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Abstract 

The flexibility and self-describing nature of XML has made it the most common mark-

up language used for data representation over the Web. XML data is naturally 

modelled as a tree, where the structural tree information can be encoded into labels 

via XML labelling scheme in order to permit answers to queries without the need to 

access original XML files. As the transmission of XML data over the Internet has 

become vibrant, it has also become necessary to have an XML labelling scheme that 

supports dynamic XML data. For a large-scale and frequently updated XML 

document, existing dynamic XML labelling schemes still suffer from high growth rates 

in terms of their label size, which can result in overflow problems and/or ambiguous 

data/query retrievals.  

This thesis considers the compression of XML labels. A novel XML labelling scheme, 

named “Base-9”, has been developed to generate labels that are as compact as 

possible and yet provide efficient support for queries to both static and dynamic XML 

data. A Fibonacci prefix-encoding method has been used for the first time to store 

Base-9’s XML labels in a compressed format, with the intention of minimising the 

storage space without degrading XML querying performance. The thesis also 

investigates the compression of XML labels using various existing prefix-encoding 

methods. This investigation has resulted in the proposal of a novel prefix-encoding 

method named “Elias-Fibonacci of order 3”, which has achieved the fastest encoding 

time of all prefix-encoding methods studied in this thesis, whereas Fibonacci encoding 

was found to require the minimum storage. 

Unlike current XML labelling schemes, the new Base-9 labelling scheme ensures the 

generation of short labels even after large, frequent, skewed insertions. The 

advantages of such short labels as those generated by the combination of applying 

the Base-9 scheme and the use of Fibonacci encoding in terms of storing, updating, 

retrieving and querying XML data are supported by the experimental results reported 

herein.  
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Chapter 1: Introduction 

1.1 Introduction 

Managing web-based information has become fundamental to keep up with the 

accelerating rate of expansion of the internet. As a result, the XML (eXtensible Mark-

up Language) (Bray et al., 1998) has become a standard for data representation and 

exchange on the web (W3Schools., 2016b) (Abiteboul et al., 2000) (Ahn et al., 2017a) 

(Mathis et al., 2015) (Choi et al., 2014) (Thimma et al., 2013) (Assefa and Ergenc, 

2012) (Luo et al., 2009) (He, 2015) (Tatarinov et al., 2002) (Ghaleb and Mohammed, 

2013) (Qin et al., 2017). Extensive research has been carried out to improve the 

efficiency of storing, managing, updating and querying XML data (Liu and Zhang, 

2016) (Agreste et al., 2014) (Assefa and Ergenc, 2012) (Tatarinov et al., 2001) 

(Ghaleb and Mohammed, 2013). Essential to querying XML data competently and 

rigorously is the use of an efficient XML labelling technique. This thesis investigates 

the limitations of existing XML labelling schemes and proposes a new labelling 

scheme to enhance the effectiveness of XML data management particularly in 

dynamic XML environments. 

To emphasise the need for the current research on the improvement of XML 

performance, it is important to first highlight the significance of XML datasets and XML 

labelling schemes. These issues are discussed in Sections 1.2 and 1.3, respectively. 

Section 1.4 presents the research motivation and hypothesis. The structure of the 

thesis is outlined in Section 1.5. A list of published work is presented in Section 1.6, 

before concluding the chapter with Section 1.7. 

1.2 Importance of XML  

XML (eXtensible Mark-up Language) (Bray et al., 1998) has emerged as a standard 

for data representation and exchange on the web and in a wide variety of fields, such 

as technical data, science, finance, business, healthcare, manufacture and 

astronomical data (Beech, 2016)  (Abiteboul et al., 2000) (Trippe and Waldt, 2008) 

(Chaudhri et al., 2003) (Connolly and Begg, 2005).  

Initially, the development of XML was intended to assist web designers. Nowadays, 

database developers, document managers and publishers, scientists and other 

researchers employ XML to manage their data (St.Laurent, 1998). XML data 
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management has been applied in many contexts, from bioinformatics, geographical 

and engineering data to customer services and cash flow progress through distributed 

systems and inductive databases (Chaudhri et al., 2003). This is because XML data is 

self-describing. It simplifies the publication of electronic data by providing a simple 

format for data that is both human and machine understandable and legible (Khare 

and Rifkin, 1997) (Abiteboul et al., 2000) (Lloyd et al., 2004).  

The dramatic increase in the popularity of XML is driven by its extensible, flexible, and 

standardised properties that makes it possible to address, and overcome, the 

restrictions of other mark-up languages such as HTML (Sonawane and Rao, 2015) 

(Chaudhri et al., 2003) (Seligman and Roenthal, 2001) (Barillot and Achard, 2000). 

XML offers developers the ability to set standards by defining the content of a 

document separately from its formatting, which makes it easy to reuse and share 

information in other applications and in different environments/organisations 

(St.Laurent, 1998) (W3C, 2016b). In general, there are many benefits to using XML 

(Mohr et al., 2000) (Trippe and Waldt, 2008) (Seligman and Roenthal, 2001) (Tidwell, 

2002) (St.Laurent, 1998), including: 

 Simplicity: the basic syntax of XML provides a friendly environment for 

programmers, database’ developers and document authors. The information 

encoded within XML data is easy to read for both humans and machines. 

 Extensibility: XML allows for the creation of extensible tag sets that can be 

employed in multiple applications. It also permits the fundamental XML set of 

capabilities to be extended by any standards to add styles, linking, and/or 

referencing ability. 

 Openness:  XML standards are open access and freely available on the web. 

 Individuality: within XML, content is separated from presentation as XML 

tags describe content only. The data format can be handled by XSL 

stylesheets (W3C, 2016a). This supports multiple views of the same content, 

as well allowing the look of a document to be changed without affecting its 

content.  

 Interoperability: as XML supports multilingual documents and Unicode, it can 

be interpreted though a wide range of tools and used on various platforms. 

 Ability to embed multiple data types:  XML data can comprise any possible 

type of data from multimedia data (e.g. image, video, and sound) to active 
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components (e.g., Java applets) and complex information (e.g., biological 

systems and living organisms (Chaudhri et al., 2003)).  

1.3 Importance of XML Labelling Schemes 

The increasing significance of XML data management has intensified research work 

focusing on XML storage, retrieval and querying (Liu and Zhang, 2016) (Agreste et al., 

2014) (Assefa and Ergenc, 2012). To query XML data competently and accurately, 

several XML labelling schemes have recently been introduced.  

Usually, the tree representation of XML documents and queries is used to process 

XML data implicitly or explicitly (Tahraoui et al., 2013) (Bressan et al., 2001) 

(Alghamdi et al., 2014) (Shnaiderman and Shmueli, 2015). XML labelling schemes 

basically facilitate XML query processing by assigning a unique label to identify XML 

tree nodes, as based on the structure of the XML document (O'Connor and Roantree, 

2010a) (Li et al., 2008) (Ghaleb and Mohammed, 2015) (He, 2015) (Wang et al., 

2003). The labelling approach is implemented such that the structural relationships 

between nodes can be efficiently determined by comparing their labels so that XML 

queries can be processed without the need to access the original data (Liu et al., 

2013) (Zhuang et al., 2011) (Xu et al., 2009) (Fraigniaud and Korman, 2016). Hence, 

XML labelling scheme provides more flexibility and require less storage space in 

comparison to other XML querying techniques (Haw and Lee, 2011) (Li et al., 2006b) 

(Khaing and Ni Lar, 2006) (Duong and Zhang, 2005). Moreover, the XML data 

indexing process used for querying, keyword searching, and/or data retrieval 

purposes relies on XML labelling schemes (Johnson et al., 2012) (Lu et al., 2011b).  

As XML warehouses over the web become more extensive, XML labelling schemes 

need to be dynamic such that an XML update can be permitted without causing re-

labelling of existing nodes (Liu and Zhang, 2016) (Lizhen and Xiaofeng, 2013) (Härder 

et al., 2007). Labelling schemes should also generate compact labels, i.e., as small as 

possible. They should efficiently support all kinds of structural relationship queries. 

The identification of any structural relationship between any pair of nodes should be 

easy to establish through the direct examination of their labels. 

1.4 Research Motivation and Hypothesis 

Due to its flexibility and simplicity, the growing popularity of XML as a standard for 

data exchange has led to the extensive use of XML data updates (Liu and Zhang, 

2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001). Thus, it has become 
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necessary for an XML labelling scheme to support dynamic XML data (O'Connor and 

Roantree, 2010a) (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 

2005).  

Many researchers have studied dynamic XML labelling schemes (Xu et al., 2009) (Liu 

et al., 2014) (Duong and Zhang, 2008) (He, 2015) (Ghaleb and Mohammed, 2015) 

(Fraigniaud and Korman, 2016) (Subramaniam et al., 2014a) (Ren et al., 2006) (Liu 

and Zhang, 2016), but each of the existing schemes is limited in one way or another. 

For the most part, it is the update of XML data that remains a weakness in most of 

these XML labelling schemes due to their large label sizes (Liu and Zhang, 2016) 

(Subramaniam and Haw, 2014b) (Yu et al., 2005). As can be seen from the literature 

review presented in Chapter 3, almost all of the existing labelling schemes have 

ignored the issue of size when generating XML labels. Consequently, current XML 

labelling schemes still suffer from huge label sizes that can result in overflow 

problems in the case of frequent insertions. This is ultimately because of the 

limitations in the design of labelling algorithms when handling insertions (see Chapter 

3) as well as how the labels are encoded within main memory (discussed in Chapter 

4). 

The current enormous growth in data has inspired the need for compression (Lohrey 

et al., 2012). Motivated by this, this thesis aims to improve the efficiency of XML 

labelling by introducing a new XML labelling scheme which will focus on the size of 

XML labels. These labels will be stored in compressed form using a prefix Fibonacci 

encoding method. As Fibonacci encoding allows for fast decoding and short labels, 

the efficiency of XML query processing can be dramatically increased.   

In line with the above research motivation, the research hypothesis can be stated as 

follows:  

“Providing compact XML labels based on lexicographical order using decimal 

strings may facilitate query performance and permit multiple insertions without 

causing any storage overhead. Storing such labels using a Fibonacci prefix-

encoding techniques may reduce the storage capacity required and speed up 

the determination of structural relationships.” 

1.5 Thesis Structure 

This section outlines the structure of the thesis. The discussion in this thesis is divided 

into three main parts. The first part, Chapters 1 to 4, introduces the research and 
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presents the related literature from which the research hypothesis emerged. The 

second part, Chapters 5 and 6, identifies the research problems and objectives and 

details the main concepts of this research work in both a theoretical and practical 

sense. The last part covers the experimental results, evaluation, and the thesis 

concludes in Chapters 7 to 9. The following gives a brief description of each chapter:   

Chapter 1: Introduction: this chapter introduces the current research work, 

motivation and hypothesis, and the thesis structure.  

Chapter 2: Background on XML data: this chapter provides a general overview of 

XML data and its basic concepts and related techniques, such as XML syntax, 

structures, parsers, and querying approaches. 

Chapter 3: Literature on XML labelling schemes: this chapter illustrates the 

concepts, mechanisms, and the strengths and weaknesses of existing XML labelling 

schemes.  

Chapter 4: Literature on encoding methods: this chapter presents the state-of-the-

art in existing encoding techniques used to store XML labels. The chapter also 

discusses several available prefix-encoding methods that can be used to compress 

large XML labels.  

Chapter 5: Base-9 labelling scheme for dynamic XML data: this chapter identifies 

the research problems and goals based on the literature presented in the previous 

three chapters. It introduces the research hypothesis as a possible solution. The 

chapter also describes the underlying principles, structure, and labelling algorithms of 

the proposed scheme (named “Base-9”) and describes how Fibonacci encoding is 

employed to compress/decompress and store the Base-9 XML labels generated.      

Chapter 6: Experimental design and implementation: this chapter explains the 

design and implementation of the Base-9 scheme based on its description in Chapter 

5. To justify the effectiveness of the scheme, seven different experiments are 

described in this chapter. The experimental objectives, setup, datasets used are also 

described.    

Chapter 7: Experimental results and statistical analysis: this chapter shows the 

results of the experiments described in Chapter 6. The results are analysed 

statistically and presented graphically to assess the Base-9 scheme’s performance, 

reliability and scalability.  
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Chapter 8: Evaluation and further discussion: this chapter evaluates the reliability 

of the experimental designs and results. It provides further discussion to evaluate the 

proposed scheme’s properties as a dynamic XML labelling scheme based on the 

results obtained. The chapter also highlights the main findings and limitations of this 

research.  

Chapter 9: Conclusion and future work: this chapter summarises the thesis. It 

highlights the main findings of this research, its contributions to the literature, and 

suggestions for future work. 

1.6 Publication 

Some of the contents of this thesis were presented in a conference and published as 

follows: 

AL-ZADJALI, H. & NORTH, S. 2016, “XML Labels Compression using Prefix-

encodings”.  In proceedings of the 12th International Conference on Web Information 

Systems and Technologies, (WEBIST2016), ISBN 978-989-758-186-1, volume 1, 

pages 69-75, Rome, Italy. 69-75. 

1.7 Conclusion 

This chapter has given an introduction to the thesis, including a short overview of XML 

as the main scope of the research. The motivation and hypothesis underlying this 

thesis are also stated in this chapter. In general, this thesis will focus on improving the 

efficiency of XML labelling in dynamic environments by providing compressed XML 

labels. Finally, the structure of the thesis was presented. 
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Chapter 2: Background on XML Data 

2.1  Introduction 

The importance of managing web-based information has become essential to keep up 

with the accelerating rate of expansion of the internet. This has resulted in the 

development of XML (eXtensible Mark-up Language) (Bray et al., 1998) as a standard 

for data representation and exchange on the Web (W3Schools., 2016b) (Tatarinov et 

al., 2002) (Ghaleb and Mohammed, 2013) (Qin et al., 2017). Consequently, there has 

been extensive research into improving the efficiency of storing, managing, updating 

and querying XML data (Liu and Zhang, 2016) (Agreste et al., 2014) (Assefa and 

Ergenc, 2012) (Tatarinov et al., 2001) (Ghaleb and Mohammed, 2013).  

Matching structural queries within XML documents is the core of the information 

retrieval function for XML data. In many XML database management systems, an 

XML labelling scheme has been recommended for rapid query processing of massive 

XML documents (Ahn et al., 2017a) (Zhuang and Feng, 2012a) (Xu et al., 2009) (Li 

and Ling, 2005a). This is because an XML document is naturally modelled as a tree, 

and labelling schemes encode the structural tree information so as to permit answers 

to some queries without having to access the original XML file (Lin et al., 2013) 

(Zhuang et al., 2011) (Hye-Kyeong and SangKeun, 2010) (Yu et al., 2005) (Ghaleb 

and Mohammed, 2013) (Zhou et al., 2016).  

This chapter provides a background to XML starting with a general overview of XML in 

Section 2.2, followed by a general review of XML structure and storage in Section 2.3. 

A description of XML syntax as a mark-up language is provided in Section 2.4, 

including its main components:- of XML elements and attributes. Since much of 

today’s Web content is written in XML, either as well-formed or valid XML documents 

(Grijzenhout and Marx, 2013), this section also differentiates between the two types of 

XML data via a discussion of DTD and XML schema. Section 2.5 then presents the 

most common XML parser in the literature used to determine the validity of an XML 

document. 

The usual representation of an XML document as a tree structure is explained in 

Section 2.6, along with the main structural relationships amongst XML elements, i.e., 

parent-child, ancestor-descendent, siblings, LCA, and document order. Determining 
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such structural relationships between nodes plays a fundamental role in querying XML 

(see Section 2.7). Several works have investigated means of improving XML query 

efficiency, either by using XML query languages as illustrated in Section 2.8, or by 

considering the hierarchical structure of XML data, such as in structural indexing 

(Section 2.9) and XML labelling schemes (Chapter 3). Finally, the chapter is 

summarised in Section 2.10. 

2.2 XML: An Overview 

In today’s world, almost all information is moved online, mostly in unstructured text 

data format (Bertino et al., 2000) (Subramaniam et al., 2014a) (Sheng et al., 2011). As 

the size and complexity of web sites grows, the need to retrieve, display, manipulate, 

transfer and exchange information has similarly increased (Zisman, 2000) (Lu, 2013) 

(Subramaniam et al., 2014a). To accomplish this, HTML (Hyper Text Mark-up 

Language) (Graham, 1995) (W3Schools., 2016a) and XML have become standard 

representations of data delivered over the Web.   

While HTML provides a standard to create, display and access web pages, it is 

merely a visual layer, and does not provide any mechanism for describing content, or 

managing remote data. Furthermore, there is no information in an HTML tag that 

enables other systems to recognise the structure and content of the data (Bertino et 

al., 2000) (Ciancarini et al., 1998) (Potok et al., 2002) (Reis et al., 2004) (Sonawane 

and Rao, 2015). To address this weaknesses in HTML, XML was developed in 1996 

by the XML working group (previously known as SGML1 Editorial Review Board), 

which was formed through the sponsorship of the World Wide Web Consortium, W3C 

(W3C, 2016b).  

XML is a self-describing language that separates content from formatting and 

describes the structure of the text within a document by the use of start and end tags. 

It also permits users to design their own tags, which makes it highly flexible (Tidwell, 

2002). Because of its simplicity, flexibility and scalability, XML has become a 

commonly used technology for information representation, data transformation, data 

exchange, and retrieval over the Web (He, 2015) (Subramaniam and Haw, 2014b) 

(Klaib and Lu, 2014) (Xu et al., 2012) (Haw and Lee, 2011) (Xu et al., 2009) (Li et al., 

2008). 
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2.3 XML Structure and Storage  

XML structure may vary between a flat, regular, data-centric structure to a more 

complicated, irregular, document-centric structure (Fuhr et al., 2001) (Haw and Lee, 

2011) (Chiew et al., 2014b) (Nambiar et al., 2002). This comprehensive range of 

structural variety makes XML the most commonly used representation for all types of 

data (Haw and Lee, 2011). There are two main approaches to storing XML data: 

either as an XML Enabled Database (XED) or as a Native XML Database (NXD). A 

hybrid has also been proposed (Hall and Strömbäck, 2010) (Haw and Lee, 2011) that 

stores XML data using a mapping-to-relations technique, as in XED, that allows for 

the storage of XML sub-trees in its native NXD format.  

 

An XML-enabled database (XED): is normally used to store data-centric documents 

that involve well-structured information, and uses XML to transfer data into a 

traditional relational database (Nambiar et al., 2002)  (Florescu and Kossmann, 1999), 

Object-Oriented database (Banerjee et al., 2000) or Object-Relational database 

(Klettke and Meyer, 2000). This type of database includes extensions for transferring 

data between XML documents and the data structures of their underlying relational 

database storage (Younas et al., 2008). Therefore, in XED querying an XML 

document relies on the query engine within the underlying storage.  

A native XML database (NXD): is often used to store document-centric XML (i.e., a 

semi-structured XML document as a whole rather than separating out the data within) 

(Meier, 2002). Since data in NXD are stored and retrieved in their original hierarchical 

structure, the research study in this thesis will focus on facilitating an XML query 

process that relies on a native XML database only (the terms XML and native XML 

are used interchangeably in this thesis).  

Data is stored for the purpose of being retrieved, and as the amount of data has 

expanded in the Internet, helping users to find the required data quickly from a large-

scale XML document has become a particularly significant issue. To establish a clear 

understanding of the XML querying process, a description of XML syntax is given in 

the following section.  
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2.4 XML Basic Syntax 

An XML database can be defined as an application profile that describes a class of 

data objects (named XML documents) and how computer programs can process 

them, such as with the behaviour of the XML processor (Microsoft, 2016). An XML 

document is a case-sensitive text file with a nested logical and physical structure 

(Bray et al., 2008) (Kurtev, 2001) (Sall, 2002) (Bray et al., 1998) (Bertino et al., 2000) 

(Qadah, 2016). Its physical structure consists of storage units called “entities”; each 

entity may itself refer to other entities within an XML document. Every XML document 

must start with a document entity, the “root”, that serves as the main storage unit 

(Sall, 2002) (Bray et al., 2008). The logical structure of an XML document comprises 

declarations, comments, elements, and attributes, collectively known as the mark-up. 

Figure 2.1 shows an XML sample of a “School” database.  

 

 

Figure 2.1 An XML sample - (School) example 
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2.4.1 XML Elements 

XML represents data in a textual format in which its basic components are XML 

elements. Each element is a piece of text constrained by matching tags with case-

sensitive names, such as <Tutor> (as a start-tag) and </Tutor> (an-end-tag) in Figure 

2.1 (W3Schools., 2016b) (Abiteboul et al., 2000) (Bray et al., 2008) (Lee and Chu, 

2001) (Luo, 2007). The start-tag and end-tag indicate the start and end of an element 

detail. An element can be empty (e.g., <Books> and <Library > in Figure 2.1) or may 

consist of text, other element(s) called sub-element(s) (e.g., <Outline> in Figure 2.1), 

or both. A root element represents the initial element in an XML document within 

which all other elements are nested (e.g., <School> </School> in Figure 2.1). As XML 

supports semi-structured data, repeated elements with the same tag names can be 

used to represent collections (e.g., element <Tutor> in Figure 2.1). Generally, the 

element tags must be balanced and nested properly in an XML document such that 

their closing tags should appear in a reverse order consistent with their opening tags 

(W3Schools., 2016b) (Abiteboul et al., 2000). Besides content, elements may have 

zero or more attributes that give additional specifications to the elements (Kurtev, 

2001) (Bray et al., 2008) (Bray et al., 1998). 

2.4.2 XML Attributes 

An XML attribute consists of a name and a unique key value that is embedded within 

the start-tag of an element so as to provide extra information about that element 

(W3Schools, 2016c) (Evjen. B., 2007) (Tidwell, 2002) (Kurtev, 2001) (Zisman, 2000). 

For instance, the element <Books> in Figure 2.1 is composed of three attributes: 

“Year”, with value ‘2011’, “Name” with value ‘Chemicals V.4’, and “Pages” with value 

’21 – 37’. An attribute value is of “string” type and must be delimited by single or 

double quotes (see Figure 2.1). Moreover, attributes can provide significant 

information for data management, for example by identifying each “Tutor” in Figure 

2.1 by their ID numbers. 

Unlike XML elements, each XML attribute value must be distinctive and cannot be 

repeated. Additionally, whilst elements can contain sub-elements, attributes cannot be 

expanded. Overall, there is a general preference for the use of elements over 

attributes to represent and maintain XML data (W3Schools, 2016c) (Whatley 2009) 

(Abiteboul et al., 2003) (Ray, 2003) (Tidwell, 2002). When an XML document follows 

the essential XML syntax that forms a tree hierarchy, it is referred to as being “well-

formed” (Abiteboul et al., 2000) (Kurtev, 2001) (Bertino et al., 2000). A well-formed 
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document is limited in that it can only be parsed as a labelled tree (Abiteboul et al., 

2000) (Bertino et al., 2000) (Bray et al., 2008) (Goldman et al., 1999), but no 

restriction is otherwise placed on its structure. However, if the semantics of an XML 

document have to be considered as well as the syntax, then some degree of 

restriction is necessary. A valid XML document is constrained as a well-formed 

document by an associated Document Type Definition (DTD) (Abiteboul et al., 2000) 

(Tidwell, 2002) (Walsh, 2016) (Bertino et al., 2000) (Jones et al., 2008). 

2.4.3 XML Document Type Definition (DTD) 

A Document Type Definition (DTD) comprises a schema for XML documents that 

encompasses a set of rules used to control the structure of XML documents 

(W3Schools, 2016d) (Lee and Chu, 2001) (Salminen and Tompa, 2012) (Mani and 

Sundaresan, 2003). It provides a set of element names used to define an XML 

document, along with their attribute types, if any. It also describes how these elements 

are related and the frequency of their occurrences within the XML document, as well 

as the order of their appearance (Lee and Chu, 2000) (W3Schools, 2016d) (Abiteboul 

et al., 2000). In other words, a DTD is a context-free grammar that underlies XML 

documentation, and can be stored either as an external file or internally within the 

XML document itself (Abiteboul et al., 2000) (Harold et al., 2004) (Lee and Chu, 2000) 

(Ray, 2003) (Zisman, 2000). An XML document is valid if it conforms to the rules 

stated in the DTD, such that the element sequences and nesting obeys the DTD 

specification, and required attributes are provided with the correct value types. Figure 

2.2 shows an example of a DTD specification for the XML ‘School’ sample shown in 

Figure 2.1 
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Despite the ability of the DTD to provide considerable amount of control over XML 

structure, particularly in terms of vocabulary, it is limited (Shirrell, 2016) (Brandes et 

al., 2013). For instance, listing a set of acceptable values for the content of an 

element, and detailing the values of data types other than ‘string’ data is impossible. 

In order to address the shortcomings of DTDs, the W3C (W3C, 2016b) has 

recommended the implementation of the XML schema to deal with more complicated 

configurations only (Shirrell, 2016) (Brandes et al., 2013) (Roy and Ramanujan, 2001) 

(Bex et al., 2004). 

2.4.4 XML Schema 

An XML schema, unlike DTD, allows users to enforce proper syntax and semantics 

within XML documents rather than treating XML data as just plain text (W3C, 2016b) 

(W3Schools, 2016e) (Roy and Ramanujan, 2001). The W3C specification of the XML 

schema provides the capability to declare new data types to define elements values, 

as well as containing other built-in data types such as string, integer, Boolean, date 

and time. Moreover, an XML schema is essentially represented as an XML document 

in which the inherent elements and attributes are used to state the schema 

configurations (Abiteboul et al., 2000) (Harold et al., 2004) (Lee and Chu, 2000) 

(W3Schools, 2016e) (Radiya, 2000) (Waldt, 2010) - see Figure 2.3. An XML schema 

is more expressive than a DTD in term of supporting datatype definitions and values’ 

domains, and it increases the flexibility of XML whilst overcoming the weaknesses of 

DTDs (Valentine; et al., 2001) (Roy and Ramanujan, 2001) (Bex et al., 2004).  

 

Figure 2.2 DTD for XML ‘School’ sample in Figure 2.1 
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2.5 XML Parsers 

XML parsers can detect the validity and well-formedness of an XML document by 

reading its components via Application Programming Interfaces (APIs) (Su Cheng and 

Krishna Rao, 2007) (Haw and Rao, 2007) (Takase et al., 2005). An XML parser 

basically converts the underlying plain textual format of an XML document into its 

logical data representation by treating the XML document as an XML tree or stream 

(Haw and Rao, 2007) (Rangan and Jayanthi, 2011) (Wang et al., 2007) (Nicola and 

John, 2003). For the tree-based approach (e.g. DOM, JDOM, ElectricXML, and 

DOM4j XML parser), it loads the whole document into memory as a collection of 

objects representing the original document in tree structure. In terms of time and 

memory the loading process is inefficient, and as a result this approach  is unsuitable 

for large-scale XML data since it can easily go beyond reasonable memory capacities 

(Kiselyov, 2002) (Tong et al., 2006) (Lam et al., 2008).  

The stream-based approach (also called an event-based parser; such as SAX, StAX 

and XMLPull), reads the entirety of the XML document and applies user-defined 

actions whenever a new XML component appears (Lu et al., 2006) (Nicola and John, 

 

Figure 2.3 XML Schema for 'School' example 
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2003). The actions can merge the received elements and XML data into custom data 

structures, including the XML tree, as in DOM (Kiselyov, 2002).  

Of the above the two mostly commonly used XML parsers are DOM and SAX (Nicola 

and John, 2003) (Kiselyov, 2002) (Haw and Rao, 2007) (Lu et al., 2006), which are 

discussed in the following sections.  

2.5.1 Document Object Model 

Document Object Model (DOM) (W3C, 2005) (Wang et al., 2007) (Mani and 

Sundaresan, 2003) is a language and platform-independent definition purposed by 

W3C as a component of the Java API designed for XML processing (Oracle, 2014). 

Based on object technology, the DOM parser applies a tree-based approach that 

constructs the “Document Object Model” of an entire XML document as a structured 

tree (Haw and Rao, 2007) (Kiselyov, 2002) (Tong et al., 2006) (Lam et al., 2008). In 

the DOM tree model, each component is an object that contains values (textual 

content) and has its own methods to facilitate data access and modification.  

Using DOM requires the entire XML tree to be built within main memory. This provides 

better performance for XML operations in terms of data access and navigation, data 

modification, and enabling XPath queries (Whitmer, 2004) (Wang et al., 2007). 

However, constructing an entire XML tree in memory is not suitable for large-scale 

XML documents, because the DOM tree could be up to 10 times larger than the 

original  XML document (Wang et al., 2007) (Kiselyov, 2002).  

2.5.2 Simple API for XML 

The Simple API for XML (SAX) parser (Megginson, 2000) (Nicola and John, 2003) 

(Pan et al., 2008) (Matsuda, 2007) is a stream-based parser that invokes parsing 

events (such as the start and end of documents/elements) using call-backs. Unlike the 

DOM tree parser, SAX interacts with an application during the parsing process and 

does not store any information about XML components. This enables the XML parser 

to parse even large XML documents within a reasonable timeframe (Haw and Rao, 

2007) (Takase et al., 2005)  (Nicola and John, 2003) (Pan et al., 2008). 

The SAX parser applies a depth-first traversal algorithm (Tahraoui et al., 2013) in 

which event-driven methods are triggered by the occurrence of an element’s opening 

or closing tags, correlated attributes of an element, or comments and processing 

instructions. For instance, when an opening-tag is encountered, the start-element 
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event handler is triggered releasing the data from the previous element. Although this 

saves memory consumption, it makes it difficult to distinguish the structural 

relationships between nodes. In order to identify the logical structural relationships, 

the use of memory stacks (where the maximum size equals the maximum depth of an 

XML document) is required. Whenever a start-element event is invoked, the parsed 

element is stacked along with its associated nodes (siblings/children). When a closing 

tag is encountered, the element is removed from the stack(s). Therefore, controlling 

structural relationships in SAX is more complicated than in comparison to DOM. 

2.6 XML Tree Structure 

An important feature of XML is that the document itself describes the structure of the 

XML data, usually represented as a tree graph (W3Schools, 2016f) (Brandes et al., 

2013) (Hachicha and Darmont, 2013) (Abiteboul et al., 2000) (Al-Khalifa et al., 2002) 

(Harold et al., 2004) (Ray, 2003). The terminology comes partly from a genealogical 

tree, where the root of the tree is some early ancestor, and the latest descendants 

located at the bottom of the tree. In other words, an XML document can be regarded 

as a tree whose nodes are the document items (elements, attributes, and/or values) 

and whose edges form the structural relationships between the nodes (Brandes et al., 

2013) (Na and Guoqing, 2010) (Li et al., 2006a). The XML model tree can be either 

unordered (i.e. the order of the elements within the XML document is not important) or 

ordered (Deutsch et al., 1999) (Lohrey et al., 2015). Figure 2.4a and 2.4b demonstrate 

the XML tree representation of the XML ‘School’ example shown in Figure 2.1 

(through only the first eight lines for simplicity) as unordered and ordered trees, 

respectively, where the oval-shaped boxes represent elements and the rectangular 

boxes represent attributes. Since document order is essential for querying XML 

(Tahraoui et al., 2013) (Hachicha and Darmont, 2013), here only the XML document 

representation as a rooted, ordered XML tree is considered. 
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From the ordered XML tree shown in Figure 2.4b, it can be seen that the root “School” 

is the ancestor of the other tree nodes. The elements “Name”, “Library”, and “Class” 

have a sibling relationship and are all children of the element “School”. Considering a 

left-to-right order among siblings in the XML tree node, since the node “Name” 

appears before “Library”, it is known as the pre-order sibling to “Library” and vice 

versa. That is, “Library” is a post-order sibling to “Name”. This family relationship 

representation between XML tree nodes makes it easier to understand an XML 

document (Teorey et al., 2011) (Tizag, 2003) (Bille, 2003). To expedite XML query 

processing, it is necessary to provide methods for determining the structural 

relationships between nodes (Li et al., 2006a) (Al-Khalifa et al., 2002) (Li and Moon, 

2001) (Subramaniam et al., 2014a) (Sheng et al., 2011). The most common structural 

relationship queries among nodes are:- those of Parent-Child, Ancestor-Descendant, 

Siblings, Lowest Common Ancestor (LCA), and Document Order (Lizhen and 

Xiaofeng, 2013) (Xu et al., 2009) (Liu and Zhang, 2016). These relationships are 

discussed below based on the following definition of a rooted ordered XML tree and 

Figure 2.5, which represents the XML tree of the XML “School” sample in Figure 2.1. 

 
Figure 2.4a Unordered XML model tree of 

Figure 2.1 
 

 
Figure 2.4b Ordered XML model tree of 

Figure 2.1 
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2.6.1 Rooted Ordered XML Trees 

XML documents are often illustrated graphically as rooted trees where vertices 

represent nodes and edges represent element, sub-element, element-value, and 

attribute-value relationships (Bille, 2003) (Chi et al., 2003) (Reis et al., 2004) (Yun et 

al., 2004) (Bousquet-Mélou et al., 2015). A rooted tree has one vertex singled out as 

the root, from which the rest of the vertices descend. A rooted tree is ordered if the set 

of children associated with each vertex in the tree has a predefined left-to-right order 

that reflects the appearance of their tags within an XML document. In other words, a 

rooted ordered tree can be defined as follows (Dalamagas et al., 2006) (Tahraoui et 

al., 2013): 

A rooted ordered tree 𝑇 = (𝑉, 𝐸, 𝑟) consists of a set of edges, 𝐸, a finite set of 𝑘 

vertices (nodes) 𝑉 =  {𝑣1, … , 𝑣𝑘}, and 𝑟 ∈ 𝑉 is a distinguished vertex called the root, 

from which the rest of vertices descend. Each edge 𝑒𝑢→𝑣 ∈ 𝐸 indicates an element-

subelement or an element-attribute relationship between nodes 𝑢 and 𝑣, where 

(𝑢, 𝑣) ∈ 𝑉 (Luo, 2007) (Kaushik et al., 2002a) (Han et al., 2006). The level of a node 

𝑣 (𝑣 ∈ 𝑉), denoted as 𝑙(𝑣), can be defined as the number of edges along the unique 

path between the root  𝑟 and the node 𝑣. The depth , 𝐷, of a rooted tree, 𝑇, is the 

maximum level of any node in the tree. A rooted tree, 𝑇, is ordered if the children of 

 

Figure 2.5 XML tree representation of the "School" example in Figure 2.1 
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each node are ordered (Chi et al., 2003) (Bille, 2003) (Dalamagas et al., 2006) 

(Tahraoui et al., 2013). According to the definition of  𝑇, given two nodes 𝑢 and 𝑣 in a 

rooted ordered tree, 𝑇, with 𝑙(𝑢) < 𝑙(𝑣) and 𝑢 is on the path from the root to 𝑣, then 𝑣 

is a descendent of 𝑢 and 𝑢 is an ancestor of 𝑣 (Yun et al., 2004). If 𝑢 and 𝑣 are 

adjacent nodes; i.e., there is a direct edge 𝑒𝑢→𝑣 ∈ 𝐸 from node 𝑢 to node 𝑣 and 𝑙(𝑣) =

𝑙(𝑢) + 1, then 𝑢 is called the parent of 𝑣, and 𝑣 is a child of 𝑢 (Lin et al., 2013) (Xu et 

al., 2007). If node 𝑣 can be reached from node 𝑢 through many directed edges where 

𝑙(𝑣) > 𝑙(𝑢) + 1, then 𝑢 is an ancestor of 𝑣 (Luo, 2007). A set of nodes 𝑆 =

{𝑠1, 𝑠2, … , 𝑠𝑛} that share the same parent 𝑝 are called siblings, where 𝑠𝑖 is a pre-sibling 

to 𝑠𝑖+1, for 1 < 𝑖 < 𝑛 (Yanghua et al., 2012). A node 𝑥 without children is called a leaf 

node, and other nodes are known as “internal nodes” (Tahraoui et al., 2013) (Mani 

and Sundaresan, 2003). For simplicity rooted ordered trees are referred to as trees or 

XML trees in this thesis.  An example of such a tree can be seen in Figure 2.5.  

2.6.2 Structural Relationships between XML Nodes  

Parent-child relationship: can be identified between a node and any node 

immediately descending from it. A node 𝑢 is a parent of node 𝑣 if 𝑢 and v are directly 

linked in an XML tree and 𝑢 appears exactly one level above 𝑣. In Figure 2.5, for 

instance, the node “Tutor” is a parent of node “Outline”, which itself a parent of node 

“Exam”. 

Ancestor-descendant relationship: A node 𝑢 is an ancestor of a node 𝑣, and 𝑣 is a 

descendent of 𝑢, if there is a linked path of nodes 𝑛1, … , 𝑛𝑦 from the root to node 𝑣 

such that node 𝑢 = 𝑛𝑥  , and 𝑣 = 𝑛𝑦 , where 𝑥 < 𝑦. Thus, 𝑢 appears on the path from 𝑟 

to 𝑣 but 𝑣 ≠ 𝑢. That is, node 𝑢 is the root of a subtree containing node 𝑣. Referring to 

Figure 2.5, the node ““Class” is an ancestor of the nodes “Topic” and “Area”, and all 

the nodes of the tree are descendants of the root node “School”. 

Lowest Common Ancestor (LCA): the lowest common ancestor node, 𝐿, exists 

between two nodes 𝑢 and 𝑣 if 𝐿 is the deepest node in an XML tree, 𝑇, that has both 𝑢 

and 𝑣  as descendants (Na and Guoqing, 2010). In other words, the LCA 𝐿 is the 

shared ancestor of nodes 𝑢 and 𝑣  located farthest from the root in 𝑇. For example, in 

Figure 2.5, the LCA for both nodes “Area= science” and “Topic=chemical” is node 

“Tutor of ID=13”; even though nodes “Class” and “School” are also ancestors to both 

nodes. 
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Sibling relationship: nodes 𝑢 and 𝑣 are siblings if both nodes share the same parent 

and are at the same level in an XML tree, 𝑇. If 𝑢 appears to the left of 𝑣 in an ordered 

XML tree 𝑇, then 𝑢 is called a pre-order sibling to node 𝑣, whereas 𝑣 is a post-order 

sibling to node 𝑢. In Figure 2.5, the nodes “Name”, “Library”, and “Class” are siblings 

because they all share the same parent “School”, where “Library” is a pre-order sibling 

to “Class” and a post-order sibling to “Name”.  

Document order:  is preserved in the order of the elements as they appear in an 

XML tree, where the hierarchical structure is considered to be from top to bottom and 

the siblings from left to right (i.e., corresponding to depth-first left-most) (Härder et al., 

2007). For instance, the nodes in the “School” XML tree shown in Figure 2.5 are 

ordered corresponding to the node order within the “School” XML document (see 

Figure 2.1).  

Determining the structural relationships between XML tree nodes and locating all 

occurrences of these relationships lies at the very core of XML querying efficiency (Al-

Khalifa et al., 2002) (Xu et al., 2012) (Hachicha and Darmont, 2013) (Chien et al., 

2002) (Sheng et al., 2011).  

2.7 Querying XML 

As XML became a standard for data exchange and representation on the Internet, 

extensive research into the  retrieval of XML and semi-structured data began to be 

carried out (Florescu and Kossmann, 1999) (Li and Moon, 2001) (Subramaniam and 

Haw, 2014b) (Sheng et al., 2011) (An and Park, 2011) (Schmidt et al., 2001b) 

(Sonawane and Rao, 2015) (Wang et al., 2003). Usually the tree representation of 

XML documents and queries are used to process XML data implicitly or explicitly 

(Tahraoui et al., 2013) (Al-Khalifa et al., 2002) (Bressan et al., 2001) (Alghamdi et al., 

2014) (Shnaiderman and Shmueli, 2015), whereby retrieving XML data is achieved 

via a tree-pattern matching approach (Lu et al., 2011a) (Lu et al., 2005a) (Bruno et al., 

2002) between the query tree and the document tree (Tahraoui et al., 2013) (Al-

Khalifa et al., 2002) (Florescu et al., 2000) (Gheerbrant et al., 2013). Tree patterns are 

graphical representations of XML queries over an XML tree data model (Hachicha and 

Darmont, 2013) (Czerwinski et al., 2016). To answer a query, the semantics of tree 

pattern are obtained by mapping from the pattern nodes to the nodes in the XML 

document, such that the main structural relationships (Section 2.5) are satisfied (Lu et 

al., 2011a). Numerous XML query languages such as XPath (Robie, 2007), Lorel 

(Abiteboul et al., 1997), XIRQL (Fuhr and Großjohann, 2000), NEXI (Trotman and 
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Sigurbjörnsson, 2004),  TeXQuery (Amer-Yahia et al., 2004), Quilt (Chamberlin et al., 

2000), XQuery (Boag, 2007), and XQBE (Braga et al., 2005) primarily use tree 

patterns to identify the relevant data parts in an XML document. These are discussed 

below. 

2.8 XML Query Languages 

Due to the extensive use of XML (Bray et al., 1998) in today’s applications, several 

XML query languages have been proposed to analyse the semantics (content) and 

syntax (structure) of XML queries (Li and Moon, 2001) (Bonifati and Ceri, 2000) (Al-

Khalifa et al., 2002) (Kamps et al., 2006) (Sheng et al., 2011) (Wang et al., 2003) 

(Qadah, 2016) (Choi and Wong, 2015). Queries in these languages basically specify 

patterns to be matched to elements and specifies their structural relationships 

(Alghamdi et al., 2014) (Deutsch et al., 1999) (Fuhr et al., 2001)  (Thonangi, 2006). In 

general, at each node in the query tree pattern, there is a node predicate that 

identifies a number of bases depending on the content of the user’s request (Al-

Khalifa et al., 2002). A major focus in designing XML query language is the ability to 

express complex structural queries (Wang et al., 2003) (Choi and Wong, 2015). 

According to Amer and Lalmas (Amer-Yahia and Lalmas, 2006) and Tahraoui 

(Tahraoui et al., 2013), XML query languages can be classified into three main 

categories, as based on their queries’ structure :- 

 Tag-based queries: permit users to specify simple conditions about a tag that 

will contain the required content, such as in XSEarch (Cohen et al., 2003) 

query language. For example, the query “Topic: algebra” means that the user 

is searching for a “Topic” element about “algebra”.    

 Path-based queries: refer to XML element nodes as a path-like syntax. This 

family of query languages includes XPath, XIRQL, and NEXI (CAS), and 

presents more sophisticated content conditions on structural XPath-based 

syntax. An example of XPath query is “/School/*/Tutor[@ID=”13”]”, which 

indicates the fact that the user needs to know all tutors in the school with 

identification number “13”. 

 Clause-based queries: inspired by SQL syntax, these comprise nested 

clauses that allow users to express more complicated requirements. Examples 

of XML query languages built on clause-based queries are:- Lorel (Abiteboul et 

al., 1997), Quilt, TeXQuery, and XQuery, where XQuery supports path 

expressions similar to those of XPath (Connolly and Begg, 2005). For 
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instance, the XQuery path expression “/School[Name .’Plus’]//Exam[. ‘Feb’]” 

matches the “School” element with child name that includes the word ‘Plus’ 

and has “Exam” as a descendent element with a content string value ‘Feb’. 

Although most of the available query languages vary in the details of their 

grammatical representations, they typically use regular path expressions (or simply 

regular expressions) to evaluate XML queries and are capable of extracting and 

manipulating data directly from XML documents (Haw and Lee, 2011) (Lassila et al., 

2015) (Huang et al., 2015) (Li and Moon, 2001). Regular path expressions allow users 

to navigate through arbitrarily long paths in semi-structured XML data by traversing 

the logical XML hierarchal tree structure (Ives et al., 2000) (Fernandez and Suciu, 

1998) (Li and Moon, 2001). In the XML context, a regular expression is defined as a 

series of location steps in the XML tree linked by ‘/’ or ‘//’ to identify the location of a 

node starting from the root node (Robie, 2007) (Al-Badawi, 2010) (Almelibari, 2015) 

(Hidders and Paredaens, 2014). Every step includes an axis that defines the direction 

of navigation (Ramanan, 2003), and a ‘node test’ that selects nodes based on their 

type and name. Based on the document order, axes can be classified as forward axes 

(e.g. descendent, descendent-or-self, child, following, and following-siblings) and 

reverse axes (such as ancestor, parent, preceding, and preceding-sibling) (Robie, 

2007). 

Based on regular path expressions, XPath (Robie, 2007) and XQuery (Boag, 2007) 

are the standard XML query languages (Catania et al., 2005a) (Hsu and Liao, 2013), 

with the rest acting so similarly and that they can be eliminated from further discussion 

at this stage. Both the XPath and XQuery languages are defined by the W3C (World 

Wide Web Consortium) in terms of the manner in which they query XML data and 

follow the requirements for an XML query language (Chamberlin et al., 2001) (W3C, 

2007) (Hidders and Paredaens, 2014). The W3C development teams have enhanced 

the XPath2.0/XQuery1.0 query languages to support the Full Text Search (FTS) 

functionality (W3C, 2011) (Al-Badawi, 2010). 

2.8.1 XML Path language (XPath) 

XPath models the XML document as a rooted-ordered tree that consists of seven 

distinct types of node: elements, attributes, text, comments, processing instructions, 

namespace nodes, and a root node. XPath navigates and selects the whole, or parts, 

of an XML document based on regular path expressions that are expressed using 

thirteen principle axes types identified by the appropriate structural relationship. A 
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description of an XPath axes is given in Table 2.1 (adapted from (Al-Badawi, 2010) 

(Almelibari, 2015) and (Robie, 2007)) along with XPath query examples (quoted from 

XPathMark (Franceschet, 2005)) that are based on the XMark benchmark (Schmidt et 

al., 2002). To express complex queries, XPath use predicates and other logical and 

arithmetic operators to facilitate the identification of specific nodes and values (Robie, 

2007) (Connolly and Begg, 2005) (Elmasri, 2008) (Harold et al., 2004) (Gupta and 

Suciu, 2003). 

Table 2.1 XPath Axes 

Axis name Objective Example 

child  Indicates all 

children of the 

current node 

/site/regions/*/item 

Means returns all the products items. 

Parent  Refers to the 

parent of the 

current node 

/site/regions/*/item[parent::namerica or 

parent::samerica] 

Find the American items 

descendent Contains the 

descendants of the 

current node 

//keyword 

Means return all the keywords in the document 

descendent-or-

self 

Contains the 

current node itself 

along with all its 

descendants 

/descendant-or-self::listitem//descendant-or-

self::keyword 

Requests the return of certain keywords in a 

paragraph item 

ancestor  Contains all the 

ancestors of the 

current node 

//keyword/ancestor::listitem 

Requests the return of the paragraph items 

containing a keyword 

ancestor-or-

self 

Contains current 

node and all its 

ancestors 

//keyword/ancestor-or-self::mail 

Ask for a mail containing a keyword 

following Refers to all nodes 

following the 

current node in 

document order. 

/site/regions/*/item[@id='item0']/following::item 

Ask for the items that follow, in document order, 

for a given item 

following-

sibling 

Contains the 

following siblings 

(i.e. post-order 

siblings) of the 

current node  

/site/open auctions/open 

auction[bidder[personref/@person= 

'person0']/following-

sibling::bidder[personref/@person='person1']] 

Find all open auctions in which bidder(s) issued a 

bid before a specified person with reference 
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‘person1’. 

preceding  Refers to all nodes 

appearing in a 

document before 

the current node 

starting from the 

root. 

/site/open auctions/open 

auction/bidder[personref/ 

@person='person1']/preceding::bidder 

[personref/@person='person0'] 

Find the bids issued (in document order) before a 

certain person with reference ‘person0’. 

Preceding-

sibling 

Refers to the 

preceding (i.e. pre-

order) siblings of 

the current node. 

/site/open auctions/open auction[@id='open 

auction0'] 

/bidder/preceding-sibling::bidder 

Requests the past bidders of a given open auction 

self  Represents the 

current node 

//*[self::open auction]  

Means select the current open auction. 

attribute  Indicates the 

attributes of the 

current node 

id(/site/closed auctions/closed 

auction[buyer/@person='person4'] 

/itemref/@item) 

Means items bought by a given person 

namespace  Contains the 

namespace of the 

current node 

[namespace-uri() = 'http://example.com'] 

Returns namespace URIs matching ‘example.com’  

 

2.8.2 XML Query Language (XQuery) 

XQuery (Boag, 2007) (W3C, 2014) is a clause-based declarative language that has 

some SQL-like semantic features. This is because XQuery is derived from Quilt XML 

query language (Chamberlin et al., 2000), which itself borrowed characteristics from 

XPath (Robie, 2007) and other languages supporting the SQL syntax, such as XML-

QL (Deutsch et al., 1998), XQL (Robie et al., 1999), and SQL itself (Date and Darwen, 

1993). Apart from the path expression adopted from XPath, XQuery has developed 

‘FLWOR’ expressions to perform SQL-like transactions. ‘FLWOR’ is an abbreviation 

for “For, Let, Where, Order by, and Return” clauses. There are many advantages to 

using the ‘FLWOR’ syntax of XQuery over XPath syntax (W3C, 2014); for instance, 

“For, Let, and Where” clauses provide more expressiveness and flexibility in forming 

complex queries, which allows multiple XML documents to be joined during result 

construction (Boag, 2007). The “Order by” clause helps to organise results during the 

XML reconstruction (Al-Badawi, 2010). The “Return” clause controls the evaluation of 

the structure of the returned XML nodes by adding further meanings to the data or 

conditional statements (e.g. IF-THEN-ELSE).    
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Generally, the XPath and XQuery query languages provide a wide range of XML 

queries that cover almost all XML querying functionalities (Bressan et al., 2001) 

(Franceschet, 2005) (Jones et al., 2008). However, querying XML via query 

languages has a number of drawbacks, as illustrated in the next section.  

2.8.3 XML Query Languages Weaknesses 

As XML (Bray et al., 2008) has become the standard representation of data over the 

Internet, a wide range of users need to interact with XML documents to obtain their 

desired information. Despite the rich expressive power of XML query languages, their 

complexity has become a major difficulty for users in formulating appropriate queries, 

and for software applications to process the queries efficiently (Choi and Wong, 2015) 

(Wang et al., 2003). In order to design a query, the user must be familiar with the 

semantics of the query languages as well as the underlying concepts of XML data 

structure, such as DTD, XML schema, elements and attributes names (Choi and 

Wong, 2015) (Fuhr et al., 2001). Given that the hierarchical structure of XML data can 

be heterogeneous, any slight misinterpretation of the document structure whilst 

formulating a query would result in an incorrect or misleading answer (Liu and Yan, 

2016). Such problems emerge when various types of documents with different 

structures are queried, as such queries often generate long, complicated path 

expressions. Moreover, the operating cost of traversing the hierarchy of XML data can 

be significant if the path lengths are very large, and so retrieving data directly from 

very large XML documents can be inefficient (Li and Moon, 2001) (Hakuta et al., 

2014) (Choi and Wong, 2015) (Lassila et al., 2015) (Liu and Gawlick, 2015) (Fan et 

al., 2015), especially when the XML database is update-intensive (Qadah, 2016).  

To overcome these limitations and improve the efficiency of XML querying, two main 

approaches have been proposed to facilitate query processing based on the 

hierarchical structure of XML data: structural indexing and labelling schemes (Li 

and Ling, 2005b) (Li et al., 2006b) (Khaing and Ni Lar, 2006) (Duong and Zhang, 

2005). The next section gives a brief overview of structural indexing approaches. 

Since this thesis focuses on XML labelling schemes, the next chapter will present the 

state-of-the-art on XML labelling schemes particularly for dynamic XML data.  

2.9 Structural Indexing 

As discussed in the previous section, several XML query languages have been 

developed to evaluate path expressions that rely on XML tree traversal. Scanning and 
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extracting the user’s required nodes directly from large-scale XML data is 

computationally expensive (Li et al., 2012) (Catania et al., 2005a) (Chen et al., 2003) 

(Kaushik et al., 2002a). This inefficiency has led to the development of structural 

indexing in order to speed up XML query processing (Hsu and Liao, 2013) (Li et al., 

2012) (Catania et al., 2005a) (Alghamdi et al., 2014) (Han et al., 2006) (Shichuan et 

al., 2012). Structural indexing significantly reduces the portion of the XML data to be 

scanned during the query processing by constructing an index that summarises the 

structure (path information) of an XML data tree (Li et al., 2006b) (He and Yang, 2004) 

(Hsu and Liao, 2013). Here, the idea is to conserve an XML data tree in the form of a 

summarised tree, which is defined using a specific equivalence relation to the nodes 

of the original data tree. Thus, identical sub-structures in an XML document are 

merged to form the summarised tree, which is then used as the structural index to 

evaluate path expressions without the need to refer to the original data (Chen et al., 

2003) (Hsu and Liao, 2013) (Li et al., 2012) (Zou, 2004). 

Two common methods used to summarise an XML document into a structural index 

(Hsu and Liao, 2013) are:- those of path equivalence (Zou, 2004) (Chung et al., 2002) 

(Cooper et al., 2001) (Goldman and Widom, 1997) (Zhang et al., 2008) and bi-

simulation (Kaushik et al., 2002a) (Chen et al., 2003) (Chen et al., 2008). In path 

equivalence, nodes with identical traversal paths are merged to construct a structural 

index. For instance, “the strong DataGuide” (Wu and Liu, 2008) holds all the direct 

edges representing parent-child relationships in an XML tree. As a result, the parent-

child and ancestor-descendent relationships of a path expression can be evaluated 

directly from the structural index (Hsu and Liao, 2013). Index Cache (Li et al., 2012) 

and ToXin (Rizzolo and Mendelzon, 2001) indexing techniques have been proposed 

based on DataGuides (Wu and Liu, 2008) (Goldman and Widom, 1997) (Goldman 

and Widom, 1999). 

A bi-simulation scheme (Henzinger et al., 1995) basically captures the local structures 

of an XML data tree and accordingly groups the nodes with the same set of incoming 

paths, forming collections of equivalence classes which are then stored as structural 

summaries (He and Yang, 2004) (Chen et al., 2003) (Alghamdi et al., 2014) (Hsu and 

Liao, 2013). In this scheme, XML data is partitioned into equivalence classes based 

on the backward path bi-similarity from the root to the indexed node (Milo and Suciu, 

1999), forward path bi-similarity from the indexed node to the root (Kaushik et al., 

2002a) (Chen et al., 2003), or in both directions, as in F&B-Index (Kaushik et al., 

2002b). 
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In comparison to XML query languages, structural indexing reduces the query 

processing time by avoiding direct access to the original XML data whilst evaluating 

path expressions. However, as the size of an XML document increases, index sizes 

tend to rise dramatically (Alghamdi et al., 2014). In general, structural indices are 

large since each node of an XML database is referenced within the index along with 

its path summary from the root to that particular node (Haw and Lee, 2011). Thus, the 

traversal process applied to construct these indices is costly (Khaing and Ni Lar, 

2006) (Li and Ling, 2005b). Furthermore, when XML data are updated it is necessary 

to re-build the structural indices (Duong and Zhang, 2005). Generally, structural 

indexing does not support complex queries (Alghamdi et al., 2014) and for long 

queries it requires a large part of the index (if not all) to exist in main memory in order 

to establish ancestor-descendent relationships between two nodes based on their 

structure summary (Na and Guoqing, 2010). 

Unlike structural indexing, labelling schemes can efficiently establish the structural 

relationships between two nodes by using the nodes as the fundamental unit by which 

to query XML. Hence, labelling schemes provide greater flexibility and require 

reduced storage compared to structural indexing (Haw and Lee, 2011) (Li et al., 

2006b). Therefore, this thesis focuses mainly on labelling scheme approaches, which 

are discussed in the next chapter.  

2.10 Conclusion 

This chapter has presented an overview of the basic concepts of XML data. Since 

XML is a vast subject, the main points covered in this chapter are limited, but are 

nevertheless sufficient to provide the necessary background to comprehend the 

research objectives. The main focus of this thesis is that of XML labelling schemes, 

and as such the focus of the next chapter will be to illustrate the state-of-the-art in 

XML labelling schemes. 
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Chapter 3:  Literature on XML Labelling 

Schemes  

3.1 Introduction 

Due to the growing significance of managing XML data, a considerable amount of 

research has been dedicated to XML storage and querying (Liu and Zhang, 2016) 

(Agreste et al., 2014) (Ghaleb and Mohammed, 2013). To query XML data 

competently and rigorously, several XML labelling schemes have been introduced.  

An XML labelling scheme can handle a rooted ordered XML tree data model such that 

structural information can be encoded into labels. The essential metrics for a labelling 

scheme are the speed at which these labels can be generated and used, as well as 

the compactness of the encoded labels. As the transmission of XML data over the 

Internet has become vibrant, it has also become necessary to have an XML labelling 

scheme that supports dynamic XML data (O'Connor and Roantree, 2010a) (Liu and 

Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005). The challenge to 

developing such labelling schemes, which can handle dynamic updates to XML data 

without affecting the initial labels has become the main focus of many researchers (Xu 

et al., 2009) (Liu et al., 2014) (Duong and Zhang, 2008) (He, 2015) (Ghaleb and 

Mohammed, 2015) (Qin et al., 2017). 

This chapter presents the state-of-the-art in research into XML labelling schemes. 

First, an overview on XML labelling schemes is given in Section 3.2; this includes 

XML labelling schemes’ main principles, and their desirable properties, types and 

classifications. Generally, XML labelling schemes can be categorised into four groups: 

- interval-based, prefix-based, multiplicative, and hybrid, as discussed in Sections 3.3, 

3.4, 3.5, and 3.6, respectively. Finally, Section 3.7 concludes the chapter with an 

illustration of the problems encountered with current research work on XML labelling 

schemes.    

3.2 XML Labelling Schemes: An Overview 

XML labelling schemes (also referred to as numbering schemes) can efficiently 

establish the structural relationships between two nodes by using the nodes as the 
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fundamental unit for querying XML, and so provide more flexibility, as well as requiring 

less storage space in comparison to other XML querying approaches (Haw and Lee, 

2011) (Li et al., 2006b) (Khaing and Ni Lar, 2006) (Duong and Zhang, 2005).  

XML Labelling schemes typically facilitate XML query processing by assigning a 

unique label to identify XML tree nodes according to the structure of the XML 

document (O'Connor and Roantree, 2010a) (Li et al., 2008) (Ghaleb and Mohammed, 

2015) (He, 2015) (Wang et al., 2003). In this way, the structural relationships between 

nodes can be efficiently determined by comparing their labels so that XML queries 

can be processed without accessing the original data (Liu et al., 2013) (Zhuang et al., 

2011) (Xu et al., 2009) (Fraigniaud and Korman, 2016). The existing labelling 

schemes can be categorised into two groups (Mirabi et al., 2012) (Thonangi, 2006) 

(Rusu et al., 2006) (Ghaleb and Mohammed, 2015): static labelling schemes (Dietz, 

1982) (Li and Moon, 2001) (Tatarinov et al., 2002) that are adequate for non-

updatable XML documents, and dynamic labelling schemes (Xu et al., 2009) (Liu et 

al., 2014) (Duong and Zhang, 2008), which are used to label XML documents that are 

frequently updated.  

Much of today’s Web content is written in well-formed or valid XML data format 

(Grijzenhout and Marx, 2013). The growing popularity of XML as a data exchange 

format due to its flexibility has led to an enormous amount of XML data update (Liu 

and Zhang, 2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001). As the XML 

repositories over the web become more extensive as well changeable, the need for 

dynamic labelling schemes has become essential to support efficient XML queries 

and update (O'Connor and Roantree, 2010a) (Liu and Zhang, 2016) (Subramaniam 

and Haw, 2014b) (Yu et al., 2005). According to (Lizhen and Xiaofeng, 2013) (Härder 

et al., 2007) and (Wu et al., 2004) a good dynamic labelling scheme should have the 

following desirable characteristics:  

 Deterministic: the structural relationships between two nodes can be quickly 

established by examining their labels.  

 Efficient: it should support all kinds of structural relationship queries.  

 Compact: the labels should be sufficiently compact, as small as possible. 

 Dynamic: it should completely avoid the need to re-label XML trees nodes 

when XML files are updated.  

Many works have studied dynamic XML labelling schemes, but each of the existing 

labelling schemes is limited through at least one of these characteristics. For the most 

part, updating XML data remains the weakness in the majority of these XML labelling 
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schemes (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005). 

The remainder of this chapter will focus on dynamic XML labelling schemes reported 

in the literature, and will present the strengths and weaknesses of these labelling 

approaches. In general, current XML labelling schemes can be classified into four 

categories (Su-Cheng and Chien-Sing, 2009) (Chiew et al., 2014a) (Liu and Zhang, 

2016) (Subramaniam et al., 2014a) (Chen et al., 2011):- interval-based labelling 

schemes, prefix-based labelling schemes, multiplicative labelling schemes, and hybrid 

labelling schemes.  

3.3 Interval-based Labelling Schemes 

3.3.1 Structure and Concept 

Interval-based labelling schemes (also known as Containment labelling schemes, 

Range-based labelling schemes, or Region Encoded labelling schemes) (Xu et al., 

2012) (O'Connor and Roantree, 2010a) utilise the properties of tree traversal (Dietz, 

1982) (Li and Moon, 2001) (Subramaniam and Haw, 2014b) to preserve document 

order and to establish structural relationships among nodes. Tree traversal (Tahraoui 

et al., 2013) is the process of sequentially visiting each node in a tree data structure, 

and can proceed in different directions (O'Connor and Roantree, 2010a) (Qadah, 

2016). A pre-order (also called DFS: depth-first search) traversal of an ordered tree 

constitutes visiting a tree starting from the root (top-bottom) and processing each level 

from left to right, while post-order traversal start visiting the leaf nodes from left to 

right, and then processing their parent level (bottom-up) (Dietz, 1982).  

(Kannan et al., 1992) introduced the idea of efficiently encoding the ancestry relation 

in a tree using interval-based schemes (Fraigniaud and Korman, 2016) (Peleg, 2000). 

This contains a mechanism of assigning the shortest possible labels to an XML tree 

nodes in such a way that information concerning any two nodes can be obtained 

directly from their labels (Fraigniaud and Korman, 2016).  Accordingly, (Kannan et al., 

1992) suggested an ancestry-labelling scheme, which is defined as follows: given a 

rooted tree, 𝑇, with 𝑛 nodes, process depth-first traversal on 𝑇, starting from the root, 

and assign each node 𝑣 ∈ 𝑇 a 𝐷𝐹𝑆 number 𝐷𝐹𝑆(𝑣) ∈ [1, 𝑛] sequentially. Since in a 

depth-first traversal each node 𝑣 is reached before all of its descendants, 𝑣 has 

smaller 𝐷𝐹𝑆 number than of any of its children. Then a node 𝑣 is given an interval 

label (𝑣) = [𝐷𝐹𝑆(𝑣), 𝐷𝐹𝑆(𝑣′)], where 𝑣′ is the last descendent of 𝑣.  
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Given two nodes 𝑢 and 𝑣 with interval labels 𝐼(𝑢) and 𝐼(𝑣), respectively, an ancestry 

query between 𝑢 and 𝑣 can be determined as follows: a node 𝑢 is an ancestor of a 

node 𝑣 if, and only if, both 𝐷𝐹𝑆(𝑢) ≤ 𝐷𝐹𝑆(𝑣) and 𝐷𝐹𝑆(𝑢′) ≥ 𝐷𝐹𝑆(𝑣′); where 𝑢’ and 𝑣’ 

are the last descendants of 𝑢 and 𝑣, respectively. Using this scheme to label a tree 

with 𝑛 nodes, each of the resulting interval labels is of size 2𝑙𝑜𝑔 (𝑛) bits. Similar to 

work of (Kannan et al., 1992), considerable research has been carried out on interval-

based labelling schemes to enhance the performance of XML querying where labels 

are even shorter than 2𝑙𝑜𝑔 (𝑛) (Abiteboul et al., 2001) (Peleg, 2000) (Fraigniaud and 

Korman, 2016) (Alstrup and Rauhe, 2002).  

3.3.2 Related Schemes  

Dietz’s numbering scheme (Dietz, 1982) was the first to use traversal to number tree 

nodes as a linked list to determine the order of elements within a tree in a constant 

time (Su-Cheng and Chien-Sing, 2009). Each node is labelled as an interval <pre-

order, post-order>, where the pre-order value of a node 𝑢 is the pre-order traversal 

rank position of 𝑢 before its descendants are visited. Similarly, the post-order value of 

a node 𝑣 is the post-order traversal rank position before the ancestors of node 𝑣 are 

visited. According to (Dietz, 1982) the ancestor/descendant relationships between tree 

nodes can be maintained by exploring the pre-order and post-order values of tree 

nodes, where for any pair of nodes (say 𝑢 and 𝑣) in a tree, 𝑇, 𝑢 is an ancestor of 𝑣 if, 

and only if, 𝑢 appears before 𝑣 in the pre-order traversal of 𝑇 and after 𝑣 in the post-

order traversal of 𝑇. To determine the parent-child relationship between two nodes, 

the level value is also added to each node label (i.e. in as 3-tuple <

𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, 𝑙𝑒𝑣𝑒𝑙 >). Although the main structural relationships can be determined 

efficiently, the insertion of a new node causes the re-labelling of all its ancestors. 

Figure 3.1 shows the XML tree of the ‘School’ example labelled using the interval-

based labelling scheme and the re-labelling cost (indicated by the black nodes) when 

a new node (𝑎) is inserted.   
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Many researchers have tried to solve the re-labelling problem: (Li and Moon, 2001) 

and (Zhang et al., 2001) have both assigned each node a pair of an extended pre-

order and a range of descendants. (Li and Moon, 2001) alleviated the re-labelling 

problem by leaving gaps at the initial labels; the reserved space allocated within the 

range can either allow a limited number of insertions or result in wasted storage space 

if no insertions occur. (Amagasa et al., 2003) represented the start and end positions 

as floating-point values to extend the intervals. In a practical sense, the representation 

of floating-point numbers in a computer is limited to a fixed numbers of bits (Li and 

Ling, 2005b) (Li et al., 2008). Therefore, the approach of (Amagasa et al., 2003) does 

not eliminate re-labelling because a fixed place can execute up to 18 insertions when 

the initial labels are consecutive integers (Liu and Zhang, 2016) (Tatarinov et al., 

2002).   

(Yun and Chung, 2008) introduced the idea of adding a nested-tree structure to the 

interval-based labelling scheme, whereby the XML data insertion must be considered 

as adding a new sub-tree into the original XML tree. To insert a nested-tree structure 

into the original interval-based labelling scheme, each node is labelled as a 4-tuple <

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟, 𝑠𝑡𝑎𝑟𝑡 𝑙𝑖𝑠𝑡, 𝑒𝑛𝑑 𝑙𝑖𝑠𝑡, 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑑𝑒𝑝𝑡ℎ >, leading to very long labels. 

Nevertheless, when the insertion size of a new sub-tree is larger than the available 

space, the entire post-order sibling sub-trees must be re-labelled. 

To overcome these limitations, (Min et al., 2009) introduced the EXEL binary encoding 

algorithm to generate ordinal bit strings as start and end values. EXEL stores the 

 

Figure 3.1 Interval-based labelling scheme 
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parent start value instead of the node level value to enhance the query processing 

time. However, including the parent-start value increases the label size (Al-Shaikh et 

al., 2010) and so, in the case of frequent insertions occurring repeatedly before or 

after a particular node (known as skewed insertions) the EXEL label size increases 

rapidly and leads to overflow problems (discussed in Section 4.3).  

In (Lizhen and Xiaofeng, 2013), a Triple-code is generated by a depth first traversal in 

the form of 3-tuples < 𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑒𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑝𝑎𝑟𝑒𝑛𝑡 𝑖𝑑 >. In this approach, the 

level number within label intervals is replaced by the node’s ‘parent-id’, making it 

straightforward to obtain parent/child and sibling relationships. Ancestor/descendant 

and document order can be determined, as in (Li and Moon, 2001). To identify the 

LCA between two nodes 𝑢 and 𝑣 in the Triple-code approach, all the ancestors of 𝑢 

and 𝑣 must be traversed in order to create the paths from 𝑢 and 𝑣 to identify their 

LCA. So, for an XML tree of size, 𝑁, and depth, 𝐷,, the worst-case scenario for 

determining the LCA querying cost is 𝑂(𝐷). The authors reduced this cost by 

proposing the iTriple-code which creates ordered ancestor lists for leaf nodes that 

include the start value of all the ancestors from the root to the leaf’s parent node. A 

pointer to the ancestor list is added as a fourth component of the Triple-code label 

value. Although this procedure reduces the LCA query performance cost to 𝑂(log 𝐷), 

when an XML tree is updated ancestor lists need to be updated too.  

The Region-based Labelling scheme (ReLab) introduced by (Subramaniam et al., 

2014a) uses < 𝑙𝑒𝑣𝑒𝑙, 𝑜𝑟𝑑𝑖𝑛𝑎𝑙, 𝑟𝐼𝐷 >  to label XML tree nodes, where 𝑙𝑒𝑣𝑒𝑙 is level 

number of the node. The 𝑜𝑟𝑑𝑖𝑛𝑎𝑙 value is the unique 𝐼𝐷 assigned to the node using a 

depth-first traversal, and 𝑟𝐼𝐷 is the ordinal of the rightmost sibling. In comparison to 

some other interval-based labelling schemes, such as Dietz’s labelling scheme (Dietz, 

1982) and the region-numbering scheme (Zhang et al., 2001), ReLab generates 

labels faster due to its greater simplicity in computing the intervals (Haw and Amin, 

2015). However, ReLab (Subramaniam et al., 2014a) is a static labelling scheme, and 

does not support dynamic XML data (Haw and Amin, 2015) (Liu and Zhang, 2016). 

3.3.3 Summary of Interval-based Labelling Schemes 

In general, interval labelling schemes seek to determine structural relationships 

between nodes by using containment information, whereby node identifiers are 

represented as intervals (Liu and Zhang, 2016) (Zhuang et al., 2011) (Yu et al., 2005). 

Furthermore, these approaches generate very long labels, and so require and 

consume, large amounts of storage. It is difficult to decide the initial size of the 



Chapter 3: Literature on XML Labelling Schemes 

34 
 

intervals that minimises storage cost whilst avoiding repetitive re-labelling in a 

dynamic XML environment (Sans and Laurent, 2008) (Ghaleb and Mohammed, 2015) 

(Li and Moon, 2001) (Liu and Zhang, 2016) (Yu et al., 2005). With the extent of 

available data on frequently updated XML applications, it is difficult to determine in 

advance either the actual data size or the number of possible updates. In addition, 

although interval-based labelling schemes establish ancestor/descendant, parent/child 

and document order more efficiently than other schemes, they cannot process sibling 

or LCA structural relationships (Lizhen and Xiaofeng, 2013) (Ghaleb and Mohammed, 

2015) (Subramaniam et al., 2014a). Due to these limitations, an interval-based 

labelling scheme typically is not ideal for use with dynamic XML data (Liu and Zhang, 

2016) (Ghaleb and Mohammed, 2015) (Kaplan et al., 2002) (Haw and Amin, 2015) 

(Su-Cheng and Chien-Sing, 2009). 

3.4 Prefix-based Labelling Schemes 

3.4.1 Structure and Concept 

Prefix-based labelling schemes (Sans and Laurent, 2008) (Tatarinov et al., 2002) (Liu 

and Zhang, 2016) (Haw and Lee, 2011) (Ghaleb and Mohammed, 2015) (Xu et al., 

2009) (O'Connor and Roantree, 2010a) (Liu et al., 2013) directly encode a node’s 

parent label in an XML tree as the prefix of its label. Each node label in the tree 

comprises the parent’s label concatenated with the node’s identifier (self-label), and a 

delimiter, “.”, is used to separate the label of the ancestor nodes at every level. Thus, 

determining the ancestor/descendant and parent/child relationships between two 

nodes is simply one of finding if one label is a prefix to the other. As containment of 

the path information within each prefix-based label facilitates the query processing, it 

has been the common choice for XML keyword querying (Sun et al., 2007) (Guo et al., 

2003) (Sans and Laurent, 2008) (Li et al., 2014) (Zhang and Sun, 2011) (Bo et al., 

2012) (Lu et al., 2011b). In particular, the Dewey Order labelling scheme (Tatarinov et 

al., 2002) has recently become common for research in XML query processing and 

indexing schemes (Zhou et al., 2016) (Li et al., 2014) (Liu and Chen, 2012) (Lou et al., 

2012) (Zeng et al., 2013), due to its simplicity.  

The Dewey Order labelling scheme was proposed by (Tatarinov et al., 2002) based 

on the Dewey decimal classification system for the organisation of library collections 

(Dewey, 1876). When using Dewey Order, each node is labelled as a vector denoting 

the path from the root node in an XML tree to the current node, whereby, the number 

of delimiters in a node’s prefix-label is equal to the level number of that node. If the 
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root level is 0, then number of delimiters in a label is equivalent to the node’s level 

number. Based on this mechanism, the structural relationships between nodes can be 

directly determined from their labels as follows: given two nodes 𝑢 and 𝑣 in a rooted 

ordered tree, 𝑇, if 𝑙𝑎𝑏𝑒𝑙(𝑢) is a prefix of 𝑙𝑎𝑏𝑒𝑙(𝑣), then 𝑢 is an ancestor of 𝑣. If node 𝑢 

is an ancestor of 𝑣 and 𝑙𝑒𝑣𝑒𝑙(𝑣)  =  𝑙𝑒𝑣𝑒𝑙(𝑢) + 1, then 𝑢 is a parent of node 𝑣. Nodes 

that share the same parent label as their prefixes and are in the same level of the 

XML tree are sibling nodes. Figure 3.2 below shows an XML tree labelled by the 

Dewey Order scheme. 

Despite the popularity of Dewey Order (Ghaleb and Mohammed, 2015) (Cohen et al., 

2010) (Xu et al., 2009), it is not applicable for dynamic XML data. For example, 

inserting a new sibling node requires re-labelling all its right sibling nodes along with 

their descendants, as shown in Figure 3.2 (black circles indicate the re-labelled nodes 

after inserting node “𝑎”). Several researchers (Li and Ling, 2005b) (Li and Ling, 

2005a) (O’Connor and Roantree, 2012) (Mirabi et al., 2012) (Duong and Zhang, 2005) 

have proposed prefixed labelling schemes to support dynamic XML. Others (O'Neil et 

al., 2004) (Lu et al., 2005b) (Xu et al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016) 

have investigated Dewey Order labelling properties to convert them into a dynamic 

XML labelling approach. The next section presents the strength and weakness of the 

existing dynamic prefix labelling schemes.  

 

Figure 3.2 Prefix-based labelling scheme - Dewey Order 



Chapter 3: Literature on XML Labelling Schemes 

36 
 

3.4.2 Related Schemes  

With the intention of enhancing Dewey Order, (O'Neil et al., 2004) designed the 

ORDPATH labelling scheme that reserves negative-even integers for later nodes 

insertions to avoid re-labelling. Although this technique allows for a limited number of 

insertions, such gaps left between label values waste half of the storage (Liu et al., 

2013) (Härder et al., 2007) (Li and Ling, 2005b) (Xu et al., 2009) (Haw and Lee, 

2011). In addition, the complexity of the decoding mechanism in ORDPATH has a 

detrimental effect on XML query processing (Xu et al., 2009) (Li et al., 2006a) (Li et 

al., 2008) (Hye-Kyeong and SangKeun, 2010). 

Later, (Lu et al., 2005b) proposed an extended Dewey labelling scheme that basically 

adds the elements tag names as a part of their Dewey labels. This feature speeds up 

twig pattern query matching (Hachicha and Darmont, 2013) (Lu et al., 2005a) by 

accessing only the leaf nodes that contain the labels of elements satisfying the query. 

In order to include elements tag names within node labels, the DTD of the XML data 

must be known. Otherwise, before assigning XML tree nodes labels, the whole XML 

document must be scanned at least once by a depth-first traversal in order to know 

the document’s schema information called “child names clue”. Such a process is time 

consuming (Yun and Chung, 2008). 

The extended Dewey labelling scheme performs well in evaluating twig pattern query 

matching using the TJFast (which stands for “Twig Join Fast” algorithm) (Lu et al., 

2005b) (Lu et al., 2005a) proposed by the same authors. However, the extended 

Dewey labelling has a number of disadvantages. The mapping process is a 

requirement to determine if an element name from its integer value makes the 

computation methods very expensive (Chiew et al., 2014a) (Haw and Lee, 2011). 

Apart from this, including XML tree elements names within their labels increases the 

label size even further, and most importantly this labelling scheme still does not 

support dynamic updates in XML trees since this requires the reconstruction of the 

“child names clue” data after insertions (Yun and Chung, 2008) (Liu and Zhang, 

2016).   

(Xu et al., 2009) revisited the notion of the Dewey Order encoding scheme, proposing 

two fully dynamic labelling schemes named DDE and CDDE (which stands for 

Compact DDE). DDE generalises the concept of vector order and vector equivalence 

over Dewey labels. Although the initial DDE labels are the same as those of the 

Dewey Order, the semantics of a DDE label are a sequence of vector codes 
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represented in the form 𝑣1. 𝑣2 … 𝑣𝑚 , where 𝑣1 = (𝑥, 𝑦1), 𝑣2 = (𝑥, 𝑦2), … , 𝑣𝑖 =

(𝑥, 𝑦𝑖), … 𝑣𝑚 = (𝑥, 𝑦𝑚), and whereby all the vector codes of a DDE label share a 

common 𝑥-axis component (Xu et al., 2012). In order to support dynamic updates, the 

authors (Xu, Ling et al. 2009) defined appropriate DDE labelling order properties 

(such as the pre-order relation and equivalence/in-equivalence relation) between DDE 

labels. Therefore, based on mathematical and logical equations, the determination of 

the structural relationships between nodes from their label values is preserved. DDE 

considers four cases of insertion, as shown in Figure 3.3:  

Case A: Inserting before the leftmost sibling (e.g., node 𝑢): the new label is 

created by decrementing the local order value of the leftmost sibling by 1; 

here negative values are permitted.  

Case B: Inserting after the rightmost sibling (e.g., node 𝑤): the new label is 

created by incrementing the local order value of the rightmost sibling by 

1. 

Case C: Inserting between two siblings (say 𝑋 and 𝑌; e.g., node v): the new label 

is assigned as the midpoint vector 𝑋 + 𝑌 (which is equal to 𝑥1 + 𝑦1. 𝑥2 +

𝑦2. … . 𝑥𝑚 + 𝑦𝑚); i.e., adding each 𝑚 component in 𝑋 to its corresponding 

component in 𝑌.  

Case D: Inserting a child into a leaf node (e.g., node 𝑧): where the new label is 

created by concatenating the parent label and the digit “1”.    

 

 

Figure 3.3 DDE labelling scheme 
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CDDE is a modified version of DDE introduced to improve the performance of DDE for 

insertions by allowing initial labels to be negative values. Nevertheless, as shown by 

(Xu et al., 2009), the enhancement of DDE performance via CDDE is insignificant in 

terms of updating time and label size. Overall, DDE and CDDE generate large labels 

at the cost of extra storage (Liu et al., 2013) (Yanghua et al., 2012) especially when 

frequent insertions occur between consecutive siblings due to the large gap generated 

by applying the midpoint vector 𝑋 + 𝑌 technique. Furthermore, DDE is not suitable for 

determining the structural relationships in multiple XML documents and requires an 

extra document identifier to distinguish labels within several XML documents (Liu et 

al., 2013) (Liu and Zhang, 2016) (Assefa and Ergenc, 2012). 

More recent work by (Liu et al., 2013) has led to the proposal of the DFPD labelling 

scheme, which represents Dewey labels by float-point numbers. As in DDE, DFPD 

initially labels the XML tree based on Dewey labels and handles insertions before the 

leftmost sibling, after the rightmost sibling, and under a leaf node by applying the 

same techniques used in DDE (i.e. cases A, B, and D above). To insert a new sibling 

between two consecutive nodes 𝑋 (labelled 𝑥1. 𝑥2. … . 𝑥𝑚) and 𝑌 (labelled 𝑦1. 𝑦2. … . 𝑦𝑚), 

the new label is computed by:  

(𝑎1. 𝑎2 … 𝑎𝑚−1.
( 𝑘𝑎 ∗ 𝑎𝑚) + (𝑘𝑏 ∗  𝑏𝑚)

𝑘𝑎 ∗ 𝑘𝑏
) Equation 1 

Where 𝑘𝑖 is the smallest possible integer that makes the result of (𝐾𝑖  ∗  𝑖𝑚) a float-

point number such that its decimal part is 0. This makes the last digit of the new label 

to be stored a real number. For instant, assume a new node, 𝑍, is inserted between 

node 𝑋 =  (1.45. (302 3⁄  )) and node 𝑌 =  (1.45. (503 5⁄  )), then: 

𝐿𝑎𝑏𝑒𝑙 (𝑍)  =  (1.45.
805

8
  )  =  (1.45. (3 𝑋 

302

3
 +  5 𝑋 

503

5
 ) / (3 +  5)) 

Recently, the authors enhanced the performance of DFPD by introducing the DPLS 

labelling scheme (Liu and Zhang, 2016) that re-uses deleted label values -if they 

exist-to lower the growth rate of label sizes when insertion and deletion take place 

alternatively. The DPLS basically computes the fractional part of the self-label 

component in the case of an insertion between two consecutive siblings through 

equation (2) instead of equation (1):  

(𝑎1. 𝑎2 … 𝑎𝑚−1.
(  𝑎𝑚 + 𝑏𝑚)

(𝑘𝑎 +  𝑘𝑏)
) Equation 2 
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As in (Amagasa et al., 2003), the floating point numbers generated by DFPD and 

DPLS are of limited accuracy since the mantissa is actually represented by a fixed 

number of bits and can be extended by as many as 2 bits per insertion, leading to 

overflow problems (see Chapter 4, Section 4.3) (Xu et al., 2012). To address this 

limitation, when storing the fractional part DFPD and DPLS have adopted the 

ORDPATH (O'Neil et al., 2004) encoding technique, in which the labels can be 

assigned by a successive variable-length storage format (see Chapter 4, Section 

4.4.4). However, as in ORDPATH, the complexity of decoding decelerates the XML 

querying process.  

Similarly, (Mirabi et al., 2012) proposed a labelling scheme based on fractional 

numbers. Here, encoding 𝑛 ordinal decimal numbers by recursively assigning the 

middle fractional number in the range [0, 1] to the middle decimal number between 1 

and 𝑛 using the author’s proposed algorithm, which is called fractional number 

generation (FNG). For example, for 𝑛 = 16, the middle number is (16 2⁄ )= 8, which 

corresponds to the middle fraction number ((0 + 1) 2⁄ ) = (1 2⁄ ). Then, the fractional 

number assigned to the decimal number 8 is (1 2⁄ ); to 4, it is (1 4⁄ ); to 6, it is (3 8⁄ ), 

and so on. After the fraction values are generated, they are mapped into bit-string 

codes, which are used to label an XML tree. Nonetheless, according to the authors, 

the bit string codes generated by their FNG algorithm differ depending on the value of 

𝑛. For instance, bit string codes for a set of ordinal decimal numbers between 1 and 

3 differ from those generated for a set of decimal numbers between 1 and 10. 

Determining the original value of 𝑛 is not clear in the work of (Mirabi et al., 2012). 

Moreover, when it is applied over prefix labelling schemes (e.g., Dewey IDs) it has 

shown poor performance in comparison to other labelling schemes in terms of storage 

space, querying time and updating XML data. As the authors stated a possible reason 

of this is including the delimiter “.” within the label values.  

A more recent XML prefix-based labelling scheme that is also based on fractions, 

called DPESF Encoding, was proposed by (He, 2015), in which the mid-point of self-

labels between two consecutive sibling nodes is stored in Numeric-Character format. 

To achieve this, (He, 2015) defined the rule to map each digit 𝑛 ∈ 𝑁 =

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} in the numerator to a matching character 𝑐 ∈ 𝐶 =

{𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽}. For instance, (125 14)⁄  is expressed as 𝐵𝐶𝐹14. The author 

indicated the need to adjust their DPESF labelling scheme in order to fully support 

dynamic updates in XML data (He, 2015). Furthermore, as with other alpha-numeric 

prefix-based labelling schemes (presented next), (Duong and Zhang, 2005) (Duong 
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and Zhang, 2008) (Khaing and Ni Lar, 2006) (Assefa and Ergenc, 2012), DPESF is 

prone to overflow problems due to repetitive long labels that can lead to collisions 

during XML querying (Subramaniam and Haw, 2014b) (Assefa and Ergenc, 2012) 

(Khaing and Ni Lar, 2006) (O'Connor and Roantree, 2010a) (Su-Cheng and Chien-

Sing, 2009).  

Alphanumeric prefix-based labelling schemes (Duong and Zhang, 2005) (Duong and 

Zhang, 2008) (Khaing and Ni Lar, 2006) utilise both integers and letters to construct 

XML tree node labels. Usually the number represents the level of an XML tree node 

followed by letter(s) representing the positional identifier of a parent node, 

concatenated with the separator “.” before adding letter(s) signifying the current 

node’s self-label. As the number of siblings within the same level increases, using the 

alphanumeric update technique may lead to redundancy in some label values during 

arbitrary insertions (Sans and Laurent, 2008) (Subramaniam and Haw, 2014b) 

(Khaing and Ni Lar, 2006). For example, consider the labelled XML tree shown in 

Figure 3.4; according to the LSDX (Labelling Scheme for Dynamic XML data) (Duong 

and Zhang, 2005) labelling algorithm, there are two possible values that can be 

assigned to the new node, 𝑧, but both possible values cause collisions. As shown in 

Figure 3.4, 𝑧 can be assigned the label value “2𝑎𝑐𝑏. 𝑐𝑏”, which causes a collision with 

node 𝑦 or 𝑧 =  “2𝑎𝑐𝑏. 𝑏” as this is a duplicate of the label of node 𝑚. Likewise, when 

node 𝑣 is inserted before node 𝑥, a duplicate label value “1𝑎. 𝑐𝑏” is generated.  

To prevent such collisions, Assefa and Ergenc (Assefa and Ergenc, 2012) have 

proposed the OrderBased labelling scheme. The main concept of this scheme is to 

keep a global level based on horizontal order and parent order. OrderBased differs 

 

Figure 3.4 LSDX labelling scheme (possible collision cases) 



Chapter 3: Literature on XML Labelling Schemes 

41 
 

from other prefix-based labelling schemes by initialising the node labels for the whole 

tree on a level-by-level basis, irrespective of ancestors. For each level of the XML tree 

starting from the most left node OrderBased starts assigning letters as node self-

labels from “𝑏”, “𝑐”, … , “𝑧”, “𝑧𝑏” … etc. Unlike other alphanumeric prefix-based labelling 

schemes, this numbering technique ensures the uniqueness of label values. However, 

because letters representing nodes’ self-labels are assigned according to the nodes’ 

horizontal distance from the left-most node in the same level, finding the ancestors of 

a given node requires repeated visits to all parent nodes of the previous levels. 

Therefore, determination of ancestor-descendant and LCA relationships is costly in 

this labelling scheme (Silberstein et al., 2005) (Haw and Amin, 2015).  

Instead of using alphanumeric values, various prefix labelling schemes have been 

proposed that use binary strings to represent label values lexicographically (see 

Section 5.4 for lexicographical order definition). In ImprovedBinary (Li and Ling, 

2005a), the root is first labelled as an empty string. Then, the leftmost child and the 

rightmost child of the root are labelled as “01” and “011”, respectively. This is to 

ensure positions for new node insertions as first sibling and last sibling (Duong and 

Zhang, 2008). Afterwards, the middle nodes are sequentially labelled based on two 

main rules: 

 If 𝑙𝑒𝑓𝑡 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙 𝑠𝑖𝑧𝑒 ≤  𝑟𝑖𝑔ℎ𝑡 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙 𝑠𝑖𝑧𝑒 then the label of the middle node is 

formed by changing the last digit of the right self-label to zero and is concatenated 

to the digit “1”.  

 Otherwise, the middle node label is the same as the left self-label, and 

concatenated to the digit “1”.  

When updating an XML tree, repeated insertions before the first rightmost child may 

cause duplicate node labels. Hence, ImprovedBinary cannot completely avoid re-

labelling (O'Connor and Roantree, 2010a) (Duong and Zhang, 2008) (Li and Ling, 

2005b). 

To overcome the limitation of the ImprovedBinary scheme several prefix labelling 

schemes have been proposed based on lexicographical order (Section 5.4) over 

binary strings. These include:- Cohen’s labelling scheme (Cohen et al., 2010), P-

PBiTree (Yu et al., 2005), VLEI (Kobayashi et al., 2005), IBSL (Hye-Kyeong and 

SangKeun, 2010), EBSL (O’Connor and Roantree, 2010b), V-CDBS (Li et al., 2008), 

XDAS (Ghaleb and Mohammed, 2013), and dynamic XDAS (Ghaleb and Mohammed, 

2015). However, as with the ImprovedBinary approach all these schemes suffer from 
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huge label sizes and require re-labelling after frequent insertions (Kobayashi et al., 

2005) (O'Connor and Roantree, 2010a) (Duong and Zhang, 2008) (Li and Ling, 

2005b) (Duong and Zhang, 2005). 

Other prefix-based labelling schemes have used quaternary codes that are also 

based on the lexicographical order between node self-labels to support dynamic XML 

data. That of (Li and Ling, 2005b) is the first to use quaternary encoding (QED) to 

overcome the re-labelling problem in dynamic XML trees. QED encoding replaces the 

delimiter “.”  with the digit “0”, and used only the digits “1”, “2”, and “3” to generate 

self-labels by applying a recursive division function. However, such quaternary labels 

increase in size dramatically in the case of skewed insertion; by 2-bits per insertion. 

To control the growth rate of quaternary labels, (O’Connor and Roantree, 2012) 

introduced the SCOOTER labelling scheme.  

According to (Chiew et al., 2014a), SCOOTER (O’Connor and Roantree, 2012) is the 

most compact of dynamic labelling schemes, which controls the growth of label size 

when an XML database is updated via automatic reuse of the smallest deleted node 

label available. Based on this observation, this thesis is developed using the 

SCOOTER scheme in order to address the research question and objective 

(discussed in Chapter 5). Therefore, for a comprehensive understanding of this thesis, 

it is necessary to review the SCOOTER labelling scheme in some detail. 

3.4.3 The SCOOTER Labelling Scheme 

The SCOOTER scheme (O’Connor and Roantree, 2012) provides Scalable, Compact, 

Ordered, Orthogonal, Ternary Encoded, and Reusable labels (and hence the acronym 

SCOOTER). This section presents the initialisation and insertion mechanisms of the 

SCOOTER labelling scheme (here labels and self-labels are used interchangeably).  

This scheme initialises labels by first obtaining the maximum possible label size 

(called 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) based on the total number of child nodes (called 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡) 

using a logarithmic function in base-3. The first (left-most) child is assigned a label 

that consists of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 –  1) copies of digit 1, followed by the digit 2. Then, the 

labels of the remaining sibling nodes were determined lexicographically based on the 

label of the node to their immediate left. Figure 3.5 shows an example of initial self-

labels generated by the SCOOTER scheme to represent the six child nodes of an 

element 𝑝 (i.e. 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 = 6 and so the  𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 2).  
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The SCOOTER labelling scheme controls the expansion of the quaternary labels by a 

compact adaptive growth mechanism to handle insertions. Three types of sibling node 

insertions are considered by this scheme: inserting after the right most node, inserting 

before the left most node, and inserting between two consecutive nodes. 

When inserting after the right-most node, labelled 𝑁𝑜𝑙𝑑, the new node is assigned a 

𝑁𝑛𝑒𝑤 label based on the start digit value of 𝑁𝑜𝑙𝑑, as shown in Table 3.1: 

Table 3.1 Inserted after the right-most-node, 𝑵𝒐𝒍𝒅 starts with 𝒅 = 1, 2, or 3 

Insert after (the right most node) 𝑁𝑜𝑙𝑑 that starts with 𝑑 ∈ {1, 2, 3}𝐼𝑛𝑡𝑒𝑟 

Condition Rule Example 

If 𝑑 =  1 𝑁𝑛𝑒𝑤 is “2” 𝑁𝑜𝑙𝑑 =  “112”  
then 𝑁𝑛𝑒𝑤 =  “2” 

If 𝑑 =  2 𝑁𝑛𝑒𝑤 is “3” 𝑁𝑜𝑙𝑑 =  “22”  
then 𝑁𝑛𝑒𝑤 =  “3” 

If 𝑑 =  3 Apply adaptive growth 
mechanism  

𝑁𝑜𝑙𝑑 =  “3312”  
then 𝑁𝑛𝑒𝑤 =  “3313” 

Basically the SCOOTER’s growth-adaptive mechanism treats a node’s label (say 

𝑁𝑜𝑙𝑑) as a combination of a prefix and a postfix string. The prefix string represents all 

consecutive ‘3’s at the beginning of 𝑁𝑜𝑙𝑑, and the rest are the postfix string. Based on 

the value and length of the 𝑁𝑜𝑙𝑑 postfix string, 𝑁𝑛𝑒𝑤 is allocated as described in 

Table 3.2: 

  

 

Figure 3.5 Example of initial SCOOTER self-labels 
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Table 3.2 Inserted after the right-most-node, 𝑵𝒐𝒍𝒅 starts with 3 

Insert after 𝑁𝑜𝑙𝑑 that starts with 𝑑 = 3; use adaptive growth mechanism  

Condition Rule/Action Example 

If 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 is empty 

i.e. 𝑁𝑜𝑙𝑑 consists of 

all ‘3’s 

1  𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 prefix 

length + 1 

2 Compute 𝑁𝑛𝑒𝑤 postfix by calling the 

SCOOTER’s initialisation method 

passing 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 equals to 𝑁𝑛𝑒𝑤 

postfix length. 

3 𝑁𝑛𝑒𝑤 =  𝑁𝑜𝑙𝑑  𝑁𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 

𝑁𝑜𝑙𝑑 =  “33”  

then 𝑁𝑛𝑒𝑤 =

 “3312” 

If 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 is NOT 

empty 

1 𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 postfix 

length 

2 Compute 𝑁𝑛𝑒𝑤 postfix by calling the 

SCOOTER’s initialisation method on 

the basis that 𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 equals to 

𝑁𝑜𝑙𝑑 postfix length. 

3 𝑁𝑛𝑒𝑤 =

 𝑁𝑜𝑙𝑑 𝑝𝑟𝑒𝑓𝑖𝑥  𝑁𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥 

𝑁𝑜𝑙𝑑 =  “3312”  

then 𝑁𝑛𝑒𝑤 =

 “3313” 

Notice that after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions the label size increases 

by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1). This is because when 𝑁𝑜𝑙𝑑 consists completely of ‘3’s, the 

new 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 allocated for 𝑁𝑛𝑒𝑤 is increased as follows:  

 𝑁𝑛𝑒𝑤 prefix length = 𝑁𝑜𝑙𝑑 prefix length + 𝑁𝑜𝑙𝑑 postfix length; i.e., length of 

𝑁𝑜𝑙𝑑 

 𝑁𝑛𝑒𝑤 postfix length = 𝑁𝑜𝑙𝑑 prefix length + 1 

 New maximum label size = 𝑁𝑛𝑒𝑤 prefix length + 𝑁𝑛𝑒𝑤 postfix length 

The same adaptive growth mechanism is applied for insertion before the left-most 

node, but takes into account the number of consecutive ‘1’s at the beginning of 𝑁𝑜𝑙𝑑  

instead of consecutive ‘3’s. Table 3.3 shows some examples of SCOOTER labels 

generated when 10 new nodes are inserted repeatedly before the left most node, 

𝑛𝑜𝑙𝑑. 
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Table 3.3 Example of skewed insertions before the left most node in SCOOTER 

 Node labels Node labels Node labels Node labels 

Insert after node 1123 1112 22313 3333 

1 1122 11112 22312 3332 

2 112 111112 223 333 

3 1112 1111112 222 332 

4 11112 11111112 22 33 

5 111112 111111112 2 32 

6 1111112 1111111112 12 3 

7 11111112 11111111112 112 2 

8 111111112 111111111112 1112 12 

9 1111111112 1111111111112 11112 112 

10 11111111112 11111111111112 111112 1112 

 

The SCOOTER scheme has also provided an 

adaptive growth mechanism to handle insertions 

between the two nodes nleft and nright, labelled 

as 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively (see Figure 

3.6). In this case, generating a new label (say 

𝑁𝑛𝑒𝑤) relies on the length of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 

as follows:  

 If 𝑵𝒍𝒆𝒇𝒕 is shorter than 𝑵𝒓𝒊𝒈𝒉𝒕: 

In this case, 𝑁𝑙𝑒𝑓𝑡 could be a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡. If it is, then 𝑁𝑛𝑒𝑤 is allocated based 

on an 𝑁𝑡𝑒𝑚𝑝 value which corresponds to the remains of 𝑁𝑟𝑖𝑔ℎ𝑡 after trimming the 

prefix part that matches that of 𝑁𝑙𝑒𝑓𝑡. The algorithm then locates 𝑁𝑛𝑒𝑤 based on the 

first digit (say 𝑑𝑓) in 𝑁𝑡𝑒𝑚𝑝 as follows (see Table 3.4): 

  

 
Figure 3.6 Insert between 

nodes 
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Table 3.4 Inserted between nodes, 𝑵𝒍𝒆𝒇𝒕 is a prefix of 𝑵𝒓𝒊𝒈𝒉𝒕 

When 𝑁𝑙𝑒𝑓𝑡 is a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡; where 𝑁𝑟𝑖𝑔ℎ𝑡 =  𝑁𝑙𝑒𝑓𝑡  𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑡𝑒𝑚𝑝 starts 

with a digit 𝑑𝑓 ∈ {1, 2, 3} 

Condition Rule/Action Example 

If 𝑑𝑓  =  3 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡  ‘2’ 𝑁𝑙𝑒𝑓𝑡 =  “23” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “2333”   

then 𝑁𝑛𝑒𝑤 =  “232” 

If 𝑑𝑓  =  2 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡  ‘12’ 𝑁𝑙𝑒𝑓𝑡 =  “23” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “232”   

then 𝑁𝑛𝑒𝑤 =  “2312” 

If 𝑑𝑓  =  1 1 𝑁𝑛𝑒𝑤 =  𝑁𝑙𝑒𝑓𝑡 

2 Locate the position 𝑝 of the first not ‘1’ 

digit 𝐷 in 𝑁𝑡𝑒𝑚𝑝 

3 Add the ‘1’s at the beginning of 𝑁𝑡𝑒𝑚𝑝 

to end of 𝑁𝑛𝑒𝑤.    

4 If 𝐷 is ‘3’, 𝑁𝑛𝑒𝑤  ‘2’ 

5 If 𝐷 is ‘2’, 𝑁𝑛𝑒𝑤  ‘12’ 

𝑁𝑙𝑒𝑓𝑡 =  “23” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “23112”   

then 𝑁𝑛𝑒𝑤 =  “231112” 

However, if 𝑁𝑙𝑒𝑓𝑡 is not a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 but is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡, this indicates 

that there is at least one deleted node between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡. To re-use such a 

deleted label for 𝑁𝑛𝑒𝑤, first the position (𝑝 ≥ 1) of first different digit between 𝑁𝑙𝑒𝑓𝑡 

and 𝑁𝑟𝑖𝑔ℎ𝑡 is detected, and accordingly the following actions are taken (see Table 

3.5):  
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Table 3.5 𝑵𝒍𝒆𝒇𝒕 shorter that, but not a prefix of, 𝑵𝒓𝒊𝒈𝒉𝒕 

When 𝑁𝑙𝑒𝑓𝑡 is not a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 but is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡, where the first 

different digit 𝐷 between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 in position 𝑝 ≥ 1 

Condition Rule/Action Example 

If 𝑝 =  1;  

i.e. 𝑁𝑙𝑒𝑓𝑡 and 

𝑁𝑟𝑖𝑔ℎ𝑡 differ by their 

first digit. 

𝑁𝑛𝑒𝑤 is the SCOOTER self-label 

after 𝐷; obtained by call SCOOTER 

next-sibling method used in the 

initialisation process assuming 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1. 

𝑁𝑙𝑒𝑓𝑡 =  “12” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “2112” ; 

so 𝐷 = "1"  

then 𝑁𝑛𝑒𝑤 =  “2” 

If 𝑝 > 1 1 𝑁𝑛𝑒𝑤 is assigned the substring of 

𝑁𝑙𝑒𝑓𝑡 from its start up to 𝑝 − 1; 

i.e. the similar digits at the 

beginning of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡. 

2 𝑆  =  is the SCOOTER self-label 

after 𝐷; obtained by call 

SCOOTER next-sibling method 

used in the initialisation process 

assuming 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1. 

3 𝑁𝑛𝑒𝑤 = 𝑁𝑛𝑒𝑤  𝑆 

𝑁𝑙𝑒𝑓𝑡 =  “212” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “2232” ; 

so 𝐷 =  “1”, and 𝑝 =

 2   

then 𝑁𝑛𝑒𝑤 =  “22” 

 If 𝑵𝒍𝒆𝒇𝒕 is longer than 𝑵𝒓𝒊𝒈𝒉𝒕: 

In this case, the adaptive growth method applied for insertion after the right most node 

is used to allocate 𝑁𝑛𝑒𝑤 as a new node inserted after 𝑁𝑙𝑒𝑓𝑡. As an example, when 

𝑁𝑙𝑒𝑓𝑡 =  “1333” and 𝑁𝑟𝑖𝑔ℎ𝑡 =  “2”, then 𝑁𝑛𝑒𝑤 =  “13332”. 

 If both 𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 are the same size: 

When both 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are the same size, there are two possible scenarios, as 

illustrated in Table 3.6: 
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Table 3.6 𝑵𝒍𝒆𝒇𝒕 and 𝑵𝒓𝒊𝒈𝒉𝒕 are the same size 

When 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are the same size, where the first different digit at position 𝑝 

Condition Rule/Action Example 

If 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 are 

lexicographically 

immediate neighbours 

(i.e. differ only in their 

last digit). 

𝑁𝑛𝑒𝑤 = 𝑁𝑙𝑒𝑓𝑡  “2” 𝑁𝑙𝑒𝑓𝑡 =  “12” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “13” ; 

then 𝑁𝑛𝑒𝑤 =  “122” 

Otherwise; i.e.  𝑁𝑙𝑒𝑓𝑡 and 

𝑁𝑟𝑖𝑔ℎ𝑡 are not 

lexicographically 

neighbours. This 

indicates there is a 

deleted label between 

𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡. 

1 𝑁𝑡𝑒𝑚𝑝 = 

substring(𝑁𝑙𝑒𝑓𝑡, 0, 𝑝 −

1). This makes 𝑁𝑡𝑒𝑚𝑝 

shorter than 𝑁𝑟𝑖𝑔ℎ𝑡. 

2 The SCOOTER’s algorithm 

used for insertion between 

𝑁𝑡𝑒𝑚𝑝 shorter than 𝑁𝑟𝑖𝑔ℎ𝑡 

(illustrated earlier) is invoked 

to generate 𝑁𝑛𝑒𝑤.   

𝑁𝑙𝑒𝑓𝑡 =  “122” , and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “133” ;  

 𝑁𝑡𝑒𝑚𝑝 = “1”, 

then 𝑁𝑛𝑒𝑤 =  “13” 

In general, the  adaptive growth-rate mechanism allows SCOOTER to generate more 

compact labels than the QED encoding method, but after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) 

insertions the label size increases by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1) leading to very large labels. 

Thus, as with most of prefix-based labelling schemes, SCOOTER also suffers from 

overflow problems (Section 4.3), especially in skewed insertions where the label size 

grows rapidly (Ghaleb and Mohammed, 2015) (Chiew et al., 2014a) (Ghaleb and 

Mohammed, 2013). Figure 3.7 shows an XML tree labelled by SCOOTER with the 

new node labels (the black nodes) after 100 skewed insertions to the right of node 𝑛1. 
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3.4.4 Labelling Schemes for Re-using Deleted Labels 

A substantial amount of research has focused on the development of dynamic 

labelling schemes that are capable of supporting XML updates. Most of this research 

has been confined to the impact of XML updates on label size and the computational 

complexity of the update cost while ignoring node deletion as part of XML updates. 

So, in these labelling schemes, when a node is deleted its label is just marked as 

deleted (O’Connor and Roantree, 2010b).  

Due to the possible occurrence of the overflow problem that may result from large 

labels being generated when updating XML data, there are very few XML labelling 

schemes that consider reusing deleted nodes’ labels to control the growth of label size 

during insertions (Hye-Kyeong and SangKeun, 2010) (O’Connor and Roantree, 

2010b) (Li et al., 2006b) (Liu and Zhang, 2016) (O’Connor and Roantree, 2012). 

When a new node is inserted at the same position as a deleted node in an XML tree, 

the new label generated is usually larger than the deleted label. If a deleted label with 

a smaller size is used instead, then the increase of label size can be better controlled. 

Motivated by this concept, the IBSL (Hye-Kyeong and SangKeun, 2010) and EBSL 

(O’Connor and Roantree, 2010b) XML labelling schemes were implemented to re-use 

deleted nodes’ labels of the type binary strings. Similarly, (Li et al., 2006b) introduced 

re-used QED code, which has been applied on quaternary strings as an enhancement 

to the QED labelling scheme (Li and Ling, 2005b). Nonetheless, these schemes have 

not only failed to generate the smallest available deleted label, but also were 

 

Figure 3.7 XML tree labelled by the SCOOTER scheme 
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unreliable and have produced duplicated labels that may cause ambiguity during the 

XML query process. For example, Figure 3.8 (adapted from (O’Connor and Roantree, 

2010b)) shows how the re-used QED scheme (Li et al., 2006b) generates duplicated 

labels when nodes 𝐶 and 𝐷 are inserted in that order before node 𝐴. 

Recently, the DPLS (Liu and Zhang, 2016) XML labelling scheme was developed to 

re-use deleted labels using their proposed technique, named “Reduction of a fraction 

operation” to minimise the storage space cost. This scheme focused on re-using 

deleted labels, in particular insertion cases, mainly when insertions and deletions take 

place alternatively between adjacent sibling nodes. Nonetheless, the complexity of 

decoding the fractional part of DPLS labels slows down the XML querying process, as 

discussed in Section 3.4.2. 

On the other hand, the SCOOTER labelling scheme (O’Connor and Roantree, 2012) 

was successfully designed to support dynamic XML and reuses deleted labels. 

However, the insertion methods applied by SCOOTER attempt to re-use only the 

smallest quaternary codes “2” and “3” if available, and do not guarantee the re-use of 

every deleted labels. The adaptive growth mechanism used in the SCOOTER scheme 

treats node labels as a combination of a prefix and a postfix string. As a result, after 

(3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions, the label size increases by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1), leading 

to very large labels, particularly in the case of skewed insertions (Ghaleb and 

Mohammed, 2015) (Chiew et al., 2014a) (Ghaleb and Mohammed, 2013). For 

example, it might be noticed from Table 3.3 in Section 3.4.3, that after relatively few 

insertions before the first child node, a newly generated label always starts with 

consecutive ‘1’s followed by a ‘2’, and then it begins to grow rapidly (by at least one 

digit per insertion).  

 

Figure 3.8 Reusing QED code example 



Chapter 3: Literature on XML Labelling Schemes 

51 
 

3.4.5 Summary of Prefix-based Labelling Schemes 

Prefix-based labelling schemes directly encode the parent of a node in an XML tree 

as the prefix of its label (Sans and Laurent, 2008) (Almelibari, 2015). The containment 

of the path information within each prefix-based label facilitates query processing, but 

because it is verbose prefix label sizes increases rapidly as the XML tree goes deeper 

(Haw and Lee, 2011) (O'Connor and Roantree, 2010a) (Kaplan et al., 2002) (Qin et 

al., 2017). Unfortunately, prefix labels naturally extend when XML data is updated via 

frequent insertions, causing overflow problems (Section 4.3).  

Many researchers have presented dynamic prefix-based labelling schemes based on 

several data types such as integers (Tatarinov et al., 2002) (O'Neil et al., 2004) (Xu et 

al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016), alphanumeric (Duong and Zhang, 

2005) (Duong and Zhang, 2008) (Khaing and Ni Lar, 2006) (Assefa and Ergenc, 

2012), binary strings (Li and Ling, 2005a), (Hye-Kyeong and SangKeun, 2010) 

(O’Connor and Roantree, 2010b) (Ghaleb and Mohammed, 2015) and quaternary 

codes (Li and Ling, 2005b) (Li et al., 2006b) (O’Connor and Roantree, 2012). 

Amongst these approaches, quaternary codes produce the most compact labels, 

except in the case of multiple skewed insertions. However, decoding large labels in 

quaternary labelling schemes is costly and slows down the query processing 

(O’Connor and Roantree, 2013) (Härder et al., 2007). 

In spite of the drawbacks of prefix-based labelling schemes, this class of labelling 

scheme appears to be more suitable for encoding large-scale dynamic XML data than 

other categories of labelling scheme (Sans and Laurent, 2008) (Li et al., 2006a) 

(Alkhatib and Scholl, 2009). Furthermore, prefix-based labelling schemes can support 

all structural relationship types, but they are less efficient in determining the 

ancestor/descendant and parent/child relationships than interval-based labelling 

schemes. Whereas interval-based schemes need extra information to support sibling 

relationships (Lin et al., 2013) (Yun and Chung, 2008). 

3.5 Multiplicative Labelling Schemes 

3.5.1 Structure and Concept 

Multiplicative labelling schemes (Weigel et al., 2005) (Yanghua et al., 2012) (An and 

Park, 2010) (Noor Ea Thahasin and Jayanthi, 2013) (Almelibari, 2015) (Subramaniam 

and Haw, 2014b) (Lee et al., 1996) (Kha et al., 2002) (Al-Shaikh et al., 2010) label 
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XML tree nodes in such a way that the structural relationships between nodes can be 

determined based on arithmetic computations (Haw and Lee, 2011) (Chiew et al., 

2014a) (Su-Cheng and Chien-Sing, 2009) (Assefa and Ergenc, 2012). The main 

concept in these schemes is to allocate node labels using atomic numbers defined by 

arithmetic properties based on their labels. Accordingly, determining the structural 

relationships between nodes is achieved by analysing the arithmetic properties of the 

numerical labels using mathematical principles (Almelibari, 2015) (Assefa and Ergenc, 

2012).  

In the prime numbering scheme (Wu et al., 2004) and the group-based prime number 

labelling scheme (An and Park, 2010), each node is given a unique (unrepeated) 

prime number as a self-label based on a top-down approach. A node label is the 

product of a node’s self-label and its parent’s label (see Figure 3.9). Structural 

relationships between nodes in these schemes are established by applying modular 

functions on node labels, as explained below. Alternatively, the Me-labelling scheme 

(Subramaniam and Haw, 2014b) uses odd numbers and the multiplication-division 

operation to interpret the structural relationships between XML tree nodes (Haw and 

Amin, 2015). On the other hand, Vector-based (Noor Ea Thahasin and Jayanthi, 

2013), DDE (Xu et al., 2009), Vector-encoding  (Xu et al., 2007), LSVP (Zhang and 

Dong, 2010), Order-Centric (Xu et al., 2012), and Vector Order-Based (Zhuang and 

Feng, 2012b) labelling schemes have been proposed based on the mathematical 

principles of vector order.  

Usually, multiplicative labelling schemes have the ability to simultaneously determine 

structural relationships and facilitate query processing (Liu and Zhang, 2016). 

However, the main drawback of this labelling scheme class is that they carry a high 

computational cost (Härder et al., 2007) (Min et al., 2007) (Liu and Zhang, 2016) (Haw 

and Lee, 2011) (Zhuang and Feng, 2012b) (Li and Ling, 2005b) (O’Connor and 

Roantree, 2012). Therefore, such labelling schemes are inappropriate for labelling 

large-scale XML documents.  

3.5.2 Related Schemes  

The most common multiplicative labelling scheme is the prime number labelling 

scheme introduced by (Wu et al., 2004). A prime number is a positive integer greater 

than 1 that it can only be divided by itself and 1. Based on this feature the prime 

number labelling scheme applies a depth-first traversal on XML tree to give each node 

a unique (unrepeatable) prime number as its self-label. Figure 3.9 shows an XML tree 
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labelled by the prime number labelling scheme. Starting from the root labelled with 

number “1” each node is labelled as a product of the node’s self-label and its parent’s 

label. 

In the prime-number labelling scheme, the ancestor-descendant relationship between 

two nodes can be determined using a modular function. For any two nodes 𝑢 and 𝑣, 𝑢 

is an ancestor of 𝑣 if, and only if, 𝐿𝑎𝑏𝑒𝑙(𝑢) 𝑚𝑜𝑑 𝐿𝑎𝑏𝑒𝑙(𝑣) =  0. To preserve the 

document order when the XML document is updated, the prime number labelling 

scheme uses the Simultaneous Congruence (SC) values based on Chinese 

Remainder Theorem (Martins, 2009). The document order then can be obtained by: 

𝑆𝐶 𝑚𝑜𝑑 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙  =  𝑔𝑙𝑜𝑏𝑎𝑙 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑜𝑟𝑑𝑒𝑟 Equation 3 

The SC value differs depending on the total number of nodes in the XML tree. 

Although the method used in the prime number labelling scheme (Wu et al., 2004)  

completely avoids re-labelling in case of XML updates, it requires the SC values to be 

re-computed when a node is inserted or deleted which consumes even more time 

than just re-labelling the appropriate nodes (Min et al., 2009) (Hye-Kyeong and 

SangKeun, 2010). In order to prevent SC values from growing overly large a list of SC 

values is indexed where each SC value represents the global document order for at 

least five nodes. However, for large-scale XML documents, the list of SC values is 

extremely large, which makes it costly in terms of storage and maintenance (Xu et al., 

2009) (Mirabi et al., 2012) (Ahn et al., 2017b). Furthermore, to derive the whole 

sequence of a node’s ancestors using the prime labelling scheme, additional SC index 

accesses are required which slows query processing (Härder et al., 2007). 

Nevertheless, the label’s values are limited to prime numbers and so big gaps left 

between label values result in wasted of storage.  

 

Figure 3.9 Prime number labelling scheme 
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Another multiplicative labelling scheme also uses modular functions and multiplication 

operations to determine structural relationships is Branch code (Yanghua et al., 2012). 

Each node in the Branch code scheme is labelled as a quad-tuple < 𝑏, 𝑔, ℎ, 𝑑 > that 

encodes information about its ancestors. For a node 𝑣, 𝑏(𝑣) is the 𝑏-code of the node 

𝑣, which is used as its self-label; this is obtained as the summation of 𝑔(𝑣) and ℎ(𝑣). 

The 𝑔(𝑣) value preserves the number of the siblings of node 𝑣’s ancestors, whereas 

the ℎ(𝑣) value holds the order of 𝑣’s ancestor within its siblings. Both 𝑔(𝑣) and ℎ(𝑣) 

values are computed using recursive functions tracing the node 𝑣’s ancestor’s 

siblings. Finally, 𝑑(𝑣) is the depth of node 𝑣 within an XML tree, 𝑇. 

Despite the fact that Branch code accelerates query processing by providing each 

node an informative label in terms of its ancestors, the recursive functions used to 

construct these labels are complicated and time consuming (Lizhen and Xiaofeng, 

2013). The authors of Branch code (Yanghua et al., 2012) asserted that their 

proposed scheme has an inaccurate estimate of the probability of producing false 

positive results representing the structural relationships in very large or very deep 

XML trees. In addition, Branch code does not support document order and is not 

applicable for dynamic XML documents because it requires re-computing 𝑔 and ℎ 

values in the instance of new insertions (Lin et al., 2013).   
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Other multiplicative labelling schemes (Noor 

Ea Thahasin and Jayanthi, 2013) (Xu et al., 

2009) (Xu et al., 2007) (Zhang and Dong, 

2010) (Xu et al., 2012) (Zhuang and Feng, 

2012b) have been introduced based on the 

arithmetical principles of vector order (Assefa 

and Ergenc, 2012). A vector, 𝑉, is an object 

with magnitude (weight) and direction (path) 

that can be represented as a binary tuple, 𝑉 =

 (𝑥, 𝑦), where 𝑥 and 𝑦 are positive integers as illustrated in Figure 3.10; adapted from 

(Xu et al., 2007). 

In (Xu et al., 2007) Vector-encoding for labelling dynamic XML trees was designed 

using the interval-based labelling approach, as based on the following vectors 

properties:  

1. A vector 𝑉 = (𝑥, 𝑦) has an angle ∅ with respect to the 𝑥-axis, the gradient of 𝑉 

(denoted by 𝐺(𝑉)) is computed as 𝐺(𝑉) =  𝑦 𝑥⁄ ; where 𝐺(𝑉) ≡ tan (∅)  

2. For vectors 𝐴 = (𝑥𝑎 , 𝑦𝑎), 𝐵 = (𝑥𝑏 , 𝑦𝑏), and 𝐶 = 𝐴 + 𝐵 = (𝑥𝑎 + 𝑥𝑏 , 𝑦𝑎 + 𝑦𝑏), then 

𝐺(𝐴) > 𝐺(𝐶) > 𝐺(𝐵), where 𝐺(𝐴) > 𝐺(𝐵) if, and only if, (𝑦𝑎 ∗ 𝑥𝑏) > (𝑥𝑎 ∗ 𝑦𝑏) 

Vector-encoding (Xu et al., 2007) represents interval-based labels in vector form. 

Each node is labelled as < 𝑠𝑡𝑎𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑒𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 >, whereas the 

vectors’ gradient values are used to preserve the order of the assigned vectors. When 

a new node 𝐶 is inserted between nodes 𝐴 and 𝐵, a vector value is allocated to 𝐶 

according to the second property above.  

In (Xu et al., 2012), the authors have shown how Vector-encoding (Xu et al., 2007) 

can be applied to prefix-based labelling schemes as well. They have also stated that 

Vector-encoding performs better than QED (Li and Ling, 2005b) in skewed insertions. 

However, because each vector, 𝑉, is stored successively as start-vector and end-

vector in UTF-8 encoding, the vector based labelling scheme suffers from overflow 

when the label size grows beyond the storage limit (O’Connor and Roantree, 2012).   

 

Figure 3.10 Graphical 
representations of vectors 
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To minimize the size of vector values so as to avoid overflow problems (Ni et al., 

2012) introduced a numeric-based XML labelling scheme. In this approach, a positive 

pair value. (𝑥, 𝑦). of a vector, 𝑉, is referred to as a radical sign value defined by √yx =

𝑥. For two nodes 𝐴 = (𝑥𝑎 , 𝑦𝑎) and 𝐵 = (𝑥𝑏 , 𝑦𝑏): 

 𝐴 <  𝐵  if and only if  √𝑦𝑎
𝑥𝑎  <  √𝑦𝑏

𝑥𝑏  

 𝐴 =  𝐵  if and only if  √𝑦𝑎
𝑥𝑎  =  √𝑦𝑏

𝑥𝑏  

In a numeric-based labelling scheme, the insertion mechanism between two nodes 

depends on whether the two radical sign labels to be compared have the same root; 

i.e.  √𝑦𝑥 = 𝑥. Since there is no integer between two consecutive integers, the new 

node label must take a root value, 𝑥, greater than 𝑥𝑎 and/or 𝑥𝑏 to properly maintain 

the document order. However, this procedure leaves bigger gaps between vector 

values than in the Vector-encoding labelling scheme (Xu et al., 2007). Furthermore, 

when comparing two radical sign labels with different roots, the query time becomes 

expensive because of the “power (𝑥, 𝑦)” operation, as shown in the experimental 

results of (Ni et al., 2012).  

Many researchers (Noor Ea Thahasin and Jayanthi, 2013) (Xu et al., 2009) (Zhang 

and Dong, 2010) (Zhuang and Feng, 2012b) have minimised the size of vector labels 

as well as supporting XML updates. However, labelling schemes based on vector 

principles are not suitable for encoding extensive dynamic XML data (Sans and 

Laurent, 2008) (Noor Ea Thahasin and Jayanthi, 2013) (Xu et al., 2010) (O'Connor 

and Roantree, 2010a) for the reasons discussed below.   

3.5.3 Summary of Multiplicative Labelling Schemes 

Multiplicative labelling schemes can uniquely identify structural relationships directly 

from node labels using mathematical computations (Haw and Lee, 2011) (Chiew et 

al., 2014a) (Su-Cheng and Chien-Sing, 2009) (Assefa and Ergenc, 2012). However, 

such arithmetic computations are expensive and complex, which slows down XML 

query processing (Yanghua et al., 2012) (Lizhen and Xiaofeng, 2013) (Min et al., 

2007) (Mirabi et al., 2012). This category of XML labelling scheme also suffers from 

large label sizes because it leaves big gaps between node label values that may lead 

to overflow problems (Ahn et al., 2017b) (Xu et al., 2009) (O’Connor and Roantree, 

2012) (Haw and Amin, 2015) (Al-Shaikh et al., 2010). In general, this class of labelling 

schemes is inappropriate for dynamic XML data (Jiang et al., 2009) (Catania et al., 
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2005b) (Li and Ling, 2005b) (Silberstein et al., 2005) since they usually require label 

values to be re-computed when new nodes are inserted. 

3.6 Hybrid Labelling Schemes 

Hybrid labelling schemes use combinations of existing labelling methods to balance 

the weaknesses of one labelling technique with the strengths of another in order to 

develop faster query processing (Qin et al., 2017) (Haw and Amin, 2015) (Haw and 

Lee, 2011) (Su-Cheng and Chien-Sing, 2009) (O'Connor and Roantree, 2010a). 

Thonangi proposed the Sector-based labelling scheme (Thonangi, 2006) to minimise 

the label size of the interval-based labelling scheme (Li and Moon, 2001) by 

representing the labels intervals as sectors (Sans and Laurent, 2008). The sectors are 

assigned to node labels so that the angle created by the sector of a parent node at 

the origin totally encloses all of its descendants. In order to determine ancestor-

descendant and document order relationships quickly, Sector-based labelling 

schemes use mathematical formulae similar to those modelled in multiplicative 

labelling schemes.  

In the Sector-based labelling scheme a 

node A is labelled as an interval < 𝐴𝑟, 𝐴𝑠 >, 

where 2𝐴𝑟  is the radius of the sector 

assigned to the node A, and 𝐴𝑠 is the 

smallest radial distance from the node A to 

the reference 𝑥-axis, as shown in Figure 

3.11 (adapted from (Thonangi, 2006)). Such 

a representation reduces the interval label 

size by storing only the logarithm of a 

sector, 𝐴𝑟, rather than the sector’s radius, 

2𝐴𝑟. To label the descendants of node A through depth-first traversal, first the smallest 

value, k, such that 2k is the minimum possible number of children of node A, is found. 

Then, each child of A  (e.g., node 𝐷 in Figure 3.11) is assigned a sector within an 

expanded sector of A (denoted A′ in Figure 3.11) to ensure the parent/child and 

ancestor/descendant relationships are represented.  

The Sector-based labelling scheme can recognise the ancestor-descendant 

relationship between node A =< Ar, As > and node D =< Dr, Ds > using arithmetic 

comparison, as follows: 

 

Figure 3.11 Graphical representation 

of node A and D as sectors 
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A is ancestor of D if, and only if,  A s ≤  Ds  X   
2Ar

2Dr
 ≤  A s + 1 

The Sector-based labelling scheme manages the parent/child relationship as 

ancestor/descendant relationship, but does not consider the sibling relationship. 

Furthermore, this scheme does not support dynamic XML documents and requires 

expensive arithmetic computations as in multiplicative labelling schemes (O’Connor 

and Roantree, 2010b) (O'Connor and Roantree, 2010a).  

The VASLS -prime labelling scheme (VASLS stands for "Valid ASCII String labelling 

scheme”) (Qin et al., 2013) is a hybrid labelling approach that adapts the prime 

number labelling scheme (Wu et al., 2004) to represent the structural information of 

XML tree nodes using VAS (Valid ASCII String). The VAS labelling scheme is applied 

to manage the node’s document order. The valid ASCII strings are those from the 

33𝑟𝑑   to 126𝑡ℎ described in VAS labelling scheme as 𝑆 =

(𝑠1𝑠2 … 𝑠𝑚|33 ≤ 𝐴𝑆𝐶𝐼𝐼(𝑠𝑖) ≤ 126) in lexicographical order (Chapter 5, Section 5.4).  

The intention in designing the VASLS-prime labelling scheme was to avoid re-labelling 

in a dynamic XML environment without sacrificing XML query performance. However, 

as the experimental results of (Qin et al., 2013) have shown, VASLS-prime labels are 

larger than the labels generated by Dewey (Tatarinov et al., 2002), DDE (Xu et al., 

2009), QED (Li and Ling, 2005b) and ORDPATH (O'Neil et al., 2004). In terms of 

frequent updates at the leaf level retaining document order, VASLS-prime does not 

show any improvement in update time because of the need to re-calculate SC values 

in the prime number labelling scheme. Overall, the VASLS-prime labelling scheme 

suffers from large label sizes and does not support updating XML data.  

A more recent hybrid labelling scheme is that of Dynamic XDAS (XML Documents 

Addressing and Sub-netting), as proposed by (Ghaleb and Mohammed, 2015). 

Dynamic XDAS generates binary labels using the masking technique of the XDAS 

labelling scheme (Ghaleb and Mohammed, 2013), whereas IBSL (Improved Binary 

String Labelling Scheme) (Hye-Kyeong and SangKeun, 2010) has been employed to 

avoid re-labelling when an XML document is updated. However, this scheme 

increases storage cost as storage required for dynamic XDAS labels increases rapidly 

in the case of frequent skewed insertions (Liu and Zhang, 2016) (Haw and Amin, 

2015). 

In summary, hybrid labelling schemes (Qin et al., 2017) (Kaplan et al., 2002) (He et 

al., 2005) (Chen et al., 2004) (Ghaleb and Mohammed, 2015) (Qin et al., 2013) 

(Thonangi, 2006) have the potential to support faster query processing by combining 

the advantages of two or more labelling schemes (Haw and Amin, 2015). However, 
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besides the fact that this class of labelling schemes do not support XML updates, 

constructing labels using hybrid approaches has so far proved to be computationally 

expensive (Haw and Lee, 2011) (Su-Cheng and Chien-Sing, 2009) (O'Connor and 

Roantree, 2010a) (Duong and Zhang, 2005) (Yun and Chung, 2008). 

3.7 Summary and Limitations of XML Labelling Schemes 

XML repositories available over the Internet have become more extensive and 

volatile. Consequently, dynamic labelling schemes have become essential to support 

efficient XML queries and updates (O'Connor and Roantree, 2010a) (Liu and Zhang, 

2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005). Several XML labelling 

schemes have been introduced to facilitate searching updatable XML data. In general, 

these schemes are categorised into four main classes based on their structure and 

the concepts used for generating node labels: interval-based, prefix-based, 

multiplicative, and hybrid labelling schemes.  

Consistent with the fundamental properties required for a complete dynamic labelling 

scheme (identified in Section 3.2), each of the existing labelling schemes is limited in 

one regard or another. A complete dynamic labelling scheme must be simultaneously 

updatable and efficiently support XML querying by determining the main structural 

relationships directly from node labels (Lizhen and Xiaofeng, 2013) (Härder et al., 

2007). Updating XML data remains the weakness in most of the current XML labelling 

schemes (Liu and Zhang, 2016) (Subramaniam and Haw, 2014b) (Yu et al., 2005) 

due to the natural conflict between the necessary requirements of update efficiency 

and those of query optimisation. Consequently, a labelling scheme must sacrifice one 

of the essential properties that make it a good dynamic labelling approach. As can be 

seen from the literature presented in this chapter, almost all of the existing labelling 

schemes suffer from large labels, which contribute to overflow problems; particularly 

after frequent skewed insertion.  

Motivated by this observation, it is important to understand the main reasons behind 

the occurrence of overflow problems and how the encoding techniques may provide a 

solution. Therefore, the next chapter will consider some of the background to 

encoding methods applied to store XML labels, and from which the research 

hypothesis of this thesis is derived. 
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3.8 Conclusion 

This chapter has presented the concept of XML labelling schemes and the state-of-

the-art in research into XML labelling schemes, particularly within a dynamic XML 

environment. The chapter highlighted the limitations and strengths of the four main 

categories of XML labelling schemes: interval-based, prefix-based, multiplicative, and 

hybrid. The main disadvantage of the current dynamic XML labelling schemes is their 

large label sizes, which can contribute to overflow problems. The next chapter 

considers the literature available on existing label storage schemes.  
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Chapter 4: Literature on Encoding Methods  

4.1 Introduction 

As can be seen from the state-of-the-art of dynamic XML labelling schemes illustrated 

in Chapter 3, all of the existing labelling schemes encounter difficulties when XML 

data are updated. For instance, when re-labelling existing nodes, inefficient structural 

relationship determination, wasteful storage size, and/or overflow problems. This is 

mainly due to the design of the labelling algorithms or the limitations of the encoding 

techniques used to store the XML labels.    

This chapter gives a degree of background to the encoding methods used for the 

storage of XML labels. The next section identifies the concept of the encoding scheme 

in the context of XML, followed by an explanation of the overflow problem in Section 

4.3. Section 4.4 presents a comprehensive overview of different label storage 

schemes that describe the storage consumption of label values, namely length field 

(Section 4.4.1), control tokens (Section 4.4.2), separators (Section 4.4.3) and prefix-

free codes (Section 4.4.4). In Section 4.5, several prefix-encoding methods are 

illustrated that have not, to date, been applied to XML labelling. Finally, Section 0 

concludes this chapter.  

4.2 Encoding methods 

Usually in the context of XML, the terms “labelling scheme” and “encoding scheme” 

are used interchangeably. Therefore, it is important to clarify and differentiate between 

the meaning of the term “encoding” as a labelling approach or as a storage 

mechanism. In the concept of a labelling scheme, an encoding scheme is referred to 

as codifying the node structure within an XML tree (O'Connor and Roantree, 2010a), 

whereas in terms of storage mechanisms, an encoding method represents how data 

is physically stored on disk (O’Connor and Roantree, 2013). In this thesis, the term 

“encoding method” is used to indicate the notion of the storage mechanism.      

A key factor for all XML dynamic labelling schemes is how their labels are physically 

encoded, decoded, and stored on a computer (O’Connor and Roantree, 2013) (Xu et 

al., 2012). In implementation, labels are actually stored on disk as binary numbers 

with either a fixed length (i.e., fixed number of bits for all label values) or variable 
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length format (depending on the size of the labels’ binary representation) (Mirabi et 

al., 2012). However, the logical representation of a label value is quite different; for 

instance, in prefix labelling schemes the delimiter “.” is encoded and stored separately 

from the label value (Li et al., 2008) (Tatarinov et al., 2002). Therefore, the logical 

interpretation of a label in the computer immediately affects the label size on disk and 

the computational cost of encoding/decoding between logical and physical 

representations (O’Connor and Roantree, 2013).  

In a dynamic labelling scheme where the labels change, there are two main reasons 

that may cause the re-labelling of nodes when XML is updated (O’Connor and 

Roantree, 2013). The first is when arbitrary insertions are not enabled by the node 

insertion algorithms within a labelling scheme, such as in Dewey Order encoding 

(Tatarinov et al., 2002) and extended Dewey (Lu et al., 2005b); the second is the 

overflow problem produced by a labelling scheme that allows limited number of 

insertions, such as in QED (Li and Ling, 2005b), the Vector-order labelling scheme 

(Xu et al., 2007), SCOOTER (O’Connor and Roantree, 2012) and ImprovedBinary (Li 

and Ling, 2005a). 

4.3 The Overflow Problem  

The overflow problem is relevant to the label storage scheme used to encode and 

store the values of the labels in a computer system, where all nodes labels are stored 

either as fixed-length or variable length binary numbers at implementation. Fixed-

length labels are subject to overflow and are not scalable (Li and Ling, 2005b) 

(O’Connor and Roantree, 2013), because re-labelling of all existing labels is required 

if all the assigned bits have been used up by frequent insert processes (O'Connor and 

Roantree, 2010a). On the other hand, using variable length labels necessitate storing 

the size of the label in addition to the label itself (O’Connor and Roantree, 2012). 

Therefore, as the label size increases due to insertions into an XML tree, the fixed 

length field (e.g., 4 bits) assigned to store the size of the label length becomes 

inadequate, and leads to the overflow problem (Mirabi et al., 2010). Even though this 

problem can be solved by increasing the size of the length field (e.g., from 4 bits to 6 

bits), it cannot avoid re-labelling entirely and may waste storage space (Mirabi et al., 

2010) (Li et al., 2008).  

If there is insufficient storage space to accommodate a new node label, in practice a 

part of the new label might be missed and so it will appear as a duplicated label (Li 

and Ling, 2005a) (Liu et al., 2013). Otherwise, it might cause data corruption by 
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overwriting the content of an adjacent memory location.  This is known as the overflow 

problem (Li and Ling, 2005b). Figure 4.1 illustrates an example of the overflow 

problem, assuming QED labels and a limited storage capacity of 2-bytes (for 

simplicity).  

Because prefix-based labelling schemes keep the ancestor labels attached to the 

node self-label for rapid determination of structural relationships, many prefix labelling 

schemes, such as ImprovedBinary (Li and Ling, 2005a), LSDX (Duong and Zhang, 

2005), ORDPATH (O'Neil et al., 2004) and Dewey Order (Tatarinov et al., 2002), 

suffer from overflow problems due to the verbosity of their labels. 

4.4 Label Storage Schemes  

This section gives a comprehensive review on label storage schemes, and 

demonstrates the storage consumption of label values, i.e., how labels values are 

actually presented in the computer and their effects on the dynamic labelling 

mechanism.  

As illustrated in Section 4.3, fixed-length labels are always subject to the overflow 

problem and are not scalable, therefore, this section considers only variable length 

representation. According to (Härder et al., 2007), all existing dynamic (variable 

length) label storage schemes can be categorised into four classes: length fields, 

control tokens, separators and prefix-free code.  

4.4.1 The Length Field  

The fundamental concept of length fields is to store the length of a node label, 𝐿𝑖, 

directly before the nodes’ label value, 𝑂𝑖 (Härder et al., 2007). The lengths of nodes’ 

 

Figure 4.1 Example of overflow problem 
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labels can vary depending on the node position within the XML tree. A simple 

approach is to assign a fixed length bit number, 𝐿𝑖,  to specify the length of the label 

(O’Connor and Roantree, 2013). However, in reality there is rarely advance 

knowledge of the possible number of node insertions that may subsequently occur. As 

a consequence, in dynamic XML the number of node insertions is limited to the 

capacity implied by the fixed-length field, leading to the overflow problem, such as in 

V-CDBS (Variable-length Compact Dynamic Binary String) labelling schemes (Li et 

al., 2006a).   

4.4.2 Control Tokens  

The key concept of control tokens is their use to indicate the position of a label value 

within a specific-level interval. These tokens are then used to determine how the 

subsequent bit sequence of a label value can be interpreted (by some form of 

metadata) (Härder et al., 2007) (O’Connor and Roantree, 2013). 

An example of control tokens is UTF-8 (Yergeau, 2003), which is employed in Dewey 

Order (Tatarinov et al., 2002) to encode Dewey labels, where each component of the 

Dewey path is encoded in UTF-8 and then concatenated in the same path order 

(Tatarinov et al., 2002). In UTF-8, a binary number representing the Dewey ID is of 

variable length depending on the size of the Dewey ID integer value. For instance, an 

integer value between 0 and 27 is stored in a maximum of 8-bits, starting from 

0xxxxxxx, where x represents the bits used for the integer value (Li et al., 2008). Here, 

the first bit sequence in the label is the control token “0”, denoting that the label length 

is 1 byte. If the first bit is the control token it starts with “1”, then the number of bytes 

used to represent the label can be calculated by counting the total number of 1s 

before the control token “0” bit is encountered. Table 4.1 (adapted from (O’Connor 

and Roantree, 2013)) demonstrates the use of control tokens in the UTF-8 encoding 

method. However, as can be seen from Table 4.1, the UTF-8 used to encode Dewey 

IDs can only code up to 231 labels (Li and Ling, 2005b) (O’Connor and Roantree, 

2013) (O’Connor and Roantree, 2012). Similarly, the Vector-order labelling (Xu et al., 

2007) and extended Dewey labelling schemes (Lu et al., 2005b) use UTF-8 encoding, 

and therefore only permit a limited number of insertions (O’Connor and Roantree, 

2012). 
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Table 4.1 UTF-8 encoding method 

Value range Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 

0 – (27 -1 ) 0xxxxxxx      

27 – (211 – 1) 110xxxxx 10xxxxxx     

211 – (216 -1) 1110xxxx 10xxxxxx 10xxxxxx    

…
 

…
 

…
 

…
 

…
 

…
  

226 – (231 – 1) 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 

4.4.3 Separators  

In prefix-based labelling schemes, the (separator) delimiter “.” is encoded and stored 

separately from the label itself (Li et al., 2008) (Tatarinov et al., 2002). A separator 

reserves a predefined bit sequence to indicate its interpretation as a delimiter, rather 

than a part of the label value. 

An encoding approach to symbolise the separator is to reserve an m-bit code as a 

number in base k (Härder et al., 2007). For example, if k = 3, which has a maximum 

number of 2 bits, this represents the codes: “0” =  00, “1” =  01, “2” =  10, and 3 =

 “11”, then “11” is a possible code to encode the separator. For example, a prefix label 

of value “1.5.11” is encoded as (01 11 01 01 11 01 00 10) (spaces added for clarity), 

where “11” indicates a separator.  

Unlike the control token approach, separators do not preserve comparability (Härder 

et al., 2007). Suppose node N1 has a value “1.5.11” =  (01 11 01 01 11 01 00 10), and 

node N2  =  “1.5.7”, encoded as (01 11 01 01 11 10 01). Then, bit-by-bit comparison 

implies N1 <  N2 whereas “1.5.11” >  “1.5.7”. Therefore, during decoding, the 

separators must be detected from the actual label value components. To remove such 

ambiguity, the quaternary encoding QED (Li and Ling, 2005b) and SCOOTER 

(O’Connor and Roantree, 2012) have employed their own separator storage scheme. 

For example, QED uses digit “0” for encoding the separators only, and therefore the 

separator code size remain constant regardless of label size. However, this approach 

decelerates a bit-by-bit or byte-by-byte comparison operation during decoding 

because of the process needed to recognize bit “0” or “00” as a separator, rather than 

the binary representation of the code itself (Härder et al., 2007). Consequently, 

identifying “0” as a separator slows down query performance due to the associated 
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expensive decoding time, particularly when an XML document has a deep tree 

representation (Ghaleb and Mohammed, 2013). Nevertheless in the case of frequent 

skewed insertions, the size of new nodes self-label codes will overflow (Ghaleb and 

Mohammed, 2015) (Liu and Zhang, 2016) (Chiew et al., 2014a) (Ghaleb and 

Mohammed, 2013).  

4.4.4 Prefix-Free Codes 

Prefix-free codes are based on the proposition  of (Elias, 1975) that a prefix set, S, is 

said to be a prefix code if, and only if, no member of S is the beginning of another. In 

other words, a prefix set, S, is uniquely identifiable where no member in the set, S, is a 

prefix to any other member in S (O’Connor and Roantree, 2013). For example, set 𝑆 =

{0, 1, 2, 3, 4, 5,6, 7} is a prefix set, while the set 𝑋 = {1, 2, 3, 4, 22}  is not a prefix set 

since “2” is a prefix of “22”. Therefore, a prefix-free code approach often requires 

fewer bits to represent a label than a control token scheme. This is because the 

prefix-free codes can be adjusted according to the number of members within a prefix 

set if a suitable assignment of codes and value ranges are defined (Härder et al., 

2007).  

An example of a dynamic labelling scheme that uses prefix-free codes is ORDPATH 

(O'Neil et al., 2004). The compressed binary string representing an ORDPATH label 

are consecutive 𝐿𝑖 𝑄𝑖⁄   bit-strings stored with variable length (O'Neil et al., 

2004). 𝐿𝑖 𝑄𝑖⁄   represents the ith-component of an ORDPATH label, where the Li sub-

string identifies the length of bits in which the binary number representing the ith-

component of an ORDPATH label exists within an Oi range value. For example, 

consider the ORDPATH label value “1.5.3”, a compressed binary string representing 

the second component “5” (where i =  1, note that component count starts from 0) is 

𝐿1 𝑄1⁄   = 01 101⁄    (= 3/5, i.e., the binary number equivalent to integer number 5 is 

“101”, which is of 3-bits length). This encoding method was further compressed by 

omitting further unnecessary bit-spaces, considering that the Li bit-string “01” requires 

Oi of length 0 to represent the binary digit 1. However, this technique makes the 

decoding process in ORDPATH more time consuming (Mirabi et al., 2012). 

4.4.5 Limitation of Label Storage Schemes 

Variable length field and separator storage scheme work properly if the XML 

document is rarely updated. However, when these storage schemes are used in 

dynamic labelling schemes such as ImprovedBinary (Li and Ling, 2005a), and CDBS 
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(Li et al., 2006a), the overflow problem occurs because of the bit sequence reserved 

for a separator as well for the label length value. Consequently, all length field label 

storage schemes are exposed to re-labelling when frequent node insertions occur.  

On the other hand, control tokens and prefix-free code storage schemes are widely 

applied in dynamic XML labelling schemes for encoding numerical and alphanumeric 

labels such as: LSDX (Duong and Zhang, 2005), Dewey Order (Tatarinov et al., 

2002),  extended Dewey (Lu et al., 2005b),  Vector-order labelling scheme (Xu et al., 

2007), and ORDPATH (O'Neil et al., 2004). Such labelling schemes are not scalable 

due to the long labels generated by control token and prefix-free code schemes 

(O’Connor and Roantree, 2013) (O’Connor and Roantree, 2012) (Chiew et al., 2014a) 

(Ghaleb and Mohammed, 2015).   

To overcome with such limitations, there have been many prefix-encoding methods 

that can be used to store XML labels. These are presented in the next section.   

4.5 Prefix-encoding Methods  

Currently, one of the most common data compression techniques are prefix codings 

(Gagie et al., 2015) (Karpinski, 2009 ). A prefix code is a variable-length code suitable 

for coding a set of text or integers whose size is unknown beforehand. Research has 

shown that prefix-encoding methods give a higher compression ratio than other 

encoding schemes (Walder et al., 2012) (Klein and Ben-Nissan, 2010) (Bača et al., 

2010) (Fredriksson and Nikitin, 2007) (Somasundaram and Domnic, 2007). Although 

many prefix-encoding methods exist in the literature, they have never been applied to 

code XML labels. Motivated by this, some of these encoding methods have been 

tested to compress XML labels in this thesis. This section presents such encoding 

schemes.   

4.5.1 Fibonacci of Order 𝒎 ≥  𝟐 

Fibonacci code, as a well-known representative of prefix code, was introduced by 

(Fraenkel and Klein, 1985), and is based on Fibonacci numbers (Knott, 1998). 

Generalised Fibonacci code of order 𝑚 ≥  2 was introduced by (Apostolico and 

Fraenkel, 1987) as follows:  

Definition 1: Fibonacci numbers of order  𝒎 ≥  𝟐 : 

𝐹𝑖
(𝑚)

=  𝐹𝑖−1
(𝑚)

+ 𝐹𝑖−2
(𝑚)

+ ⋯ + 𝐹𝑖−𝑚
(𝑚)

 , for 𝑖 ≥ 1, Equation 4.1 
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where 𝐹𝑗
(𝑚)

= 0, for 𝑗 ≤ −2 and 𝐹−1
(𝑚)

=  𝐹0
(𝑚)

= 1 

Examples of Fibonacci numbers of order 𝑚 = 2 and 𝑚 = 3 are presented in Table 4.2 

below (adapted from (Walder et al., 2012)).  

Table 4.2 Sample of Fibonacci numbers of order 2 and 3 

i -2 -1 0 1 2 3 4 5 6 7 8 9 10 

𝐹𝑖
(2)

 0 1 1 2 3 5 8 13 21 34 55 89 144 

𝐹𝑖
(3)

 0 1 1 2 4 7 13 24 44 81 149 274 504 

Definition 2: Binary representation of Fibonacci code:  

Generalised Fibonacci code of order 𝑚 ≥ 2 (Apostolico and Fraenkel, 1987) states 

that for each non-negative integer value, 𝑁, there is an exact unique binary encoding 

of the form: 

𝑁 =  ∑ 𝑑𝑖𝐹𝑖 ,           𝑑𝑖  ∈  {0, 1}, 0 ≤ 𝑖 ≤ 𝑘

𝑘

𝑖=0

 Equation 4.2 

Such that there are no 𝑚 consecutive 1-bits within the summation result of Fibonacci 

numbers of order 𝑚, whereas each Fibonacci code ends up with exactly 𝑚 

consecutive 1-bits. This is called the 𝐹(𝑚) numeration system (Fraenkel, 1985). Table 

4.3 below shows some examples of Fibonacci code of order 2 and 3 for various 

values (spaces are added for clarity). 

Table 4.3 Some Fibonacci codes of order 2 and 3 

x 𝐹(2)(𝑥) 𝐹(3)(𝑥) 

1 11 111 

2 011 0111 

3 0011 00111 

4 1011 10111 

5 00011 000111 

6 10011 010111 

7 01011 100111 

…
   

100 00101000011 00000110111 

112 01000010011 00100100111 

Many researchers have used Fibonacci code for data compression. (Bača et al., 

2010) applied Fibonacci code of order 2 and order 3 to code for the compression of 

XML node stream arrays. (Gog, 2009) has shown that the use of Fibonacci code for 

Compressed Suffix Arrays (CSAs) can provide fast access times and minimal space 
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for text of low compressibility. Whereas, in (Fischer, 2009) the author applied 

Fibonacci coding and ternary coding to examine if prefix-free code could lead to 

shorter labels for Lowest Common Ancestors in trees. (Lelewer and Hirschberg, 1987) 

has proved that Fibonacci coding is a good choice for compressing small integers and 

for fast decoding. Fibonacci codes can not only be used as a simple alternative to 

Huffman codes as studied in (Przywarski et al., 2006), but also to dense codes for 

large text-based compression systems  (Klein and Ben-Nissan, 2010). (Apostolico and 

Fraenkel, 1987) have suggested Fibonacci codes as compression codes for the 

unbounded transmission of strings.  

The following two sections describe encoding integers 𝑥 > 0 in Fibonacci codes of 

order 2 and order 3, respectively. 

4.5.1.1 Fibonacci coding of order 𝒎 = 𝟐 

A Fibonacci encoding algorithm of order 2 utilises a stack for bit storage since it stores 

the bits in reverse order. For an integer, 𝑥, the Fibonacci code of order 𝑚 =  2 

(referred to as 𝐹(2)(𝑥) ) algorithm is described as follows:  

1 Initialise 𝐹(2)(𝑥) to empty.  

2 Find the 𝑖𝑡ℎ index of the largest Fibonacci number, such that 𝐹𝑖
(2)

≤ 𝑥. 

3 If 𝐹𝑖
(2)

≤ 𝑥 , compute 𝑥 = 𝑥 −  𝐹𝑖
(2)

 and push the 1-bit to the stack. Otherwise, 

push the 0-bit to the stack. 

4 Set 𝑖 = 𝑖 − 1 , if 𝑖 ≥ 0 repeat step 3. 

5 While the stack is not empty, remove a bit from the stack and place it at the 

end of 𝐹(2)(𝑥). 

6 Add the 1-bit at the end of 𝐹(2)(𝑥). 

Example 1: Suppose integer x =  112. Because 𝐹9
(2)

= 89 ≤ 112 <  144 = 𝐹10
(2)

 , i is 

set to 9. So, bit 1 is pushed to the stack (i.e., stack =  1). Then, a new x is computed 

such that x =  112 –  89 =  23, and 𝑖 = 𝑖 − 1 = 8. Since 𝐹8
(2)

= 55 > 23, a 0-bit is 

pushed to the stack (i.e., stack =  10) and i =  7. Going back to step 3, again a 0-bit is 

pushed to the stack (i.e., stack = 100) since 𝐹7
(2)

= 34 > 23 and i =  6. Since 𝐹7
(2)

=

21 < 23 , 1-bit is pushed to the stack (i.e., stack = 1001) and the new x =  23 –  21 =

 2, and i =  5. Since 𝐹5
(2)

, 𝐹4
(2)

, 𝐹3
(2)

, and 𝐹2
(2)

 are <  2, 0-bits are pushed to the stack 

(stack = 10010000) until i =  1, where 𝐹1
(2)

= 2 ≤ 𝑥 = 2. Then, push 1-bit to the stack 

(i.e. stack = 100100001) and x =  2 − 2 =  0. However, i still >  0, so 0-bit(s) are 
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pushed to the stack until i =  0; i.e., stack = 1001000010. Then, the bits are popped 

out of the stack in reverse order and assigned to 𝐹(2)(𝑥)  = 0100001001. Finally, 1-bit 

is added to the end of 𝐹(2)(𝑥) , thus the result of  𝐹(2)(112) = 01000010011.  Table 

4.3 above shows some examples of the Fibonacci code of order 2 for various 

integers. 

4.5.1.2 Fibonacci coding of order 𝒎 > 𝟐 

To generate Fibonacci code of an order greater than 2, the Fibonacci sum 𝑆𝑥
(𝑚)

 

introduced by (Apostolico and Fraenkel, 1987) must be used. 

Definition 3: Fibonacci sum 

𝑆𝑥
(𝑚)

=  {

0,     𝑓𝑜𝑟 𝑥 < −1

∑ 𝐹𝑖
(𝑚)

𝑥

𝑖=−1

,      𝑓𝑜𝑟 𝑥 ≥  −1
 Equation 4.3 

Subsequently, the Fibonacci code of order 𝑚 >  2 encoding algorithm is as follows: 

1 If 𝑥 = 1, then 𝐹(𝑚)(𝑥) = 𝑚 consecutive 1-bits  END. 

2 If 𝑥 = 2, then 𝐹(𝑚)(𝑥) = 0 followed by 𝑚 consecutive 1-bits  END. 

3 For 𝑥 > 2, find 𝑘 such that 𝑆𝑘−2 
(𝑚)

< 𝑥 ≤  𝑆𝑘−1
(𝑚)

, then let 𝑄 = 𝑥 − 𝑆𝑘−2
(𝑚)

− 1. 

4 Compute 𝐹(𝑚)(𝑄). 

5 Reverse the bit ordering in 𝐹(𝑚)(𝑄), then append 01𝑚 as a suffix to the reversed 

𝐹(𝑚)(𝑄). If the length of 𝐹(𝑚)(𝑄) < 𝑚 + 𝑘, append 0-bits to the beginning of the 

𝐹(𝑚)(𝑄) code to make an 𝐹(𝑚)(𝑥) of length 𝑚 + 𝑘. 

Table 4.4 demonstrates the first 10 values of 𝑆10
(3)

. 

Table 4.4  Fibonacci sum for the first 10 values of Fibonacci of order 3 

i -1 0 1 2 3 4 5 6 7 8 9 10 

𝐹𝑖
(3)

 1 1 2 4 7 13 24 44 81 149 274 504 

𝑆𝑖
(3)

 2 4 8 15 28 52 96 177 326 600 1104 2031 

Example 2: Assume integer 𝑥 = 112. Since 𝑆5
(3)

= 96 < 112 ≤ 177 = 𝑆6
(3)

, thus 𝑘 =

7. Consequently, 𝑄 =  112 –  96 –  1 =  15. As 15 =  2 +  13 =  𝐹1
(3)

+  𝐹4
(3)

; therefore 

𝐹(3)(15) = 01001. Finally, to compute 𝐹(3)(112), first reverse 𝐹(3)(15) bits =  10010. 

Then append 0111 to the end. That is; 𝐹(3)(112) = 100100111. Since length of 

(100100111) is 9 <  𝑚 +  𝑘 =  3 +  7 =  11, then append 0-bits to the beginning of 
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the code. Thus, 𝐹(3)(112) in binary =  00100100111. More examples of Fibonacci 

code of order 3 for various integers can be seen in Table 4.3. 

4.5.1.3 Fibonacci Label Storage Scheme   

The Fibonacci label storage approach proposed by (O’Connor and Roantree, 2013) 

represents the middle ground between the length field and the control token scheme. 

It computes the variable length size of an XML label value based on the Fibonacci 

sequence (Chandra, 1999) and the Zeckendorf representation (Weisstein, 1999a). 

The main principle is that any positive integer n can be represented as the sum of one 

or more distinct discrete Fibonacci numbers that satisfies the Zeckendorf 

representation of n. For example, integer number 112 can be represented as 

summation of Fibonacci numbers as (112 =  89 +  13 +  5 +  3 +  2) or (112 =

 89 +  21 +  2). However, only the second representation is Zeckendorf since the first 

one has three consecutive Fibonacci numbers (i.e., 2, 3, 5).  

(O’Connor and Roantree, 2013) used the Fibonacci-Zeckendorf principle for the 

encoding and decoding of the length field of a label value; which is stored on the disc 

directly before the label value itself. For example, to encode the length of a node label 

value “101101” (length =  6 𝑏𝑖𝑡𝑠), the Zeckendorf representation of the label length is 

first found (𝑒. 𝑔. , 6 =  5 +  1), after which each number in the Fibonacci sequence is 

compared and assigned bit “1” for those that match a member of the Zeckendorf 

representation; otherwise, value “0” is assigned. Therefore, for a length value 6, the 

binary string of Fibonacci encoding is “1001”, as explained in Figure 4.2. The 

decoding is simply the reverse procedure.  

4.5.2 Lucas Coding 

Lucas numbers were introduced by Edouard Lucas (MacTutor, 1996) based on 

Fibonacci sequence properties. The Lucas numbers, {𝐿𝑛}0
∞ are defined by  

 

Figure 4.2 Example of a Fibonacci label storage scheme 
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𝐿𝑛+2 =  𝐿𝑛+1 + 𝐿𝑛 ; 𝑓𝑜𝑟 𝑛 ≥ 0, 𝑤ℎ𝑒𝑟𝑒 𝐿0 = 2, 𝑎𝑛𝑑 𝐿1 = 1. Equation 4.4 

The first ten Lucas numbers are shown in Table 4.5. 

Table 4.5 Examples of Lucas numbers 

𝑛 0 1 2 3 4 5 6 7 8 9 
𝐿𝑛 2 1 3 4 7 11 18 29 47 76 

Each positive integer can be uniquely represented in binary as sums of distinct Lucas 

numbers (Brown Jr, 1969). In (Association, 2011), the authors approved that coding 

theorems for Lucas numbers correspond to Fibonacci code of order 2 coding 

theorems (i.e., using Zeckendorf states) (Keller, 1972). (Chergui, 2015) also provided 

the proof for using Zeckendorf theorems for Lucas numbers to generate unique binary 

representations for any positive integer. 

Definition 4: Zeckendorf theorem for Lucas numbers 

Every natural number, 𝑥, satisfying 0 ≤ 𝑥 ≤  𝐿𝑘, for 𝑘 ≥ 1, has a unique binary 

representation in the form: 

𝑥 =  ∑ 𝛼𝑖𝐿𝑖
𝑘−1
𝑖=0 , 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖  ∈ {0,1} , 

Such that {
𝛼𝑖𝛼𝑖+1 = 0, 𝑓𝑜𝑟 𝑖 ≥ 0
𝛼0𝛼2 = 0                       

 

 

Equation 4.5 

Like Fibonacci (order 2), Lucas coding stores the bits in reverse order and so it uses 

stacks. Before starting the coding algorithm, the position of the first two Lucas 

numbers are swapped after computing all the necessary Lucas sequences 

(Association, 2011), as follows: 

𝐿1 𝐿0 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7 

1 2 3 4 7 11 18 29 

For each integer, 𝑥, the Lucas code (referred to as 𝐿(𝑥)) is described as follows:  

1 Initialise 𝐿(𝑥) to empty.  

2 Find the 𝑖𝑡ℎ index of the largest Lucas number such that 𝐿𝑖(𝑥)  ≤ 𝑥. 

3 If 𝐿𝑖(𝑥) ≤ 𝑥 , compute 𝑥 = 𝑥 − 𝐿𝑖(𝑥) and push the 1-bit to the stack. Otherwise 

push the 0-bit to the stack. 

4 Set 𝑖 = 𝑖 − 1 , if 𝑖 ≥ 0 repeat step 3. 

5 While the stack is not empty remove a bit from the stack and place it at the 

end of 𝐿(𝑥). 
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6 Add the 1-bit at the end of 𝐿(𝑥). 

For example, let 𝑥 =  24. Since 24 <  29, 𝑖 = 6. So bit 1 is pushed to the stack (i.e., 

stack = 1). Then new 𝑥 is computed such that 𝑥 =  24 –  18 =  6, and 𝑖 = 𝑖 − 1 = 5. 

Since 𝐿5 = 11 > 6,  push 0 to the stack and decrement 𝑖. Since 𝐿4 = 7 > 6,  push 0 to 

the stack (now stack =  100) and 𝑖 = 𝑖 − 1 = 3. For 𝐿3 = 4 < 6,  push 1 to the stack 

(i.e., stack = 1001) and thus the new 𝑥 =  6 −  4 =  2, 𝑖 = 2. Since 𝐿2 = 3 > 2, push 

1 to the stack (i.e., stack = 10010), and 𝑖 = 1. Since 𝐿1 = 2 ≤ 2, push 1 to the stack 

(now stack = 100101) and 𝑥 =  2 − 2 =  0. Since 𝑖 > 0 keep decreasing 𝑖 and 

pushing 0-bit to the stack until 𝑖 = 0. That is, the stack =  1001010. Finally, 𝐿(𝑥) 

equals the reverse of the stack and add 1-bit at the end. As a result, 𝐿(24) =

 01010011. For more clarity, Table 4.6 below shows the performance of Lucas code 

for various values 18 <  𝑥 <  29: 

Table 4.6 Examples of Lucas codes 

Lucas sequence 
𝐿1 𝐿0 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 Extra 

1-bit 1 2 3 4 7 11 18 
𝐿(24) 0 1 0 1 0 0 1 1 
𝐿(21) 0 0 1 0 0 0 1 1 
𝐿(19) 1 0 0 0 0 0 1 1 

4.5.3 Elias-Delta Coding 

Introduced by Peter Elias (Elias, 1975), the Elias-delta code is one of the most 

commonly used prefix code. It is defined as follows. For each integer value, 𝑥, the 

Elias-delta code 𝐸(𝑥) can be obtained by these steps:  

1 Let 𝐵(𝑥) be the binary representation of 𝑥 excluding insignificant 0-bits (at the 

left of the binary number). Let 𝐵’(𝑥) be 𝐵(𝑥) without the foremost 1-bit (most-

left 1-bit).  

2 Let 𝐿𝑁(𝑥) be the length of 𝐵(𝑥); i.e., number of bits of 𝐵(𝑥).  

3 Let 𝐿(𝑥) be the binary representation of 𝐿𝑁(𝑥). 

4 Let 𝑆(𝑥) be a sequence of 0-bits of size equals to the (length of 𝐿(𝑥)) − 1. 

5 The Elias-delta code is then generated as 𝐸(𝑥)  =  𝑆(𝑥)  𝐿(𝑥)  𝐵’(𝑥), where 

 means concatenating. 

Table 4.7 shows some examples of Elias-delta codes 𝐸(𝑥) for various values (spaces 

are added for clarity)  
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Table 4.7 Examples of Elias-delta codes 

Integer 𝒙 𝑩(𝒙) 𝑺(𝒙) 𝑳(𝒙) 𝑩’(𝒙) 𝑬(𝒙)  =  𝑺(𝒙)  𝑳(𝒙)  𝑩’(𝒙) 

1 1 - 1 - 1 

2 10 0 10 0 0 10 0 

3 11 0 10 1 0 10 1 

4 100 0 11 00 0 11 00 

10 1010 00 100 010 00 100 010 

19 10011 00 101 0011 00 101 0011 

50 110010 00 110 10010 00 110 10010 

100 1100100 00 111 100100 00 111 100100 

Williams (Williams and Zobel, 1999) applied Elias-delta and Elias-gamma codes to 

store integers in compressed form in order to improve the performance of disk access 

and data retrieval. Elias-delta code was also utilised by (Scholer et al., 2002) to 

compress inverted indices to speed up the query performance and query evaluation. 

Moreover, (Walder et al., 2009) used Elias-delta code to generate a compression 

scheme for an R-tree (Guttman, 1984) data structure in order to minimise the index 

file and reduce the query processing time. 

4.5.4 Elias-Fibonacci of Order 𝒎 ≥ 𝟐 

Elias-Fibonacci code was introduced by (Walder et al., 2012) as a combination of 

Elias-delta code and Fibonacci code of order 2, and is defined as follows:       

𝐸𝐹(𝑥) =  𝐹(2)(𝐿(𝑥)) 𝐵(𝑥) Equation 4.6 

Where 𝐵(𝑥) is the binary representation of 𝑥, 𝐿(𝑥)  is the length of 𝐵(𝑥), and 

𝐹(2)(𝐿(𝑥)) is the Fibonacci of order 2 of 𝐿(𝑥).  Elias-delta, Fibonacci of order 2 and 

order 3, and Elias-Fibonacci codes have been applied for the compression of XML 

node stream arrays by (Bača et al., 2010) and for the compression of the R-tree in 

(Chovanec et al., 2010).   
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Table 4.8 Examples of Elias Fibonacci (of order 𝒎 = 2 and 𝒎 = 3) 

Integer (𝑥) Elias Fib 2 = 𝐹(2)(𝐿(𝑥)) 𝐵(𝑥): Elias Fib 3 = 𝐹(3)(𝐿(𝑥)) 𝐵(𝑥): 

1 1 1 11 1 

2 01 10 011 10 

3 01 11 011 11 

4 001 100 0011 100 

5 001 101 0011 101 

10 101 1010 1011 1010 

19 0001 10011 00011 10011 

50 1001 110010 01011 110010 

100 0101 1100100 10011 1100100 

500 10001 111110100 000011 111110100 

In this thesis, a new Elias-Fibonacci (of order 3) code is purposed. The purposed 

algorithm basically uses of Fibonacci of order 3 instead of order 2; i.e., 𝐸𝐹(𝑥) =

 𝐹(3)(𝐿(𝑥)) 𝐵(𝑥). The Fibonacci code of order 3 here adds 0111 at the end, instead 

of 011. Examples of Elias-Fibonacci of order 2 and order 3 is given in Table 4.8 

(spaces added for clarity). A generalised method of Elias-Fibonacci (order 𝑚 > 2) is 

illustrated below.  

Definition 5: Elias-Fibonacci (𝒎 > 𝟐):  

Similar to the Elias-Fibonacci code presented by (Walder et al., 2012), the new Elias-

Fibonacci (𝑚 > 2) is a universal code for positive integers. Each Elias-Fibonacci (𝑚 >

2) code consists of two main parts. The second part is the binary representation of the 

integer, 𝑥, denoted as 𝐵(𝑥). The first part represents the length of 𝐵(𝑥) (referred to as 

𝐿(𝑥)) coded using Fibonacci code of order  𝑚 > 2, where the Fibonacci code of order 

𝑚 > 2 is ends with ‘0’  ′1’𝑚−1 bits instead of ‘01’. The purposed Elias-Fibonacci of 

order 𝑚 > 2 is described as follows: 

1. Compute 𝐵(𝑥), and let 𝐿(𝑥) be the length of 𝐵(𝑥). 

2. Compute 𝐹(𝑚)(𝐿(𝑥)); Fibonacci of order m code of 𝐿(𝑥), where 𝐹(𝑚) is ended 

by 01𝑚−1. 

3. The Elias-Fibonacci code of order 𝑚 > 2 is 𝐸𝐹(𝑚)(𝑥) =  𝐹(𝑚)(𝐿(𝑥)) 𝐵(𝑥), ( 

means concatenation). 

In this thesis, Elias-Fibonacci (of order 𝑚 ≥ 2) have been applied to compress the 

XML labels. The study has also covered the behaviour of the resulting codes in 

relation to the increment of the order value 𝑚. Chapters 6 and 7 present the details of 

the implimentation and discussion of this study, which has already been published at 

the WEBIST 2016 conference (Al-Zadjali and North, 2016).  
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4.6 Conclusion 

Whilst XML material has became more abundant, its heterogeneity and structural 

irregularity limit the management of the querying and update process within large-

scale XML databases. Although many XML labelling schemes have been proposed in 

the literture to facilitate XML querying, most of these have ignored the compactness of 

the labels generated. Consequently, current XML labelling schemes still suffer from 

huge label sizes that may lead to overflow problems in the case of frequent insertions. 

This is due to the design of the labelling algorithm and how it handles insertions as 

illustrated in detail in Chapter 3. 

An overview of the existing labelling storage schemes and their limitations have been 

presented in this chapter. Several perfix encoding methods have also been illustarted 

in this chapter. Although research (Williams and Zobel, 1999) (Chovanec et al., 2010) 

(Bača et al., 2010) (Scholer et al., 2002) (Walder et al., 2009) (Guttman, 1984) has 

shown the usefulness of some of these prefix-encoding methods for compression 

systems, they have never been applied to XML label compression. Motivated by this 

observation and the literture review represented in this chapter and Chapter 3, the 

research hypothesis of this thesis has thus been derived. The following chapter 

presents the research problem in detail, and gives a possible solution to the 

maniuplation and management of dynamic XML data, namely via the Base-9 XML 

labelling scheme proposed in this thesis. 
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Chapter 5: Base-9 Labelling Scheme for 

Dynamic XML Data 

5.1 Introduction 

The importance of dynamic XML labelling schemes has been established for 

accommodating the increasing significance of XML data management (Ghaleb and 

Mohammed, 2015) (Almelibari, 2015). Several XML labelling schemes have been 

introduced to process queries efficiently with minimum label size as well as to address 

the ability to process order-sensitve updates effecitively. Therefore, designing a 

dynamic labelling scheme that can preserve such properties whilst handling as many 

insertions as possible without re-labelling the existing labels is a challenging task, as 

demonstrated in the literature (Chapters 3 and 4).  

This chapter starts by specifing the research problem in the following section. Section 

5.3 presents the motivation and research hypothesis derived from the literture review 

presented earlier (Chapters 2, 3, and 4). This is followed by an overview of the 

proposed dynamic XML labelling scheme, named “Base-9”, in Section 5.4. Based on 

the lexicographical order defined in Section 5.4, the Base-9 labels initialisation 

algorithm and the insertion techniques are proposed in Sections 5.5 and 5.6, 

respectively. In Section 5.7, the use of Fibonacci coding for compressing and storing 

Base-9 labels is described. This chapter also describes the ability of the Base-9 

scheme to determine the structural relationships in Section 5.8. Finally, the chapter 

ends with a general conclusion in Section 5.9. 

5.2 Problem Identification 

During the lifecycle of an XML document there can be arbitrary insertions of new 

nodes. Various XML labelling schemes have been proposed to improve the storage 

and retrieval of XML data in a dynamic XML environment. According to (Härder et al., 

2007) and (Wu et al., 2004), a good dynamic XML labelling scheme must be compact, 

updatable and at the same time support the main operations of XML query processing 

by determining the common structural relationships efficiently and directly from the 

label values. However, there is a natural conflict between the requirements of update 

efficiency and those of query optimisation and, consequently, a labelling scheme 

usually sacrifices one of the essential properties that otherwise would have made it a 
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good dynamic labelling approach. As can be seen from the above-mentioned 

research literture in Chapter 3, all the existing labelling schemes suffer from the large 

labels that contribute to the overflow problem, particularly under frequent skewed 

node insertions. This is either due to a failure to consider the size of the labels 

generated whilst designing the labelling algorithms or due to the inadequacies of the 

encoding techniques used to store the XML labels.   

The current encoding mechanisims used to store XML labels are illustrated in Chapter 

4. These encoding methods have limited storage capacity and do not support frequent 

insertions in large-scale XML data, particularly in prefix-based labelling schemes. 

Therefore, there is a need to develop an efficient dynamic XML labelling approach 

that generates compressed XML labels not only during intialisation but also when the 

XML is subsequently updated. In order to achieve this, it is essential to investigate the 

possibility of storing XML labels in a compressed format, such as via prefix-encodings. 

5.3 Research Objective, Motivation and Hypothesis 

The main aim of this thesis is to develop an efficient XML labelling scheme focusing 

on the size of XML labels. A possible way to achieve this is using Fibonacci encoding 

to store XML labels in a form that is compact but will still support XML data updates. 

The efficiency of query processing can be dramatically increased because this allows 

for both fast decoding and short labels.  

In Chapter 4, several prefix-encoding methods were described such as Fibonacci 

encoding, Elias-delta, and Elias-Fibonacci coding (Walder et al., 2012). In spite of the 

existence of these methods and the research supporting their usefulness for data 

compression (see Chapter 4), prefix encodings have never been applied as an 

alternative encoding technique for XML labels. Motivated by this, all the presented 

prefix-encoding techniques described in Chapter 4 have been studied. The 

experimental implementation and results of this study are presented later in Chapter 6 

and Chapter 7, respectively. The comparison between these prefix-encoding methods 

in terms of the compression performance has been published at the WEBIST-2016 

conference (Al-Zadjali and North, 2016).    

As stated in Chapter 4, one of the properties of Fibonacci codes that there are no 𝑚 

consecutive 1-bits within the summation result of Fibonacci numbers of order 𝑚, 

whereas each Fibonacci code ends up with exactly 𝑚 consecutive 1-bits. Thus, for an 

integer, 𝑥, the appearance of 𝑚-consecutive 1-bits in Fibonacci codes 𝐹(𝑚)(𝑥) 

indicates the ends of the binary representation of 𝑥. Motivated by this, Fibonacci 
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encoding is considered a viable alternative storage mechanism for XML labels. The 

criteria of the existence of exactly 𝑚-consecutive 1-bits only at the end of each 

Fibonacci code can be used to indicate the separators in prefix-based labels, and so 

avoiding the need to store the delimiters separately. Nevertheless, the Fibonacci 

decoding process has the capability to facilitate the query processing as examined in 

this thesis.  

Seeing that Fibonacci coding represents non-negative integers 𝑥 > 0 into binary-string 

(see Section 4.5.1), it is fundamental to consider an XML labelling scheme that 

generates integer labels. However, at present, such schemes do not fully support 

node insertion, especially between two consecutive sibling nodes such as in Dewey 

(Tatarinov et al., 2002), DDE (Xu et al., 2009), DFPD  (Liu et al., 2013),  Vector-order 

(Xu et al., 2007), and ORDPATH (O'Neil et al., 2004). This is because the 

computation of a new integer label value between two consecutive siblings depends 

on the remaining integers that satisfy the XML labelling scheme properties. Similar to 

interval-based labelling schemes, the problem is obviously that there is a finite 

number of integers between two consecutive integer values (Ren et al., 2006) (Sans 

and Laurent, 2008) (Amagasa et al., 2003).  

On the other hand, XML labelling schemes that consider node order lexicographically 

(see Section 5.4) rather than numerically are more capable of handling skewed 

insertions (O’Connor and Roantree, 2013) (Chiew et al., 2014a), such as in QED (Li 

and Ling, 2005b), SCOOTER (O’Connor and Roantree, 2012), and ImprovedBinary 

(Li and Ling, 2005a). Both QED and SCOOTER use quaternary strings to label XML 

data, whereas ImprovedBinary employs binary strings. Recently, DPLS (Liu and 

Zhang, 2016) have enhanced the DFPD scheme  (Liu et al., 2013)  to handle node 

insertions based on lexicographical order. The DPLS labels initialisation algorithm 

concurs with the Dewey order labelling scheme (Tatarinov et al., 2002). In case of 

insertions, DPLS represents self-label values of the new nodes as fractions, which are 

then encoded in a similar manner to ORDPATH labels. Consequently, DPLS labels 

are subject to overflow problems, as with other floating-point labelling schemes (Liu et 

al., 2013) (Amagasa et al., 2003). Furthermore, the decoding process in DPLS inherits 

the complexity of ORDPATH coding, so the XML querying is relatively slow as stated 

in Section 4.4.4. 

According to (Chiew et al., 2014a), the SCOOTER labelling scheme is the most 

compact dynamic labelling scheme, which controls the growth of label size when XML 

is updated by automatically reusing the smallest deleted node label if available. As 

discussed in Section 3.4, in spite of the advantages of the SCOOTER labelling 
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scheme, as with other prefix-based labelling schemes it suffers from the overflow 

problem during skewed insertions, where the label size grows rapidly (Chiew et al., 

2014a) (Ghaleb and Mohammed, 2013). 

To enhance the performance of XML updates and simultaneously reduce label size 

via Fibonacci coding, a new XML labelling scheme is proposed in this thesis called 

“Base-9”. The main objective of the Base-9 scheme is to allocate as many integer 

labels as possible between any two consecutive nodes. Motivated by the SCOOTER 

labelling scheme (O’Connor and Roantree, 2012), the Base-9 scheme considers node 

order lexicographically using decimal strings rather than quaternary strings in order to 

enable a larger range of integers. The next section presents in detail the main 

principles of the new proposed Base-9 labelling scheme. 

5.4 The Principles of the Base-9 Labelling Scheme 

The aim of proposing the Base-9 scheme in this thesis is to facilitate the querying and 

updating process of dynamic XML trees without sacrificing storage overhead, 

especially in the case of recurrent node insertions. Therefore, whilst designing the 

Base-9 scheme, it is important to consider the desirable properties of a good dynamic 

XML labelling scheme (Chapter 3, Section 3.2): i.e., deterministic, efficient, compact, 

and dynamic. Accordingly, the principles of the Base-9 scheme are stated as follows: 

 The Base-9 labelling scheme uses decimal strings to represents XML labels as 

with a prefix-based labelling scheme. The initialisation process, as well as the 

structural relationship determination, are based on a lexicographical order (Hye-

Kyeong and SangKeun, 2010) (Li et al., 2008) rather than a numerical one.  

 The initialisation process verifies the compactness of Base-9 labels by considering 

the maximum number of child per node; this mechanisim is adapted from the 

SCOOTER labelling scheme (O’Connor and Roantree, 2012) and enhanced to 

use all the decimal strings including ‘0’ as part of the label values (explained in 

detail in the next section). 

 To preserve the node order lexicographically when XML is updated, the insertion 

algortihms generate labels by obtaining the nearest possible lexicographical 

number to the current label, where the new node is inserted immediately before or 

after the current label. This principle not only maintains the efficiency of structural 

relationship determination after XML updates, but also provides  for the re-use of 

deleted nodes labels if they exist. 
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 Base-9 labels are encoded using Fibonacci coding, which is updated to include 

integer ‘0’ (see Section 5.7). The Fibonacci encoding conserves minimum memory 

space by omitting the storage of delimaters, “.”. Nevertheless, the Fibonacci 

decoding process facilitates the XML query processing.   

In order to present a comprehensive understanding of the Base-9 initialisation, 

insertion and determination process, it is important to first present the definition of 

lexicographical order (Li et al., 2008) (Li and Ling, 2005b) (Li et al., 2006a) (Hye-

Kyeong and SangKeun, 2010) (Min et al., 2007) between Base-9 labels. 

Definition 5.1: Lexicographical Order 

Let ≺ denote a lexicographical ordering relation on the set {1, 2, … , 𝑛} such that 𝑖 ≺ 𝑗 

implies 𝑖 < 𝑗. The main principle of generating labels in the Base-9 scheme is 

basically that of generating all permutations 𝑎1𝑎2 … 𝑎𝑛 of the decimal number set 

{0,1, 2, … ,9} such that 𝑖 < 𝑗 implies 𝑎𝑖 < 𝑎𝑗. Given two Base-9 labels 𝐵𝐿= 𝑎1𝑎2 … 𝑎𝑛 (as 

the left node label) and 𝐵𝑅= 𝑏1𝑏2 … 𝑏𝑛 (as the right node label), then 𝐵𝐿 ≼ 𝐵𝑅 if, and 

only if, 𝐵𝐿 and 𝐵𝑅 both satisfy the following conditions: 

 𝐵𝐿  is lexicographically equal to 𝐵𝑅 if they are exactly the same. 

 𝐵𝐿  is lexicographically smaller than 𝐵𝑅 (i.e.,  𝐵𝐿 ≺ 𝐵𝑅) if: 

o During the lexicographical comparison from left to right of 𝐵𝐿 and 𝐵𝑅, 

the current digit of 𝐵𝐿 is smaller than the current digit of 𝐵𝑅. 

o 𝐵𝐿  is a prefix of 𝐵𝑅. 

5.5 Base-9 Labels Initialisation 

Similar to the SCOOTER labelling scheme (O’Connor and Roantree, 2012), the Base-

9 labelling scheme generates labels based on the combinatorial number system 

(Knuth, 1979). The combinatorial number system of degree 𝑘 > 0 is a correlation 

between positive natural numbers 𝑁 and 𝑘-combinations represented as strings in 

strictly increasing sequences 𝑎0 < 𝑎1 < ⋯ <  𝑎𝑘−1 <   𝑎𝑘 whereby, distinct numbers 

corresponding to distinct 𝑘-combinations are produced in lexicographic order (Knuth, 

1979). More formally, if a set 𝑆   𝑁, such that  𝑆 = {0, 1, … , 𝑛}, then a 𝑘-combination is 

a subset of 𝑘 distinct elements of 𝑆. Unlike SCOOTER, which uses a set of quaternary 

numbers 𝑆 = {0, 1, 2, 3}, Base-9 uses the decimal number set 𝑆 = {0, 1, … , 9} to 

generate distinct labels in lexicographical order.   

The algorithm used to assign the initial labels of the SCOOTER labelling scheme was 

adapted and enhanced to use the set of decimal numbers including ‘0’ rather than 
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quaternary numbers excluding ‘0’. In SCOOTER, the maximum number of labels with 

length 𝑘 is (3𝑘 − 1) labels. If (3𝑘 − 1) corresponds to the minimum number of digits 

needed to represent child nodes (referred to as childCount) in base 3, then a 

maximum label length 𝑘 (referred to as 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) can be computed by the 

formula ⌈𝑙𝑜𝑔3(𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1)⌉. Each child node is then assigned a SCOOTER label 

of a size no greater than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. 

Similarly, in Base-9 the maximum label size 𝑘 was determined based on the minimum 

number of digits required to represent 𝑥 child nodes using the formula 𝑘 = ⌈𝑙𝑜𝑔9(𝑥 +

1)⌉. Mathematically, there is a unique number 𝑘 such that 𝑏𝑘 = 𝑥 > 1 can be denoted 

as the logarithm of 𝑥 to base 𝑏; i.e., 𝑘 = 𝑙𝑜𝑔𝑏(𝑥). Base-9 was chosen here because 

during label initialisation only the set of 9 elements {1, … ,9} were used. The digit ‘0’ 

was reserved for later node insertions except for the root node, which is the only node 

labelled as “0”, due to the Fibonacci code properties (discussed in Section 5.7). To 

verify the compactness of the Base-9 labels, each label must be no longer than the 

permissible maximum label size (refered to as 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒). Starting with the first 

child node (the left most), this node will always have a Base-9 label of length equal to 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Figure 5.1 shows the XML tree of the XML “School” sample in Figure 

2.1 labelled here using the Base-9 scheme as a prefix-based labelling scheme. The 

root node (School) is assigned a label value “0”.  

As with the SCOOTER labelling scheme, in the Base-9 scheme the first child node’s 

label must not end with a digit less than ‘2’. Consequently, a node label must not 

consist entirely of consecutive ‘1’ digits. This is in order to maintain the lexicographical 

 

Figure 5.1 XML tree labelled by the Base-9 scheme 
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order between sibling nodes and support XML updates, particularly in the case of 

skewed insertions before the first child. To justify this rule, let us assume that the left 

most child node’s label can end with digit ‘0’ or ‘1’, as shown in the following example. 

Example: Suppose that 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 3, and the first child node, 𝑛1, has the self-

label “112”. When a new node, 𝑛𝑛𝑒𝑤, is added before 𝑛1, a possible Base-9 self-label 

(say 𝑁𝑛𝑒𝑤) is generated that corresponds to the immediate preceding lexicographical 

value to the 𝑛1 self-label; i.e., 𝑁𝑛𝑒𝑤 = ”111”. Accordingly, if 𝑗 > 1, new nodes are 

inserted before 𝑛1, then each 𝑛𝑗 is assigned a Base-9 self-label 𝑁𝑛𝑒𝑤 as follows: 

𝑁𝑛𝑒𝑤1 = ”111”, 𝑁𝑛𝑒𝑤2 = ”110”, 𝑁𝑛𝑒𝑤3 = ”11”, 𝑁𝑛𝑒𝑤4 = ”10”, 𝑁𝑛𝑒𝑤5 = ”1” , 𝑁𝑛𝑒𝑤6 =

”0" . Since only the root node can be labelled as “0”, the number of new sibling node 

insertions before the left most node is limited, in this example to 𝑗 = 5.  

In general, there are a total of 𝑛𝑘 𝑘-combinations representing the lexicographically 

ordered permutations of a set 𝑆 (with 𝑛 elements) and of length 𝑘; i.e., 9𝑘 in the Base-

9 scheme. Since there are restrictions on how often the digit ‘1’ can appear, in which 

the total number of 𝑘-combinations has to be adjusted to (9𝑘 − 1) in order to exclude 

the possible label value of all consecutive ‘1’s within a set of 𝑘-combinations. 

Therefore, the actual total number of 𝑥 nodes that fit within maximum label size 𝑘 in 

base 9 is (9𝑘 − 1). Accordingly, the computation of the maximum label length 𝑘 (=

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒) in SCOOTER is modified to 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = ⌈𝑙𝑜𝑔9(𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1)⌉,  

as illustrated in line 1 of the assigning Base-9 initials algorithm (refered to 

“AssignBase9Initials”) in Figure 5.2.  

Like the SCOOTER labelling scheme, in the Base-9 scheme the XML data has to be 

parsed to determine the number of child nodes (i.e. 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡) for each XML 

element before assigning the initial Base-9 labels. Then, by applying the 

 
Figure 5.2 Assigning Base-9 Initials algorithm 
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“AssignBase9Initials” algorithm, the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 of possible label values to be 

assigned to the child nodes of an element are computed in line 1. Notice that for each 

element 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 value differ depending on its 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 number. Based on 

this 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the label value of the first child (left-most) is allocated (lines 2-6) by 

generating a sequence of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) of ‘1’s followed by ‘2’. As the node 

order between sibling nodes is lexicographic, the rest of the child nodes from left to 

right (as represented in the XML tree) are then labelled, as based on the label of the 

adjacent left sibling, by calling the “nextSiblingLabel” algorithm in line 9. Notice that 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 can either be stored with parent node label or computed based on first 

child node as in first line of “AssignBase9Initials” algorithm. 

Figure 5.3 presents the algorithm used to compute the next sibling label (refered to as 

“nextSiblingLabel”) given the label value of the immediate left child node. The 

“nextSiblingLabel” algorithm is adapted from SCOOTER labelling scheme and 

enhanced to consider the set of 9 elements {1, … ,9}  instead of the quaternary string 

set {1, 2, 3}.  

Table 5.1 presents an example of Base-9 and SCOOTER initial self-labels generated 

assuming the number of child nodes is 50. The algorithms to assign initial labels of 

Base-9 and SCOOTER start by obtaining a 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 of 50 nodes’ labels (in line-

1); which matches with 2 in Base-9 and 4 in SCOOTER. According to the first two 

rules, the first child label is assigned the digit ‘2’ preceded by a sequence of 

(𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) of digit ‘1’. This corresponds to the label “12” in Base-9 and 

“1112” in SCOOTER (as shown in Table 5.1). The labels of the remaining child nodes 

are then each generated by incrementing the label of their immediate preceding node 

lexicographically using the set {1, … ,9}  in Base-9 and {1, 2, 3} in SCOOTER.   

 
Figure 5.3 Computing next sibling label algorithm 
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Table 5.1 Examples of Base9 and SCOOTER labels 

Child number Base-9  SCOOTER Child number Base-9  SCOOTER 

1 (1st from left) 12 1112 26 37 1333 

2 13 1113 27 38 2 

3 14 112 28 39 2112 

4 15 1122 29 4 2113 

5 16 1123 30 41 212 

6 17 113 31 42 2122 

7 18 1132 32 43 2123 

8 19 1133 33 44 213 

9 2 12 34 45 2132 

10 21 1212 35 46 2133 

11 22 1213 36 47 22 

12 23 122 37 48 2212 

13 24 1222 38 49 2213 

14 25 1223 39 5 222 

15 26 123 40 51 2222 

16 27 1232 41 52 2223 

17 28 1233 42 53 223 

18 29 13 43 54 2232 

19 3 1312 44 55 2233 

20 31 1313 45 56 23 

21 32 132 46 57 2312 

22 33 1322 47 58 2313 

23 34 1323 48 59 232 

24 35 133 49 6 2322 

25 36 1332 50 61 2323 

Maximum Label Size: in Base-9 is 2 and in SCOOTER is 4 

The node order between any two sibling nodes is determined lexicographically. For 

instance, assume nodes 𝑢 and 𝑣 share the same parent prefix-label and have self-

labels in Base-9 of “43” and “2193”, respectively. Since in digit-by-digit comparison the 

first digit in 𝑣 = ’2’ < ’4’, thus 𝑣 ≺ 𝑢 implies that node 𝑣 is a precedent sibling to node 

𝑢 in the XML tree.  

5.6 Handling Insertions  

This section describes how the Base-9 labelling scheme supports XML updates by 

controlling insertions based on the lexicographical relation between node labels, 

similar to the initialisation principles. In most cases, three distinct insertion scenarios 

are considered (see Figure 5.4): 

 Insert a new node after the right most child. 

 Insert a new node before the left most child. 

 Insert a new node between two consecutive sibling nodes. 

All these types of insertions focus on adding a sibling node in an XML tree, whereas, 

a child (i.e., leaf) node in the Base-9 labelling scheme is treated by 
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AssignBase9Initials algorithm. This thesis does not cover the case of inserting a 

node 𝑝 between a parent node 𝐴 and a child node 𝐵, where nodes 𝐴 and 𝐵 are linked 

directly in an XML tree (e.g., as in Figure 5.4).This process is a very expensive as it 

requires the re-labelling all of the new node descendants. (Liu et al., 2014) has 

investigated the possibility of minimising the number of re-labelling events in such a 

case by using a dynamic state transducer (DST) to decode node names during the 

on-line processing step. Nevertheless, the results of (Liu et al., 2014) study has 

shown that this case is still time consuming and requires the re-labelling of all the 

descendants of the new node 𝑝. In addition, (Mirabi et al., 2012) have shown that 

when a new parent node is inserted into an XML tree, all the prefix labelling schemes 

tested (O'Neil et al., 2004) (Mirabi et al., 2012) (Li and Ling, 2005b) required the re-

labelling of all the descendants of the newly inserted parent node. 

Unlike the SCOOTER scheme, the Base-9 labelling scheme handles insertions by 

finding the most immediate obtainable lexicographical value in comparison to the label 

of the node, 𝑛𝑜𝑙𝑑, where 𝑛𝑜𝑙𝑑  is the adjacent sibling to the new node, 𝑛𝑛𝑒𝑤. This 

approach also allows Base-9 to re-use the deleted labels (if any) automatically, as 

illustrated in the following sections. Notice here the terms “label” and “self-label” are 

used interchangeably.  

 

  

 

Figure 5.4 Types of insertions 
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5.6.1 Insertion After the Right-most Node  

When a new node 𝑛𝑛𝑒𝑤  is inserted after the right 

most node, 𝑛𝑜𝑙𝑑 , within an XML sub-tree (see 

Figure 5.5), the Base-9 labelling scheme computes 

the 𝑛𝑛𝑒𝑤 self-label (say 𝑁𝑛𝑒𝑤) by incrementing the 

self-label of 𝑛𝑜𝑙𝑑 (say 𝑁𝑜𝑙𝑑) lexicographically using 

the “InsertAfterRightMost” algorithm presented in 

Figure 5.6. The algorithm allocates a 𝑁𝑛𝑒𝑤 value 

following a similar notion to the “nextSiblingLabel” 

algorithm. That is, 𝑁𝑛𝑒𝑤 is generated by first 

comparing the length of 𝑁𝑜𝑙𝑑 with 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, as follows:  

If 𝑁𝑜𝑙𝑑 is less than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the algorithm generates the 𝑁𝑛𝑒𝑤 value simply by 

extending 𝑁𝑜𝑙𝑑 with the digit ‘1’. However, if the 𝑁𝑜𝑙𝑑 size equals 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, then 

𝑁𝑛𝑒𝑤 is obtained by first tracing 𝑁𝑜𝑙𝑑 in reverse order (i.e., starting from the end) to 

locate the position (𝑝) of the first non ‘9’ (if any) from the end of 𝑁𝑜𝑙𝑑, and accordingly 

𝑁𝑛𝑒𝑤 is allocated as described in Table 5.2:   

 
Figure 5.5 Insert after the 

right-most node 

 

Figure 5.6 Base-9 Insert after right-most algorithm 
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Table 5.2  Insert after 𝑵𝒐𝒍𝒅: find 𝑵𝒏𝒆𝒘 when 𝑵𝒐𝒍𝒅 is 𝒎𝒂𝒙𝑳𝒂𝒃𝒆𝒍𝑺𝒊𝒛𝒆 

When 𝑁𝑜𝑙𝑑 is of size  𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. 

Condition Rule Example 

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is less 

than ‘9’ 

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 

replaced by 𝑑𝐿 + 1 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 =  “254”  

then 𝑁𝑛𝑒𝑤 =  “255” 

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘9’ 

and 𝑝 < 0; i.e., 𝑁𝑜𝑙𝑑 consists of 

all consecutive ‘9’s 

Increase 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 by 1 

and  

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 

appended by digit “1” 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 =  “999”  

then 𝑁𝑛𝑒𝑤 =  “9991” 

and new 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 4 

if the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘9’ 

and 𝑝 ≥ 0. Notice that 𝑝 = 0 

indicates the position of first non 

‘9’ digit. 𝐷 is the first digit in 𝑁𝑜𝑙𝑑 

𝑁𝑛𝑒𝑤 is substring of 

𝑁𝑜𝑙𝑑 up to digit 𝐷; 

whereas 𝐷 value is 

incremented by 1  

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

5 and 𝑁𝑜𝑙𝑑 =  “49699”  

then 𝑁𝑛𝑒𝑤 =  “497” 

In contrast, the “nextSiblingLabel” algorithm does not deal with the case when 𝑁𝑜𝑙𝑑 

consists of all consecutive ‘9’s, since initially the nodes are labelled based on the 

premise that they all fit within 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Moreover, when 𝑁𝑜𝑙𝑑 is smaller than 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, the “nextSiblingLabel” algorithm allocates an initial Base-9 label by 

adding a sequence of ‘1’ digits at the end of 𝑁𝑜𝑙𝑑 up to 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒.  

To demonstrate an example of how the Base-9 labelling scheme handles insertions 

Figure 5.7 shows labels generated by the the “InsertAfterRightMost” algorithm when 

new nodes 𝑛𝑎 , 𝑛𝑏 ,  and 𝑛𝑐 are inserted, respectively, after the element “Class” in the 

XML tree of the “School” sample shown in Figure 5.1.  

 

Figure 5.7 Example of handling insertions after the right-most node 
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The “InsertAfterRightMost” algorithm also supports skewed insertions after the right 

most node. For simplicity, Table 5.3 shows up to 10 new node insertions after the right 

most node, 𝑛𝑜𝑙𝑑 , labelled as 𝑁𝑜𝑙𝑑 = "56", “1254”, “9999” 𝑜𝑟 “4969”; assuming 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑜𝑙𝑑).  

Table 5.3 Examples of skewed insertions after right-most node in Base-9 

 Node labels Node labels Node labels Node labels 

Label of the 
right most 
node 

56 254 9999 49699 

1 57 255 99991 497 

2 58 256 99992 4971 

3 59 257 99993 49711 

4 6 258 99994 49712 

5 61 259 99995 49713 

6 62 26 99996 49714 

7 63 261 99997 49715 

8 64 262 99998 49716 

9 65 263 99999 49717 

10 66 264 999991 49718 

Notice that Base-9 controls the growth of the label size during insertions by 

considering the availability of the nearest lexicographical value to 𝑁𝑜𝑙𝑑 whilst 

generating the new labels. This leads to smaller increments in label size compared to 

the SCOOTER scheme (see Section 3.4.3). In SCOOTER, for any 𝑁𝑜𝑙𝑑 value the 

new labels generated are controlled via the growth-adaptive mechanism by which new 

label values after at most two insertions will always start with consecutive “3” digits, 

and so after (3𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ − 1) insertions the label size increases 

by (𝑝𝑜𝑠𝑡𝑓𝑖𝑥 𝑙𝑒𝑛𝑔𝑡ℎ + 1). 

5.6.2 Insertion Before the Left-most 

Node 

The algorithm for insertion before the left most 

node in Base-9 is named 

“InsertBeforeLeftMost” and is presented in 

figure 5.9. This algorithm is designed to 

generate Base-9 self-labels that are 

lexicographically smaller than 𝑁𝑜𝑙𝑑, where 𝑁𝑜𝑙𝑑 

is the self-label value of the current left most 

node 𝑛𝑜𝑙𝑑 within an XML sub-tree (see Figure 5.8). When a new node, 𝑛𝑛𝑒𝑤 , is 

inserted before 𝑛𝑜𝑙𝑑, there are two main factors that affect the newly generated label 

(say 𝑁𝑛𝑒𝑤): the current 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 (must be ≥ 1) and the start value of 𝑁𝑜𝑙𝑑. 

 

Figure 5.8 Insert before the left-
most node 
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Figure 5.9 Base-9 insert before left-most node algorithm 
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According to the Base-9 initialisation process, a minimum self-label value assigned to 

the left-most node, 𝑛𝑜𝑙𝑑 , is 𝑁𝑜𝑙𝑑 = “2” if 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is 1. If not, then for 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 greater than 1 𝑁𝑜𝑙𝑑 must start with the digit ‘1’ (see Section 5.5). If 

𝑛𝑛𝑒𝑤 is added before 𝑁𝑜𝑙𝑑 = “2”, then 𝑁𝑛𝑒𝑤 is given the value “19”, which is the 

immediate preceding lexicographical value to “2”. However, if 𝑁𝑜𝑙𝑑 starts with a digit 

greater than ‘2’, this indicates there is a deleted node’s label available that can be re-

used for 𝑁𝑛𝑒𝑤 as follows (Table 5.4):   

Table 5.4 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with digit >2 

When 𝑁𝑜𝑙𝑑 starts with a digit greater than ‘2’ 

Condition Rule Example 

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is greater 

than ‘2’ 

𝑁𝑛𝑒𝑤 is 

𝑁𝑜𝑙𝑑 with 𝑑𝐿 

replaced by 

𝑑𝐿 − 1 

if 𝑁𝑜𝑙𝑑 =  “456”  

then 𝑁𝑛𝑒𝑤 =  “455” 

If the last digit 𝑑𝐿 in 𝑁𝑜𝑙𝑑 is ‘2’ and 

𝑁𝑜𝑙𝑑 size is less than 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 

𝑁𝑛𝑒𝑤 is 

𝑁𝑜𝑙𝑑 with 𝑑𝐿 

replaced by 

“19” 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

4 and 𝑁𝑜𝑙𝑑 =

 “232”  

then 𝑁𝑛𝑒𝑤 =

 “2319” 

Otherwise; i.e., if the last digit 𝑑𝐿 in 

𝑁𝑜𝑙𝑑 is ‘2’ and 𝑁𝑜𝑙𝑑 size is the 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒. Or the last digit 𝑑𝐿 in 

𝑁𝑜𝑙𝑑 is less than ‘2’ 

𝑁𝑛𝑒𝑤 is 

𝑁𝑜𝑙𝑑 with 𝑑𝐿 

is trimmed 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

3 and 𝑁𝑜𝑙𝑑 =

 “232”  

then 𝑁𝑛𝑒𝑤 =  “23” 
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When initialising Base-9 labels where 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 is greater than 1, 𝑁𝑜𝑙𝑑 starts 

initially with consecutive ‘1’s followed by the digit ‘2’. In this case, to avoid the scenario 

of generating a self-label comprised entirely of consecutive ‘1’s that might limit the 

number of insertions before the first child node (explained in Section 5.5), 𝑁𝑛𝑒𝑤 is 

allocated based on the 𝑁𝑜𝑙𝑑 size as follows (Table 5.5): 

Table 5.5 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with consecutive ‘𝟏’𝒔 ‘𝟐’ 

When 𝑁𝑜𝑙𝑑 starts with consecutive ‘1’s followed by the last digit 𝑑𝐿 = ‘2’ 

Condition Rule Example 

If 𝑁𝑜𝑙𝑑 size   ≤

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 

replaced by “19”. This 

might make the 𝑁𝑛𝑒𝑤 

size greater than 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 (next 

condition) 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

2 and 𝑁𝑜𝑙𝑑 =  “12”  

then 𝑁𝑛𝑒𝑤 =  “119” 

If 𝑁𝑜𝑙𝑑 size  >

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 

𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 

replaced by “09” 

If 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 =

2 and 𝑁𝑜𝑙𝑑 =

 “112”  

then 𝑁𝑛𝑒𝑤 =  “109” 

Another possible situation to consider is when 𝑁𝑜𝑙𝑑 starts with the digit ‘1’ but the first 

non ‘1’ digit is not the last digit, 𝑑𝐿 , of 𝑁𝑜𝑙𝑑 = (′1′𝑠 𝑑𝑓 … 𝑑𝐿). In this case, different 

scenarios are considered based firstly on the 𝑑𝐿 value and then on 𝑑𝑓 , as shown in the 

following steps (Table 5.6) that are triggered to allocate 𝑁𝑛𝑒𝑤:   
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Table 5.6 Insert before 𝑵𝒐𝒍𝒅, find 𝑵𝒏𝒆𝒘 if 𝑵𝒐𝒍𝒅 starts with ′𝟏′𝒔 𝒅𝒇 … 𝒅𝑳 

When inserting before 𝑁𝑜𝑙𝑑 that starts with the digit ‘1’ but there is a non ‘1’ digit 𝑑𝑓 in 

position 𝑝 ≥ 2 of 𝑁𝑜𝑙𝑑 where 𝑝 is not the last digit 𝑑𝐿 of 𝑁𝑜𝑙𝑑; notice that 𝑑𝐿  must be ≥

 ‘2’ 

Condition Rule Example 

If 𝑑𝐿 >  ‘2’ 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 reduced 

by 1 

𝑁𝑜𝑙𝑑 =  “1124”  

then 𝑁𝑛𝑒𝑤 =  “1123” 

If 𝑑𝐿 =  ‘2’ The following cases are considered relying on 𝑑𝑓: 

Condition Rule Example 

If 𝑑𝑓 =  1  𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 is 

trimmed 

If 𝑁𝑜𝑙𝑑 =  “11341”  

then 𝑁𝑛𝑒𝑤 =  “1134” 

If 𝑑𝑓 ≥ 2 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 𝑑𝐿 is 

reduced by 1 

If 𝑁𝑜𝑙𝑑 =  “1134”  

then 𝑁𝑛𝑒𝑤 =  “1133” 

If 𝑁𝑜𝑙𝑑 starts with “10”. In 

this case, there must be a 

non ‘0’ digit (say 𝐷) from 

the start of 𝑁𝑜𝑙𝑑, where 

𝐷 ∈ {1, 2}. Notice here 𝑑𝑓 =

0. 

Trace the first non ‘0’ digit 𝐷. 

For 𝐷 = ‘1’; 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 

𝐷 replaced by “0” 

If 𝑁𝑜𝑙𝑑 =  “10112”  

then 𝑁𝑛𝑒𝑤 =  “10012” 

For 𝐷 = ‘2’; 𝑁𝑛𝑒𝑤 is 𝑁𝑜𝑙𝑑 with 

𝐷 replaced by “19” and the 

rest of 𝑁𝑜𝑙𝑑 is trimmed 

If 𝑁𝑜𝑙𝑑 =  “10022”  

then 𝑁𝑛𝑒𝑤 =  “10019” 

Otherwise; if 𝑑𝑓 is ‘0’ and 

𝑝 > 2 

𝑁𝑛𝑒𝑤 is assigned a substring 

of one less consecutive ‘1’s at 

the start of 𝑁𝑜𝑙𝑑 concatenated 

by “09” 

If 𝑁𝑜𝑙𝑑 =  “11102”  

then 𝑁𝑛𝑒𝑤 =  “1109” 

Figure 5.10 illustrates an example of how the Base-9 labelling scheme handles the 

insertion of new nodes 𝑛𝑎, 𝑛𝑏 ,  and 𝑛𝑐, respectively, before the element “Name” (the 

left-most child) in the XML tree of the “School” sample (Figure 5.1). 
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To maximise the availability of Base-9 self-labels for more skewed insertions before 

the left-most node, 𝑛𝑜𝑙𝑑, the control skewed insertion statement is added assuming 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 exceeds the length of 𝑁𝑜𝑙𝑑. Table 5.7 displays new Base-9 self-labels 

generated when 10 new nodes are inserted repeatedly before the left-most node, 

𝑛𝑜𝑙𝑑, labelled as 𝑁𝑜𝑙𝑑 = 232", “112”, “100112” , "1002" 𝑜𝑟 “19”, assuming 

𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑜𝑙𝑑).  

Table 5.7 Examples of skewed insertions before the left-most node in Base-9 

 Node 
labels 

Node 
labels 

Node 
labels 

Node 
labels 

Node 
labels 

Insert before 
node 

232 112 100112 1002 19 

1 23 1119 100012 10019 18 

2 229 1118 100002 10018 17 

3 228 1117 1000019 10017 16 

4 227 1116 1000018 10016 15 

5 226 1115 1000017 10015 14 

6 225 1114 1000016 10014 13 

7 224 1113 1000015 10013 12 

8 223 1112 1000014 10012 119 

9 222 1109 1000013 10002 118 

10 22 1108 1000012 100019 117 

As can be seen from Table 5.7, the length of a newly generated label grows by at 

most one digit per 10 repeated insertions before the left-most node. On the contrary, 

in the SCOOTER labelling scheme (see Section 3.4.3), after a few insertions before 

the left-most node, the new labels generated by the adaptive growth mechanism start 

to form a pattern of consecutive ‘1’s followed by a ‘2’. This leads to rapid increases in 

the label size up to at least 1 digit per insertion (e.g., see Table 3.3 in Section 3.4.3).      

 

Figure 5.10 Example of handling insertions before the left most node 
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5.6.3 Insertion Between Two Nodes 

When inserting a new node, nnew, between two 

consecutive sibling nodes, nleft and nright, with 

self-labels 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively (see 

Figure 5.11), the Base-9 labelling scheme 

considers three different cases depending on 

the label size of nleft  and nright, similar to the 

SCOOTER scheme (see Section 3.4.3): 

1. 𝑁𝑙𝑒𝑓𝑡 is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡. 

2. 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡. 

3. Both 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 have the same size. 

In all these cases, the Base-9 labelling scheme provides an insertion mechanism that 

generates the shortest label 𝑁𝑛𝑒𝑤 such that 𝑁𝑙𝑒𝑓𝑡 ≺ 𝑁𝑛𝑒𝑤 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡.  Each case is 

described below. 

 Case 𝑵𝒍𝒆𝒇𝒕 Shorter Than 𝑵𝒓𝒊𝒈𝒉𝒕 

The “InsertBetweenLessThan” algorithm (Figure 5.12) is designed to obtain a new 

node label (say 𝑁𝑛𝑒𝑤) inserted between two nodes, where 𝑁𝑙𝑒𝑓𝑡 is shorter than 

𝑁𝑟𝑖𝑔ℎ𝑡. When generating the initial Base-9 labels, 𝑛𝑙𝑒𝑓𝑡 has a shorter label than the 

adjacent next sibling node  𝑛𝑟𝑖𝑔ℎ𝑡 if, and only if, the 𝑛𝑙𝑒𝑓𝑡 label (say 𝑁𝑙𝑒𝑓𝑡) is a prefix 

string of the 𝑛𝑟𝑖𝑔ℎ𝑡 label (say 𝑁𝑟𝑖𝑔ℎ𝑡) (for examples, see Table 5.1). In order to 

preserve the lexicographical relation between sibling nodes, 𝑁𝑙𝑒𝑓𝑡 also has to be a 

prefix string to 𝑁𝑛𝑒𝑤 (i.e., 𝑁𝑛𝑒𝑤 =  𝑁𝑙𝑒𝑓𝑡   𝑛𝑒𝑤 𝑝𝑜𝑠𝑡𝑓𝑖𝑥). Determining the postfix 

value of 𝑁𝑛𝑒𝑤, relies on the 𝑁𝑡𝑒𝑚𝑝 value which corresponds to 𝑁𝑟𝑖𝑔ℎ𝑡 after 

excluding the prefix part matching 𝑁𝑙𝑒𝑓𝑡. If 𝑁𝑡𝑒𝑚𝑝 starts with a digit 𝑑 > 1, then 𝑁𝑛𝑒𝑤 

is assigned 𝑁𝑙𝑒𝑓𝑡  “1”. For instance, let 𝑁𝑙𝑒𝑓𝑡 =  “3” and 𝑁𝑟𝑖𝑔ℎ𝑡 =  “364”. Since 

𝑁𝑙𝑒𝑓𝑡 is a prefix of 𝑁𝑟𝑖𝑔ℎ𝑡 and 𝑁𝑡𝑒𝑚𝑝 =  “64” starts with the digit 6 > 1, thus 𝑁𝑛𝑒𝑤 = 

”31”. However, if 𝑁𝑡𝑒𝑚𝑝 starts with a digit 𝑑 ≤ 1, then 𝑁𝑡𝑒𝑚𝑝 is updated by removing 

all ‘1’ digits from the end of 𝑁𝑡𝑒𝑚𝑝 (if any). Based on the remaining value in 𝑁𝑡𝑒𝑚𝑝, 

𝑁𝑛𝑒𝑤 is allocated as follows (see Table 5.8): 

  

 

Figure 5.11 Insert between two 

sibling nodes 
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Table 5.8 Insert between two nodes (less than), find 𝑵𝒏𝒆𝒘 if 𝑵𝒍𝒆𝒇𝒕 is prefix of 𝑵𝒓𝒊𝒈𝒉𝒕 

When 𝑁𝑙𝑒𝑓𝑡 is prefix of 𝑁𝑟𝑖𝑔ℎ𝑡; where 𝑁𝑟𝑖𝑔ℎ𝑡 =  𝑁𝑙𝑒𝑓𝑡  𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑡𝑒𝑚𝑝 starts 

with a digit 𝑑 ≤ 1. 𝑁𝑡𝑒𝑚𝑝 here is generated by removing all ‘1’s from its end (if any); 

so 𝑁𝑡𝑒𝑚𝑝 cannot end with the digit 𝑑 =‘1’ 

Condition Rule Example 

If 𝑁𝑡𝑒𝑚𝑝 is empty; 

(means that 𝑁𝑡𝑒𝑚𝑝 

originally consists of 

consecutive ‘1’s 

only) 

𝑁𝑛𝑒𝑤 is assigned 𝑁𝑙𝑒𝑓𝑡  “01” If 𝑁𝑙𝑒𝑓𝑡 = "3" and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “3111” 

 𝑁𝑡𝑒𝑚𝑝 = “111” 

 updated 𝑁𝑡𝑒𝑚𝑝 

is empty 

then 𝑁𝑛𝑒𝑤 =  “301” 

If 𝑁𝑡𝑒𝑚𝑝 ends with a 

digit 𝑑 =  ‘0’ 

𝑁𝑛𝑒𝑤 is  𝑁𝑙𝑒𝑓𝑡   𝑁𝑡𝑒𝑚𝑝   "01" If 𝑁𝑙𝑒𝑓𝑡 = "3" and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “3101” 

 𝑁𝑡𝑒𝑚𝑝 = “101” 

 updated 

𝑁𝑡𝑒𝑚𝑝=”10” 

then 𝑁𝑛𝑒𝑤 =

 “31001” 

If 𝑁𝑡𝑒𝑚𝑝 ends with a 

digit 𝑑 >  ‘1’ 

Decrease the last digit 𝑑 in 𝑁𝑡𝑒𝑚𝑝 by 1 

and then 𝑁𝑛𝑒𝑤 is located 

as  𝑁𝑙𝑒𝑓𝑡   𝑁𝑡𝑒𝑚𝑝. 

 

If 𝑁𝑙𝑒𝑓𝑡 = "3" and 

𝑁𝑟𝑖𝑔ℎ𝑡 =  “3151” 

 𝑁𝑡𝑒𝑚𝑝 = “151” 

 updated 

𝑁𝑡𝑒𝑚𝑝=”15” 

then 𝑁𝑛𝑒𝑤 =  “314” 
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There is also a possibility that 𝑁𝑙𝑒𝑓𝑡 could be shorter than 𝑁𝑟𝑖𝑔ℎ𝑡 but not a prefix of 

𝑁𝑟𝑖𝑔ℎ𝑡. This will happen if, and only if, there are is at least one deleted sibling node 

between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡. Because the Base-9 labelling scheme attempts to re-use 

deleted labels if available, in this case the “InsertAfterRightMost” method (see 

Section 5.6.1) is invoked assuming the new node is inserted after the right-most node 

labelled as 𝑁𝑙𝑒𝑓𝑡. For instance, if 𝑁𝑙𝑒𝑓𝑡 = ”254” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”5711”, then 𝑁𝑛𝑒𝑤 is 

obtained by inserting after the right-most node labelled as 𝑁𝑙𝑒𝑓𝑡 = ”254”, resulting in  

𝑁𝑛𝑒𝑤 = ”255” (see example in Table 5.3). 

 Case 𝑵𝒍𝒆𝒇𝒕 Greater Than 𝑵𝒓𝒊𝒈𝒉𝒕 

Considering the initialisation process of the Base-9 labelling scheme, 𝑁𝑙𝑒𝑓𝑡 can be 

lexicographically smaller than 𝑁𝑟𝑖𝑔ℎ𝑡 but have a longer label than 𝑁𝑟𝑖𝑔ℎ𝑡 if, and only 

if, the last possible combinations of 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 that start with digit 𝑑 have been 

used for 𝑁𝑙𝑒𝑓𝑡. In other words, this occurs when 𝑁𝑙𝑒𝑓𝑡 starts with a digit 𝑑 < 9 

followed by a sequence of (𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 − 1) ‘9’ digits, and 𝑁𝑟𝑖𝑔ℎ𝑡 is labelled as the 

next digit (i.e., (𝑑 + 1)  ≤ 9). The “InsertBetweenGreaterThan” algorithm (see Figure 

5.13) was developed to generate a new self-label for a node inserted between two 

consecutive nodes  𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡, where  𝑛𝑙𝑒𝑓𝑡 has a self-label, 𝑁𝑙𝑒𝑓𝑡, that is longer 

than the 𝑛𝑟𝑖𝑔ℎ𝑡 self-label, 𝑁𝑟𝑖𝑔ℎ𝑡.  

 

Figure 5.12 Insert between two nodes less than algorithm in Base-9 scheme 
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This is different to the “InsertBetweenLessThan” algorithm, as here 𝑁𝑡𝑒𝑚𝑝 is 

created as 𝑁𝑙𝑒𝑓𝑡 excluding the sequence of ‘9’ digits from the end. Let us assume 

𝑑𝑖𝑓𝑓 is the difference between the last digit in 𝑁𝑡𝑒𝑚𝑝 and 𝑁𝑟𝑖𝑔ℎ𝑡, then 𝑁𝑛𝑒𝑤 is 

allocated as follows (see Table 5.9): 

Table 5.9 Insert between two nodes (greater than), find 𝑵𝒏𝒆𝒘 if 𝑵𝒍𝒆𝒇𝒕 ends with ‘9’s 

When 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡) > 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑟𝑖𝑔ℎ𝑡), and 𝑁𝑙𝑒𝑓𝑡 ends with ‘9’s. Then 𝑁𝑡𝑒𝑚𝑝 is 

𝑁𝑙𝑒𝑓𝑡 after removing all ‘9’s from the end and 𝑑𝑖𝑓𝑓 =

 𝑙𝑎𝑠𝑡 𝑑𝑖𝑔𝑖𝑡 𝑜𝑓 𝑁𝑟𝑖𝑔ℎ𝑡 –  𝑙𝑎𝑠𝑡 𝑑𝑖𝑔𝑖𝑡 𝑜𝑓 𝑁𝑡𝑒𝑚𝑝 

Condition Rule Example 

If 𝑑𝑖𝑓𝑓 = 1; 

indicates that 𝑁𝑡𝑒𝑚𝑝 and 

𝑁𝑟𝑖𝑔ℎ𝑡 are lexicographically 

immediate neighbours 

𝑁𝑛𝑒𝑤 =  𝑁𝑙𝑒𝑓𝑡  “1” If 𝑁𝑟𝑖𝑔ℎ𝑡 =  “65” and 

𝑁𝑙𝑒𝑓𝑡 =  “6499”   

𝑁𝑡𝑒𝑚𝑝 = “64”  𝑑𝑖𝑓𝑓 

= 5 - 4 = 1 

then 𝑁𝑛𝑒𝑤 =  “64991” 

If 𝑑𝑖𝑓𝑓 > 1 𝑁𝑛𝑒𝑤 is 𝑁𝑡𝑒𝑚𝑝 after 

incrementing its last digit 

by 1 

If 𝑁𝑟𝑖𝑔ℎ𝑡 =  “67” and 

𝑁𝑙𝑒𝑓𝑡 =  “6499”   

𝑁𝑡𝑒𝑚𝑝 = “64”  𝑑𝑖𝑓𝑓 

= 7 - 4 = 3 

then 𝑁𝑛𝑒𝑤 =  “65” 

 

Figure 5.13 Insert between two nodes greater than algorithm in Base-9 
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In further consideration of the existence of a deleted node between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡, 

the “InsertBetweenGreaterThan” algorithm presents the codes to re-use deleted 

labels when 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡. These cases are treated by giving 𝑁𝑛𝑒𝑤 the 

value of 𝑁𝑙𝑒𝑓𝑡 after incrementing its last digit by 1. For example, let 𝑁𝑙𝑒𝑓𝑡 =  “496” 

and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”5”, then 𝑁𝑛𝑒𝑤 is given the value “497”, which is 

lexicographically 𝑁𝑙𝑒𝑓𝑡 = 496 ≺ 𝑁𝑛𝑒𝑤 = 497 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡 = 5. 

 Case 𝑵𝒍𝒆𝒇𝒕 Same Length of 𝑵𝒓𝒊𝒈𝒉𝒕 

Once more, to analyse the possible cases where 𝑁𝑙𝑒𝑓𝑡 could have the same length of 

𝑁𝑟𝑖𝑔ℎ𝑡, the Base-9 initialisation process has to be examined. Accordingly, 𝑁𝑙𝑒𝑓𝑡 and 

𝑁𝑟𝑖𝑔ℎ𝑡 can both have the same size if, and only if, they are immediate sibling nodes 

where 𝑁𝑙𝑒𝑓𝑡 ≺  𝑁𝑟𝑖𝑔ℎ𝑡. Either 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ by their last digit only, or there 

are some deleted nodes between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡. The algorithm 

“InsertBetweenSameLength” illustrated in Figure 5.14 shows how the Base-9 

labelling scheme handles inserting a new node 𝑛𝑛𝑒𝑤 between two consecutive nodes 

with the same label size. 

Suppose that there are no deleted nodes between 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 with the self-labels 

𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, respectively. In this case, 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ by their last digit, 

whereby the difference between their last digit is 1. Therefore, to compute the 𝑁𝑛𝑒𝑤 

value such that 𝑁𝑙𝑒𝑓𝑡 ≺ 𝑁𝑛𝑒𝑤 ≺ 𝑁𝑟𝑖𝑔ℎ𝑡, 𝑁𝑛𝑒𝑤 is assigned the 𝑁𝑙𝑒𝑓𝑡 value after 

 

Figure 5.14 Insert between two nodes same length algorithm in Base-9 
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concatenating it with the digit “1”, which consequently increases the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 by 

1. For instance, if 𝑁𝑙𝑒𝑓𝑡 =  “535” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”536” then 𝑁𝑛𝑒𝑤 = ”5351”.  

However, if 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 differ in their last digit, and the difference between their 

last digits is greater than 1, this indicates there is at least one available deleted label 

to be re-used. Thus, 𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 after incrementing its last digit by 1. For example, 

if 𝑁𝑙𝑒𝑓𝑡 =  “535” and 𝑁𝑟𝑖𝑔ℎ𝑡 = ”538” then 𝑁𝑛𝑒𝑤 = ”536” 

The “InsertBetweenSameLength” algorithm also recognises the existence of a 

deleted node label by identifying whether the position (𝑝) of the first different digit 

between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 is before the last digit. That is, 0 ≤ 𝑝 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡), and 

accordingly 𝑁𝑛𝑒𝑤 is assigned based on the last digit value of 𝑁𝑙𝑒𝑓𝑡, as explained in 

Table 5.10: 

Table 5.10 Insert between two nodes (same size 𝑳), find 𝑵𝒏𝒆𝒘 if 𝒑 <  𝑳 

When 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑙𝑒𝑓𝑡) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁𝑟𝑖𝑔ℎ𝑡), and 𝑝 is position of the first different digit 

between 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 is not the last digit 

Condition Rule Example 

If the last digit of 𝑁𝑙𝑒𝑓𝑡 is 

𝑑 <  9 

𝑁𝑛𝑒𝑤 is 𝑁𝑙𝑒𝑓𝑡 after 

incrementing its last digit by 1 

𝑁𝑙𝑒𝑓𝑡 = ”4256” and 

𝑁𝑟𝑖𝑔ℎ𝑡 = ”4395”, then 

𝑁𝑛𝑒𝑤 = ”4257”. 

 

If the last digit of 𝑁𝑙𝑒𝑓𝑡 is 

𝑑 = 9 

Allocate 𝑁𝑡𝑒𝑚𝑝 = 𝑁𝑙𝑒𝑓𝑡 with 

all ‘9’s digits removed from 

the end (i.e. 𝑁𝑡𝑒𝑚𝑝 ends with 

digit 𝐷 < 9) 

𝑁𝑛𝑒𝑤 is 𝑁𝑡𝑒𝑚𝑝 after 

incrementing its last digit 𝐷 by 

1 

if 𝑁𝑙𝑒𝑓𝑡 =  “2199” and 

𝑁𝑟𝑖𝑔ℎ𝑡 = ”4123” then 

𝑁𝑡𝑒𝑚𝑝 = ”21” and so 

𝑁𝑛𝑒𝑤 = ”22”. 

 

The Base-9 labelling scheme supports skewed insertions between any two nodes by 

repeatedly calling the “InsertBetweenNodes” algorithm (see Figure 5.15). This 

algorithm invokes the appropriate method to generate a new node label based on a 

comparison between the length of 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡, as discussed previously.  
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For example, Figure 5.16 shows how the Base-9 labelling scheme handles the 

insertion of new nodes 𝑛𝑎, 𝑛𝑏 ,  and 𝑛𝑐 ,  in that order, between the elements “Library” 

and “Class” in the XML tree representing the “School” XML sample in Figure 5.1. 

Since both self-labels of “Library” and “Class” are of same size, the 

“InsertBetweenSameLength” algorithm is called, and consequently 𝑛𝑎 is given a 

label value of “0.31”. When 𝑛𝑏 is inserted between “Library” and 𝑛𝑎 , the 

“InsertBetweenLessThan” algorithm is triggered as 𝑙𝑎𝑏𝑒𝑙(“𝐿𝑖𝑏𝑟𝑎𝑟𝑦”) is shorter than 

𝑙𝑎𝑏𝑒𝑙(𝑛𝑎), then 𝑛𝑏 is labelled as “0.301”. Alternatively, the 

“InsertBetweenGreaterThan” method is called when 𝑛𝑐 is inserted between 𝑛𝑎  and 

node “Class” due to their label sizes. Thus, 𝑛𝑐 is assigned as “0.32”. 

 

 

 

 

 

 
Figure 5.15 Insert between two consecutive nodes in the Base-9 labelling scheme 

 

Figure 5.16 Example of handling insertions between two nodes in Base-9 
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Table 5.11 shows further examples of Base-9 labels generated when 10 nodes are 

inserted successively between two nodes considering 𝑁𝑙𝑒𝑓𝑡 and 𝑁𝑟𝑖𝑔ℎ𝑡 to be of the 

same or different sizes.  

Table 5.11 Examples of skewed insertions between two nodes in Base-9 

 Node labels Node labels Node labels 

𝑵𝒍𝒆𝒇𝒕 64 (same length of 

𝑵𝒓𝒊𝒈𝒉𝒕) 

496 (greater size than 

𝑵𝒓𝒊𝒈𝒉𝒕) 

3 (less size than 

𝑵𝒓𝒊𝒈𝒉𝒕) 

𝑵𝒏𝒆𝒘 1 641 497 301 

𝑵𝒏𝒆𝒘 2 642 498 302 

𝑵𝒏𝒆𝒘 3 643 499 303 

𝑵𝒏𝒆𝒘 4 644 4991 304 

𝑵𝒏𝒆𝒘 5 645 4992 305 

𝑵𝒏𝒆𝒘 6 646 4993 306 

𝑵𝒏𝒆𝒘 7 647 4994 307 

𝑵𝒏𝒆𝒘 8 648 4995 308 

𝑵𝒏𝒆𝒘 9 649 4996 309 

𝑵𝒏𝒆𝒘 
10 

6491 4997 31 

𝑵𝒓𝒊𝒈𝒉𝒕 65 5 311 

5.6.4 Re-using Deleted Node Labels 

As mentioned previously, the Base-9 labelling scheme handles insertion by finding the 

nearest available lexicographical value to the label of the current node, which is the 

adjacent sibling to the new node. The insertion algorithms of Base-9 are designed to 

automatically re-use the deleted labels, if any, as explained in previous section.  

When inserting after the right-most child node, the insertion mechanism of Base-9 

allocates a new label considering the obtainability of the immediate next 

lexicographical value to the current right-most node’s label ( 

see Section 5.6.1). This consequently allows automatic re-use of any available 

deleted labels. For insertion before the left-most child node, the algorithm starts by 

finding the availability of deleted labels to be re-used for new nodes, see lines 2-22 in 

figure 5.9.  

Similarly, when inserting between two consecutive sibling nodes in the Base-9 

scheme (section 5.6.3), the insertion algorithms deliberate the re-use of deleted 

node’s labels as follows: 

 In case 𝑁𝑙𝑒𝑓𝑡 is shorter than 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 16-18 of 

“InsertBetweenLessThan” algorithm (figure 5.12). 

 In case 𝑁𝑙𝑒𝑓𝑡 is longer than 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 13-15 of 

“InsertBetweenGreaterThan” algorithm (figure 5.13)   
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 In case 𝑁𝑙𝑒𝑓𝑡 is the same length as 𝑁𝑟𝑖𝑔ℎ𝑡: see lines 7-9 of 

“InsertBetweenSameLength” algorithm (figure 5.14) 

An experimental test has been carried out investigating the ability to re-use the 

deleted node labels in the Base-9 scheme as well as in the SCOOTER scheme. The 

implementation details of the test and the results obtained are provided later in 

Chapters 6 and 7. The following section explains how the Fibonacci coding is used to 

encode Base-9 labels to minimise the storage space cost.  

5.7 Fibonacci coding  

The generalised Fibonacci code of order 𝑚 ≥  2 was introduced by (Apostolico and 

Fraenkel, 1987), but to date has never been used for XML labels. In this thesis, 

Fibonacci coding is applied for the first time to encode Base-9 XML labels. The 

Fibonacci encoding of orders 𝑚 = 2 and 𝑚 = 3 are illustrated in detail in Section 

4.5.1. Both methods were applied separately to encode the Base-9 labels in order to 

study the effect of different order values, 𝑚, over the resulting codes.  

The Base-9 scheme is a prefix-based labelling scheme in which a node’s self-label is 

preceded by its parent’s label where a delimiter “.” is used to separate the label of the 

ancestor nodes at every level. Each component of the Base-9 prefix-label is encoded 

separately by Fibonacci coding and then concatenated, though with the separators 

omitted. Since there is no Fibonacci code for integer ‘0’ in the Base-9 labelling 

scheme, the label “0” representing the root node is encoded as the bit ‘0’. 

One of the criteria of Fibonacci codes is that there are no 𝑚 consecutive 1-bits within 

the summation result of Fibonacci numbers of order 𝑚 ≥ 2, but each Fibonacci code 

ends up with exactly 𝑚 consecutive 1-bits. Thus, the appearance of 𝑚-consecutive 1-

bits in Fibonacci codes plays the role of a separator by indicating the ends of the 

binary code representing a component self-label in the Base-9 scheme, so avoiding 

the need to store the delimiters.  

To demonstrate the encoding mechanism on Base-9 labels, let us consider encoding 

the label of the element “Outline” (in Figure 5.1), which is “0.4.2.3”, as follows:  

 Using Fibonacci code of order 𝒎 = 𝟐: “0.4.2.3” is encoded as “0 1011 011 

0011” (the spaces are added for clarification – see Table 4.3). The first bit ‘0’ 

represents the root label. Then, starting from the second bit until two 

consecutive ‘1’s signifies the next component of the Base-9 label (i.e., 

𝐹(2)(4)  =  “1011”) , and so on.  
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 Using Fibonacci code of order 𝒎 = 𝟑: “0.4.2.3” is represented as “0 10111 

0111 00111” (the spaces are added for clarification – see Table 4.3). As in the 

Fibonacci encoding of order 2, the first bit ‘0’ here also stands for the root 

label. The following bits, up to the appearance of three consecutive ‘1’s, 

indicate the next component of the Base-9 label (i.e., 𝐹(3)(4)  =  “10111”), and 

so on.  

The Fibonacci decoding mechanism is simply the reverse of the encoding process 

(Walder et al., 2012). The algorithm for decoding the Fibonacci binary code of order 

𝑚 ≥ 2 (say 𝐵9𝐶𝑜𝑑𝑒) into a Base-9 label is given in Figure 5.17.  

Knowing that the possible minimum 𝐵9𝐶𝑜𝑑𝑒 is “0”, corresponding to the root node 

label, the algorithm works as shown in the following flowchart (Figure 5.18). To 

simplify the demonstration, these abbreviations are used: 

 𝐵9𝐶𝑜𝑑𝑒 is Fibonacci code input to be decoded into a Base-9 label (referred to 

as 𝑙𝑎𝑏𝑒𝑙). 

 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is the current component’s Fibonacci code. 

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 indicates the position of the last bit of 𝐹𝑖𝑏𝐶𝑜𝑑𝑒. 

 Array 𝑏𝑖𝑡 of size 𝑚 to trace the end (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) of a 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 within 𝐵9𝐶𝑜𝑑𝑒. 

 The integer, 𝑥, matches the Fibonacci number representing the Base-9 self-

label of the current component by calling the “FibDecode” method (Figure 

5.19). 

 

Figure 5.17 The algorithm for decoding a Base-9 label 
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A Fibonacci code 𝐵9𝐶𝑜𝑑𝑒 representing the Base-9 label of a node, 𝑢, is basically a 

concatenated sequence of Fibonacci codes starting from the root code “0” up to the 

code of the node, 𝑢. A 𝐵9𝐶𝑜𝑑𝑒 must consist of at least one code indicating the root 

node, i.e., “0”. Thus, the first ‘0’ bit in the 𝐵9𝐶𝑜𝑑𝑒 is trimmed and the Base-9 𝑙𝑎𝑏𝑒𝑙 is 

set to “0”. After that, if the 𝐵9𝐶𝑜𝑑𝑒 is not empty, this implies there are more 

descendant codes to be decoded. Thus, the decoding process allocates the end of 

each component’s code 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 by the appearance of 𝑚 consecutive ‘1’s. Then, the 

𝐹𝑖𝑏𝐶𝑜𝑑𝑒 value is truncated from the start of 𝐵9𝐶𝑜𝑑𝑒. Next, the summation of 𝐹(𝑚) 

represented by 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is found by calling the “FibDecode” method and assigned it 

to 𝑥. Afterwards, to obtain the full prefix-based Base-9 label of the node 𝑢, 𝑙𝑎𝑏𝑒𝑙 is 

appended by a delimiter “.” followed by 𝑥 as a decimal string. The whole process is 

repeated until the 𝐵9𝐶𝑜𝑑𝑒 is empty which means all components within the Base-9 

label are attained. 

The “FibDecode” method (see Figure 5.19) presents the generalised decoding 

algorithm for any Fibonacci code (here referred to as 𝐹𝑖𝑏𝐶𝑜𝑑𝑒) of order 𝑚 ≥ 2 for any 

positive integer 𝑥 > 0. In the Fibonacci encoding process, the bit ‘1’ is appended to a 

Fibonacci code of order 𝑚 = 2 to indicate the end of the code, whereas, a Fibonacci 

code of order 𝑚 > 2  is concatenated with ‘0’ followed by 𝑚 consecutive ‘1’s as its 

suffix; that is, “0111” for order 𝑚 = 3. Therefore, the first step in the “FibDecode” 

method is the removal of the suffix of 𝑚 consecutive ‘1’s from the end of 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 if 

 

Figure 5.18 Flowchart to decode a Base-9 label 
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the Fibonacci code is of order 𝑚 > 2. After that, if 𝑚 > 2, the last bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 will be 

either ‘0’ for any integer 𝑥 > 1 or empty for 𝑥 =  1, since 𝐹(𝑚)(1) is exactly 𝑚-

consecutive ‘1’s, whereas for order 𝑚 = 2, the last bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is always ‘1’. 

According to the remaining value of the 𝐹𝑖𝑏𝐶𝑜𝑑𝑒, the “FibDecode” method processes 

by these steps to obtain the integer, 𝑥: 

1. Set 𝑥 to 0. 

2. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size 0, this indicates 𝑥 is 1. 

3. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size 1, then 𝑥 is 2. 

4. If 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is of size greater than 1, parse 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 bit by bit (except for the last 

bit) and if the 𝑖𝑡ℎ bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒 is ‘1’ then keep incrementing 𝑥 by the 𝑖𝑡ℎ 

Fibonacci number of order 𝑚; i.e., 𝐹𝑖
(𝑚)

 (see Section 4.5.1). 

5. If 𝑥 > 2 , then consider the Fibonacci sum (Section 4.5.1) and add 𝑆𝑝𝑜𝑠−1
(𝑚)

 to 𝑥, 

where 𝑝𝑜𝑠 is the position of the last ‘1’ bit in 𝐹𝑖𝑏𝐶𝑜𝑑𝑒. 

The Fibonacci decoding process has the capability to facilitate query processing as 

examined in this thesis (see Chapters 6 and 7). As discussed in Chapter 2, the core of 

the query processing is the determination of the structural relationships between any 

 

Figure 5.19 The algorithm of the “𝑭𝒊𝒃𝑫𝒆𝒄𝒐𝒅𝒆” method 
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two nodes directly through their XML labels. The next section shows how the Base-9 

labelling scheme handles the determination of the main structural relationships. 

5.8 Relationship Determination 

Being a prefix-based labelling scheme, Base-9 follows the same technique for 

identifying the structural relationships as described in Section 3.4. The containment of 

the path information within each Base-9 label facilitates query processing. The 

determination of the main structural relationships works as follows: 

Level order: assuming the first level is the root level, which is counted as level 0, then 

the number of delimiters “.” within the Base-9 label of a node corresponds to the level 

of that node. For example, the element “Outline” (in the XML tree in Figure 5.1) 

labelled as “0.4.2.3” is located in level 3 because the label contains a total of three 

delimiters. 

Parent-child relationship: a node 𝑢 is the parent of a node 𝑣 if, and only if, 𝑙𝑎𝑏𝑒𝑙(𝑢) 

is the prefix of 𝑙𝑎𝑏𝑒𝑙(𝑣) and 𝑙𝑒𝑣𝑒𝑙(𝑣)  =  𝑙𝑒𝑣𝑒𝑙(𝑢)  +  1. For example, in Figure 5.1 the 

element “Outline” with label “0.4.2.3” is the father of the element “Topic” labelled 

“0.4.2.3.2”.    

Ancestor-descendant relationship: a node 𝑢 is an ancestor of a node 𝑣 and the 

node 𝑣 is descendant of the node 𝑢 if, and only if, 𝑢 ≠ 𝑣, 𝑙𝑎𝑏𝑒𝑙(𝑢) is the prefix of 

𝑙𝑎𝑏𝑒𝑙(𝑣), and 𝑙𝑒𝑣𝑒𝑙(𝑣)  >  𝑙𝑒𝑣𝑒𝑙(𝑢)  +  1. For example, in Figure 5.1 the element 

“Class” labelled “0.4” is an ancestor of the elements “Outline” and “Topic”, labelled 

“0.4.2.3” and “0.4.2.3.2”, respectively.    

Lowest common ancestor (LCA): the LCA node 𝑤 is the shared ancestor of nodes 

𝑢 and 𝑣 located farthest from the root. The LCA relationship between nodes 𝑢 and 𝑣 is 

only determined when neither node is an ancestor of another, and both 𝑙𝑎𝑏𝑒𝑙(𝑢) and 

𝑙𝑎𝑏𝑒𝑙(𝑣) start with the same longest prefix, which is equal to 𝑙𝑎𝑏𝑒𝑙(𝑤). For instance, in 

Figure 5.1 the element “Class”, labelled “0.4”, is the LCA between the element 

“Outline”, labelled “0.4.2.3” and the element “Books”, labelled “0.4.3.3.4”. 

Sibling relationship:  nodes 𝑢 and 𝑣 are siblings if both nodes share the same 

parent and are at the same level in an XML tree. Determining the pre-order sibling 

among nodes 𝑢 and 𝑣 is based on the lexicographical order of their self-labels. As an 

example, in Figure 5.1 the elements “Area” and “Outlines” are siblings because both 

are in the same level and share the same parent “Tutor”. However, “Area” is a pre-
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order sibling to “Outline” since 𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙(“𝐴𝑟𝑒𝑎”)  =  “2” is lexicographically less than 

𝑠𝑒𝑙𝑓𝑙𝑎𝑏𝑒𝑙(“𝑂𝑢𝑡𝑙𝑖𝑛𝑒”) =  “3”.  

Document Order: there are three scenarios where a node 𝑢 appears before a node 𝑣 

in an XML tree: if the node 𝑢 is either a parent, an ancestor or a pre-order sibling to 

the node 𝑣. If none of these relationships exist between 𝑢 and 𝑣, then determining 

which node appears before the other depends on their labels, as follows:  

1. First, remove any shared prefix from 𝑙𝑎𝑏𝑒𝑙(𝑢) and 𝑙𝑎𝑏𝑒𝑙(𝑣).  

2. Then, compare the self-label of the first remaining components 

lexicographically. The smaller value indicates that the first node appears in 

document order.  

For instance, let us consider the elements “Outline” (labelled “0.4.2.3”) and “Books” 

(labelled “0.4.3.3.4”). After removing the longest shared prefix “0.4”, the remaining 

labels of “Outline” and “Books” are “2.3” and “3.3.4”, respectively. Now, the first 

component’s self-label in “Outline” is “2” and in “Books” is “3”. As “2” is 

lexicographically smaller than “3”, “Outline” appears before “Books” in the XML tree. 

5.9 Conclusion  

This chapter has presented a newly proposed dynamic XML labelling scheme named 

the Base-9 scheme, referring to the set of 9 decimal digits {1, 2, … , 9} used to initialise 

XML labels. The initialisation and the insertion mechanisms are designed based on 

lexicographical order, whereby digit ‘0’ is used for generating new labels when the 

XML is updated. This chapter also covered how the insertions methods of the Base-9 

scheme support re-using any available deleted node labels. Then, it was 

demonstrated how the Fibonacci coding can be applied for encoding and decoding 

the Base-9 labels. Finally, the determination of different structural relationships in the 

Base-9 scheme was described. The next chapter discusses the implementation of the 

proposed Base-9 labelling scheme as regards the various aspects presented in this 

chapter.  
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Chapter 6: Experimental Design and 

Implementation 

6.1 Introduction 

The previous chapter introduced a new XML labelling scheme based on the principles 

of the SCOOTER labelling scheme (discussed in Chapter 3) but with an emphasis on 

enhancing the compact and dynamic aspects. In order to evaluate the performance 

and reliability of the proposed scheme, several experiments were carried out over 

various XML datasets. Each experiment was run on both the proposed Base-9 

scheme and the SCOOTER scheme for optimal comparison of their performances. 

This chapter describes the design details and objectives of these experiments as well 

as the datasets used for the evaluation process.  

As mentioned in Chapters 1 and 4, this thesis also studies the possibility of 

compressing XML labels using the prefix-encoding methods presented in Chapter 4. 

Hence, further experiments were conducted to test these methods on some of the 

existing labelling schemes, as explained in this chapter. 

The remainder of this chapter is structured as follows: the next section presents a 

general description of the strategy behaind the experimental design. Section 6.3 

provides an overview of the current evaluation system of XML labelling schemes. 

Section 6.4 gives a review on the existing experimental XML datasets used for 

assessment purposes. In Section 6.5, the evaluation framework is set out, and then 

presented in detail as follows: the selection of datasets in Section 6.5.1, and the 

experimental design and objectives in Section 6.5.2. The implementation of the XML 

label compression study is explained in Section 6.6. The implementation platform 

setup is given in Section 6.7. Finally, this chapter is concluded with Section 6.8. 

6.2 The Overall Experimental Design 

The main aim to running the experiments explained in this chapter was to assess the 

research hypothesis stated in Chapters 1 and 5. These experiments were designed to 

test whether the Base-9 scheme introduced in Chapter-5 met the standards required 

to be classified as a fully dynamic XML labelling scheme (see Chapter-3). The setup 

of the experiments was constructed based on the details illustrated in Chapter-5 to 
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confirm that the proposed scheme’s design and implementation met the objectives 

and requirements discussed in Chapter-1. Six main experiments were conducted to 

evaluate the Base-9 scheme’s validity, functionality, scalability, efficiency, and 

performance: 

 Label Initialisation 

 Handling insertions 

 Re-using deleted node’s labels 

 Label encoding 

 Relationship determination 

 Querying performance 

For the performance comparison between other XML dynamic labelling schemes, the 

SCOOTER labelling scheme (O’Connor and Roantree, 2012) was chosen, as it is the 

foundation on which the Base-9 scheme is formed (see Chapter-5). Thus, the 

SCOOTER labelling scheme was also implemented from scratch following its design 

details, as presented in the work of (O’Connor and Roantree, 2012) and discussed in 

Section 3.4.3. All the six experiments were run using each scheme to test their 

characteristics and performance against each other. Section 6.8 presents the design 

details of these experiments, as based on their objectives.   

To gain a fair assessment of the Base-9 scheme, it must be compared with other 

existing labelling schemes over the same test-bed. Therefore, it is important to first 

investigate the existing evaluation framework.   

6.3 Evaluation of XML Labelling Schemes: An Overview 

Obviously, from the XML labelling schemes discussion in Chapter-3 it can be seen 

that no two labelling methods share exactly the same characteristics. According to the 

fundamental properties required for a complete dynamic labelling scheme (see 

Section 3.2), each labelling scheme available in the literature is limited in one aspect 

or another. Unfortunately, there is no existing standard evaluation framework that can 

be used by XML labelling scheme designers to provide a comprehensive analysis of 

their labelling approaches’ properties.  

In (O'Connor and Roantree, 2010a), the authors outlined the general advantages and 

disadvantages of a number of XML labelling schemes. The aim of O'Connor and 

Roantree’s work (O'Connor and Roantree, 2010a) was to generate a list of essential 

properties for XML update mechanisms. Based on these properties, those authors 
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presented a possible evaluation framework to compare a number of the existing XML 

labelling schemes. However, the feature classification of the schemes was based on 

the experimental results presented by the designers of these labelling schemes. As 

there is no standard evaluation method in the literature; researchers evaluated their 

own labelling schemes according to the main objectives underlying the design of their 

particular labelling method. Consequently, many researchers ignored the evaluation of 

all the desirable properties required for an effective labelling scheme (see Section 

3.2). For example, LSDX’s authors (Duong and Zhang, 2005) only illustrated the 

query performance in a theoretical sense, and did not evaluate it experimentally. 

Based on their theoretical concept, (O'Connor and Roantree, 2010a) indicated in their 

evaluation framework that LSDX fully supports XPath evaluation properties. However, 

later (Sans and Laurent, 2008) and (Khaing and Ni Lar, 2006) have shown that LSDX 

generates redundant labels leading to ambiguous XPath query expressions. 

Furthermore, the properties listed by (O'Connor and Roantree, 2010a) are very 

general and do not state the means by which each labelling scheme should be 

evaluated to unify the experimental mechanism and ensure a reliable comparison 

between the existing labelling schemes in terms of their required dynamic properties. 

There is no existing standard framework for evaluating dynamic XML labelling 

schemes. Since all the available labelling schemes are built to enhance one or more 

aspects of other labelling schemes, the evaluation process is basically one of 

comparing the performance of these aspects only between the proposed scheme and 

other labelling schemes. For example, in (Assefa and Ergenc, 2012), the authors 

compared the label sizes and labelling time of their proposed OrderBased labelling 

method with the LSDX (Duong and Zhang, 2005) and Com-D (Duong and Zhang, 

2008) schemes purely because all these labelling schemes are of an alphanumeric 

data type (see Section 3.4), whereas, (O’Connor and Roantree, 2012) compared the 

performance of their proposed SCOOTER labelling scheme with QED (Li and Ling, 

2005b), Vector-based (Xu et al., 2007), and V-CDBS (Li et al., 2008) because they all 

have the ability to process frequent skewed insertions. 

As mentioned in Chapter 3, a dynamic XML labelling scheme is considered effective if 

it is deterministic, efficient, compact and dynamic. The following sections illustrate the 

state-of-the-art of different evaluation approaches applied to dynamic XML labelling 

schemes. 
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6.3.1 Determining Relationships and Query Efficiency  

Determining the common structural relationships between nodes is a core process in 

facilitating XML queries. Most of the XML labelling schemes have described how each 

structural relationship can be established from their labels from a theoretical 

perspective, but not all of them have had the performance of such a determination 

actually tested. ORDPATHs (O'Neil et al., 2004), DPESP (He, 2015), Persistent 

(Khaing and Ni Lar, 2006), Cohen’s (Cohen et al., 2010), VLEI (Kobayashi et al., 

2005), Dynamic XDAS (Ghaleb and Mohammed, 2015), LSDX (Duong and Zhang, 

2005), QED (Li and Ling, 2005b), EBSL (O’Connor and Roantree, 2010b), and 

SCOOTER (O’Connor and Roantree, 2012) did not demonstrate any testing of query 

performance, whereas, the OrderBased labelling scheme (Assefa and Ergenc, 2012) 

examined only the determination of ancestor/descendant relationships between 

nodes. Other labelling schemes such as DDE (Xu et al., 2009), (Liu et al., 2013), and 

DPLS (Liu and Zhang, 2016) evaluated the XML query process by determining the 

relationships over thousands of randomly-selected label pairs.  

The most common evaluation approach used to test the performance of XML querying 

is by studying the ordered and unordered queries over the Shakespeare’s plays data 

set using XPath expressions, as proposed by (Tatarinov et al., 2002). Where (Wu et 

al., 2004) and (Li and Ling, 2005a) applied all nine queries from (Tatarinov et al., 

2002). Whilst (Hye-Kyeong and SangKeun, 2010), (Yun and Chung, 2008), and (Li et 

al., 2008, Li et al., 2006a) processed only some of Shakespeare’s queries. These 

queries mainly represent parent/child, ancestor/descendant, following and preceding 

siblings (Tatarinov et al., 2002). 

In reality, retrieving and decoding XML labels usually affect the overall XML querying 

process. Therefore, it is important to consider the decoding time as part of the 

structural relationship determination between nodes. Unfortunately, up to now the 

decoding mechanism has been neglected completely when evaluating the relationship 

determination and querying the efficiency of XML labelling schemes. 

Recently, most of the XML labelling schemes proposed have focused on supporting a 

dynamic XML environment and simultaneously controlling the label size to overcome 

the overflow problem (Chapter 4, Section 4.3). Therefore, their evaluation experiments 

were mainly designed to test the effects of XML updates (particularly insertions) over 

the generated labels in terms of the storage size, as discussed in the following 

section. 
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6.3.2 Compact and Dynamic Labels 

The main disadvantage of the labelling schemes available in the literature is the 

growth of label sizes as the XML tree depth and/or the fan-out of the XML tree 

increases (see Chapter 3). Therefore, most research has considered supporting new 

node insertions whilst maintaining the labels sizes. The evaluation experiments in 

such labelling schemes focused more on measuring label size before and after 

insertions, such as in DDE (Xu et al., 2009), (Liu et al., 2013), and DPLS (Liu and 

Zhang, 2016), Fractional (Mirabi et al., 2012), V-CDBS (Li et al., 2008), SCOOTER 

(O’Connor and Roantree, 2012), and Modulo-based labelling (Al-Shaikh et al., 2010).  

In terms of assessing the compactness property, almost all the existing XML labelling 

schemes have measured the initialisation/insertion time and the generated labels’ 

sizes. Although some of these schemes have defined the encoding methods used for 

storing their labels in memory, they all neglected the computing of the actual label 

sizes occupied after encoding. Thus, the efficiency of the encoding methods used to 

store XML labels has never been evaluated.  

In terms of XML updates, there is also no existing universal evaluation technique to 

measure the scalability of XML labelling schemes. Some labelling schemes have run 

uniform and skewed insertions, but mostly between two sibling nodes, such as in DDE 

(Xu et al., 2009), V-CDBS (Li et al., 2008), QED (Li and Ling, 2005b). Since the main 

drawback of current XML labelling schemes is the lack of support for skewed 

insertions, some researchers have tested the XML update performance only over 

skewed insertions, as in SCOOTER (O’Connor and Roantree, 2012), Fractional 

(Mirabi et al., 2012) and DPLS (Liu and Zhang, 2016). Other labelling schemes 

proposed their own evaluation systems (see Appendix A). For example, OrderBased 

(Assefa and Ergenc, 2012) computed the time required to insert sub-trees 

immediately under the root node. IBSL (Hye-Kyeong and SangKeun, 2010) 

investigated leaf node insertions only, whereas, many XML labelling schemes only 

illustrated the XML update in a theoretical sense, e.g., ORDPATHs (O'Neil et al., 

2004), Com-D (Duong and Zhang, 2008), Persistent (Khaing and Ni Lar, 2006), 

Cohen’s (Cohen et al., 2010), VLEI (Kobayashi et al., 2005), and EBSL (O’Connor 

and Roantree, 2010b).  

Furthermore, the existing XML labelling schemes have been evaluated based on one 

or more of the available experimental XML datasets (illustrated in Section 6.4). The 

selection of the dataset in each case was made by the schemes’ designers, and was 
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based on the aims of their research. Some labelling schemes specified their own 

characteristics over datasets via the generator tools provided by XML benchmarks. 

Others carried out their assessments on at least one of the experimental real-life 

datasets available on the XML Data Repository website (Suciu, 2002). All of the 

existing experimental XML datasets represent various features of XML trees such as 

file sizes, total number of available nodes, maximum depth, the degree of fan-out, and 

number of files per benchmark dataset (see Table 6.1 and Table 6.2). The following 

section presents an overview of the existing experimental XML datasets. 

6.4 A Review of Current Experimental XML Datasets  

In XML database management, XML datasets are tools for evaluating the 

performance of new XML systems (Schmidt et al., 2001a). There are, generally 

speaking, two types of experimental XML datasets: real-life XML datasets and XML 

benchmarks. A real-life dataset is a single validated XML document whose design is 

based on real public data. An XML benchmark is a tool used to generate synthetic 

datasets in XML format with different sizes as required by the experimental evaluation 

criteria. Each XML benchmark provides a range of query-sets simulating real-world 

scenarios to assess new XML systems. Therefore, the XML benchmark supports a 

comparison between the XML approach developed against the existing XML 

technology in terms of the query processing and storage techniques (Schmidt et al., 

2001a). In order to assess the selection of appropriate datasets for the experimental 

implementation in this thesis, it is necessary to first provide an overview of existing 

synthetic XML benchmarks and real-life XML datasets. 

6.4.1 Existing XML Benchmarks: An Overview 

Existing XML benchmarks were designed with XML data storage and XML querying 

as their main considerations (Schmidt et al., 2001a). In general, XML benchmarks are 

categorised into application benchmarks (Schmidt et al., 2002) (Yao et al., 2004) and 

micro benchmarks (Runapongsa et al., 2006a). The application benchmarks were 

developed to evaluate the overall functioning of an XML database. By comparison, 

micro benchmarks focus on the assessment of the query-able aspects within an XML 

database. This section briefly describes the most widely used XML benchmarks, and 

Table 6.1 summarises the basic properties of these benchmarks. 
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 XMark Benchmark: 

The XMark benchmark was designed by (Schmidt et al., 2002) and it is commonly 

used for the assessment of XML applications by the XML development community 

(Davis et al., 2003) (Wang et al., 2003) (Arion et al., 2004) (Lawrence, 2004) (Chen et 

al., 2006) (Li et al., 2007) (Lee et al., 2010). This benchmark can generate various 

sizes of XML dataset along with the query-set that comprehends most of the XML 

query-able aspects using the generator tool XMLGen (Kochmer and Frandsen, 2002). 

Each XMark dataset is generated as a single file simulating the data of an online 

auction website in such a way that it makes the contents of the XMark data self-

explanatory. The size of the XMark database generated is controlled via a scaling 

factor to allow developers the flexibility to regulate their datasets according to their 

needs. The XMark data generator is available via the XMark project website (Schmidt, 

2003). Regardless of the size of an XMark database, it is always presented in an XML 

tree of depth twelve that has a repetitive structure with a reasonable number of 

recursions (Chen et al., 2005) (Zhang et al., 2005). In terms of scalability assessment, 

XMark datasets can effectively evaluate different performance aspects of an XML 

system. Although the XMark query-set does not consider update transactions, there 

are twenty queries carefully designed by (Schmidt et al., 2001a) to address search 

transactions (Schmidt, 2003).  

 XBench Benchmark:  

XBench (Yao et al., 2004) is a template-based XML benchmark that generates a wide 

range of XML databases. Four types of XML database can be created by the “toXgen” 

tool (Yao et al., 2004) as follows: data-centric/single-document database (DC/SD), 

text-centric/single-document database (TC/SD), data-centric/multiple-document 

database (DC/MD), and text-centric/multiple-document database (TC/MD). This 

benchmark can provide a variety of XML databases of fixed sizes: small (10 MB), 

normal (100 MB), large (1 GB) and huge (10 GB) (Yao et al., 2004). The depth of the 

generated XML database is restricted by a parameter that takes only a limited range. 

Like XMark, this benchmark also provides twenty queries considering only search 

transactions. 

 XOO7 Benchmark:  

The Object Oriented RDBMS benchmark OO7 (Carey et al., 1993) was adapted and 

enhanced into the XOO7 XML benchmark by Li et al (Li et al., 2001) to support the 

XML environment. The data and the query-set of the OO7 were also adjusted so as to 

be employed by the XOO7 XML benchmark, which is available on the XOO7 



Chapter 6: Experimental Design and Implementation 

116 
 

Benchmark website (Bressan et al., 2003). XOO7 creates XML data as a single XML 

file of small, medium, or large size. Regardless of the size of the XML database 

generated, the depth of the XML tree is always five; such restrictions on XOO7 

dataset features (i.e., size and depth) limits the assessment of scalability. The query-

set of XOO7 contains twenty-three queries supporting only search transactions. 

 XMach-1 Benchmark: 

Unlike the benchmarks mentioned earlier, the XMach-1 benchmark (Böhme and 

Rahm, 2003) was developed as a multi-user XML database management system 

based on a Web-based application scenario. The structure of this benchmark contains 

four main parts: the XML document, servers, loaders and browser clients. The 

XMach-1 database is a collection of a large number (between 104 and 107) of small 

XML files whose maximum possible depth is six. Depending on the number of XML 

files, the overall size of the generated XMarch-1 database varies from 2 KB to 100 

KB. Such small XML datasets plus the depth variation restriction, makes this 

benchmark unsuitable for assessing large-scale implementations and/or scalability 

testing. The XMach-1 benchmark provides eleven queries, eight of which cover 

search transactions whilst the remaining three focus on update transactions (Böhme 

and Rahm, 2000) (Böhme and Rahm, 2001). However, this query-set does not 

support the majority of essential XML transactions identified by (Schmidt et al., 

2001a), such as path traversal, joins, and aggregation. This benchmark can be 

obtained from the website of XMach-1: A benchmark for XML Data Management 

(Böhme and Rahm, 2000).  

 The Michigan Benchmark:  

The Michigan Benchmark (Runapongsa et al., 2006a) was developed as a micro 

benchmark to examine specific system properties (Yao et al., 2004). Hence, unlike the 

others, this benchmark helps designers focus on the parts of their systems that need 

enhancement (Al-Zadjali and North, 2016). The dataset generated by the Michigan 

benchmark is a single file with at least 728,000 total nodes, which can be multiplied up 

to 100 times. Regardless of the total number of nodes, the depth of this dataset is 

sixteen, whereas the breadth varies at each level from two to thirteen nodes based on 

the fan-out parameter set by the designer. In reality, the regularity of XML data is 

unpredictable and so the distribution of nodes’ fan-out within each level avoids the 

consideration of a number of essential XML database features. The Michigan 

benchmark source can be accessed via its project website (Runapongsa, 2006b). The 
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source also includes the thirty-one queries on the Michigan’s query-set, of which 

twenty-eight are search queries and three cover update queries.  

 TPoX Benchmark:  

(Nicola et al., 2007b) introduced the Transaction Processing over XML (TPoX) 

benchmark as an application benchmark that aims to assess the entire XML system.  

In the TPoX benchmark, the XML generation tool, “ToXGene” (Nicola et al., 2007c), is 

used to create XML datasets. ToXGene employs templates to define the features of 

the XML database produced. The database is generated as a collection of small XML 

files with sizes ranging from 2 KB to 20 KB based on the schema used (Nicola et al., 

2007b). Generally, the TPoX benchmark provides three XML schemas to control the 

size of the XML files by stating the depth and the breadth required of these files. In 

contrast to other benchmarks, the TPoX query-set consists of seventeen queries that 

focus mainly on update transactions rather than search transactions. The benchmark 

can be found on its project website (Nicola et al., 2007b). 
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Table 6.1 Features of the most common XML benchmarks 

Benchmark 
Name 

XMark XBench XOO7 XMach-1 Michigan TPoX 

Type Application 
Level 

Application 
Level 

Application 
Level 

Application Level Micro Application Level 

Number of XML 
files in Dataset 

1 Mixed: (1 or 
more) 

1 Multiple 

(104, 105, 106,  or 
107) files 

1 Multiple: range 

from 3.6 𝑋 106 to 

3.6 𝑋 1011 

Dataset Size Varies from 
small (KB) to 
huge (GB)  

Small (10MB) 
Medium 
(199MB) 
Large (1GB) 
Huge (10GB) 

Small (500B) 
Medium (1000B) 
Large (1000B) 
but with more 
nodes 

Varies from 2KB to 
100KB per XML file 

Min (default): 
728,000 
nodes 
Max: 100 
times default 

Varies from 2KB 
to 20KB per XML 
file 

Schema of XML 
file 

DTD of an 
internet auction 
database 

DTD/XSD DTD derived 
from OO7 
relational 
schema 

DTD of Data with 
Chapters, 
paragraphs and 
sections 

DTD/XSD of 
the recursive 
element 

XSD 

Average/Max 
Depth 

6/12 Limited by 
depth 
parameter 

5/7 3/6 5/16 Controlled by the 
application’s 
template 

Number of 
search queries 

20 20 23 8 28 7 

Number of 
update queries 

0 0 0 3 3 10 
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6.4.2 Existing XML Real-Life Datasets: An Overview 

In contrast to synthetic datasets (see Section 6.4.1), real-life datasets contain 

real data and structures that facilitate the evaluation process. This section 

provides an overview of the most widely used real-life datasets for XML system 

assessments. The real-life datasets presented in this section can be obtained 

from the XML Data Repository website (Suciu, 2002); Table 6.2 outlines their 

main features.  

 Protein Sequence Database:  

This database was developed by Georgetown University as a resource for 

integrated bioinformatics, comprising information on protein sequences. This 

dataset is a large-scale XML file of size 683 MB, which creates a broad and 

regular XML tree structure of shallow depth and expands up to seven levels 

(Wong et al., 2007). The protein sequence database has been employed by 

several applications to evaluate the performance of XML systems, such as for 

XML storage (Wong et al., 2007), processing XML streams (Green et al., 2003) 

(Jittrawong and Wong, 2007) (Wong et al., 2007), and filtering (Suciu, 2002) 

(Silvasti et al., 2009).  

 DBLP Database: 

The Digital Bibliography Library Project (DBLP) database (DBLP, 2013) is a 

large-scale XML document comprising actual bibliographic data about computer 

science publications. The information stored includes major conferences papers 

(e.g., PODS, VLDB, ICDE), journals (e.g., CACM, TODS, TOIS), series (e.g., 

LNCS/LNAI, IFIP), and books pertaining to the topic of computer science (Suciu, 

2002) (DBLP, 2013). Several XML database applications (Al-Badawi, 2010) 

(Liefke and Suciu, 2000) (Wang et al., 2003) (Lawrence, 2004) (Xu and 

Papakonstantinou, 2005) (Chen et al., 2006) (Li et al., 2007) have used the 

DBLP database to evaluate the development of their XML systems. Like the 

protein sequence dataset, the DBLP has a simple, shallow and broad XML tree 

structure (Lee et al., 2010) (Chen et al., 2006). The size of the DBLP database 

reached 1.1 GB in March 2013 (DBLP, 2013), whereas a smaller version of the 

same dataset, with a size of 127 MB, is available on (Suciu, 2002).  
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 NASA Database: 

As a part of the GSFC/NASA XML project, the NASA dataset (NASA, 2001) is 

designed from a flat file format and contains actual astronomical data. This XML 

dataset is 23 MB (Suciu, 2002) (NASA, 2001) with a shallow XML tree structure 

that presents only 18 recursive elements (Onizuka, 2003). It is widely used for 

evaluating XML applications in terms of XPath and XML query processing (Green 

et al., 2003) (Jittrawong and Wong, 2007) (Wong et al., 2007) (Onizuka, 2003) 

(Zhang et al., 2005), filtering (Silvasti et al., 2009), searches (Lee et al., 2010), 

indexing methods (He and Yang, 2004), and XML labelling (Xu et al., 2009) (Liu 

et al., 2013) (Liu and Zhang, 2016) (He, 2015). 

 Treebank Database: 

The Treebank database was implemented by the Computer and Information 

Science Department at the University of Pennsylvania. It contains English 

sentences that are interpreted for linguistic structure and has a file size of 82MB 

(Suciu, 2002) (Treebank, 1999). In order to maintain the copyright of the text 

nodes, this dataset has been partially encrypted in such a way as to leave the 

XML structure unaffected. The deep recursive structure of the Treebank 

database makes it both an interesting and challenging case for XML 

experimental evaluation (Chen et al., 2006) (Onizuka, 2003) (Wong et al., 2007) 

(Chen et al., 2005). Moreover, this XML database is considered a complicated 

dataset because its XML tree covers a huge number of 386,614 nested 

structures (Onizuka, 2003). Consequently, the Treebank dataset is frequently 

used for assessment of XML applications (Liefke and Suciu, 2000) (Onizuka, 

2003) (Green et al., 2003) (Chen et al., 2006) (Steedman et al., 2003) (Wong et 

al., 2007) (Chen et al., 2005) (Li et al., 2007).   

 Sigmod Record Database:  

This dataset contains actual data about a number of articles published on the 

ACM SIGMOD website. Unlike the other real-life datasets, Sigmod record 

(Merialdo., 1999) is a comparatively small database with an XML file size of 

about 0.5 MB (Suciu, 2002). Therefore, it is preferentially used to evaluate XML 

system performance over small XML databases (Mirabi et al., 2012) (Lee et al., 

2010) (Hye-Kyeong and SangKeun, 2010) (Li et al., 2007) (Rafiei et al., 2006) 

(Lawrence, 2004) (Li and Moon, 2001). 
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Table 6.2 Features of the most common XML real-life databases 

Database 
Name 

Protein 
Sequence 

DBLP NASA Treebank Sigmod 
Record 

Dataset Size 683MB 127MB  23MB 82MB 467 KB 

Number of 
Elements 

21,305,818 3,332,130 476,646 2,437,666 11,526 

Number of 
Attributes 

1,290,647 404,276 56,317 1 3,737 

Avg/Max 
Depth 

5.15/7 2.90/6 5.5/8 7.8/36 5.14/6 

6.5 The Guideline for Experimental Assessment  

As discussed in Section 6.3, there is no standard framework to evaluate the 

functionality of an XML labelling scheme. This has led to a particular challenge in 

verifying the proposed scheme’s reliability as a fully dynamic labelling scheme. 

Therefore, it became essential to setup the evaluation criteria whilst designing 

the experiments so that the research objectives of this thesis (stated in Chapters 

1 and 5) can be achieved. The criteria below were identified with the intention of 

providing a comprehensive assessment framework that covers the main aspects 

of a dynamic XML labelling scheme. Hence, the need for the following 

experimental evaluation standards are discussed next. 

6.5.1 The Selection of Experimental Datasets and Queries 

Due to the lack of a standard evaluation framework (see Section 6.3), the choice 

of experimental XML datasets from those presented in Section 6.4 was made 

based on the objectives of these experiments (stated in Section 6.5.2).  

To ensure the scalability of the evaluation, it is necessary to take into 

consideration the fact that the shape of the XML tree representing an XML 

document may be reflected in the results. Therefore, the selection of the 

experimental databases is based on the diversity of their XML tree features (i.e., 

size, depth, and breadth). Table 6.3 reports the properties of the experimental 

datasets used in this thesis. 
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Table 6.3 The properties of the experimental datasets selected 

XML dataset File size Max depth Max breadth Total elements 

NASA 23MB 8 80,396 47,664,6 

Treebank 82 MB 36 144493 2,437,666 

DBLP 127MB 6 328858 3,332,130 

XMark 111MB 12 25500 1,666,315 

Due to the simple and realistic data contained within the real-life XML datasets, 

these were selected in preference to synthetic datasets formed by XML 

benchmarks (see Section 6.4.1). Among the real-life datasets reviewed in 

Section 6.4.2, DBLP, Treebank and NASA were used for all the experiments in 

this thesis. These datasets provide a collection of different XML tree structure 

specifications (see Table 6.3). The DBLP dataset has a very large XML file size 

with a shallow and wide XML tree structure. In contrast, the Treebank dataset 

was selected due to its complex recursive structure that is represented as an 

XML tree with high depth and low breadth. The NASA dataset provides an XML 

tree of relatively average depth and average width. Since size variation is an 

essential criterion for the evaluation’s scalability, the varying size of these three 

genuine datasets makes the evaluation system more reliable.  

XMark is the most common benchmark used for XML data management 

(Franceschet, 2005) and XML labelling scheme evaluation (Lu et al., 2005b) (Xu 

et al., 2009) (Liu et al., 2013) (Liu and Zhang, 2016) (Mirabi et al., 2012). Thus, 

XMark was selected for the experiment’s implementation in this thesis. XMark 

was developed whilst taking into consideration the standardisation issues around 

XML, particularly in terms of storing and querying (Schmidt et al., 2002). It 

provides a framework for evaluating XML databases via different query types 

(Runapongsa et al., 2006a). 

Due to its scalability, the XMark benchmark provides a comprehensive set of 

queries; each was designed to highlight intuitive semantics (Schmidt et al., 

2002). XPathMark queries (Franceschet, 2005) have been designed for the 

XMark Benchmark to include the main aspects of the XPath 1.0 language (see 

Section 2.8.1). These queries are widely used in XML research such as that of 

(Arroyuelo et al., 2015), (Benedikt and Cheney, 2009), (Genevès and Layaïda, 

2006), and (Böttcher and Steinmetz, 2007). Four XPathMark queries were 

selected to evaluate the query performance in this thesis. Table 6.4 reports the 

details of these queries and their descriptions. These queries were chosen 
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because the axis containment in each query represents the essential structural 

relationships: - of Q1-parent/child, Q2-anscestor/descendent, Q3-following 

sibling, and Q4 following/preceding (document order). Other axes can be 

handled in a similar way to these axes (Min et al., 2009), so their evaluation was 

omitted. 

Table 6.4 The experimental queries set (adopted from (Franceschet, 2005a)) 

Query 
number 

Axis Type XPath and Description 

Q1 Parent/child 
Return the American items: 
/site/regions/*/item [parent:: namerica or 
parent:: samerica] 

Q2 Ancestor/descendent 
Find the mails containing a keyword: 
//keyword/ancestor:: mail 

Q3 
Following/preceding  
siblings 

Allocate the preceding bidder of each open 
auction: 
/site/open_auctions/open_auction/bidder 
[preceding-sibling:: bidder] 

Q4 
Following/preceding 
elements (document 
order) 

Return items of the document (per region) 
except the last one: 
/site/regions/*/item[following::item; 
item(level+2) of region] 

In order to generate the XML labels that represent the XML tree structure of the 

XML files used, the SAX parser was applied (see Section 2.5.2). This is due to 

the better performance of the SAX parser over the DOM parser in terms of 

manipulating large-scale XML documents. The DOM parser consumes memory 

space and so restricts the XML file size used in such implementations (see 

Section 2.5.1). Since the datasets selected for the experimental evaluation are 

mostly large, as described in Table 6.3 above, the SAX parser was selected in 

preference to the DOM parser.  

6.5.2 Experimental Objectives 

As mentioned earlier, the aim of the experimental implementation is to evaluate 

the proposed Base-9 scheme as a fully dynamic XML labelling scheme. Hence, 

the experiments were designed to test the functionality of the main features of a 

good dynamic labelling scheme (see Section 3.2) over the proposed scheme. 

Accordingly, each experiment was implemented with the intention of testing 

some of these features on the Base-9 scheme. The experiments, along with their 

objectives, are described individually below: 
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6.5.2.1 Label Initialisation 

This experiment was designed to test the initial labelling process focusing on two 

main aspects: the time required to generate the initial labels of an XML document 

and the growth in the size of the labels. The experiment was conducted over 

several XML datasets (see Section 6.5.1) to study how the document features 

(i.e. size, and its XML tree depth and breadth) affect the time and/or the size. 

This experiment was applied separately for both the SCOOTER and the Base-9 

labelling schemes. The results will be analysed in Chapter 7. Since the 

initialisation mechanisms in both schemes are very similar, it should be expected 

that the difference in the labelling time will be insignificant. As generating 

sufficiently compact labels to fit in the main memory is one of the major 

properties of a good labelling scheme, the growth rate of the labels size in each 

scheme is of particular interest as a comparison factor. Since the proposed 

scheme uses more digits than that of SCOOTER (see Section 5.5), it should be 

expected that Base-9 will produce shorter labels and so consume less storage 

capacity than SCOOTER.  

6.5.2.2 Handling Insertions 

This experiment was designed to test the extent to which the proposed scheme 

can support XML updates, i.e., it focuses on the dynamic characteristic. This is 

achieved by measuring the scheme’s scalability, particularly with regards to 

handling insertions. Two types of insertions were applied: uniform insertions and 

skewed insertions. Uniform insertion is basically the random insertion of new 

sibling nodes within an XML tree (Liu et al., 2013) (Xu et al., 2009) (Xu et al., 

2007), in this instance with up to 50,000 nodes, whereas skewed insertions 

refers to the repeated insertion of nodes at a fixed place within an XML tree (Liu 

et al., 2013). The latter scenario was performed by inserting a large number of 

nodes (up to 10,000 nodes) at a randomly selected position, with this process 

being repeated 10 times. According to the random position selected, the insertion 

algorithm (section 5.6) is applied as follows: 

 If the selected node is the first child; then the “insertBeforeLeftMost” 

method is invoked. 

 If the selected node is the last child; then the “insertAfterRightMost” method 

is employed. 
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 If the selected node is a middle child; then the “insertBetweenNodes” 

method is called. 

For any type of insertions (uniform/skewed), two main factors were considered: 

the growth in label size after insertion and the overall insertion time. This study 

also considered how the number of nodes inserted could further affect these two 

factors. While the proposed scheme handles insertions based on lexicographical 

comparison rather than enforcing the adaptive growth mechanism of SCOOTER, 

the expected result was that Base-9 would perform better in terms of time and 

size.    

6.5.2.3 Re-using Deleted Nodes’ Labels 

The objective of this experiment is to test the ability to re-use deleted labels, if 

any, in order to further limit the growth of the label’s size. For this experiment, the 

DBLP dataset was used because it provides a wider range of sibling nodes. The 

test was also carried out on 1,500 self-labels that were generated to represent 

1,500 sibling nodes. The experiment was performed by first selecting a sample 

label set of adjacent siblings’ nodes from the Base-9 labels and its corresponding 

label set from the SCOOTER labels. From each label set, a group of 𝑛 sibling 

nodes were deleted. The same 𝑛 number of nodes were then inserted in the 

same positions as the 𝑛 deleted nodes. Three types of updates were tested: 

delete and insert 𝑛 siblings before the first child, delete and insert 𝑛 siblings after 

the last child, and delete and insert 𝑛 siblings between two nodes. For each type 

of update, the original 𝑛 deleted labels and the new 𝑛 inserted labels were 

recorded separately in two lists (e.g., by using two files or array-lists). Then the 

percentage of the existing of the same labels in both lists was computed. Since 

the proposed scheme allocates a new label that is lexicographically closest to the 

label of the current node (see Section 5.6), it can be expected that the Base-9 

scheme will re-use all the deleted labels. 

6.5.2.4 Label Encoding 

The aim of this experiment is to measure the storage capacity required to store 

the labels generated before and after XML updates. The Base-9 labels were 

encoded using Fibonacci coding (see Section 5.7), whereas the SCOOTER 

labels were encoded by the QED encoding method (see Section 3.4). The effect 

of the coding method applied by each scheme on storage size was studied for 
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the initial labels. The time required to encode the initial labels was also recorded. 

To examine whether the growth rate of the labels has any influence on the 

encoding process, this experiment measured the encoded label size and time 

after extensive skewed insertion (Section 6.5.2.2). As mentioned in Section 4.5, 

the Fibonacci coding has proven to be a good choice for data compression, 

whilst the QED codes may increase in size rapidly at about 2-bits per insertion 

(see Section 3.4). Therefore, the expected result was that the Fibonacci code 

used for the Base-9 labels would occupy less storage space than SCOOTER’s 

encoded labels. On the other hand, due to the simplicity of the QED encoding 

mechanism, it might be expected that the SCOOTER labels will be encoded 

faster than the Base-9 labels. 

6.5.2.5 Relationships Determination 

As mentioned in Chapters 2 and 3, the main purpose of any XML labelling 

scheme is to support query processing by determining the structural relationship 

between any two nodes. This experiment was designed to measure how fast the 

main structural relationships discussed in Chapter 2 can be established directly 

from the labels before and after XML updates.  

Out of the initial labels, 200,000 pairs of labels were chosen at random from the 

first 15,000 labels in an XML dataset and the execution time for computing the 

relationships between each pair was recorded. To test the determination after 

insertions, the first 5,000 labels of an XML document were selected and then 

10,000 nodes were inserted randomly over the selected set of labels. Using this 

set, the execution time for computing the relationships between each of the 

400,000 pairs chosen was again calculated. Researchers such as (Xu et al., 

2009) and (Liu et al., 2013) have performed similar studies over many datasets, 

and have noted that the results were consistent for all XML datasets used. Thus, 

this part of the experiment was performed using just the Treebank XML dataset 

since it has the deepest recursive structure with a maximum depth of 36 (i.e., 

more ancestor/decedent nodes) and an average fan-out of 1623 (siblings), 

providing a sufficient variety of structural relationships. The experiment was run 

to test the determination of each relationship separately. Furthermore, the time 

taken to determine the relationships between any two nodes were computed for 

all the experimental datasets (see Section 6.5.1). The relationships tested were 

those of parent/child, ancestor/descendent, sibling, LCA, and document order. 
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This experiment also investigates whether the decoding process affects the 

query processing both after and before insertions. Therefore, the same 

experiment as above was conducted on all the experimental datasets (see 

Section 6.5.1), but by randomly selecting 200,000 of the encoded labels (instead 

of labels) from the first 15,000 encoded labels of an XML dataset. The 

measurement of the decoding time was included as a part of the determination 

process. All these experiments were run on the Base-9 and the SCOOTER 

schemes. The results are presented in Chapter 7.  

6.5.2.6 Query Performance 

The objective of this experiment is to evaluate the performance of the main types 

of XPath query on an XML-labelled dataset both before and after insertions. 

These queries along with their purposes, were described in detail in Section 

6.5.1. To process these queries in both the proposed scheme and the 

SCOOTER scheme, the structural joins algorithm (Al-Khalifa et al., 2002) was 

applied. Structural joins provides a special stack-tree algorithm for evaluating 

XPath axes that work more efficiently in practice (Gottlob et al., 2005), and leads 

to optimal join performance (Chien et al., 2002). Thus, efficient support for 

structural joins is the key to the efficient implementation of XML queries (Chien et 

al., 2002). Other XML labelling schemes also used structural joins for XML 

querying such as:- those of (Min et al., 2009), (Lu et al., 2005b), (Lu and Ling, 

2004) and (Mirabi et al., 2012). The expected result was that the difference 

between the queries’ response time in both schemes would be insignificant.  

The results obtained from the experiments are discussed and analysed 

statistically in Chapter 7 in order to evaluate the Base-9 scheme’s performance. 

Based on the analysis of these results, Chapter 8 presents further discussion on 

the reliability of the specified criteria above as a standard evaluation guideline. 

Besides the experiments described in this section to evaluate the proposed 

scheme, further tests have been carried out to study the ability of prefix-encoding 

techniques to compress XML labels. The experimental design and objectives of 

the study are detailed in the following section. 

6.6 XML Label Compression Using Prefix Encoding 

The aim of this experiment is to study the possibility of compressing XML labels 

via prefix encoding as presented in Section 4.5, in order to reduce the storage 
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space and minimise the chances of overflow (see Section 4.3). As mentioned in 

Chapter 4, several encoding methods have been applied by the existing XML 

labelling schemes to store XML labels, but up to now, prefix encoding has not 

been amongst them. The methodology of six of the most common prefix-

encoding methods were presented in Section 4.5. In this experiment, the 

performances of these prefix-encoding techniques were tested in terms of 

compressing and storing XML labels: 

 

 Fibonacci coding of order 2.  

 Fibonacci coding of order 3. 

 Lucas coding. 

 Elias-delta coding. 

 Elias-Fibonacci coding of order 2. 

 Elias-Fibonacci coding of order 3. 

For this experiment, the three real-life datasets described in Section 6.5.1 were 

used. To setup the XML labels model for testing proposes, two XML labelling 

schemes were used:  the Dewey order (Tatarinov et al., 2002) and the 

SCOOTER scheme (O’Connor and Roantree, 2012). The selection of these two 

schemes was based on the popularity of the Dewey scheme and the efficiency of 

the SCOOTER scheme, as discussed in Chapter 3. For each dataset, the Dewey 

and the SCOOTER labels were generated and then compressed and 

decompressed separately by each of the six prefix-encoding methods. The 

prefix-encoding methods were applied to encode the Dewey/SCOOTER XML 

prefix-based labels in a similar manner to the mechanism used to encode the 

Base-9 labels by Fibonacci codes (see Section 5.7), where the labels’ 

components were coded as long integers. To study the difference on the prefix 

encodings’ performance over these labels, the original encoding methods 

proposed by the designers of the Dewey and SCOOTER schemes were also 

implemented for a better comparison. That is, UTF-8 for Dewey labels, and QED 

for the SCOOTER labels (see Chapter 4). 

In general, this experiment consisted of two main experiments to test the 

performance of encoding and decoding for each prefix-encoding method. In 

terms of encoding, the execution time and the code size were the two main 

factors considered in the comparison of results. For the decoding process, the 
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test focused on measuring the run time performance in order to assess the 

fastest decoding method. To study the effect of the XML dataset size on the 

compression process, Treebank and DBLP file sizes were reduced to 23 MB 

(equal to the NASA file size) but their XML tree features were preserved, as 

described in Table 6.3. The encoding and decoding experiments were then 

repeated over these re-sized datasets and the results were compared with the 

original ones. 

The results of this experiment were published at the WEBIST 2016 conference 

(Al-Zadjali and North, 2016), and are also presented in more detail in Chapter 7.   

6.7 The Experimental Platform Setup 

All experiments were performed on a laptop with a 2.40 GHz Intel Core™ i7-4500 

CPU, 8.0 GB main memory and a Windows 10 64-bit operating system with a 

x64-based processor. Both the proposed Base-9 scheme and the SCOOTER 

scheme were implemented using Eclipse Java EE IDE version Luna 4.4 and 

Java language JDK 1.7.  

6.8 Conclusion 

This chapter has illustrated the specifications and guidelines for the experimental 

evaluation of the proposed scheme. It outlined the lack of a standard evaluation 

framework for XML labelling schemes. Accordingly, the experimental settings 

were designed to meet the objectives of the research hypothesis. Six sets of 

experiments were applied to evaluate the scalability and the functionality of the 

proposed scheme. Additionally, this chapter discussed the experimental details 

of XML label compression using a prefix encoding study. The implementation 

platform setup was stated and the selection of the datasets and queries were 

determined based on the experimental XML datasets available. The results 

obtained from these experiments are analysed in the next chapter.  
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Chapter 7: Experimental Results and 

Statistical Analysis 

7.1 Introduction 

Chapter 6 described the six experiments that were used to evaluate the 

proposed Base-9 labelling scheme. They were designed to examine various 

aspects of the scheme’s functionality, scalabitily and performance. The first 

experiment evaluated the label initialisation process in terms of time and size. 

The second and third experiments assessed the scheme’s ability to handle XML 

updates. The fourth experiment focused on the compactness of the labels using 

the Fibonacci coding method. The remaining two experiments were designed to 

evaluate the scheme’s efficiency in terms of determining relationships and 

querying performance. In addition, a further experiment was described in Chapter 

6 to assess the performance of several prefix-encoding methods in terms of label 

compression.  

This chapter presents an analysis of the results obtained from these 

experiments. The next section provides an overview as to how appropriate, 

statistically significant results were obtained. Then, the statistical interpretations 

of the results of each experiment are discussed individually. Finally, the chapter 

concludes with Section 7.5. 

7.2 Statistical Significance Analysis: An Overview 

The concept of statistical significance was introduced by Ronald Fisher (Fisher, 

1925). Statistically significant results are observed results which are unlikely to 

have occurred purely by coincidence (Ali et al., 2010). There is always a finite 

probability that the results obtained by the statistical tests could have occurred by 

chance (Motulsky and Searle, 2003). This probability is referred to as the 

𝑝 −value, and can be calculated as a minimum threshold of statistical 

significance. If the 𝑝 −value obtained is less than the significance level (e.g., 𝑝 <

 0.05), then it can be concluded that the results reflect the characteristics of the 

method(s) applied rather than sampling error (Sirkin, 2005).   
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The term “null hypothesis” is usually used in relation to the 𝑝 −value. The null 

hypothesis basically states that there is no difference between the methods 

applied (Motulsky and Searle, 2003). The concept of statistical significance is the 

minimum level of 𝑝 −value at which the null hypothesis can be rejected.   

Statistically significant results are required in various areas of computer science 

research, especially in the area of software verification and validation in which 

randomised algorithms are widely used (Arcuri and Briand, 2014). A randomised 

algorithm (Motwani and Raghavan, 1996) can be strongly affected by chance 

since it will have at least one component based on randomness. For example, 

when applying uniform insertions in an XML labelling scheme, the positions of 

new nodes inserted are selected at random. Another example is when evaluating 

the performance of algorithms based on execution time, which is itself affected 

by many factors such as hardware configuration, loop transformation and the 

number of threads (Li et al., 2005c). As randomness might affect the evaluation 

of the efficiency of randomised algorithms, many researchers such as (Arcuri and 

Briand, 2014) (Dybå et al., 2006) and (Grissom and Kim, 2005) developed 

techniques to ensure reliability when analysing the performance of randomised 

algorithms.  

When an algorithm is developed to address a computer science problem, it is 

common to compare it to existing alternative techniques, but the comparative 

criteria must be first decided, such as label sizes and execution time. Based on 

the research objectives, different measures (𝑀) can be chosen when attempting 

to determine the efficiency or the cost of the algorithms. To enable statistical 

analysis by 𝑀, the algorithms compared should be run independently a large 

number of times to gather data on the probability distribution of 𝑀 for each 

algorithm. The data being tested affects the probability distribution of 𝑀, which in 

turn affects the statistical test used for the evaluation.  

A statistical test can help to assess if there is enough experimental evidence to 

assert the null hypothesis, i.e., if there is a difference between the algorithms 

compared. Thus, the statistical test is intended to verify the acceptance or the 

rejection of the null hypothesis. The selection of the appropriate statistical test 

depends on two principle factors: the normality of the data distribution and the 

number of algorithms being compared (i.e., two or more). In this thesis, the 

normality of the execution time was tested using the graphical estimation of 

normality by the Kolmogorov-Smirnov (K-S) test (Oztuna D, 2006) (Ghasemi and 
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Zahediasl, 2012). For all the experiments, the 𝐾 − 𝑆 test results have shown that 

the assumptions of residuals were not normally distributed, and so the non-

parametric statistical tests were carried out. Thus, the selection of non-

parametric statistical tests that are relevantly valid for each experiment in this 

thesis was based on the number of algorithms to be evaluated.  

 Non-parametric Statistical Tests for Pairwise Comparison: 

The two most common non-parametric statistical tests applicable for evaluation 

comparison between two algorithms are (LaMorte, 2016) the Wilcoxon rank sum 

test (Wilcoxon, 1945) and Mann-Whitney U-test (Nachar, 2008). For pairwise 

comparison these two tests allow the derivation of 𝑝-values when experimenting 

with randomised algorithms. A low 𝑝-value (e.g., 𝑝 < 0.05) indicates the rejection 

of the null hypothesis, which implies with a high level of confidence, that there is 

a difference between the two algorithms. If so, then further factors have to be 

considered to assess which algorithm performs better, such as the effect size 

measure (Grissom and Kim, 2005).  

A non-parametric standardised effect size measure is the Vargha and Delaney’s 

�̂�12 statistic (Vargha and Delaney, 2000). �̂�12 determines the probability that a 

running algorithm (say 𝐴 ) yields higher performance measures than running 

another algorithm (say 𝐵). In comparison to other standardised effect size 

measures, that of Vargha and Delaney is easier to interpret (Grissom and Kim, 

2005); such that: 

_ �̂�12 (𝐴, 𝐵) = 0.5 indicates that the two algorithms are equivalent. 

_ �̂�12 (𝐴, 𝐵) = 𝑥 < 0.5 entails that 𝑥% of the time, algorithm 𝐴 performs 

better than 𝐵, and vice versa for 𝑥 > 0.5. 

As reported by (Vargha and Delaney, 2000) the formula derived by Vargha and 

Delaney is applied in this research as follows: 

�̂�12 (𝐴, 𝐵) =  (
𝑅1

𝑚
− 

(𝑚 + 1)

2
) 𝑛⁄  

𝑅1 is the rank sum of the algorithm 𝐴 under comparison. The rank sum (Gibbons 

and Chakraborti, 2011) is an essential component in the non-parametric 

statistical tests, such as in the Wilcoxon rank sum test (Wilcoxon, 1945) and 

Mann-Whitney U-test (Nachar, 2008), where 𝑚 and 𝑛 are the number of 

observations in algorithms 𝐴 and 𝐵, respectively. To achieve more accurate 
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statistical results, the two randomised algorithms should be executed the same 

number of times; i.e., 𝑚 = 𝑛.  

When the effectiveness of randomised algorithms is addressed, the choice of 

artefacts (e.g., number of nodes inserted and the position of the insertion) is 

important as it usually affects the assessment of results (Arcuri and Briand, 2014) 

(McPherson et al., 2004). Analysing randomised algorithms over empirical data 

raises the challenge of ensuring the credibility of the results. This consequently 

questions the validity of the proposed algorithm, so making it difficult to 

generalise the results to other untested systems or data. To achieve realism, a 

large number of artefacts should be chosen to improve the validity of the 

evaluation. For more reliable statistical results, there should be a balance 

between the number of artefacts applied and how many times each artefact is 

run (Arcuri and Briand, 2011). These numbers should be large enough to 

maintain a statistically significant difference for each artefact when comparing 

two randomised algorithms.  (Arcuri and Briand, 2014) recommended that more 

artefacts should be used since it is more important to address the target of the 

problem and to execute fewer runs, even as low as 10 runs. For each artefact, 

the non-parametric pairwise statistical test has to be performed and the overall 

result indicates the effectiveness of the algorithms compared. 

 Non-parametric Statistical Tests for Multiple Comparisons: 

It is possible to deal with the comparison of multiple techniques by using a non-

parametric statistical test called the Kruskal–Wallis test (Vargha and Delaney, 

1998), which is equivalent to the well-known parametric test ANOVA (Cuevas et 

al., 2004). The Kruskal-Wallis test compares the mean rank for each technique in 

relation to the comparison parameters (e.g., the number of runs for each 

encoding method). In multiple comparisons, obtaining a low 𝑝-value means there 

is very strong evidence to suggest a difference between at least one pair of the 

techniques applied. In order to find out which technique gives the best 

performance, the Manny-Whitney tests (Nachar, 2008) can be carried out on 

every pairwise comparison between the individual algorithms. The results of the 

“pairwise comparisons” show that there is very strong evidence of a difference 

between the two methods if, and only if, 𝑝 < 0.001 (𝑝-value adjusted using the 

Bonferroni correction (Armstrong, 2014)). As non-parametric tests are more 

sensitive to medians than to means (Howell, 2012), comparison of the median 

values gives a further indication of the methods’ effectiveness.   
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The following sections provide a results analysis and discussion of the 

experiments described in Chapter 6. For each experiment, an appropriate non-

parametric statistical test was selected as described above. In addition, the box 

plot (McGill et al., 1978) charts were drawn to represent the statistical 

significance between the methods graphically.   

7.3 Experimental Results for the Base-9 Scheme 

As mentioned previously, to evaluate a new scheme, it is necessary to compare 

it against an existing scheme based on the chosen comparison criteria (Arcuri 

and Briand, 2014). To compare the proposed Base-9 labelling scheme to the 

SCOOTER labelling scheme, several experiments were performed in an attempt 

to capture either the effectiveness or the cost of each scheme. 

Many aspects have been considered in this comparison. These are: initialisation, 

insertion, label re-usability, label encoding, structural relationship determination, 

and query performance. To facilitate statistical analysis for each of these 

aspects, both the Base-9 and SCOOTER algorithms were executed 

independently a large enough number of times to assemble information on the 

probability distribution of the required measurements, 𝑀, (i.e., code size and/or 

execution time). A statistical test was then performed with the aim of deciding 

whether the null hypothesis should be rejected or not. In this section, the null 

hypothesis was defined as there being no difference between the Base-9 

scheme and the SCOOTER scheme. For the time comparison, the first five runs 

were excluded before counting the 𝑛 execution times to avoid cache memory 

effects and to verify the accuracy and reliability of the results. As the normality of 

the probability distribution of the randomised algorithms’ results had been found 

to be negative using the K-S test (Oztuna D, 2006), a non-parametric statistical 

test was selected for each experiment, as discussed below.  

The next section describes how the evaluation of the initialisation process was 

handled. 

7.3.1 Label Initialisation 

As explained in Chapter 5, the initialisation algorithm for the Base-9 labelling 

scheme was adopted from SCOOTER. However, these two labelling schemes 

differ in the number of digits available to generate labels, i.e., 9-digits in Base-9 
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including 0, and only 3-digits in SCOOTER excluding 0. To investigate if this 

adjustment has affected the initialisation time and the initial label sizes, the label 

initialisation experiment was conducted as discussed in Chapter 6. The 

significance of the results is discussed in the next section.  

7.3.1.1 Analytical Strategy  

Two main factors were considered when evaluating this experiment: the 

initialisation time (in milliseconds) and label size (in Kbytes). As mentioned in 

Section 7.2, the computation of the execution time falls into the category of 

randomness. Therefore, it is important to identify the number of runs needed to 

obtain a statistically significant difference between the initialisation algorithms of 

both schemes. According to (Ali et al., 2010) and (Wegener et al., 2001), in order 

to enable the analysis of a statistical hypothesis with minimal statistical power 

(Dybå et al., 2006), the number of runs had to be at least 10. However, (Arcuri 

and Briand, 2014) recommended using more runs (at least 30 runs) to improve 

the accuracy of the statistical test. Hence, in every XML experimental dataset, 

each initialisation algorithm was executed 100 times to achieve a more reliable 

data analysis. As the comparison is based on two schemes, the non-parametric 

Mann-Whitney U-test was selected to obtain the 𝑝-value. For further statistical 

analysis, the effect size using the Vargha and Delaney �̂�12 measurement was 

also computed.  

In terms of evaluating the growth in label sizes, for each experimental dataset the 

total label size was computed for both labelling schemes separately.  As the 

results were constant and unrelated to the number of runs, the total size for each 

dataset was analysed graphically.  

7.3.1.2 Results Analysis 

 Initialisation Time: 

Figure 7.1 shows the bar chart representing the median initialisation time (of 100 

runs) required to label each XML experimental dataset individually by the Base-9 

and SCOOTER schemes. As can be seen from the chart, there is a correlation 

between time and number of elements in the dataset rather than the file size, 

where the time increases as the number of elements increases. Notice from the 

dataset properties (Table 6.3) that the XMark dataset is a larger file and has 
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more elements than the Treebank dataset, but takes less initialisation time on 

average compared to Treebank. This could be due to the deep complex and 

recursive structure of the Treebank dataset.  

For both schemes, the results were consistent for every XML dataset used. The 

SCOOTER scheme performed slightly better than the Base-9 scheme in terms of 

time (see Figure 7.1). The average difference between the execution time in the 

two schemes was in the range 1.10% to 4.87%. To study the significance of the 

results, the Mann- Whitney U-test was carried on for each dataset. The 𝑝- value 

obtained was always as low as  0.01x10−7 (for all datasets), which implies the 

rejection of the null hypothesis statement. This indicates there is a significant 

difference between the two schemes in terms of initialisation time. In order to 

investigate the preference in performance between the two schemes, the 

effective size, �̂�12 (𝐴, 𝐵), was measured for each XML experimental dataset. 

Knowing that group 𝐴 and group 𝐵 were presented as the SCOOTER and the 

Base-9, respectively, the effective size �̂�12 value obtained was in the range [0,

0.03].  This confirms that the SCOOTER’s initialisation algorithm operates faster 

than the Base-9’s initialisation algorithm. 

Figure 7.2 shows the box plot distribution of the Base-9 and the SCOOTER 

initialisation times for the XMark dataset. As the median line of the Base-9 box 

appears higher than the median line in the SCOOTER’s box, this suggests that 

the SCOOTER scheme generates initial labels faster than the Base-9 scheme. 

 

Figure 7.1 Initialisation time comparison (Base-9 vs SCOOTER) 
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Due to the consistency of the results, the box plot charts for the remaining 

datasets can be found in Appendix B. 

 

 Label Size: 

The bar chart in Figure 7.3 shows an overall comparison between the Base-9 

scheme and the SCOOTER scheme in terms of total label size generated for 

each XML dataset used. It shows that the results are consistent in all datasets; 

Base-9 labels are smaller than SCOOTER labels. Since the Base-9 scheme uses 

logarithm of base ‘9’ rather than base ‘3’ as in SCOOTER, it is expected that the 

total labels lengths will be reduced by about 30%. Table 7.1 shows the 

percentage decrease in total label size for each dataset. Considering the two 

different bases values used during initialisation process (i.e. 9 for Base-9 and 3 

for SCOOTER), the total label lengths were converted to the same base 𝑥 = 2 

and the results are presented in Table 7.1. 

 

 

 

 

Figure 7.2 boxplots of the Base-9 and the SCOOTER initialisation times for the 

XMark dataset 
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Table 7.1 Total Label lengths comparison (Base-9 vs SCOOTER) 

 Total labels size (no. of digits) Total label lengths in same base (2) 

Dataset Base-9 SCOOTER different Base-9 SCOOTER difference 

NASA 6882731 9467686 27.3%  21817741.1 15005927.3 31.2% 

Treebank 45472288 59582496 23.7% 144143742.6 94436021.9 34.5% 

DBLP 33872079 54869481 38.3% 107371950.1 86966069.8 19.0% 

XMark 23937356 34251920 30.1% 75879623.3 54288008.8 28.5% 

 

To show the difference in label size using the Base-9 scheme in preference to 

the SCOOTER scheme, Figure 7.4 represents the overall percentage distribution 

of label sizes generated for the XMark dataset. The percentage decrease in total 

label size for each dataset was calculated, the results of which were: 27.30% for 

NASA, 30.11% for XMark, 23.68% for Treebank, and 38.27% for DBLP. For an 

XML dataset with wider tree (i.e. with more 𝑐ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 per a node), such as in 

DBLP, takes extra advantage of using more digits (say 𝑦) to produce labels. This 

is because the 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒 computed by 𝑙𝑜𝑔𝑦 (𝐶ℎ𝑖𝑙𝑑𝐶𝑜𝑢𝑛𝑡 + 1) decreases as 

the value of 𝑦 increase. In SCOOTER as number of nodes increases the label 

size increases by at least 1 digit per insertion, and gradually the algorithm 

generates larger labels in comparison to the Base-9. 

The results confirm the achievement of the research objective in terms of 

generating more compressed labels via the proposed scheme. The percentage 

distribution charts for the label sizes for the other datasets can be found in 

appendix B.1 as their results were similarly consistent. 

 

Figure 7.3 Initial label size comparison (Base-9 vs SCOOTER) 
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7.3.1.3 Conclusion  

To conclude, the label initialisation experiment compared the performance of the 

Base-9 scheme against the SCOOTER scheme in terms of initialisation time and 

label sizes. The analytical results have shown that SCOOTER generates initial 

labels faster than the Base-9 scheme. However, the Base-9 scheme 

outperformed the SCOOTER scheme in terms of the compactness of the initial 

labels by an average of 29.84% for the four datasets used. 

7.3.2 Handling Insertions 

As discussed in Chapters 3 and 5, the insertion mechanism of the Base-9 

labelling scheme was developed based on lexicographical comparison rather 

than using an adaptive growth technique as in the SCOOTER scheme. To study 

whether such an enhancement to the insertion methodology has affected the 

insertion time and label size, the handling insertions experiment discussed in 

Chapter 6 was performed. The significance of the results is analysed in the next 

section.  

7.3.2.1 Analytical Strategy  

Unlike the initialisation process, the new labels generated for nodes inserted later 

are related to their randomly selected positions. Hence, the total label size of a 

dataset varies after each insertion. It is thus essential to consider the 

randomness when evaluating label size and insertion time. The performance of 

 

Figure 7.4 Difference in label size between Base-9 and SCOOTER 
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the insertion mechanisms may also vary depending on the number of nodes 

inserted, so it is important to consider the choice of the number of new nodes 

inserted as the “artefacts” factor of this evaluation. 

The main goal to using multiple artefacts is to improve the external validity when 

evaluating the insertion methods of the Base-9 and SCOOTER labelling 

schemes. That is, which of the two labelling schemes performs better when a 

small or a large number of nodes are inserted, and whether the type of insertion 

(i.e., uniform and/or skewed) effects the performance. To address such 

questions, it is important to use statistical tests to assess which insertion 

algorithm is significantly better than the other for all the artefacts. As mentioned 

earlier, for more reliable statistical results, there should be a balance between the 

number of artefacts and how many times each artefact is run. It is recommended 

(Arcuri and Briand, 2014) that it is better to have more artefacts but the number 

of runs can be relatively low, perhaps as low as 10 runs. For the insertion time 

assessment, each artefact is executed 20 times. Because the label size falls 

under the randomisation category in this experiment, each artefact was run 10 

times to measure the difference in label size after insertion. 

The uniform and skewed insertions were tested in all the experimental datasets 

separately. To study the effectiveness of the insertion algorithms of both Base-9 

and SCOOTER labelling schemes, 500, 1,000, 5,000, 10,000,  and 

 50,000 nodes inserted were considered as the artefacts for testing the uniform 

insertion. To evaluate the skewed insertion, the artefacts were selected as 100,

5,000, and 10,000 nodes inserted, and each was performed repeatedly at 10 

randomly selected positions. 

The Mann-Whitney U-test was applied for each artefact to find the 𝑝-value in 

order to justify the difference in significance between the two labelling schemes 

in terms of time and size. Box plots were also generated to clarify the findings 

graphically. 

7.3.2.2 Analysis of the Results 

 Uniform Insertion 

The uniform insertion performance was tested by inserting 500, 1,000, 5,000,

10,000,  and  50,000  nodes individually in every experimental dataset using the 

Base-9 scheme. The same process was repeated using the SCOOTER scheme 
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for statistical comparison. To assess the insertion time, 20 runs (after excluding 

the first 5 runs) were recorded for every test and analysed below. To measure 

the increase in label size after insertion, for each test the total label size increase 

of the initial size was recorded for 10 runs. The medians of the sizes obtained 

were then compared statistically and graphically.     

 Time comparison:  

Figure 7.5 illustrates the comparison of median time taken to insert 50,000 nodes 

at random positions in each experimental dataset. It can be seen in Figure 7.5 

that both the Base-9 and SCOOTER schemes have almost the same insertion 

time. Apart from the Treebank dataset, there is generally a positive correlational 

relationship between the insertion time and the dataset size. This could be 

because the deep recursive structure of the Treebank dataset necessitates more 

separators within the prefix-based labels generated. Such an observation was 

consistent with the results for the other tests with fewer nodes. The results for 

500, 1,000, 5,000, and 10,000 node insertions are shown in appendix B.2. 

To investigate the statistical significance of the difference in insertion time 

distribution between the two schemes, the Mann-Whitney U-test was applied for 

each artefact in every dataset. The 𝑝-values obtained were more than the 

significance level, 0.05, in all cases except when inserting 50,000 nodes in the 

Treebank and DBLP datasets (see Table 7.2). For the tests where 𝑝 > 0.05 the 

null hypothesis is retained, implying that there is no difference between the two 

 

Figure 7.5 Uniform insertion time comparison (Base-9 vs SCOOTER) 
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schemes in terms of insertion time. For the exceptional results of 𝑝 < 0.05 when 

inserting 50,000 nodes in Treebank and DBLP, further statistical analysis was 

undertaken to study the difference in performance between the two schemes.  

Table 7.2 𝒑-values of uniform insertion time distribution 

XML 
Dataset 

500 
insertions 

1,000 
insertions 

5,000 
insertions 

10,000 
insertions 

50,000 
insertions 

NASA 0.529 0.779 0.883 0.056 0.056 

XMark 0.183 0.820 0.678 0.211 0.904 

Treebank 0.495 0.620 0.165 0.265 0.026 

DBLP 0.277 0.841 0.512 0.149 0.001X10-4 

The effective size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), was measured for 50,000 uniform 

insertion tests on Treebank and DBLP. The results obtained were 0.704 and 

0.835, respectively. This confirms that the Base-9 scheme processes very large 

uniform insertions up to 50,000 nodes in relatively large datasets, such as in 

Treebank and DBLP, faster than the SCOOTER scheme by at least 70.4%. The 

box plot charts in Figure 7.6 demonstrate the difference in the performance 

between the two schemes in terms of insertion time. 

 Size comparison:  

Figure 7.7 demonstrates the difference in the growth rate of the label sizes 

between the Base-9 and SCOOTER schemes after 50,000 uniform insertions in 

each XML dataset. The size here represents the 50,000 labels (total lengths in 

digits) added to the initial labels of that dataset. In every run, different random 

positions were chosen for the new 50,000 nodes. The median of the total size of 

10 runs (after excluding the first 5 runs as usual) were recorded and compared in 

 

Figure 7.6 Box plot distribution of 50,000 uniform insertion times 



Chapter 7: Experimental Results and Statistical Analysis 

143 
 

Figure 7.7. This figure shows that, in general, the Base-9 scheme generates 

shorter labels than SCOOTER. Due to the stability of the results after 500, 1,000,

5,000,  and 10,000 insertions, their discussions are omitted but appendix B.2 

presents similar graphical comparisons. 

The statistical significance of the results was measured using the Mann-Whitney 

U-test for each test, and the 𝑝-value obtained was always between 1.083x10−5 

and 1.085x10−5. This confirms that there is difference in the performance of the 

two schemes in terms of label sizes after uniform insertions. The box plot chart in 

Figure 7.8 shows that, in contrast to the SCOOTER scheme, Base-9 controls the 

growth of the label sizes better when 500 nodes were inserted at different 

random positions. Appendix B.2 provides similar box plots for all the uniform 

insertion tests. The effect size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), in all the tests were found 

to exactly equal 1, which means that 100% of the time the Base-9 scheme 

generated shorter labels than SCOOTER during uniform insertions.  

 

Figure 7.7 Difference in the growth of label size (Base-9 vs SCOOTER) 
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Table 7.3 shows the average reduction percentage in the label sizes of the new 

500, 1,000, 5,000, 10,000, and 50,000 nodes added during uniform insertions by 

using the Base-9 scheme rather than the SCOOTER scheme. 

Table 7.3 Average reduction (percentage) in label size after uniform insertions 

XML 
Dataset 

500 
insertions 

1,000 
insertions 

5,000 
insertions 

10,000 
insertions 

50,000 
insertions 

NASA 24.33% 24.36% 24.35% 24.29% 24.23% 

XMark 26.87% 26.73% 26.78% 26.72% 26.81% 

Treebank 20.47% 20.91% 21.13% 21.14% 21.14% 

DBLP 33.58% 33.83% 33.86% 33.83% 33.81% 

 

 Skewed Insertion 

Skewed insertion has recently become one of the main focuses in developing 

XML labelling schemes (see Chapter 3); relatively large numbers of 100,

5,000, and  10,000 skewed insertions were carried out with all the experimental 

datasets. Each set of skewed insertions was repeated at 10 random positions. 

Hence, the total number of nodes inserted were 100𝑋10 = 1000, 5,000𝑋10 =

50,000,  and 10,000𝑋10 = 100,000 (referred to as “artefacts”), which were 

labelled by the Base-9 scheme and the SCOOTER scheme. For insertion time 

assessment, each test was executed 20 times (after excluding the first 5 runs). 

To study the growth of label sizes after insertion, the total size of the new labels 

was computed for each test. Since the label values vary based on their randomly 

selected insertion positions, the sizes obtained for 10 runs were recorded and 

analysed.  

 

Figure 7.8 box plot distribution label sizes of 500 insertions in XMark  
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 Time comparison:  

As in the uniform insertion test, the median values of the skewed insertion times 

were compared graphically. For example, Figure 7.9 presents the time 

comparison for 10,000𝑋10 insertions in all datasets. The correlation between the 

insertion time and the dataset size is the same as in the uniform insertion. For 

the lower number of skewed insertions, 100𝑋10 and 5,000𝑋10, the same 

observation was made; see appendix B.2. 

 

The Mann-Whitney U-test was applied for each artefact in every dataset to obtain 

the statistical difference of the insertion time distribution between the Base-9 

scheme and SCOOTER. Table 7.4 shows the 𝑝-values obtained for each test. 

The majority of these tests show there is no difference between the two schemes 

in terms of insertion time as their 𝑝-values were higher than 0.05. However, the 

cases highlighted in Table 7.4 provided 𝑝 < 0.05, which indicates the rejection of 

the null hypothesis. To examine the difference in the performance of the two 

schemes, the time distribution in these cases was illustrated by the use of box 

plots. 

Table 7.4 𝒑-values of skewed insertion time distribution 

XML Dataset 100X10 insertions 5,000X10 insertions 10,000X10 insertions 

NASA 0.052 0.060 0.009 X 10-4 

XMark 0.004 0.002 X 10-5 0.001 X 10-5 

Treebank 0.841 0.014 0.583 

DBLP 0.108 0.659 0.327 

 

 

Figure 7.9 Time comparison for skewed insertion (Base-9 vs SCOOTER) 

0

10000

20000

30000

40000

50000

60000

70000

NASA Xmark Treebank DBLP

Ti
m

e
 (

m
s)

Time comparison of 10,000X10 Skewed Insertions

Base9 SCOOTER



Chapter 7: Experimental Results and Statistical Analysis 

146 
 

The box plots in Figure 7.10 illustrate the distribution of times taken to insert 100 

nodes repeatedly in 10 different random positions in the XMark dataset. As the 

level of the median line in the SCOOTER box appears higher in the box plot, this 

suggests that Base-9 performs this particular number of skewed insertions faster 

than SCOOTER. For the other cases highlighted in Table 7.4, similar 

observations were found from their box plots, which are available in appendix 

B.2.  

 

 Size comparison:  

Figure 7.11 and Figure 7.12 demonstrate the difference between the Base-9 and 

SCOOTER schemes in terms of the growth rate of the new 100𝑋10 and 

5,000𝑋10 labels added by skewed insertions in each XML dataset. Due to the 

randomness of the insertion mechanisms, each test was run 10 times. In each 

run the total size of the labels generated was computed. The sizes in Figure 7.11 

and Figure 7.12 are the medians of the total sizes (in Kbytes) obtained. See 

appendix B.2 for the bar chart representation of the 10,000X10 skewed insertion 

results, which are consistent with Figure 7.11 and Figure 7.12. 

 

 

Figure 7.10 box plot distribution of 100X10 skewed insertion times in XMark 
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It can easily be seen from these figures that there is a big difference between the 

two schemes in terms of the increase in label sizes, especially when very large 

numbers of skewed insertions (e.g., 5,000 X 10) occurred. Base-9 generates 

very compressed labels in comparison to the SCOOTER scheme. The relative 

percentage change in label sizes generated using Base-9 instead of SCOOTER 

were computed as follows (MathGoodies, 2015): ((𝑠𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒9)/

𝑆𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅). The percentages obtained for 100𝑋10, 5,000𝑋10 and 10,000𝑋10 

insertions are presented in Table 7.5.  

 

 

 

 

Figure 7.11 Size comparison in 100X10 insertions (Base-9 vs SCOOTER) 

 

Figure 7.12 Size comparison in 5000X10 insertions (Base-9 vs SCOOTER) 
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Table 7.5 Average decrease percentage of the size’s growth rate in skewed insertions 

XML Dataset 100X10 insertions 5,000X10 insertions 10,000X10 insertions 

NASA 52.33% 97.56% 98.69% 

XMark 50.37% 95.73% 98.44% 

Treebank 44.09% 97.85% 98.81% 

DBLP 44.00% 93.85% 95.94% 

 

As mentioned in Chapters 3 and 5, the SCOOTER scheme is currently the most 

compact dynamic labelling scheme that supports skewed insertion (O’Connor 

and Roantree, 2013)  (Chiew et al., 2014a). In view of the reduction in size 

shown here (see Table 7.5), it can be concluded that the Base-9 scheme 

improves skewed insertion performance in terms of compressing XML labels by 

at least 44%. The 𝑝-values obtained by the Mann-Whitney U-test applied in all 

the artefacts was always (𝑝 = 1.083x10−5) < 0.05 for every dataset. This implies 

the rejection of the null hypothesis indicating there is a difference in performance 

between the two schemes in terms of label sizes, as observed earlier. The effect 

size, �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9), was measured for all the artefacts in every dataset 

and the result was always equal to 1. This confirms the conclusion that the Base-

9 scheme always generates more compressed labels than SCOOTER when 

dealing with skewed insertions. The box pots in Figure 7.13 illustrate this 

observation graphically for the XMark dataset (see appendix B.2 for box plots of 

the remaining datasets).  

 

Figure 7.13 Box plot distribution of total label sizes (Kbytes) in XMark (Base9 vs 

SCOOTER) 
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7.3.2.3 Conclusion 

This experiment compared the ability of the Base-9 scheme and the SCOOTER 

scheme to handle insertions. In all the experimental datasets, two types of 

insertions were tested: uniform insertion and skewed insertion. The tests have 

covered inserting small and large numbers of nodes. The results showed that 

both schemes require almost the same insertion time in most cases, and where 

there is a difference then the Base-9 scheme labels new nodes faster. In terms of 

size, it has been proven that every time, and in all insertion tests, the Base-9 

scheme consistently generates more compressed labels than the SCOOTER 

scheme.   

7.3.3 Re-using Deleted Nodes’ Labels 

The SCOOTER scheme has shown its capability for re-using the smallest 

available deleted label (O’Connor and Roantree, 2012). The Base-9 scheme 

generates labels based on the lexicographical comparison technique (see 

Chapter 5) during initialisation and insertion. This approach should allow re-use 

of almost all of the deleted labels. This experiment was designed to test whether 

the proposed scheme enables re-use of deleted nodes’ labels. It also compares 

the ability of both schemes in terms of re-using deleted labels.  

7.3.3.1 Analytical Strategy  

As described in Chapter 6, to test the re-usability of deleted labels, the first 𝑛 

adjacent sibling nodes were deleted from a sample set of labels. The deleted 

label values were stored in an array-list (say 𝑙𝑖𝑠𝑡_𝐴). Then, the same number 𝑛 of 

new nodes were inserted at the same positions as those of the 𝑛 deleted nodes. 

Three types of updates were tested:  

 Delete and insert 𝑛 siblings after the last child. 

 Delete and insert 𝑛 siblings before the first child. 

 Delete and insert 𝑛 siblings between two nodes.  

The new 𝑛 labels inserted were recorded in another array-list called 𝑙𝑖𝑠𝑡_𝐵. Then, 

the two lists were compared and the percentage of identical labels in both lists 

was computed. The results were analysed based on this percentage.  



Chapter 7: Experimental Results and Statistical Analysis 

150 
 

This experiment was performed in the DBLP dataset as it provides the widest 

range of sibling nodes due to its extensive fan-out (see Section 6.5.1), with 𝑛 =

10. The labels tested were displayed in tabular format to show the difference 

between the original deleted labels and the new labels. The experiment was also 

carried out on 1,500 self-labels generated to represent 1,500 sibling nodes, with 

𝑛 = 1000. For a fair test, the sample label set selected from the Base-9 labels 

corresponded to the set selected from the SCOOTER labels.  

7.3.3.2 Analysis of the Results 

Table 7.6 displays a sample set of Base-9 labels and their corresponding 

SCOOTER labels representing 12 adjacent sibling nodes in the DBLP dataset. 

Index denotes the nodes’ order of appearance.   
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Table 7.6 Label set sample from DBLP 

Index Base-9 Labels SCOOTER Labels 

1 0.111119.12 2.111111111133.112 

2 0.111119.13 2.111111111133.113 

3 0.111119.14 2.111111111133.12 

4 0.111119.15 2.111111111133.122 

5 0.111119.16 2.111111111133.123 

6 0.111119.17 2.111111111133.13 

7 0.111119.18 2.111111111133.132 

8 0.111119.19 2.111111111133.133 

9 0.111119.2 2.111111111133.2 

10 0.111119.21 2.111111111133.212 

11 0.111119.22 2.111111111133.213 

12 0.111119.23 2.111111111133.22 

 

To test the re-usability when inserting after the right-most child node, the last 10 

nodes were deleted and then 10 new nodes were inserted after the remaining 

last child. Table 7.7 shows the original and new labels generated. It is obvious 

from the Base-9 comparison in Table 7.7 that Base-9 re-created the deleted label 

values. On the other hand, as the SCOOTER insertion mechanism ensures the 

generation of the smallest available label value at first, only one deleted label 

was re-used (i.e., self-label = “2”). 

  



Chapter 7: Experimental Results and Statistical Analysis 

152 
 

Table 7.7 Testing re-usability when inserting after last child 

Insertion 
order 

Original 
Base-9 

New 
Base-9 

Original 
SCOOTER New SCOOTER 

Start node: 0.111119.13 
0.111119.1
3 

2.111111111133.1
13 

2.111111111133.11
3 

1 0.111119.14 
0.111119.1
4 

2.111111111133.1
2 2.111111111133.2 

2 0.111119.15 
0.111119.1
5 

2.111111111133.1
22 2.111111111133.3 

3 0.111119.16 
0.111119.1
6 

2.111111111133.1
23 2.111111111133.32 

4 0.111119.17 
0.111119.1
7 

2.111111111133.1
3 2.111111111133.33 

5 0.111119.18 
0.111119.1
8 

2.111111111133.1
32 

2.111111111133.33
12 

6 0.111119.19 
0.111119.1
9 

2.111111111133.1
33 

2.111111111133.33
13 

7 0.111119.2 0.111119.2 2.111111111133.2 
2.111111111133.33
2 

8 0.111119.21 
0.111119.2
1 

2.111111111133.2
12 

2.111111111133.33
22 

9 0.111119.22 
0.111119.2
2 

2.111111111133.2
13 

2.111111111133.33
23 

10 0.111119.23 
0.111119.2
3 

2.111111111133.2
2 

2.111111111133.33
3 

To examine the re-usability when inserting before the left-most child node, the 

first 10 nodes were deleted and then 10 new nodes were inserted before the 

remaining first child. Table 7.8 illustrates the original and the new label 

comparison. Again, the Base-9 scheme re-produced all the deleted labels, 

whereas, SCOOTER generated 40%.  
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Table 7.8 Testing re-usability when inserting  before the first child 

Insertion 
order 

Original 
Base-9 

New 
Base-9 

Original 
SCOOTER New SCOOTER 

10 0.111119.12 
0.111119.
12 

2.111111111133.
112 

2.111111111133.11111
1112 

9 0.111119.13 
0.111119.
13 

2.111111111133.
113 

2.111111111133.11111
112 

8 0.111119.14 
0.111119.
14 

2.111111111133.
12 

2.111111111133.11111
12 

7 0.111119.15 
0.111119.
15 

2.111111111133.
122 

2.111111111133.11111
2 

6 0.111119.16 
0.111119.
16 

2.111111111133.
123 2.111111111133.11112 

5 0.111119.17 
0.111119.
17 

2.111111111133.
13 2.111111111133.1112 

4 0.111119.18 
0.111119.
18 

2.111111111133.
132 2.111111111133.112 

3 0.111119.19 
0.111119.
19 

2.111111111133.
133 2.111111111133.12 

2 0.111119.2 
0.111119.
2 

2.111111111133.
2 2.111111111133.2 

1 0.111119.21 
0.111119.
21 

2.111111111133.
212 2.111111111133.212 

Start node 0.111119.22 
0.111119.
22 

2.111111111133.
213 2.111111111133.213 

In order to test the re-usability when inserting between two adjacent siblings, the 

10 middle nodes in Table 7.6 were deleted and replaced with 10 new nodes, as 

shown in Table 7.9. Consistent with the previous results, the Base-9 scheme re- 

used all the deleted labels in this scenario, whereas the SCOOTER scheme re-

used 3 out of 10 deleted labels (those highlighted in Table 7.9).  
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Table 7.9 Testing re-usability when inserting between two sibling nodes 

Insertion 
order 

Original 
Base-9 

new 
Base-9 

Original 
SCOOTER new SCOOTER 

Node1:   0.111119.12 
0.111119.
12 

2.111111111133.
112 2.111111111133.112 

1 0.111119.13 
0.111119.
13 

2.111111111133.
113 2.111111111133.2 

2 0.111119.14 
0.111119.
14 

2.111111111133.
12 2.111111111133.212 

3 0.111119.15 
0.111119.
15 

2.111111111133.
122 2.111111111133.213 

4 0.111119.16 
0.111119.
16 

2.111111111133.
123 

2.111111111133.213
3 

5 0.111119.17 
0.111119.
17 

2.111111111133.
13 

2.111111111133.212
3312 

6 0.111119.18 
0.111119.
18 

2.111111111133.
132 

2.111111111133.212
3313 

7 0.111119.19 
0.111119.
19 

2.111111111133.
133 

2.111111111133.212
332 

8 0.111119.2 
0.111119.
2 

2.111111111133.
2 

2.111111111133.212
3322 

9 0.111119.21 
0.111119.
21 

2.111111111133.
212 

2.111111111133.212
3323 

10 0.111119.22 
0.111119.
22 

2.111111111133.
213 

2.111111111133.212
333 

Node2: 0.111119.23 
0.111119.
23 

2.111111111133.
22 2.111111111133.22 

To generalise the results, 1,500 self-labels were generated using the initialisation 

algorithms of the Base-9 and SCOOTER schemes separately. In order to study 

the effect of the insertion algorithms over a wider range of labels, these 1,500 

self-labels were used as the testing sample. The same experiment was repeated 

but with 𝑛 = 1000 instead of 10 nodes. The percentage of re-used labels for each 

insertion type were computed for both schemes individually and are presented in 

Table 7.10. These percentages were found by counting the number of new labels 

(after insertion) that existed in the original label set (before deletion).  

Table 7.10 Percentage of re-used deleted labels (Base-9 vs SCOOTER) 

Insertion type Base-9 SCOOTER 

Inserting after last 
node 

98.7% used (987/1000 re-
used) 

0.2% used ( only 2 labels re-
used) 

Inserting between 
nodes 

99.1% used (991/1000 re-
used) 

0.9% used (only 9 out of 1000 re-
used) 

Inserting before first 
node 

98.7% used (987/1000 re-
used) 

0.7% used ( only 7 labels re-
used) 

 

As shown in Table 7.10, Base-9 outperforms the SCOOTER in terms of re-use of 

deleted labels. This is because the insertion algorithm in the Base-9 labelling 

scheme was established based on the same principle as the initialisation 
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process; that is, by finding next sibling label value that is lexicographically closest 

to the label value of the current node. The new label size was always controlled 

by 𝑚𝑎𝑥𝐿𝑎𝑏𝑒𝑙𝑆𝑖𝑧𝑒, which is computed based on the maximum number of children 

per node (see Chapter 5). This mechanism guaranteed reusing all the deleted 

label values, but as seen from the experimental results above, about 1% or 2% 

missing deleted nodes. To further investigate this observation, extra nodes were 

inserted and then the comparison between the original and re-used labels was 

repeated. The results show that after almost 15 nodes insertions before the first 

child and/or after the last child, all the deleted nodes were re-used. For insertion 

between two consecutive siblings, after inserting only 8 extra nodes the algorithm 

regenerated all the deleted nodes successfully.  

These results were obtained due to more restriction on using digit ‘1’ and ‘0’ 

during the initialisation process (see Section 5.5) in comparison to the insertion 

mechanism, which allows more lexicographical combination including ‘1’ and ‘0’.  

Table 7.11 illustrates examples of labels generated initially and then re-used later 

after deletion. The highlighted labels represent the new labels generated by 

insertion algorithms without restriction of number of ‘1’s at the end of a label 

value. Because of this, more insertions were necessary to establish 100% of 

deleted labels in the experiment. 

Table 7.11 Examples of generated labels (initial vs updated) 

Insert before first node Insert between two nodes Insert after last node 

Initial  Insertion  Initial  Insertion  Initial  Insertion  

1998 1998 1398 1398 1698 1698 

1999 1999 1399 1399 1699 1699 

2 2 14 14 17 17 

2111 21 1411 141 1711 171 

2112 211 1412 1411 1712 1711 

2113 2111 1413 1412 1713 1712 

 

The insertion algorithm in the SCOOTER labelling scheme was applied based on 

the compact growth mechanism introduced by (O’Connor and Roantree, 2012) to 

control the label growth rate regardless of the extent of skewed node insertions 

and deletions. The experiments illustrated above have shown that the SCOOTER 

insertion algorithm at first reused the smallest deleted label values before 
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generating the rest of the new labels, which were derived based on the growth 

mechanism which always led to larger labels.  

If all the child nodes of an element are deleted, then the initialisation algorithm is 

applied to label the new leaf nodes. Therefore, in both labelling schemes the 

same deleted values would always be generated. 

7.3.3.3 Conclusion 

This experiment was executed to test the Base-9 scheme’s ability to re-use 

deleted nodes in comparison to SCOOTER. The results, as shown above, 

confirm the insertion technique applied by the Base-9 scheme based on the 

lexicographical comparison, enables the re-use of at least 98.7% of the deleted 

labels (if any). Although the SCOOTER guarantees re-use of the smallest 

quaternary string(s) (i.e., “12”, “2”, and/or “3”), the adaptive growth mechanism 

naturally produces larger new labels following the maximum quaternary digit ‘3’ 

(see Table 7.7 and Table 7.9) or preceding the smallest quaternary string “12” 

(see Table 7.8). 

7.3.4 Label Encoding 

As mentioned in Section 6.5, this experiment focused on examining the storage 

capacity required to store the Base-9 labels encoded using the Fibonacci 

encoding of order 2 and order 3 (see Chapter 5) whereas, the SCOOTER labels 

were encoded by the QED encoding method (see Section 3.4). The study also 

presented a comparison between the two schemes in terms of encoding time and 

size of both the initial labels and the updated labels. 

7.3.4.1 Analytical Strategy  

Two main factors were considered when evaluating this experiment: the 

encoding time (in milliseconds) and total encoded label size (in Kbytes). As the 

time computation falls into the randomness classification, the number of runs was 

identified to obtain a statistically significant difference between the encoding 

methods of the two schemes. For each experimental dataset, the encoding time 

of 100 runs over the initial labels were recorded. To analyse the encoding time 

on the inserted labels, 20 runs were measured for each artefact of the skewed 

insertion for each dataset. Fewer runs were taken into consideration for the 
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updated labels as in each insertion run per artefact, different labels were 

generated based on the new randomly selected node positions (see Section 

7.3.2).  

In terms of evaluating the encoded label size, for each experimental dataset the 

total size of the encoded labels was calculated for each encoding method for 

both labelling schemes separately. As for the initial labels, the results were 

constant and irrelevant to the number of runs, the total size of each encoding 

method for each dataset was analysed graphically. The inserted labels differ for 

each run, so the encoded size measurement in this case was categorised as a 

randomised assessment (see Section 7.3.2). Thus, the total size of 20 runs was 

taken for each encoding method and applied over each dataset. 

As the comparison is based on multiple techniques (Fibonacci of order 2 and 

Fibonacci of order 3 for Base-9, and QED for SCOOTER), the non-parametric 

Kruskal–Wallis test (Vargha and Delaney, 1998) was selected to obtain the 𝑝-

value (see Section 7.2).  
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7.3.4.2 Analysis of the Results 

 Initial Labels 

 

 Time comparison:  

As Figure 7.14 shows the difference on encoding time for the XMark dataset, it 

can be seen that, in general, QED generates label codes faster than Fibonacci 

coding. This observation is consistent with the remaining XML experimental 

dataset, as reported in appendix B.2.  

To justify the statistical significance of the results, the non-parametric Kruskal–

Wallis test was carried out on the encoding time. The 𝑝-value obtained was less 

than 0.001x10−6 for all datasets, indicating the rejection of the null hypothesis. 

This implies there is very strong evidence to suggest a difference between at 

least one pair of the applied encoding methods. Thus, further analysis was 

conducted using the Manny-Whitney U-tests to study the difference between 

each pair of methods for every dataset in terms of encoding time. The results of 

the “pairwise comparisons” have shown that there was very strong evidence 

(𝑝<0.001, adjusted using the Bonferroni correction) for a difference between 

every pair on all the datasets.  

 

Figure 7.14 Encoding time comparison (XMark) 
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The box plots in Figure 7.15 present the distribution of time taken (for 100 runs 

after excluding the first 5 runs) to encode the initial labels of the XMark dataset 

using QED for the SCOOTER labels and Fibonacci of order 2 and order 3 for the 

Base-9 labels. In the box plots, the level of the median line in the 

SCOOTER_QED box is the lowest, which confirms the results observed from 

Figure 7.14 that the QED method is the fastest among the various methods 

compared. Fibonacci of order 3 performed faster than the Fibonacci of order 2. 

The same observation was established for all the experimental datasets used; 

see appendix B.2.  

 Size comparison:  

The bar charts in Figure 7.16 present the comparison between encoding 

methods in terms of encoded label size for each dataset. As can be seen from 

this figure, the shape of a dataset affects the results obtained. The XMark and 

NASA datasets are each represented by an XML tree with less extreme depth 

and/or width in comparison to Treebank and DBLP (see Section 6.5). Both 

datasets show similar results, in which the total size of the encoded Base-9 

labels generated by any Fibonacci coding is always smaller than the QED codes 

representing the SCOOTER labels. The Fibonacci of order 2 produced the 

smallest codes in total. 

 

Figure 7.15 Box plot of encoding time (initial labels) distribution for XMark dataset 
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Alternatively, the Fibonacci of order 2 generated the largest codes for the DBLP 

dataset, which has the shallowest and widest XML tree (see Section 6.5). For 

this dataset, the Fibonacci coding of order 3 gave the most compressed codes in 

comparison to the other encoding methods.  

By comparison, for Treebank, which has the deepest XML tree with narrowest 

width, the Fibonacci of order 2 produced the smallest codes whilst the Fibonacci 

of order 3 formed the largest codes.  

  

  

Figure 7.16 Encoding size comparison of initial labels 

In terms of code size, order 𝑚 Fibonacci encoding is relative to the shape of the 

tree representing an XML dataset. Section 7.4 discusses this observation in more 

detail as the performance of the encoding methods applied here are consistent 

with the results achieved in the XML label compression experiment. Overall, 

Fibonacci coding always generated the smallest codes in total, either using 

Fibonacci of order 2 or of order 3 if not both. Table 7.12 shows the percentage 

difference between QED and both Fibonacci encoding methods separately. The 

negative values indicate that QED performs better than Fibonacci of order 2 for 
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the DBLP dataset by 1.74% and also better than Fibonacci of order 3 for the 

Treebank dataset. The comparison between the two Fibonacci methods confirms 

that Fibonacci of order 3 produces shorter codes for larger labels by about 

10.58% in DBLP. Otherwise, Fibonacci generates shorter codes.  

Table 7.12 Percentage different on total code size between encoding methods 

Dataset QED vs Fib2 QED vs Fib3 Fib2 vs Fib3 

NASA 7.90% 4.10% -3.52% 

Treebank 4.89% -1.41% -6.01% 

DBLP -1.74% 8.66% 10.58% 

XMark 7.27% 4.83% -2.28% 

 

 Inserted Labels 

 Time comparison:  

When inserting a small number of nodes (e.g., 100 nodes repeated at 10 

different positions) QED encodes SCOOTER labels faster than the Fibonacci 

coding used for the Base-9 labels (see figure 7.17). However, when encoding a 

large number of nodes inserted in any XML experimental dataset, the QED 

consumed at least 98% more time than both Fibonacci coding (see Figure 7.18). 

Figures 7.17 and 7.18 present the encoding time comparison for a small 

(100X10) and large (5,000X10) number of skewed insertions. For an even larger 

number of insertions up to 10,000X10, the encoding methods behaved similarly 

to 5,000X10 insertions, as per the bar chart presented in appendix B.2.  

 

 

Figure 7.17 Encoding time comparison after 100 X 10 insertion 
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The Kruskal–Wallis test was applied to find the statistical significance of the 

results. For 100X10 insertions, the 𝑝-values obtained for the NASA and 

Treebank datasets were 0.090 and 0.194, respectively. This suggests there is no 

significant difference between any of the encoding methods in terms of encoding 

time. However, for the XMark and DBLP datasets, the 𝑝-values were 0.003 and 

0.014, respectively, showing that there is a difference between at least two of the 

methods. To identify the differences, a pairwise comparison via the Mann-

Whitney U-test was carried out on the encoding time. For the DBLP dataset, the 

results show a difference between QED and Fibonacci of order 3 only, whilst for 

XMark, the results indicated there is no difference between either Fibonacci 

coding method but there is a difference between QED and each of the Fibonacci 

codings. The box plot in Figure 7.19 shows the distribution of encoding time after 

100X10 insertions. As can be seen from this figure, in the XMark dataset the 

QED performed better. In the DBLP dataset, both QED and Fibonacci of order 2 

have low median lines of almost zero. Thus, the effect size for this case was 

computed and the result was �̂�12 (𝑄𝐸𝐷, 𝐹𝑖𝑏2) = 0.45, which implied that 45% of 

the time QED encodes SCOOTER labels faster than the Fibonacci of order 2 for 

the Base-9 labels. 

 

Figure 7.18 Encoding time comparison after 5,000 X 10 insertion 
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To analyse the results of time taken to encode a large number (5000X10) of 

node insertions, the Kruskal–Wallis test was applied. The 𝑝-value obtained was 

less than 0.001x10−4 for all the datasets, indicating there is a difference between 

at least two encoding methods. A pairwise comparison via Mann-Whitney always 

produced very low 𝑝-values (𝑝 < 0.001x10−4), showing there is a difference 

between any pair of encoding methods. The box plots in Figure 7.20 show that 

the Fibonacci of order 3 outperforms the other encoding methods when encoding 

a large number of new nodes. Although QED can encode a small number of new 

nodes faster, it had the slowest performance when encoding a large number of 

inserted nodes.  

The same results were obtained for all the experimental XML datasets when 

inserting 5000X10 or an even larger number up to 10,000X10, as shown by the 

box plot charts in appendix B.2. In general, both Fibonacci encodings were about 

99% faster than QED in terms of encoding new labels after large skewed 

 

Figure 7.19 Box plot of the encoding time distribution after 100X10 insertions 
(DBLP and XMark) 

 

Figure 7.20 Box plot distribution of encoding time after 5000X10 insertions (XMark) 
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insertions. Fibonacci encoding of order 3 performed better than Fibonacci of 

order 2 by an average about of 20.71% in all the datasets tested. Appendix B.2 

presents the percentage comparison in detail between QED and Fibonacci 

encodings for each dataset.  

 Size comparison:  

Figures 7.21 and 7.22 present encoded labels size comparison of a small and a 

large number of nodes inserted in all the experimental XML datasets used. When 

a large number of nodes are inserted, the SCOOTER’s new labels grow rapidly 

(see Section 7.3.2) and so their QED code sizes also increase rapidly. In this 

case, the QED codes representing SCOOTER’s labels are larger than the 

Fibonacci codes of the Base-9 labels. Particularly in the Treebank dataset (see 

figure 7.22), which has the deepest XML tree that requires more separators each 

represented by 2 bits in QED. Whereas, in Fibonacci encoding the separators 

are not stored for saving more space. 

The Kruskal–Wallis test was used to test the statistical significance of the results 

for all types of skewed insertion 100𝑋10, 5000𝑋10, and 10,000𝑋10 in terms of 

encoded label sizes. The 𝑝-value obtained was less than 0.05 in all cases for 

every dataset, indicating there is a difference between at least two encoding 

methods. The majority of the pairwise comparison via the Mann-Whitney U-test 

gave a 𝑝-value in the range [0.033, 0.001x10−2], implying there was very strong 

evidence (𝑝 < 0.001, adjusted using the Bonferroni correction) of a significant 

difference between the encoding methods. The three exceptional cases were:  

 

Figure 7.21 Encoded label size comparison after 100 X 10 insertion 
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o 5000X10 insertions in DBLP dataset with 𝑝 = 0.928 > 0.05 between 

QED and Fibonacci of order 2 

o 10,000X10 insertions in DBLP dataset with 𝑝 = 0.791 > 0.05 also 

between QED and Fibonacci of order 2 

o 10,000X10 insertions in XMark dataset with 𝑝 = 0.058 > 0.05 between 

Fibonacci of order 2 and of order 3 

The box plots for each dataset presenting the size distribution after 100X10 

insertions are displayed in Figure 7.23. The results are consistent with the size of 

the initial label encoding illustrated earlier, where the overall size is affected by 

the XML tree shape of each dataset. 

However, when dealing with a large number of insertions the Fibonacci codes of 

the Base-9 labels are always smaller than the QED codes representing the 

 

Figure 7.22 Encoded label size comparison after 5,000 X 10 insertions 

 

Figure 7.23 Box plot distribution of encoded labels size after 100X10 insertion 
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SCOOTER labels for all datasets (see Figure 7.24). Appendix B.2. illustrates the 

results after 10,000X10 insertions, which are consistent with the results of 

5,000X10 insertions presented in this section.   

The relative percentage change in encoded label sizes generated using 

Fibonacci coding and QED to represent Base-9 and SCOOTER labels, 

respectively, were measured as follows (MathGoodies, 2015): 

((Code𝑠𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝐶𝑜𝑑𝑒𝑆𝑖𝑧𝑒𝐵𝑎𝑠𝑒9)/𝐶𝑜𝑑𝑒𝑆𝑖𝑧𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅). The percentages obtained 

for encoded labels after large ( 5,000𝑋10 and 10,000𝑋10 ) insertions are 

presented in Table 7.13.  

Table 7.13 percentage difference between sizes of QED and Fibonacci codes 

Insertion 
type 

10000X10 5000X10 

Dataset 
Percentage 
difference 
QED vs Fib2 

Percentage 
difference 
QED vs Fib3 

Percentage 
difference 
QED vs Fib2 

Percentage 
difference 
QED vs Fib3 

NASA 93.32% 93.42% 79.42% 78.98% 

XMark 79.82% 79.64% 43.24% 42.35% 

Treebank 79.44% 78.31% 51.03% 48.10% 

DBLP 42.65% 49.05% 16.01% 25.15% 

 

 

Figure 7.24 Box plot distribution of encoded labels size after 5000X10 
insertion 
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7.3.4.3 Conclusion 

The encoding mechanisms used to store Base-9 labels and SCOOTER labels 

were examined in this experiment. The performance of these mechanisms in 

terms of encoding time and size were compared in initial labels and updated 

labels for all experimental XML datasets. In terms of time, the QED method 

applied to the SCOOTER labels was the fastest when it was used on initial nodes 

or when a small number of nodes was inserted. Alternatively, the QED method 

was the slowest when it was applied to a large number of new nodes as the 

SCOOTER label grew rapidly (see Section 7.3.2). The Fibonacci coding 

outperformed the QED encoding in generating codes after a large number of 

insertions, particularly Fibonacci of order 3. 

Considering the sizes of the encoded labels, the tree shape of the XML dataset 

used affected the performance of the encoding methods. In general, Fibonacci 

coding has always produced smaller codes than QED. This leads to the 

conclusion that Fibonacci coding enables the storage of the Base-9 labels in 

more compressed form than QED encoding for the SCOOTER scheme. 

Furthermore, the Base-9 scheme provides faster encoding and consumes less 

storage than SCOOTER in case of large skewed insertions. 

7.3.5 Relationship Determination 

This experiment was designed to measure how quickly the main structural 

relationships can be established directly from the labels before and after XML 

updates (see Section 6.5). Both schemes (the Base-9 and SCOOTER) determine 

structural relationships based on lexicographical comparison (see Chapters 3 

and 5). Hence, this experiment investigated the effect of the compressed Base-9 

labels against the SCOOTER labels on the determination process. The study 

also examined the influence of the scheme’s decoding mechanisms on the speed 

of the determination process.   

7.3.5.1 Analytical Strategy  

Two aspects were measured when evaluating this experiment: the determination 

time and the decoding time (in milliseconds). In view of the randomness of the 

time computation, the number of runs required to obtain a statistically significant 
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difference between the two schemes in terms of determination, including and/or 

excluding the decoding process, was identified.  

To test the determination of each relationship type individually, the Treebank 

dataset was selected (for the reasons given in Section 6.5). The time taken to 

determine each the relationship between any two labels was computed before 

and after insertion. The determination time for 100 runs (after excluding the first 5 

runs) over 200,000 initial pairs of labels was recorded. Similarly, the 

determination time of 100 runs over 400,000 pairs of labels after insertion was 

also computed. The relationships tested were: parent/child (P/C), 

ancestor/descendent (A/C), sibling, lower common ancestor (LCA), and 

document order (DO). 

To study the effect of the decoding process on the determination, the 

measurement of the decoding time was included as a part of the determination 

process. The determination time here represents finding all relationships 

between any 200,000 pairs of encoded labels. All tests were performed on the 

Base-9 and SCOOTER schemes. The time taken for 100 runs (after excluding 

the first 5 as usual) were recorded and then statistically analysed by the Mann-

Whitney U-test. This part of the experiment was conducted on all the 

experimental datasets to achieve more reliable results.  
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7.3.5.2 Analysis of the Results 

 Individual relationship  

  

Figure 7.25 determination time comparison before and after insertion 

 

The determination time comparison between the Base-9 and SCOOTER 

schemes before and after insertion is presented graphically in figure 7.25. These 

data were collected by running the test on the Treebank dataset. For each 

relationship determination over the initial labels, this figure shows that Base-9 

outperformed SCOOTER in establishing every relationship except the document 

order relationship, where the difference found in this instance was insignificant. It 

seemed that after insertion, the difference in determination time between the two 

schemes became smaller (see figure 7.26).   
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Further tests were carried out using the Mann-Whitney U-test to obtain the 

statistical significance of the results. For the initial labels, the tests gave a 𝑝-

value less than the significance level of 0.05 for the parent/child (𝑝 = 0.01), 

sibling (𝑝 = 0.015), and ancestor/descendant (𝑝 = 0.042) relationships. The null 

hypothesis was retained for the other two types of relationship: LCA (𝑝 = 0.092) 

and document order (𝑝 = 0.793).This indicates that there is a difference between 

the two schemes when determining parent/child, sibling, and 

ancestor/descendant relationships over the initial labels. The effect sizes for 

these three type of relationship were measured and the results were always 

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9)  ≈ 0.60, which implies that 60% of the time Base-9 

determines these relationships faster than SCOOTER. The box plots in figure 

7.26 confirm this observation. 

When considering the determination time after insertion, the 𝑝-value obtained via 

the Mann-Whitney U-test was in the range [0.01x10−3, 0.043]  <  0.05 for all the 

relationships except for the document order (𝑝 = 0.948). To investigate the 

difference between the two schemes in the four relationships for which the null 

hypothesis was rejected, the effect sizes were measured. The 

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) values found were between 0.60 and 0.72. This indicates 

that at least 60% of the time Base-9 outperformed SCOOTER in determining 

 

Figure 7.26 Box plot distribution of determination time over initial labels 
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these four relationships. Figure 7.27 illustrates the box plot distribution of the 

determination time for parent/child, sibling, ancestor/descendant, and LCA 

relationships. Statistical descriptions of the details of this experiment data are 

presented in appendix B.4.  

 All relationships with decoding 

This experiment was run on all the experimental datasets. The determination 

time in this part of the experiment represents the time taken to determine all five 

relationships combined (parent/child, sibling, ancestor/descendant, LCA, and 

document order) between any 200,000 pairs of labels before and after insertion. 

At first, each pair of encoded labels was selected and then decoded into XML 

prefix-based labels (Base-9 and SCOOTER separately) before establishing the 

relationships. The Fibonacci codes of the Base-9 labels were decoded using 

Fibonacci decoding, whilst the QED codes were decoded into the SCOOTER 

labels. Figures 7.28 and 7.29Figure 7.29 show the decoding time comparison 

between the schemes in terms of decoding the initial and updated labels, 

respectively. In both scenarios, the Fibonacci decoding process was faster than 

the QED decoding. 

 

 

Figure 7.27 Box plot distribution of determination time over updated labels 



Chapter 7: Experimental Results and Statistical Analysis 

172 
 

 

Considering the determination time only, Figures 7.30 and 7.31 illustrate the 

comparison between the Base-9 and SCOOTER schemes before and after 

insertion. Although both schemes apply lexicographical comparison when 

determining the structural relationships, the Base-9 compressed labels gave a 

better performance than the SCOOTER labels. The Mann-Whitney U-test 

provided 𝑝-values as low as 0.01x10−6 for all the experimental datasets, 

confirming there was a difference between the determination time between the 

two schemes.  

 

Figure 7.28 Decoding time comparison of initial labels 

 

Figure 7.29 Decoding time comparison of updated labels 
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The effect sizes for all datasets were computed and the results were always 

�̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) ≥ 0.95. This implied that 95% (or more) of the time, Base-

9 determines relationships faster than SCOOTER.  The box plot distribution for 

the NASA dataset is shown in figure 7.32, verifying the results obtained. As the 

results were consistent for all the datasets; appendix B.4 shows box plot 

distributions for the other experimental datasets. 

 

Figure 7.30 Determination time (all relations) comparison on the initial labels 

 

Figure 7.31 Determination time (all relations) comparison on updated labels 
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Similar results were found when combining the decoding time and determination 

time. See figure 7.33 for initial encoded labels and figure 7.34Figure 7.34 for 

encoded labels after insertion. The compressed Base-9 labels reduced the 

determination performance (including decoding process) by at least 16.32%. 

Table 7.14 displays the percentage decrease ((𝑇𝑖𝑚𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅 − 𝑇𝑖𝑚𝑒𝐵𝑎𝑠𝑒9)/

𝑇𝑖𝑚𝑒𝑆𝐶𝑂𝑂𝑇𝐸𝑅) of the median time taken for decoding and then determining 

relationships when using Base-9 in preference to SCOOTER. The median values 

of 100 runs before and after insertions on both schemes were used due to the 

non-normal distribution of the collected times. 

Table 7.14 Percentage decrease of median time (decoding and determination) 

Datasets NASA Treebank XMark DBLP 

Before 
insertion 

21.72% 19.69% 17.44% 39.02% 

After 
insertion 

19.82% 16.32% 18.94% 38.51% 

 

 

 

Figure 7.32 Box plot distribution of determination time (all relations) before and 

after insertion 
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To check the statistical significance of the results, the Mann-Whitney U-test was 

carried out and the 𝑝-value was found as 0.01x10−6 for all datasets. All the effect 

sizes measured indicate that at all times Base-9 was faster than SCOOTER in 

terms of decoding and then determining the structural relationships. The 

comparison via a box plot of the distribution of decoding and determination time 

for the NASA dataset is presented in figure 7.35Figure 7.35. The box plots for the 

other datasets can be found in appendix B.4. 

 

 

Figure 7.33 Decoding and determining time comparison on initial labels 

 

Figure 7.34 Decoding and determining time comparison on updated labels 
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7.3.5.3 Conclusion 

The ability to determine the five main relationships (parent/child, sibling, 

ancestor/descendant, LCA, and document order) was examined in this 

experiment. When establishing each relationship individually, the compressed 

Base-9 labels generally sped up the determination process in comparison to 

SCOOTER both before and after insertion. For the document order (DO), there 

was no apparent difference between the two schemes. 

With regard to the decoding process as a part of the determination time, the 

Fibonacci decoding proved faster than QED by an average of 47.7% before 

insertion and 37.28% after insertion (considering the four datasets used). The 

statistical significance calculation performed on the results confirmed that Base-9 

always performed faster than SCOOTER, both before and after insertion, in 

terms of decoding and determining all relationships between any pair of labels. 

7.3.6 Query Performance 

As discussed in the previous chapter, this experiment assesses the query 

response time on the XML-labelled XMark dataset before and after updating. 

Four main types of XPath queries were used for the reasons stated in Section 

6.5.1. 

 

Figure 7.35 Box plot distribution of decoding and determination time 
comparison 
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7.3.6.1 Analytical Strategy  

The only measurement relevant to this experiment is the query response time (in 

milliseconds). Taking into account the cache memory and any complex 

interactions that might occur in terms of computer housekeeping tasks at the time 

the experiment was executed, each query was separately run for 100 times (after 

once again excluding the first five runs) for each scheme in order to achieve 

statistically significant results. The Mann-Whitney U-test was used to gain a 

statistical analysis of the results obtained for the XPath queries. In addition, the 

medians of the time taken for 100 runs were compared graphically for the two 

schemes both before and after insertion.  

7.3.6.2 Analysis of the Results 

 Before insertion 

Figure 7.36 illustrates the response times of the XPath queries tested using the 

Base-9 and SCOOTER schemes over the initial labels of the XMark dataset. This 

figure shows that Base-9 performs slightly better than SCOOTER in terms of 

querying time. With the exception of Query1, representing the parent/child 

relationship (i.e., finding all American (parent) items (child)), both schemes take 

the same length of time to return the query results. This observation was 

checked statistically as the Mann-Whitney U-test was applied to each query 

separately, which obtained 𝑝-values as low as 0.01x10−5 for queries 2, 3, and 4 

but were greater than the significance level 0.05 for query 1 (𝑝 = 0.763). The 

medians of both schemes were the same for query 1 (=32 milliseconds) and 

query 4 (=94 milliseconds).  
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The affect sizes �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) for queries 2, 3, and 4 were computed, 

the results for which were 0.82, 0.74, and 0.66, respectively. This confirms the 

results comparison as it appears in figure 7.36; Base-9 outperformed SCOOTER 

in returning answers to queries 2, 3, and 4, representing ancestor/descendant, 

sibling and document order, respectively. The box plot distribution of query 2 

response times is presented in figure 7.37. Similar box plots for queries 3 and 4 

are shown in appendix B.5. 

 

  

 

Figure 7.36 Query performance comparison over initial labels 

 

Figure 7.37 Box plot distribution of query 2 response time 
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 After insertion 

Skewed insertion (1,000 X 10) was used to add 10,000 nodes to the XMark 

dataset in order to test the query performance when XML is updated. Figure 7.38 

shows the comparison between the two schemes in terms of query response 

time after insertion. It can be seen from this figure that Base-9 gave a slightly 

faster response time than SCOOTER for all queries.  

Using the Mann-Whitney U-test, the 𝑝-value obtained for all queries were 

0.01x10−6. Therefore, there is a difference in query response time between the 

Base-9 and SCOOTER schemes. The affect sizes �̂�12 (𝑆𝐶𝑂𝑂𝑇𝐸𝑅, 𝐵𝑎𝑠𝑒9) found 

were 0.99, 0.96, 0.83, and 0.84 for the queries 1, 2, 3, and 4, respectively. This 

shows that for over all the queries tested, Base-9 always showed a better 

performance than SCOOTER in terms of response time.  The box plot 

distribution of response time for query 1 after insertion is illustrated in figure 7.39 

and in appendix B.5 for all other queries (as their results are very similar to those 

of query 1). 

 

Figure 7.38 Query performance comparison after insertion 
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7.3.6.3 Conclusion 

This experiment compared Base-9 with SCOOTER in terms of querying time. 

The results showed that Base-9 always returns queries concerned with 

ancestor/descendants, sibling, and document order relationships faster than 

SCOOTER, both before and after insertion. For queries dealing with parent/child 

relationships, both schemes behaved similarly for the initial documents but Base-

9 became faster than SCOOTER after the XML document had been updated.  

Further discussion on the Base-9 scheme’s performance evaluation is presented 

the next chapter. 

7.4 Experimental Results of XML Label Compression  

This experiment was designed to examine the compression of XML labels using 

the prefix-encoding methods presented in Chapter 4: Fibonacci coding of order 2 

(Fib2) and order 3 (Fib3), Lucas coding, Elias-delta (ED) coding, and Elias 

Fibonacci coding of order 2 (EF2) and order 3 (EF3).  The performances of these 

prefix-encoding techniques were tested in terms of encoding time, code size, and 

decoding time (see Section 6.6). Each encoding method was applied to the 

Dewey order labelling scheme (Tatarinov et al., 2002) and the SCOOTER 

scheme (O’Connor and Roantree, 2012) separately. In addition to the prefix 

 

Figure 7.39 Box plot distribution of response time for query 1 after insertion 
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encodings tested here, the comparison of results includes the original encoding 

methods of these two schemes (UTF-8 for Dewey labels and QED for SCOOTER 

labels; see Chapter 4). The experiments were conducted on the three real-life 

datasets (NASA, Treebank, and DBLP) described in Section 6.5.1 to study the 

effect of the XML tree shape over the results obtained.  

The effect of the XML dataset size on the compression process was also 

examined in this experiment. This was achieved by reducing the Treebank and 

DBLP files to 23MB (equivalent to the NASA file size) whilst their XML tree 

features were preserved as described in Table 6.3. The encoding and decoding 

experiments were then repeated over these re-sized datasets and the results 

were compared with the original ones. 

7.4.1 Analytical Strategy  

The compression methods experiment was applied to study which encoding 

method generates the smallest code, and which one(s) process the encoding 

and/or decoding the fastest. Therefore, two main factors were considered in 

evaluating the results of this experiment: the execution time (in milliseconds) and 

the code size (in Kbytes).  

For each encoding method, the codes generated for Dewey or SCOOTER labels 

were found to be fixed values, regardless of the number of times each method 

was executed, thus the code sizes have been presented graphically.  

When the encoding and/or decoding time are considered, it is essential to take 

into account random effects on the time computed (Li et al., 2005c) and, 

consequently, specify how many runs are sufficient to obtain statistically 

significant results. In order to enable the analysis of a statistical hypothesis with 

minimal statistical power (Dybå et al., 2006) the number of runs had to be at least 

10 (Ali et al., 2010) (Wegener et al., 2001). However, it is recommended (Arcuri 

and Briand, 2014) to use at least 30 runs to reach a more accurate statistical 

result. To determine a sufficient number of runs required to gain a statistically 

significant result, the statistical analysis was separately applied on Dewey labels 

for the NASA dataset with 20, 50, 100, and 150 runs. The analysis included a 

comparison between the six prefix encodings and UTF-8, each being individually 

implemented on the Dewey labels for 20, 50, 100 and 150 times. As the medians 

of the times taken were the same for each encoding method when executed for 
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20 or more runs, 50 runs (after excluding the first five runs) was selected as an 

adequate number of runs to evaluate the encoding and decoding time. Because 

of the non-normal distribution of the time, and because there were more than two 

encoding methods to be compared, the Kruskal-Wallis test was used to study the 

statistical significance of the results.  

7.4.2 Analysis of the Results 

 Encoding time 

Figures 7.40 and 7.41Figure 7.41 show the median encoding time comparison for 

the Dewey and SCOOTER labels respectively. As can be seen from these 

figures, the results were influenced by the different XML tree shapes of the XML 

datasets tested. For both labelling schemes, the encoding time for the NASA 

dataset was the fastest as its size is the smallest of all the datasets tested. The 

encoding time for Dewey labels was the slowest for the Treebank dataset, which 

has the deepest XML tree structure; this is because more components and 

separators exist within Treebank’s labels. Similar results were achieved on 

SCOOTER labels with the exception of Lucas encoding, Fibonacci of order 2 

(Fib2) and of order 3 (Fib3) encodings, which took more time for the DBLP 

dataset. SCOOTER labels were computed based on the node child count (see 

Chapter 3) and so the more children per node that exist (i.e., wider XML tree as 

in DBLP dataset) the larger the self-label value is. Thus, it seems that the 

Fibonacci and Lucas encodings were more dependent on self-label sizes than 

the number of components. Overall, for SCOOTER labels the original QED 

method achieved the fastest encoding time of all six prefix-encoding methods.  
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The Kruskal-Wallis test was carried out on the encoding time for each dataset, 

and the 𝑝-value obtained was 𝑝 < 0.001, suggesting there is a difference 

between at least two encoding methods. Thus, pairwise comparisons via the 

Manny-Whitney test were performed and the results confirmed that there was 

very strong evidence (with 𝑝 < 0.001, adjusted using the Bonferroni correction) of 

a difference between most of the methods. There was no evidence of a 

difference between Fibonacci coding of order 2 and Lucas coding, where both 

gave maximal encoding times. Moreover, there was no evidence of any 

 

Figure 7.40 Median encoding time comparison for Dewey labels 

 

Figure 7.41 Median encoding time comparison for SCOOTER labels 
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difference between Elias-delta and Elias-Fibonacci 3 coding. For both schemes, 

the overall encoding time for the newly implemented Elias-Fibonacci of order 3 

had the smallest median value in comparison to the other prefix-encoding 

methods. The encoding time for the original methods (UTF8 and QED) of the two 

schemes required the least time of all the prefix encoding methods. Figure 7.42 

shows the box plot distribution of the encoding time of Dewey labels for the 

NASA dataset. Similar box plots were found for the other datasets, so these are 

only reported in appendix B.6. The statistical measurements obtained in this 

experiment can also be found in appendix B.6. 

 

 Decoding time 

Figures 7.43 and 7.44 show the median decoding time comparison for Dewey 

and SCOOTER labels. As with the encoding, the results here were also affected 

by the XML tree shape. For the Dewey labelling schemes, the results were 

similar to those of the encoding process (Figure 7.40), where the NASA dataset 

was decoded the fastest and Treebank the slowest. Unlike the encoding process, 

the Lucas and Fibonacci methods gave a better performance than the other 

methods for the SCOOTER scheme. In general, the UTF-8 and Fibonacci of 

order 2 achieved the fastest decoding times for Dewey labelling scheme. The 

Fibonacci of order 2 also decoded the SCOOTER labels faster than the other 

decoding methods.  

 

 

Figure 7.42 Box plot distribution of encoding times of Dewey labels for NASA 
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The Kruskal-Wallis test was carried out on decoding time for all datasets 

individually, and as the 𝑝-value obtained was 𝑝 < 0.001 pairwise comparisons via 

the Manny-Whitney test were performed; the results showed that there was very 

strong evidence (with 𝑝 < 0.001, adjusted using the Bonferroni correction) of a 

difference between most of the methods. There was no evidence of any 

difference between Fibonacci (of order 2), Fibonacci (of order 3) and Lucas 

coding. Generally, for both schemes, decoding Fibonacci of order 2 was the 

fastest in comparison to all the other encoding methods tested here. The Elias-

 

Figure 7.43 Median decoding time comparison for Dewey labels 

 

Figure 7.44 Median decoding time for SCOOTER labels 

5
3

2

6
7

2

5
4

7 1
0

7
9

8
7

6

8
6

1

5
3

2

0

1000

2000

3000

4000

5000

6000

7000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 UTF8

Ti
m

e
 (

m
s)

Dewey labels - decoding time

NASA Treebank DBLP

7
0

4

8
1

3

7
0

4 1
6

8
9

1
4

7
2

.5

1
0

0
1

8
5

1
.5

0

2000

4000

6000

8000

10000

12000

Fib2 Fib3 Lucas EliasDelta EliasFib2 EliasFib3 QED

Ti
m

e
 (

m
s)

SCOOTER labels - decoding time

NASA Treebank DBLP



Chapter 7: Experimental Results and Statistical Analysis 

186 
 

delta was the slowest when decoding XML prefix-based labels. Figure 7.45 

presents the box plot distribution of the decoding times of Dewey labels for the 

NASA dataset. The box plot distribution of decoding times for both schemes 

across all datasets are similar to figure 7.45, and as such are given in appendix 

B.6. The statistical measurements obtained in this experiment are also reported 

in appendix B.6. 

 Code size 

The total code size (in Kbytes) of all the Dewey and SCOOTER labels within 

each dataset was computed separately. Figures 7.46 and 7.47Figure 7.47 

illustrate the results for all encoding methods. For the Dewey labels, all the 

prefix-encoding methods applied generated smaller code than the original UTF-8 

encoding. However, for the SCOOTER labels, the original QED encoding 

produced the smallest code of all prefix encoding approaches.  

 

 

Figure 7.45 Box plot distribution of decoding times of Dewey labels for 
NASA 
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The differences between the total code sizes obtained using the prefix encodings 

were small (see figures 7.46 and 7.47). The size of self-label values in a label set 

has an impact on the size of the compressed code. For instance, label sets with 

shorter self-labels, such as the Dewey labels for the NASA and Treebank 

datasets using Fibonacci order 2, generated the smallest code. As self-label 

values get larger (e.g., in SCOOTER labels), Fibonacci of order 3 produced the 

most compressed code. This observation agrees with the results of the Base-9 

label encoding described earlier (see Section 7.3.4). In general, Fibonacci coding 

 

Figure 7.46 Code size comparison for Dewey labels 

 

Figure 7.47 Code size comparison for SCOOTER labels 
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generates the most compressed code in comparison to the other prefix-encoding 

methods applied. For smaller self-label values, Fibonacci of order 2 is better, 

whereas Fibonacci of order 3 is recommended for larger self-label values. 

 Database Size 

The prefix-encoding methods were also tested over the three datasets of the 

same size (i.e., 23 MB) where their XML tree properties were preserved as 

described in Section 6.5.1. The results of encoding/decoding time and code size 

were consistent with the originals (discussed earlier). This implies that the XML 

tree’s shape (depth and breadth) influences the encoding/decoding time and 

code size, but XML document size is not of consequence. A comparison of 

results is presented graphically in appendix B.6. 

7.4.3 Conclusion 

Various prefix coding methods were applied for the first time to compress XML 

labels. The compression process was conducted on three real XML benchmark 

datasets that vary in their XML tree properties. The results show that the 

structure of the XML tree representation of a dataset has an impact on the 

performance of the compression methods, but the XML document size does not. 

Among the prefix-encoding methods studied the newly implemented Elias-

Fibonacci of order 3 achieved the fastest encoding time on average, whilst 

Fibonacci of order 2 had the best decoding time. In practice, the decoding 

process is usually performed more often than encoding. Therefore, for faster 

XML query processing, Fibonacci coding of order 2 is preferable to other 

encoding methods. In terms of size, Fibonacci of order 3 produced the most 

compressed codes for larger numbers and Fibonacci of order 2 for small 

numbers. Consequently, Fibonacci coding is recommended for encoding XML 

labels because it generates smaller code and produces faster decoding in 

comparison to the other encoding methods tested here. 

The results of this experiment were published in WEBIST 2016 conference (Al-

Zadjali and North, 2016).   

7.5 Conclusion 

To conclude the experimental outcomes: the SCOOTER scheme provided initial 

labels faster than Base-9, but Base-9 produced more compressed labels. 
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Uniform and skewed insertions were tested on both schemes when adding both 

small and large numbers of nodes to each XML experimental dataset. In general, 

the insertion time was almost the same for the two schemes. As with the 

initialisation, Base-9 always generated more compact labels than SCOOTER 

especially when a large number of nodes were inserted. If insertion occurred at 

the same position as a deleted node, Base-9 guaranteed re-use of at least 98.7% 

of the deleted labels while SCOOTER re-used only the smallest quaternary 

labels.  

The encoding methods used to store Base-9 labels (i.e., Fibonacci encoding) and 

SCOOTER labels (QED encoding) were examined in this chapter. The behaviour 

of these two encoding techniques was consistent in the label encoding 

experiment and XML label compression experiment in terms of encoding and 

decoding times over the initial labels. After a large number of insertions, 

Fibonacci coding outperformed QED encoding in generating labels’ codes, 

particularly Fibonacci of order 3. In general, Fibonacci coding produced smaller 

codes than QED, either by Fibonacci of order 2 (for smaller self-labels) or of 

order 3 (for larger self-labels) if not both depending on the XML tree shape of the 

dataset (as discussed in the last experiment).  

The chapter also studied the ability of both schemes to determine relationship. 

The results suggest that the compressed Base-9 labels have, in general, 

speeded up the determination process in comparison to SCOOTER both before 

and after insertion, except when identifying the document order (DO), where two 

schemes behaved similarly. When considering the decoding process as a part of 

the determination time, Base-9 always performed faster than SCOOTER both 

before and after insertion as the Fibonacci decoding was faster than QED. In 

addition, an assessment of the four XPath queries representing the essential 

structural relationships was performed to evaluate the queries’ response times on 

both schemes.  

Several prefix-encoding methods were implemented to compress the Dewey and 

SCOOTER labels. Their performances in terms of encoding/decoding time and 

code sizes were evaluated. The results showed that the shape of an XML tree 

(but not the size) has an impact on the results of the compression methods. 

Among the prefix-encoding methods applied, the newly implemented Elias-

Fibonacci of order 3 provided the fastest encoding time whilst the Fibonacci of 
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order 2 had the best decoding time. In terms of size, Fibonacci encoding gave 

the most compact code.   

With a few exceptions, the overall results of the Base-9 scheme were better than 

those of SCOOTER.  A further evaluation of the Base-9 scheme is discussed in 

the next chapter. Chapter 8 also revisits the research hypotheses and outlines 

the main findings and limitations, which in turn suggest ideas for future work 

(presented in Chapter 9).    
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Chapter 8: Evaluation and Further Discussion 

8.1 Introduction 

The experimental results were discussed in the previous chapter. This chapter 

presents a general evaluation of the proposed scheme in the next section. There 

are many factors that can be considered as ‘threats’ to the experiments as they 

may have an impact on the experimental results; these include execution time 

anomalies and random data (e.g., positions of the new nodes inserted). Section 

8.3 describes how these threats were handled to ensure the reliability and 

scalability of the results. The designs and outcomes of each experiment are 

individually evaluated in Secion 8.4. The validation of the proposed scheme’s 

properties as a good dynamic XML labelling scheme is given in Section 8.5. The 

experimental limitations and main findings are discussed in Sections 8.6 and 8.7, 

respectively. Finally, the chapter is concluded with Section 8.8. 

8.2 The Base-9 Scheme’s Overall Evaluation 

This section gives an overal assessment of the new Base-9 scheme based on 

the research hypothesis stated in Chapter 1 and described in detail in Chapter 5:  

“Providing compact XML labels based on lexicographical order using 

decimal strings may facilitate query performance and permit multiple 

insertions without causing any storage overhead. Storing such labels 

using a Fibonacci prefix-encoding techniques may reduce the storage 

capacity required and speed up the determination of structural 

relationships.” 

As mentioned in Chapter 5, the main aim of this thesis is to limit the occurrence 

of overflow and increase the efficiency of XML labelling in dynamic environments 

by focusing on the size of XML labels. The Base-9 scheme was developed to 

improve the performance of XML labelling by generating shorter labels whilst still 

allowing insertion and avoiding re-labelling. The underlying principles here are 

the combination of maintaining the size of the labels via their lexicographical 

order and then storing these labels in compressed form by using Fibonacci 

encoding.  
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To test the research hypothesis, the Base-9 scheme was implemented based on 

the principles outlined in Chapter 5. The experimental objectives, design and 

implementations were described in detail in Chapter 6. To allow an even-handed 

evaluation, the SCOOTER labelling scheme (O’Connor and Roantree, 2012) was 

also implemented as it contributed to the development of the proposed scheme. 

The SCOOTER labelling scheme was recently described as the most compact 

dynamic labelling scheme in controlling the growth of label size when XML is 

updated (Chiew et al., 2014a). To assess the functionality of the proposed 

scheme, six experiments were designed and implemented to examine whether 

the research intentions were achieved and the scheme fulfilled the criteria 

required to be classified as a good dynamic XML labelling scheme (see Chapters 

3 and 5).  

Based on the experimental results discussed in Chapter 7, it is clear that the 

research hypothesis was supported. The proposed scheme gave better 

performance when either a small or large number of nodes was inserted (see 

Section 7.3.2). Since the focus of the thesis is on the compactness of the labels, 

it was essential to measure the size of the intial and updated labels. The results 

of the average reduction percentage in the labels’ sizes when Base-9 was used 

in preference to SCOOTER was about 30% on initial labels, at least 20% after 

uniform insertion, and 44% after skewed insertion (see Section 7.3). In all 

circumstances, the Base-9 scheme generated shorter labels than SCOOTER. 

The results of both the label encoding experiment and the XML label 

compression experiment showed that the XML tree shape has an impact on code 

size. Based on the results obtained in these two experiments, it can be seen that 

the performance of the encoding methods was affected by the shape of the tree 

representing an XML dataset. When encoding initial labels for a deep narrow tree 

(e.g., the Treebank dataset), Fibonacci of order 2 generated the shortest code 

among all encoding methods tested in this study. For a wide and shallow XML 

tree (e.g. the DBLP dataset) Fibonacci of order 3 produced the most compact 

code. For other shapes of XML tree, Fibonacci of order 2 or of order 3 encoding 

always performed better than QED in terms of code size. After a large number of 

insertions, both Fibonacci encodings (particularly Fibonacci of order 3) still 

generated shorter codes than QED for any shape of XML tree. 

Another aspect the research hypothesis considered was that of facilitating query 

performance and relationship determination. The results of the relationship 
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determination experiment indicated that, in general, the compressed Base-9 

labels effectively speeded up the determination process in comparison to 

SCOOTER both before and after insertion, except when identifying the document 

order (DO) where both schemes gave similar results. The effect of the decoding 

process on facilitating query performance was also tested. Again, Base-9 always 

gave a better performance than SCOOTER both before and after insertion, as 

Fibonacci decoding was faster than that of QED. An evaluation of the four XPath 

queries representing the essential structural relationships in terms of their 

response times was performed (see Section 7.3.6). The results showed that 

Base-9 for the most part outperformed SCOOTER in returning answers to the 

queries both before and after insertions.  

According to the experimental design (see Chapter 6) and the results obtained 

(see Chapter 7), it is clear that the research hypothesis was supported. The 

proposed scheme was tested on many real and synthetic XML datasets (NASA, 

Treebank, DBLP, and XMark), which vary in their structure and properties in 

order to obtain better analytical results and more reliable conclusions. However, 

the lack of a standard evaluation framework (see Chapter 6) made it challenging 

to provide a fair comparison with the existing XML labelling schemes. Other 

threats to the experiments, such as the time restrictions, may have limited the 

scalability of the results, as will be discussed in the next section.  

8.3 Threats to the Experiments 

A number of factors may affect the results of a scientific experiment (Johnson, 

2002) (Hakim, 2000). Such factors are referred to as threats. For example, 

execution times rely strongly on complicated interactions between several 

products that contain the programming application’s environment. This comprises 

memory size and configuration, the type of compiler used, and the operating 

system (McGeoch, 2001). Another example is when dealing with randomised 

methods (e.g., in handling insertions experiment), the erraticism between runs of 

the codes and between randomly generated instances may obscure certain 

results, making it difficult to derive accurate conclusions (Johnson, 2002).  

To ensure the credibility and validity of the research findings, these threats were 

identified and controlled in each experiment. To ensure the study’s outcomes 

were valid rather than obtained by chance, several principles were followed, as 

addressed below. 
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8.3.1 Experimental Implementation 

It is important to check the correctness of the algorithm’s implementation in order 

to determine the scalability of the results. For each experiment, before formally 

collecting the data a set of exploratory experiments (Shneiderman, 1976) were 

applied to each algorithm. This comprised experimental tests made during 

debugging and optimising the code by taking into account various scenarios in 

order to generalise the findings (Johnson, 2002). To control the experimental 

techniques, the algorithms were first traced manually (using the “School” XML 

sample – see Chapter 2). Then, each experiment’s code was tested and re-

tested with various instance types and sizes (e.g., different XML datasets, small 

and large numbers of insertions).  

Due to the lack of any standard evaluation framework for XML labelling schemes 

(see Section 6.3), it is difficult to provide comparisons with existing schemes in 

order to verify the proposed scheme’s reliability. Therefore, all algorithms (Base-

9 and SCOOTER) were implemented in the same machine using the same test 

instances. When evaluating the correctness of each algorithm’s implementation 

individually, the results had a consistent pattern for any experimental XML 

dataset used. This supports the reliability of the experimental designs. 

8.3.2 Reproducibility 

A key aspect of a scientific experimental study is the reproducibility of results 

(Johnson, 2002) (Saunders, 2011). This implies that when the same code is 

repeatedly run on the same machine using the same instances/variables/inputs, 

the results will remain the same (or have the same medians/averages for run-

time and randomised data). For more informative results, this reproducibility also 

means that when the same algorithm is re-tested using a different device, distinct 

datasets, and even different measuring approaches if possible, then the original 

results must be consistent with the reproduced results in order to support the 

same conclusions (Johnson, 2002). This provides confidence that the original 

results were independent of the details of the experiment.  

In this study, each experiment was tested at least three times: once before and 

twice after upgrading the laptop used. The results were relatively close for all the 

tests performed on the researcher’s laptop. In terms of execution time, the 

medians were mostly the same for each algorithm using the same 
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instances/dataset. If there were any distinctions, the results differed by no more 

than 0.15%. Such differences might seem insignificant, but they could reflect on 

the scalability of the study. To ensure reliability, the statistical analysis tests (see 

Chapter 7) were also repeated after each reading.  

To gain a better estimate of the true asymptotic running time analysis (Cornell-

Tech, 2017), it is essential to understand how the computation of the running 

times was achieved. In this study, the measurement unit of the execution time 

was milliseconds, since computer speeds have increased rapidly with the 

development of modern computers. According to (Johnson, 2002), if a method 

consumes a second or less, the running time is believed to be irrelevant to any 

comparison as it does not provide any significant advantage. In such a case, the 

method should be tested over a larger number of instances to prove that the 

advantage may persist when instance size grows. Thus, for each experiment, the 

running time was computed over both small and large datasets. In the label 

initialisation experiment, different datasets were used that varied in size from 23 

MB to 127 MB. The same datasets were also employed in all encoding/decoding 

experiments as well as all relationship determination experiments. For the 

individual relationship determination test, only the XML Treebank dataset was 

used because its deep recursive structure provided sufficient variety in structural 

relationships (see Section 6.5.2). It was tested with 200,000 initial pairs of labels 

and then with up to 400,000 pairs of updated labels. The insertion algorithms 

were examined using different types of insertions, each executed using both 

small and relatively large numbers of nodes: 500 to 50,000 nodes in uniform 

insertions and 100X10 up to 10,000X10 for skewed insertions.  

For randomised methods (e.g., insertion algorithms and relationship 

determination processes), to compensate for the variability of the results multiple 

runs must be performed to gain any understanding of the predictability of the 

algorithm (Johnson, 2002). As a result, the handling insertion experiment was 

repeated on every artefact 20 times to measure the run-time performance, and 

10 times to evaluate the label size. In the determination experiment, the random 

selection of labels was compensated for by repeating the process 100 times both 

before and after insertion. Similarly, for the evaluation of the other experiments 

multiple runs were used with each being repeated between 20 and 100 times.  

It is important to implement each experiment extensively to provide high 

confidence that the conclusions derived are valid and do not rely in some manner 
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on the experimental setup. The results of each algorithm, under repeated testing, 

always supported the same conclusions. This observation supports the scalability 

of the results and consequently it can be inferred that the experimental findings 

of this study were reliable (Johnson, 2002).  

8.3.3 Comparability 

It is important to evaluate the effectiveness of the proposed scheme in 

comparison to the literature. Hence, it would be ideal be able to provide 

comparisons between the Base-9 scheme and other existing labelling schemes. 

Unfortunately, the lack of a standard evaluation framework (as stated in Chapter 

6) makes it difficult to adopt a comprehensive comparison. To develop a 

comparable implementation of the state-of-the-art XML labelling scheme, 

algorithms of the SCOOTER scheme were studied alongside the proposed 

scheme. The detailed code for SCOOTER’s algorithms (initialisation and 

insertions) are presented in (O’Connor and Roantree, 2012).  All the algorithms 

were implemented and run in the same environment as that in which the Base-9 

scheme was tested. Each experiment was performed equally under each 

schemes; that is, with the same number of runs and under the same conditions, 

e.g., hardware type, memory and background noise, laptop on charge or not, and 

network consumption. All applications not forming a direct part of the experiment 

were always closed.   

The SCOOTER labelling scheme (O’Connor and Roantree, 2012) did not deal 

with the same test instances as the Base-9 when evaluating its performance. The 

authors of the SCOOTER scheme focused on evaluating it mainly in terms of 

performing skewed insertions. Their paper (O’Connor and Roantree, 2012) did 

not provide any measurement of relationship determination, query performance, 

or label encoding time. Furthermore, their experiments were based on 102 

through 106 self-labels generated by SCOOTER’s initialisation algorithm, rather 

than using any of the existing experimental benchmarks. Because of this, and the 

absence of a standard evaluation framework for XML labelling, several difficulties 

were encountered in ensuring an even-handed comparison between the Base-9 

scheme and other schemes in the literature, including SCOOTER.  

To ensure reliability, the Base-9 and SCOOTER schemes were implemented 

individually on the same machine. All experiments were performed for each 

scheme within the same computational environment. When using different XML 
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experimental datasets, the comparisons between results were consistent. The 

statistical significance of the results was sufficient to validate the findings.  

8.3.4 The Need for Statistics  

Statistical analysis of the experiments permits more control over the compromise 

between generality and accuracy of the results in order to attain reliable 

conclusions regarding performance (Bartz-Beielstein et al., 2010). Statistics 

provides an accepted, powerful mathematical framework with which to analyse 

experimental data. It is important to consider the true differences between the 

two methods, particularly for randomised algorithms in which the presence of an 

effect produced by the algorithm may leads to false conclusions. Statistical tests 

help to identify whether the data collected are sufficient to establish a difference 

between the performance of the methods being compared (Ali et al., 2010). They 

may suggest possibilities for further improvements, or even new experimental 

directions (Bartz-Beielstein et al., 2010). For instance, the statistical analysis of 

the query performance experiment on updated data suggested it would be worth 

re-examining query performance, taking into account the randomness of the 

insertion mechanism. Accordingly, the query performance experiment was 

repeated by testing the queries over updated labels. This was performed for 10 

insertions, individually, to compensate for the variability of the results. For each 

query, the response time to return the same number of answers in the two 

schemes was computed to ensure scalability.    

In Chapter 7, several statistical analyses were performed for each experiment. 

The results obtained supported the findings that the algorithmic behaviour was 

consistent for all XML datasets in both schemes. The following section illustrates 

the individual evaluations of the experiments based on the results discussed in 

the previous chapter.  

8.4 Experimental Evaluation 

The experimental design (see Chapter 6) and results (see Chapter 7) are 

evaluated in this section.  
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8.4.1 Label Initialisation Experiment 

The label initialisation experiment was implemented successfully. As the main 

focus here is the compactness of the label sizes, the aim of this experiment was 

to generate short initial labels for XML datasets. This experiment was intended to 

evaluate the Base-9 scheme against SCOOTER, the results of which showed 

that the experiment met its objective. 

This experiment examined two parameters: initialisation time and label size. In 

terms of time, it was expected that both schemes would behave similarly as the 

concept of their initialisation mechanisms are analogous, with the exception that 

Base-9 used decimal strings rather than quaternary strings. The statistical 

analysis of the results showed that there was a significance difference between 

the two schemes. In general, SCOOTER generated initial labels faster than 

Base-9. This could be due to the implementation of the algorithm because Base-

9 requires more loop statements than SCOOTER’s initialisation algorithm. When 

the algorithms were applied to relatively large XML datasets (of minimum size 

23MB) the difference between the two schemes’ performance was significant, by 

up to 5%. The significance of the results was justified by a statistical test (see 

Section 7.3.1). On the other hand, as expected, the Base-9 scheme 

outperformed the SCOOTER scheme by an approximate 30% reduction in the 

size of the initial labels. 

The initial label size comparison by (O’Connor and Roantree, 2012) showed that 

the V-CDBS scheme (Li et al., 2008) and QED scheme (Li and Ling, 2005b) 

produced more compact labels than SCOOTER. The percentage difference in 

total label size generated between the schemes was not reported by (O’Connor 

and Roantree, 2012). Therefore, based on the literature, it is difficult to obtain 

comparable results between these schemes and the proposed scheme. This 

suggests that it is necessary to apply other schemes, such as V-CDBS and QED, 

in order to generalise the findings.  

8.4.2 Handling Insertions Experiment 

This experiment was performed to evaluate the dynamic behaviour of the 

proposed scheme. The results (in Chapter-7) of the experiment support the 

experimental objectives. Both uniform and skewed insertions were tested in all 

the experimental datasets. The tests covered inserting both a small and large 
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number of nodes to obtain general and scalable results.  For the most part, both 

schemes required the same insertion time, but the proposed scheme constantly 

generated more highly compressed labels than the SCOOTER scheme. The 

Base-9 scheme improved the skewed insertion performance in compressing XML 

labels by at least 44% when small (100X10) insertions occurred and up to 95% 

after large (10,000X10) skewed insertions. As expected, this shows that using 

the concept of lexicographical comparison in preference to the SCOOTER’s 

adaptive growth technique enhances the performance of the insertion algorithms. 

Furthermore, increasing the number of digits allowed for labelling to all 10 

decimal digits (0 to 9) instead of the 3 quaternary digits (1,2, and 3), giving a 

wider range of XML labels.  

Unlike the initialisation process, the new labels generated in this experiment are 

dependent on their randomly selected positions. To achieve scalability, the 

randomness of the algorithm was considered when evaluating label size and 

insertion time. As discussed earlier, both small and large numbers of insertions 

were tested in different XML datasets; each test was repeated several times. 

With regards to the non-normal distribution of the data collected, the medians of 

the time and size obtained were computed. The consistency of the median 

values per dataset/artefact supports the reliability of the findings.  

To date, the SCOOTER scheme is considered the most compact dynamic 

labelling scheme that supports skewed insertion (O’Connor and Roantree, 2013) 

(Chiew et al., 2014a). In (O’Connor and Roantree, 2012), the performance of 

SCOOTER’s insertion algorithm was compared to the V-CDBS (Li et al., 2008), 

QED (Li and Ling, 2005b), and Vector (Xu et al., 2007) XML labelling schemes. 

The results of O’Connor and Roantree’s comparison showed that SCOOTER 

always produced more compact labels after both a small (100X10) and large 

(1000X100) number of insertions. Their experiment was conducted on self-label 

values rather than the full interval or prefix-based labels. Again, instead of using 

any existing experimental benchmarks, the self-labels tested were initialy 

generated using the intialisation algorithms of the schemes being compared.  

As Base-9 outperfomed SCOOTER in this respect by always providing shorter 

labels, it can be inferred that the Base-9 scheme is a more compact labelling 

scheme than the V-CDBS (Li et al., 2008), QED (Li and Ling, 2005b), and Vector 

(Xu et al., 2007) schemes. This observation could be verfied by implementing 
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these schemes on the same machine using the wider range of experimental XML 

datasets applied in this thesis.  

8.4.3 Re-using Deleted Node Labels Experiment 

The results of the re-using deleted labels experiment was obtained as expected 

(see Chapter 7). By using lexicographical comparison techniques to label initial 

and updated labels the Base-9 scheme allowed the reuse of all the deleted labels 

(if available). The Base-9 scheme showed that 100% of the deleted labels were 

re-used, whilst SCOOTER re-used no more than 0.9%.  

As discussed in Chapter-5 (Section 5.6.4), very few XML labelling schemes 

(Hye-Kyeong and SangKeun, 2010) (O’Connor and Roantree, 2010b) (Li et al., 

2006b) (O’Connor and Roantree, 2012) considered reusing deleted node labels. 

At the time this study started, the SCOOTER labelling scheme (O’Connor and 

Roantree, 2012) was the only successful scheme that was designed to support 

dynamic XML and reuse deleted labels without generating duplicates (Chiew et 

al., 2014a). Therefore, based on the results of this experiment, it can be inferred 

that the Base-9 scheme is the most compact XML labelling scheme that assures 

re-use of all the available deleted labels.  

8.4.4 Label Encoding Experiment 

This experiment was implemented with the aim of evaluating the encoding 

methods applied by the two schemes to store their (prefix-based) XML labels. To 

obtain scalability, the performance of the encoding methods was compared in 

terms of encoding time and size for both initial labels and updated labels in all 

experimental XML datasets.  

The simplicity of the QED encoding applied to SCOOTER’s labels produced the 

fastest encoding time when it was used on initial nodes or a small number of 

inserted nodes. As the SCOOTER labels grow rapidly after a large number of 

insertions (an average of 48% after 5,000 nodes and 76% after 10,000 nodes), 

the Fibonacci coding (of order 2 and of order 3) was always faster than the QED 

encoding.  

The tree shape of the XML dataset used affected the size of the encoded labels. 

The behaviour of these two encoding techniques was consistent between the 

label encoding experiment and XML label compression experiment in terms of 
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encoding and decoding times over the initial labels. This supports the scalability 

of the results. The Treebank dataset has the deepest XML tree with the 

narrowest width (see Section 6.5.1), which causes its labels to have more 

separators (particularly at leaf level) and smaller self-label values in comparison 

to other XML datasets. For such an XML tree structure, the experimental results 

showed that Fibonacci of order 2 was preferable to other encoding methods, 

whereas the DBLP dataset has the opposite structure (broad and shallow XML 

tree); consequently, Fibonacci of order 3 performed better than QED or Fibonacci 

of order 2 in producing smaller codes. For the NASA and XMark datasets, 

Fibonacci coding both of order 2 and 3 generated shorter code in comparison to 

QED, particularly Fibonacci of order 2. A small number (100X10) of skewed 

insertions did not affect the findings. However, after many insertions, Fibonacci 

coding has always produced smaller code than QED, showing an average 

reduction of 61% (see Section 7.3.4). This leads to the conclusion that Fibonacci 

coding enables the storage of the Base-9 labels in a more compressed form than 

QED encoding does for the SCOOTER scheme for every shape of XML tree.  

This experimental result was expected as the growth ratio for Fibonacci codes of 

order 𝑚 ≥ 2 is 𝐹𝑖+1
(𝑚)

𝐹𝑖
(𝑚)

⁄  (where 𝑖 ≥ 0) (Klein and Ben-Nissan, 2008). Each 

Fibonacci coding of order 𝑚 ≥ 2 generates 𝐹𝑖−1
(𝑚)

 codes of length equal to 𝑖 + 𝑚, 

for 𝑖 ≥ 1 and of length 1 for 𝑖 = 0. This is illustrated in Table 8.1, which is adapted 

from (Klein and Ben-Nissan, 2008). The table presents a sample of Fibonacci 

codes of order 2 and 3 for integers [1:34].  

 

 

 

 

 

 

 



Chapter 8: Evaluation and Further Discussion 

202 
 

Table 8.1 Fibonacci codes (𝒎 =2 and 3) for various integers (adopted from (Klein and Ben-
Nissan, 2008) ) 

Integer (𝒏) 

Fibonacci  

Code 𝑭(𝟐) 
 (𝒎 = 𝟐)  

Fibonacci 

code 𝑭(𝟑) 
 (𝒎 = 𝟑) 

Integer (𝒏) 

Fibonacci  

code 𝑭(𝟐) 
 (𝒎 = 𝟐)  

Fibonacci 

code 𝑭(𝟑) 
(𝒎 = 𝟑)  

1 11 111 18 0001011 01000111 

2 011 0111 19 1001011 11000111 

3 0011 00111 20 0101011 00100111 

4 1011 10111 21 00000011 10100111 

5 00011 000111 22 10000011 01100111 

6 10011 100111 23 01000011 00010111 

7 01011 010111 24 00100011 10010111 

8 000011 110111 25 10100011 01010111 

9 100011 0000111 26 00010011 11010111 

10 010011 1000111 27 10010011 00110111 

11 001011 0100111 28 01010011 10110111 

12 101011 1100111 29 00001011 000000111 

13 0000011 0010111 30 10001011 100000111 

14 1000011 1010111 31 01001011 010000111 

15 0100011 0110111 32 00101011 110000111 

16 0010011 00000111 33 10101011 001000111 

17 1010011 10000111 34 000000011 101000111 

 

As mentioned in Chapter-6 (Section 6.3), although some of the existing schemes 

have defined their encoding methods for storing their XML labels in the memory, 

none have really tested them. Since the efficiency of other encoding methods in 

the literature has never been evaluated, it is difficult to give even general 

conclusions regarding this experimental finding. 

8.4.5 Relationships Determination Experiment 

The relationships determination experiment (see Chapter 6) was evaluated on 

initial and updated labels in Chapter 7. The five essential relationships were 

examined (see Chapter 2): parent/child (P/C), ancestor/descendent (A/D), 

sibling, lowest common ancestor (LCA), and document order (DO). The aim of 

this experiment was to measure how quickly these relationships can be 

determined directly from the labels. Both the proposed and SCOOTER scheme 

were used to this end. 
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Establishing each relationship individually was assessed using 200,000 pair of 

labels from the Treebank dataset. To examine the scalability of the results, a 

larger number of pairs (up to 400,000) was used to test the individual 

relationship’s determination on updated labels.  

The main measure of this experiment was the determination time. To control the 

variability of execution time and ensure the validity of the results, for each 

relationship the test was repeated 100 times. The results were then statistically 

analysed as reported in Chapter 7. Generally, the proposed scheme was found 

to be faster in determining P/C, A/D, sibling, and LCA relationships individually 

both before and after insertion in comparison to SCOOTER. When determining 

the document order (DO) relationship, there was no significant difference 

between the two schemes. 

Using this same technique to evaluate the determination of individual 

relationships, DDE (Xu et al., 2009), DFPD (Liu et al., 2013), and DPLS (Liu and 

Zhang, 2016) XML labelling schemes were tested using the NASA, Treebank, 

and XMark datasets. These results were found to be consistent for all the XML 

datasets employed. This observation suggests that examining the establishment 

of individual relationships on the Treebank dataset alone would be sufficient to 

validate the findings.  

The research hypothesis suggested that Fibonacci coding might speed up the 

determination process. For this reason, the experiment also evaluated the 

determination time including the decoding process. At first, all the experimental 

XML datasets were used separately to measure the time taken to determine the 

relationship, if any, between a pair of nodes. The assessment then covered the 

influence of the scheme’s decoding approach on the speed of the determination 

process by adding the decoding time to the determination time. For reliable 

findings, the same large number of pairs of labels (i.e., 200,000) was used for 

each dataset both before and after insertion. In all circumstances, Fibonacci 

decoding was faster than that of QED. This observation agreed with the results of 

the label encoding experiment. Such consistency in the results supports the 

scalability of the findings. The comparison in this thesis is limited to that of the 

SCOOTER scheme, which did not measure its performance in terms of 

relationship determination.  
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8.4.6 Query Performance Experiment 

This experiment was implemented to assess the response time of four essential 

XPath queries on the XMark dataset, both before and after insertion (see 

Chapter-6). The experiment provided a comparison between the proposed 

scheme and SCOOTER in terms of querying time (see Chapter-7). It was 

expected that there would be no significant difference in query response time 

between the two schemes, as both apply lexicographical comparison when 

accessing components’ labels to allocate an answer to the query. To ensure 

scalability, the time taken for 100 runs was computed for each query test, both 

before and after insertion.  

Working on initial labels, the results showed that Base-9 always returns queries 

concerned with ancestor/descendants (query 2), sibling (query 3), and document 

order (query 4) relationships faster than SCOOTER. For queries dealing with 

parent/child (query 1) relationships, both schemes behaved in a similar fashion.  

The experiment was repeated after adding 10,000 nodes using (1,000X10) 

skewed insertions. This insertion was done 10 times for the XMark dataset in 

order to compensate for the variability of the results received. After each insertion 

test, the queries were examined using both the Base-9 and SCOOTER schemes 

individually. As the positions of the new nodes were affected by the randomness 

of the algorithm, the number of answers matching the queries were measured for 

each test. When there was a difference between the two schemes in the 

numbers of queries’ answers returned, the percentage difference was found to 

be no greater than 7% (an average of 3%).  

For each query, the response time to return the same number of answers in the 

two schemes was computed to ensure scalability. As mentioned earlier, the 

number of answers matching a query may vary in each of the two schemes as a 

result of the random behaviour of the insertion algorithm. Thus, after each 

insertion process, if there was a difference between the two schemes in terms of 

the number of answers then the lower number of answers (say 𝑛) obtained from 

either scheme was used when computing the query response time. That is, the 

query response time for returning 𝑛 answers was measured separately for each 

scheme. The results showed that Base-9 always outperformed SCOOTER in 

returning each of the four queries. 
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As discussed in Chapter-6, these four queries were selected because the axis 

containment in each query represents the essential structural relationships. The 

examination of other axes was omitted here as they can be handled in a similar 

way to these four axes (Min et al., 2009). For further precision, all the queries 

representing the 13 XPath axes in table 2.1 (see Chapter 2) could be tested.  

8.4.7 XML Label Compression Experiment 

The aim of the XML label compression experiment was to study the possibility of 

compressing XML labels using prefix encodings (presented in Section 4.5) with 

the intention of reducing the storage space and minimising the chances of 

overflow (see Section 4.3). The experiment tested six prefix encoding methods 

(described in Chapter 4) when compressing XML labels: Fibonacci coding of 

order 2 (Fib2) and order 3 (Fib3), Lucas coding, Elias-delta (ED) coding, and 

Elias-Fibonacci coding of order 2 (EF2) and order 3 (EF3).  Three parameters 

were considered when evaluating these prefix-encoding techniques: code size, 

and encoding and decoding times. To ensure scalability of the results, two 

labelling schemes were applied separately: the Dewey order (Tatarinov et al., 

2002) and SCOOTER (O’Connor and Roantree, 2012), for the reasons given in 

Section 6.6. The two schemes were used to label the NASA, Treebank, and 

DBLP datasets individually to examine the effects of the dataset’s tree shape on 

the results. To generalise the findings, the experiment was repeated on the same 

datasets, all with the same size of 23 MB but with their original XML tree 

properties preserved. When evaluating encoding and decoding times, each test 

was run 50 times to help ensure reliability.     

The evaluation of the experiment also included the comparison between UTF-8 

encoding for Dewey labels and QED encoding for SCOOTER labels (see 

Chapters 4 and 6). Since UTF-8 and QED encoding methods were originally 

chosen by the authors of the Dewey and SCOOTER labelling schemes, 

respectively, both performed faster than any prefix-encoding approaches in terms 

of encoding time. Conversely, the Fibonacci of order 2 remained the fastest at 

decoding XML labels. When the code size was evaluated, in comparison to all 

other prefix-encoding methods tested, UTF-8 produced the largest code for the 

Dewey labels, but QED generated the smallest code for the SCOOTER labels. 

However, the label encoding experiment’s results showed that after large 

insertions, Fibonacci coding always produced smaller code than that of QED. 
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Therefore, Fibonacci coding is still recommended for storing XML labels in a 

dynamic XML environment.  

As mentioned earlier, all the existing XML labelling schemes did not calculate the 

actual label sizes in main memory (i.e., after encoding). Thus, the evaluation 

considered only the encoding methods implemented in this study.   

8.5 The Validation of the Base-9 Scheme’s Properties 

This section provides a further evaluation of the proposed scheme. This is to 

discuss whether the scheme has the properties that makes it a good dynamic 

XML labelling approach (outlined in Chapter-3) or otherwise. The assessment of 

the Base-9 scheme revealed the scheme’s limitations, from which further 

improvements can be recommend (Vlahavas et al., 1999). This evaluation is 

based on the experimental results discussed in Chapter-7 comparing the 

scheme’s performances before and after XML update. The comparisons are 

evaluated based on the essential properties of a complete dynamic XML labelling 

scheme (discussed in Chapter-3): dynamic, compact, deterministic, and efficient. 

Each of these properties is reviewed individually in the following sections. 

8.5.1 Supporting Dynamic Environment 

This section evaluates the dynamic characteristic of the proposed scheme. An 

XML labelling scheme is considered fully dynamic when it completely avoids re-

labelling XML tree nodes while XML data is being continuously updated (Härder 

et al., 2007) (see Chapter-3). Testing this property on the Base-9 scheme was 

mostly covered by the handling insertion experiment. Other experiments tested 

the determination and querying ability of the scheme over updated labels. As 

mentioned earlier, the design of the experiment was successful and the results 

showed that the Base-9 scheme supports a dynamic XML environment. None of 

the existing nodes required re-labelling, even when a relatively large number of 

insertions occurred, i.e., up to 50,000 uniform insertions and 10,000X10 skewed 

insertions (see Section 7.3.2). 

Figures 8.1 and 8.2 show a graphical comparison of the labelling time taken for 

initialisation and for uniform and skewed insertions, respectively. Overall, there is 

a linear correlation between the XML dataset size and the labelling time, both 

before and after insertion. The NASA dataset had the shortest labelling time 
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whilst the DBLP dataset took the longest. For any insertion type, the time taken 

to insert less than 10,000 nodes was always less than the total initialisation time, 

about 77% on average (see figures 8.1 and 8.2)  

 

 

Figure 8.1 Labelling time comparison between initialisation and uniform 
insertions 

  

 

Figure 8.2 Labelling time comparison between initialisation and skewed 
insertions 
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In comparison to initialisation time, when a larger numbers of nodes was added, 

the time taken for labelling new nodes increased rapidly; up to 83% after 50,000 

uniform insertions and 81% to 91% after 5,000X10 and 10,000X10 skewed 

insertions, respectively. Figure 8.3 clarifies this observation by demonstrating the 

time comparison between generating the initial labels and 50,000 new labels 

using both uniform and skewed insertion. The chart also shows that the skewed 

insertion took less time (about 10%) than uniform insertion to add the same 

number of 50,000 nodes to any XML dataset. Nevertheless, the longest labelling 

time was just over one minute when the maximum number of 10,000X10 skewed 

insertions was tested.    

8.5.2 Providing Compact Labels 

This section considers the size of the Base-9 labels both before and after 

insertion. To achieve the compactness requirement for a good XML labelling 

scheme, the labels generated should be as small as possible (Wu et al., 2004)  

(see Chapter 3). To study this property within the proposed scheme, the total 

size of the labels generated was measured both before and after insertion. The 

initial and updated labels were encoded using both Fibonacci of order 2 and 

order 3, and the encoded label sizes were also evaluated.   

The original sizes of the Base-9 labels for the NASA, XMark, Treebank, and 

DBLP datasets after initialisation were 0.82 MB, 5.42 MB, 4.04 MB, and 2.85 MB, 

respectively. As can be seen from Figure 8.4 and Figure 8.5, the Base-9 label 

 

Figure 8.3 Labelling time comparison between initial and after 50,000 insertions 

0.6
2.4 2.42.3

13.2
10.8

3.0

22.0
18.2

4.2

33.4 32.1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Initialisation uniform_50000 Skewed_5000X10

Ti
m

e
 (

se
co

n
d

s)

Labelling time comparison after 50,000 
insertions (Base-9 scheme)

Nasa Xmark Treebank DBLP



Chapter 8: Evaluation and Further Discussion 

209 
 

size increases exponentially after insertions. The percentage of the increase on 

total labels sizes (i.e., (𝑆𝑖𝑧𝑒𝑢𝑝𝑑𝑎𝑡𝑒𝑑 + 𝑆𝑖𝑧𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙)/𝑆𝑖𝑧𝑒𝑢𝑝𝑑𝑎𝑡𝑒𝑑)) for these datasets 

was an average of 72% after 500 uniform insertions and 86% after 100X10 

skewed insertions. As the number of new nodes increased to 50,000, the label 

size grew by 90% using uniform insertion and 99% using skewed insertion.  

 

With regards to encoded label size, the total code size of the initial labels that 

were actually stored in main memory using Fibonacci of order 2 were: NASA = 

 

Figure 8.4 Base-9 label size comparison before and after uniform insertion 

 

Figure 8.5 Base-9 label size comparison before and after skewed insertion 

0
.8

2

8
.6

4

1
6

.5
1

7
9

.2
0

1
5

7
.5

7

7
8

7
.2

2

5
.4

2

1
3

.2
0

2
1

.0
5

8
3

.6
9

1
6

2
.3

2

7
8

9
.5

7

4
.0

4

1
4

.0
4

2
3

.9
6

1
0

3
.5

6

2
0

2
.9

7

9
9

8
.5

5

2
.8

5

8
.6

5

1
4

.4
3

6
0

.6
7

1
1

8
.5

1

5
8

1
.5

1

0

200

400

600

800

1000

1200

To
ta

l l
ab

e
l s

iz
e

 (
M

B
)

Label size comparison before and after uniform insertions

Nasa Xmark Treebank DBLP

0
.8

2

2
1

.7
8

1
0

5
0

.3
9

2
6

1
6

.0
1

5
.4

2

2
4

.6
8

1
1

3
7

.2
2

2
3

5
6

.6
7

4
.0

4

2
9

.8
0

1
3

6
0

.3
2

2
9

5
0

.0
8

2
.8

5

1
8

.8
2

8
8

3
.2

8

2
1

6
8

.5
2

0

500

1000

1500

2000

2500

3000

3500

Initialisation Skewed_100X10 Skewed_5000X10 Skewed_10000X10

To
ta

l l
ab

e
l s

iz
e

 (
M

B
)

Label size comparison before and after skewed 
insertions

Nasa Xmark Treebank DBLP



Chapter 8: Evaluation and Further Discussion 

210 
 

2.25 MB, XMark = 8.18 MB, Treebank = 14.37 MB and DBLP = 14.78 MB. As 

Figures 8.6 and 8.7 show, the Fibonacci code size for the Base-9 labels were 

slightly increased (by an average of only 0.15%) after a few insertions, i.e., up to 

1000 uniform insertions and 100X10 skewed insertions. When as many as 

50,000 insertions occurred, the increase in total code size remained insignificant, 

with an average of 7% whether using uniform or skewed insertions. As the 

number of nodes inserted doubled to 100,000 by using 10,000X10 skewed 

insertions, the increase in Fibonacci of order 2 code size was an average of 16%. 

The total file size stored in memory using both Fibonacci of order 2 and order 3 

for each dataset increased by no more than 1.2 MB after 100,000 node 

insertions. Appendix C presents the increase in file size (in Kbytes) for all the 

experimental datasets after both uniform and skewed insertions. 

 

Figure 8.6 Encoded label size comparison before and after uniform insertion using 

Fibonacci 2 
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In comparison to Fibonacci of order 2, using Fibonacci of order 3 gave similar 

measurements. When inserting a small number of nodes (i.e., less than 10,000 

nodes) there was no obvious difference between these two encoding schemes in 

terms of total code size for all the experimental datasets used. As the number of 

insertions increased to 50,000 nodes regardless of the type of insertion, the 

Fibonacci of order 3 performed slightly better than Fibonacci of order 2 (about 

0.5%). After 100,000 insertions, the percentage difference between the two 

encoding methods reached around 2%, and Fibonacci of order 3 continued to 

produce the smallest encoded labels. Due to the similarity between the statistics 

for these two encoding methods, the graphs illustrating the statistical comparison 

of the Fibonacci of order 3 are presented in appendix C.  

Overall, the maximum encoded label size of the initial Base-9 labels was 20 

bytes using Fibonacci of order 2 and 24 bytes using Fibonacci of order 3; both 

values were obtained using the Treebank dataset. This is because of the high 

number of separator occurrences within the Treebank prefix-based labels, as this 

dataset has a relatively deep XML tree structure. Excluding the Treebank 

dataset, the maximum Fibonacci code for Base-9 labels was no more than 18 

bytes after the insertion of 50,000 nodes (see Table 8.2).   

 

Figure 8.7 Encoded label size comparison before and after skewed insertion 
using Fibonacci 2 
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Table 8.2 Maximum encoded label size (bytes) of Base-9 labels 

Encoding 
method 

Base9-Fib2 Base9-Fib3 

Dataset Initial 
After 50,000 

uniform 
insertion 

After 
5,000X10 
skewed 
insertion 

Initial 
After 50,000 

uniform 
insertion 

After 
5,000X10 
skewed 
insertion 

NASA 7 15 14 8 15 13 

Treebank 20 36 17 24 42 16 

DBLP 6 11 14 6 18 11 

XMark 9 17 14 10 18 13 

 

As mentioned earlier, at the time this study was started the SCOOTER labelling 

scheme was considered the most compact XML labelling scheme that could 

minimise the growth of label size during skewed insertion (Chiew et al., 2014a). 

Based on the assessment of the Base-9 scheme in both this and the previous 

chapters, it can be inferred that Base-9 has enhanced the performance of XML 

labelling in terms of generating compact XML labels in comparison to 

SCOOTER.   

8.5.3 Determining Relationships 

One of the fundamental functions of an XML labelling scheme is establishing the 

structural relationships between any two nodes efficiently and quickly by directly 

examining their labels (see Chapter 3). This property was evaluated through the 

relationship determination experiment in Sections 7.3.5 and 8.4.5. In this section, 

the Base-9 scheme is assessed in terms of its ability to determine relationships 

both before and after insertion. Five main relationships were tested: parent/child 

(P/C), ancestor/descendent (A/D), sibling, lowest common ancestor (LCA), and 

document order (DO). 

The comparison covered the Base-9 scheme using two different sets of labels 

(i.e., initial and updated). As in the relationship determination experiment (in 

Section 8.4.5), the Treebank dataset was used for this assessment, where 

200,000 pairs of labels were selected randomly to examine the establishment of 

each relationship individually, both before and after insertion. Again, the main 

measure in this evaluation was the determination time. For each relationship, the 

test was repeated 100 times to ensure the validity of the results. Figure 8.8 
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shows a comparison between the time taken to determine each relationship 

before and after insertion using the Base-9 scheme. Based on these results, it 

can be seen that the document order relationship was not affected by the 

insertion process. The time taken to establish a sibling relationship was 

increased by 55% after insertion. On the other hand, when determining 

parent/child, ancestor/descendent and lowest common ancestor relationships, 

the process took 86%, 92% and 49%, respectively, less time after insertion. 

However, this result may have been influenced by the random selection of nodes 

that share the same relationship out of the 200,000 pairs. To investigate whether 

the randomness of this procedure had an impact on the results, for each 

relationship the number of pairs with that particular relationship was computed 

both before and after insertion for 100 runs. The percentage difference between 

the number of pairs (NP) used to compute the determination time before and 

after insertion was calculated for each relationship as follows: (𝑁𝑃𝑏𝑒𝑓𝑜𝑟𝑒 +

𝑁𝑃𝑎𝑓𝑡𝑒𝑟)/𝑁𝑃𝑏𝑒𝑓𝑜𝑟𝑒). The number of pairs used were 86%, 88% and 58% fewer 

after insertion for P/C, A/D and LCA relationships, respectively, and 57% more 

for the sibling relationship. This could be because of the insertion mechanisim, 

which focused on adding sibling nodes to the XML tree.  

To achieve reliability, it is important to consider a constant number of nodes to 

test the determination before and after insertion. For each relationship, 20,000 

 

Figure 8.8 Relationships determination time comparison (of 200,000 random 

pairs) before and after insertion (Base-9 scheme) 
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random pairs of labels with the same relationship were selected from initial 

labels, and the relationship determination time was then computed. The same 

test was then carried out on the labels after insertion. The test was repeated 100 

times, both before and after insertion (separately), to obtain reliable results.  

Figure 8.9 shows the relationship determination time comparison for every 

relationship type using both initial Base-9 labels and updated Base-9 labels. The 

insertion process did not effect the scheme’s performance in establishing the 

lowest common ancestor or document order relationships. When determining 

parent/child and sibling relationships, the process consumed 47% and 40%, 

respectively, more time after insertion. On the other hand, the results showed 

that there was a 55% improvement in the Base-9 scheme’s performance when 

determining an ancestor/descendent relationship after insertion. Overall, the 

maximum median determination time was no more than 0.07 seconds after 

insertion and 0.12 seconds before insertion. Both these maximum times were 

those which were obtained when establishing the ancestor/descendent 

relationship. 

8.5.4 Query Efficiency 

This section discusses the proposed scheme’s query efficiency. Any XML 

labelling scheme must be able to support all kinds of structural relationships 

queries (see Chapter 3). Four XPath queries representing the main structural 

 

Figure 8.9 Relationships determination time comparison (of 20,000 nodes) before 

and after insertion (Base-9 scheme) 
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relationships were tested using the XMark dataset: parent/child (query 1), 

ancestor/descendants (query 2), sibling (query 3), and document order (query 4) 

relationships. For each query, the response time was taken using the initial Base-

9 labels and updated Base-9 labels. Figure 8.10 shows a comparison of 

response time taken by each query both before and after insertion. It is obvious 

that the first query (representing the parent/child relationship) was the query most 

affected by the insertions; the response time increased by 99% on average. For 

queries 3 and 4, there were smaller increases in their response times after 

insertion, an average of 4% and 14% respectively. The performance of the 

second query (representing the sibling relationship) improved slightly after 

insertion, by about 7%. All queries had a median process time of less than one 

second, except for the parent/child query, which was as high as 2.65 seconds 

after insertion. 

In general, the complexity of a query and the number of nodes examined 

impacted the query response time. Another influence on the query response time 

was that the nature of an XML tree’s structure may require mulitple structural join 

operations on values for complex queries (Runapongsa et al., 2006a). This can 

affect the query performance even further after frequent insertions, which might 

change the structure of an XML dataset. Such changes are unpredictable as the 

selection of the inserted nodes’ positions are chosen at random. According to the 

results presented in this section, it can be inferred that the Base-9 scheme 

permits efficient query processing both before and after insertion.  

 

Figure 8.10 Comparison of query response times before and after insertion (Base-
9 scheme) 
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8.5.5 Conclusion 

The evidence so far supports the assertion that the Base-9 scheme can be 

classified as a fully dynamic XML labelling scheme. The scheme did not cause 

any re-labelling, even after a relatively large number of insertions. The 

lexicographical comparison technique applied by the Base-9 scheme kept the 

labels generated as short as possible both before and after insertion. In a 

dynamic XML environment, the growth of the storage capacity required to store 

the Base-9 labels were controlled through the use of Fibonacci coding. It can be 

seen from the results presented in this chapter and Chapter 7 that the research 

hypothesis was supported and the use of Fibonacci encoding played an 

important role in providing compressed XML labels. Furthermore, the scheme’s 

capability to determine relationships and process queries was maintained.  

8.6 Limitations of the Experiments 

As discussed previously, all the experiments undertaken in this study supported 

their objectives. Nonetheless, some limitations were found. These restrictions 

emerged as the experimental designs focused only on the basic aspects required 

to meet the purposes of each experiment. So as to adhere to the research 

hypothesis (see Section 8.2), it was necessary that the experimental design be 

focused and limited in order to assess the hypothesis. Thus, the research first 

intended to ensure the capabilities of the proposed scheme in supporting a 

dynamic XML environment before extending it to comprise more complex 

aspects.  

Due to the lack of a standard evaluation framework for XML labelling, all the 

experiments could be extended by implementing different schemes so as to 

generalise the findings further. In addition, other existing XML label storage 

schemes, in particular the ones described in Section 4.4, could be investigated 

and compared using Fibonacci encoding. For even more elaborate results, the 

proposed scheme should be tested using more complex and different types of 

queries. Many mechanical and methodical issues, as previously explained in this 

chapter, might also be improved and offer suggestions for future work (see 

Chapter 9).  
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8.7 The Main Findings of the Experiments 

The most important finding is that the experimental results supported the 

research hypothesis. The various experimental outcomes showed that the Base-

9 scheme supports dynamic XML with any shape of XML tree structure. To 

summarise the findings, it can be stated that the combination of assigning labels 

based on lexicographical order and storing XML labels via Fibonacci encoding 

allowed the Base-9 scheme to provide more compact XML labels. Using this 

approach, the scheme’s labels remained relatively small, even after a large 

number of insertions without requiring any re-labelling in any circumstance. In 

general, the smaller size of the Base-9 labels helped to speed up the relationship 

determination and query process (as discussed in Section 8.4.4). The results 

strongly suggest the effectiveness of the Base-9 scheme as a complete dynamic 

XML labelling scheme. In the next chapter, the main findings of the entire study 

are described.  

8.8 Conclusion 

When developing a new technical or scientific approach, it is essential to 

evaluate it thoroughly in order to ensure its functionalities, detect and explore its 

limitations, and highlight further possible improvements. This chapter has 

evaluated the experiments and their results. The efficiency and scalability of the 

proposed scheme was assessed in comparison to the SCOOTER scheme. The 

evaluation of the proposed scheme was also validated in terms of its properties 

as a complete dynamic XML labelling scheme. The experimental limitations and 

main findings were identified here. This thesis concludes in the next chapter, in 

which the main findings of the research are reiterated, with suggestions for future 

work. 
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Chapter 9: Conclusions and Future Work 

9.1  Introduction 

The thesis has illustrated the strengths and weaknesses of XML labelling 

schemes described in the literature. The study focused on the difficulties related 

to using an XML labelling scheme in dynamic environments. These difficulties 

were emphasised by the essential properties required for a fully dynamic XML 

labelling scheme, i.e., dynamic, compact, deterministic and efficient (detailed in 

Chapter 3). In an attempt to resolve such difficulties, the Base-9 XML dynamic 

labelling scheme was proposed in this thesis. This new scheme was an attempt 

to reduce the occurrence of overflow (see Section 4.3) by employing Fibonacci 

encoding to store XML labels. In the previous chapters the principles of the 

proposed scheme along with its objectives, experimental design, implementation, 

results of testing, and evaluation were described. This chapter completes the 

thesis by first summarising the research work completed in the following section. 

The main contributions of this research are highlighted in Section 9.3. Section 9.4 

associates the results obtained with the research hypothesis. Future work 

directions are suggested in Section 9.5. To conclude the thesis, a closing 

statement is presented in Section 9.6. 

9.2  Thesis Summary 

As the amount of data on the web has expanded, the use of XML databases 

became the standard for data transfer and exchange. In many XML database 

management systems, an XML labelling scheme is recommended for rapid query 

processing of massive XML documents (Ahn et al., 2017a) (Zhuang and Feng, 

2012a). For static XML datasets, query processing can be performed 

competently using existing labelling schemes such as interval-based labelling 

schemes (Dietz, 1982) (Li and Moon, 2001) (Zhang et al., 2001), the Dewey 

Order scheme (Tatarinov et al., 2002), the prime numbering scheme (Wu et al., 

2004), and hybrid labelling schemes (Kaplan et al., 2002). As the growing 

popularity of XML has led to an enormous amount of XML data update (Liu and 

Zhang, 2016) (Tekli and Chbeir, 2012) (Tatarinov et al., 2001), the need for 

efficient dynamic XML labelling schemes has become increasingly important in 

order to support efficient XML queries and updates (O'Connor and Roantree, 
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2010a) (Subramaniam and Haw, 2014b). Several XML labelling schemes (Xu et 

al., 2009) (Assefa and Ergenc, 2012) (Li and Ling, 2005b) (O’Connor and 

Roantree, 2012) have been introduced to process queries efficiently whilst 

retaining the ability to process order-sensitve updates effecitively (see Chapter-

3). However, all the existing labelling schemes suffer from large label sizes, 

which contributes to the overflow problem particularly under frequent skewed 

node insertions. One of the reasons behind this is the inadequacy of the 

encoding techniques used to store the XML labels. These encoding methods 

have limited storage capacity and do not support frequent skewed insertions in 

large-scale XML data, particularly in prefix-based labelling schemes (see 

Chapter-4).  

This thesis has attempted to develop an efficient XML dynamic labelling scheme 

that always generates compressed XML labels both during intialisation and XML 

update without causing any re-labelling or duplicate labels. This was achievable 

by the combination of:  

 Preserving the node order lexicographically using all the decimal strings 

including ‘0’ as a part of the labels. 

 Using Fibonacci encoding to store the Base-9 labels in a compressed 

format. 

The first chapter outlined the thesis structure and briefly presented the research 

motivation, objectives and hypothesis statements, which are detailed in Chapter-

5. The second chapter provided an overview of XML data and related important 

topics such as XML syntax, XML parsers, and XML query languages. A 

comprehensive background on XML labelling schemes and encoding methods in 

the literature (at the time this study started) is presented in Chapters 3 and 4, 

respectively.  

Chapter 5 introduced the Base-9 scheme including the underlying principles in 

developing the scheme and defining the rules as to how it would work. The 

chapter also described the initialisation and insertion mechanisms of the Base-9 

scheme. It demonstrated how Fibonacci encoding is employed to store the Base-

9 labels. Validation of the Base-9 scheme’s ability to determine structural 

relationships for querying purposes was also given in this chapter. 
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The experimental objectives, design and implementation were described in detail 

in Chapter 6. At the time this study was started, the SCOOTER labelling scheme 

(O’Connor and Roantree, 2012) was described as the most compact dynamic 

labelling scheme in controlling the growth of label size when XML is updated 

(Chiew et al., 2014a). To allow comparable evaluation, the SCOOTER labelling 

scheme was also implemented as it contributed to the development of the 

proposed scheme. To assess the functionality of the proposed scheme, six 

experiments were designed and undertaken to examine if the research intentions 

were achieved and the scheme fulfilled the requirements to be classified as a 

good dynamic XML labelling scheme. Several experimental XML datasets that 

vary in their sizes and shapes (see Chapter 6) were used to ensure the 

scalability of the scheme’s performance.  

The experimental design and results were evaluated in Chapters 7 and 8. Based 

on the findings therein, it was demonstrated that the Base-9 scheme 

outperformed SCOOTER in terms of label size, ability to re-use deleted labels, 

and determination and query process times both before and after insertion. 

Moreover, Fibonacci encoding enabled the storage of the Base-9 labels in a 

more compressed form than allowed by the QED encoding used in the 

SCOOTER scheme. This applies for any shape of XML tree, even after a large 

number of insertions. As the Fibonacci decoding was faster than that of QED, 

Base-9 always showed better performance than SCOOTER during the decoding 

process, both before and after insertion. Overall, the Base-9 scheme has 

provided more stability in dynamic XML environments.  

Many researchers (Williams and Zobel, 1999) (Chovanec et al., 2010) (Bača et 

al., 2010) (Scholer et al., 2002) (Walder et al., 2009) (Guttman, 1984) have 

shown the usefulness of prefix-encoding methods for compression systems. 

Motivated by this, various existing prefix-encoding methods, including Fibonacci 

(described in Chapter 4), were studied for the first time in this thesis to encode 

XML labels. The experimental design is given in Chapter 6. The experimental 

results were evaluated in Chapters 7 and 8 and has already been published in 

(Al-Zadjali and North, 2016). The next section illustrates the main contributions of 

this research. 
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9.3  The Main Contributions of this Research 

This research has addressed some of the problems related to dynamic XML 

labelling schemes, particularly in terms of compressing XML labels. The study 

proposed an alternative compression scheme that can reduce label size and 

simultaneously support large skewed insertion. Consequently, the new Base-9 

labelling scheme was introduced, which generates short XML prefix-based labels 

using decimal strings based on lexicographical order. The labels produced are 

encoded and stored using Fibonacci encoding. The Fibonacci encoding method 

allows for a more compressed label code and faster decoding, both of which 

speed up XML query processing. The main contributions of this thesis can be 

summarised as follows:  

• A new XML labelling scheme, named Base-9, was proposed, which 

supports static and dynamic XML documents.  

• Small or large number of new node insertions in the Base-9 labelling 

scheme were possible while retaining the lexicographical order of the 

XML document during both uniform and skewed insertions. The Base-

9 labels remain relatively small, even after a large number of insertions 

and avoid both duplicate labels and re-labelling.  

• Fibonacci encoding has been applied for the first time to encode Base-

9 XML labels. This encoding method has reduced the storage space 

required for labels and has accelerated XML querying. 

• The Base-9 labelling scheme guarantees the reuse of any deleted 

node labels. 

• The Base-9 labelling scheme establishes all structural relationships 

quickly and provides for efficient query performance, both in static and 

dynamic XML environments.  

• The effectiveness of the Base-9 labelling scheme and Fibonacci 

encoding has been measured. The results support the use of the 

Base-9 scheme as a fully dynamic XML labelling scheme for the four 

tested datasets. Initially, there is insignificant advantage of using the 

Base-9 scheme in comparison to SCOOTER. The latter scheme 

generated initial labels faster than Base-9 by an average of 2.52%. 
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SCOOTER also succeeded to encode its labels by QED about 53.44% 

on average faster than Base-9 using Fibonacci encoding. On the 

contrary, Fibonacci encoding produced about 4.64% shorter codes 

than QED. Overall, Fibonacci was 27.17% faster in decoding initial 

labels than QED method. However, the advantages of the Base-9 

scheme and Fibonacci encoding amplify when large insertion occurs, 

particularly after large skewed insertion (which is the main weakness in 

the current labelling schemes). After 100,000 insertions, the results 

showed that the Base-9 was 12.78% faster than SCOOTER in 

assigning new labels. Additionally, the new scheme decreased the 

average growth rate of the new label sizes by about 97.97% in 

comparison to SCOOTER. Fibonacci encoding (both of order 2 and of 

order 3) was faster than QED when encoding and decoding the 

updated XML datasets labels by 98.7% and 91.20%, respectively. 

Where Fibonacci encoding always generated shorter label codes by an 

average of 74.46%.  

• Five existing prefix-encoding methods were applied for the first time to 

compress XML labels: Fibonacci coding of order 2 (Fib2) and order 3 

(Fib3), Lucas coding, Elias-delta (ED) coding, and Elias-Fibonacci 

coding of order 2 (EF2). Among these methods, Lucas coding has not 

previously been used to compress any kind of data.  

• In this thesis, a new Elias-Fibonacci (order 3) encoding was also 

proposed to encode XML labels. Among the prefix encoding methods 

studied in this research, the newly implemented Elias-Fibonacci of 

order 3 achieved the fastest encoding time for the three real XML 

datasets used.  

9.4 Future Work 

The novelty of this thesis was based on the application of Fibonacci encoding to 

store XML labels and control the growth of storage capacity after large insertions. 

Although the Base-9 labels were generated as lexicographical combinations of 

decimal strings, Fibonacci encoding treats the labels as integers. The 

experimental results showed that Fibonacci encoding performed well even after 

100,000 insertions; nonetheless, the performance of Fibonacci encoding is still 

might be subject to integer overflow (Phrack, 2016). Thus, it is worth to 
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implement Fibonacci encoding with arbitrary precision. Another possible solution 

would be to define a new encoding technique in which the Base-9 labels could be 

stored as strings. 

It would be reasonable to investigate the possibility of further improvement in 

Base-9’s initialisation and/or insertion algorithms; for instance, using odd 

decimals for initialisation and preserving the even ones for later XML updates. An 

interesting approach to gauge the functionality of the Base-9 scheme is by 

considering the use of XMark with different sizes up to 2GB to study the 

effectiveness of “Base-9” scheme and Fibonacci encoding over large-scale 

datasets. To gauge the quality of updating data and label reuse, a more realistic 

approach could be performed by continuously deleting sequence of subtrees and 

then reinsert them in a random fashion. This could provide expectation of how 

label lengths are influenced during such an update process. 

With the intention of tackling some of the research limitations discussed above, 

the following represents further work that could complement the current thesis:  

 Using the Base-9 scheme as an interval-based XML labelling scheme: 

Section 3.3 discussed how interval-based XML labelling schemes establish 

ancestor/descendant, parent/child and document order more efficiently than 

other schemes. In general, this approach to labelling is more preferable to be 

used than prefix-based schemes for query processing of XML keyword searches 

(Lee et al., 2010), as interval labels contain the path information (Gou and 

Chirkova, 2007) (Xu and Papakonstantinou, 2005). However, this type of 

labelling scheme suffers from very long labels. As illustrated in Chapter 3, it is 

difficult to predict in advance the initial size of the intervals in order to minimise 

storage cost and avoid repetitive re-labelling in a dynamic XML environment. 

None of the existing interval-based labelling schemes applied the lexicographical 

order technique, with which it may be possible to tackle such difficulties. Thus, 

the Base-9 scheme could be enhanced and applied to an interval-based labelling 

scheme. In this way, adding a new parent node without causing any re-labelling 

of the existing nodes (particularly descendant nodes) might also be achievable. 

Figure 9.1 illustrates a proposed means of adding a new parent node, 𝑃𝑛𝑒𝑤, 

whilst preserving XML tree details using the Base-9 scheme. 
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Suppose an XML sub-tree is labelled by Base-9 in interval-based format, as 

shown in Figure 9.1. When node  𝑃𝑛𝑒𝑤 is inserted as a new parent to a sub-tree 

rooted by node 𝐶, the start interval value of 𝑃𝑛𝑒𝑤 can be computed as an 

insertion between the end-value of the 𝑙𝑎𝑏𝑒𝑙(𝐵) (i.e., 24), the adjacent pre-order 

sibling node to 𝐶, and the start-value of 𝑙𝑎𝑏𝑒𝑙(𝐶) (i.e., 32). The interval’s end-

value of 𝑃𝑛𝑒𝑤 can be calculated by making an insertion between the end-value of 

𝑙𝑎𝑏𝑒𝑙(𝐶) (i.e., 53) and start-value of 𝑙𝑎𝑏𝑒𝑙(𝐸) (i.e., 62), where 𝐸 is the adjacent 

post-order sibling to node 𝐶. As can be seen from Figure 9.1, the resulting 

interval, 𝑙𝑎𝑏𝑒𝑙(𝑃𝑛𝑒𝑤), satisfies the interval-based labelling’s structure and roles 

(mentioned in Section 3.3) without affecting the existing labels (especially nodes 

𝐶, 𝐷 and 𝐸). Further study is needed to ensure the effectiveness of the Base-9 

scheme as an interval-based labelling scheme in a dynamic XML database. 

 The development of a standard evaluation framework as an XML 

labelling methodology: 

As discussed in section 6.3, there is no standard framework to evaluate the 

functionality of XML labelling schemes. This has led to some considerable 

challenge in validating the proposed scheme’s reliability within the literature of 

XML dynamic labelling schemes. Such as, there was no studies covered the 

performance of the encoding methods used to store XML labels. Although the 

 

Figure 9.1 Example of inserting a new parent node  
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evaluation methodology applied in this thesis was intended to be as 

comprehensive as possible, further study is needed to determine a general 

evaluation framework for XML labelling systems. This includes testing the 

existing encoding methods described in Chapter 4. Analysing the performance of 

the current XML labelling schemes discussed in Chapter 3 in terms of the 

essential properties of efficient dynamic XML labelling schemes is also required.  

 An assessment of the Base-9 scheme in comparison to a new XML 

labelling scheme: 

At the time this study started, the SCOOTER labelling scheme (O’Connor and 

Roantree, 2012) was described as the most compact dynamic XML labelling 

scheme that re-uses deleted labels, if available (Chiew et al., 2014a). Thus, the 

SCOOTER scheme was implemented as it contributed to the development of the 

proposed scheme (see Chapters 5 and 6). Recently, the DPLS XML labelling 

scheme (Liu and Zhang, 2016) was developed, also with the aim of re-using 

deleted labels, using their proposed technique of the reduction of a fraction 

operation to minimise storage space costs (detailed in Section 3.4). In order to 

further generalise the findings relative to the current state-of-the-art, particularly 

Base-9’s ability in re-use deleted labels and produce shorter labels, it is important 

to implement and test the DPLS labelling scheme.   

9.5  Conclusion 

The current research has investigated a wide range of existing dynamic XML 

labelling schemes, leading to the identification of various restrictions that 

motivated the development of the Base-9 scheme and the use of Fibonacci 

encoding to compress XML labels. The main focus of the research was the 

compact property of XML labels in a dynamic environment. The proposed 

scheme, together with Fibonacci encoding, has managed to produce reliable, 

unique and short XML labels both before and after insertion. The scheme 

provided efficient performance in labelling time, label size, structural relationship 

determination and query processing in any XML environment (static or dynamic). 

This chapter summarised the thesis work and findings, highlighted the research’s 

main contributions, and outlined some directions for future work.  
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Appendix A: Summary of Current XML Labelling Evaluation Framework  

Table A displays evaluation framework of various existing prefix-based labelling schemes presented in chapter 3, section 3.4, such that: 

 Data type used for labelling XML documents  

 Encoding method used to store XML labels 

 Dynamic column presents how the XML labelling scheme tested handling insertions to support XML update. 

 Query performance shows how the XML labelling scheme is validated in terms of supporting XML querying and structural relationships 

determination. 

 Datasets used by the labelling scheme to apply the experimental tests. 

Table A  Evaluation framework of the existing prefix-based labelling schemes 

XML Labelling 
Scheme 

Data type 
Encoding 
method 

Dynamic Query performance Datasets 

Dewey  
(Tatarinov et al., 
2002) 

Integer Utf8 Static  
Selected XPath/XQuery from 
Shakespeare dataset  translated to 
SQL 

Shakespeare 

ORDPATHs 
(O'Neil et al., 2004) 

Integer 
Prefix-free 
Ordpaths 
coding 

Theoretical 
Theoretically: using index and 
XPath axes 

NONE 

Extended Dewey 
(Lu et al., 2005) 

Integer Utf8 Static 

Selected: 
Path queries from XMark and 
Twig queries from DBLP and 
Treebank 

XMark 
DBLP 
Treebank 

DDE/CDDE  
(Xu et al., 2009) 

Integer 
Prefix-free 
Ordpaths 
coding 

Uniform/skewed insertions between 
two siblings: time and size 

Determining relationships over first 
10000 labels  

XMark 
NASA 
Treebank 
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XML Labelling 
Scheme 

Data type 
Encoding 
method 

Dynamic Query performance Datasets 

DFPD  
(Liu et al., 2013) 

Float-point 
Prefix-free 
Ordpaths 
coding 

Uniform insertions between two 
siblings  
Skewed insert after/before random 
nodes: time and size 

Determining relationships over 
randomly chosen labels pairs 

XMark 
NASA 
Treebank  
Actor 

DPLS  
(Liu and Zhang, 
2016) 

Float-point 
Prefix-free 
Ordpaths 
coding 

Skewed insertions between two 
siblings: time and size 

Determining relationships over 
randomly chosen labels pairs 

XMark 
NASA 
Treebank  
Actor 

Fractional  
(Mirabi et al., 2012) 

Integers-
fractions 

Mapping into 
bit string 

Small (10 X 10) skewed insertions 
between two siblings, leaf and parent 
nodes insertions: time and size 

Selected queries  

XMark 
Shakespeare 
TCP-H 
SIGMOD 

DPESP  
(He, 2015) 

Alphanumeric-
fractions 

Not defined Theoretical: insert between two nodes Theoretical 

XMark 
SIGMOD 
NASA 
Hamlet 

LSDX  
(Duong and Zhang, 
2005) 

Alphanumeric Not defined 
Inserting single nodes or sub-trees 
considering different size of XMark 
dataset: time only  

Theoretical XMark 

OrderBased  
(Assefa and Ergenc, 
2012) 

Alphanumeric Not defined 
Insert a sub-trees as child to the root: 
time only 

Required time to return all 
descendants of the root in different 
size of XMark dataset 

XMark 
Shakespeare 

Com-D  
(Duong and Zhang, 
2008) 

Alphanumeric Not defined Theoretical 
Selected XPath queries from 
Shakespeare dataset  

XMark 
Shakespeare 

Persistent   
(Khaing and Ni Lar, 
2006) 

Alphanumeric Not defined Theoretical Theoretical NONE 

ImprovedBinary  
(Li and Ling, 2005a) 

Binary string 
Stored as 
binary bits 

Focused on re-labelling required 
during insertions 

Selected XPath queries from 
Shakespeare dataset  

Shakespeare 
SIGMOD, Hamlet, 
NASA, 
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XML Labelling 
Scheme 

Data type 
Encoding 
method 

Dynamic Query performance Datasets 

Actor, Movie 
Bib, Club, 
Company, 
Department 

Cohen’s  
(Cohen et al., 2010) 

Binary string 
Stored as 
binary bits 

Theoretical Theoretical NONE 

VLEI  
(Kobayashi et al., 
2005) 

Binary string 
Stored as 
binary bits 

Theoretical Theoretical NONE 

IBSL  
(Hye-Kyeong and 
SangKeun, 2010) 

Binary string 
Stored as 
binary bits 

Leaf nodes insertions: time and size 
Selected XPath queries from 
Shakespeare dataset  

XMark 
Shakespeare 
SIGMOD, Hamlet, 
NASA, 
Actor,  
Club, DBLP, 
Department 

EBSL  
(O’Connor and 
Roantree, 2010b) 

Binary string 
Stored as 
binary bits 

Theoretical Theoretical NONE 

V-CDBS  
(Li et al., 2008) 

Binary string 
Stored as 
binary bits 

Uniform/skewed insertions: time and 
size increment 

Selected XPath queries from 
Shakespeare dataset  

XMark 
Shakespeare 
Hamlet, DBLP 
Treebank 

XDAS  
(Ghaleb and 
Mohammed, 2013) 

Binary string 
Stored as 
binary bits 

Static 
Determining AC, PC, and sibling 
relations over randomly chosen 
labels pairs 

XMark 
DBLP 
Treebank 

Dynamic XDAS  
(Ghaleb and 
Mohammed, 2015) 

Binary string 
Stored as 
binary bits 

Simple insertions in different positions 
focusing on insertion time required 

Theoretically as in XDAS but not 
tested after insertions 

XMark 
DBLP 
Treebank 

QED  
(Li and Ling, 2005b) 

Quaternary 
string 

QED 
separators  

Uniform/skewed insertions between 
two nodes: focusing on re-labelling 

Theoretical 
XMark 
Shakespeare, 
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XML Labelling 
Scheme 

Data type 
Encoding 
method 

Dynamic Query performance Datasets 

required and insertion time Hamlet, 
NASA, Company, 
DBLP, Treebank 

SCOOTER  
(O’Connor and 
Roantree, 2012) 

Quaternary 
string 

QED 
separators  

Skewed insertions focusing on storage 
size 

Theoretical 
Generated by the 
author 

Base-9 (proposed in 
this thesis) 

Decimal string 
Fibonacci 
coding  

Uniform/Skewed insertions: insertion/ 
decoding time and size increment 
before and after decoding new labels 

Determining relationships over 
randomly chosen labels pairs and 
selected XPath queries from 
XMark 

XMark 
NASA 
DBLP 
Treebank 
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Appendix B: Statistical Analysis Graphs 

Appendix B.1 Labels Initialisation Statistical Results 

 Initialisation time: Mann-Whitney U-test result: 

 
 
 Box plot distribution of initialisation time: 
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 Statistic descriptions of initialisation time 
 

Statistics 

Scheme NASA Treebank DBLP XMark 

SCOOTER 

N 
Valid 100 100 100 100 

Missing 0 0 0 0 

Median 596.0000 2922.0000 4064.0000 2220.0000 

Variance 201.380 7274.438 37503.812 235.818 

Base9 

N 
Valid 100 100 100 100 

Missing 0 0 0 0 

Median 625.0000 2954.0000 4221.0000 2283.0000 

Variance 274.263 7760.061 882.603 122.163 
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 The percentage distribution of initial label sizes: 
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Percentage Distribution of label 
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R
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Percentage Distribution of label 
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Base-9
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Percentage Distribution of label 
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Appendix B.2 Handling Insertions Statistical Results 

 

 Uniform insertion time comparisons: 
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 Uniform insertion – label size comparisons: 
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 Box plot distribution of label size after uniform insertions: 
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 Skewed insertion time comparisons: 
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 Box plot distribution of time in skewed insertions cases with 𝒑 < 𝟎. 𝟎𝟓 

 

 Skewed insertion - labels size comparisons: 

 

 Box plot distribution of label size after skewed insertions: 
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Appendix B.3 Encoding labels 

 Encoding time comparisons (initial labels): 
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 Box plot distribution of initial labels’ encoding time: 
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 Encoding Median time comparison after insertion: 
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 Boxplot distribution of encoding time after insertion: 
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 Percentage difference of encoding time (after large skewed insertions) 

between encoding methods 

 

5,000X10 insertion 10,000X10 insertion 

Datasets 
QED vs 
Fib2 

QED vs 
Fib3 

Fib2 vs 
Fib3 

QED vs 
Fib2 

QED vs 
Fib3 

Fib2 vs 
Fib3 

NASA 99.45% 99.59% 25.20% 99.62% 99.68% 16.17% 

XMark 99.10% 99.29% 21.21% 99.77% 99.82% 21.09% 

Treebank 99.45% 99.53% 15.82% 99.60% 99.68% 21.45% 

DBLP 97.68% 98.27% 25.20% 99.24% 99.39% 19.50% 

 

 Encoded label size comparison after insertions: 

 

 Boxplot distribution of encoded labels size after insertion: 
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Appendix B.4 Relationships determination 

 Statistics description of each relationship determination time before 

insertion (Treebank) – using SPSS 

 

 Statistics description of each relationship determination time after 

insertion (Treebank) – using SPSS 
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 Boxplot distribution of determination time (all relations after decoding) 

before and after insertion 
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 Boxplot distribution of decoding and determination time (combined) 

before and after insertion: 
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Appendix B.6 Query performance statistic 

 Boxplot distribution query response time  
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Appendix B.7 XML labels compression – prefix encodings: 

statistic 

 Encoding times – Dewey labels 

Statistics of Dewey labels encoding times 

Method NASA Treebank DBLP 

Fib2 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 1168.1200 8099.2000 7323.8600 

Median 1165.5000 8080.0000 7306.0000 

Std. Deviation 10.12703 77.54972 71.23259 

Fib3 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 785.5600 5341.4000 5753.8800 

Median 782.0000 5325.5000 5732.0000 

Std. Deviation 12.34233 56.80902 99.48616 

Lucas 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 1190.9600 8007.8000 7926.0600 

Median 1188.0000 7986.0000 7907.0000 

Std. Deviation 20.41804 44.31796 71.37610 

ED 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 765.5000 4923.1600 3105.8200 

Median 735.0000 4907.0000 3095.0000 

Std. Deviation 58.77256 58.83819 32.65696 

EF2 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 879.2400 6050.2200 4164.7000 

Median 876.0000 6033.0000 4147.5000 

Std. Deviation 11.78300 50.53925 56.17220 

EF3 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 686.2400 4432.6200 3269.0200 

Median 688.0000 4423.0000 3267.0000 

Std. Deviation 20.05661 48.90594 25.45223 

UTF8 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 613.4600 4301.3200 3788.9000 

Median 610.0000 4298.0000 3782.0000 

Std. Deviation 10.69085 16.65428 18.61670 

 

 Encoding times – SCOOTER labels 

 
Statistics 

Method NASA Treebank DBLP 

Fib2 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 2086.4400 13502.0400 14549.0200 

Median 2079.5000 13483.5000 14533.0000 

Std. Deviation 14.95184 78.87939 63.10357 

Fib3 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 1537.9400 9947.0600 12435.7400 

Median 1533.0000 9938.0000 12409.5000 
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Std. Deviation 12.14943 34.19775 86.98435 

Lucas 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 2210.8400 13060.9200 15697.8600 

Median 2158.0000 13047.0000 15688.0000 

Std. Deviation 135.52714 65.18008 85.38747 

ED 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 799.1600 5403.0800 3824.9600 

Median 797.0000 5376.0000 3642.0000 

Std. Deviation 16.79208 92.42092 372.82616 

EF2 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 1080.7000 7208.0600 5132.0000 

Median 1079.0000 7141.0000 5126.0000 

Std. Deviation 14.86847 208.81184 24.23693 

EF3 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 833.7800 4987.8200 4193.3600 

Median 829.0000 4970.0000 4188.0000 

Std. Deviation 10.51198 48.37215 36.39172 

QED 

N 
Valid 50 50 50 

Missing 0 0 0 

Mean 526.0200 3472.3800 3182.2600 

Median 526.0000 3225.0000 3144.5000 

Std. Deviation 15.88413 337.48070 138.31003 

 

 Encoding times – boxplots distribution: 
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 Decoding times – Dewey labels 

 
Statistics 

Method NASA Treebank DBLP 

Fib2 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 532.0000 3798.0000 2798.0000 

Fib3 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 672.0000 4485.0000 3298.0000 

Lucas 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 547.0000 3830.0000 2908.0000 

ED 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 1079.0000 6626.0000 6298.0000 

EF2 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 876.0000 5470.0000 5407.0000 

EF3 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 861.0000 5938.0000 4001.0000 

UTF8 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 532.0000 3548.0000 3439.0000 

 

 Decoding times – SCOOTER labels 

 
Statistics 

Method NASA Treebank DBLP 

Fib2 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 704.0000 4699.5000 3939.0000 

Fib3 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 813.0000 5373.5000 4251.0000 

Lucas 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 704.0000 4689.0000 4126.0000 
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ED 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 1689.0000 10157.0000 10798.0000 

EF2 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 1472.5000 8126.0000 9720.0000 

EF3 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 1001.0000 7040.0000 4939.0000 

QED 
N 

Valid 50 50 50 

Missing 0 0 0 

Median 851.5000 4730.5000 4861.0000 

 

 Boxplot distribution of decoding time 
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 Encoding/Decoding comparisons over 23 MB datasets  
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Appendix C: Self Evaluation of the Base-9 

scheme 

 

 

 

Table C1: 0increase size (KB) in memory ( Base-9 labels) after skewed insertion 

Number of insertion Skewed 100X10 Skewed 5,000X10 Skewed 10,000X10 

dataset Fib2 Fib3 Fib2 Fib3 Fib2 Fib3 

NASA 10.00 9.00 496.00 453.00 1233.00 1107.00 

Treebank 11.00 11.00 544.00 509.00 1273 1206 

DBLP 9.00 8.00 474.00 390.00 1159 982 

XMark 10.00 9.00 529.00 496.00 1252.00 1099.00 
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Table C2: increase size (KB) in memory (Base-9 labels) after uniform insertion 

Number of 
insertion 

Uniform 
500 

Uniform 
1,000 

Uniform 
5,000 

Uniform 
10,000 

Uniform 
50,000 

Dataset 
FIB
2 

FIB
3 

FIB
2 

FIB
3 

FIB
2 

FIB
3 FIB2 FIB3 FIB2 FIB3 

NASA 
5.0 5.0 10.0 10.0 48.0 49.0 96.0 97.0 478.

0 
483.
0 

Treebank 
7.0 7.0 13.0 13.0 61.0 64.0 121.

0 
127.
0 

602.
0 

628.
0 

DBLP 
5.0 4.0 9.0 8.0 43.0 39.0 86.0 77.0 428.

0 
381.
0 

XMark 
6.0 6.00 11.0 11.0 50.0 50.0 100.

0 
101.
0 

500.
0 

500.
0 

 

 

 


