have had the performance of such a determination

actually tested. ORDPATHs (O'Neil et al., 2004), DPESP (He, 2015), Persistent

(Khaing and Ni Lar, 2006), Cohen’s (Cohen et al., 2010), VLEI (Kobayashi et al.,

2005), Dynamic XDAS (Ghaleb and Mohammed, 2015), LSDX (Duong and Zhang,

2005), QED (Li and Ling, 2005b), EBSL (O’Connor and Roantree, 2010b), and

SCOOTER (O’Connor and Roantree, 2012) did not demonstrate any testing of query

performance, whereas, the OrderBased labelling scheme (Assefa and Ergenc, 2012)

examined only the determination of ancestor/descendant relationships between

nodes. Other labelling schemes such as DDE (Xu et al., 2009), (Liu et al., 2013), and

DPLS (Liu and Zhang, 2016) evaluated the XML query process by determining the

relationships over thousands of randomly-selected label pairs.

The most common evaluation approach used to test the performance of XML querying

is by studying the ordered and unordered queries over the Shakespeare’s plays data

set using XPath expressions, as proposed by (Tatarinov et al., 2002). Where (Wu et

al., 2004) and (Li and Ling, 2005a) applied all nine queries from (Tatarinov et al.,

2002). Whilst (Hye-Kyeong and SangKeun, 2010), (Yun and Chung, 2008), and (Li et

al., 2008, Li et al., 2006a) processed only some of Shakespeare’s queries. These

queries mainly represent parent/child, ancestor/descendant, following and preceding

siblings (Tatarinov et al., 2002).

In reality, retrieving and decoding XML labels usually affect the overall XML querying

process. Therefore, it is important to consider the decoding time as part of the

structural relationship determination between nodes. Unfortunately, up to now the

decoding mechanism has been neglected completely when evaluating the relationship

determination and querying the efficiency of XML labelling schemes.

Recently, most of the XML labelling schemes proposed have focused on supporting a

dynamic XML environment and simultaneously controlling the label size to overcome

the overflow problem (Chapter 4, Section 4.3). Therefore, their evaluation experiments

were mainly designed to test the effects of XML updates (particularly insertions) over

the generated labels in terms of the storage size, as discussed in the following

section.

Chapter 6: Experimental Design and Implementation

113

6.3.2 Compact and Dynamic Labels

The main disadvantage of the labelling schemes available in the literature is the

growth of label sizes as the XML tree depth and/or the fan-out of the XML tree

increases (see Chapter 3). Therefore, most research has considered supporting new

node insertions whilst maintaining the labels sizes. The evaluation experiments in

such labelling schemes focused more on measuring label size before and after

insertions, such as in DDE (Xu et al., 2009), (Liu et al., 2013), and DPLS (Liu and

Zhang, 2016), Fractional (Mirabi et al., 2012), V-CDBS (Li et al., 2008), SCOOTER

(O’Connor and Roantree, 2012), and Modulo-based labelling (Al-Shaikh et al., 2010).

In terms of assessing the compactness property, almost all the existing XML labelling

schemes have measured the initialisation/insertion time and the generated labels’

sizes. Although some of these schemes have defined the encoding methods used for

storing their labels in memory, they all neglected the computing of the actual label

sizes occupied after encoding. Thus, the efficiency of the encoding methods used to

store XML labels has never been evaluated.

In terms of XML updates, there is also no existing universal evaluation technique to

measure the scalability of XML labelling schemes. Some labelling schemes have run

uniform and skewed insertions, but mostly between two sibling nodes, such as in DDE

(Xu et al., 2009), V-CDBS (Li et al., 2008), QED (Li and Ling, 2005b). Since the main

drawback of current XML labelling schemes is the lack of support for skewed

insertions, some researchers have tested the XML update performance only over

skewed insertions, as in SCOOTER (O’Connor and Roantree, 2012), Fractional

(Mirabi et al., 2012) and DPLS (Liu and Zhang, 2016). Other labelling schemes

proposed their own evaluation systems (see Appendix A). For example, OrderBased

(Assefa and Ergenc, 2012) computed the time required to insert sub-trees

immediately under the root node. IBSL (Hye-Kyeong and SangKeun, 2010)

investigated leaf node insertions only, whereas, many XML labelling schemes only

illustrated the XML update in a theoretical sense, e.g., ORDPATHs (O'Neil et al.,

2004), Com-D (Duong and Zhang, 2008), Persistent (Khaing and Ni Lar, 2006),

Cohen’s (Cohen et al., 2010), VLEI (Kobayashi et al., 2005), and EBSL (O’Connor

and Roantree, 2010b).

Furthermore, the existing XML labelling schemes have been evaluated based on one

or more of the available experimental XML datasets (illustrated in Section 6.4). The

selection of the dataset in each case was made by the schemes’ designers, and was

Chapter 6: Experimental Design and Implementation

114

based on the aims of their research. Some labelling schemes specified their own

characteristics over datasets via the generator tools provided by XML benchmarks.

Others carried out their assessments on at least one of the experimental real-life

datasets available on the XML Data Repository website (Suciu, 2002). All of the

existing experimental XML datasets represent various features of XML trees such as

file sizes, total number of available nodes, maximum depth, the degree of fan-out, and

number of files per benchmark dataset (see Table 6.1 and Table 6.2). The following

section presents an overview of the existing experimental XML datasets.

6.4 A Review of Current Experimental XML Datasets

In XML database management, XML datasets are tools for evaluating the

performance of new XML systems (Schmidt et al., 2001a). There are, generally

speaking, two types of experimental XML datasets: real-life XML datasets and XML

benchmarks. A real-life dataset is a single validated XML document whose design is

based on real public data. An XML benchmark is a tool used to generate synthetic

datasets in XML format with different sizes as required by the experimental evaluation

criteria. Each XML benchmark provides a range of query-sets simulating real-world

scenarios to assess new XML systems. Therefore, the XML benchmark supports a

comparison between the XML approach developed against the existing XML

technology in terms of the query processing and storage techniques (Schmidt et al.,

2001a). In order to assess the selection of appropriate datasets for the experimental

implementation in this thesis, it is necessary to first provide an overview of existing

synthetic XML benchmarks and real-life XML datasets.

6.4.1 Existing XML Benchmarks: An Overview

Existing XML benchmarks were designed with XML data storage and XML querying

as their main considerations (Schmidt et al., 2001a). In general, XML benchmarks are

categorised into application benchmarks (Schmidt et al., 2002) (Yao et al., 2004) and

micro benchmarks (Runapongsa et al., 2006a). The application benchmarks were

developed to evaluate the overall functioning of an XML database. By comparison,

micro benchmarks focus on the assessment of the query-able aspects within an XML

database. This section briefly describes the most widely used XML benchmarks, and

Table 6.1 summarises the basic properties of these benchmarks.

Chapter 6: Experimental Design and Implementation

115

 XMark Benchmark:

The XMark benchmark was designed by (Schmidt et al., 2002) and it is commonly

used for the assessment of XML applications by the XML development community

(Davis et al., 2003) (Wang et al., 2003) (Arion et al., 2004) (Lawrence, 2004) (Chen et

al., 2006) (Li et al., 2007) (Lee et al., 2010). This benchmark can generate various

sizes of XML dataset along with the query-set that comprehends most of the XML

query-able aspects using the generator tool XMLGen (Kochmer and Frandsen, 2002).

Each XMark dataset is generated as a single file simulating the data of an online

auction website in such a way that it makes the contents of the XMark data self-

explanatory. The size of the XMark database generated is controlled via a scaling

factor to allow developers the flexibility to regulate their datasets according to their

needs. The XMark data generator is available via the XMark project website (Schmidt,

2003). Regardless of the size of an XMark database, it is always presented in an XML

tree of depth twelve that has a repetitive structure with a reasonable number of

recursions (Chen et al., 2005) (Zhang et al., 2005). In terms of scalability assessment,

XMark datasets can effectively evaluate different performance aspects of an XML

system. Although the XMark query-set does not consider update transactions, there

are twenty queries carefully designed by (Schmidt et al., 2001a) to address search

transactions (Schmidt, 2003).

 XBench Benchmark:

XBench (Yao et al., 2004) is a template-based XML benchmark that generates a wide

range of XML databases. Four types of XML database can be created by the “toXgen”

tool (Yao et al., 2004) as follows: data-centric/single-document database (DC/SD),

text-centric/single-document database (TC/SD), data-centric/multiple-document

database (DC/MD), and text-centric/multiple-document database (TC/MD). This

benchmark can provide a variety of XML databases of fixed sizes: small (10 MB),

normal (100 MB), large (1 GB) and huge (10 GB) (Yao et al., 2004). The depth of the

generated XML database is restricted by a parameter that takes only a limited range.

Like XMark, this benchmark also provides twenty queries considering only search

transactions.

 XOO7 Benchmark:

The Object Oriented RDBMS benchmark OO7 (Carey et al., 1993) was adapted and

enhanced into the XOO7 XML benchmark by Li et al (Li et al., 2001) to support the

XML environment. The data and the query-set of the OO7 were also adjusted so as to

be employed by the XOO7 XML benchmark, which is available on the XOO7

Chapter 6: Experimental Design and Implementation

116

Benchmark website (Bressan et al., 2003). XOO7 creates XML data as a single XML

file of small, medium, or large size. Regardless of the size of the XML database

generated, the depth of the XML tree is always five; such restrictions on XOO7

dataset features (i.e., size and depth) limits the assessment of scalability. The query-

set of XOO7 contains twenty-three queries supporting only search transactions.

 XMach-1 Benchmark:

Unlike the benchmarks mentioned earlier, the XMach-1 benchmark (Böhme and

Rahm, 2003) was developed as a multi-user XML database management system

based on a Web-based application scenario. The structure of this benchmark contains

four main parts: the XML document, servers, loaders and browser clients. The

XMach-1 database is a collection of a large number (between 104 and 107) of small

XML files whose maximum possible depth is six. Depending on the number of XML

files, the overall size of the generated XMarch-1 database varies from 2 KB to 100

KB. Such small XML datasets plus the depth variation restriction, makes this

benchmark unsuitable for assessing large-scale implementations and/or scalability

testing. The XMach-1 benchmark provides eleven queries, eight of which cover

search transactions whilst the remaining three focus on update transactions (Böhme

and Rahm, 2000) (Böhme and Rahm, 2001). However, this query-set does not

support the majority of essential XML transactions identified by (Schmidt et al.,

2001a), such as path traversal, joins, and aggregation. This benchmark can be

obtained from the website of XMach-1: A benchmark for XML Data Management

(Böhme and Rahm, 2000).

 The Michigan Benchmark:

The Michigan Benchmark (Runapongsa et al., 2006a) was developed as a micro

benchmark to examine specific system properties (Yao et al., 2004). Hence, unlike the

others, this benchmark helps designers focus on the parts of their systems that need

enhancement (Al-Zadjali and North, 2016). The dataset generated by the Michigan

benchmark is a single file with at least 728,000 total nodes, which can be multiplied up

to 100 times. Regardless of the total number of nodes, the depth of this dataset is

sixteen, whereas the breadth varies at each level from two to thirteen nodes based on

the fan-out parameter set by the designer. In reality, the regularity of XML data is

unpredictable and so the distribution of nodes’ fan-out within each level avoids the

consideration of a number of essential XML database features. The Michigan

benchmark source can be accessed via its project website (Runapongsa, 2006b). The

Chapter 6: Experimental Design and Implementation

117

source also includes the thirty-one queries on the Michigan’s query-set, of which

twenty-eight are search queries and three cover update queries.

 TPoX Benchmark:

(Nicola et al., 2007b) introduced the Transaction Processing over XML (TPoX)

benchmark as an application benchmark that aims to assess the entire XML system.

In the TPoX benchmark, the XML generation tool, “ToXGene” (Nicola et al., 2007c), is

used to create XML datasets. ToXGene employs templates to define the features of

the XML database produced. The database is generated as a collection of small XML

files with sizes ranging from 2 KB to 20 KB based on the schema used (Nicola et al.,

2007b). Generally, the TPoX benchmark provides three XML schemas to control the

size of the XML files by stating the depth and the breadth required of these files. In

contrast to other benchmarks, the TPoX query-set consists of seventeen queries that

focus mainly on update transactions rather than search transactions. The benchmark

can be found on its project website (Nicola et al., 2007b).

Chapter 6: Experimental Design and Implementation

118

Table 6.1 Features of the most common XML benchmarks

Benchmark
Name

XMark XBench XOO7 XMach-1 Michigan TPoX

Type Application
Level

Application
Level

Application
Level

Application Level Micro Application Level

Number of XML
files in Dataset

1 Mixed: (1 or
more)

1 Multiple

(104, 105, 106, or
107) files

1 Multiple: range

from 3.6 𝑋 106 to

3.6 𝑋 1011

Dataset Size Varies from
small (KB) to
huge (GB)

Small (10MB)
Medium
(199MB)
Large (1GB)
Huge (10GB)

Small (500B)
Medium (1000B)
Large (1000B)
but with more
nodes

Varies from 2KB to
100KB per XML file

Min (default):
728,000
nodes
Max: 100
times default

Varies from 2KB
to 20KB per XML
file

Schema of XML
file

DTD of an
internet auction
database

DTD/XSD DTD derived
from OO7
relational
schema

DTD of Data with
Chapters,
paragraphs and
sections

DTD/XSD of
the recursive
element

XSD

Average/Max
Depth

6/12 Limited by
depth
parameter

5/7 3/6 5/16 Controlled by the
application’s
template

Number of
search queries

20 20 23 8 28 7

Number of
update queries

0 0 0 3 3 10

Chapter 6: Experimental Design and Implementation

119

6.4.2 Existing XML Real-Life Datasets: An Overview

In contrast to synthetic datasets (see Section 6.4.1), real-life datasets contain

real data and structures that facilitate the evaluation process. This section

provides an overview of the most widely used real-life datasets for XML system

assessments. The real-life datasets presented in this section can be obtained

from the XML Data Repository website (Suciu, 2002); Table 6.2 outlines their

main features.

 Protein Sequence Database:

This database was developed by Georgetown University as a resource for

integrated bioinformatics, comprising information on protein sequences. This

dataset is a large-scale XML file of size 683 MB, which creates a broad and

regular XML tree structure of shallow depth and expands up to seven levels

(Wong et al., 2007). The protein sequence database has been employed by

several applications to evaluate the performance of XML systems, such as for

XML storage (Wong et al., 2007), processing XML streams (Green et al., 2003)

(Jittrawong and Wong, 2007) (Wong et al., 2007), and filtering (Suciu, 2002)

(Silvasti et al., 2009).

 DBLP Database:

The Digital Bibliography Library Project (DBLP) database (DBLP, 2013) is a

large-scale XML document comprising actual bibliographic data about computer

science publications. The information stored includes major conferences papers

(e.g., PODS, VLDB, ICDE), journals (e.g., CACM, TODS, TOIS), series (e.g.,

LNCS/LNAI, IFIP), and books pertaining to the topic of computer science (Suciu,

2002) (DBLP, 2013). Several XML database applications (Al-Badawi, 2010)

(Liefke and Suciu, 2000) (Wang et al., 2003) (Lawrence, 2004) (Xu and

Papakonstantinou, 2005) (Chen et al., 2006) (Li et al., 2007) have used the

DBLP database to evaluate the development of their XML systems. Like the

protein sequence dataset, the DBLP has a simple, shallow and broad XML tree

structure (Lee et al., 2010) (Chen et al., 2006). The size of the DBLP database

reached 1.1 GB in March 2013 (DBLP, 2013), whereas a smaller version of the

same dataset, with a size of 127 MB, is available on (Suciu, 2002).

Chapter 6: Experimental Design and Implementation

120

 NASA Database:

As a part of the GSFC/NASA XML project, the NASA dataset (NASA, 2001) is

designed from a flat file format and contains actual astronomical data. This XML

dataset is 23 MB (Suciu, 2002) (NASA, 2001) with a shallow XML tree structure

that presents only 18 recursive elements (Onizuka, 2003). It is widely used for

evaluating XML applications in terms of XPath and XML query processing (Green

et al., 2003) (Jittrawong and Wong, 2007) (Wong et al., 2007) (Onizuka, 2003)

(Zhang et al., 2005), filtering (Silvasti et al., 2009), searches (Lee et al., 2010),

indexing methods (He and Yang, 2004), and XML labelling (Xu et al., 2009) (Liu

et al., 2013) (Liu and Zhang, 2016) (He, 2015).

 Treebank Database:

The Treebank database was implemented by the Computer and Information

Science Department at the University of Pennsylvania. It contains English

sentences that are interpreted for linguistic structure and has a file size of 82MB

(Suciu, 2002) (Treebank, 1999). In order to maintain the copyright of the text

nodes, this dataset has been partially encrypted in such a way as to leave the

XML structure unaffected. The deep recursive structure of the Treebank

database makes it both an interesting and challenging case for XML

experimental evaluation (Chen et al., 2006) (Onizuka, 2003) (Wong et al., 2007)

(Chen et al., 2005). Moreover, this XML database is considered a complicated

dataset because its XML tree covers a huge number of 386,614 nested

structures (Onizuka, 2003). Consequently, the Treebank dataset is frequently

used for assessment of XML applications (Liefke and Suciu, 2000) (Onizuka,

2003) (Green et al., 2003) (Chen et al., 2006) (Steedman et al., 2003) (Wong et

al., 2007) (Chen et al., 2005) (Li et al., 2007).

 Sigmod Record Database:

This dataset contains actual data about a number of articles published on the

ACM SIGMOD website. Unlike the other real-life datasets, Sigmod record

(Merialdo., 1999) is a comparatively small database with an XML file size of

about 0.5 MB (Suciu, 2002). Therefore, it is preferentially used to evaluate XML

system performance over small XML databases (Mirabi et al., 2012) (Lee et al.,

2010) (Hye-Kyeong and SangKeun, 2010) (Li et al., 2007) (Rafiei et al., 2006)

(Lawrence, 2004) (Li and Moon, 2001).

Chapter 6: Experimental Design and Implementation

121

Table 6.2 Features of the most common XML real-life databases

Database
Name

Protein
Sequence

DBLP NASA Treebank Sigmod
Record

Dataset Size 683MB 127MB 23MB 82MB 467 KB

Number of
Elements

21,305,818 3,332,130 476,646 2,437,666 11,526

Number of
Attributes

1,290,647 404,276 56,317 1 3,737

Avg/Max
Depth

5.15/7 2.90/6 5.5/8 7.8/36 5.14/6

6.5 The Guideline for Experimental Assessment

As discussed in Section 6.3, there is no standard framework to evaluate the

functionality of an XML labelling scheme. This has led to a particular challenge in

verifying the proposed scheme’s reliability as a fully dynamic labelling scheme.

Therefore, it became essential to setup the evaluation criteria whilst designing

the experiments so that the research objectives of this thesis (stated in Chapters

1 and 5) can be achieved. The criteria below were identified with the intention of

providing a comprehensive assessment framework that covers the main aspects

of a dynamic XML labelling scheme. Hence, the need for the following

experimental evaluation standards are discussed next.

6.5.1 The Selection of Experimental Datasets and Queries

Due to the lack of a standard evaluation framework (see Section 6.3), the choice

of experimental XML datasets from those presented in Section 6.4 was made

based on the objectives of these experiments (stated in Section 6.5.2).

To ensure the scalability of the evaluation, it is necessary to take into

consideration the fact that the shape of the XML tree representing an XML

document may be reflected in the results. Therefore, the selection of the

experimental databases is based on the diversity of their XML tree features (i.e.,

size, depth, and breadth). Table 6.3 reports the properties of the experimental

datasets used in this thesis.

Chapter 6: Experimental Design and Implementation

122

Table 6.3 The properties of the experimental datasets selected

XML dataset File size Max depth Max breadth Total elements

NASA 23MB 8 80,396 47,664,6

Treebank 82 MB 36 144493 2,437,666

DBLP 127MB 6 328858 3,332,130

XMark 111MB 12 25500 1,666,315

Due to the simple and realistic data contained within the real-life XML datasets,

these were selected in preference to synthetic datasets formed by XML

benchmarks (see Section 6.4.1). Among the real-life datasets reviewed in

Section 6.4.2, DBLP, Treebank and NASA were used for all the experiments in

this thesis. These datasets provide a collection of different XML tree structure

specifications (see Table 6.3). The DBLP dataset has a very large XML file size

with a shallow and wide XML tree structure. In contrast, the Treebank dataset

was selected due to its complex recursive structure that is represented as an

XML tree with high depth and low breadth. The NASA dataset provides an XML

tree of relatively average depth and average width. Since size variation is an

essential criterion for the evaluation’s scalability, the varying size of these three

genuine datasets makes the evaluation system more reliable.

XMark is the most common benchmark used for XML data management

(Franceschet, 2005) and XML labelling scheme evaluation (Lu et al., 2005b) (Xu

et al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016) (Mirabi et al., 2012). Thus,

XMark was selected for the experiment’s implementation in this thesis. XMark

was developed whilst taking into consideration the standardisation issues around

XML, particularly in terms of storing and querying (Schmidt et al., 2002). It

provides a framework for evaluating XML databases via different query types

(Runapongsa et al., 2006a).

Due to its scalability, the XMark benchmark provides a comprehensive set of

queries; each was designed to highlight intuitive semantics (Schmidt et al.,

2002). XPathMark queries (Franceschet, 2005) have been designed for the

XMark Benchmark to include the main aspects of the XPath 1.0 language (see

Section 2.8.1). These queries are widely used in XML research such as that of

(Arroyuelo et al., 2015), (Benedikt and Cheney, 2009), (Genevès and Layaïda,

2006), and (Böttcher and Steinmetz, 2007). Four XPathMark queries were

selected to evaluate the query performance in this thesis. Table 6.4 reports the

details of these queries and their descriptions. These queries were chosen

Chapter 6: Experimental Design and Implementation

123

because the axis containment in each query represents the essential structural

relationships: - of Q1-parent/child, Q2-anscestor/descendent, Q3-following

sibling, and Q4 following/preceding (document order). Other axes can be

handled in a similar way to these axes (Min et al., 2009), so their evaluation was

omitted.

Table 6.4 The experimental queries set (adopted from (Franceschet, 2005a))

Query
number

Axis Type XPath and Description

Q1 Parent/child
Return the American items:
/site/regions/*/item [parent:: namerica or
parent:: samerica]

Q2 Ancestor/descendent
Find the mails containing a keyword:
//keyword/ancestor:: mail

Q3
Following/preceding
siblings

Allocate the preceding bidder of each open
auction:
/site/open_auctions/open_auction/bidder
[preceding-sibling:: bidder]

Q4
Following/preceding
elements (document
order)

Return items of the document (per region)
except the last one:
/site/regions/*/item[following::item;
item(level+2) of region]

In order to generate the XML labels that represent the XML tree structure of the

XML files used, the SAX parser was applied (see Section 2.5.2). This is due to

the better performance of the SAX parser over the DOM parser in terms of

manipulating large-scale XML documents. The DOM parser consumes memory

space and so restricts the XML file size used in such implementations (see

Section 2.5.1). Since the datasets selected for the experimental evaluation are

mostly large, as described in Table 6.3 above, the SAX parser was selected in

preference to the DOM parser.

6.5.2 Experimental Objectives

As mentioned earlier, the aim of the experimental implementation is to evaluate

the proposed Base-9 scheme as a fully dynamic XML labelling scheme. Hence,

the experiments were designed to test the functionality of the main features of a

good dynamic labelling scheme (see Section 3.2) over the proposed scheme.

Accordingly, each experiment was implemented with the intention of testing

some of these features on the Base-9 scheme. The experiments, along with their

objectives, are described individually below:

Chapter 6: Experimental Design and Implementation

124

6.5.2.1 Label Initialisation

This experiment was designed to test the initial labelling process focusing on two

main aspects: the time required to generate the initial labels of an XML document

and the growth in the size of the labels. The experiment was conducted over

several XML datasets (see Section 6.5.1) to study how the document features

(i.e. size, and its XML tree depth and breadth) affect the time and/or the size.

This experiment was applied separately for both the SCOOTER and the Base-9

labelling schemes. The results will be analysed in Chapter 7. Since the

initialisation mechanisms in both schemes are very similar, it should be expected

that the difference in the labelling time will be insignificant. As generating

sufficiently compact labels to fit in the main memory is one of the major

properties of a good labelling scheme, the growth rate of the labels size in each

scheme is of particular interest as a comparison factor. Since the proposed

scheme uses more digits than that of SCOOTER (see Section 5.5), it should be

expected that Base-9 will produce shorter labels and so consume less storage

capacity than SCOOTER.

6.5.2.2 Handling Insertions

This experiment was designed to test the extent to which the proposed scheme

can support XML updates, i.e., it focuses on the dynamic characteristic. This is

achieved by measuring the scheme’s scalability, particularly with regards to

handling insertions. Two types of insertions were applied: uniform insertions and

skewed insertions. Uniform insertion is basically the random insertion of new

sibling nodes within an XML tree (Liu et al., 2013) (Xu et al., 2009) (Xu et al.,

2007), in this instance with up to 50,000 nodes, whereas skewed insertions

refers to the repeated insertion of nodes at a fixed place within an XML tree (Liu

et al., 2013). The latter scenario was performed by inserting a large number of

nodes (up to 10,000 nodes) at a randomly selected position, with this process

being repeated 10 times. According to the random position selected, the insertion

algorithm (section 5.6) is applied as follows:

 If the selected node is the first child; then the “insertBeforeLeftMost”

method is invoked.

 If the selected node is the last child; then the “insertAfterRightMost” method

is employed.

Chapter 6: Experimental Design and Implementation

125

 If the selected node is a middle child; then the “insertBetweenNodes”

method is called.

For any type of insertions (uniform/skewed), two main factors were considered:

the growth in label size after insertion and the overall insertion time. This study

also considered how the number of nodes inserted could further affect these two

factors. While the proposed scheme handles insertions based on lexicographical

comparison rather than enforcing the adaptive growth mechanism of SCOOTER,

the expected result was that Base-9 would perform better in terms of time and

size.

6.5.2.3 Re-using Deleted Nodes’ Labels

The objective of this experiment is to test the ability to re-use deleted labels, if

any, in order to further limit the growth of the label’s size. For this experiment, the

DBLP dataset was used because it provides a wider range of sibling nodes. The

test was also carried out on 1,500 self-labels that were generated to represent

1,500 sibling nodes. The experiment was performed by first selecting a sample

label set of adjacent siblings’ nodes from the Base-9 labels and its corresponding

label set from the SCOOTER labels. From each label set, a group of 𝑛 sibling

nodes were deleted. The same 𝑛 number of nodes were then inserted in the

same positions as the 𝑛 deleted nodes. Three types of updates were tested:

delete and insert 𝑛 siblings before the first child, delete and insert 𝑛 siblings after

the last child, and delete and insert 𝑛 siblings between two nodes. For each type

of update, the original 𝑛 deleted labels and the new 𝑛 inserted labels were

recorded separately in two lists (e.g., by using two files or array-lists). Then the

percentage of the existing of the same labels in both lists was computed. Since

the proposed scheme allocates a new label that is lexicographically closest to the

label of the current node (see Section 5.6), it can be expected that the Base-9

scheme will re-use all the deleted labels.

6.5.2.4 Label Encoding

The aim of this experiment is to measure the storage capacity required to store

the labels generated before and after XML updates. The Base-9 labels were

encoded using Fibonacci coding (see Section 5.7), whereas the SCOOTER

labels were encoded by the QED encoding method (see Section 3.4). The effect

of the coding method applied by each scheme on storage size was studied for

Chapter 6: Experimental Design and Implementation

126

the initial labels. The time required to encode the initial labels was also recorded.

To examine whether the growth rate of the labels has any influence on the

encoding process, this experiment measured the encoded label size and time

after extensive skewed insertion (Section 6.5.2.2). As mentioned in Section 4.5,

the Fibonacci coding has proven to be a good choice for data compression,

whilst the QED codes may increase in size rapidly at about 2-bits per insertion

(see Section 3.4). Therefore, the expected result was that the Fibonacci code

used for the Base-9 labels would occupy less storage space than SCOOTER’s

encoded labels. On the other hand, due to the simplicity of the QED encoding

mechanism, it might be expected that the SCOOTER labels will be encoded

faster than the Base-9 labels.

6.5.2.5 Relationships Determination

As mentioned in Chapters 2 and 3, the main purpose of any XML labelling

scheme is to support query processing by determining the structural relationship

between any two nodes. This experiment was designed to measure how fast the

main structural relationships discussed in Chapter 2 can be established directly

from the labels before and after XML updates.

Out of the initial labels, 200,000 pairs of labels were chosen at random from the

first 15,000 labels in an XML dataset and the execution time for computing the

relationships between each pair was recorded. To test the determination after

insertions, the first 5,000 labels of an XML document were selected and then

10,000 nodes were inserted randomly over the selected set of labels. Using this

set, the execution time for computing the relationships between each of the

400,000 pairs chosen was again calculated. Researchers such as (Xu et al.,

2009) and (Liu et al., 2013) have performed similar studies over many datasets,

and have noted that the results were consistent for all XML datasets used. Thus,

this part of the experiment was performed using just the Treebank XML dataset

since it has the deepest recursive structure with a maximum depth of 36 (i.e.,

more ancestor/decedent nodes) and an average fan-out of 1623 (siblings),

providing a sufficient variety of structural relationships. The experiment was run

to test the determination of each relationship separately. Furthermore, the time

taken to determine the relationships between any two nodes were computed for

all the experimental datasets (see Section 6.5.1). The relationships tested were

those of parent/child, ancestor/descendent, sibling, LCA, and document order.

Chapter 6: Experimental Design and Implementation

127

This experiment also investigates whether the decoding process affects the

query processing both after and before insertions. Therefore, the same

experiment as above was conducted on all the experimental datasets (see

Section 6.5.1), but by randomly selecting 200,000 of the encoded labels (instead

of labels) from the first 15,000 encoded labels of an XML dataset. The

measurement of the decoding time was included as a part of the determination

process. All these experiments were run on the Base-9 and the SCOOTER

schemes. The results are presented in Chapter 7.

6.5.2.6 Query Performance

The objective of this experiment is to evaluate the performance of the main types

of XPath query on an XML-labelled dataset both before and after insertions.

These queries along with their purposes, were described in detail in Section

6.5.1. To process these queries in both the proposed scheme and the

SCOOTER scheme, the structural joins algorithm (Al-Khalifa et al., 2002) was

applied. Structural joins provides a special stack-tree algorithm for evaluating

XPath axes that work more efficiently in practice (Gottlob et al., 2005), and leads

to optimal join performance (Chien et al., 2002). Thus, efficient support for

structural joins is the key to the efficient implementation of XML queries (Chien et

al., 2002). Other XML labelling schemes also used structural joins for XML

querying such as:- those of (Min et al., 2009), (Lu et al., 2005b), (Lu and Ling,

2004) and (Mirabi et al., 2012). The expected result was that the difference

between the queries’ response time in both schemes would be insignificant.

The results obtained from the experiments are discussed and analysed

statistically in Chapter 7 in order to evaluate the Base-9 scheme’s performance.

Based on the analysis of these results, Chapter 8 presents further discussion on

the reliability of the specified criteria above as a standard evaluation guideline.

Besides the experiments described in this section to evaluate the proposed

scheme, further tests have been carried out to study the ability of prefix-encoding

techniques to compress XML labels. The experimental design and objectives of

the study are detailed in the following section.

6.6 XML Label Compression Using Prefix Encoding

The aim of this experiment is to study the possibility of compressing XML labels

via prefix encoding as presented in Section 4.5, in order to reduce the storage

Chapter 6: Experimental Design and Implementation

128

space and minimise the chances of overflow (see Section 4.3). As mentioned in

Chapter 4, several encoding methods have been applied by the existing XML

labelling schemes to store XML labels, but up to now, prefix encoding has not

been amongst them. The methodology of six of the most common prefix-

encoding methods were presented in Section 4.5. In this experiment, the

performances of these prefix-encoding techniques were tested in terms of

compressing and storing XML labels:

 Fibonacci coding of order 2.

 Fibonacci coding of order 3.

 Lucas coding.

 Elias-delta coding.

 Elias-Fibonacci coding of order 2.

 Elias-Fibonacci coding of order 3.

For this experiment, the three real-life datasets described in Section 6.5.1 were

used. To setup the XML labels model for testing proposes, two XML labelling

schemes were used: the Dewey order (Tatarinov et al., 2002) and the

SCOOTER scheme (O’Connor and Roantree, 2012). The selection of these two

schemes was based on the popularity of the Dewey scheme and the efficiency of

the SCOOTER scheme, as discussed in Chapter 3. For each dataset, the Dewey

and the SCOOTER labels were generated and then compressed and

decompressed separately by each of the six prefix-encoding methods. The

prefix-encoding methods were applied to encode the Dewey/SCOOTER XML

prefix-based labels in a similar manner to the mechanism used to encode the

Base-9 labels by Fibonacci codes (see Section 5.7), where the labels’

components were coded as long integers. To study the difference on the prefix

encodings’ performance over these labels, the original encoding methods

proposed by the designers of the Dewey and SCOOTER schemes were also

implemented for a better comparison. That is, UTF-8 for Dewey labels, and QED

for the SCOOTER labels (see Chapter 4).

In general, this experiment consisted of two main experiments to test the

performance of encoding and decoding for each prefix-encoding method. In

terms of encoding, the execution time and the code size were the two main

factors considered in the comparison of results. For the decoding process, the

Chapter 6: Experimental Design and Implementation

129

test focused on measuring the run time performance in order to assess the

fastest decoding method. To study the effect of the XML dataset size on the

compression process, Treebank and DBLP file sizes were reduced to 23 MB

(equal to the NASA file size) but their XML tree features were preserved, as

described in Table 6.3. The encoding and decoding experiments were then

repeated over these re-sized datasets and the results were compared with the

original ones.

The results of this experiment were published at the WEBIST 2016 conference

(Al-Zadjali and North, 2016), and are also presented in more detail in Chapter 7.

6.7 The Experimental Platform Setup

All experiments were performed on a laptop with a 2.40 GHz Intel Core™ i7-4500

CPU, 8.0 GB main memory and a Windows 10 64-bit operating system with a

x64-based processor. Both the proposed Base-9 scheme and the SCOOTER

scheme were implemented using Eclipse Java EE IDE version Luna 4.4 and

Java language JDK 1.7.

6.8 Conclusion

This chapter has illustrated the specifications and guidelines for the experimental

evaluation of the proposed scheme. It outlined the lack of a standard evaluation

framework for XML labelling schemes. Accordingly, the experimental settings

were designed to meet the objectives of the research hypothesis. Six sets of

experiments were applied to evaluate the scalability and the functionality of the

proposed scheme. Additionally, this chapter discussed the experimental details

of XML label compression using a prefix encoding study. The implementation

platform setup was stated and the selection of the datasets and queries were

determined based on the experimental XML datasets available. The results

obtained from these experiments are analysed in the next chapter.

Chapter 7: Experimental Results and Statistical Analysis

130

Chapter 7: Experimental Results and

Statistical Analysis

7.1 Introduction

Chapter 6 described the six experiments that were used to evaluate the

proposed Base-9 labelling scheme. They were designed to examine various

aspects of the scheme’s functionality, scalabitily and performance. The first

experiment evaluated the label initialisation process in terms of time and size.

The second and third experiments assessed the scheme’s ability to handle XML

updates. The fourth experiment focused on the compactness of the labels using

the Fibonacci coding method. The remaining two experiments were designed to

evaluate the scheme’s efficiency in terms of determining relationships and

querying performance. In addition, a further experiment was described in Chapter

6 to assess the performance of several prefix-encoding methods in terms of label

compression.

This chapter presents an analysis of the results obtained from these

experiments. The next section provides an overview as to how appropriate,

statistically significant results were obtained. Then, the statistical interpretations

of the results of each experiment are discussed individually. Finally, the chapter

concludes with Section 7.5.

7.2 Statistical Significance Analysis: An Overview

The concept of statistical significance was introduced by Ronald Fisher (Fisher,

1925). Statistically significant results are observed results which are unlikely to

have occurred purely by coincidence (Ali et al., 2010). There is always a finite

probability that the results obtained by the statistical tests could have occurred by

chance (Motulsky and Searle, 2003). This probability is referred to as the

𝑝 −value, and can be calculated as a minimum threshold of statistical

significance. If the 𝑝 −value obtained is less than the significance level (e.g., 𝑝 <

 0.05), then it can be concluded that the results reflect the characteristics of the

method(s) applied rather than sampling error (Sirkin, 2005).

Chapter 7: Experimental Results and Statistical Analysis

131

The term “null hypothesis” is usually used in relation to the 𝑝 −value. The null

hypothesis basically states that there is no difference between the methods

applied (Motulsky and Searle, 2003). The concept of statistical significance is the

minimum level of 𝑝 −value at which the null hypothesis can be rejected.

Statistically significant results are required in various areas of computer science

research, especially in the area of software verification and validation in which

randomised algorithms are widely used (Arcuri and Briand, 2014). A randomised

algorithm (Motwani and Raghavan, 1996) can be strongly affected by chance

since it will have at least one component based on randomness. For example,

when applying uniform insertions in an XML labelling scheme, the positions of

new nodes inserted are selected at random. Another example is when evaluating

the performance of algorithms based on execution time, which is itself affected

by many factors such as hardware configuration, loop transformation and the

number of threads (Li et al., 2005c). As randomness might affect the evaluation

of the efficiency of randomised algorithms, many researchers such as (Arcuri and

Briand, 2014) (Dybå et al., 2006) and (Grissom and Kim, 2005) developed

techniques to ensure reliability when analysing the performance of randomised

algorithms.

When an algorithm is developed to address a computer science problem, it is

common to compare it to existing alternative techniques, but the comparative

criteria must be first decided, such as label sizes and execution time. Based on

the research objectives, different measures (𝑀) can be chosen when attempting

to determine the efficiency or the cost of the algorithms. To enable statistical

analysis by 𝑀, the algorithms compared should be run independently a large

number of times to gather data on the probability distribution of 𝑀 for each

algorithm. The data being tested affects the probability distribution of 𝑀, which in

turn affects the statistical test used for the evaluation.

A statistical test can help to assess if there is enough experimental evidence to

assert the null hypothesis, i.e., if there is a difference between the algorithms

compared. Thus, the statistical test is intended to verify the acceptance or the

rejection of the null hypothesis. The selection of the appropriate statistical test

depends on two principle factors: the normality of the data distribution and the

number of algorithms being compared (i.e., two or more). In this thesis, the

normality of the execution time was tested using the graphical estimation of

normality by the Kolmogorov-Smirnov (K-S) test (Oztuna D, 2006) (Ghasemi and

Chapter 7: Experimental Results and Statistical Analysis

132

Zahediasl, 2012). For all the experiments, the 𝐾 − 𝑆 test results have shown that

the assumptions of residuals were not normally distributed, and so the non-

parametric statistical tests were carried out. Thus, the selection of non-

parametric statistical tests that are relevantly valid for each experiment in this

thesis was based on the number of algorithms to be evaluated.

 Non-parametric Statistical Tests for Pairwise Comparison:

The two most common non-parametric statistical tests applicable for evaluation

comparison between two algorithms are (LaMorte, 2016) the Wilcoxon rank sum

test (Wilcoxon, 1945) and Mann-Whitney U-test (Nachar, 2008). For pairwise

comparison these two tests allow the derivation of 𝑝-values when experimenting

with randomised algorithms. A low 𝑝-value (e.g., 𝑝 < 0.05) indicates the rejection

of the null hypothesis, which implies with a high level of confidence, that there is

a difference between the two algorithms. If so, then further factors have to be

considered to assess which algorithm performs better, such as the effect size

measure (Grissom and Kim, 2005).

A non-parametric standardised effect size measure is the Vargha and Delaney’s

�̂�12 statistic (Vargha and Delaney, 2000). �̂�12 determines the probability that a

running algorithm (say 𝐴) yields higher performance measures than running

another algorithm (say 𝐵). In comparison to other standardised effect size

measures, that of Vargha and Delaney is easier to interpret (Grissom and Kim,

2005); such that:

_ �̂�12 (𝐴, 𝐵) = 0.5 indicates that the two algorithms are equivalent.

_ �̂�12 (𝐴, 𝐵) = 𝑥 < 0.5 entails that 𝑥% of the time, algorithm 𝐴 performs

better than 𝐵, and vice versa for 𝑥 > 0.5.

As reported by (Vargha and Delaney, 2000) the formula derived by Vargha and

Delaney is applied in this research as follows:

�̂�12 (𝐴, 𝐵) = (
𝑅1

𝑚
−

(𝑚 + 1)

2
) 𝑛⁄

𝑅1 is the rank sum of the algorithm 𝐴 under comparison. The rank sum (Gibbons

and Chakraborti, 2011) is an essential component in the non-parametric

statistical tests, such as in the Wilcoxon rank sum test (Wilcoxon, 1945) and

Mann-Whitney U-test (Nachar, 2008), where 𝑚 and 𝑛 are the number of

observations in algorithms 𝐴 and 𝐵, respectively. To achieve more accurate

Chapter 7: Experimental Results and Statistical Analysis

133

statistical results, the two randomised algorithms should be executed the same

number of times; i.e., 𝑚 = 𝑛.

When the effectiveness of randomised algorithms is addressed, the choice of

artefacts (e.g., number of nodes inserted and the position of the insertion) is

important as it usually affects the assessment of results (Arcuri and Briand, 2014)

(McPherson et al., 2004). Analysing randomised algorithms over empirical data

raises the challenge of ensuring the credibility of the results. This consequently

questions the validity of the proposed algorithm, so making it difficult to

generalise the results to other untested systems or data. To achieve realism, a

large number of artefacts should be chosen to improve the validity of the

evaluation. For more reliable statistical results, there should be a balance

between the number of artefacts applied and how many times each artefact is

run (Arcuri and Briand, 2011). These numbers should be large enough to

maintain a statistically significant difference for each artefact when comparing

two randomised algorithms. (Arcuri and Briand, 2014) recommended that more

artefacts should be used since it is more important to address the target of the

problem and to execute fewer runs, even as low as 10 runs. For each artefact,

the non-parametric pairwise statistical test has to be performed and the overall

result indicates the effectiveness of the algorithms compared.

 Non-parametric Statistical Tests for Multiple Comparisons:

It is possible to deal with the comparison of multiple techniques by using a non-

parametric statistical test called the Kruskal–Wallis test (Vargha and Delaney,

1998), which is equivalent to the well-known parametric test ANOVA (Cuevas et

al., 2004). The Kruskal-Wallis test compares the mean rank for each technique in

relation to the comparison parameters (e.g., the number of runs for each

encoding method). In multiple comparisons, obtaining a low 𝑝-value means there

is very strong evidence to suggest a difference between at least one pair of the

techniques applied. In order to find out which technique gives the best

performance, the Manny-Whitney tests (Nachar, 2008) can be carried out on

every pairwise comparison between the individual algorithms. The results of the

“pairwise comparisons” show that there is very strong evidence of a difference

between the two methods if, and only if, 𝑝 < 0.001 (𝑝-value adjusted using the

Bonferroni correction (Armstrong, 2014)). As non-parametric tests are more

sensitive to medians than to means (Howell, 2012), comparison of the median

values gives a further indication of the methods’ effectiveness.

Chapter 7: Experimental Results and Statistical Analysis

134

The following sections provide a results analysis and discussion of the

experiments described in Chapter 6. For each experiment, an appropriate non-

parametric statistical test was selected as described above. In addition, the box

plot (McGill et al., 1978) charts were drawn to represent the statistical

significance between the methods graphically.

7.3 Experimental Results for the Base-9 Scheme

As mentioned previously, to evaluate a new scheme, it is necessary to compare

it against an existing scheme based on the chosen comparison criteria (Arcuri

and Briand, 2014). To compare the proposed Base-9 labelling scheme to the

SCOOTER labelling scheme, several experiments were performed in an attempt

to capture either the effectiveness or the cost of each scheme.

Many aspects have been considered in this comparison. These are: initialisation,

insertion, label re-usability, label encoding, structural relationship determination,

and query performance. To facilitate statistical analysis for each of these

aspects, both the Base-9 and SCOOTER algorithms were executed

independently a large enough number of times to assemble information on the

probability distribution of the required measurements, 𝑀, (i.e., code size and/or

execution time). A statistical test was then performed with the aim of deciding

whether the null hypothesis should be rejected or not. In this section, the null

hypothesis was defined as there being no difference between the Base-9

scheme and the SCOOTER scheme. For the time comparison, the first five runs

were excluded before counting the 𝑛 execution times to avoid cache memory

effects and to verify the accuracy and reliability of the results. As the normality of

the probability distribution of the randomised algorithms’ results had been found

to be negative using the K-S test (Oztuna D, 2006), a non-parametric statistical

test was selected for each experiment, as discussed below.

The next section describes how the evaluation of the initialisation process was

handled.

7.3.1 Label Initialisation

As explained in Chapter 5, the initialisation algorithm for the Base-9 labelling

scheme was adopted from SCOOTER. However, these two labelling schemes

differ in the number of digits available to generate labels, i.e., 9-digits in Base-9

Chapter 7: Experimental Results and Statistical Analysis

135

including 0, and only 3-digits in SCOOTER excluding 0. To investigate if this

adjustment has affected the initialisation time and the initial label sizes, the label

initialisation experiment was conducted as discussed in Chapter 6. The

significance of the results is discussed in the next section.

7.3.1.1 Analytical Strategy

Two main factors were considered when evaluating this experiment: the

initialisation time (in milliseconds) and label size (in Kbytes). As mentioned in

Section 7.2, the computation of the execution time falls into the category of

randomness. Therefore, it is important to identify the number of runs needed to

obtain a statistically significant difference between the initialisation algorithms of

both schemes. According to (Ali et al., 2010) and (Wegener et al., 2001), in order

to enable the analysis of a statistical hypothesis with minimal statistical power

(Dybå et al., 2006), the number of runs had to be at least 10. However, (Arcuri

and Briand, 2014) recommended using more runs (at least 30 runs) to improve

the accuracy of the statistical test. Hence, in every XML experimental dataset,

each initialisation algorithm was executed 100 times to achieve a more reliable

data analysis. As the comparison is based on two schemes, the non-parametric

Mann-Whitney U-test was selected to obtain the 𝑝-value. For further statistical

analysis, the effect size using the Vargha and Delaney �̂�12 measurement was

also computed.

In terms of evaluating the growth in label sizes, for each experimental dataset the

total label size was computed for both labelling schemes separately. As the

results were constant and unrelated to the number of runs, the total size for each

dataset was analysed graphically.

7.3.1.2 Results Analysis

 Initialisation Time:

Figure 7.1 shows the bar chart representing the median initialisation time (of 100

runs) required to label each XML experimental dataset individually by the Base-9

and SCOOTER schemes. As can be seen from the chart, there is a correlation

between time and number of elements in the dataset rather than the file size,

where the time increases as the number of elements increases. Notice from the

dataset properties (Table 6.3) that the XMark dataset is a larger file and has

Chapter 7: Experimental Results and Statistical Analysis

136

more elements than the Treebank dataset, but takes less initialisation time on

average compared to Treebank. This could be due to the deep complex and

recursive structure of the Treebank dataset.

For both schemes, the results were consistent for every XML dataset used. The

SCOOTER scheme performed slightly better than the Base-9 scheme in terms of

time (see Figure 7.1). The average difference between the execution time in the

two schemes was in the range 1.10% to 4.87%. To study the significance of the

results, the Mann- Whitney U-test was carried on for each dataset. The 𝑝- value

obtained was always as low as 0.01x10−7 (for all datasets), which implies the

rejection of the null hypothesis statement. This indicates there is a significant

difference between the two schemes in terms of initialisation time. In order to

investigate the preference in performance between the two schemes, the

effective size, �̂�12 (𝐴, 𝐵), was measured for each XML experimental dataset.

Knowing that group 𝐴 and group 𝐵 were presented as the SCOOTER and the

Base-9, respectively, the effective size �̂�12 value obtained was in the range [0,

0.03]. This confirms that the SCOOTER’s initialisation algorithm operates faster

than the Base-9’s initialisation algorithm.

Figure 7.2 shows the box plot distribution of the Base-9 and the SCOOTER

initialisation times for the XMark dataset. As the median line of the Base-9 box

appears higher than the median line in the SCOOTER’s box, this suggests that

the SCOOTER scheme generates initial labels faster than the Base-9 scheme.

Figure 7.1 Initialisation time comparison (Base-9 vs SCOOTER)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

NASA Xmark Treebank DBLP

In
it

al
is

at
io

n
 T

im
e

 (
m

s)

XML Dataset

Medians of Initialisation Time

Base-9

SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

137

Due to the consistency of the results, the box plot charts for the remaining

datasets can be found in Appendix B.

 Label Size:

The bar chart in Figure 7.3 shows an overall comparison between the Base-9

scheme and the SCOOTER scheme in terms of total label size generated for

each XML dataset used. It shows that the results are consistent in all datasets;

Base-9 labels are smaller than SCOOTER labels. Since the Base-9 scheme uses

logarithm of base ‘9’ rather than base ‘3’ as in SCOOTER, it is expected that the

total labels lengths will be reduced by about 30%. Table 7.1 shows the

percentage decrease in total label size for each dataset. Considering the two

different bases values used during initialisation process (i.e. 9 for Base-9 and 3

for SCOOTER), the total label lengths were converted to the same base 𝑥 = 2

and the results are presented in Table 7.1.

Figure 7.2 boxplots of the Base-9 and the SCOOTER initialisation times for the

XMark dataset

Chapter 7: Experimental Results and Statistical Analysis

138

Table 7.1 Total Label lengths comparison (Base-9 vs SCOOTER)

 Total labels size (no. of digits) Total label lengths in same base (2)

Dataset Base-9 SCOOTER different Base-9 SCOOTER difference

NASA 6882731 9467686 27.3% 21817741.1 15005927.3 31.2%

Treebank 45472288 59582496 23.7% 144143742.6 94436021.9 34.5%

DBLP 33872079 54869481 38.3% 107371950.1 86966069.8 19.0%

XMark 23937356 34251920 30.1% 75879623.3 54288008.8 28.5%

To show the difference in label size using the Base-9 scheme in preference to

the SCOOTER scheme, Figure 7.4 represents the overall percentage distribution

of label sizes generated for the XMark dataset. The percentage decrease in total

label size for each dataset was calculated, the results of which were: 27.30% for

NASA, 30.11% for XMark, 23.68% for Treebank, and 38.27% for DBLP. For an

XML dataset with wider tree (i.e. with more 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 per a node), such as in

DBLP, takes extra advantage of using more digits (say 𝑦) to produce labels. This

is because the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 computed by 𝑙𝑜𝑔𝑦 (𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1) decreases as

the value of 𝑦 increase. In SCOOTER as number of nodes increases the label

size increases by at least 1 digit per insertion, and gradually the algorithm

generates larger labels in comparison to the Base-9.

The results confirm the achievement of the research objective in terms of

generating more compressed labels via the proposed scheme. The percentage

distribution charts for the label sizes for the other datasets can be found in

appendix B.1 as their results were similarly consistent.

Figure 7.3 Initial label size comparison (Base-9 vs SCOOTER)

0

1000

2000

3000

4000

5000

6000

7000

8000

NASA
Xmark

Treebank
DBLP

XML Dataset

Initial Total Label Size

Base-9

SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

139

7.3.1.3 Conclusion

To conclude, the label initialisation experiment compared the performance of the

Base-9 scheme against the SCOOTER scheme in terms of initialisation time and

label sizes. The analytical results have shown that SCOOTER generates initial

labels faster than the Base-9 scheme. However, the Base-9 scheme

outperformed the SCOOTER scheme in terms of the compactness of the initial

labels by an average of 29.84% for the four datasets used.

7.3.2 Handling Insertions

As discussed in Chapters 3 and 5, the insertion mechanism of the Base-9

labelling scheme was developed based on lexicographical comparison rather

than using an adaptive growth technique as in the SCOOTER scheme. To study

whether such an enhancement to the insertion methodology has affected the

insertion time and label size, the handling insertions experiment discussed in

Chapter 6 was performed. The significance of the results is analysed in the next

section.

7.3.2.1 Analytical Strategy

Unlike the initialisation process, the new labels generated for nodes inserted later

are related to their randomly selected positions. Hence, the total label size of a

dataset varies after each insertion. It is thus essential to consider the

randomness when evaluating label size and insertion time. The performance of

Figure 7.4 Difference in label size between Base-9 and SCOOTER

Base-9
41%

SCOOTER
59%

Percentage distribution of all label sizes
(XMark)

Chapter 7: Experimental Results and Statistical Analysis

140

the insertion mechanisms may also vary depending on the number of nodes

inserted, so it is important to consider the choice of the number of new nodes

inserted as the “artefacts” factor of this evaluation.

The main goal to using multiple artefacts is to improve the external validity when

evaluating the insertion methods of the Base-9 and SCOOTER labelling

schemes. That is, which of the two labelling schemes performs better when a

small or a large number of nodes are inserted, and whether the type of insertion

(i.e., uniform and/or skewed) effects the performance. To address such

questions, it is important to use statistical tests to assess which insertion

algorithm is significantly better than the other for all the artefacts. As mentioned

earlier, for more reliable statistical results, there should be a balance between the

number of artefacts and how many times each artefact is run. It is recommended

(Arcuri and Briand, 2014) that it is better to have more artefacts but the number

of runs can be relatively low, perhaps as low as 10 runs. For the insertion time

assessment, each artefact is executed 20 times. Because the label size falls

under the randomisation category in this experiment, each artefact was run 10

times to measure the difference in label size after insertion.

The uniform and skewed insertions were tested in all the experimental datasets

separately. To study the effectiveness of the insertion algorithms of both Base-9

and SCOOTER labelling schemes, 500, 1,000, 5,000, 10,000, and

 50,000 nodes inserted were considered as the artefacts for testing the uniform

insertion. To evaluate the skewed insertion, the artefacts were selected as 100,

5,000, and 10,000 nodes inserted, and each was performed repeatedly at 10

randomly selected positions.

The Mann-Whitney U-test was applied for each artefact to find the 𝑝-value in

order to justify the difference in significance between the two labelling schemes

in terms of time and size. Box plots were also generated to clarify the findings

graphically.

7.3.2.2 Analysis of the Results

 Uniform Insertion

The uniform insertion performance was tested by inserting 500, 1,000, 5,000,

10,000, and 50,000 nodes individually in every experimental dataset using the

Base-9 scheme. The same process was repeated using the SCOOTER scheme

Chapter 7: Experimental Results and Statistical Analysis

141

for statistical comparison. To assess the insertion time, 20 runs (after excluding

the first 5 runs) were recorded for every test and analysed below. To measure

the increase in label size after insertion, for each test the total label size increase

of the initial size was recorded for 10 runs. The medians of the sizes obtained

were then compared statistically and graphically.

 Time comparison:

Figure 7.5 illustrates the comparison of median time taken to insert 50,000 nodes

at random positions in each experimental dataset. It can be seen in Figure 7.5

that both the Base-9 and SCOOTER schemes have almost the same insertion

time. Apart from the Treebank dataset, there is generally a positive correlational

relationship between the insertion time and the dataset size. This could be

because the deep recursive structure of the Treebank dataset necessitates more

separators within the prefix-based labels generated. Such an observation was

consistent with the results for the other tests with fewer nodes. The results for

500, 1,000, 5,000, and 10,000 node insertions are shown in appendix B.2.

To investigate the statistical significance of the difference in insertion time

distribution between the two schemes, the Mann-Whitney U-test was applied for

each artefact in every dataset. The 𝑝-values obtained were more than the

significance level, 0.05, in all cases except when inserting 50,000 nodes in the

Treebank and DBLP datasets (see Table 7.2). For the tests where 𝑝 > 0.05 the

null hypothesis is retained, implying that there is no difference between the two

Figure 7.5 Uniform insertion time comparison (Base-9 vs SCOOTER)

0

5000

10000

15000

20000

25000

30000

35000

40000

Nasa Xmark Treebank DBLP

In
se

rt
io

n
 T

im
e

 (
m

s)

Time comparison of 50,000 uniform insertions

Base-9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

142

schemes in terms of insertion time. For the exceptional results of 𝑝 < 0.05 when

inserting 50,000 nodes in Treebank and DBLP, further statistical analysis was

undertaken to study the difference in performance between the two schemes.

Table 7.2 𝒑-values of uniform insertion time distribution

XML
Dataset

500
insertions

1,000
insertions

5,000
insertions

10,000
insertions

50,000
insertions

NASA 0.529 0.779 0.883 0.056 0.056

XMark 0.183 0.820 0.678 0.211 0.904

Treebank 0.495 0.620 0.165 0.265 0.026

DBLP 0.277 0.841 0.512 0.149 0.001X10-4

The effective size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), was measured for 50,000 uniform

insertion tests on Treebank and DBLP. The results obtained were 0.704 and

0.835, respectively. This confirms that the Base-9 scheme processes very large

uniform insertions up to 50,000 nodes in relatively large datasets, such as in

Treebank and DBLP, faster than the SCOOTER scheme by at least 70.4%. The

box plot charts in Figure 7.6 demonstrate the difference in the performance

between the two schemes in terms of insertion time.

 Size comparison:

Figure 7.7 demonstrates the difference in the growth rate of the label sizes

between the Base-9 and SCOOTER schemes after 50,000 uniform insertions in

each XML dataset. The size here represents the 50,000 labels (total lengths in

digits) added to the initial labels of that dataset. In every run, different random

positions were chosen for the new 50,000 nodes. The median of the total size of

10 runs (after excluding the first 5 runs as usual) were recorded and compared in

Figure 7.6 Box plot distribution of 50,000 uniform insertion times

Chapter 7: Experimental Results and Statistical Analysis

143

Figure 7.7. This figure shows that, in general, the Base-9 scheme generates

shorter labels than SCOOTER. Due to the stability of the results after 500, 1,000,

5,000, and 10,000 insertions, their discussions are omitted but appendix B.2

presents similar graphical comparisons.

The statistical significance of the results was measured using the Mann-Whitney

U-test for each test, and the 𝑝-value obtained was always between 1.083x10−5

and 1.085x10−5. This confirms that there is difference in the performance of the

two schemes in terms of label sizes after uniform insertions. The box plot chart in

Figure 7.8 shows that, in contrast to the SCOOTER scheme, Base-9 controls the

growth of the label sizes better when 500 nodes were inserted at different

random positions. Appendix B.2 provides similar box plots for all the uniform

insertion tests. The effect size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), in all the tests were found

to exactly equal 1, which means that 100% of the time the Base-9 scheme

generated shorter labels than SCOOTER during uniform insertions.

Figure 7.7 Difference in the growth of label size (Base-9 vs SCOOTER)

0

200000

400000

600000

800000

1000000

1200000

1400000

Nasa XMark Treebank DBLP

To
ta

l s
iz

e
 a

d
d

e
d

 (
d

ig
it

s)
Comparison of labels growth rate after 50,000

uniform insertions

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

144

Table 7.3 shows the average reduction percentage in the label sizes of the new

500, 1,000, 5,000, 10,000, and 50,000 nodes added during uniform insertions by

using the Base-9 scheme rather than the SCOOTER scheme.

Table 7.3 Average reduction (percentage) in label size after uniform insertions

XML
Dataset

500
insertions

1,000
insertions

5,000
insertions

10,000
insertions

50,000
insertions

NASA 24.33% 24.36% 24.35% 24.29% 24.23%

XMark 26.87% 26.73% 26.78% 26.72% 26.81%

Treebank 20.47% 20.91% 21.13% 21.14% 21.14%

DBLP 33.58% 33.83% 33.86% 33.83% 33.81%

 Skewed Insertion

Skewed insertion has recently become one of the main focuses in developing

XML labelling schemes (see Chapter 3); relatively large numbers of 100,

5,000, and 10,000 skewed insertions were carried out with all the experimental

datasets. Each set of skewed insertions was repeated at 10 random positions.

Hence, the total number of nodes inserted were 100𝑋10 = 1000, 5,000𝑋10 =

50,000, and 10,000𝑋10 = 100,000 (referred to as “artefacts”), which were

labelled by the Base-9 scheme and the SCOOTER scheme. For insertion time

assessment, each test was executed 20 times (after excluding the first 5 runs).

To study the growth of label sizes after insertion, the total size of the new labels

was computed for each test. Since the label values vary based on their randomly

selected insertion positions, the sizes obtained for 10 runs were recorded and

analysed.

Figure 7.8 box plot distribution label sizes of 500 insertions in XMark

Chapter 7: Experimental Results and Statistical Analysis

145

 Time comparison:

As in the uniform insertion test, the median values of the skewed insertion times

were compared graphically. For example, Figure 7.9 presents the time

comparison for 10,000𝑋10 insertions in all datasets. The correlation between the

insertion time and the dataset size is the same as in the uniform insertion. For

the lower number of skewed insertions, 100𝑋10 and 5,000𝑋10, the same

observation was made; see appendix B.2.

The Mann-Whitney U-test was applied for each artefact in every dataset to obtain

the statistical difference of the insertion time distribution between the Base-9

scheme and SCOOTER. Table 7.4 shows the 𝑝-values obtained for each test.

The majority of these tests show there is no difference between the two schemes

in terms of insertion time as their 𝑝-values were higher than 0.05. However, the

cases highlighted in Table 7.4 provided 𝑝 < 0.05, which indicates the rejection of

the null hypothesis. To examine the difference in the performance of the two

schemes, the time distribution in these cases was illustrated by the use of box

plots.

Table 7.4 𝒑-values of skewed insertion time distribution

XML Dataset 100X10 insertions 5,000X10 insertions 10,000X10 insertions

NASA 0.052 0.060 0.009 X 10-4

XMark 0.004 0.002 X 10-5 0.001 X 10-5

Treebank 0.841 0.014 0.583

DBLP 0.108 0.659 0.327

Figure 7.9 Time comparison for skewed insertion (Base-9 vs SCOOTER)

0

10000

20000

30000

40000

50000

60000

70000

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Time comparison of 10,000X10 Skewed Insertions

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

146

The box plots in Figure 7.10 illustrate the distribution of times taken to insert 100

nodes repeatedly in 10 different random positions in the XMark dataset. As the

level of the median line in the SCOOTER box appears higher in the box plot, this

suggests that Base-9 performs this particular number of skewed insertions faster

than SCOOTER. For the other cases highlighted in Table 7.4, similar

observations were found from their box plots, which are available in appendix

B.2.

 Size comparison:

Figure 7.11 and Figure 7.12 demonstrate the difference between the Base-9 and

SCOOTER schemes in terms of the growth rate of the new 100𝑋10 and

5,000𝑋10 labels added by skewed insertions in each XML dataset. Due to the

randomness of the insertion mechanisms, each test was run 10 times. In each

run the total size of the labels generated was computed. The sizes in Figure 7.11

and Figure 7.12 are the medians of the total sizes (in Kbytes) obtained. See

appendix B.2 for the bar chart representation of the 10,000X10 skewed insertion

results, which are consistent with Figure 7.11 and Figure 7.12.

Figure 7.10 box plot distribution of 100X10 skewed insertion times in XMark

Chapter 7: Experimental Results and Statistical Analysis

147

It can easily be seen from these figures that there is a big difference between the

two schemes in terms of the increase in label sizes, especially when very large

numbers of skewed insertions (e.g., 5,000 X 10) occurred. Base-9 generates

very compressed labels in comparison to the SCOOTER scheme. The relative

percentage change in label sizes generated using Base-9 instead of SCOOTER

were computed as follows (MathGoodies, 2015): ((𝑠𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒9)/

𝑆𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅). The percentages obtained for 100𝑋10, 5,000𝑋10 and 10,000𝑋10

insertions are presented in Table 7.5.

Figure 7.11 Size comparison in 100X10 insertions (Base-9 vs SCOOTER)

Figure 7.12 Size comparison in 5000X10 insertions (Base-9 vs SCOOTER)

0

1

2

3

4

5

6

7

Nasa Xmark Treebank DBLP

To
ta

l S
iz

e
 o

f
n

e
w

 la
b

e
ls

 (
K

b
yt

e
s)

Label size of 100X10 skewed insertions

Base9 SCOOTER

131 141 170 110

5,374

3,311

7,867

1,790

0

2000

4000

6000

8000

10000

Nasa Xmark Treebank DBLP

To
ta

l S
iz

e
 o

f
n

e
w

 la
b

e
ls

 (
K

b
yt

e
s)

Label size of 5000X10 skewed insertions

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

148

Table 7.5 Average decrease percentage of the size’s growth rate in skewed insertions

XML Dataset 100X10 insertions 5,000X10 insertions 10,000X10 insertions

NASA 52.33% 97.56% 98.69%

XMark 50.37% 95.73% 98.44%

Treebank 44.09% 97.85% 98.81%

DBLP 44.00% 93.85% 95.94%

As mentioned in Chapters 3 and 5, the SCOOTER scheme is currently the most

compact dynamic labelling scheme that supports skewed insertion (O’Connor

and Roantree, 2013) (Chiew et al., 2014a). In view of the reduction in size

shown here (see Table 7.5), it can be concluded that the Base-9 scheme

improves skewed insertion performance in terms of compressing XML labels by

at least 44%. The 𝑝-values obtained by the Mann-Whitney U-test applied in all

the artefacts was always (𝑝 = 1.083x10−5) < 0.05 for every dataset. This implies

the rejection of the null hypothesis indicating there is a difference in performance

between the two schemes in terms of label sizes, as observed earlier. The effect

size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), was measured for all the artefacts in every dataset

and the result was always equal to 1. This confirms the conclusion that the Base-

9 scheme always generates more compressed labels than SCOOTER when

dealing with skewed insertions. The box pots in Figure 7.13 illustrate this

observation graphically for the XMark dataset (see appendix B.2 for box plots of

the remaining datasets).

Figure 7.13 Box plot distribution of total label sizes (Kbytes) in XMark (Base9 vs

SCOOTER)

Chapter 7: Experimental Results and Statistical Analysis

149

7.3.2.3 Conclusion

This experiment compared the ability of the Base-9 scheme and the SCOOTER

scheme to handle insertions. In all the experimental datasets, two types of

insertions were tested: uniform insertion and skewed insertion. The tests have

covered inserting small and large numbers of nodes. The results showed that

both schemes require almost the same insertion time in most cases, and where

there is a difference then the Base-9 scheme labels new nodes faster. In terms of

size, it has been proven that every time, and in all insertion tests, the Base-9

scheme consistently generates more compressed labels than the SCOOTER

scheme.

7.3.3 Re-using Deleted Nodes’ Labels

The SCOOTER scheme has shown its capability for re-using the smallest

available deleted label (O’Connor and Roantree, 2012). The Base-9 scheme

generates labels based on the lexicographical comparison technique (see

Chapter 5) during initialisation and insertion. This approach should allow re-use

of almost all of the deleted labels. This experiment was designed to test whether

the proposed scheme enables re-use of deleted nodes’ labels. It also compares

the ability of both schemes in terms of re-using deleted labels.

7.3.3.1 Analytical Strategy

As described in Chapter 6, to test the re-usability of deleted labels, the first 𝑛

adjacent sibling nodes were deleted from a sample set of labels. The deleted

label values were stored in an array-list (say 𝑙𝑖𝑠𝑡_𝐴). Then, the same number 𝑛 of

new nodes were inserted at the same positions as those of the 𝑛 deleted nodes.

Three types of updates were tested:

 Delete and insert 𝑛 siblings after the last child.

 Delete and insert 𝑛 siblings before the first child.

 Delete and insert 𝑛 siblings between two nodes.

The new 𝑛 labels inserted were recorded in another array-list called 𝑙𝑖𝑠𝑡_𝐵. Then,

the two lists were compared and the percentage of identical labels in both lists

was computed. The results were analysed based on this percentage.

Chapter 7: Experimental Results and Statistical Analysis

150

This experiment was performed in the DBLP dataset as it provides the widest

range of sibling nodes due to its extensive fan-out (see Section 6.5.1), with 𝑛 =

10. The labels tested were displayed in tabular format to show the difference

between the original deleted labels and the new labels. The experiment was also

carried out on 1,500 self-labels generated to represent 1,500 sibling nodes, with

𝑛 = 1000. For a fair test, the sample label set selected from the Base-9 labels

corresponded to the set selected from the SCOOTER labels.

7.3.3.2 Analysis of the Results

Table 7.6 displays a sample set of Base-9 labels and their corresponding

SCOOTER labels representing 12 adjacent sibling nodes in the DBLP dataset.

Index denotes the nodes’ order of appearance.

Chapter 7: Experimental Results and Statistical Analysis

151

Table 7.6 Label set sample from DBLP

Index Base-9 Labels SCOOTER Labels

1 0.111119.12 2.111111111133.112

2 0.111119.13 2.111111111133.113

3 0.111119.14 2.111111111133.12

4 0.111119.15 2.111111111133.122

5 0.111119.16 2.111111111133.123

6 0.111119.17 2.111111111133.13

7 0.111119.18 2.111111111133.132

8 0.111119.19 2.111111111133.133

9 0.111119.2 2.111111111133.2

10 0.111119.21 2.111111111133.212

11 0.111119.22 2.111111111133.213

12 0.111119.23 2.111111111133.22

To test the re-usability when inserting after the right-most child node, the last 10

nodes were deleted and then 10 new nodes were inserted after the remaining

last child. Table 7.7 shows the original and new labels generated. It is obvious

from the Base-9 comparison in Table 7.7 that Base-9 re-created the deleted label

values. On the other hand, as the SCOOTER insertion mechanism ensures the

generation of the smallest available label value at first, only one deleted label

was re-used (i.e., self-label = “2”).

Chapter 7: Experimental Results and Statistical Analysis

152

Table 7.7 Testing re-usability when inserting after last child

Insertion
order

Original
Base-9

New
Base-9

Original
SCOOTER New SCOOTER

Start node: 0.111119.13
0.111119.1
3

2.111111111133.1
13

2.111111111133.11
3

1 0.111119.14
0.111119.1
4

2.111111111133.1
2 2.111111111133.2

2 0.111119.15
0.111119.1
5

2.111111111133.1
22 2.111111111133.3

3 0.111119.16
0.111119.1
6

2.111111111133.1
23 2.111111111133.32

4 0.111119.17
0.111119.1
7

2.111111111133.1
3 2.111111111133.33

5 0.111119.18
0.111119.1
8

2.111111111133.1
32

2.111111111133.33
12

6 0.111119.19
0.111119.1
9

2.111111111133.1
33

2.111111111133.33
13

7 0.111119.2 0.111119.2 2.111111111133.2
2.111111111133.33
2

8 0.111119.21
0.111119.2
1

2.111111111133.2
12

2.111111111133.33
22

9 0.111119.22
0.111119.2
2

2.111111111133.2
13

2.111111111133.33
23

10 0.111119.23
0.111119.2
3

2.111111111133.2
2

2.111111111133.33
3

To examine the re-usability when inserting before the left-most child node, the

first 10 nodes were deleted and then 10 new nodes were inserted before the

remaining first child. Table 7.8 illustrates the original and the new label

comparison. Again, the Base-9 scheme re-produced all the deleted labels,

whereas, SCOOTER generated 40%.

Chapter 7: Experimental Results and Statistical Analysis

153

Table 7.8 Testing re-usability when inserting before the first child

Insertion
order

Original
Base-9

New
Base-9

Original
SCOOTER New SCOOTER

10 0.111119.12
0.111119.
12

2.111111111133.
112

2.111111111133.11111
1112

9 0.111119.13
0.111119.
13

2.111111111133.
113

2.111111111133.11111
112

8 0.111119.14
0.111119.
14

2.111111111133.
12

2.111111111133.11111
12

7 0.111119.15
0.111119.
15

2.111111111133.
122

2.111111111133.11111
2

6 0.111119.16
0.111119.
16

2.111111111133.
123 2.111111111133.11112

5 0.111119.17
0.111119.
17

2.111111111133.
13 2.111111111133.1112

4 0.111119.18
0.111119.
18

2.111111111133.
132 2.111111111133.112

3 0.111119.19
0.111119.
19

2.111111111133.
133 2.111111111133.12

2 0.111119.2
0.111119.
2

2.111111111133.
2 2.111111111133.2

1 0.111119.21
0.111119.
21

2.111111111133.
212 2.111111111133.212

Start node 0.111119.22
0.111119.
22

2.111111111133.
213 2.111111111133.213

In order to test the re-usability when inserting between two adjacent siblings, the

10 middle nodes in Table 7.6 were deleted and replaced with 10 new nodes, as

shown in Table 7.9. Consistent with the previous results, the Base-9 scheme re-

used all the deleted labels in this scenario, whereas the SCOOTER scheme re-

used 3 out of 10 deleted labels (those highlighted in Table 7.9).

Chapter 7: Experimental Results and Statistical Analysis

154

Table 7.9 Testing re-usability when inserting between two sibling nodes

Insertion
order

Original
Base-9

new
Base-9

Original
SCOOTER new SCOOTER

Node1: 0.111119.12
0.111119.
12

2.111111111133.
112 2.111111111133.112

1 0.111119.13
0.111119.
13

2.111111111133.
113 2.111111111133.2

2 0.111119.14
0.111119.
14

2.111111111133.
12 2.111111111133.212

3 0.111119.15
0.111119.
15

2.111111111133.
122 2.111111111133.213

4 0.111119.16
0.111119.
16

2.111111111133.
123

2.111111111133.213
3

5 0.111119.17
0.111119.
17

2.111111111133.
13

2.111111111133.212
3312

6 0.111119.18
0.111119.
18

2.111111111133.
132

2.111111111133.212
3313

7 0.111119.19
0.111119.
19

2.111111111133.
133

2.111111111133.212
332

8 0.111119.2
0.111119.
2

2.111111111133.
2

2.111111111133.212
3322

9 0.111119.21
0.111119.
21

2.111111111133.
212

2.111111111133.212
3323

10 0.111119.22
0.111119.
22

2.111111111133.
213

2.111111111133.212
333

Node2: 0.111119.23
0.111119.
23

2.111111111133.
22 2.111111111133.22

To generalise the results, 1,500 self-labels were generated using the initialisation

algorithms of the Base-9 and SCOOTER schemes separately. In order to study

the effect of the insertion algorithms over a wider range of labels, these 1,500

self-labels were used as the testing sample. The same experiment was repeated

but with 𝑛 = 1000 instead of 10 nodes. The percentage of re-used labels for each

insertion type were computed for both schemes individually and are presented in

Table 7.10. These percentages were found by counting the number of new labels

(after insertion) that existed in the original label set (before deletion).

Table 7.10 Percentage of re-used deleted labels (Base-9 vs SCOOTER)

Insertion type Base-9 SCOOTER

Inserting after last
node

98.7% used (987/1000 re-
used)

0.2% used (only 2 labels re-
used)

Inserting between
nodes

99.1% used (991/1000 re-
used)

0.9% used (only 9 out of 1000 re-
used)

Inserting before first
node

98.7% used (987/1000 re-
used)

0.7% used (only 7 labels re-
used)

As shown in Table 7.10, Base-9 outperforms the SCOOTER in terms of re-use of

deleted labels. This is because the insertion algorithm in the Base-9 labelling

scheme was established based on the same principle as the initialisation

Chapter 7: Experimental Results and Statistical Analysis

155

process; that is, by finding next sibling label value that is lexicographically closest

to the label value of the current node. The new label size was always controlled

by 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, which is computed based on the maximum number of children

per node (see Chapter 5). This mechanism guaranteed reusing all the deleted

label values, but as seen from the experimental results above, about 1% or 2%

missing deleted nodes. To further investigate this observation, extra nodes were

inserted and then the comparison between the original and re-used labels was

repeated. The results show that after almost 15 nodes insertions before the first

child and/or after the last child, all the deleted nodes were re-used. For insertion

between two consecutive siblings, after inserting only 8 extra nodes the algorithm

regenerated all the deleted nodes successfully.

These results were obtained due to more restriction on using digit ‘1’ and ‘0’

during the initialisation process (see Section 5.5) in comparison to the insertion

mechanism, which allows more lexicographical combination including ‘1’ and ‘0’.

Table 7.11 illustrates examples of labels generated initially and then re-used later

after deletion. The highlighted labels represent the new labels generated by

insertion algorithms without restriction of number of ‘1’s at the end of a label

value. Because of this, more insertions were necessary to establish 100% of

deleted labels in the experiment.

Table 7.11 Examples of generated labels (initial vs updated)

Insert before first node Insert between two nodes Insert after last node

Initial Insertion Initial Insertion Initial Insertion

1998 1998 1398 1398 1698 1698

1999 1999 1399 1399 1699 1699

2 2 14 14 17 17

2111 21 1411 141 1711 171

2112 211 1412 1411 1712 1711

2113 2111 1413 1412 1713 1712

The insertion algorithm in the SCOOTER labelling scheme was applied based on

the compact growth mechanism introduced by (O’Connor and Roantree, 2012) to

control the label growth rate regardless of the extent of skewed node insertions

and deletions. The experiments illustrated above have shown that the SCOOTER

insertion algorithm at first reused the smallest deleted label values before

Chapter 7: Experimental Results and Statistical Analysis

156

generating the rest of the new labels, which were derived based on the growth

mechanism which always led to larger labels.

If all the child nodes of an element are deleted, then the initialisation algorithm is

applied to label the new leaf nodes. Therefore, in both labelling schemes the

same deleted values would always be generated.

7.3.3.3 Conclusion

This experiment was executed to test the Base-9 scheme’s ability to re-use

deleted nodes in comparison to SCOOTER. The results, as shown above,

confirm the insertion technique applied by the Base-9 scheme based on the

lexicographical comparison, enables the re-use of at least 98.7% of the deleted

labels (if any). Although the SCOOTER guarantees re-use of the smallest

quaternary string(s) (i.e., “12”, “2”, and/or “3”), the adaptive growth mechanism

naturally produces larger new labels following the maximum quaternary digit ‘3’

(see Table 7.7 and Table 7.9) or preceding the smallest quaternary string “12”

(see Table 7.8).

7.3.4 Label Encoding

As mentioned in Section 6.5, this experiment focused on examining the storage

capacity required to store the Base-9 labels encoded using the Fibonacci

encoding of order 2 and order 3 (see Chapter 5) whereas, the SCOOTER labels

were encoded by the QED encoding method (see Section 3.4). The study also

presented a comparison between the two schemes in terms of encoding time and

size of both the initial labels and the updated labels.

7.3.4.1 Analytical Strategy

Two main factors were considered when evaluating this experiment: the

encoding time (in milliseconds) and total encoded label size (in Kbytes). As the

time computation falls into the randomness classification, the number of runs was

identified to obtain a statistically significant difference between the encoding

methods of the two schemes. For each experimental dataset, the encoding time

of 100 runs over the initial labels were recorded. To analyse the encoding time

on the inserted labels, 20 runs were measured for each artefact of the skewed

insertion for each dataset. Fewer runs were taken into consideration for the

Chapter 7: Experimental Results and Statistical Analysis

157

updated labels as in each insertion run per artefact, different labels were

generated based on the new randomly selected node positions (see Section

7.3.2).

In terms of evaluating the encoded label size, for each experimental dataset the

total size of the encoded labels was calculated for each encoding method for

both labelling schemes separately. As for the initial labels, the results were

constant and irrelevant to the number of runs, the total size of each encoding

method for each dataset was analysed graphically. The inserted labels differ for

each run, so the encoded size measurement in this case was categorised as a

randomised assessment (see Section 7.3.2). Thus, the total size of 20 runs was

taken for each encoding method and applied over each dataset.

As the comparison is based on multiple techniques (Fibonacci of order 2 and

Fibonacci of order 3 for Base-9, and QED for SCOOTER), the non-parametric

Kruskal–Wallis test (Vargha and Delaney, 1998) was selected to obtain the 𝑝-

value (see Section 7.2).

Chapter 7: Experimental Results and Statistical Analysis

158

7.3.4.2 Analysis of the Results

 Initial Labels

 Time comparison:

As Figure 7.14 shows the difference on encoding time for the XMark dataset, it

can be seen that, in general, QED generates label codes faster than Fibonacci

coding. This observation is consistent with the remaining XML experimental

dataset, as reported in appendix B.2.

To justify the statistical significance of the results, the non-parametric Kruskal–

Wallis test was carried out on the encoding time. The 𝑝-value obtained was less

than 0.001x10−6 for all datasets, indicating the rejection of the null hypothesis.

This implies there is very strong evidence to suggest a difference between at

least one pair of the applied encoding methods. Thus, further analysis was

conducted using the Manny-Whitney U-tests to study the difference between

each pair of methods for every dataset in terms of encoding time. The results of

the “pairwise comparisons” have shown that there was very strong evidence

(𝑝<0.001, adjusted using the Bonferroni correction) for a difference between

every pair on all the datasets.

Figure 7.14 Encoding time comparison (XMark)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

SCOOTER QED Base9 Fib2 Base9 Fib3

Ti
m

e
 (

m
s)

Encoding Median Time (XMark)

Chapter 7: Experimental Results and Statistical Analysis

159

The box plots in Figure 7.15 present the distribution of time taken (for 100 runs

after excluding the first 5 runs) to encode the initial labels of the XMark dataset

using QED for the SCOOTER labels and Fibonacci of order 2 and order 3 for the

Base-9 labels. In the box plots, the level of the median line in the

SCOOTER_QED box is the lowest, which confirms the results observed from

Figure 7.14 that the QED method is the fastest among the various methods

compared. Fibonacci of order 3 performed faster than the Fibonacci of order 2.

The same observation was established for all the experimental datasets used;

see appendix B.2.

 Size comparison:

The bar charts in Figure 7.16 present the comparison between encoding

methods in terms of encoded label size for each dataset. As can be seen from

this figure, the shape of a dataset affects the results obtained. The XMark and

NASA datasets are each represented by an XML tree with less extreme depth

and/or width in comparison to Treebank and DBLP (see Section 6.5). Both

datasets show similar results, in which the total size of the encoded Base-9

labels generated by any Fibonacci coding is always smaller than the QED codes

representing the SCOOTER labels. The Fibonacci of order 2 produced the

smallest codes in total.

Figure 7.15 Box plot of encoding time (initial labels) distribution for XMark dataset

Chapter 7: Experimental Results and Statistical Analysis

160

Alternatively, the Fibonacci of order 2 generated the largest codes for the DBLP

dataset, which has the shallowest and widest XML tree (see Section 6.5). For

this dataset, the Fibonacci coding of order 3 gave the most compressed codes in

comparison to the other encoding methods.

By comparison, for Treebank, which has the deepest XML tree with narrowest

width, the Fibonacci of order 2 produced the smallest codes whilst the Fibonacci

of order 3 formed the largest codes.

Figure 7.16 Encoding size comparison of initial labels

In terms of code size, order 𝑚 Fibonacci encoding is relative to the shape of the

tree representing an XML dataset. Section 7.4 discusses this observation in more

detail as the performance of the encoding methods applied here are consistent

with the results achieved in the XML label compression experiment. Overall,

Fibonacci coding always generated the smallest codes in total, either using

Fibonacci of order 2 or of order 3 if not both. Table 7.12 shows the percentage

difference between QED and both Fibonacci encoding methods separately. The

negative values indicate that QED performs better than Fibonacci of order 2 for

2486
2304 2388

0

500

1000

1500

2000

2500

To
ta

l s
iz

e
 (

K
b

yt
e

)

Initial encoded labels size (NASA)

15434 14714 15655

0

5000

10000

15000

20000

To
ta

l S
iz

e
 (

K
b

yt
e

)

Initial encoded labels size
(Treebank)

14875 15139
13690

0

5000

10000

15000

20000

To
ta

l S
iz

e
 (

K
b

yt
e

)

Initial encoded labels size (DBLP)

8982 8373 8568

0

2000

4000

6000

8000

10000

To
ta

l S
iz

e
 (

K
b

yt
e

)

Initial encoded labels size (XMark)

Chapter 7: Experimental Results and Statistical Analysis

161

the DBLP dataset by 1.74% and also better than Fibonacci of order 3 for the

Treebank dataset. The comparison between the two Fibonacci methods confirms

that Fibonacci of order 3 produces shorter codes for larger labels by about

10.58% in DBLP. Otherwise, Fibonacci generates shorter codes.

Table 7.12 Percentage different on total code size between encoding methods

Dataset QED vs Fib2 QED vs Fib3 Fib2 vs Fib3

NASA 7.90% 4.10% -3.52%

Treebank 4.89% -1.41% -6.01%

DBLP -1.74% 8.66% 10.58%

XMark 7.27% 4.83% -2.28%

 Inserted Labels

 Time comparison:

When inserting a small number of nodes (e.g., 100 nodes repeated at 10

different positions) QED encodes SCOOTER labels faster than the Fibonacci

coding used for the Base-9 labels (see figure 7.17). However, when encoding a

large number of nodes inserted in any XML experimental dataset, the QED

consumed at least 98% more time than both Fibonacci coding (see Figure 7.18).

Figures 7.17 and 7.18 present the encoding time comparison for a small

(100X10) and large (5,000X10) number of skewed insertions. For an even larger

number of insertions up to 10,000X10, the encoding methods behaved similarly

to 5,000X10 insertions, as per the bar chart presented in appendix B.2.

Figure 7.17 Encoding time comparison after 100 X 10 insertion

0
.5

0
.5

7
.5

0
.5

1
5 1
5

.5

1
5

.5

0
.5

1
5 1
5

.5

1
5

1
5

0

5

10

15

20

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Encoding Time 100X10 Insertions

QED Fibonacci-2 Fibonacci-3

Chapter 7: Experimental Results and Statistical Analysis

162

The Kruskal–Wallis test was applied to find the statistical significance of the

results. For 100X10 insertions, the 𝑝-values obtained for the NASA and

Treebank datasets were 0.090 and 0.194, respectively. This suggests there is no

significant difference between any of the encoding methods in terms of encoding

time. However, for the XMark and DBLP datasets, the 𝑝-values were 0.003 and

0.014, respectively, showing that there is a difference between at least two of the

methods. To identify the differences, a pairwise comparison via the Mann-

Whitney U-test was carried out on the encoding time. For the DBLP dataset, the

results show a difference between QED and Fibonacci of order 3 only, whilst for

XMark, the results indicated there is no difference between either Fibonacci

coding method but there is a difference between QED and each of the Fibonacci

codings. The box plot in Figure 7.19 shows the distribution of encoding time after

100X10 insertions. As can be seen from this figure, in the XMark dataset the

QED performed better. In the DBLP dataset, both QED and Fibonacci of order 2

have low median lines of almost zero. Thus, the effect size for this case was

computed and the result was �̂�12 (𝑄𝐸𝐷, 𝐹𝑖𝑏2) = 0.45, which implied that 45% of

the time QED encodes SCOOTER labels faster than the Fibonacci of order 2 for

the Base-9 labels.

Figure 7.18 Encoding time comparison after 5,000 X 10 insertion

2
5

0

2
9

7

2
9

7

2
5

0

1
8

7

2
3

4

2
5

0

1
8

7

4
5

,1
7

3

3
2

,9
2

2

5
3

,5
8

1

1
0

,7
8

5

0

10000

20000

30000

40000

50000

60000

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Encoding Time 5,000X10 Insertions

QED Fibonacci-2 Fibonacci-3

Chapter 7: Experimental Results and Statistical Analysis

163

To analyse the results of time taken to encode a large number (5000X10) of

node insertions, the Kruskal–Wallis test was applied. The 𝑝-value obtained was

less than 0.001x10−4 for all the datasets, indicating there is a difference between

at least two encoding methods. A pairwise comparison via Mann-Whitney always

produced very low 𝑝-values (𝑝 < 0.001x10−4), showing there is a difference

between any pair of encoding methods. The box plots in Figure 7.20 show that

the Fibonacci of order 3 outperforms the other encoding methods when encoding

a large number of new nodes. Although QED can encode a small number of new

nodes faster, it had the slowest performance when encoding a large number of

inserted nodes.

The same results were obtained for all the experimental XML datasets when

inserting 5000X10 or an even larger number up to 10,000X10, as shown by the

box plot charts in appendix B.2. In general, both Fibonacci encodings were about

99% faster than QED in terms of encoding new labels after large skewed

Figure 7.19 Box plot of the encoding time distribution after 100X10 insertions
(DBLP and XMark)

Figure 7.20 Box plot distribution of encoding time after 5000X10 insertions (XMark)

Chapter 7: Experimental Results and Statistical Analysis

164

insertions. Fibonacci encoding of order 3 performed better than Fibonacci of

order 2 by an average about of 20.71% in all the datasets tested. Appendix B.2

presents the percentage comparison in detail between QED and Fibonacci

encodings for each dataset.

 Size comparison:

Figures 7.21 and 7.22 present encoded labels size comparison of a small and a

large number of nodes inserted in all the experimental XML datasets used. When

a large number of nodes are inserted, the SCOOTER’s new labels grow rapidly

(see Section 7.3.2) and so their QED code sizes also increase rapidly. In this

case, the QED codes representing SCOOTER’s labels are larger than the

Fibonacci codes of the Base-9 labels. Particularly in the Treebank dataset (see

figure 7.22), which has the deepest XML tree that requires more separators each

represented by 2 bits in QED. Whereas, in Fibonacci encoding the separators

are not stored for saving more space.

The Kruskal–Wallis test was used to test the statistical significance of the results

for all types of skewed insertion 100𝑋10, 5000𝑋10, and 10,000𝑋10 in terms of

encoded label sizes. The 𝑝-value obtained was less than 0.05 in all cases for

every dataset, indicating there is a difference between at least two encoding

methods. The majority of the pairwise comparison via the Mann-Whitney U-test

gave a 𝑝-value in the range [0.033, 0.001x10−2], implying there was very strong

evidence (𝑝 < 0.001, adjusted using the Bonferroni correction) of a significant

difference between the encoding methods. The three exceptional cases were:

Figure 7.21 Encoded label size comparison after 100 X 10 insertion

2
,4

9
8

8
,9

9
2

1
5

,4
4

6

1
4

,8
8

3

2
,3

0
5

8
,3

6
8

1
4

,7
2

2

1
5

,0
6

8

2
,3

9
1

8
,5

6
0

1
5

,6
6

4

1
3

,4
5

1

0.0

5000.0

10000.0

15000.0

20000.0

NASA Xmark Treebank DBLP

To
ta

l S
iz

e
 (

K
b

yt
e

)

Encoded labels sizes (100X10) insertions

SCOOTER_QED Base9_Fib2 Base9_Fib3

Chapter 7: Experimental Results and Statistical Analysis

165

o 5000X10 insertions in DBLP dataset with 𝑝 = 0.928 > 0.05 between

QED and Fibonacci of order 2

o 10,000X10 insertions in DBLP dataset with 𝑝 = 0.791 > 0.05 also

between QED and Fibonacci of order 2

o 10,000X10 insertions in XMark dataset with 𝑝 = 0.058 > 0.05 between

Fibonacci of order 2 and of order 3

The box plots for each dataset presenting the size distribution after 100X10

insertions are displayed in Figure 7.23. The results are consistent with the size of

the initial label encoding illustrated earlier, where the overall size is affected by

the XML tree shape of each dataset.

However, when dealing with a large number of insertions the Fibonacci codes of

the Base-9 labels are always smaller than the QED codes representing the

Figure 7.22 Encoded label size comparison after 5,000 X 10 insertions

Figure 7.23 Box plot distribution of encoded labels size after 100X10 insertion

1
3

,2
5

4

1
5

,6
2

5

3
1

,1
7

5

1
8

,4
7

6

2
,7

2
8 8
,8

7
0 1
5

,2
6

6

1
5

,5
1

7

2
,7

8
6 9
,0

0
9 1
6

,1
7

9

1
3

,8
3

0

0.0

10000.0

20000.0

30000.0

40000.0

NASA Xmark Treebank DBLP

To
ta

l S
iz

e
 (

K
b

yt
e

)

Encoded labels sizes (5000X10) insertions

SCOOTER_QED Base9_Fib2 Base9_Fib3

Chapter 7: Experimental Results and Statistical Analysis

166

SCOOTER labels for all datasets (see Figure 7.24). Appendix B.2. illustrates the

results after 10,000X10 insertions, which are consistent with the results of

5,000X10 insertions presented in this section.

The relative percentage change in encoded label sizes generated using

Fibonacci coding and QED to represent Base-9 and SCOOTER labels,

respectively, were measured as follows (MathGoodies, 2015):

((Code𝑠𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝐶𝑜𝑑𝑒𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒9)/𝐶𝑜𝑑𝑒𝑆𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅). The percentages obtained

for encoded labels after large (5,000𝑋10 and 10,000𝑋10) insertions are

presented in Table 7.13.

Table 7.13 percentage difference between sizes of QED and Fibonacci codes

Insertion
type

10000X10 5000X10

Dataset
Percentage
difference
QED vs Fib2

Percentage
difference
QED vs Fib3

Percentage
difference
QED vs Fib2

Percentage
difference
QED vs Fib3

NASA 93.32% 93.42% 79.42% 78.98%

XMark 79.82% 79.64% 43.24% 42.35%

Treebank 79.44% 78.31% 51.03% 48.10%

DBLP 42.65% 49.05% 16.01% 25.15%

Figure 7.24 Box plot distribution of encoded labels size after 5000X10
insertion

Chapter 7: Experimental Results and Statistical Analysis

167

7.3.4.3 Conclusion

The encoding mechanisms used to store Base-9 labels and SCOOTER labels

were examined in this experiment. The performance of these mechanisms in

terms of encoding time and size were compared in initial labels and updated

labels for all experimental XML datasets. In terms of time, the QED method

applied to the SCOOTER labels was the fastest when it was used on initial nodes

or when a small number of nodes was inserted. Alternatively, the QED method

was the slowest when it was applied to a large number of new nodes as the

SCOOTER label grew rapidly (see Section 7.3.2). The Fibonacci coding

outperformed the QED encoding in generating codes after a large number of

insertions, particularly Fibonacci of order 3.

Considering the sizes of the encoded labels, the tree shape of the XML dataset

used affected the performance of the encoding methods. In general, Fibonacci

coding has always produced smaller codes than QED. This leads to the

conclusion that Fibonacci coding enables the storage of the Base-9 labels in

more compressed form than QED encoding for the SCOOTER scheme.

Furthermore, the Base-9 scheme provides faster encoding and consumes less

storage than SCOOTER in case of large skewed insertions.

7.3.5 Relationship Determination

This experiment was designed to measure how quickly the main structural

relationships can be established directly from the labels before and after XML

updates (see Section 6.5). Both schemes (the Base-9 and SCOOTER) determine

structural relationships based on lexicographical comparison (see Chapters 3

and 5). Hence, this experiment investigated the effect of the compressed Base-9

labels against the SCOOTER labels on the determination process. The study

also examined the influence of the scheme’s decoding mechanisms on the speed

of the determination process.

7.3.5.1 Analytical Strategy

Two aspects were measured when evaluating this experiment: the determination

time and the decoding time (in milliseconds). In view of the randomness of the

time computation, the number of runs required to obtain a statistically significant

Chapter 7: Experimental Results and Statistical Analysis

168

difference between the two schemes in terms of determination, including and/or

excluding the decoding process, was identified.

To test the determination of each relationship type individually, the Treebank

dataset was selected (for the reasons given in Section 6.5). The time taken to

determine each the relationship between any two labels was computed before

and after insertion. The determination time for 100 runs (after excluding the first 5

runs) over 200,000 initial pairs of labels was recorded. Similarly, the

determination time of 100 runs over 400,000 pairs of labels after insertion was

also computed. The relationships tested were: parent/child (P/C),

ancestor/descendent (A/C), sibling, lower common ancestor (LCA), and

document order (DO).

To study the effect of the decoding process on the determination, the

measurement of the decoding time was included as a part of the determination

process. The determination time here represents finding all relationships

between any 200,000 pairs of encoded labels. All tests were performed on the

Base-9 and SCOOTER schemes. The time taken for 100 runs (after excluding

the first 5 as usual) were recorded and then statistically analysed by the Mann-

Whitney U-test. This part of the experiment was conducted on all the

experimental datasets to achieve more reliable results.

Chapter 7: Experimental Results and Statistical Analysis

169

7.3.5.2 Analysis of the Results

 Individual relationship

Figure 7.25 determination time comparison before and after insertion

The determination time comparison between the Base-9 and SCOOTER

schemes before and after insertion is presented graphically in figure 7.25. These

data were collected by running the test on the Treebank dataset. For each

relationship determination over the initial labels, this figure shows that Base-9

outperformed SCOOTER in establishing every relationship except the document

order relationship, where the difference found in this instance was insignificant. It

seemed that after insertion, the difference in determination time between the two

schemes became smaller (see figure 7.26).

1
0

9

9
6

6
4

1
2

5

1
6

1
2

4

1
1

0

7
9

1
3

9

1
6

0

50

100

150

Ti
m

e
 (

m
s)

Determination time before insertion

Base9 SCOOTER

6
1

3
3

5

6
3

2
3

3

1
6

7
7

3
9

1

6
4

2
5

3

1
6

0

100

200

300

400

Ti
m

e
 (

m
s)

Determination time after insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

170

Further tests were carried out using the Mann-Whitney U-test to obtain the

statistical significance of the results. For the initial labels, the tests gave a 𝑝-

value less than the significance level of 0.05 for the parent/child (𝑝 = 0.01),

sibling (𝑝 = 0.015), and ancestor/descendant (𝑝 = 0.042) relationships. The null

hypothesis was retained for the other two types of relationship: LCA (𝑝 = 0.092)

and document order (𝑝 = 0.793).This indicates that there is a difference between

the two schemes when determining parent/child, sibling, and

ancestor/descendant relationships over the initial labels. The effect sizes for

these three type of relationship were measured and the results were always

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) ≈ 0.60, which implies that 60% of the time Base-9

determines these relationships faster than SCOOTER. The box plots in figure

7.26 confirm this observation.

When considering the determination time after insertion, the 𝑝-value obtained via

the Mann-Whitney U-test was in the range [0.01x10−3, 0.043] < 0.05 for all the

relationships except for the document order (𝑝 = 0.948). To investigate the

difference between the two schemes in the four relationships for which the null

hypothesis was rejected, the effect sizes were measured. The

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) values found were between 0.60 and 0.72. This indicates

that at least 60% of the time Base-9 outperformed SCOOTER in determining

Figure 7.26 Box plot distribution of determination time over initial labels

Chapter 7: Experimental Results and Statistical Analysis

171

these four relationships. Figure 7.27 illustrates the box plot distribution of the

determination time for parent/child, sibling, ancestor/descendant, and LCA

relationships. Statistical descriptions of the details of this experiment data are

presented in appendix B.4.

 All relationships with decoding

This experiment was run on all the experimental datasets. The determination

time in this part of the experiment represents the time taken to determine all five

relationships combined (parent/child, sibling, ancestor/descendant, LCA, and

document order) between any 200,000 pairs of labels before and after insertion.

At first, each pair of encoded labels was selected and then decoded into XML

prefix-based labels (Base-9 and SCOOTER separately) before establishing the

relationships. The Fibonacci codes of the Base-9 labels were decoded using

Fibonacci decoding, whilst the QED codes were decoded into the SCOOTER

labels. Figures 7.28 and 7.29Figure 7.29 show the decoding time comparison

between the schemes in terms of decoding the initial and updated labels,

respectively. In both scenarios, the Fibonacci decoding process was faster than

the QED decoding.

Figure 7.27 Box plot distribution of determination time over updated labels

Chapter 7: Experimental Results and Statistical Analysis

172

Considering the determination time only, Figures 7.30 and 7.31 illustrate the

comparison between the Base-9 and SCOOTER schemes before and after

insertion. Although both schemes apply lexicographical comparison when

determining the structural relationships, the Base-9 compressed labels gave a

better performance than the SCOOTER labels. The Mann-Whitney U-test

provided 𝑝-values as low as 0.01x10−6 for all the experimental datasets,

confirming there was a difference between the determination time between the

two schemes.

Figure 7.28 Decoding time comparison of initial labels

Figure 7.29 Decoding time comparison of updated labels

0

100

200

300

400

500

600

700

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

Decoding time before insertion

Base9 SCOOTER

0

100

200

300

400

500

600

700

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

Decoding time after insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

173

The effect sizes for all datasets were computed and the results were always

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) ≥ 0.95. This implied that 95% (or more) of the time, Base-

9 determines relationships faster than SCOOTER. The box plot distribution for

the NASA dataset is shown in figure 7.32, verifying the results obtained. As the

results were consistent for all the datasets; appendix B.4 shows box plot

distributions for the other experimental datasets.

Figure 7.30 Determination time (all relations) comparison on the initial labels

Figure 7.31 Determination time (all relations) comparison on updated labels

0

200

400

600

800

1000

1200

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

determination time of all relations before insertion

Base9 SCOOTER

0

100

200

300

400

500

600

700

800

900

1000

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

Determination time of all relations after insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

174

Similar results were found when combining the decoding time and determination

time. See figure 7.33 for initial encoded labels and figure 7.34Figure 7.34 for

encoded labels after insertion. The compressed Base-9 labels reduced the

determination performance (including decoding process) by at least 16.32%.

Table 7.14 displays the percentage decrease ((𝑇𝑖𝑚𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝑇𝑖𝑚𝑒𝐵𝑎𝑠𝑒9)/

𝑇𝑖𝑚𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅) of the median time taken for decoding and then determining

relationships when using Base-9 in preference to SCOOTER. The median values

of 100 runs before and after insertions on both schemes were used due to the

non-normal distribution of the collected times.

Table 7.14 Percentage decrease of median time (decoding and determination)

Datasets NASA Treebank XMark DBLP

Before
insertion

21.72% 19.69% 17.44% 39.02%

After
insertion

19.82% 16.32% 18.94% 38.51%

Figure 7.32 Box plot distribution of determination time (all relations) before and

after insertion

Chapter 7: Experimental Results and Statistical Analysis

175

To check the statistical significance of the results, the Mann-Whitney U-test was

carried out and the 𝑝-value was found as 0.01x10−6 for all datasets. All the effect

sizes measured indicate that at all times Base-9 was faster than SCOOTER in

terms of decoding and then determining the structural relationships. The

comparison via a box plot of the distribution of decoding and determination time

for the NASA dataset is presented in figure 7.35Figure 7.35. The box plots for the

other datasets can be found in appendix B.4.

Figure 7.33 Decoding and determining time comparison on initial labels

Figure 7.34 Decoding and determining time comparison on updated labels

0

200

400

600

800

1000

1200

1400

1600

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

Decoding and determination time before insertion

Base9 SCOOTER

0

200

400

600

800

1000

1200

1400

1600

NASA Treebank Xmark DBLP

Ti
m

e
 (

m
s)

Decoding and determination time after insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

176

7.3.5.3 Conclusion

The ability to determine the five main relationships (parent/child, sibling,

ancestor/descendant, LCA, and document order) was examined in this

experiment. When establishing each relationship individually, the compressed

Base-9 labels generally sped up the determination process in comparison to

SCOOTER both before and after insertion. For the document order (DO), there

was no apparent difference between the two schemes.

With regard to the decoding process as a part of the determination time, the

Fibonacci decoding proved faster than QED by an average of 47.7% before

insertion and 37.28% after insertion (considering the four datasets used). The

statistical significance calculation performed on the results confirmed that Base-9

always performed faster than SCOOTER, both before and after insertion, in

terms of decoding and determining all relationships between any pair of labels.

7.3.6 Query Performance

As discussed in the previous chapter, this experiment assesses the query

response time on the XML-labelled XMark dataset before and after updating.

Four main types of XPath queries were used for the reasons stated in Section

6.5.1.

Figure 7.35 Box plot distribution of decoding and determination time
comparison

Chapter 7: Experimental Results and Statistical Analysis

177

7.3.6.1 Analytical Strategy

The only measurement relevant to this experiment is the query response time (in

milliseconds). Taking into account the cache memory and any complex

interactions that might occur in terms of computer housekeeping tasks at the time

the experiment was executed, each query was separately run for 100 times (after

once again excluding the first five runs) for each scheme in order to achieve

statistically significant results. The Mann-Whitney U-test was used to gain a

statistical analysis of the results obtained for the XPath queries. In addition, the

medians of the time taken for 100 runs were compared graphically for the two

schemes both before and after insertion.

7.3.6.2 Analysis of the Results

 Before insertion

Figure 7.36 illustrates the response times of the XPath queries tested using the

Base-9 and SCOOTER schemes over the initial labels of the XMark dataset. This

figure shows that Base-9 performs slightly better than SCOOTER in terms of

querying time. With the exception of Query1, representing the parent/child

relationship (i.e., finding all American (parent) items (child)), both schemes take

the same length of time to return the query results. This observation was

checked statistically as the Mann-Whitney U-test was applied to each query

separately, which obtained 𝑝-values as low as 0.01x10−5 for queries 2, 3, and 4

but were greater than the significance level 0.05 for query 1 (𝑝 = 0.763). The

medians of both schemes were the same for query 1 (=32 milliseconds) and

query 4 (=94 milliseconds).

Chapter 7: Experimental Results and Statistical Analysis

178

The affect sizes �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) for queries 2, 3, and 4 were computed,

the results for which were 0.82, 0.74, and 0.66, respectively. This confirms the

results comparison as it appears in figure 7.36; Base-9 outperformed SCOOTER

in returning answers to queries 2, 3, and 4, representing ancestor/descendant,

sibling and document order, respectively. The box plot distribution of query 2

response times is presented in figure 7.37. Similar box plots for queries 3 and 4

are shown in appendix B.5.

Figure 7.36 Query performance comparison over initial labels

Figure 7.37 Box plot distribution of query 2 response time

32

500

375

94

32

522

390

94

0

100

200

300

400

500

600

Query1 Query2 Query3 Query4

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Querying time - before insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

179

 After insertion

Skewed insertion (1,000 X 10) was used to add 10,000 nodes to the XMark

dataset in order to test the query performance when XML is updated. Figure 7.38

shows the comparison between the two schemes in terms of query response

time after insertion. It can be seen from this figure that Base-9 gave a slightly

faster response time than SCOOTER for all queries.

Using the Mann-Whitney U-test, the 𝑝-value obtained for all queries were

0.01x10−6. Therefore, there is a difference in query response time between the

Base-9 and SCOOTER schemes. The affect sizes �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) found

were 0.99, 0.96, 0.83, and 0.84 for the queries 1, 2, 3, and 4, respectively. This

shows that for over all the queries tested, Base-9 always showed a better

performance than SCOOTER in terms of response time. The box plot

distribution of response time for query 1 after insertion is illustrated in figure 7.39

and in appendix B.5 for all other queries (as their results are very similar to those

of query 1).

Figure 7.38 Query performance comparison after insertion

2654

469 390
109

3386

500 406
125

0

500

1000

1500

2000

2500

3000

3500

4000

Query1 Query2 Query3 Query4

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Querying time - after insertion

Base9 SCOOTER

Chapter 7: Experimental Results and Statistical Analysis

180

7.3.6.3 Conclusion

This experiment compared Base-9 with SCOOTER in terms of querying time.

The results showed that Base-9 always returns queries concerned with

ancestor/descendants, sibling, and document order relationships faster than

SCOOTER, both before and after insertion. For queries dealing with parent/child

relationships, both schemes behaved similarly for the initial documents but Base-

9 became faster than SCOOTER after the XML document had been updated.

Further discussion on the Base-9 scheme’s performance evaluation is presented

the next chapter.

7.4 Experimental Results of XML Label Compression

This experiment was designed to examine the compression of XML labels using

the prefix-encoding methods presented in Chapter 4: Fibonacci coding of order 2

(Fib2) and order 3 (Fib3), Lucas coding, Elias-delta (ED) coding, and Elias

Fibonacci coding of order 2 (EF2) and order 3 (EF3). The performances of these

prefix-encoding techniques were tested in terms of encoding time, code size, and

decoding time (see Section 6.6). Each encoding method was applied to the

Dewey order labelling scheme (Tatarinov et al., 2002) and the SCOOTER

scheme (O’Connor and Roantree, 2012) separately. In addition to the prefix

Figure 7.39 Box plot distribution of response time for query 1 after insertion

Chapter 7: Experimental Results and Statistical Analysis

181

encodings tested here, the comparison of results includes the original encoding

methods of these two schemes (UTF-8 for Dewey labels and QED for SCOOTER

labels; see Chapter 4). The experiments were conducted on the three real-life

datasets (NASA, Treebank, and DBLP) described in Section 6.5.1 to study the

effect of the XML tree shape over the results obtained.

The effect of the XML dataset size on the compression process was also

examined in this experiment. This was achieved by reducing the Treebank and

DBLP files to 23MB (equivalent to the NASA file size) whilst their XML tree

features were preserved as described in Table 6.3. The encoding and decoding

experiments were then repeated over these re-sized datasets and the results

were compared with the original ones.

7.4.1 Analytical Strategy

The compression methods experiment was applied to study which encoding

method generates the smallest code, and which one(s) process the encoding

and/or decoding the fastest. Therefore, two main factors were considered in

evaluating the results of this experiment: the execution time (in milliseconds) and

the code size (in Kbytes).

For each encoding method, the codes generated for Dewey or SCOOTER labels

were found to be fixed values, regardless of the number of times each method

was executed, thus the code sizes have been presented graphically.

When the encoding and/or decoding time are considered, it is essential to take

into account random effects on the time computed (Li et al., 2005c) and,

consequently, specify how many runs are sufficient to obtain statistically

significant results. In order to enable the analysis of a statistical hypothesis with

minimal statistical power (Dybå et al., 2006) the number of runs had to be at least

10 (Ali et al., 2010) (Wegener et al., 2001). However, it is recommended (Arcuri

and Briand, 2014) to use at least 30 runs to reach a more accurate statistical

result. To determine a sufficient number of runs required to gain a statistically

significant result, the statistical analysis was separately applied on Dewey labels

for the NASA dataset with 20, 50, 100, and 150 runs. The analysis included a

comparison between the six prefix encodings and UTF-8, each being individually

implemented on the Dewey labels for 20, 50, 100 and 150 times. As the medians

of the times taken were the same for each encoding method when executed for

Chapter 7: Experimental Results and Statistical Analysis

182

20 or more runs, 50 runs (after excluding the first five runs) was selected as an

adequate number of runs to evaluate the encoding and decoding time. Because

of the non-normal distribution of the time, and because there were more than two

encoding methods to be compared, the Kruskal-Wallis test was used to study the

statistical significance of the results.

7.4.2 Analysis of the Results

 Encoding time

Figures 7.40 and 7.41Figure 7.41 show the median encoding time comparison for

the Dewey and SCOOTER labels respectively. As can be seen from these

figures, the results were influenced by the different XML tree shapes of the XML

datasets tested. For both labelling schemes, the encoding time for the NASA

dataset was the fastest as its size is the smallest of all the datasets tested. The

encoding time for Dewey labels was the slowest for the Treebank dataset, which

has the deepest XML tree structure; this is because more components and

separators exist within Treebank’s labels. Similar results were achieved on

SCOOTER labels with the exception of Lucas encoding, Fibonacci of order 2

(Fib2) and of order 3 (Fib3) encodings, which took more time for the DBLP

dataset. SCOOTER labels were computed based on the node child count (see

Chapter 3) and so the more children per node that exist (i.e., wider XML tree as

in DBLP dataset) the larger the self-label value is. Thus, it seems that the

Fibonacci and Lucas encodings were more dependent on self-label sizes than

the number of components. Overall, for SCOOTER labels the original QED

method achieved the fastest encoding time of all six prefix-encoding methods.

Chapter 7: Experimental Results and Statistical Analysis

183

The Kruskal-Wallis test was carried out on the encoding time for each dataset,

and the 𝑝-value obtained was 𝑝 < 0.001, suggesting there is a difference

between at least two encoding methods. Thus, pairwise comparisons via the

Manny-Whitney test were performed and the results confirmed that there was

very strong evidence (with 𝑝 < 0.001, adjusted using the Bonferroni correction) of

a difference between most of the methods. There was no evidence of a

difference between Fibonacci coding of order 2 and Lucas coding, where both

gave maximal encoding times. Moreover, there was no evidence of any

Figure 7.40 Median encoding time comparison for Dewey labels

Figure 7.41 Median encoding time comparison for SCOOTER labels

1
1

6
5

.5

7
8

2 1
1

8
8

7
3

5

8
7

6

6
8

8

6
1

0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 UTF8

Ti
m

e
 (

m
s)

Dewey labels - encoding time

NASA Treebank DBLP

2
0

7
9

.5

1
5

3
3

2
1

5
8

7
9

7

1
0

7
9

8
2

9

5
2

6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 QED

Ti
m

e
 (

m
s)

SCOOTER labels - encoding time

NASA Treebank DBLP

Chapter 7: Experimental Results and Statistical Analysis

184

difference between Elias-delta and Elias-Fibonacci 3 coding. For both schemes,

the overall encoding time for the newly implemented Elias-Fibonacci of order 3

had the smallest median value in comparison to the other prefix-encoding

methods. The encoding time for the original methods (UTF8 and QED) of the two

schemes required the least time of all the prefix encoding methods. Figure 7.42

shows the box plot distribution of the encoding time of Dewey labels for the

NASA dataset. Similar box plots were found for the other datasets, so these are

only reported in appendix B.6. The statistical measurements obtained in this

experiment can also be found in appendix B.6.

 Decoding time

Figures 7.43 and 7.44 show the median decoding time comparison for Dewey

and SCOOTER labels. As with the encoding, the results here were also affected

by the XML tree shape. For the Dewey labelling schemes, the results were

similar to those of the encoding process (Figure 7.40), where the NASA dataset

was decoded the fastest and Treebank the slowest. Unlike the encoding process,

the Lucas and Fibonacci methods gave a better performance than the other

methods for the SCOOTER scheme. In general, the UTF-8 and Fibonacci of

order 2 achieved the fastest decoding times for Dewey labelling scheme. The

Fibonacci of order 2 also decoded the SCOOTER labels faster than the other

decoding methods.

Figure 7.42 Box plot distribution of encoding times of Dewey labels for NASA

Chapter 7: Experimental Results and Statistical Analysis

185

The Kruskal-Wallis test was carried out on decoding time for all datasets

individually, and as the 𝑝-value obtained was 𝑝 < 0.001 pairwise comparisons via

the Manny-Whitney test were performed; the results showed that there was very

strong evidence (with 𝑝 < 0.001, adjusted using the Bonferroni correction) of a

difference between most of the methods. There was no evidence of any

difference between Fibonacci (of order 2), Fibonacci (of order 3) and Lucas

coding. Generally, for both schemes, decoding Fibonacci of order 2 was the

fastest in comparison to all the other encoding methods tested here. The Elias-

Figure 7.43 Median decoding time comparison for Dewey labels

Figure 7.44 Median decoding time for SCOOTER labels

5
3

2

6
7

2

5
4

7 1
0

7
9

8
7

6

8
6

1

5
3

2

0

1000

2000

3000

4000

5000

6000

7000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 UTF8

Ti
m

e
 (

m
s)

Dewey labels - decoding time

NASA Treebank DBLP

7
0

4

8
1

3

7
0

4 1
6

8
9

1
4

7
2

.5

1
0

0
1

8
5

1
.5

0

2000

4000

6000

8000

10000

12000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 QED

Ti
m

e
 (

m
s)

SCOOTER labels - decoding time

NASA Treebank DBLP

Chapter 7: Experimental Results and Statistical Analysis

186

delta was the slowest when decoding XML prefix-based labels. Figure 7.45

presents the box plot distribution of the decoding times of Dewey labels for the

NASA dataset. The box plot distribution of decoding times for both schemes

across all datasets are similar to figure 7.45, and as such are given in appendix

B.6. The statistical measurements obtained in this experiment are also reported

in appendix B.6.

 Code size

The total code size (in Kbytes) of all the Dewey and SCOOTER labels within

each dataset was computed separately. Figures 7.46 and 7.47Figure 7.47

illustrate the results for all encoding methods. For the Dewey labels, all the

prefix-encoding methods applied generated smaller code than the original UTF-8

encoding. However, for the SCOOTER labels, the original QED encoding

produced the smallest code of all prefix encoding approaches.

Figure 7.45 Box plot distribution of decoding times of Dewey labels for
NASA

Chapter 7: Experimental Results and Statistical Analysis

187

The differences between the total code sizes obtained using the prefix encodings

were small (see figures 7.46 and 7.47). The size of self-label values in a label set

has an impact on the size of the compressed code. For instance, label sets with

shorter self-labels, such as the Dewey labels for the NASA and Treebank

datasets using Fibonacci order 2, generated the smallest code. As self-label

values get larger (e.g., in SCOOTER labels), Fibonacci of order 3 produced the

most compressed code. This observation agrees with the results of the Base-9

label encoding described earlier (see Section 7.3.4). In general, Fibonacci coding

Figure 7.46 Code size comparison for Dewey labels

Figure 7.47 Code size comparison for SCOOTER labels

2
1

3
7

2
2

9
7

2
1

7
9

2
2

7
1

2
2

8
4

2
6

1
6

3
2

1
0

0

5000

10000

15000

20000

25000

30000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 UTF8

To
ta

l c
o

d
e

 s
iz

e
 (

K
b

yt
e

s)

Code Size - Dewey labels

Nasa TB DBLP

3
8

1
2

3
7

2
0

3
9

1
0

3
9

5
9

3
8

0
3

4
0

3
9

2
5

4
6

0

5000

10000

15000

20000

25000

30000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 QED

To
ta

l c
o

d
e

 s
iz

e
 (

K
b

yt
e

s)

Code Size - SCOOTER labels

Nasa TB DBLP

Chapter 7: Experimental Results and Statistical Analysis

188

generates the most compressed code in comparison to the other prefix-encoding

methods applied. For smaller self-label values, Fibonacci of order 2 is better,

whereas Fibonacci of order 3 is recommended for larger self-label values.

 Database Size

The prefix-encoding methods were also tested over the three datasets of the

same size (i.e., 23 MB) where their XML tree properties were preserved as

described in Section 6.5.1. The results of encoding/decoding time and code size

were consistent with the originals (discussed earlier). This implies that the XML

tree’s shape (depth and breadth) influences the encoding/decoding time and

code size, but XML document size is not of consequence. A comparison of

results is presented graphically in appendix B.6.

7.4.3 Conclusion

Various prefix coding methods were applied for the first time to compress XML

labels. The compression process was conducted on three real XML benchmark

datasets that vary in their XML tree properties. The results show that the

structure of the XML tree representation of a dataset has an impact on the

performance of the compression methods, but the XML document size does not.

Among the prefix-encoding methods studied the newly implemented Elias-

Fibonacci of order 3 achieved the fastest encoding time on average, whilst

Fibonacci of order 2 had the best decoding time. In practice, the decoding

process is usually performed more often than encoding. Therefore, for faster

XML query processing, Fibonacci coding of order 2 is preferable to other

encoding methods. In terms of size, Fibonacci of order 3 produced the most

compressed codes for larger numbers and Fibonacci of order 2 for small

numbers. Consequently, Fibonacci coding is recommended for encoding XML

labels because it generates smaller code and produces faster decoding in

comparison to the other encoding methods tested here.

The results of this experiment were published in WEBIST 2016 conference (Al-

Zadjali and North, 2016).

7.5 Conclusion

To conclude the experimental outcomes: the SCOOTER scheme provided initial

labels faster than Base-9, but Base-9 produced more compressed labels.

Chapter 7: Experimental Results and Statistical Analysis

189

Uniform and skewed insertions were tested on both schemes when adding both

small and large numbers of nodes to each XML experimental dataset. In general,

the insertion time was almost the same for the two schemes. As with the

initialisation, Base-9 always generated more compact labels than SCOOTER

especially when a large number of nodes were inserted. If insertion occurred at

the same position as a deleted node, Base-9 guaranteed re-use of at least 98.7%

of the deleted labels while SCOOTER re-used only the smallest quaternary

labels.

The encoding methods used to store Base-9 labels (i.e., Fibonacci encoding) and

SCOOTER labels (QED encoding) were examined in this chapter. The behaviour

of these two encoding techniques was consistent in the label encoding

experiment and XML label compression experiment in terms of encoding and

decoding times over the initial labels. After a large number of insertions,

Fibonacci coding outperformed QED encoding in generating labels’ codes,

particularly Fibonacci of order 3. In general, Fibonacci coding produced smaller

codes than QED, either by Fibonacci of order 2 (for smaller self-labels) or of

order 3 (for larger self-labels) if not both depending on the XML tree shape of the

dataset (as discussed in the last experiment).

The chapter also studied the ability of both schemes to determine relationship.

The results suggest that the compressed Base-9 labels have, in general,

speeded up the determination process in comparison to SCOOTER both before

and after insertion, except when identifying the document order (DO), where two

schemes behaved similarly. When considering the decoding process as a part of

the determination time, Base-9 always performed faster than SCOOTER both

before and after insertion as the Fibonacci decoding was faster than QED. In

addition, an assessment of the four XPath queries representing the essential

structural relationships was performed to evaluate the queries’ response times on

both schemes.

Several prefix-encoding methods were implemented to compress the Dewey and

SCOOTER labels. Their performances in terms of encoding/decoding time and

code sizes were evaluated. The results showed that the shape of an XML tree

(but not the size) has an impact on the results of the compression methods.

Among the prefix-encoding methods applied, the newly implemented Elias-

Fibonacci of order 3 provided the fastest encoding time whilst the Fibonacci of

Chapter 7: Experimental Results and Statistical Analysis

190

order 2 had the best decoding time. In terms of size, Fibonacci encoding gave

the most compact code.

With a few exceptions, the overall results of the Base-9 scheme were better than

those of SCOOTER. A further evaluation of the Base-9 scheme is discussed in

the next chapter. Chapter 8 also revisits the research hypotheses and outlines

the main findings and limitations, which in turn suggest ideas for future work

(presented in Chapter 9).

Chapter 8: Evaluation and Further Discussion

191

Chapter 8: Evaluation and Further Discussion

8.1 Introduction

The experimental results were discussed in the previous chapter. This chapter

presents a general evaluation of the proposed scheme in the next section. There

are many factors that can be considered as ‘threats’ to the experiments as they

may have an impact on the experimental results; these include execution time

anomalies and random data (e.g., positions of the new nodes inserted). Section

8.3 describes how these threats were handled to ensure the reliability and

scalability of the results. The designs and outcomes of each experiment are

individually evaluated in Secion 8.4. The validation of the proposed scheme’s

properties as a good dynamic XML labelling scheme is given in Section 8.5. The

experimental limitations and main findings are discussed in Sections 8.6 and 8.7,

respectively. Finally, the chapter is concluded with Section 8.8.

8.2 The Base-9 Scheme’s Overall Evaluation

This section gives an overal assessment of the new Base-9 scheme based on

the research hypothesis stated in Chapter 1 and described in detail in Chapter 5:

“Providing compact XML labels based on lexicographical order using

decimal strings may facilitate query performance and permit multiple

insertions without causing any storage overhead. Storing such labels

using a Fibonacci prefix-encoding techniques may reduce the storage

capacity required and speed up the determination of structural

relationships.”

As mentioned in Chapter 5, the main aim of this thesis is to limit the occurrence

of overflow and increase the efficiency of XML labelling in dynamic environments

by focusing on the size of XML labels. The Base-9 scheme was developed to

improve the performance of XML labelling by generating shorter labels whilst still

allowing insertion and avoiding re-labelling. The underlying principles here are

the combination of maintaining the size of the labels via their lexicographical

order and then storing these labels in compressed form by using Fibonacci

encoding.

Chapter 8: Evaluation and Further Discussion

192

To test the research hypothesis, the Base-9 scheme was implemented based on

the principles outlined in Chapter 5. The experimental objectives, design and

implementations were described in detail in Chapter 6. To allow an even-handed

evaluation, the SCOOTER labelling scheme (O’Connor and Roantree, 2012) was

also implemented as it contributed to the development of the proposed scheme.

The SCOOTER labelling scheme was recently described as the most compact

dynamic labelling scheme in controlling the growth of label size when XML is

updated (Chiew et al., 2014a). To assess the functionality of the proposed

scheme, six experiments were designed and implemented to examine whether

the research intentions were achieved and the scheme fulfilled the criteria

required to be classified as a good dynamic XML labelling scheme (see Chapters

3 and 5).

Based on the experimental results discussed in Chapter 7, it is clear that the

research hypothesis was supported. The proposed scheme gave better

performance when either a small or large number of nodes was inserted (see

Section 7.3.2). Since the focus of the thesis is on the compactness of the labels,

it was essential to measure the size of the intial and updated labels. The results

of the average reduction percentage in the labels’ sizes when Base-9 was used

in preference to SCOOTER was about 30% on initial labels, at least 20% after

uniform insertion, and 44% after skewed insertion (see Section 7.3). In all

circumstances, the Base-9 scheme generated shorter labels than SCOOTER.

The results of both the label encoding experiment and the XML label

compression experiment showed that the XML tree shape has an impact on code

size. Based on the results obtained in these two experiments, it can be seen that

the performance of the encoding methods was affected by the shape of the tree

representing an XML dataset. When encoding initial labels for a deep narrow tree

(e.g., the Treebank dataset), Fibonacci of order 2 generated the shortest code

among all encoding methods tested in this study. For a wide and shallow XML

tree (e.g. the DBLP dataset) Fibonacci of order 3 produced the most compact

code. For other shapes of XML tree, Fibonacci of order 2 or of order 3 encoding

always performed better than QED in terms of code size. After a large number of

insertions, both Fibonacci encodings (particularly Fibonacci of order 3) still

generated shorter codes than QED for any shape of XML tree.

Another aspect the research hypothesis considered was that of facilitating query

performance and relationship determination. The results of the relationship

Chapter 8: Evaluation and Further Discussion

193

determination experiment indicated that, in general, the compressed Base-9

labels effectively speeded up the determination process in comparison to

SCOOTER both before and after insertion, except when identifying the document

order (DO) where both schemes gave similar results. The effect of the decoding

process on facilitating query performance was also tested. Again, Base-9 always

gave a better performance than SCOOTER both before and after insertion, as

Fibonacci decoding was faster than that of QED. An evaluation of the four XPath

queries representing the essential structural relationships in terms of their

response times was performed (see Section 7.3.6). The results showed that

Base-9 for the most part outperformed SCOOTER in returning answers to the

queries both before and after insertions.

According to the experimental design (see Chapter 6) and the results obtained

(see Chapter 7), it is clear that the research hypothesis was supported. The

proposed scheme was tested on many real and synthetic XML datasets (NASA,

Treebank, DBLP, and XMark), which vary in their structure and properties in

order to obtain better analytical results and more reliable conclusions. However,

the lack of a standard evaluation framework (see Chapter 6) made it challenging

to provide a fair comparison with the existing XML labelling schemes. Other

threats to the experiments, such as the time restrictions, may have limited the

scalability of the results, as will be discussed in the next section.

8.3 Threats to the Experiments

A number of factors may affect the results of a scientific experiment (Johnson,

2002) (Hakim, 2000). Such factors are referred to as threats. For example,

execution times rely strongly on complicated interactions between several

products that contain the programming application’s environment. This comprises

memory size and configuration, the type of compiler used, and the operating

system (McGeoch, 2001). Another example is when dealing with randomised

methods (e.g., in handling insertions experiment), the erraticism between runs of

the codes and between randomly generated instances may obscure certain

results, making it difficult to derive accurate conclusions (Johnson, 2002).

To ensure the credibility and validity of the research findings, these threats were

identified and controlled in each experiment. To ensure the study’s outcomes

were valid rather than obtained by chance, several principles were followed, as

addressed below.

Chapter 8: Evaluation and Further Discussion

194

8.3.1 Experimental Implementation

It is important to check the correctness of the algorithm’s implementation in order

to determine the scalability of the results. For each experiment, before formally

collecting the data a set of exploratory experiments (Shneiderman, 1976) were

applied to each algorithm. This comprised experimental tests made during

debugging and optimising the code by taking into account various scenarios in

order to generalise the findings (Johnson, 2002). To control the experimental

techniques, the algorithms were first traced manually (using the “School” XML

sample – see Chapter 2). Then, each experiment’s code was tested and re-

tested with various instance types and sizes (e.g., different XML datasets, small

and large numbers of insertions).

Due to the lack of any standard evaluation framework for XML labelling schemes

(see Section 6.3), it is difficult to provide comparisons with existing schemes in

order to verify the proposed scheme’s reliability. Therefore, all algorithms (Base-

9 and SCOOTER) were implemented in the same machine using the same test

instances. When evaluating the correctness of each algorithm’s implementation

individually, the results had a consistent pattern for any experimental XML

dataset used. This supports the reliability of the experimental designs.

8.3.2 Reproducibility

A key aspect of a scientific experimental study is the reproducibility of results

(Johnson, 2002) (Saunders, 2011). This implies that when the same code is

repeatedly run on the same machine using the same instances/variables/inputs,

the results will remain the same (or have the same medians/averages for run-

time and randomised data). For more informative results, this reproducibility also

means that when the same algorithm is re-tested using a different device, distinct

datasets, and even different measuring approaches if possible, then the original

results must be consistent with the reproduced results in order to support the

same conclusions (Johnson, 2002). This provides confidence that the original

results were independent of the details of the experiment.

In this study, each experiment was tested at least three times: once before and

twice after upgrading the laptop used. The results were relatively close for all the

tests performed on the researcher’s laptop. In terms of execution time, the

medians were mostly the same for each algorithm using the same

Chapter 8: Evaluation and Further Discussion

195

instances/dataset. If there were any distinctions, the results differed by no more

than 0.15%. Such differences might seem insignificant, but they could reflect on

the scalability of the study. To ensure reliability, the statistical analysis tests (see

Chapter 7) were also repeated after each reading.

To gain a better estimate of the true asymptotic running time analysis (Cornell-

Tech, 2017), it is essential to understand how the computation of the running

times was achieved. In this study, the measurement unit of the execution time

was milliseconds, since computer speeds have increased rapidly with the

development of modern computers. According to (Johnson, 2002), if a method

consumes a second or less, the running time is believed to be irrelevant to any

comparison as it does not provide any significant advantage. In such a case, the

method should be tested over a larger number of instances to prove that the

advantage may persist when instance size grows. Thus, for each experiment, the

running time was computed over both small and large datasets. In the label

initialisation experiment, different datasets were used that varied in size from 23

MB to 127 MB. The same datasets were also employed in all encoding/decoding

experiments as well as all relationship determination experiments. For the

individual relationship determination test, only the XML Treebank dataset was

used because its deep recursive structure provided sufficient variety in structural

relationships (see Section 6.5.2). It was tested with 200,000 initial pairs of labels

and then with up to 400,000 pairs of updated labels. The insertion algorithms

were examined using different types of insertions, each executed using both

small and relatively large numbers of nodes: 500 to 50,000 nodes in uniform

insertions and 100X10 up to 10,000X10 for skewed insertions.

For randomised methods (e.g., insertion algorithms and relationship

determination processes), to compensate for the variability of the results multiple

runs must be performed to gain any understanding of the predictability of the

algorithm (Johnson, 2002). As a result, the handling insertion experiment was

repeated on every artefact 20 times to measure the run-time performance, and

10 times to evaluate the label size. In the determination experiment, the random

selection of labels was compensated for by repeating the process 100 times both

before and after insertion. Similarly, for the evaluation of the other experiments

multiple runs were used with each being repeated between 20 and 100 times.

It is important to implement each experiment extensively to provide high

confidence that the conclusions derived are valid and do not rely in some manner

Chapter 8: Evaluation and Further Discussion

196

on the experimental setup. The results of each algorithm, under repeated testing,

always supported the same conclusions. This observation supports the scalability

of the results and consequently it can be inferred that the experimental findings

of this study were reliable (Johnson, 2002).

8.3.3 Comparability

It is important to evaluate the effectiveness of the proposed scheme in

comparison to the literature. Hence, it would be ideal be able to provide

comparisons between the Base-9 scheme and other existing labelling schemes.

Unfortunately, the lack of a standard evaluation framework (as stated in Chapter

6) makes it difficult to adopt a comprehensive comparison. To develop a

comparable implementation of the state-of-the-art XML labelling scheme,

algorithms of the SCOOTER scheme were studied alongside the proposed

scheme. The detailed code for SCOOTER’s algorithms (initialisation and

insertions) are presented in (O’Connor and Roantree, 2012). All the algorithms

were implemented and run in the same environment as that in which the Base-9

scheme was tested. Each experiment was performed equally under each

schemes; that is, with the same number of runs and under the same conditions,

e.g., hardware type, memory and background noise, laptop on charge or not, and

network consumption. All applications not forming a direct part of the experiment

were always closed.

The SCOOTER labelling scheme (O’Connor and Roantree, 2012) did not deal

with the same test instances as the Base-9 when evaluating its performance. The

authors of the SCOOTER scheme focused on evaluating it mainly in terms of

performing skewed insertions. Their paper (O’Connor and Roantree, 2012) did

not provide any measurement of relationship determination, query performance,

or label encoding time. Furthermore, their experiments were based on 102

through 106 self-labels generated by SCOOTER’s initialisation algorithm, rather

than using any of the existing experimental benchmarks. Because of this, and the

absence of a standard evaluation framework for XML labelling, several difficulties

were encountered in ensuring an even-handed comparison between the Base-9

scheme and other schemes in the literature, including SCOOTER.

To ensure reliability, the Base-9 and SCOOTER schemes were implemented

individually on the same machine. All experiments were performed for each

scheme within the same computational environment. When using different XML

Chapter 8: Evaluation and Further Discussion

197

experimental datasets, the comparisons between results were consistent. The

statistical significance of the results was sufficient to validate the findings.

8.3.4 The Need for Statistics

Statistical analysis of the experiments permits more control over the compromise

between generality and accuracy of the results in order to attain reliable

conclusions regarding performance (Bartz-Beielstein et al., 2010). Statistics

provides an accepted, powerful mathematical framework with which to analyse

experimental data. It is important to consider the true differences between the

two methods, particularly for randomised algorithms in which the presence of an

effect produced by the algorithm may leads to false conclusions. Statistical tests

help to identify whether the data collected are sufficient to establish a difference

between the performance of the methods being compared (Ali et al., 2010). They

may suggest possibilities for further improvements, or even new experimental

directions (Bartz-Beielstein et al., 2010). For instance, the statistical analysis of

the query performance experiment on updated data suggested it would be worth

re-examining query performance, taking into account the randomness of the

insertion mechanism. Accordingly, the query performance experiment was

repeated by testing the queries over updated labels. This was performed for 10

insertions, individually, to compensate for the variability of the results. For each

query, the response time to return the same number of answers in the two

schemes was computed to ensure scalability.

In Chapter 7, several statistical analyses were performed for each experiment.

The results obtained supported the findings that the algorithmic behaviour was

consistent for all XML datasets in both schemes. The following section illustrates

the individual evaluations of the experiments based on the results discussed in

the previous chapter.

8.4 Experimental Evaluation

The experimental design (see Chapter 6) and results (see Chapter 7) are

evaluated in this section.

Chapter 8: Evaluation and Further Discussion

198

8.4.1 Label Initialisation Experiment

The label initialisation experiment was implemented successfully. As the main

focus here is the compactness of the label sizes, the aim of this experiment was

to generate short initial labels for XML datasets. This experiment was intended to

evaluate the Base-9 scheme against SCOOTER, the results of which showed

that the experiment met its objective.

This experiment examined two parameters: initialisation time and label size. In

terms of time, it was expected that both schemes would behave similarly as the

concept of their initialisation mechanisms are analogous, with the exception that

Base-9 used decimal strings rather than quaternary strings. The statistical

analysis of the results showed that there was a significance difference between

the two schemes. In general, SCOOTER generated initial labels faster than

Base-9. This could be due to the implementation of the algorithm because Base-

9 requires more loop statements than SCOOTER’s initialisation algorithm. When

the algorithms were applied to relatively large XML datasets (of minimum size

23MB) the difference between the two schemes’ performance was significant, by

up to 5%. The significance of the results was justified by a statistical test (see

Section 7.3.1). On the other hand, as expected, the Base-9 scheme

outperformed the SCOOTER scheme by an approximate 30% reduction in the

size of the initial labels.

The initial label size comparison by (O’Connor and Roantree, 2012) showed that

the V-CDBS scheme (Li et al., 2008) and QED scheme (Li and Ling, 2005b)

produced more compact labels than SCOOTER. The percentage difference in

total label size generated between the schemes was not reported by (O’Connor

and Roantree, 2012). Therefore, based on the literature, it is difficult to obtain

comparable results between these schemes and the proposed scheme. This

suggests that it is necessary to apply other schemes, such as V-CDBS and QED,

in order to generalise the findings.

8.4.2 Handling Insertions Experiment

This experiment was performed to evaluate the dynamic behaviour of the

proposed scheme. The results (in Chapter-7) of the experiment support the

experimental objectives. Both uniform and skewed insertions were tested in all

the experimental datasets. The tests covered inserting both a small and large

Chapter 8: Evaluation and Further Discussion

199

number of nodes to obtain general and scalable results. For the most part, both

schemes required the same insertion time, but the proposed scheme constantly

generated more highly compressed labels than the SCOOTER scheme. The

Base-9 scheme improved the skewed insertion performance in compressing XML

labels by at least 44% when small (100X10) insertions occurred and up to 95%

after large (10,000X10) skewed insertions. As expected, this shows that using

the concept of lexicographical comparison in preference to the SCOOTER’s

adaptive growth technique enhances the performance of the insertion algorithms.

Furthermore, increasing the number of digits allowed for labelling to all 10

decimal digits (0 to 9) instead of the 3 quaternary digits (1,2, and 3), giving a

wider range of XML labels.

Unlike the initialisation process, the new labels generated in this experiment are

dependent on their randomly selected positions. To achieve scalability, the

randomness of the algorithm was considered when evaluating label size and

insertion time. As discussed earlier, both small and large numbers of insertions

were tested in different XML datasets; each test was repeated several times.

With regards to the non-normal distribution of the data collected, the medians of

the time and size obtained were computed. The consistency of the median

values per dataset/artefact supports the reliability of the findings.

To date, the SCOOTER scheme is considered the most compact dynamic

labelling scheme that supports skewed insertion (O’Connor and Roantree, 2013)

(Chiew et al., 2014a). In (O’Connor and Roantree, 2012), the performance of

SCOOTER’s insertion algorithm was compared to the V-CDBS (Li et al., 2008),

QED (Li and Ling, 2005b), and Vector (Xu et al., 2007) XML labelling schemes.

The results of O’Connor and Roantree’s comparison showed that SCOOTER

always produced more compact labels after both a small (100X10) and large

(1000X100) number of insertions. Their experiment was conducted on self-label

values rather than the full interval or prefix-based labels. Again, instead of using

any existing experimental benchmarks, the self-labels tested were initialy

generated using the intialisation algorithms of the schemes being compared.

As Base-9 outperfomed SCOOTER in this respect by always providing shorter

labels, it can be inferred that the Base-9 scheme is a more compact labelling

scheme than the V-CDBS (Li et al., 2008), QED (Li and Ling, 2005b), and Vector

(Xu et al., 2007) schemes. This observation could be verfied by implementing

Chapter 8: Evaluation and Further Discussion

200

these schemes on the same machine using the wider range of experimental XML

datasets applied in this thesis.

8.4.3 Re-using Deleted Node Labels Experiment

The results of the re-using deleted labels experiment was obtained as expected

(see Chapter 7). By using lexicographical comparison techniques to label initial

and updated labels the Base-9 scheme allowed the reuse of all the deleted labels

(if available). The Base-9 scheme showed that 100% of the deleted labels were

re-used, whilst SCOOTER re-used no more than 0.9%.

As discussed in Chapter-5 (Section 5.6.4), very few XML labelling schemes

(Hye-Kyeong and SangKeun, 2010) (O’Connor and Roantree, 2010b) (Li et al.,

2006b) (O’Connor and Roantree, 2012) considered reusing deleted node labels.

At the time this study started, the SCOOTER labelling scheme (O’Connor and

Roantree, 2012) was the only successful scheme that was designed to support

dynamic XML and reuse deleted labels without generating duplicates (Chiew et

al., 2014a). Therefore, based on the results of this experiment, it can be inferred

that the Base-9 scheme is the most compact XML labelling scheme that assures

re-use of all the available deleted labels.

8.4.4 Label Encoding Experiment

This experiment was implemented with the aim of evaluating the encoding

methods applied by the two schemes to store their (prefix-based) XML labels. To

obtain scalability, the performance of the encoding methods was compared in

terms of encoding time and size for both initial labels and updated labels in all

experimental XML datasets.

The simplicity of the QED encoding applied to SCOOTER’s labels produced the

fastest encoding time when it was used on initial nodes or a small number of

inserted nodes. As the SCOOTER labels grow rapidly after a large number of

insertions (an average of 48% after 5,000 nodes and 76% after 10,000 nodes),

the Fibonacci coding (of order 2 and of order 3) was always faster than the QED

encoding.

The tree shape of the XML dataset used affected the size of the encoded labels.

The behaviour of these two encoding techniques was consistent between the

label encoding experiment and XML label compression experiment in terms of

Chapter 8: Evaluation and Further Discussion

201

encoding and decoding times over the initial labels. This supports the scalability

of the results. The Treebank dataset has the deepest XML tree with the

narrowest width (see Section 6.5.1), which causes its labels to have more

separators (particularly at leaf level) and smaller self-label values in comparison

to other XML datasets. For such an XML tree structure, the experimental results

showed that Fibonacci of order 2 was preferable to other encoding methods,

whereas the DBLP dataset has the opposite structure (broad and shallow XML

tree); consequently, Fibonacci of order 3 performed better than QED or Fibonacci

of order 2 in producing smaller codes. For the NASA and XMark datasets,

Fibonacci coding both of order 2 and 3 generated shorter code in comparison to

QED, particularly Fibonacci of order 2. A small number (100X10) of skewed

insertions did not affect the findings. However, after many insertions, Fibonacci

coding has always produced smaller code than QED, showing an average

reduction of 61% (see Section 7.3.4). This leads to the conclusion that Fibonacci

coding enables the storage of the Base-9 labels in a more compressed form than

QED encoding does for the SCOOTER scheme for every shape of XML tree.

This experimental result was expected as the growth ratio for Fibonacci codes of

order 𝑚 ≥ 2 is 𝐹𝑖+1
(𝑚)

𝐹𝑖
(𝑚)

⁄ (where 𝑖 ≥ 0) (Klein and Ben-Nissan, 2008). Each

Fibonacci coding of order 𝑚 ≥ 2 generates 𝐹𝑖−1
(𝑚)

 codes of length equal to 𝑖 + 𝑚,

for 𝑖 ≥ 1 and of length 1 for 𝑖 = 0. This is illustrated in Table 8.1, which is adapted

from (Klein and Ben-Nissan, 2008). The table presents a sample of Fibonacci

codes of order 2 and 3 for integers [1:34].

Chapter 8: Evaluation and Further Discussion

202

Table 8.1 Fibonacci codes (𝒎 =2 and 3) for various integers (adopted from (Klein and Ben-
Nissan, 2008))

Integer (𝒏)

Fibonacci

Code 𝑭(𝟐)
 (𝒎 = 𝟐)

Fibonacci

code 𝑭(𝟑)
 (𝒎 = 𝟑)

Integer (𝒏)

Fibonacci

code 𝑭(𝟐)
 (𝒎 = 𝟐)

Fibonacci

code 𝑭(𝟑)
(𝒎 = 𝟑)

1 11 111 18 0001011 01000111

2 011 0111 19 1001011 11000111

3 0011 00111 20 0101011 00100111

4 1011 10111 21 00000011 10100111

5 00011 000111 22 10000011 01100111

6 10011 100111 23 01000011 00010111

7 01011 010111 24 00100011 10010111

8 000011 110111 25 10100011 01010111

9 100011 0000111 26 00010011 11010111

10 010011 1000111 27 10010011 00110111

11 001011 0100111 28 01010011 10110111

12 101011 1100111 29 00001011 000000111

13 0000011 0010111 30 10001011 100000111

14 1000011 1010111 31 01001011 010000111

15 0100011 0110111 32 00101011 110000111

16 0010011 00000111 33 10101011 001000111

17 1010011 10000111 34 000000011 101000111

As mentioned in Chapter-6 (Section 6.3), although some of the existing schemes

have defined their encoding methods for storing their XML labels in the memory,

none have really tested them. Since the efficiency of other encoding methods in

the literature has never been evaluated, it is difficult to give even general

conclusions regarding this experimental finding.

8.4.5 Relationships Determination Experiment

The relationships determination experiment (see Chapter 6) was evaluated on

initial and updated labels in Chapter 7. The five essential relationships were

examined (see Chapter 2): parent/child (P/C), ancestor/descendent (A/D),

sibling, lowest common ancestor (LCA), and document order (DO). The aim of

this experiment was to measure how quickly these relationships can be

determined directly from the labels. Both the proposed and SCOOTER scheme

were used to this end.

Chapter 8: Evaluation and Further Discussion

203

Establishing each relationship individually was assessed using 200,000 pair of

labels from the Treebank dataset. To examine the scalability of the results, a

larger number of pairs (up to 400,000) was used to test the individual

relationship’s determination on updated labels.

The main measure of this experiment was the determination time. To control the

variability of execution time and ensure the validity of the results, for each

relationship the test was repeated 100 times. The results were then statistically

analysed as reported in Chapter 7. Generally, the proposed scheme was found

to be faster in determining P/C, A/D, sibling, and LCA relationships individually

both before and after insertion in comparison to SCOOTER. When determining

the document order (DO) relationship, there was no significant difference

between the two schemes.

Using this same technique to evaluate the determination of individual

relationships, DDE (Xu et al., 2009), DFPD (Liu et al., 2013), and DPLS (Liu and

Zhang, 2016) XML labelling schemes were tested using the NASA, Treebank,

and XMark datasets. These results were found to be consistent for all the XML

datasets employed. This observation suggests that examining the establishment

of individual relationships on the Treebank dataset alone would be sufficient to

validate the findings.

The research hypothesis suggested that Fibonacci coding might speed up the

determination process. For this reason, the experiment also evaluated the

determination time including the decoding process. At first, all the experimental

XML datasets were used separately to measure the time taken to determine the

relationship, if any, between a pair of nodes. The assessment then covered the

influence of the scheme’s decoding approach on the speed of the determination

process by adding the decoding time to the determination time. For reliable

findings, the same large number of pairs of labels (i.e., 200,000) was used for

each dataset both before and after insertion. In all circumstances, Fibonacci

decoding was faster than that of QED. This observation agreed with the results of

the label encoding experiment. Such consistency in the results supports the

scalability of the findings. The comparison in this thesis is limited to that of the

SCOOTER scheme, which did not measure its performance in terms of

relationship determination.

Chapter 8: Evaluation and Further Discussion

204

8.4.6 Query Performance Experiment

This experiment was implemented to assess the response time of four essential

XPath queries on the XMark dataset, both before and after insertion (see

Chapter-6). The experiment provided a comparison between the proposed

scheme and SCOOTER in terms of querying time (see Chapter-7). It was

expected that there would be no significant difference in query response time

between the two schemes, as both apply lexicographical comparison when

accessing components’ labels to allocate an answer to the query. To ensure

scalability, the time taken for 100 runs was computed for each query test, both

before and after insertion.

Working on initial labels, the results showed that Base-9 always returns queries

concerned with ancestor/descendants (query 2), sibling (query 3), and document

order (query 4) relationships faster than SCOOTER. For queries dealing with

parent/child (query 1) relationships, both schemes behaved in a similar fashion.

The experiment was repeated after adding 10,000 nodes using (1,000X10)

skewed insertions. This insertion was done 10 times for the XMark dataset in

order to compensate for the variability of the results received. After each insertion

test, the queries were examined using both the Base-9 and SCOOTER schemes

individually. As the positions of the new nodes were affected by the randomness

of the algorithm, the number of answers matching the queries were measured for

each test. When there was a difference between the two schemes in the

numbers of queries’ answers returned, the percentage difference was found to

be no greater than 7% (an average of 3%).

For each query, the response time to return the same number of answers in the

two schemes was computed to ensure scalability. As mentioned earlier, the

number of answers matching a query may vary in each of the two schemes as a

result of the random behaviour of the insertion algorithm. Thus, after each

insertion process, if there was a difference between the two schemes in terms of

the number of answers then the lower number of answers (say 𝑛) obtained from

either scheme was used when computing the query response time. That is, the

query response time for returning 𝑛 answers was measured separately for each

scheme. The results showed that Base-9 always outperformed SCOOTER in

returning each of the four queries.

Chapter 8: Evaluation and Further Discussion

205

As discussed in Chapter-6, these four queries were selected because the axis

containment in each query represents the essential structural relationships. The

examination of other axes was omitted here as they can be handled in a similar

way to these four axes (Min et al., 2009). For further precision, all the queries

representing the 13 XPath axes in table 2.1 (see Chapter 2) could be tested.

8.4.7 XML Label Compression Experiment

The aim of the XML label compression experiment was to study the possibility of

compressing XML labels using prefix encodings (presented in Section 4.5) with

the intention of reducing the storage space and minimising the chances of

overflow (see Section 4.3). The experiment tested six prefix encoding methods

(described in Chapter 4) when compressing XML labels: Fibonacci coding of

order 2 (Fib2) and order 3 (Fib3), Lucas coding, Elias-delta (ED) coding, and

Elias-Fibonacci coding of order 2 (EF2) and order 3 (EF3). Three parameters

were considered when evaluating these prefix-encoding techniques: code size,

and encoding and decoding times. To ensure scalability of the results, two

labelling schemes were applied separately: the Dewey order (Tatarinov et al.,

2002) and SCOOTER (O’Connor and Roantree, 2012), for the reasons given in

Section 6.6. The two schemes were used to label the NASA, Treebank, and

DBLP datasets individually to examine the effects of the dataset’s tree shape on

the results. To generalise the findings, the experiment was repeated on the same

datasets, all with the same size of 23 MB but with their original XML tree

properties preserved. When evaluating encoding and decoding times, each test

was run 50 times to help ensure reliability.

The evaluation of the experiment also included the comparison between UTF-8

encoding for Dewey labels and QED encoding for SCOOTER labels (see

Chapters 4 and 6). Since UTF-8 and QED encoding methods were originally

chosen by the authors of the Dewey and SCOOTER labelling schemes,

respectively, both performed faster than any prefix-encoding approaches in terms

of encoding time. Conversely, the Fibonacci of order 2 remained the fastest at

decoding XML labels. When the code size was evaluated, in comparison to all

other prefix-encoding methods tested, UTF-8 produced the largest code for the

Dewey labels, but QED generated the smallest code for the SCOOTER labels.

However, the label encoding experiment’s results showed that after large

insertions, Fibonacci coding always produced smaller code than that of QED.

Chapter 8: Evaluation and Further Discussion

206

Therefore, Fibonacci coding is still recommended for storing XML labels in a

dynamic XML environment.

As mentioned earlier, all the existing XML labelling schemes did not calculate the

actual label sizes in main memory (i.e., after encoding). Thus, the evaluation

considered only the encoding methods implemented in this study.

8.5 The Validation of the Base-9 Scheme’s Properties

This section provides a further evaluation of the proposed scheme. This is to

discuss whether the scheme has the properties that makes it a good dynamic

XML labelling approach (outlined in Chapter-3) or otherwise. The assessment of

the Base-9 scheme revealed the scheme’s limitations, from which further

improvements can be recommend (Vlahavas et al., 1999). This evaluation is

based on the experimental results discussed in Chapter-7 comparing the

scheme’s performances before and after XML update. The comparisons are

evaluated based on the essential properties of a complete dynamic XML labelling

scheme (discussed in Chapter-3): dynamic, compact, deterministic, and efficient.

Each of these properties is reviewed individually in the following sections.

8.5.1 Supporting Dynamic Environment

This section evaluates the dynamic characteristic of the proposed scheme. An

XML labelling scheme is considered fully dynamic when it completely avoids re-

labelling XML tree nodes while XML data is being continuously updated (Härder

et al., 2007) (see Chapter-3). Testing this property on the Base-9 scheme was

mostly covered by the handling insertion experiment. Other experiments tested

the determination and querying ability of the scheme over updated labels. As

mentioned earlier, the design of the experiment was successful and the results

showed that the Base-9 scheme supports a dynamic XML environment. None of

the existing nodes required re-labelling, even when a relatively large number of

insertions occurred, i.e., up to 50,000 uniform insertions and 10,000X10 skewed

insertions (see Section 7.3.2).

Figures 8.1 and 8.2 show a graphical comparison of the labelling time taken for

initialisation and for uniform and skewed insertions, respectively. Overall, there is

a linear correlation between the XML dataset size and the labelling time, both

before and after insertion. The NASA dataset had the shortest labelling time

Chapter 8: Evaluation and Further Discussion

207

whilst the DBLP dataset took the longest. For any insertion type, the time taken

to insert less than 10,000 nodes was always less than the total initialisation time,

about 77% on average (see figures 8.1 and 8.2)

Figure 8.1 Labelling time comparison between initialisation and uniform
insertions

Figure 8.2 Labelling time comparison between initialisation and skewed
insertions

0
.6

0
.0 0
.0 0
.2 0
.5 2

.4

2
.3

0
.1 0
.3 1
.3 2
.6

1
3

.2

3
.0

0
.2 0
.4 2

.2 4
.5

2
2

.0

4
.2

2

0
.3

4

0
.6

6

3
.3

1 6
.6

4

3
3

.4
5

0

5

10

15

20

25

30

35

40

Ti
m

e
 (

se
co

n
d

s)
Labelling time comparison before and after uniform insertion

(Base-9 scheme)

Nasa Xmark Treebank DBLP

0
.6

0
.0 2

.4 4
.9

2
.3

0
.2

1
0

.8

2
0

.8

3
.0

0
.4

1
8

.2

3
9

.5

4
.2

0
.6

3
2

.1

6
1

.8

0

10

20

30

40

50

60

70

Initialisation Skewed_100X10 Skewed_5000X10 Skewed_10000X10

Ti
m

e
 (

se
co

n
d

s)

Labelling time comparison before and after skewed insertions
(Base-9 scheme)

Nasa Xmark Treebank DBLP

Chapter 8: Evaluation and Further Discussion

208

In comparison to initialisation time, when a larger numbers of nodes was added,

the time taken for labelling new nodes increased rapidly; up to 83% after 50,000

uniform insertions and 81% to 91% after 5,000X10 and 10,000X10 skewed

insertions, respectively. Figure 8.3 clarifies this observation by demonstrating the

time comparison between generating the initial labels and 50,000 new labels

using both uniform and skewed insertion. The chart also shows that the skewed

insertion took less time (about 10%) than uniform insertion to add the same

number of 50,000 nodes to any XML dataset. Nevertheless, the longest labelling

time was just over one minute when the maximum number of 10,000X10 skewed

insertions was tested.

8.5.2 Providing Compact Labels

This section considers the size of the Base-9 labels both before and after

insertion. To achieve the compactness requirement for a good XML labelling

scheme, the labels generated should be as small as possible (Wu et al., 2004)

(see Chapter 3). To study this property within the proposed scheme, the total

size of the labels generated was measured both before and after insertion. The

initial and updated labels were encoded using both Fibonacci of order 2 and

order 3, and the encoded label sizes were also evaluated.

The original sizes of the Base-9 labels for the NASA, XMark, Treebank, and

DBLP datasets after initialisation were 0.82 MB, 5.42 MB, 4.04 MB, and 2.85 MB,

respectively. As can be seen from Figure 8.4 and Figure 8.5, the Base-9 label

Figure 8.3 Labelling time comparison between initial and after 50,000 insertions

0.6
2.4 2.42.3

13.2
10.8

3.0

22.0
18.2

4.2

33.4 32.1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Initialisation uniform_50000 Skewed_5000X10

Ti
m

e
 (

se
co

n
d

s)

Labelling time comparison after 50,000
insertions (Base-9 scheme)

Nasa Xmark Treebank DBLP

Chapter 8: Evaluation and Further Discussion

209

size increases exponentially after insertions. The percentage of the increase on

total labels sizes (i.e., (𝑆𝑖𝑧𝑒𝑢𝑝𝑑𝑎𝑡𝑒𝑑 + 𝑆𝑖𝑧𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙)/𝑆𝑖𝑧𝑒𝑢𝑝𝑑𝑎𝑡𝑒𝑑)) for these datasets

was an average of 72% after 500 uniform insertions and 86% after 100X10

skewed insertions. As the number of new nodes increased to 50,000, the label

size grew by 90% using uniform insertion and 99% using skewed insertion.

With regards to encoded label size, the total code size of the initial labels that

were actually stored in main memory using Fibonacci of order 2 were: NASA =

Figure 8.4 Base-9 label size comparison before and after uniform insertion

Figure 8.5 Base-9 label size comparison before and after skewed insertion

0
.8

2

8
.6

4

1
6

.5
1

7
9

.2
0

1
5

7
.5

7

7
8

7
.2

2

5
.4

2

1
3

.2
0

2
1

.0
5

8
3

.6
9

1
6

2
.3

2

7
8

9
.5

7

4
.0

4

1
4

.0
4

2
3

.9
6

1
0

3
.5

6

2
0

2
.9

7

9
9

8
.5

5

2
.8

5

8
.6

5

1
4

.4
3

6
0

.6
7

1
1

8
.5

1

5
8

1
.5

1

0

200

400

600

800

1000

1200

To
ta

l l
ab

e
l s

iz
e

 (
M

B
)

Label size comparison before and after uniform insertions

Nasa Xmark Treebank DBLP

0
.8

2

2
1

.7
8

1
0

5
0

.3
9

2
6

1
6

.0
1

5
.4

2

2
4

.6
8

1
1

3
7

.2
2

2
3

5
6

.6
7

4
.0

4

2
9

.8
0

1
3

6
0

.3
2

2
9

5
0

.0
8

2
.8

5

1
8

.8
2

8
8

3
.2

8

2
1

6
8

.5
2

0

500

1000

1500

2000

2500

3000

3500

Initialisation Skewed_100X10 Skewed_5000X10 Skewed_10000X10

To
ta

l l
ab

e
l s

iz
e

 (
M

B
)

Label size comparison before and after skewed
insertions

Nasa Xmark Treebank DBLP

Chapter 8: Evaluation and Further Discussion

210

2.25 MB, XMark = 8.18 MB, Treebank = 14.37 MB and DBLP = 14.78 MB. As

Figures 8.6 and 8.7 show, the Fibonacci code size for the Base-9 labels were

slightly increased (by an average of only 0.15%) after a few insertions, i.e., up to

1000 uniform insertions and 100X10 skewed insertions. When as many as

50,000 insertions occurred, the increase in total code size remained insignificant,

with an average of 7% whether using uniform or skewed insertions. As the

number of nodes inserted doubled to 100,000 by using 10,000X10 skewed

insertions, the increase in Fibonacci of order 2 code size was an average of 16%.

The total file size stored in memory using both Fibonacci of order 2 and order 3

for each dataset increased by no more than 1.2 MB after 100,000 node

insertions. Appendix C presents the increase in file size (in Kbytes) for all the

experimental datasets after both uniform and skewed insertions.

Figure 8.6 Encoded label size comparison before and after uniform insertion using

Fibonacci 2

2
.2

5

2
.2

5

2
.2

5

2
.2

7

2
.3

0

2
.5

2

1
4

.3
7

1
4

.3
7

1
4

.3
7

1
4

.4
0

1
4

.4
3

1
4

.7
0

1
4

.7
8

1
4

.7
1

1
4

.7
1

1
4

.7
3

1
4

.7
6

1
4

.9
8

8
.1

8

8
.1

6

8
.1

7

8
.1

9

8
.2

2

8
.4

5

0

2

4

6

8

10

12

14

16

To
ta

l c
o

d
e

 s
iz

e
 (

M
B

)

Fibonacci 2 codes comparison before and after uniform
insertion

Nasa Treebank DBLP Xmark

Chapter 8: Evaluation and Further Discussion

211

In comparison to Fibonacci of order 2, using Fibonacci of order 3 gave similar

measurements. When inserting a small number of nodes (i.e., less than 10,000

nodes) there was no obvious difference between these two encoding schemes in

terms of total code size for all the experimental datasets used. As the number of

insertions increased to 50,000 nodes regardless of the type of insertion, the

Fibonacci of order 3 performed slightly better than Fibonacci of order 2 (about

0.5%). After 100,000 insertions, the percentage difference between the two

encoding methods reached around 2%, and Fibonacci of order 3 continued to

produce the smallest encoded labels. Due to the similarity between the statistics

for these two encoding methods, the graphs illustrating the statistical comparison

of the Fibonacci of order 3 are presented in appendix C.

Overall, the maximum encoded label size of the initial Base-9 labels was 20

bytes using Fibonacci of order 2 and 24 bytes using Fibonacci of order 3; both

values were obtained using the Treebank dataset. This is because of the high

number of separator occurrences within the Treebank prefix-based labels, as this

dataset has a relatively deep XML tree structure. Excluding the Treebank

dataset, the maximum Fibonacci code for Base-9 labels was no more than 18

bytes after the insertion of 50,000 nodes (see Table 8.2).

Figure 8.7 Encoded label size comparison before and after skewed insertion
using Fibonacci 2

2
.2

5

2
.2

6

2
.7

3

3
.4

5

1
4

.3
7

1
4

.3
8

1
4

.9
0

1
5

.6
1

1
4

.7
8

1
4

.7
9

1
5

.2
5

1
5

.9
2

8
.1

8

8
.1

9

8
.6

9

9
.4

0

0

2

4

6

8

10

12

14

16

18

Initialisation Skewed_100X10 Skewed_5000X10 Skewed_10000X10

To
ta

l c
o

d
e

 s
iz

e
 (

M
B

)

Fibonacci 2 codes comparison before and after
skewed insertion

Nasa Treebank DBLP Xmark

Chapter 8: Evaluation and Further Discussion

212

Table 8.2 Maximum encoded label size (bytes) of Base-9 labels

Encoding
method

Base9-Fib2 Base9-Fib3

Dataset Initial
After 50,000

uniform
insertion

After
5,000X10
skewed
insertion

Initial
After 50,000

uniform
insertion

After
5,000X10
skewed
insertion

NASA 7 15 14 8 15 13

Treebank 20 36 17 24 42 16

DBLP 6 11 14 6 18 11

XMark 9 17 14 10 18 13

As mentioned earlier, at the time this study was started the SCOOTER labelling

scheme was considered the most compact XML labelling scheme that could

minimise the growth of label size during skewed insertion (Chiew et al., 2014a).

Based on the assessment of the Base-9 scheme in both this and the previous

chapters, it can be inferred that Base-9 has enhanced the performance of XML

labelling in terms of generating compact XML labels in comparison to

SCOOTER.

8.5.3 Determining Relationships

One of the fundamental functions of an XML labelling scheme is establishing the

structural relationships between any two nodes efficiently and quickly by directly

examining their labels (see Chapter 3). This property was evaluated through the

relationship determination experiment in Sections 7.3.5 and 8.4.5. In this section,

the Base-9 scheme is assessed in terms of its ability to determine relationships

both before and after insertion. Five main relationships were tested: parent/child

(P/C), ancestor/descendent (A/D), sibling, lowest common ancestor (LCA), and

document order (DO).

The comparison covered the Base-9 scheme using two different sets of labels

(i.e., initial and updated). As in the relationship determination experiment (in

Section 8.4.5), the Treebank dataset was used for this assessment, where

200,000 pairs of labels were selected randomly to examine the establishment of

each relationship individually, both before and after insertion. Again, the main

measure in this evaluation was the determination time. For each relationship, the

test was repeated 100 times to ensure the validity of the results. Figure 8.8

Chapter 8: Evaluation and Further Discussion

213

shows a comparison between the time taken to determine each relationship

before and after insertion using the Base-9 scheme. Based on these results, it

can be seen that the document order relationship was not affected by the

insertion process. The time taken to establish a sibling relationship was

increased by 55% after insertion. On the other hand, when determining

parent/child, ancestor/descendent and lowest common ancestor relationships,

the process took 86%, 92% and 49%, respectively, less time after insertion.

However, this result may have been influenced by the random selection of nodes

that share the same relationship out of the 200,000 pairs. To investigate whether

the randomness of this procedure had an impact on the results, for each

relationship the number of pairs with that particular relationship was computed

both before and after insertion for 100 runs. The percentage difference between

the number of pairs (NP) used to compute the determination time before and

after insertion was calculated for each relationship as follows: (𝑁𝑃𝑏𝑒𝑓𝑜𝑟𝑒 +

𝑁𝑃𝑎𝑓𝑡𝑒𝑟)/𝑁𝑃𝑏𝑒𝑓𝑜𝑟𝑒). The number of pairs used were 86%, 88% and 58% fewer

after insertion for P/C, A/D and LCA relationships, respectively, and 57% more

for the sibling relationship. This could be because of the insertion mechanisim,

which focused on adding sibling nodes to the XML tree.

To achieve reliability, it is important to consider a constant number of nodes to

test the determination before and after insertion. For each relationship, 20,000

Figure 8.8 Relationships determination time comparison (of 200,000 random

pairs) before and after insertion (Base-9 scheme)

109.0 108.0

63.0

156.0

515.0

242.0

5

79.0

5

0

50

100

150

200

250

300

P/C Siblings A/D LCA DO

D
e

te
rm

in
at

io
n

 t
im

e
 (

m
s)

Determination time before and after insertion (using
200,000 random pairs) - Base9 Scheme

Initial Updated

Chapter 8: Evaluation and Further Discussion

214

random pairs of labels with the same relationship were selected from initial

labels, and the relationship determination time was then computed. The same

test was then carried out on the labels after insertion. The test was repeated 100

times, both before and after insertion (separately), to obtain reliable results.

Figure 8.9 shows the relationship determination time comparison for every

relationship type using both initial Base-9 labels and updated Base-9 labels. The

insertion process did not effect the scheme’s performance in establishing the

lowest common ancestor or document order relationships. When determining

parent/child and sibling relationships, the process consumed 47% and 40%,

respectively, more time after insertion. On the other hand, the results showed

that there was a 55% improvement in the Base-9 scheme’s performance when

determining an ancestor/descendent relationship after insertion. Overall, the

maximum median determination time was no more than 0.07 seconds after

insertion and 0.12 seconds before insertion. Both these maximum times were

those which were obtained when establishing the ancestor/descendent

relationship.

8.5.4 Query Efficiency

This section discusses the proposed scheme’s query efficiency. Any XML

labelling scheme must be able to support all kinds of structural relationships

queries (see Chapter 3). Four XPath queries representing the main structural

Figure 8.9 Relationships determination time comparison (of 20,000 nodes) before

and after insertion (Base-9 scheme)

1
6

.0

1
6

.0

1
0

8
.5

1
5

.0

1
6

.0

3
0

.0

2
6

.5

7
0

.0

1
6

.0

1
6

.0

0

20

40

60

80

100

120

P/C Siblings A/D LCA DO

D
e

te
rm

in
at

io
n

 t
im

e
 (

m
s)

Determination time before and after insertion (exactly
20,000 pairs) - Base9 Scheme

Initial Updated

Chapter 8: Evaluation and Further Discussion

215

relationships were tested using the XMark dataset: parent/child (query 1),

ancestor/descendants (query 2), sibling (query 3), and document order (query 4)

relationships. For each query, the response time was taken using the initial Base-

9 labels and updated Base-9 labels. Figure 8.10 shows a comparison of

response time taken by each query both before and after insertion. It is obvious

that the first query (representing the parent/child relationship) was the query most

affected by the insertions; the response time increased by 99% on average. For

queries 3 and 4, there were smaller increases in their response times after

insertion, an average of 4% and 14% respectively. The performance of the

second query (representing the sibling relationship) improved slightly after

insertion, by about 7%. All queries had a median process time of less than one

second, except for the parent/child query, which was as high as 2.65 seconds

after insertion.

In general, the complexity of a query and the number of nodes examined

impacted the query response time. Another influence on the query response time

was that the nature of an XML tree’s structure may require mulitple structural join

operations on values for complex queries (Runapongsa et al., 2006a). This can

affect the query performance even further after frequent insertions, which might

change the structure of an XML dataset. Such changes are unpredictable as the

selection of the inserted nodes’ positions are chosen at random. According to the

results presented in this section, it can be inferred that the Base-9 scheme

permits efficient query processing both before and after insertion.

Figure 8.10 Comparison of query response times before and after insertion (Base-
9 scheme)

32

500
375

94

2654

469 390

109

0

500

1000

1500

2000

2500

3000

Query1 Query2 Query3 Query4

Ti
m

e
 (

m
s)

Query response time comparison before and after
insertion (Base-9 scheme)

Initial updated

Chapter 8: Evaluation and Further Discussion

216

8.5.5 Conclusion

The evidence so far supports the assertion that the Base-9 scheme can be

classified as a fully dynamic XML labelling scheme. The scheme did not cause

any re-labelling, even after a relatively large number of insertions. The

lexicographical comparison technique applied by the Base-9 scheme kept the

labels generated as short as possible both before and after insertion. In a

dynamic XML environment, the growth of the storage capacity required to store

the Base-9 labels were controlled through the use of Fibonacci coding. It can be

seen from the results presented in this chapter and Chapter 7 that the research

hypothesis was supported and the use of Fibonacci encoding played an

important role in providing compressed XML labels. Furthermore, the scheme’s

capability to determine relationships and process queries was maintained.

8.6 Limitations of the Experiments

As discussed previously, all the experiments undertaken in this study supported

their objectives. Nonetheless, some limitations were found. These restrictions

emerged as the experimental designs focused only on the basic aspects required

to meet the purposes of each experiment. So as to adhere to the research

hypothesis (see Section 8.2), it was necessary that the experimental design be

focused and limited in order to assess the hypothesis. Thus, the research first

intended to ensure the capabilities of the proposed scheme in supporting a

dynamic XML environment before extending it to comprise more complex

aspects.

Due to the lack of a standard evaluation framework for XML labelling, all the

experiments could be extended by implementing different schemes so as to

generalise the findings further. In addition, other existing XML label storage

schemes, in particular the ones described in Section 4.4, could be investigated

and compared using Fibonacci encoding. For even more elaborate results, the

proposed scheme should be tested using more complex and different types of

queries. Many mechanical and methodical issues, as previously explained in this

chapter, might also be improved and offer suggestions for future work (see

Chapter 9).

Chapter 8: Evaluation and Further Discussion

217

8.7 The Main Findings of the Experiments

The most important finding is that the experimental results supported the

research hypothesis. The various experimental outcomes showed that the Base-

9 scheme supports dynamic XML with any shape of XML tree structure. To

summarise the findings, it can be stated that the combination of assigning labels

based on lexicographical order and storing XML labels via Fibonacci encoding

allowed the Base-9 scheme to provide more compact XML labels. Using this

approach, the scheme’s labels remained relatively small, even after a large

number of insertions without requiring any re-labelling in any circumstance. In

general, the smaller size of the Base-9 labels helped to speed up the relationship

determination and query process (as discussed in Section 8.4.4). The results

strongly suggest the effectiveness of the Base-9 scheme as a complete dynamic

XML labelling scheme. In the next chapter, the main findings of the entire study

are described.

8.8 Conclusion

When developing a new technical or scientific approach, it is essential to

evaluate it thoroughly in order to ensure its functionalities, detect and explore its

limitations, and highlight further possible improvements. This chapter has

evaluated the experiments and their results. The efficiency and scalability of the

proposed scheme was assessed in comparison to the SCOOTER scheme. The

evaluation of the proposed scheme was also validated in terms of its properties

as a complete dynamic XML labelling scheme. The experimental limitations and

main findings were identified here. This thesis concludes in the next chapter, in

which the main findings of the research are reiterated, with suggestions for future

work.

Chapter 9: Conclusions and Future Work

218

Chapter 9: Conclusions and Future Work

9.1 Introduction

The thesis has illustrated the strengths and weaknesses of XML labelling

schemes described in the literature. The study focused on the difficulties related

to using an XML labelling scheme in dynamic environments. These difficulties

were emphasised by the essential properties required for a fully dynamic XML

labelling scheme, i.e., dynamic, compact, deterministic and efficient (detailed in

Chapter 3). In an attempt to resolve such difficulties, the Base-9 XML dynamic

labelling scheme was proposed in this thesis. This new scheme was an attempt

to reduce the occurrence of overflow (see Section 4.3) by employing Fibonacci

encoding to store XML labels. In the previous chapters the principles of the

proposed scheme along with its objectives, experimental design, implementation,

results of testing, and evaluation were described. This chapter completes the

thesis by first summarising the research work completed in the following section.

The main contributions of this research are highlighted in Section 9.3. Section 9.4

associates the results obtained with the research hypothesis. Future work

directions are suggested in Section 9.5. To conclude the thesis, a closing

statement is presented in Section 9.6.

9.2 Thesis Summary

As the amount of data on the web has expanded, the use of XML databases

became the standard for data transfer and exchange. In many XML database

management systems, an XML labelling scheme is recommended for rapid query

processing of massive XML documents (Ahn et al., 2017a) (Zhuang and Feng,

2012a). For static XML datasets, query processing can be performed

competently using existing labelling schemes such as interval-based labelling

schemes (Dietz, 1982) (Li and Moon, 2001) (Zhang et al., 2001), the Dewey

Order scheme (Tatarinov et al., 2002), the prime numbering scheme (Wu et al.,

2004), and hybrid labelling schemes (Kaplan et al., 2002). As the growing

popularity of XML has led to an enormous amount of XML data update (Liu and

Zhang, 2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001), the need for

efficient dynamic XML labelling schemes has become increasingly important in

order to support efficient XML queries and updates (O'Connor and Roantree,

Chapter 9: Conclusions and Future Work

219

2010a) (Subramaniam and Haw, 2014b). Several XML labelling schemes (Xu et

al., 2009) (Assefa and Ergenc, 2012) (Li and Ling, 2005b) (O’Connor and

Roantree, 2012) have been introduced to process queries efficiently whilst

retaining the ability to process order-sensitve updates effecitively (see Chapter-

3). However, all the existing labelling schemes suffer from large label sizes,

which contributes to the overflow problem particularly under frequent skewed

node insertions. One of the reasons behind this is the inadequacy of the

encoding techniques used to store the XML labels. These encoding methods

have limited storage capacity and do not support frequent skewed insertions in

large-scale XML data, particularly in prefix-based labelling schemes (see

Chapter-4).

This thesis has attempted to develop an efficient XML dynamic labelling scheme

that always generates compressed XML labels both during intialisation and XML

update without causing any re-labelling or duplicate labels. This was achievable

by the combination of:

 Preserving the node order lexicographically using all the decimal strings

including ‘0’ as a part of the labels.

 Using Fibonacci encoding to store the Base-9 labels in a compressed

format.

The first chapter outlined the thesis structure and briefly presented the research

motivation, objectives and hypothesis statements, which are detailed in Chapter-

5. The second chapter provided an overview of XML data and related important

topics such as XML syntax, XML parsers, and XML query languages. A

comprehensive background on XML labelling schemes and encoding methods in

the literature (at the time this study started) is presented in Chapters 3 and 4,

respectively.

Chapter 5 introduced the Base-9 scheme including the underlying principles in

developing the scheme and defining the rules as to how it would work. The

chapter also described the initialisation and insertion mechanisms of the Base-9

scheme. It demonstrated how Fibonacci encoding is employed to store the Base-

9 labels. Validation of the Base-9 scheme’s ability to determine structural

relationships for querying purposes was also given in this chapter.

Chapter 9: Conclusions and Future Work

220

The experimental objectives, design and implementation were described in detail

in Chapter 6. At the time this study was started, the SCOOTER labelling scheme

(O’Connor and Roantree, 2012) was described as the most compact dynamic

labelling scheme in controlling the growth of label size when XML is updated

(Chiew et al., 2014a). To allow comparable evaluation, the SCOOTER labelling

scheme was also implemented as it contributed to the development of the

proposed scheme. To assess the functionality of the proposed scheme, six

experiments were designed and undertaken to examine if the research intentions

were achieved and the scheme fulfilled the requirements to be classified as a

good dynamic XML labelling scheme. Several experimental XML datasets that

vary in their sizes and shapes (see Chapter 6) were used to ensure the

scalability of the scheme’s performance.

The experimental design and results were evaluated in Chapters 7 and 8. Based

on the findings therein, it was demonstrated that the Base-9 scheme

outperformed SCOOTER in terms of label size, ability to re-use deleted labels,

and determination and query process times both before and after insertion.

Moreover, Fibonacci encoding enabled the storage of the Base-9 labels in a

more compressed form than allowed by the QED encoding used in the

SCOOTER scheme. This applies for any shape of XML tree, even after a large

number of insertions. As the Fibonacci decoding was faster than that of QED,

Base-9 always showed better performance than SCOOTER during the decoding

process, both before and after insertion. Overall, the Base-9 scheme has

provided more stability in dynamic XML environments.

Many researchers (Williams and Zobel, 1999) (Chovanec et al., 2010) (Bača et

al., 2010) (Scholer et al., 2002) (Walder et al., 2009) (Guttman, 1984) have

shown the usefulness of prefix-encoding methods for compression systems.

Motivated by this, various existing prefix-encoding methods, including Fibonacci

(described in Chapter 4), were studied for the first time in this thesis to encode

XML labels. The experimental design is given in Chapter 6. The experimental

results were evaluated in Chapters 7 and 8 and has already been published in

(Al-Zadjali and North, 2016). The next section illustrates the main contributions of

this research.

Chapter 9: Conclusions and Future Work

221

9.3 The Main Contributions of this Research

This research has addressed some of the problems related to dynamic XML

labelling schemes, particularly in terms of compressing XML labels. The study

proposed an alternative compression scheme that can reduce label size and

simultaneously support large skewed insertion. Consequently, the new Base-9

labelling scheme was introduced, which generates short XML prefix-based labels

using decimal strings based on lexicographical order. The labels produced are

encoded and stored using Fibonacci encoding. The Fibonacci encoding method

allows for a more compressed label code and faster decoding, both of which

speed up XML query processing. The main contributions of this thesis can be

summarised as follows:

• A new XML labelling scheme, named Base-9, was proposed, which

supports static and dynamic XML documents.

• Small or large number of new node insertions in the Base-9 labelling

scheme were possible while retaining the lexicographical order of the

XML document during both uniform and skewed insertions. The Base-

9 labels remain relatively small, even after a large number of insertions

and avoid both duplicate labels and re-labelling.

• Fibonacci encoding has been applied for the first time to encode Base-

9 XML labels. This encoding method has reduced the storage space

required for labels and has accelerated XML querying.

• The Base-9 labelling scheme guarantees the reuse of any deleted

node labels.

• The Base-9 labelling scheme establishes all structural relationships

quickly and provides for efficient query performance, both in static and

dynamic XML environments.

• The effectiveness of the Base-9 labelling scheme and Fibonacci

encoding has been measured. The results support the use of the

Base-9 scheme as a fully dynamic XML labelling scheme for the four

tested datasets. Initially, there is insignificant advantage of using the

Base-9 scheme in comparison to SCOOTER. The latter scheme

generated initial labels faster than Base-9 by an average of 2.52%.

Chapter 9: Conclusions and Future Work

222

SCOOTER also succeeded to encode its labels by QED about 53.44%

on average faster than Base-9 using Fibonacci encoding. On the

contrary, Fibonacci encoding produced about 4.64% shorter codes

than QED. Overall, Fibonacci was 27.17% faster in decoding initial

labels than QED method. However, the advantages of the Base-9

scheme and Fibonacci encoding amplify when large insertion occurs,

particularly after large skewed insertion (which is the main weakness in

the current labelling schemes). After 100,000 insertions, the results

showed that the Base-9 was 12.78% faster than SCOOTER in

assigning new labels. Additionally, the new scheme decreased the

average growth rate of the new label sizes by about 97.97% in

comparison to SCOOTER. Fibonacci encoding (both of order 2 and of

order 3) was faster than QED when encoding and decoding the

updated XML datasets labels by 98.7% and 91.20%, respectively.

Where Fibonacci encoding always generated shorter label codes by an

average of 74.46%.

• Five existing prefix-encoding methods were applied for the first time to

compress XML labels: Fibonacci coding of order 2 (Fib2) and order 3

(Fib3), Lucas coding, Elias-delta (ED) coding, and Elias-Fibonacci

coding of order 2 (EF2). Among these methods, Lucas coding has not

previously been used to compress any kind of data.

• In this thesis, a new Elias-Fibonacci (order 3) encoding was also

proposed to encode XML labels. Among the prefix encoding methods

studied in this research, the newly implemented Elias-Fibonacci of

order 3 achieved the fastest encoding time for the three real XML

datasets used.

9.4 Future Work

The novelty of this thesis was based on the application of Fibonacci encoding to

store XML labels and control the growth of storage capacity after large insertions.

Although the Base-9 labels were generated as lexicographical combinations of

decimal strings, Fibonacci encoding treats the labels as integers. The

experimental results showed that Fibonacci encoding performed well even after

100,000 insertions; nonetheless, the performance of Fibonacci encoding is still

might be subject to integer overflow (Phrack, 2016). Thus, it is worth to

Chapter 9: Conclusions and Future Work

223

implement Fibonacci encoding with arbitrary precision. Another possible solution

would be to define a new encoding technique in which the Base-9 labels could be

stored as strings.

It would be reasonable to investigate the possibility of further improvement in

Base-9’s initialisation and/or insertion algorithms; for instance, using odd

decimals for initialisation and preserving the even ones for later XML updates. An

interesting approach to gauge the functionality of the Base-9 scheme is by

considering the use of XMark with different sizes up to 2GB to study the

effectiveness of “Base-9” scheme and Fibonacci encoding over large-scale

datasets. To gauge the quality of updating data and label reuse, a more realistic

approach could be performed by continuously deleting sequence of subtrees and

then reinsert them in a random fashion. This could provide expectation of how

label lengths are influenced during such an update process.

With the intention of tackling some of the research limitations discussed above,

the following represents further work that could complement the current thesis:

 Using the Base-9 scheme as an interval-based XML labelling scheme:

Section 3.3 discussed how interval-based XML labelling schemes establish

ancestor/descendant, parent/child and document order more efficiently than

other schemes. In general, this approach to labelling is more preferable to be

used than prefix-based schemes for query processing of XML keyword searches

(Lee et al., 2010), as interval labels contain the path information (Gou and

Chirkova, 2007) (Xu and Papakonstantinou, 2005). However, this type of

labelling scheme suffers from very long labels. As illustrated in Chapter 3, it is

difficult to predict in advance the initial size of the intervals in order to minimise

storage cost and avoid repetitive re-labelling in a dynamic XML environment.

None of the existing interval-based labelling schemes applied the lexicographical

order technique, with which it may be possible to tackle such difficulties. Thus,

the Base-9 scheme could be enhanced and applied to an interval-based labelling

scheme. In this way, adding a new parent node without causing any re-labelling

of the existing nodes (particularly descendant nodes) might also be achievable.

Figure 9.1 illustrates a proposed means of adding a new parent node, 𝑃𝑛𝑒𝑤,

whilst preserving XML tree details using the Base-9 scheme.

Chapter 9: Conclusions and Future Work

224

Suppose an XML sub-tree is labelled by Base-9 in interval-based format, as

shown in Figure 9.1. When node 𝑃𝑛𝑒𝑤 is inserted as a new parent to a sub-tree

rooted by node 𝐶, the start interval value of 𝑃𝑛𝑒𝑤 can be computed as an

insertion between the end-value of the 𝑙𝑎𝑏𝑒𝑙(𝐵) (i.e., 24), the adjacent pre-order

sibling node to 𝐶, and the start-value of 𝑙𝑎𝑏𝑒𝑙(𝐶) (i.e., 32). The interval’s end-

value of 𝑃𝑛𝑒𝑤 can be calculated by making an insertion between the end-value of

𝑙𝑎𝑏𝑒𝑙(𝐶) (i.e., 53) and start-value of 𝑙𝑎𝑏𝑒𝑙(𝐸) (i.e., 62), where 𝐸 is the adjacent

post-order sibling to node 𝐶. As can be seen from Figure 9.1, the resulting

interval, 𝑙𝑎𝑏𝑒𝑙(𝑃𝑛𝑒𝑤), satisfies the interval-based labelling’s structure and roles

(mentioned in Section 3.3) without affecting the existing labels (especially nodes

𝐶, 𝐷 and 𝐸). Further study is needed to ensure the effectiveness of the Base-9

scheme as an interval-based labelling scheme in a dynamic XML database.

 The development of a standard evaluation framework as an XML

labelling methodology:

As discussed in section 6.3, there is no standard framework to evaluate the

functionality of XML labelling schemes. This has led to some considerable

challenge in validating the proposed scheme’s reliability within the literature of

XML dynamic labelling schemes. Such as, there was no studies covered the

performance of the encoding methods used to store XML labels. Although the

Figure 9.1 Example of inserting a new parent node

Chapter 9: Conclusions and Future Work

225

evaluation methodology applied in this thesis was intended to be as

comprehensive as possible, further study is needed to determine a general

evaluation framework for XML labelling systems. This includes testing the

existing encoding methods described in Chapter 4. Analysing the performance of

the current XML labelling schemes discussed in Chapter 3 in terms of the

essential properties of efficient dynamic XML labelling schemes is also required.

 An assessment of the Base-9 scheme in comparison to a new XML

labelling scheme:

At the time this study started, the SCOOTER labelling scheme (O’Connor and

Roantree, 2012) was described as the most compact dynamic XML labelling

scheme that re-uses deleted labels, if available (Chiew et al., 2014a). Thus, the

SCOOTER scheme was implemented as it contributed to the development of the

proposed scheme (see Chapters 5 and 6). Recently, the DPLS XML labelling

scheme (Liu and Zhang, 2016) was developed, also with the aim of re-using

deleted labels, using their proposed technique of the reduction of a fraction

operation to minimise storage space costs (detailed in Section 3.4). In order to

further generalise the findings relative to the current state-of-the-art, particularly

Base-9’s ability in re-use deleted labels and produce shorter labels, it is important

to implement and test the DPLS labelling scheme.

9.5 Conclusion

The current research has investigated a wide range of existing dynamic XML

labelling schemes, leading to the identification of various restrictions that

motivated the development of the Base-9 scheme and the use of Fibonacci

encoding to compress XML labels. The main focus of the research was the

compact property of XML labels in a dynamic environment. The proposed

scheme, together with Fibonacci encoding, has managed to produce reliable,

unique and short XML labels both before and after insertion. The scheme

provided efficient performance in labelling time, label size, structural relationship

determination and query processing in any XML environment (static or dynamic).

This chapter summarised the thesis work and findings, highlighted the research’s

main contributions, and outlined some directions for future work.

Chapter 9: Conclusions and Future Work

226

References

227

References

ABITEBOUL, S., BUNEMAN, P. & SUCIU, D. 2000. Data on the Web: from

relations to semistructured data and XML. JASIS, Volume (51), Pages

1050-1052.

ABITEBOUL, S., BUNEMAN, P. & SUCIU, D. 2003. Data on the Web: From

Relational to Semistructured Data and XML. SIGMOD Record, Volume

(32), Pages 109-110.

ABITEBOUL, S., KAPLAN, H. & MILO, T. Compact labeling schemes for

ancestor queries. Proceedings of the twelfth annual ACM-SIAM

symposium on Discrete algorithms, 2001 Washington, D.C., USA.

365529: Society for Industrial and Applied Mathematics, Pages 547-556.

ABITEBOUL, S., QUASS, D., MCHUGH, J., WIDOM, J. & WIENER, J. L. 1997.

The Lorel query language for semistructured data. International Journal

on Digital Libraries, Volume (1), Pages 68-88.

AGRESTE, S., DE MEO, P., FERRARA, E. & URSINO, D. 2014. XML matchers:

approaches and challenges. Knowledge-Based Systems, Volume (66),

Pages 190-209.

AHN, J., IM, D.-H., LEE, T. & KIM, H.-G. 2017a. A dynamic and parallel

approach for repetitive prime labeling of XML with MapReduce. The

Journal of Supercomputing, Volume (73), Pages 810-836.

AHN, J., IM, D.-H., LEE, T. & KIM, H.-G. 2017b. Optimization technique for prime

number labeling of directed acyclic graphs. Journal of Theoretical and

Applied Information Technology, Volume (95), Pages 645.

AL-BADAWI, M. 2010. A Performance Evaluation of a New Bitmap-based XML

Processing Approach. PhD thesis, The University of Sheffield, UK.

AL-KHALIFA, S., JAGADISH, H., KOUDAS, N., PATEL, J. M., SRIVASTAVA, D.

& WU, Y. Structural joins: A primitive for efficient XML query pattern

matching. Proceedings of the 18th International Conference on Data

Engineering, 2002 San Jose, CA, USA. IEEE, Pages 141-152.

AL-SHAIKH, R., HASHIM, G., BINHURAIB, A. & MOHAMMED, S. A modulo-

based labeling scheme for dynamically ordered XML trees. Fifth

International Conference on Digital Information Management (ICDIM),

2010 Thunder Bay, Canada. IEEE, Pages 213-221.

References

228

AL-ZADJALI, H. & NORTH, S. XML Labels Compression using Prefix-encodings.

12th International Conference on Web Information Systems and

Technologies, (WEBIST), 2016 Rome, Italy. Pages 69-75.

ALGHAMDI, N. S., RAHAYU, W. & PARDEDE, E. 2014. Semantic-based

Structural and Content indexing for the efficient retrieval of queries over

large XML data repositories. Future Generation Computer Systems,

Volume (37), Pages 212-231.

ALI, S., BRIAND, L. C., HEMMATI, H. & PANESAR-WALAWEGE, R. K. 2010. A

systematic review of the application and empirical investigation of search-

based test case generation. IEEE Transactions on Software Engineering,

Volume (36), Pages 742-762.

ALKHATIB, R. & SCHOLL, M. H. Compacting XML Structures Using a Dynamic

Labeling Scheme. 26th British National Conference on Databases, ,

2009 Birmingham, UK. Springer, Pages 158-170.

ALMELIBARI, A. 2015. Labelling Dynamic XML Documents: A GroupBased

Approach (Thesis). PhD thesis, University of Sheffield.

ALSTRUP, S. & RAUHE, T. Improved labeling scheme for ancestor queries.

Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms, 2002 San Francisco, California. Society for Industrial and

Applied Mathematics, Pages 947-953.

AMAGASA, T., YOSHIKAWA, M. & UEMURA, S. QRS: a robust numbering

scheme for XML documents. Proceedings. 19th International Conference

onData Engineering, 2003 Bangalore, India. Pages 705-707.

AMER-YAHIA, S., BOTEV, C. & SHANMUGASUNDARAM, J. Texquery: a full-

text search extension to xquery. Proceedings of the 13th international

conference on World Wide Web, 2004 New York, NY, USA. ACM, Pages

583-594.

AMER-YAHIA, S. & LALMAS, M. 2006. XML search: languages, INEX and

scoring. SIGMOD Rec., Volume (35), Pages 16-23.

AN, D. & PARK, S. Group-Based Prime Number Labeling Scheme for XML Data.

10th International Conference onComputer and Information Technology

(CIT), , 2010 Bradford, West Yorkshire, UK. IEEE, Pages 1639-1644.

AN, D. & PARK, S. 2011. Efficient access control labeling scheme for secure

XML query processing. Computer Standards & Interfaces, Volume (33),

Pages 439-447.

References

229

APOSTOLICO, A. & FRAENKEL, A. 1987. Robust transmission of unbounded

strings using Fibonacci representations. IEEE Transactions on

Information Theory, Volume (33), Pages 238-245.

ARCURI, A. & BRIAND, L. A practical guide for using statistical tests to assess

randomized algorithms in software engineering. 33rd International

Conference on Software Engineering (ICSE), 2011 Hawaii. IEEE, Pages

1-10.

ARCURI, A. & BRIAND, L. 2014. A hitchhiker's guide to statistical tests for

assessing randomized algorithms in software engineering. Software

Testing, Verification and Reliability, 24, 219-250.

ARION, A., BONIFATI, A., COSTA, G., D’AGUANNO, S., MANOLESCU, I. &

PUGLIESE, A. Efficient query evaluation over compressed XML data.

International Conference on Extending Database Technology, 2004

Greece. Springer, Pages 200-218.

ARMSTRONG, R. A. 2014. When to use the Bonferroni correction. Ophthalmic

and Physiological Optics, Volume (34), Pages 502-508.

ARROYUELO, D., CLAUDE, F., MANETH, S., MÄKINEN, V., NAVARRO, G.,

NGUYỄN, K., SIRÉN, J. & VÄLIMÄKI, N. 2015. Fast in‐memory XPath

search using compressed indexes. Software: Practice and Experience,

Volume (45), Pages 399-434.

ASSEFA, B. & ERGENC, B. OrderBased Labeling Scheme for Dynamic XML

Query Processing. International Cross-Domain Conference and

Workshop on Availability, Reliability, and Security, {CD-ARES}, 2012

Prague, Czech Republic. Springer Berlin Heidelberg, Pages 287-301.

ASSOCIATION, T. F. 2011. "Representation Theorems"

http://www.fq.math.ca/Books/Fibonacci-Lucas/chap12.pdf [Online].

[Accessed 7/May/2015.

BAČA, R., WALDER, J., PAWLAS, M. & KRÁTKÝ, M. Benchmarking the

compression of XML node streams. Database Systems for Advanced

Applications, 2010 Berlin Heidelberg. Springer, Pages 179-190.

BANERJEE, S., KRISHNAMURTHY, V., KRISHNAPRASAD, M. & MURTHY, R.

Oracle8i-the XML enabled data management system. Proceedings 16th

International Conference on Data Engineering, 2000 San Diego, CA,

USA. IEEE, Pages 561-568.

BARILLOT, E. & ACHARD, F. 2000. XML: a lingua franca for science. Trends in

biotechnology, Volume (18), Pages 331-333.

http://www.fq.math.ca/Books/Fibonacci-Lucas/chap12.pdf

References

230

BARTZ-BEIELSTEIN, T., CHIARANDINI, M., PAQUETE, L. & PREUSS, M.

2010. Experimental methods for the analysis of optimization algorithms,

Springer.

BEECH, G. The Benefits of Using XML Technologies in Astronomical Data

Retrieval and Interpretation. Proceedings of the conference on Big Data

from Space, 2016 Spain. Publications Office of the European Union, Joint

Research Centre, Pages 268-271.

BENEDIKT, M. & CHENEY, J. 2009. Schema-based independence analysis for

XML updates. Proceedings of the VLDB Endowment, Volume (2), Pages

61-72.

BERTINO, E., CASTANO, S., FERRARI, E. & MESITI, M. 2000. Specifying and

enforcing access control policies for XML document sources. World Wide

Web, Volume (3), Pages 139-151.

BEX, G. J., NEVEN, F. & VAN DEN BUSSCHE, J. DTDs versus XML schema: a

practical study. Proceedings of the 7th International Workshop on the

Web and Databases: colocated with ACM SIGMOD/PODS, 2004 New

York, NY, USA. ACM, Pages 79-84.

BILLE, P. 2003. Tree edit distance, alignment distance and inclusion [available

online via IT University of Copenhagen] . accessed July 2016. Citeseer.

BO, N., XIAOPING, Z. & YIMIN, S. Parallel processing the keyword search in

uncertain environment. International Conference on System Science and

Engineering (ICSSE), , 2012 Dalian, Liaoning, China. IEEE, Pages 409-

414.

BOAG, S., CHAMBERLIN, D., FERNÁNDEZ, M., FLORESCU, D., ROBIE, J.,

AND SIMÉON, J. . 2007. "XQuery 1.0: An XML Query Language (2nd

edition) [online] at http://www.w3.org/TR/xquery/ " [Online]. Retrieved 18

July 2016].

BÖHME, T. & RAHM, E. 2000. Xmach-1: A Benchmark for Xml Data

Management [online] http://dbs.uni-

leipzig.de/en/projekte/XML/paper/XMach-1.html [Online]. [Accessed 22

Nov 2016.

BÖHME, T. & RAHM, E. XMach-1: A benchmark for XML data management.

Datenbanksysteme in Büro, Technik und Wissenschaft, 2001. Springer,

Pages 264-273.

BÖHME, T. & RAHM, E. Multi-user evaluation of XML data management

systems with XMach-1. Efficiency and Effectiveness of XML Tools and

http://www.w3.org/TR/xquery/
http://dbs.uni-leipzig.de/en/projekte/XML/paper/XMach-1.html
http://dbs.uni-leipzig.de/en/projekte/XML/paper/XMach-1.html

References

231

Techniques and Data Integration over the Web, 2003. Springer, Pages

148-159.

BONIFATI, A. & CERI, S. 2000. Comparative analysis of five XML query

languages. ACM Sigmod Record, Volume (29), Pages 68-79.

BÖTTCHER, S. & STEINMETZ, R. 2007. Evaluating xpath queries on XML data

streams. Data Management. Data, Data Everywhere. Springer.

BOUSQUET-MÉLOU, M., LOHREY, M., MANETH, S. & NOETH, E. 2015. XML

compression via directed acyclic graphs. Theory of Computing Systems,

Volume (57), Pages 1322-1371.

BRAGA, D., CAMPI, A. & CERI, S. 2005. XQBE (XQuery By Example): A visual

interface to the standard XML query language. ACM Trans. Database

Syst., Volume (30), Pages 398-443.

BRANDES, U., EIGLSPERGER, M., LERNER, J. & PICH, C. 2013. Graph

markup language (GraphML), Chapter 16 pages 517 - 540. Available on

line via University of Kanstanz.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E. & YERGEAU,

F. 1998. Extensible markup language (XML). World Wide Web

Consortium Recommendation REC-xml-19980210

http://www.w3.org/TR/1998/REC-xml-19980210, Volume (16), Page 16.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E. & YERGEAU,

F. 2008. Extensible markup language (XML) 1.0 (5th edition) [online]

https://www.w3.org/TR/REC-xml/ Retrieved 18 July 2016. W3C

recommendation.

BRESSAN, S., DOBBIE, G., LACROIX, Z., LEE, M. L., LI, Y. G., NAMBIAR, U. &

WADHWA, B. XOO7: Applying OO7 Benchmark to XML Query

Processing Tools. Proceedings of the ACM International Conference on

Information and Knowledge Management (CIKM), 2001 Atlanta, GA.

ACM.

BRESSAN, S., LI LEE, M., GUANG LI, Y., LACROIX, Z. & NAMBIAR, U. The

XOO7 Benchmark. In: BRESSAN, S., LEE, M. L., CHAUDHRI, A. B., YU,

J. X. & LACROIX, Z., eds. Efficiency and Effectiveness of XML Tools and

Techniques and Data Integration over the Web: VLDB 2002 Workshop

EEXTT and CAiSE 2002 Workshop DIWeb Revised Papers, 2003 Berlin,

Heidelberg. Springer Berlin Heidelberg, Pages 146-147.

BROWN JR, J. L. 1969. Unique Representations of Integers as Sums of Distinct

Lucas Numbers. The Fibonacci Quarterly, Volume (7), Pages 243-252.

http://www.w3.org/TR/1998/REC-xml-19980210
https://www.w3.org/TR/REC-xml/

References

232

BRUNO, N., KOUDAS, N. & SRIVASTAVA, D. Holistic twig joins: optimal XML

pattern matching. Proceedings of the ACM SIGMOD international

conference on Management of data, 2002 Madison, Wisconsin. ACM,

Pages 310-321.

CAREY, M. J., DEWITT, D. J. & NAUGHTON, J. F. 1993. The 007 benchmark,

ACM, Pages 12-21.

CATANIA, B., MADDALENA, A. & VAKALI, A. 2005a. XML document indexes: a

classification. IEEE internet computing, Volume (9), Pages 64-71.

CATANIA, B., OOI, B. C., WANG, W. & WANG, X. 2005b. Lazy XML updates:

laziness as a virtue, of update and structural join efficiency. Proceedings

of the 2005 ACM SIGMOD international conference on Management of

data. Baltimore, Maryland: ACM.

CHAMBERLIN, D., FANKHAUSER, P., MARCHIORI, M. & ROBIE, J. 2001. Xml

query requirements [online]

http://wiscorp.com/XMLQueryRequirements2.pdf Retrieved 3rd August

2016. W3C Working Draft, Volume (15).

CHAMBERLIN, D., ROBIE, J. & FLORESCU, D. Quilt: An XML query language

for heterogeneous data sources. International Workshop on the World

Wide Web and Databases, 2000 Valencia, Spain. Springer, Pages 1-25.

CHANDRA, P. A. W., ERIC W. 1999. "Fibonacci Number." From MathWorld--A

Wolfram Web Resource.

http://mathworld.wolfram.com/FibonacciNumber.html [Online]. Retrieved

07/Sep/2016].

CHAUDHRI, A., ZICARI, R. & RASHID, A. 2003. XML data management: native

XML and XML enabled DataBase systems, Addison-Wesley Longman

Publishing Co., Inc.

CHEN, J., LIANG, W. & YOKOTA, H. 2011. A two-dimension XML encoding

method based on Variable length binary code. Journal of Software,

Volume (6), Pages 2426-2433.

CHEN, Q., LIM, A. & ONG, K. W. D (k)-index: An adaptive structural summary for

graph-structured data. Proceedings of the ACM SIGMOD international

conference on Management of data, 2003 San Diego, CA, USA. ACM,

Pages 134-144.

CHEN, Q., LIM, A. & ONG, K. W. 2008. Enabling structural summaries for

efficient update and workload adaptation. Data & Knowledge Engineering,

Volume (64), Pages 558-579.

http://wiscorp.com/XMLQueryRequirements2.pdf
http://mathworld.wolfram.com/FibonacciNumber.html

References

233

CHEN, S., LI, H.-G., TATEMURA, J., HSIUNG, W.-P., AGRAWAL, D. &

CANDAN, K. S. Twig 2 Stack: bottom-up processing of generalized-tree-

pattern queries over XML documents. Proceedings of the 32nd

international conference on Very large data bases, 2006 Seoul, Korea.:

VLDB Endowment, Pages 283-294.

CHEN, T., LU, J. & LING, T. W. On boosting holism in XML twig pattern matching

using structural indexing techniques. Proceedings of the ACM SIGMOD

international conference on Management of data, 2005 Maryland, USA.

ACM SIGMOD, Pages 455-466.

CHEN, Y., DAVIDSON, S. B. & ZHENG, Y. Blas: An efficient xpath processing

system. Proceedings of the ACM SIGMOD international conference on

Management of data, 2004 Paris, France. ACM, Pages 47-58.

CHERGUI, R. 2015. Zeckendorf arithmetic for Lucas numbers,

https://arxiv.org/pdf/1501.04924.pdf [Online]. [Accessed 7th October

2016.

CHI, Y., YANG, Y. & MUNTZ, R. R. Indexing and mining free trees. Third IEEE

International Conference on Data Mining (ICDM) 2003 Florida, USA.

IEEE, Pages 509-512.

CHIEN, S.-Y., VAGENA, Z., ZHANG, D., TSOTRAS, V. J. & ZANIOLO, C.

Efficient structural joins on indexed XML documents. Proceedings of the

28th international conference on Very Large Data Bases, 2002 Hong

Kong SAR, China VLDB Endowment, Pages 263-274.

CHIEW, W.-S., HAW, S.-C., SUBRAMANIAM, S. & CHUA, F.-F. 2014a. Labeling

schemes for XML dynamic updates: A survey and open discussions. E-

Commerce, E-Business and E-Service, Page 79-83.

CHIEW, W.-S., YEOW, W.-Y., HAW, S.-C., SUBRAMANIAM, S. & CHUA, F.-F.

2014b. Storing and retrieval of hybrid XML databases: A performance

evaluation. E-Commerce, E-Business and E-Service, Volume (1), Page

91.

CHOI, H., LEE, K.-H. & LEE, Y.-J. 2014. Parallel labeling of massive XML data

with MapReduce. The Journal of Supercomputing, Volume (67), Pages

408-437.

CHOI, R. H. & WONG, R. K. 2015. VXQ: A visual query language for XML data.

Information Systems Frontiers, Volume (17), Pages 961-981.

CHOVANEC, P., KRÁTKÝ, M. & WALDER, J. Lossless R-tree compression

using variable-length codes. International Conference for Internet

https://arxiv.org/pdf/1501.04924.pdf

References

234

Technology and Secured Transactions (ICITST), 2010 London, United

Kingdom. IEEE, Pages 1-8.

CHUNG, C.-W., MIN, J.-K. & SHIM, K. APEX: An adaptive path index for XML

data. Proceedings of the ACM SIGMOD international conference on

Management of data, 2002 Madison, WI, USA. ACM, Pages 121-132.

CIANCARINI, P., RIZZI, A. & VITALI, F. 1998. Proceedings of the Seventh

International World Wide Web ConferenceAn extensible rendering engine

for XML and HTML. Computer Networks and ISDN Systems, Volume

(30), Pages 225-237.

COHEN, E., KAPLAN, H. & MILO, T. 2010. Labeling dynamic XML trees. SIAM

Journal on Computing, Volume (39), Pages 2048-2074.

COHEN, S., MAMOU, J., KANZA, Y. & SAGIV, Y. XSEarch: A semantic search

engine for XML. Proceedings of the 29th international conference on

Very large data bases, 2003 Berlin, Germany. VLDB Endowment, Pages

45-56.

CONNOLLY, T. M. & BEGG, C. E. 2005. Database systems: a practical

approach to design, implementation, and management, Pearson

Education.

COOPER, B. F., SAMPLE, N., FRANKLIN, M. J., HJALTASON, G. R. &

SHADMON, M. A fast index for semistructured data. in Proceedings of

the 27th International Conference on Very Large Data Bases, 2001

Rome, Italy. VLDB, Pages 341-350.

CORNELL-TECH. 2017. Introduction to Asymptotic Analysis

http://www.cs.cornell.edu/courses/cs312/2004fa/lectures/lecture16.htm ,

Cornell University, Ithaca, NY 14853 [Online]. Cornell University, Ithaca,

NY 14853 [Accessed February 2017.

CUEVAS, A., FEBRERO, M. & FRAIMAN, R. 2004. An anova test for functional

data. Computational Statistics & Data Analysis, Volume (47), Pages 111-

122.

CZERWINSKI, W., MARTENS, W., NIEWERTH, M. & PARYS, P. Minimization of

Tree Pattern Queries. Proceedings of the 35th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems, 2016 San

Francisco, California, USA. ACM, Pages 43-54.

DALAMAGAS, T., CHENG, T., WINKEL, K.-J. & SELLIS, T. 2006. A

methodology for clustering XML documents by structure. Information

Systems, Volume (31), Pages 187-228.

http://www.cs.cornell.edu/courses/cs312/2004fa/lectures/lecture16.htm

References

235

DATE, C. J. & DARWEN, H. 1993. A guide to the SQL Standard: a user's guide

to the standard relational language SQL, Addison-Wesley Longman.

DAVIS, K. C., ZHAN, Y. & DAVIS, R. B. An XML/XPath query language and

XMark performance study. Proceedings. Symposium on Applications and

the Internet, 2003 Orlando, FL, USA. IEEE, Pages 422-427.

DBLP. 2013. The Dblp Computer Science Bibliography http://dblp.uni-trier.de/db/

[Online]. [Accessed 22 Nov 2016].

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A. & SUCIU, D. 1998.

Xml-ql: A query language for xml [online]

https://www.w3.org/TR/1998/NOTE-xml-ql-19980819/ Retrieved August

2016.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A. & SUCIU, D. 1999.

A query language for XML. Computer networks, Volume (31), Pages

1155-1169.

DEWEY, M. 1876. A Classification and Subject Index for Cataloguing and

Arranging the Books and Pamphlets of a Library [Dewey Decimal

Classification]. Brick row book shop,

http://www.gutenberg.org/files/12513/12513-h/12513-h.htm accessed on

15th September 2014.

DIETZ, P. F. Maintaining order in a linked list. Proceedings of the fourteenth

annual ACM symposium on Theory of computing, 1982 San Francisco,

California, USA. ACM, Pages 122-127.

DUONG, M. & ZHANG, Y. LSDX: a new labelling scheme for dynamically

updating XML data. Proceedings of the 16th Australasian database

conference 2005 Newcastle, Australia. Australian Computer Society, Inc.,

Pages 185-193.

DUONG, M. & ZHANG, Y. 2008. Dynamic Labelling Scheme for XML Data

Processing. In: MEERSMAN, R. & TARI, Z. (eds.) On the Move to

Meaningful Internet Systems: OTM 2008. Springer Berlin Heidelberg.

DYBÅ, T., KAMPENES, V. B. & SJØBERG, D. I. 2006. A systematic review of

statistical power in software engineering experiments. Information and

Software Technology, Volume (48), Pages 745-755.

ELIAS, P. 1975. Universal codeword sets and representations of the integers.

Information Theory, IEEE Transactions on, Volume (21), Pages 194-203.

ELMASRI, R. 2008. Fundamentals of database systems, Pearson Education

India.

http://dblp.uni-trier.de/db/
https://www.w3.org/TR/1998/NOTE-xml-ql-19980819/
http://www.gutenberg.org/files/12513/12513-h/12513-h.htm

References

236

EVJEN. B., K. S., THIRU THANGARATHINAM 2007. Professional XML [online]

via https://books.google.co.uk/books?isbn=0470167386 retrieved July

2016.

FAN, W., GAROFALAKIS, M. N. & XIONG, M. 2015. Grammar and method for

integrating XML data from multiple sources [online]

https://www.google.com/patents/US8949710 Retrieved 28 July 2016.

Google Patents.

FERNANDEZ, M. & SUCIU, D. Optimizing regular path expressions using graph

schemas. Proceedings 14th International Conference on Data

Engineering, 1998. , Orlando, FL, USA. IEEE, Pages 14-23.

FISCHER, J. 2009. Short labels for lowest common ancestors in trees.

Algorithms-ESA. Springer.

FISHER, R. A. 1925. Statistical methods for research workers, Edinburgh, UK,

Genesis Publishing Pvt Ltd.

FLORESCU, D. & KOSSMANN, D. 1999. Storing and querying XML data using

an RDMBS. IEEE Data Engineering Bulletin, Special Issue on, Volume

(1060), Pages 27-34.

FLORESCU, D., KOSSMANN, D. & MANOLESCU, I. 2000. Integrating keyword

search into XML query processing. Computer networks, Volume (33),

Pages 119-135.

FRAENKEL, A. S. 1985. Systems of numeration. American Mathematical

Monthly, Pages 105-114.

FRAENKEL, A. S. & KLEIN, S. T. 1985. Robust universal complete codes as

alternatives to Huffman codes, Department of Applied Mathematics,

Weizmann Institute of Science.

FRAIGNIAUD, P. & KORMAN, A. 2016. An Optimal Ancestry Labeling Scheme

with Applications to XML Trees and Universal Posets. Journal of the ACM

(JACM), Volume(63), Page 6.

FRANCESCHET, M. XPathMark: an XPath benchmark for the XMark generated

data. International XML Database Symposium, 2005 Trondheim,

Norway. Springer, Pages 129-143.

FREDRIKSSON, K. & NIKITIN, F. Simple compression code supporting random

access and fast string matching. International Workshop on Experimental

and Efficient Algorithms, 2007 Rome, Italy. Springer, Pages 203-216.

FUHR, N., GRO, K. & JOHANN. XIRQL: a query language for information

retrieval in XML documents. Proceedings of the 24th annual international

https://books.google.co.uk/books?isbn=0470167386
https://www.google.com/patents/US8949710

References

237

ACM SIGIR conference on Research and development in information

retrieval, 2001 New Orleans, Louisiana, USA. ACM, Pages 172-180.

FUHR, N. & GROßJOHANN, K. Xirql-an extension of xql for information retrieval.

ACM SIGIR Workshop On XML and Information Retrieval, 2000 NY,

USA. Citeseer.

GAGIE, T., NAVARRO, G., NEKRICH, Y. & ORDÓNEZ, A. 2015. Efficient and

compact representations of prefix codes. IEEE Transactions on

Information Theory, Volume (61), Pages 4999-5011.

GENEVÈS, P. & LAYAÏDA, N. 2006. A system for the static analysis of XPath.

ACM Transactions on Information Systems (TOIS), Volume (24), Pages

475-502.

GHALEB, T. A. & MOHAMMED, S. Novel scheme for labeling XML trees based

on bits-masking and logical matching. World Congress on Computer and

Information Technology (WCCIT), 2013 Tunisia, Sousse. IEEE, Pages 1-

5.

GHALEB, T. A. & MOHAMMED, S. 2015. A Dynamic Labeling Scheme Based on

Logical Operators: A Support for Order-Sensitive XML Updates. Procedia

Computer Science, Volume (57), Pages 1211-1218.

GHASEMI, A. & ZAHEDIASL, S. 2012. Normality tests for statistical analysis: a

guide for non-statisticians. International journal of endocrinology and

metabolism, Volume (10), Pages 486-489.

GHEERBRANT, A., LIBKIN, L. & SIRANGELO, C. Reasoning About Pattern-

Based XML Queries. In: FABER, W. & LEMBO, D., eds. Proceedings

Web Reasoning and Rule Systems: 7th International Conference, RR,

Mannheim, Germany, , 2013 Berlin, Heidelberg. Springer Berlin

Heidelberg, Pages 4-18.

GIBBONS, J. D. & CHAKRABORTI, S. 2011. Nonparametric statistical inference,

Springer.

GOG, S. 2009. Broadword computing and Fibonacci code speed up compressed

suffix arrays. Experimental Algorithms. Springer.

GOLDMAN, R., MCHUGH, J. & WIDOM, J. 1999. From semistructured data to

XML: Migrating the Lore data model and query language. ACM SIGMOD

Workshop on The Web and Databases, , Volume (2), Pages 153-163.

GOLDMAN, R. & WIDOM, J. Dataguides: Enabling query formulation and

optimization in semistructured databases. Proceedings of the 23th VLDB,

1997 San Francisco, CA. Pages 436–445

References

238

GOLDMAN, R. & WIDOM, J. Approximate dataguides. Proceedings of the

Workshop on Query Processing for Semistructured Data and Non-

Standard Data Formats, 1999 Jerusalem, Israel. , Pages 436-445.

GOTTLOB, G., KOCH, C. & PICHLER, R. 2005. Efficient algorithms for

processing XPath queries. ACM Transactions on Database Systems

(TODS), Volume (30), Pages 444-491.

GOU, G. & CHIRKOVA, R. 2007. Efficiently querying large XML data

repositories: A survey. IEEE Transactions on Knowledge and Data

Engineering, Volume (19), Pages 1381-1403.

GRAHAM, I. S. 1995. The HTML sourcebook, John Wiley & Sons, Inc.

GREEN, T. J., MIKLAU, G., ONIZUKA, M. & SUCIU, D. Processing XML streams

with deterministic automata. International Conference on Database

Theory, 2003 Italy. Springer, Pages 173-189.

GRIJZENHOUT, S. & MARX, M. 2013. The quality of the XML Web. Web

Semantics: Science, Services and Agents on the World Wide Web,

Volume (19), Pages 59-68.

GRISSOM, R. J. & KIM, J. J. 2005. Effect sizes for research. A broad practical

approach. Mah.

GUO, L., SHAO, F., BOTEV, C. & SHANMUGASUNDARAM, J. XRANK: Ranked

keyword search over XML documents. Proceedings of the ACM

SIGMOD international conference on Management of data, 2003 San

Diego, California. ACM, Pages 16-27.

GUPTA, A. K. & SUCIU, D. Stream processing of XPath queries with predicates.

Proceedings of the ACM SIGMOD international conference on

Management of data, 2003 San Diego, California. ACM, Pages 419-430.

GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial searching,

ACM.

HACHICHA, M. & DARMONT, J. 2013. A survey of XML tree patterns. IEEE

Transactions on Knowledge and Data Engineering, Volume (25), Pages

29-46.

HAKIM, C. 2000. Research design: Successful designs for social and economic

research, Psychology Press.

HAKUTA, S., MANETH, S., NAKANO, K. & IWASAKI, H. XQuery streaming by

forest transducers. 30th International Conference on Data Engineering

(ICDE), , 2014 Chicago, USA. IEEE, Pages 952-963.

References

239

HALL, D. & STRÖMBÄCK, L. Generation of synthetic XML for evaluation of

hybrid XML systems. International Conference on Database Systems for

Advanced Applications, 2010 Tsukuba, Japan. Springer, Pages 191-202.

HAN, J. Y., LIANG, Z. P. & QIAN, G. 2006. A multiple-depth structural index for

branching query. Information and Software Technology, Volume (48),

Pages 928-936.

HÄRDER, T., HAUSTEIN, M., MATHIS, C. & WAGNER, M. 2007. Node labeling

schemes for dynamic XML documents reconsidered. Data & Knowledge

Engineering, Volume (60), Pages 126-149.

HAROLD, E. R., MEANS, W. S. & UDEMADU, K. 2004. XML in a Nutshell,

O'reilly Sebastopol, CA.

HAW, S.-C. & AMIN, A. 2015. Node Indexing in XML Query Optimization: A

Review. Indian Journal of Science and Technology, Volume (8).

HAW, S.-C. & LEE, C.-S. 2011. Data storage practices and query processing in

XML databases: A survey. Knowledge-Based Systems, Volume (24),

Pages 1317-1340.

HAW, S. C. & RAO, G. R. K. A comparative study and benchmarking on xml

parsers. The 9th International Conference on Advanced Communication

Technology, 2007 Gangwon-Do, Korea (South). IEEE, Pages 321-325.

HE, H., WANG, H., YANG, J. & YU, P. S. Compact reachability labeling for

graph-structured data. Proceedings of the 14th ACM international

conference on Information and knowledge management, 2005 Bremen,

Germany. ACM, Pages 594-601.

HE, H. & YANG, J. Multiresolution indexing of XML for frequent queries. 20th

International Proceedings Conference on Data Engineering, 2004 USA.

IEEE, Pages 683-694.

HE, Y. A Novel Encoding Scheme for XML Document Update-supporting.

International Conference on Advances in Mechanical Engineering and

Industrial Informatics (AMEII), 2015 Zhengzhou. Atlantis Press, Volume

(15).

HENZINGER, M. R., HENZINGER, T. A. & KOPKE, P. W. Computing

simulations on finite and infinite graphs. Proceedings., 36th Annual

Symposium on Foundations of Computer Science, 1995 Milwaukee.

IEEE, Pages 453-462.

HIDDERS, J. & PAREDAENS, J. 2014. Xpath/xquery. Encyclopedia of Social

Network Analysis and Mining, Pages 2425-2432.

HOWELL, D. 2012. Statistical methods for psychology, Cengage Learning.

References

240

HSU, W.-C. & LIAO, I.-E. 2013. CIS-X: A compacted indexing scheme for

efficient query evaluation of XML documents. Information Sciences,

Volume (241), Pages 195-211.

HUANG, X., BAO, Z., DAVIDSON, S. B., MILO, T. & YUAN, X. Answering

regular path queries on workflow provenance. 31st International

Conference on Data Engineering, 2015 Seoul, Korea (South). IEEE,

Pages 375-386.

HYE-KYEONG, K. & SANGKEUN, L. 2010. A Binary String Approach for

Updates in Dynamic Ordered XML Data. Knowledge and Data

Engineering, IEEE Transactions on, Volume (22), Pages 602-607.

IVES, Z., LEVY, A. & WELD, D. 2000. Efficient evaluation of regular path

expressions on streaming XML data, University of Washington.

JIANG, Y., MIN ZENG, Z. & ZHANG, D. Z. An Efficient Encoding and Labeling

Based Upon Continued Fraction for Dynamic XML Data. WRI World

Congress on Software Engineering, 2009 Xiamen, China. IEEE, Pages

324-328.

JITTRAWONG, K. & WONG, R. K. Optimizing XPath queries on streaming XML

data. Proceedings of the eighteenth conference on Australasian

database, 2007 Ballarat, Victoria, Australia. Australian Computer Society,

Inc., Pages 73-82.

JOHNSON, D. S. 2002. A theoretician’s guide to the experimental analysis of

algorithms. Data structures, near neighbor searches, and methodology:

fifth and sixth DIMACS implementation challenges, Volume (59), Pages

215-250.

JOHNSON, J. R., MILLER, A., KHAN, L. & THURAISINGHAM, B. Extracting

semantic information structures from free text law enforcement data.

International Conference on Intelligence and Security Informatics (ISI), ,

2012 Washington, DC, USA. IEEE, Pages 177-179.

JONES, B. M., SAWICKI, M. & LITTLE, R. A. 2008. System and method for

validating an XML document and reporting schema violations [online]

https://www.google.com/patents/US7373595 Retrieved 20 July 2016.

Google Patents.

KAMPS, J., MARX, M., RIJKE, M. D. & SIGURBJÖRNSSON, B. 2006.

Articulating information needs in XML query languages. ACM

Transactions on Information Systems (TOIS), Volume (24), Pages 407-

436.

https://www.google.com/patents/US7373595

References

241

KANNAN, S., NAOR, M. & RUDICH, S. 1992. Implicat representation of graphs.

SIAM Journal on Discrete Mathematics, Volume (5), Pages 596-603.

KAPLAN, H., MILO, T. & SHABO, R. A comparison of labeling schemes for

ancestor queries. Proceedings of the thirteenth annual ACM-SIAM

symposium on Discrete algorithms, 2002 San Francisco, California.

Pages 954-963.

KARPINSKI, M. A. Y. N. 2009 A Fast Algorithm for Adaptive Prefix Coding.

Algorithmica, Volume (55), Pages 29-41.

KAUSHIK, R., BOHANNON, P., NAUGHTON, J. F. & KORTH, H. F. Covering

indexes for branching path queries. Proceedings of the ACM SIGMOD

international conference on Management of data, 2002b Madison, WI,

USA. ACM, Pages 133-144.

KAUSHIK, R., SHENOY, P., BOHANNON, P. & GUDES, E. Exploiting local

similarity for indexing paths in graph-structured data. Proceedings. 18th

International Conference on Data Engineering, 2002a Washington, DC,

USA IEEE, Pages 129-140.

KELLER, T. J. 1972. Generalizations of Zeckendorf’s theorem. Fibonacci

Quarterly, Volume (10), Pages 95-102.

KHA, D. D., YOSHIKAWA, M. & UEMURA, S. A structural numbering scheme for

XML data. the 8th International Conference on Extending Database

Technology, 2002 Prague, Czech Republic. Springer, Pages 91-108.

KHAING, A. A. & NI LAR, T. A Persistent Labeling Scheme for Dynamic Ordered

XML Trees. IEEE/WIC/ACM International Conference on Web

Intelligence, 2006 Hong Kong. IEEE, Pages 498-501.

KHARE, R. & RIFKIN, A. 1997. XML: A door to automated Web applications.

IEEE Internet Computing, Volume (1), Pages 78-87.

KISELYOV, O. A better XML parser through functional programming.

International Symposium on Practical Aspects of Declarative Languages,

2002 Portland Springer, Pages 209-224.

KLAIB, A. & LU, J. Investigation into Indexing XML Data Techniques.

Proceedings on the International Conference on Internet Computing

(ICOMP), 2014. The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing.

KLEIN, S. T. & BEN-NISSAN, M. K. Using Fibonacci compression codes as

alternatives to dense codes. Data Compression Conference. DCC 2008,

Snowbird, UT, USA. IEEE, Pages 472-481.

References

242

KLEIN, S. T. & BEN-NISSAN, M. K. 2010. On the usefulness of fibonacci

compression codes. The Computer Journal, Volume (53), Pages 701-

716.

KLETTKE, M. & MEYER, H. XML and object-relational database systems

enhancing structural mappings based on statistics. International

Workshop on the World Wide Web and Databases, 2000 Berlin

Heidelberg. Springer, Pages 151-170.

KNOTT, R. 1998. Who was Fibonacci? "http://www.maths.surrey.ac.uk/hosted-

sites/R.Knott/Fibonacci/fibBio.html" [Online]. [Accessed 30/04/2015].

KNUTH, D. E. 1979. Lexicographic permutations with restrictions. Discrete

Applied Mathematics, Volume (1), Pages 117-125.

KOBAYASHI, K., LIANG, W., KOBAYASHI, D., WATANABE, A. & YOKOTA, H.

VLEI Code: An Efficient Labeling Method for Handling XML Documents in

an RDB. Proceedings. 21st International Conference on Data

Engineering, 2005 Tokyo, Japan. IEEE, Pages 386-387.

KOCHMER, C. & FRANDSEN, E. 2002. JSP and XML: From Web Services to

XML in Your JSP Application, Addison-Wesley Longman Publishing Co.,

Inc.

KURTEV, I. 2001. Logical and Physical Structure of XML Documents [online]

Retrieved July 2016.

LAM, T. C., DING, J. J. & LIU, J.-C. 2008. XML Document Parsing: Operational

and Performance Characteristics. IEEE Computer, Volume (41), Pages

30-37.

LAMORTE, W. W. 2016. Nonparametric Tests

http://sphweb.bumc.bu.edu/otlt/MPH-

Modules/BS/BS704_Nonparametric/BS704_Nonparametric4.html, Boston

University School of Public Health [Online]. Bosten: Boston University

School of Public Health. [Accessed December 2016].

LASSILA, M., JUNKKARI, M. & KEKÄLÄINEN, J. 2015. Comparison of two XML

query languages from the perspective of learners. Journal of Information

Science, Volume (41), Pages 584-595.

LAWRENCE, R. 2004. The space efficiency of XML. Information and Software

Technology, Volume (46), Pages 753-759.

LEE, D. & CHU, W. W. 2000. Comparative analysis of six XML schema

languages. SIGMOD Record, Volume (29), Pages 76-87.

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibBio.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibBio.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric4.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric4.html

References

243

LEE, D. & CHU, W. W. 2001. CPI: constraints-preserving inlining algorithm for

mapping XML DTD to relational schema. Data & Knowledge Engineering,

Volume (39), Pages 3-25.

LEE, K.-H., WHANG, K.-Y., HAN, W.-S. & KIM, M.-S. 2010. Structural

consistency: enabling XML keyword search to eliminate spurious results

consistently. The VLDB Journal, Volume (19), Pages 503-529.

LEE, Y. K., YOO, S.-J., YOON, K. & BERRA, P. B. Index structures for structured

documents. Proceedings of the first ACM international conference on

Digital libraries, 1996 Bethesda, MD, USA. ACM, Pages 91-99.

LELEWER, D. A. & HIRSCHBERG, D. S. 1987. Data compression. ACM

Computing Surveys (CSUR), Volume (19), Pages 261-296.

LI, C. & LING, T. An Improved Prefix Labeling Scheme: A Binary String Approach

for Dynamic Ordered XML. Database Systems for Advanced

Applications, 2005a. Springer Berlin Heidelberg, Pages 125-137.

LI, C. & LING, T. W. QED: a novel quaternary encoding to completely avoid re-

labeling in XML updates. Proceedings of the 14th ACM international

conference on Information and knowledge management, 2005b Bremen,

Germany. ACM, Pages 501-508.

LI, C., LING, T. W. & HU, M. Efficient Processing of Updates in Dynamic XML

Data. Proceedings of the 22nd International Conference on Data

Engineering, 2006a Atlanta, Georgia. IEEE, Pages 13-13.

LI, C., LING, T. W. & HU, M. Reuse or never reuse the deleted labels in XML

query processing based on labeling schemes. Database Systems for

Advanced Applications, 2006b. Springer, Pages 659-673.

LI, C., LING, T. W. & HU, M. 2008. Efficient updates in dynamic XML data: from

binary string to quaternary string. The VLDB Journal—The International

Journal on Very Large Data Bases, Volume (17), Pages 573-601.

LI, C., LING, T. W., LU, J. & YU, T. On reducing redundancy and improving

efficiency of XML labeling schemes. Proceedings of the 14th ACM

international conference on Information and knowledge management,

2005c Bremen, Germany. ACM, Pages 225-226.

LI, G., FENG, J., WANG, J. & ZHOU, L. Effective keyword search for valuable

lcas over xml documents. Proceedings of the sixteenth ACM conference

on Conference on information and knowledge management, 2007 Lisbon,

Portugal. ACM, Pages 31-40.

References

244

LI, J., LIU, C., ZHOU, R. & WANG, W. 2014. XML keyword search with promising

result type recommendations. World Wide Web, Volume (17), Pages 127-

159.

LI, Q. & MOON, B. Indexing and Querying XML Data for Regular Path

Expressions. Proceedings of the 27th International Conference on Very

Large Data Bases, 2001. Morgan Kaufmann Publishers Inc., Pages 361-

370.

LI, S., YANG, D., WANG, T. & WANG, Y. Highly efficient processing of XML

path/twig queries using Index Caches. 9th International Conference on

Fuzzy Systems and Knowledge Discovery (FSKD), 2012 Chongqing,

Sichuan, China. IEEE, Pages 2939-2943.

LI, Y. G., BRESSAN, S., DOBBIE, G., LACROIX, Z., LEE, M. L., NAMBIAR, U. &

WADHWA, B. XOO7: applying OO7 benchmark to XML query processing

tool. Proceedings of the tenth international conference on Information

and knowledge management, 2001 Atlanta, USA. ACM, Pages 167-174.

LIEFKE, H. & SUCIU, D. XMill: an efficient compressor for XML data. ACM

Sigmod Record, International Conference on Management of Data, 2000

New York, USA. ACM, Pages 153-164.

LIN, R.-R., CHANG, Y.-H. & CHAO, K.-M. A Compact and Efficient Labeling

Scheme for XML Documents. Database Systems for Advanced

Applications, 2013 Wuhan, China. Springer, Pages 269-283.

LIU, J., MA, Z. M. & QV, Q. 2014. Dynamically querying possibilistic XML data.

Information Sciences, Volume (261), Pages 70-88.

LIU, J., MA, Z. M. & YAN, L. 2013. Efficient labeling scheme for dynamic XML

trees. Information Sciences, Volume (221), Pages 338-354.

LIU, J. & YAN, D. 2016. Answering Approximate Queries Over XML Data. IEEE

Transactions on Fuzzy Systems, Volume (24), Pages 288-305.

LIU, J. & ZHANG, X. X. 2016. Dynamic labeling scheme for XML updates.

Knowledge-Based Systems, Volume (106), Pages 135-149.

LIU, Z. & CHEN, Y. 2012. Exploiting and Maintaining Materialized Views for XML

Keyword Queries. ACM Transactions on Internet Technology (TOIT),

Volume (12), Page 6.

LIU, Z. H. & GAWLICK, D. Management of Flexible Schema Data in RDBMSs-

Opportunities and Limitations for NoSQL. The 7th biennial Conference

on Innovative Data Systems Research, 2015 Asilomar, California.

LIZHEN, F. & XIAOFENG, M. Triple Code: An Efficient Labeling Scheme for

Query Answering in XML Data. 10th Web Information System and

References

245

Application Conference (WISA), , 2013 Yangzhou, China. IEEE, Pages

42-47.

LLOYD, C. M., HALSTEAD, M. D. & NIELSEN, P. F. 2004. CellML: its future,

present and past. Progress in biophysics and molecular biology, Volume

(85), Pages 433-450.

LOHREY, M., MANETH, S. & PETERNEK, F. Compressed tree canonization.

International Colloquium on Automata, Languages, and Programming,

2015 Kyoto, Japan. Springer, Pages 337-349.

LOHREY, M., MANETH, S. & SCHMIDT-SCHAUß, M. 2012. Parameter

reduction and automata evaluation for grammar-compressed trees.

Journal of Computer and System Sciences, Volume (78), Pages 1651-

1669.

LOU, Y., LI, Z. & CHEN, Q. 2012. Semantic relevance ranking for XML keyword

search. Information Sciences, Volume (190), Pages 127-143.

LU, J. 2013. XML Labeling Scheme. An Introduction to XML Query Processing

and Keyword Search. Springer.

LU, J., CHEN, T. & LING, T. W. TJFast: effective processing of XML twig pattern

matching. Special interest tracks and posters of the 14th international

conference on World Wide Web, 2005a Chiba, Japan. ACM, Pages 1118-

1119.

LU, J. & LING, T. W. Labeling and querying dynamic XML trees. Asia-Pacific

Web Conference, 2004 Hangzhou, China. Springer, Pages 180-189.

LU, J., LING, T. W., BAO, Z. & WANG, C. 2011a. Extended XML Tree Pattern

Matching: Theories and Algorithms. IEEE Transactions on Knowledge

and Data Engineering, Volume (23), Pages 402-416.

LU, J., LING, T. W., CHAN, C.-Y. & CHEN, T. From region encoding to extended

dewey: On efficient processing of XML twig pattern matching.

Proceedings of the 31st international conference on Very large data

bases, 2005b Trento, Italy. VLDB Endowment, Pages 193-204.

LU, J., MENG, X. & LING, T. W. 2011b. Indexing and querying XML using

extended Dewey labeling scheme. Data & Knowledge Engineering,

Volume (70), Pages 35-59.

LU, W., CHIU, K. & PAN, Y. A parallel approach to XML parsing. 7th IEEE/ACM

International Conference on Grid Computing, 2006 Barcelona, Spain.

IEEE, Pages 223-230.

LUO, C. 2007. On XML selectivity estimation, , ProQuest, pages 6-9 [online]

http://books.google.co.uk Retrieved 10th August 2016]

http://books.google.co.uk/

References

246

LUO, C., JIANG, Z., HOU, W.-C., YU, F. & ZHU, Q. A sampling approach for

XML query selectivity estimation. Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database

Technology, 2009 Saint Petersburg, Russia. ACM, Pages 335-344.

MACTUTOR. 1996. Edouard Lucas http://www-groups.dcs.st-

and.ac.uk/~history/Biographies/Lucas.html [Online]. [Accessed

7/May/2015].

MANI, M. & SUNDARESAN, N. 2003. System and method for query processing

and optimization for XML repositories [online]

https://www.google.com/patents/US6654734 Retrieved 2nd August 2016].

Google Patents.

MARTINS, L. F. 2009. The Chinese Remainder Theorem. sage, Volume (1),

Pages 15-38.

MATHGOODIES. 2015. Percentage changes [online]:

http://www.mathgoodies.com/ [Online]. [Accessed January 2017].

MATHIS, C., HÄRDER, T., SCHMIDT, K. & BÄCHLE, S. 2015. XML indexing and

storage: fulfilling the wish list. Computer Science - Research and

Development, Volume (30), Pages 51-68.

MATSUDA, T. 2007. Devices for interpreting and retrieving XML documents,

methods of interpreting and retrieving XML documents, and computer

product, [online] https://www.google.com/patents/US7228296 retrieved 27

July 2016. Google Patents.

MCGEOCH, C. C. 2001. Experimental analysis of algorithms. Notices of the

AMS, Volume (48), Pages 304-311.

MCGILL, R., TUKEY, J. W. & LARSEN, W. A. 1978. Variations of box plots. The

American Statistician, Volume (32), Pages 12-16.

MCPHERSON, J., JETZ, W. & ROGERS, D. J. 2004. The effects of species’

range sizes on the accuracy of distribution models: ecological

phenomenon or statistical artefact? Journal of applied ecology, Volume

(41), Pages 811-823.

MEGGINSON, D. 2000. About SAX via http://sax.sourceforge.net/ [Online]. 19

March 2015].

MEIER, W. eXist: An open source native XML database. Net. ObjectDays:

International Conference on Object-Oriented and Internet-Based

Technologies, Concepts, and Applications for a Networked World, 2002

Germany. Springer, Pages 169-183.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Lucas.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Lucas.html
https://www.google.com/patents/US6654734
http://www.mathgoodies.com/
https://www.google.com/patents/US7228296
http://sax.sourceforge.net/

References

247

MERIALDO., P. 1999. Acm Sigmod Record: Xml Version

http://www.dia.uniroma3.it/Araneus/Sigmod/ [Online]. [Accessed 22 Nov

2016].

MICROSOFT, O. 2016. Microsoft http://office.microsoft.com/en-gb/?CTT=97

[Online]. [Accessed 13 July 2016].

MILO, T. & SUCIU, D. Index structures for path expressions. International

Conference on Database Theory, 1999 Jerusalem, Israel. Springer,

Pages 277-295.

MIN, J.-K., LEE, J. & CHUNG, C.-W. 2007. An Efficient Encoding and Labeling

for Dynamic XML Data. In: KOTAGIRI, R., KRISHNA, P. R., MOHANIA,

M. & NANTAJEEWARAWAT, E. (eds.) Advances in Databases:

Concepts, Systems and Applications. Springer Berlin Heidelberg.

MIN, J.-K., LEE, J. & CHUNG, C.-W. 2009. An efficient XML encoding and

labeling method for query processing and updating on dynamic XML data.

Journal of Systems and Software, Volume (82), Pages 503-515.

MIRABI, M., IBRAHIM, H., MAMAT, A., UDZIR, N. I. & FATHI, L. 2010.

Controlling label size increment of efficient XML encoding and labeling

scheme in dynamic XML update. Journal of Computer Science, Volume

(6), Pages 1535-1540.

MIRABI, M., IBRAHIM, H., UDZIR, N. I. & MAMAT, A. 2012. An encoding

scheme based on fractional number for querying and updating XML data.

Journal of Systems and Software, Volume (85), Pages 1831-1851.

MOHR, S. F., KAY, M., LIVINGSTONE, S. & LOESGEN, B. 2000. Professional

XML, Wrox Press Ltd.

MOTULSKY, H. & SEARLE, P. 2003. The InStat guide to choosing and

interpreting statistical tests. GraphPad Software, San Diego, CA.

MOTWANI, R. & RAGHAVAN, P. 1996. Randomized algorithms. ACM

Computing Surveys (CSUR), Volume (28), Pages 33-37.

NA, N. & GUOQING, D. A new labeling scheme for XML trees based on mesh

partition. 2nd International Conference on Future Computer and

Communication (ICFCC), 2010 Wuhan, China. IEEE, Pages 353-356.

NACHAR, N. 2008. The Mann-Whitney U: A test for assessing whether two

independent samples come from the same distribution. Tutorials in

Quantitative Methods for Psychology, Volume (4), Pages 13-20.

NAMBIAR, U., LACROIX, Z., BRESSAN, S., LEE, M. L. & LI, Y. G. Efficient XML

data management: an analysis. International Conference on Electronic

http://www.dia.uniroma3.it/Araneus/Sigmod/
http://office.microsoft.com/en-gb/?CTT=97

References

248

Commerce and Web Technologies, 2002 London, UK. Springer, Pages

87-98.

NASA. 2001. Gsfc Open Source Software http://opensource.gsfc.nasa.gov/

[Online]. [Accessed 22 Nov 2016].

NI, Y.-F., FAN, Y.-C., TAN, X.-C., CUI, J. & WANG, X.-L. 2012. Numeric-based

XML labeling schema by generalized dynamic method. Journal of

Shanghai Jiaotong University (Science), Volume (17), Pages 203-208.

NICOLA, M. & JOHN, J. Xml parsing: a threat to database performance.

Proceedings of the twelfth international conference on Information and

knowledge management, 2003 New Orleans, LA, USA. ACM, Pages 175-

178.

NICOLA, M., KOGAN, I., RODRIGUES, V. & LIU, M. 2007c. Transaction

Processing over XML (TPoX) Benchmark: XML Data Generation

http://tpox.sourceforge.net/TPoX_DataGeneration_v1.2.pdf [Online].

[Accessed 22 Nov 2016].

NICOLA, M., KOGAN, I. & SCHIEFER, B. An XML transaction processing

benchmark. Proceedings of the ACM SIGMOD international conference

on Management of data, 2007b China. ACM, Pages 937-948.

NOOR EA THAHASIN, S. & JAYANTHI, P. Vector based labeling method for

dynamic XML documents. International Conference on Information

Communication and Embedded Systems (ICICES), 2013 Chennai,

Tamilnadu, India. IEEE, Pages 217-221.

O'CONNOR, M. F. & ROANTREE, M. Desirable properties for XML update

mechanisms. Proceedings of the EDBT/ICDT Workshops, 2010a

Lausanne, Switzerland. ACM, Pages 1-9.

O'NEIL, P., O'NEIL, E., PAL, S., CSERI, I., SCHALLER, G. & WESTBURY, N.

ORDPATHs: insert-friendly XML node labels. Proceedings of the ACM

SIGMOD international conference on Management of data, 2004 Paris,

France. ACM, Pages 903-908.

O’CONNOR, M. & ROANTREE, M. EBSL: Supporting Deleted Node Label

Reuse in XML. Database and XML Technologies, 2010b. Springer Berlin

Heidelberg, Pages 73-87.

O’CONNOR, M. & ROANTREE, M. SCOOTER: A Compact and Scalable

Dynamic Labeling Scheme for XML Updates. Database and Expert

Systems Applications, 2012. Springer Berlin Heidelberg, Pages 26-40.

http://opensource.gsfc.nasa.gov/
http://tpox.sourceforge.net/TPoX_DataGeneration_v1.2.pdf

References

249

O’CONNOR, M. & ROANTREE, M. FibLSS: A Scalable Label Storage Scheme

for Dynamic XML Updates. Advances in Databases and Information

Systems, 2013 Genoa, Italy. Springer Berlin Heidelberg, Pages 218-231.

ONIZUKA, M. Light-weight XPath processing of XML stream with deterministic

automata. Proceedings of the twelfth international conference on

Information and knowledge management, 2003 New Orleans, Louisiana,

USA. ACM, Pages 342-349.

ORACLE. 2014. Package org.w3c.dom;

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-

summary.html#package_description [Online]. 19 March 2015].

OZTUNA D, E. A., TUCCAR E. 2006. Investigation of four different normality

tests in terms of type 1 error rate and power under different distributions.

Turkish Journal of Medical Sciences. , volume (36), Pages 171–6.

PAN, Y., ZHANG, Y. & CHIU, K. Hybrid parallelism for XML SAX parsing. IEEE

International Conference on Web Services, 2008 Beijing, China. Pages

505-512.

PELEG, D. Informative labeling schemes for graphs. International Symposium

on Mathematical Foundations of Computer Science, 2000. Springer,

Pages 579-588.

PHRACK. 2016. Basic Integer Overflows http://phrack.org/issues/60/10.html

[Online]. Phrack Magazine. [Accessed 14th Feb 2017].

POTOK, T. E., ELMORE, M. T., REED, J. W. & SAMATOVA, N. F. An ontology-

based HTML to XML conversion using intelligent agents. Proceedings of

the 35th Annual Hawaii International Conference on System Sciences,

2002 Big Island, HI. IEEE, Pages 1220-1229.

PRZYWARSKI, R., GRABOWSKI, S., NAVARRO, G. & SALINGER, A. FM-KZ:

An even simpler alphabet-independent FM-index. Stringology

Conference, 2006 Czech Technical University, Prague. Citeseer, Pages

226-241.

QADAH, G. Z. 2016. Indexing techniques for processing generalized XML

documents. Computer Standards & Interfaces, Volume (49), Pages 34-

43.

QIN, Z., TANG, Y., TANG, F., XIAO, J., HUANG, C. & XU, H. 2017. Efficient XML

query and update processing using a novel prime-based middle fraction

labeling scheme. China Communications, Volume (14), Pages 145-157.

QIN, Z., TANG, Y. & WANG, X. A String Approach for Updates in Order-

Sensitive XML Data. Proceedings International Conference on

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html#package_description
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html#package_description
http://phrack.org/issues/60/10.html

References

250

Information Technology and Software Engineering, 2013. Springer,

Pages 153-164.

RADIYA, A. D., V. 2000. The Basics of Using Xml Schema to Define Elements

http://www.ibm.com/developerworks/xml/library/xml-schema/index.html:

IBM. [Online]. [Accessed 14 July 2016].

RAFIEI, D., MOISE, D. L. & SUN, D. Finding syntactic similarities between xml

documents. 17th International Workshop on Database and Expert

Systems Applications, 2006 USA. IEEE, Pages 512-516.

RAMANAN, P. Covering indexes for XML queries: bisimulation - simulation =

negation. Proceedings of the 29th international conference on Very large

data bases, 2003 Berlin, Germany. VLDB Endowment, Pages 165-176.

RANGAN, C. A. & JAYANTHI, J. A Generic Parser to parse and reconfigure XML

files. Recent Advances in Intelligent Computational Systems (RAICS),

2011 Trivandrum, India. IEEE, Pages 823-827.

RAY, E. T. 2003. learning XML, " O'Reilly Media, Inc.".

REIS, D. D. C., GOLGHER, P. B., SILVA, A. S. & LAENDER, A. Automatic web

news extraction using tree edit distance. Proceedings of the 13th

international conference on World Wide Web, 2004 New York, NY, USA.

ACM, Pages 502-511.

REN, J., YIN, X. & GUO, X. 2006. A dynamic labeling scheme for XML

document. Journal of Communication and Computer, Volume (3), Pages

61-65.

RIZZOLO, F. & MENDELZON, A. O. Indexing XML Data with ToXin. WebDB,

2001 Santa Barbara, California, USA. VLDB, Pages 49-54.

ROBIE, J., CHAMBERLIN, D., DYCK, M., AND SNELSON, J. . 2007. W3C

Recommendation "XML Path Language (XPath) 3.0

http://www.w3.org/TR/2014/REC-xpath-30-20140408/ " [Online].

Retrieved 18 July 2016.].

ROBIE, J., DERKSEN, E., FANKHAUSER, P., HOWLAND, E., HUCK, G.,

MACHERIUS, I., MURATA, M., RESNICK, M. & SCHÖNING, H. 1999.

XQL (XML query language)

http://www.w3.org/TandS/QL/QL98/pp/xql.html. Retrieved August 2016.

ROY, J. & RAMANUJAN, A. 2001. XML schema language: taking XML to the

next level. IT professional, Volume (3), Pages 37-40.

RUNAPONGSA, K., PATEL, J. M., JAGADISH, H., CHEN, Y. & AL-KHALIFA, S.

2006a. The Michigan benchmark: towards XML query performance

diagnostics. Information Systems, Volume (31), Pages 73-97.

http://www.ibm.com/developerworks/xml/library/xml-schema/index.html:
http://www.w3.org/TR/2014/REC-xpath-30-20140408/
http://www.w3.org/TandS/QL/QL98/pp/xql.html

References

251

RUNAPONGSA, K., PATEL, M., JAGADISH, H., CHEN, Y. & S., A.-K 2006b.

The Michigan Benchmark [Online]. Available:

http://www.eecs.umich.edu/db/mbench/description.html [Online].

[Accessed 22 Nov 2016.

RUSU, L. I., RAHAYU, W. & TANIAR, D. Warehousing dynamic XML documents.

International Conference on Data Warehousing and Knowledge

Discovery, 2006 Krakow, Poland. Springer, Pages 175-184.

SALL, K. B. 2002. XML family of specifications, Chapter XML Syntax and Parsing

Concepts [online]

http://www.informit.com/articles/article.aspx?p=27006&seqNum=3

Retrieved July 2016, Addison-Wesley Longman Publishing Co., Inc.

SALMINEN, A. & TOMPA, F. 2012. Communicating with XML, Chapter 1: Setting

the Stage, Springer Science & Business Media.

SANS, V. & LAURENT, D. 2008. Prefix based numbering schemes for XML:

techniques, applications and performances. Proc. VLDB Endow., Volume

(1), Pages 1564-1573.

SAUNDERS, M. N. 2011. Research methods for business students, 5/e, Pearson

Education India.

SCHMIDT, A. 2003. Xmark — an Xml Benchmark Project http://www.xml-

benchmark.org/ [Online]. [Accessed 22 Nov 2016.

SCHMIDT, A., KERSTEN, M. & WINDHOUWER, M. Querying XML documents

made easy: nearest concept queries. Proceedings 17th International

Conference on Data Engineering, 2001b Washington, DC, USA. IEEE,

Pages 321-329.

SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M. J., MANOLESCU, I. &

BUSSE, R. XMark: A benchmark for XML data management.

Proceedings of the 28th international conference on Very Large Data

Bases, 2002. VLDB Endowment, Pages 974-985.

SCHMIDT, A., WAAS, F., KERSTEN, M., FLORESCU, D., CAREY, M. J.,

MANOLESCU, I. & BUSSE, R. 2001a. Why and how to benchmark XML

databases. ACM Sigmod Record, Volume (30), Pages 27-32.

SCHOLER, F., WILLIAMS, H. E., YIANNIS, J. & ZOBEL, J. 2002. Compression

of inverted indexes For fast query evaluation. Proceedings of the 25th

annual international ACM SIGIR conference on Research and

development in information retrieval. Tampere, Finland: ACM.

SELIGMAN, L. & ROENTHAL, A. 2001. XML's impact an databases and data

sharing. Computer, Volume (34), Pages 59-67.

http://www.eecs.umich.edu/db/mbench/description.html
http://www.informit.com/articles/article.aspx?p=27006&seqNum=3
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/

References

252

SHENG, Y., MINGHUI, W. & LIN, L. 2011. An extended byte carry labeling

scheme for dynamic XML Data. Procedia Engineering, Volume (15),

Pages 5488-5492.

SHICHUAN, L., DONGQING, Y., TENGJIAO, W. & YUE, W. Highly efficient

processing of XML path/twig queries using Index Caches. 9th

International Conference on Fuzzy Systems and Knowledge Discovery,

2012 Chongqing, Sichuan, China. IEEE, Pages 2939-2943.

SHIRRELL, O. 2016. XML: A Deeper Understanding, Chapter 7 DTDs and

Schema [on line] www.xmlbook.info.

SHNAIDERMAN, L. & SHMUELI, O. 2015. Multi-Core Processing of XML Twig

Patterns. IEEE Transactions on Knowledge and Data Engineering,

Volume (27), Pages 1057-1070.

SHNEIDERMAN, B. 1976. Exploratory experiments in programmer behavior.

International Journal of Computer & Information Sciences, Volume (5),

Pages 123-143.

SILBERSTEIN, A., HAO, H., KE, Y. & JUN, Y. BOXes: efficient maintenance of

order-based labeling for dynamic XML data. Proceedings 21st

International Conference on Data Engineering 2005. Pages 285-296.

SILVASTI, P., SIPPU, S. & SOISALON-SOININEN, E. Schema-conscious

filtering of XML documents. 12th International Conference on Extending

Database Technology: Advances in Database Technology, 2009 EDBT

Saint Petersburg, Russia. ACM, Pages 970-981.

SIRKIN, R. M. 2005. "Two-sample t tests" Statistics for the social sciences, Sage

Publications.

SOMASUNDARAM, K. & DOMNIC, S. 2007. Extended golomb code for integer

representation. IEEE transactions on multimedia, Volume (9), Pages 239-

246.

SONAWANE, V. R. & RAO, D. 2015. A Comparative Study: Change Detection

and Querying Dynamic XML Documents. International Journal of

Electrical and Computer Engineering, Volume (5), Page 840.

ST.LAURENT, S. 1998. Why XML http://www.simonstl.com/articles/whyxml.htm

[Online]. [Accessed 18th Feb 2017.

STEEDMAN, M., OSBORNE, M., SARKAR, A., CLARK, S., HWA, R.,

HOCKENMAIER, J., RUHLEN, P., BAKER, S. & CRIM, J. Bootstrapping

statistical parsers from small datasets. Proceedings of the tenth

conference on European chapter of the Association for Computational

http://www.xmlbook.info/
http://www.simonstl.com/articles/whyxml.htm

References

253

Linguistics, 2003 USA. Association for Computational Linguistics, Pages

331-338.

SU-CHENG, H. & CHIEN-SING, L. 2009. Node labeling schemes in XML query

optimization: a survey and trends. IETE Technical Review, Volume (26),

Pages 88-100.

SU CHENG, H. & KRISHNA RAO, G. S. V. R. A Comparative Study and

Benchmarking on XML Parsers. The 9th International Conference on

Advanced Communication Technology, 2007. IEEE, Pages 321-325.

SUBRAMANIAM, S., HAW, S.-C. & SOON, L.-K. ReLab: A subtree based

labeling scheme for efficient XML query processing. IEEE 2nd

International Symposium on Telecommunication Technologies (ISTT),

2014a Langkawi, Malaysia. Pages 121-125.

SUBRAMANIAM, S. & HAW, S. C. ME labeling: A robust hybrid scheme for

dynamic update in XML databases. IEEE 2nd International Symposium

on Telecommunication Technologies (ISTT), 2014b Langkawi, Malaysia.

Pages 126-131.

SUCIU, D. 2002. Xml Data Repository University of Washington

http://www.cs.washington.edu/research/xmldatasets/ [Online]. [Accessed

22 Nov 2016.

SUN, C., CHAN, C.-Y. & GOENKA, A. K. Multiway slca-based keyword search in

xml data. Proceedings of the 16th international conference on World

Wide Web, 2007 Banff, AB, Canada. ACM, Pages 1043-1052.

TAHRAOUI, M. A., PINEL-SAUVAGNAT, K., LAITANG, C., BOUGHANEM, M.,

KHEDDOUCI, H. & NING, L. 2013. A survey on tree matching and XML

retrieval. Computer Science Review, Volume (8), Pages 1-23.

TAKASE, T., MIYASHITA, H., SUZUMURA, T. & TATSUBORI, M. An adaptive,

fast, and safe XML parser based on byte sequences memorization.

Proceedings of the 14th international conference on World Wide Web,

2005 New York, USA. ACM, Pages 692-701.

TATARINOV, I., IVES, Z. G., HALEVY, A. Y. & WELD, D. S. Updating XML.

Proceedings of the ACM SIGMOD international conference on

Management of data, 2001 Santa Barbara, California, USA. ACM, Pages

413-424.

TATARINOV, I., VIGLAS, S. D., BEYER, K., SHANMUGASUNDARAM, J.,

SHEKITA, E. & ZHANG, C. Storing and querying ordered XML using a

relational database system. Proceedings of the ACM SIGMOD

http://www.cs.washington.edu/research/xmldatasets/

References

254

international conference on Management of data, 2002 Madison,

Wisconsin. Pages 204-215.

TEKLI, J. & CHBEIR, R. 2012. A novel XML document structure comparison

framework based-on sub-tree commonalities and label semantics. Web

Semantics: Science, Services and Agents on the World Wide Web,

Volume (11), Pages 14-40.

TEOREY, T. J., LIGHTSTONE, S. S., NADEAU, T. & JAGADISH, H. 2011.

Database modeling and design: logical design, Elsevier.

THIMMA, M., TSUI, T. K. & LUO, B. HyXAC: a hybrid approach for XML access

control. Proceedings of the 18th ACM symposium on Access control

models and technologies, 2013 Amsterdam, Netherlands. ACM, Pages

113-124.

THONANGI, R. A Concise Labeling Scheme for XML Data. In International

Conference on Management of Data 2006 India. Computer Society of

India, Pages 4-14.

TIDWELL, D. 2002. Introduction to Xml

http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section2.html.

[Online]. IBM. [Accessed 13 July 2016].

TIZAG. 2003. XML family tree http://www.tizag.com/xmlTutorial/xmltree.php

[Online]. [Accessed 27 July 2016].

TONG, T., EGUCHI, G., CHEON, J., CALLAHAN, J. & LEFF, L. 2006. Rules

about XML in XML. Expert Systems with Applications, Volume (30),

Pages 397-411.

TREEBANK. 1999. The Penn Treebank Project

http://www.cis.upenn.edu/~treebank/ [Online]. [Accessed 22 Nov 2016].

TRIPPE, B. & WALDT, D. 2008. Using XML and Databases

http://gilbane.com/whitepapers/EMC/ [Online]. Gilbane Group, Inc.

[Accessed 18 Feb 2017].

TROTMAN, A. & SIGURBJÖRNSSON, B. NEXI, now and next. International

Workshop of the Initiative for the Evaluation of XML Retrieval, 2004.

Springer, Pages 41-53.

VALENTINE;, C., DYKES;, L. & TITTEL, E. 2001. XML Schemas, Chapter 5:

Understanding XML Schema [online]

http://www.eyrolles.com/Chapitres/9780782140453/chap05.pdf Retreive

14 July 2016.

http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section2.html
http://www.tizag.com/xmlTutorial/xmltree.php
http://www.cis.upenn.edu/~treebank/
http://gilbane.com/whitepapers/EMC/
http://www.eyrolles.com/Chapitres/9780782140453/chap05.pdf

References

255

VARGHA, A. & DELANEY, H. D. 1998. The Kruskal-Wallis test and stochastic

homogeneity. Journal of Educational and Behavioral Statistics, Volume

(23), Pages 170-192.

VARGHA, A. & DELANEY, H. D. 2000. A critique and improvement of the CL

common language effect size statistics of McGraw and Wong. Journal of

Educational and Behavioral Statistics, Volume (25), Pages 101-132.

VLAHAVAS, I., STAMELOS, I., REFANIDIS, I. & TSOUKIÀS, A. 1999. ESSE: an

expert system for software evaluation. Knowledge-based systems,

Volume (12), Pages 183-197.

W3C. 2005. Document Object Model (DOM) http://www.w3.org/DOM/ [Online].

19 March 2015].

W3C. 2007. XML Query (XQuery) Requirements http://www.w3.org/TR/xquery-

requirements/ [Online]. W3C. [Accessed 3rd August 2016].

W3C. 2011. XQuery and XPath Full Text 1.0 http://www.w3.org/TR/2011/REC-

xpath-full-text-10-20110317/ [Online]. W3C Recommendation 17 March

2011. [Accessed 3rd August 2016].

W3C. 2014. XQuery 3.0: An XML Query Language

https://www.w3.org/TR/xquery-30/. W3C.[Accessed 4th August 2016].

W3C. 2016a. The Extensible Stylesheet Language Family (XSL)

http://www.w3.org/Style/XSL/ [Online]. [Accessed 18 Feb 2017].

W3C. 2016b. W3C (http://www.w3.org/). [Online]. W3C. [Accessed 13 July 2016].

W3SCHOOLS. 2016c. W3Scools XML attributes

http://www.w3schools.com/xml/xml_attributes.asp [Online]. W3Scools.

[Accessed 13 July 2016].

W3SCHOOLS. 2016d. W3Schools DTD

http://www.w3schools.com/xml/xml_dtd.asp [Accessed 13 July 2016.

W3SCHOOLS. 2016e. W3Schools XML Schema

http://www.w3schools.com/Xml/schema_intro.asp[Accessed 14 July

2016].

W3SCHOOLS. 2016f. W3School XML tree

http://www.w3schools.com/xml/xml_tree.asp [Accessed 15 July 2016].

W3SCHOOLS. 2016a. HTML(5) Toturial http://www.w3schools.com/html/

[Online]. W3Schools. [Accessed 13 July 2016].

W3SCHOOLS. 2016b. W3Scools XML http://www.w3schools.com/xml/ [Online].

W3Scools. [Accessed 13 July 2016].

WALDER, J., KRÁTKÝ, M. & BACA, R. Benchmarking Coding Algorithms for the

R-tree Compression. DATESO, 2009 Czech Republic. Pages 32-43.

http://www.w3.org/DOM/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/xquery-requirements/
http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
https://www.w3.org/TR/xquery-30/
http://www.w3.org/Style/XSL/
http://www.w3.org/)
http://www.w3schools.com/xml/xml_attributes.asp
http://www.w3schools.com/xml/xml_dtd.asp
http://www.w3schools.com/Xml/schema_intro.asp
http://www.w3schools.com/xml/xml_tree.asp
http://www.w3schools.com/html/
http://www.w3schools.com/xml/

References

256

WALDER, J., KRÁTKÝ, M., BAČA, R., PLATOŠ, J. & SNÁŠEL, V. 2012. Fast

decoding algorithms for variable-lengths codes. Information Sciences,

Volume (183), Pages 66-91.

WALDT, D. 2010. Six Strategies for Extending Xml Schemas in a Single

Namespace http://www.ibm.com/developerworks/xml/library/x-

xtendschema/index.html: IBM [Online]. [Accessed 14 July 2016].

WALSH, N. 2016. A Technical Introduction to XML http://www.xml.com/index.csp

[Online]. O’Reilly Media, Inc. [Accessed July 2016].

WANG, F., LI, J. & HOMAYOUNFAR, H. 2007. A space efficient XML DOM

parser. Data & Knowledge Engineering, Volume (60), Pages 185-207.

WANG, H., PARK, S., FAN, W. & YU, P. S. ViST: a dynamic index method for

querying XML data by tree structures. Proceedings of the ACM SIGMOD

international conference on Management of data, 2003 San Diego,

California. Pages 110-121.

WEGENER, J., BARESEL, A. & STHAMER, H. 2001. Evolutionary test

environment for automatic structural testing. Information and Software

Technology, Volume (43), Pages 841-854.

WEIGEL, F., SCHULZ, K. & MEUSS, H. The BIRD Numbering Scheme for XML

and Tree Databases – Deciding and Reconstructing Tree Relations Using

Efficient Arithmetic Operations. Database and XML Technologies, 2005.

Springer Berlin Heidelberg, Pages 49-67.

WEISSTEIN, E. W. 1999a. "Zeckendorf Representation." From MathWorld--A

Wolfram Web Resource.

http://mathworld.wolfram.com/ZeckendorfRepresentation.html

[07/Nov/2014].

WHATLEY , K. 2009. Xml Basics for New Users [Online]. IBM. Retrieved July

2016.

WHITMER, R. 2004. Document Object Model (DOM) Level 3 XPath

Specification. W3C, http://www. w3. org/TR/DOM-Level-3-XPath.

WILCOXON, F. 1945. Individual comparisons by ranking methods. Biometrics

bulletin, Volume (1), Pages 80-83.

WILLIAMS, H. E. & ZOBEL, J. 1999. Compressing integers for fast file access.

The Computer Journal, Volume (42), Pages 193-201.

WONG, R. K., LAM, F. & SHUI, W. M. Querying and maintaining a compact XML

storage. Proceedings of the 16th international conference on World Wide

Web, 2007 Banff, Alberta, Canada,. ACM, Pages 1073-1082.

http://www.ibm.com/developerworks/xml/library/x-xtendschema/index.html:
http://www.ibm.com/developerworks/xml/library/x-xtendschema/index.html:
http://www.xml.com/index.csp
http://mathworld.wolfram.com/ZeckendorfRepresentation.html
http://www/

References

257

WU, X., LEE, M.-L. & HSU, W. A prime number labeling scheme for dynamic

ordered XML trees. Proceedings. 20th International Conference on Data

Engineering, 2004 Boston, USA.: IEEE, Pages 66-78.

WU, X. & LIU, G. 2008. XML twig pattern matching using version tree. Data &

Knowledge Engineering, Volume (64), Pages 580-599.

XU, L., BAO, Z. & LING, T. A Dynamic Labeling Scheme Using Vectors.

Database and Expert Systems Applications, 2007 Germany. Springer

Berlin Heidelberg, Pages 130-140.

XU, L., LING, T. W., BAO, Z. & WU, H. Efficient label encoding for range-based

dynamic XML labeling schemes. the 15th International Conference on

Database Systems for Advanced Applications, 2010 Japan. Springer,

Pages 262-276.

XU, L., LING, T. W. & WU, H. 2012. Labeling dynamic xml documents: an order-

centric approach. Knowledge and Data Engineering, IEEE Transactions

on, Volume (24), Pages 100-113.

XU, L., LING, T. W., WU, H. & BAO, Z. DDE: from dewey to a fully dynamic XML

labeling scheme. Proceedings of the ACM SIGMOD International

Conference on Management of data, 2009 Providence, Rhode Island,

USA. ACM, Pages 719-730.

XU, Y. & PAPAKONSTANTINOU, Y. Efficient keyword search for smallest LCAs

in XML databases. Proceedings of the ACM SIGMOD international

conference on Management of data, 2005 USA. Pages 527-538.

YANGHUA, X., JI, H., WANYUN, C., ZHENYING, H., WEI, W. & GUODONG, F.

Branch Code: A Labeling Scheme for Efficient Query Answering on

Trees. 28th International Conference on Data Engineering (ICDE), 2012

USA. IEEE, Pages 654-665.

YAO, B. B., OZSU, M. T. & KHANDELWAL, N. XBench benchmark and

performance testing of XML DBMSs. Proceedings. 20th International

Conference on Data Engineering, 2004 USA. IEEE, Pages 621-632.

YERGEAU, F. 2003. UTF-8, a transformation format of ISO 10646,

https://tools.ietf.org/html/rfc3629 [Online]. [Accessed 24/OCT/2014.

YOUNAS, M., SHAKSHUKI, E., CHAO, K.-M., PARDEDE, E., RAHAYU, J. W. &

TANIAR, D. 2008. Web and Mobile Information Systems XML data

update management in XML-enabled database. Journal of Computer and

System Sciences, Volume (74), Pages 170-195.

YU, J. X., LUO, D., MENG, X. & LU, H. 2005. Dynamically Updating XML Data:

Numbering Scheme Revisited. World Wide Web, Volume (8), Pages 5-26.

https://tools.ietf.org/html/rfc3629

References

258

YUN, C., YIRONG, Y. & MUNTZ, R. R. HybridTreeMiner: an efficient algorithm

for mining frequent rooted trees and free trees using canonical forms.

Proceedings 16th International Conference on Scientific and Statistical

Database Management., 2004 Santorini Island Greece. Pages 11-20.

YUN, J.-H. & CHUNG, C.-W. 2008. Dynamic interval-based labeling scheme for

efficient XML query and update processing. Journal of Systems and

Software, Volume (81), Pages 56-70.

ZENG, Y., BAO, Z. & LING, T. W. Supporting range queries in XML keyword

search. Proceedings of the Joint EDBT/ICDT Workshops, 2013. ACM,

Pages 97-104.

ZHANG, B., GENG, Z. & ZHOU, A. SIMP: efficient XML structural index for

multiple query processing. The Ninth International Conference on Web-

Age Information Management, 2008 Zhangjiajie, China. IEEE, Pages

113-118.

ZHANG, C., NAUGHTON, J., DEWITT, D., LUO, Q. & LOHMAN, G. 2001. On

supporting containment queries in relational database management

systems. SIGMOD Rec., Volume (30), Pages 425-436.

ZHANG, J.-X. & SUN, X. Keyword Retrieval Technology Research of XML

Document. 3rd International Workshop on Intelligent Systems and

Applications (ISA), 2011 Wuhan, China. IEEE, Pages 1-3.

ZHANG, N., HAAS, P. J., JOSIFOVSKI, V., LOHMAN, G. M. & ZHANG, C.

Statistical learning techniques for costing XML queries. Proceedings of

the 31st international conference on Very large data bases, 2005

Trondheim, Norway. VLDB Endowment, Pages 289-300.

ZHANG, P. & DONG, G. A new labeling scheme using vectors based on polar

coordinate system for dynamic XML data. Second Pacific-Asia

Conference on Circuits, Communications and System (PACCS), 2010

Beijing, China. IEEE, Pages 167-170.

ZHOU, J., WANG, W., CHEN, Z., YU, J. X., TANG, X., LU, Y. & LI, Y. 2016. Top-

Down XML Keyword Query Processing. IEEE Transactions on

Knowledge and Data Engineering, Volume (28), Pages 1340-1353.

ZHUANG, C. & FENG, S. Full Tree-Based Encoding Technique for Dynamic

XML Labeling Schemes. Database and Expert Systems Applications,

2012a Austria. Springer, Pages 357-368.

ZHUANG, C. & FENG, S. Reuse the Deleted Labels for Vector Order-Based

Dynamic XML Labeling Schemes. In: LIDDLE, S., SCHEWE, K.-D.,

References

259

TJOA, A. & ZHOU, X., eds. Database and Expert Systems Applications,

2012b Austria. Springer Berlin Heidelberg, Pages 41-54.

ZHUANG, C., LIN, Z. & FENG, S. Insert-friendly XML containment labeling

scheme. Proceedings of the 20th ACM international conference on

Information and knowledge management, 2011 Glasgow, United

Kingdom. Pages 2449-2452.

ZISMAN, A. 2000. An overview of XML. Computing & Control Engineering

Journal, Volume (11), Pages 165-167.

ZOU, Q., LIU, S. AND CHU, W.W. Ctree: a compact tree for indexing XML data.

In Proceedings of the 6th annual ACM international workshop on Web

information and data management 2004 Washington, DC, USA. Pages

39-46.

Appendix A: Summary of Current XML Labelling Evaluation Framework

260

Appendix A: Summary of Current XML Labelling Evaluation Framework

Table A displays evaluation framework of various existing prefix-based labelling schemes presented in chapter 3, section 3.4, such that:

 Data type used for labelling XML documents

 Encoding method used to store XML labels

 Dynamic column presents how the XML labelling scheme tested handling insertions to support XML update.

 Query performance shows how the XML labelling scheme is validated in terms of supporting XML querying and structural relationships

determination.

 Datasets used by the labelling scheme to apply the experimental tests.

Table A Evaluation framework of the existing prefix-based labelling schemes

XML Labelling
Scheme

Data type
Encoding
method

Dynamic Query performance Datasets

Dewey
(Tatarinov et al.,
2002)

Integer Utf8 Static
Selected XPath/XQuery from
Shakespeare dataset translated to
SQL

Shakespeare

ORDPATHs
(O'Neil et al., 2004)

Integer
Prefix-free
Ordpaths
coding

Theoretical
Theoretically: using index and
XPath axes

NONE

Extended Dewey
(Lu et al., 2005)

Integer Utf8 Static

Selected:
Path queries from XMark and
Twig queries from DBLP and
Treebank

XMark
DBLP
Treebank

DDE/CDDE
(Xu et al., 2009)

Integer
Prefix-free
Ordpaths
coding

Uniform/skewed insertions between
two siblings: time and size

Determining relationships over first
10000 labels

XMark
NASA
Treebank

Appendix A: Summary of Current XML Labelling Evaluation Framework

261

XML Labelling
Scheme

Data type
Encoding
method

Dynamic Query performance Datasets

DFPD
(Liu et al., 2013)

Float-point
Prefix-free
Ordpaths
coding

Uniform insertions between two
siblings
Skewed insert after/before random
nodes: time and size

Determining relationships over
randomly chosen labels pairs

XMark
NASA
Treebank
Actor

DPLS
(Liu and Zhang,
2016)

Float-point
Prefix-free
Ordpaths
coding

Skewed insertions between two
siblings: time and size

Determining relationships over
randomly chosen labels pairs

XMark
NASA
Treebank
Actor

Fractional
(Mirabi et al., 2012)

Integers-
fractions

Mapping into
bit string

Small (10 X 10) skewed insertions
between two siblings, leaf and parent
nodes insertions: time and size

Selected queries

XMark
Shakespeare
TCP-H
SIGMOD

DPESP
(He, 2015)

Alphanumeric-
fractions

Not defined Theoretical: insert between two nodes Theoretical

XMark
SIGMOD
NASA
Hamlet

LSDX
(Duong and Zhang,
2005)

Alphanumeric Not defined
Inserting single nodes or sub-trees
considering different size of XMark
dataset: time only

Theoretical XMark

OrderBased
(Assefa and Ergenc,
2012)

Alphanumeric Not defined
Insert a sub-trees as child to the root:
time only

Required time to return all
descendants of the root in different
size of XMark dataset

XMark
Shakespeare

Com-D
(Duong and Zhang,
2008)

Alphanumeric Not defined Theoretical
Selected XPath queries from
Shakespeare dataset

XMark
Shakespeare

Persistent
(Khaing and Ni Lar,
2006)

Alphanumeric Not defined Theoretical Theoretical NONE

ImprovedBinary
(Li and Ling, 2005a)

Binary string
Stored as
binary bits

Focused on re-labelling required
during insertions

Selected XPath queries from
Shakespeare dataset

Shakespeare
SIGMOD, Hamlet,
NASA,

Appendix A: Summary of Current XML Labelling Evaluation Framework

262

XML Labelling
Scheme

Data type
Encoding
method

Dynamic Query performance Datasets

Actor, Movie
Bib, Club,
Company,
Department

Cohen’s
(Cohen et al., 2010)

Binary string
Stored as
binary bits

Theoretical Theoretical NONE

VLEI
(Kobayashi et al.,
2005)

Binary string
Stored as
binary bits

Theoretical Theoretical NONE

IBSL
(Hye-Kyeong and
SangKeun, 2010)

Binary string
Stored as
binary bits

Leaf nodes insertions: time and size
Selected XPath queries from
Shakespeare dataset

XMark
Shakespeare
SIGMOD, Hamlet,
NASA,
Actor,
Club, DBLP,
Department

EBSL
(O’Connor and
Roantree, 2010b)

Binary string
Stored as
binary bits

Theoretical Theoretical NONE

V-CDBS
(Li et al., 2008)

Binary string
Stored as
binary bits

Uniform/skewed insertions: time and
size increment

Selected XPath queries from
Shakespeare dataset

XMark
Shakespeare
Hamlet, DBLP
Treebank

XDAS
(Ghaleb and
Mohammed, 2013)

Binary string
Stored as
binary bits

Static
Determining AC, PC, and sibling
relations over randomly chosen
labels pairs

XMark
DBLP
Treebank

Dynamic XDAS
(Ghaleb and
Mohammed, 2015)

Binary string
Stored as
binary bits

Simple insertions in different positions
focusing on insertion time required

Theoretically as in XDAS but not
tested after insertions

XMark
DBLP
Treebank

QED
(Li and Ling, 2005b)

Quaternary
string

QED
separators

Uniform/skewed insertions between
two nodes: focusing on re-labelling

Theoretical
XMark
Shakespeare,

Appendix A: Summary of Current XML Labelling Evaluation Framework

263

XML Labelling
Scheme

Data type
Encoding
method

Dynamic Query performance Datasets

required and insertion time Hamlet,
NASA, Company,
DBLP, Treebank

SCOOTER
(O’Connor and
Roantree, 2012)

Quaternary
string

QED
separators

Skewed insertions focusing on storage
size

Theoretical
Generated by the
author

Base-9 (proposed in
this thesis)

Decimal string
Fibonacci
coding

Uniform/Skewed insertions: insertion/
decoding time and size increment
before and after decoding new labels

Determining relationships over
randomly chosen labels pairs and
selected XPath queries from
XMark

XMark
NASA
DBLP
Treebank

Appendix B: Statistical Analysis Graphs

264

Appendix B: Statistical Analysis Graphs

Appendix B.1 Labels Initialisation Statistical Results

 Initialisation time: Mann-Whitney U-test result:

 Box plot distribution of initialisation time:

Appendix B: Statistical Analysis Graphs

265

 Statistic descriptions of initialisation time

Statistics

Scheme NASA Treebank DBLP XMark

SCOOTER

N
Valid 100 100 100 100

Missing 0 0 0 0

Median 596.0000 2922.0000 4064.0000 2220.0000

Variance 201.380 7274.438 37503.812 235.818

Base9

N
Valid 100 100 100 100

Missing 0 0 0 0

Median 625.0000 2954.0000 4221.0000 2283.0000

Variance 274.263 7760.061 882.603 122.163

Appendix B: Statistical Analysis Graphs

266

 The percentage distribution of initial label sizes:

Base-9
42%SCOOTE

R
58%

Percentage Distribution of label
sizes (NASA)

Base-9
38%SCOOTE

R
62%

Percentage Distribution of label
sizes (DBLP)

Base-9
43%SCOOTER

57%

Percentage Distribution of label
sizes (Treebank)

Appendix B: Statistical Analysis Graphs

267

Appendix B.2 Handling Insertions Statistical Results

 Uniform insertion time comparisons:

0

100

200

300

400

Nasa Xmark Treebank DBLP

In
se

rt
io

n
 T

im
e

 (
m

s)
Time Median of 500 Uniform Insertions

Base-9 SCOOTER

0

100

200

300

400

500

600

700

Nasa Xmark Treebank DBLP

In
se

rt
io

n
 T

im
e

 (
m

s)

Time Median of 1,000 Uniform Insertions

Base9 SCOOTER

0

500

1000

1500

2000

2500

3000

3500

Nasa Xmark Treebank DBLP

In
se

rt
io

n
 T

im
e

 (
m

s)

Time Median of 5,000 Uniform Insertions

Base9 SCOOTER

Appendix B: Statistical Analysis Graphs

268

 Uniform insertion – label size comparisons:

0

2000

4000

6000

8000

Nasa Xmark Treebank DBLPIn
se

rt
io

n
 T

im
e

 (
m

s)
Time Median of 10,000 Uniform

Insertions

Base9 SCOOTER

0

5000

10000

15000

Nasa XMark Treebank DBLP

To
ta

l s
iz

e
 a

d
d

e
d

 (
d

ig
it

s)

Comparison of labels growth rate after 500 uniform
insertions

Base9 SCOOTER

0

5000

10000

15000

20000

25000

30000

Nasa XMark Treebank DBLP

To
ta

l s
iz

e
 a

d
d

e
d

 (
d

ig
it

s)

Comparison of labels growth rate after 1,000 uniform
insertions

Base9 SCOOTER

Appendix B: Statistical Analysis Graphs

269

 Box plot distribution of label size after uniform insertions:

0

50000

100000

150000

Nasa XMark Treebank DBLP

To
ta

l s
iz

e
 a

d
d

e
d

 (
d

ig
it

s)

Comparison of labels growth rate after 5,000 uniform
insertions

Base9 SCOOTER

0

50000

100000

150000

200000

250000

300000

Nasa XMark Treebank DBLP

To
ta

l s
iz

e
 a

d
d

e
d

 (
d

ig
it

s)

Comparison of labels growth rate after 10,000 uniform
insertions

Base9 SCOOTER

Appendix B: Statistical Analysis Graphs

270

Appendix B: Statistical Analysis Graphs

271

 Skewed insertion time comparisons:

0

200

400

600

800

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Time Median of 100X10 Skewed
Insertions

Base9 SCOOTER

0

10000

20000

30000

40000

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Time Median of 5,000X10 Skewed
Insertions

Base9 SCOOTER

Appendix B: Statistical Analysis Graphs

272

 Box plot distribution of time in skewed insertions cases with 𝒑 < 𝟎. 𝟎𝟓

 Skewed insertion - labels size comparisons:

 Box plot distribution of label size after skewed insertions:

0

10000

20000

30000

40000

Nasa Xmark Treebank DBLP

To
ta

l S
iz

e
 o

f
n

e
w

 la
b

e
ls

(K

b
yt

e
s)

Label size comparison of 10,000X10 skewed
insertions

Base9 SCOOTER

Appendix B: Statistical Analysis Graphs

273

Appendix B.3 Encoding labels

 Encoding time comparisons (initial labels):

0

200

400

600

800

1000

1200

1400

1600

SCOOTER QED Base9 Fib2 Base9 Fib3

Ti
m

e
(m

s)

Encoding Median Time (NASA)

Appendix B: Statistical Analysis Graphs

274

 Box plot distribution of initial labels’ encoding time:

0

2000

4000

6000

8000

10000

SCOOTER QED Base9 Fib2 Base9 Fib3

Ti
m

e
(m

s)
Encoding Median Time (Treebank)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SCOOTER QED Base9 Fib1 Base9 Fib2

Ti
m

e
(m

s)

Encoding Median Time (DBLP)

Appendix B: Statistical Analysis Graphs

275

 Encoding Median time comparison after insertion:

0

50000

100000

150000

200000

250000

300000

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Encoding Time 10,000X10 Insertions

QED Fibonacci-2 Fibonacci-3

Appendix B: Statistical Analysis Graphs

276

 Boxplot distribution of encoding time after insertion:

Appendix B: Statistical Analysis Graphs

277

Appendix B: Statistical Analysis Graphs

278

 Percentage difference of encoding time (after large skewed insertions)

between encoding methods

5,000X10 insertion 10,000X10 insertion

Datasets
QED vs
Fib2

QED vs
Fib3

Fib2 vs
Fib3

QED vs
Fib2

QED vs
Fib3

Fib2 vs
Fib3

NASA 99.45% 99.59% 25.20% 99.62% 99.68% 16.17%

XMark 99.10% 99.29% 21.21% 99.77% 99.82% 21.09%

Treebank 99.45% 99.53% 15.82% 99.60% 99.68% 21.45%

DBLP 97.68% 98.27% 25.20% 99.24% 99.39% 19.50%

 Encoded label size comparison after insertions:

 Boxplot distribution of encoded labels size after insertion:

0.0

20000.0

40000.0

60000.0

80000.0

100000.0

NASA Xmark Treebank DBLP

To
ta

l S
iz

e
 (

K
b

yt
e

)

Encoded labels sizes (10,000X10) insertions

SCOOTER_QED Base9_Fib2 Base9_Fib3

Appendix B: Statistical Analysis Graphs

279

Appendix B.4 Relationships determination

 Statistics description of each relationship determination time before

insertion (Treebank) – using SPSS

 Statistics description of each relationship determination time after

insertion (Treebank) – using SPSS

Appendix B: Statistical Analysis Graphs

280

 Boxplot distribution of determination time (all relations after decoding)

before and after insertion

Appendix B: Statistical Analysis Graphs

281

Appendix B: Statistical Analysis Graphs

282

 Boxplot distribution of decoding and determination time (combined)

before and after insertion:

Appendix B: Statistical Analysis Graphs

283

Appendix B.6 Query performance statistic

 Boxplot distribution query response time

Appendix B: Statistical Analysis Graphs

284

Appendix B.7 XML labels compression – prefix encodings:

statistic

 Encoding times – Dewey labels

Statistics of Dewey labels encoding times

Method NASA Treebank DBLP

Fib2

N
Valid 50 50 50

Missing 0 0 0

Mean 1168.1200 8099.2000 7323.8600

Median 1165.5000 8080.0000 7306.0000

Std. Deviation 10.12703 77.54972 71.23259

Fib3

N
Valid 50 50 50

Missing 0 0 0

Mean 785.5600 5341.4000 5753.8800

Median 782.0000 5325.5000 5732.0000

Std. Deviation 12.34233 56.80902 99.48616

Lucas

N
Valid 50 50 50

Missing 0 0 0

Mean 1190.9600 8007.8000 7926.0600

Median 1188.0000 7986.0000 7907.0000

Std. Deviation 20.41804 44.31796 71.37610

ED

N
Valid 50 50 50

Missing 0 0 0

Mean 765.5000 4923.1600 3105.8200

Median 735.0000 4907.0000 3095.0000

Std. Deviation 58.77256 58.83819 32.65696

EF2

N
Valid 50 50 50

Missing 0 0 0

Mean 879.2400 6050.2200 4164.7000

Median 876.0000 6033.0000 4147.5000

Std. Deviation 11.78300 50.53925 56.17220

EF3

N
Valid 50 50 50

Missing 0 0 0

Mean 686.2400 4432.6200 3269.0200

Median 688.0000 4423.0000 3267.0000

Std. Deviation 20.05661 48.90594 25.45223

UTF8

N
Valid 50 50 50

Missing 0 0 0

Mean 613.4600 4301.3200 3788.9000

Median 610.0000 4298.0000 3782.0000

Std. Deviation 10.69085 16.65428 18.61670

 Encoding times – SCOOTER labels

Statistics

Method NASA Treebank DBLP

Fib2

N
Valid 50 50 50

Missing 0 0 0

Mean 2086.4400 13502.0400 14549.0200

Median 2079.5000 13483.5000 14533.0000

Std. Deviation 14.95184 78.87939 63.10357

Fib3

N
Valid 50 50 50

Missing 0 0 0

Mean 1537.9400 9947.0600 12435.7400

Median 1533.0000 9938.0000 12409.5000

Appendix B: Statistical Analysis Graphs

285

Std. Deviation 12.14943 34.19775 86.98435

Lucas

N
Valid 50 50 50

Missing 0 0 0

Mean 2210.8400 13060.9200 15697.8600

Median 2158.0000 13047.0000 15688.0000

Std. Deviation 135.52714 65.18008 85.38747

ED

N
Valid 50 50 50

Missing 0 0 0

Mean 799.1600 5403.0800 3824.9600

Median 797.0000 5376.0000 3642.0000

Std. Deviation 16.79208 92.42092 372.82616

EF2

N
Valid 50 50 50

Missing 0 0 0

Mean 1080.7000 7208.0600 5132.0000

Median 1079.0000 7141.0000 5126.0000

Std. Deviation 14.86847 208.81184 24.23693

EF3

N
Valid 50 50 50

Missing 0 0 0

Mean 833.7800 4987.8200 4193.3600

Median 829.0000 4970.0000 4188.0000

Std. Deviation 10.51198 48.37215 36.39172

QED

N
Valid 50 50 50

Missing 0 0 0

Mean 526.0200 3472.3800 3182.2600

Median 526.0000 3225.0000 3144.5000

Std. Deviation 15.88413 337.48070 138.31003

 Encoding times – boxplots distribution:

Appendix B: Statistical Analysis Graphs

286

Appendix B: Statistical Analysis Graphs

287

 Decoding times – Dewey labels

Statistics

Method NASA Treebank DBLP

Fib2
N

Valid 50 50 50

Missing 0 0 0

Median 532.0000 3798.0000 2798.0000

Fib3
N

Valid 50 50 50

Missing 0 0 0

Median 672.0000 4485.0000 3298.0000

Lucas
N

Valid 50 50 50

Missing 0 0 0

Median 547.0000 3830.0000 2908.0000

ED
N

Valid 50 50 50

Missing 0 0 0

Median 1079.0000 6626.0000 6298.0000

EF2
N

Valid 50 50 50

Missing 0 0 0

Median 876.0000 5470.0000 5407.0000

EF3
N

Valid 50 50 50

Missing 0 0 0

Median 861.0000 5938.0000 4001.0000

UTF8
N

Valid 50 50 50

Missing 0 0 0

Median 532.0000 3548.0000 3439.0000

 Decoding times – SCOOTER labels

Statistics

Method NASA Treebank DBLP

Fib2
N

Valid 50 50 50

Missing 0 0 0

Median 704.0000 4699.5000 3939.0000

Fib3
N

Valid 50 50 50

Missing 0 0 0

Median 813.0000 5373.5000 4251.0000

Lucas
N

Valid 50 50 50

Missing 0 0 0

Median 704.0000 4689.0000 4126.0000

Appendix B: Statistical Analysis Graphs

288

ED
N

Valid 50 50 50

Missing 0 0 0

Median 1689.0000 10157.0000 10798.0000

EF2
N

Valid 50 50 50

Missing 0 0 0

Median 1472.5000 8126.0000 9720.0000

EF3
N

Valid 50 50 50

Missing 0 0 0

Median 1001.0000 7040.0000 4939.0000

QED
N

Valid 50 50 50

Missing 0 0 0

Median 851.5000 4730.5000 4861.0000

 Boxplot distribution of decoding time

Appendix B: Statistical Analysis Graphs

289

Appendix B: Statistical Analysis Graphs

290

 Encoding/Decoding comparisons over 23 MB datasets

0

500

1000

1500

2000

2500

3000

Ti
m

e
 (

m
s)

Encoding time - Dewey (23 MB)

Nasa Treebank DBLP

0

1000

2000

3000

4000

5000

Ti
m

e
 (

m
s)

Encoding time - SCOOTER (23 MB)

Nasa Treebank DBLP

0
1000
2000
3000
4000
5000
6000
7000
8000

Elias-delta Elias-Fib 2 Elias-Fib 3 Lucas Fib Order
2

Fib Order
3

Code size - SCOOTER (23 MB)

Nasa Treebank DBLP

Appendix B: Statistical Analysis Graphs

291

0

1000

2000

3000

4000

5000

Elias-delta Elias-Fib 2 Elias-Fib 3 Lucas Fib Order
2

Fib Order
3

Code size - Dewey (23 MB)

Nasa Treebank DBLP

0

500

1000

1500

2000

2500

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3

Ti
m

e
 (

m
s)

Dewey labels - decoding time

NASA Treebank DBLP

0

500

1000

1500

2000

2500

3000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3

Ti
m

e
 (

m
s)

SCOOTER labels - decoding time

NASA Treebank DBLP

Appendix C: Self Evaluation of the Base-9 scheme

292

Appendix C: Self Evaluation of the Base-9

scheme

Table C1: 0increase size (KB) in memory (Base-9 labels) after skewed insertion

Number of insertion Skewed 100X10 Skewed 5,000X10 Skewed 10,000X10

dataset Fib2 Fib3 Fib2 Fib3 Fib2 Fib3

NASA 10.00 9.00 496.00 453.00 1233.00 1107.00

Treebank 11.00 11.00 544.00 509.00 1273 1206

DBLP 9.00 8.00 474.00 390.00 1159 982

XMark 10.00 9.00 529.00 496.00 1252.00 1099.00

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

To
ta

l c
o

d
e

 s
iz

e
 (

M
B

)

Fibonacci 3 codes comparison before and
after uniform insertion

Nasa Treebank DBLP Xmark

0.00

5.00

10.00

15.00

20.00

To
ta

l c
o

d
e

 s
iz

e
 (

M
B

)

Fibonacci 3 codes comparison before and
after skewed insertion

Nasa Treebank DBLP Xmark

Appendix C: Self Evaluation of the Base-9 scheme

293

Table C2: increase size (KB) in memory (Base-9 labels) after uniform insertion

Number of
insertion

Uniform
500

Uniform
1,000

Uniform
5,000

Uniform
10,000

Uniform
50,000

Dataset
FIB
2

FIB
3

FIB
2

FIB
3

FIB
2

FIB
3 FIB2 FIB3 FIB2 FIB3

NASA
5.0 5.0 10.0 10.0 48.0 49.0 96.0 97.0 478.

0
483.
0

Treebank
7.0 7.0 13.0 13.0 61.0 64.0 121.

0
127.
0

602.
0

628.
0

DBLP
5.0 4.0 9.0 8.0 43.0 39.0 86.0 77.0 428.

0
381.
0

XMark
6.0 6.00 11.0 11.0 50.0 50.0 100.

0
101.
0

500.
0

500.
0

