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Abstract 

Purpose of review 
Forest models are tools for analysis and prediction of productivity and other services. Model 
outputs can only be useful if possible errors in inputs and model structure are recognized. 
However, errors cannot be quantified directly, making uncertainty inevitable. In this paper, 
we aim to clarify terminological confusion around the concepts of error and uncertainty, and 
review current methods for addressing uncertainty in forest modelling. 

Recent findings 
Modellers increasingly recognize that all uncertainties – in data, model inputs and model 
structure – can be represented using probability distributions. This has stimulated the use 
of Bayesian methods for quantifying and reducing uncertainty and error in models of forests 
and other vegetation. The Achilles’ heel of Bayesian methods has always been their 
computational demand, but solutions are being found. 

Summary 
We conclude that future work will likely include: (1) more use of Bayesian methods, (2) more 
use of hierarchical modelling, (3) replacement of model spin-up by Bayesian calibration, (4) 
more use of ensemble modelling and Bayesian model averaging, (5) new ways to account for 
model structural error in calibration, (6) better software for Bayesian calibration of complex 
models, (7) faster MCMC algorithms, (8) more use of model emulators, (9) novel uncertainty 
visualization techniques, (10) more use of graphical modelling, (11) more use of risk 
analysis. 
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Introduction 

Forests provide many services to mankind, and models can be used to predict how well they 
will do so in different circumstances. This ranges from prediction of productivity at one 
specific site, to prediction of many different forest services worldwide. Model studies are 
used to optimise forest management [1] and to assess the possible impacts of environmental 
change [2,3•]. Model structure varies widely too, from simple look-up tables to complex 
dynamic models [4]. Despite these differences among forest models and their uses, there are 
methodological problems they all share. In this paper, we focus on errors in models and data, 
and how they contribute to predictive uncertainty. 

Every model can be viewed as a function that converts inputs into outputs. There are 
two types of input: drivers and parameters. Drivers are environmental variables (weather, 
disturbances, management) whereas parameters are constant properties of trees and soil. 
Errors can be present in all three model components: drivers, parameters, and model 
structure itself. These errors affect model output, and when we are uncertain about the 
magnitude of the errors, there will be uncertainty about the quality of the model prediction. 
Unfortunately, not many modelling studies include a comprehensive analysis of errors and 
uncertainties, possibly because methods for doing so have not been standardized. 

In recent years, there has been a trend toward basing scientific research under 
conditions of incomplete information (i.e. most of science) on probability theory [5–9]. This 
approach is taken here as well. We aim to show that defining all uncertainties in forest 
modelling as probability distributions allows rigorous reduction of those uncertainties when 
new data become available. The approach that we are presenting is known in the literature 
by many different names, including Bayesian calibration, data assimilation, model-data 
fusion and inverse modelling. Whilst the different names refer to different applications of 
modelling, they all share the idea of specifying probability distributions which are modified 
according to the rules of probability theory (in particular: Bayes' Theorem) when new data 
become available. It is this idea that facilitates the comprehensive analysis of errors and 
uncertainties. 

All methodology presented in this paper can be applied to any kind of forest model: 
simple or complex, site-based or area-based, deterministic or stochastic. However, for 
reasons of consistency we shall take most of our examples from the literature on 
deterministic process-based modelling of forest biogeochemistry. This is a class of dynamic 
models that simulates tree growth as part of the carbon-, water- and nutrient-cycles in the 
soil-tree-atmosphere system [3•]. Such process-based models (PBMs) can be used for 
assessment of multiple ecosystem services delivered by forests [1]. PBMs tend to be 
parameter-rich and computationally demanding. We shall explain how these characteristics 
hamper the comprehensive application of the probabilistic approach to uncertainties, and 
which solutions have been proposed. 

The lay-out of the paper is as follows. We begin by defining some key terms that will be 
used in the paper, including 'error' and 'uncertainty', and the symbols that we use in 
equations. After that, we explain the Bayesian approach to model parameter estimation and 
the most common computational problems and solutions. Next, we discuss hierarchical 
modelling which frees the modeller from the need to define as constants any parameters 
that, in reality, are variable. We then move on to errors and uncertainty in model structure, 
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showing different ways of tackling the issue. We then discuss how model uncertainties 
should be reported, and finish with a general discussion and outlook. Throughout, we keep 
technical detail to a minimum but point to references that provide examples and further 
reading, where possible taken from the literature on process-based forest modelling. 

Terminology and symbols 

In this section, we introduce terminology and symbols that will be used throughout the 
paper. We distinguish between three terms that are often confused but have different 
meanings: error, uncertainty and variability. Say we want to measure a forest property such 
as basal area. Let the true value be 𝑧, and our measured value be 𝑦. Since every measurement 
has some error, 𝜖𝑦, we can write: 

𝑧 = 𝑦 + 𝜖𝑦. 

Error is thus defined as the difference between an estimate and the true value. Instead of 
using measurement, we could also have estimated 𝑧 by means of a model. We then would 
write: 

𝑧 = 𝑓(𝑥, 𝜃) + 𝜖𝑚𝑜𝑑𝑒𝑙, 

where 𝑓 is the model, 𝑥 are the environmental conditions (drivers) for which we run the 
model, and 𝜃 are the model's parameter values. The final term 𝜖𝑚𝑜𝑑𝑒𝑙 represents model error 
which arises because 𝑓, 𝑥 and 𝜃 will all be wrong to some extent. All the terms in the above 
equations can be scalars (single values) but more commonly they are vectors (multi-
dimensional). 

Uncertainty is having incomplete knowledge about a quantity. Uncertainty can always 
be represented by a probability distribution, denoted as 𝑝[. . ]. So the probability distribution 
𝑝[𝜖𝑦] defines which values of measurement error we deem possible and their relative 

probabilities of occurring. Say our instrument is accurate (unbiased) but has only 50% 
precision. Then we are highly uncertain about the error and might write 𝑝[𝜖𝑦] = 𝑁[𝜖𝑦; 𝜇 =

0, 𝜎 = 𝑦/2], which stands for a normal distribution with mean zero and standard deviation 
equal to half the observed value. Conditional probability distributions, e.g. for 𝜃 given a 
certain value of 𝑦, are denoted in the standard way as 𝑝[𝜃|𝑦]. 

Note that we use square brackets for probabilities, probability distributions and 
likelihoods (e.g. p[..], N[..]) and parentheses for functions such as f(..). 

Variability is the presence of differences in a set of values. Variability can lead to 
sampling error of uncertain magnitude. Say we randomly sample 100 trees from a large 
forest, measure stem diameter on each, and collect the 100 values in vector 𝑦. The standard 
deviation 𝜎𝑦 is then a measure of the variability in the sample. If all of the measurements are 

very precise then there will be little uncertainty about that variability. But if we use the 
sample mean as an estimate for the mean diameter of all trees in the forest, then there will 
be an unknown sampling error. In this example, basic sampling theory states that the 
uncertainty about the sampling error may be represented well by a normal distribution with 

mean zero and standard deviation equal to 𝜎𝑦/√100. 
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Errors and uncertainties in process-based forest modelling 

In this section, we give an overview of errors that arise in forest modelling - in drivers, 
parameters and model structure. We discuss how to quantify uncertainty, i.e. what kind of 
probability distributions we may want to assign to the errors, and how the uncertainties 
about errors propagate to uncertain model predictions. However, we leave formal theory to 
later sections. 

Errors and uncertainties in forest model drivers 

As described above, drivers are the environmental conditions for which we run our forest 
model (the 𝑥 in our equations). Methodologically, drivers are defined as boundary conditions 
that we do not attempt to calibrate, but that we accept from an external source of 
information. A typical example would be time series of temperature and precipitation 
received from a weather station in or near the forest, or predicted by a climate model. 

Although drivers are not calibrated, we are interested in any possible errors they may 
contain, and how uncertain we are about their magnitude. Driver errors come in three types: 
gaps, measurement error and non-representativeness, which each need to be treated in a 
different way. 

Gaps in driver data are common. When a model requires daily driver data and the 
weather time series misses some day or days, the gaps need to be filled. Gap-filling methods 
range from simple linear interpolation to stochastic process modelling, akin to kriging. The 
latter is the only approach for which uncertainties are readily quantified (as the kriging or 
Gaussian process variance). 

Measurement error is caused by limited precision and accuracy of the measurement 
instrument, and sometimes also by errors in transferring measured values to data files. This 
is the simplest kind of error; uncertainty about it is generally well represented as Gaussian 
noise. 

The most complicated errors arise when the driver data are not fully representative of 
the forest conditions for which we plan to run our model. The weather data may have come 
from an off-site weather station, or the data may have a different spatiotemporal scale than 
the model requires. A very common example is using output from gridded climate models as 
input for forest PBMs: the climatic data will then be grid cell averages, thus ignoring spatial 
heterogeneity. Such data are not representative for any specific forest within the cell. If the 
forest model is nonlinear, as most models are, then input averaging leads to errors in model 
outputs, but methods to estimate that error exist, based on Taylor-expansion of the driver-
dependency [10•]. Another option is to downscale the data, although that brings its own 
errors and uncertainty. No general rule for assigning probability distributions to errors from 
non-representativeness exist: each case must be examined on its own. 

Errors and uncertainties in forest model parameters 

Parameters are constants that represent properties of trees and soil. In PBMs, every process 
that is modelled requires a parameter to define its basic rate. But process rates also depend 
on internal and external conditions (e.g. tree nitrogen content, air temperature), and each 
controlling mechanism adds at least one parameter to the model to quantify the strength of 
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the dependence. The number of parameters in forest PBMs thus tends to range from tens to 
many hundreds [11–13]. 

Parameters can be set to incorrect values, making model behaviour unrealistic. Except 
for some physical constants, a precise definition of parameter error is hard to give. What is 
the 'true' value of a forest model parameter? Because a model is a simplification of reality, 
every parameter plays a somewhat different role in the model than its namesake in a true 
forest. We cannot, therefore, simply go out and measure the true value exactly. This is apart 
from the fact that measurements have errors too and that no tree or soil property is truly 
constant in reality. In practice, we say that the correct value of a parameter is that value that 
makes the model behave most realistically. Parameter error is the difference from that value, 
and parameter uncertainty is not knowing what that value is. 

Although measurements cannot provide true parameter values, they can give first rough 
estimates. For about thirty different parameters common to three forest PBMs, Levy et al. 
[14] reviewed measurement values reported in the literature. For each parameter, a wide 
range of values was reported that could be interpreted as probability distributions 
representing parameter uncertainty. For many parameters, the distributions were skewed 
and better represented by beta distributions than by normal distributions [15]. 

Errors and uncertainties in forest model structure 

Every model is a simplification of reality and therefore, to some extent, wrong. But the 
behaviour of models - their repertoire of outputs for different conditions - can be compared, 
showing that some models are more realistic than others. Forest model comparisons abound 
in the literature and tend to show large differences between their predictions [11,12]. Some 
tentative general conclusions may be drawn: the feedback structure of models is more 
important than the mathematical form of individual equations [16] and a consistent level of 
process detail in different parts of the model is desirable [17,18]. 

Increasingly, forest model comparisons involve assessing simulations against 
observations, not just of output variables such as productivity, but also of the underlying 
processes and mechanisms as represented in the models [2,19–21]. Medlyn et al. [22•] refer 
to this as an "assumption-centred model intercomparison approach". However, these model 
comparisons do not employ probability theory and therefore cannot quantify the degree of 
uncertainty about model structural error. Moreover, any advice about model structure based 
on observations is contingent on the range of environmental conditions for which models 
were tested and remains heuristic: there is no unique way to derive forest PBMs from first 
principles, so errors remain inevitable. 

This leaves us with only two ways to account, probabilistically, for structural error in a 
modelling study: extend the PBM with a stochastic error term [23], or use a large ensemble 
of different models and proceed as if one model in the set should be correct [24]. In the first 
approach, uncertainty is quantified by assigning a probability distribution to the structural 
error term. In the second approach, uncertainty is represented by a probability distribution 
over the set of models, with highest probabilities assigned to models that are considered to 
be most plausible. Both require taking into account that model performance depends not 
only on its structure but also on the parameter settings with their own uncertainties. 
Technical details of both methods will be given in a later section. 
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Forward propagation of uncertainty to model outputs 
Because measurements and models have unknown errors, all we can quantify are 
uncertainties. Therefore, the common term of 'error propagation' denoting how much the 
error in inputs contributes to error in outputs is a misnomer. What is propagated is 
uncertainty, not error. Outputs may have minimal error despite large errors in inputs, if the 
errors happen to have compensating effects. This is a common occurrence when models are 
tuned to produce a desired behaviour. 

The techniques, rather than the name, associated with 'error propagation' may well 
be used to quantify output uncertainty, provided the model is simple enough that partial 
derivatives of output with respect to inputs can be analytically calculated. However, PBMs 
tend to be too complex for such approaches, so uncertainty is mostly quantified by Monte 
Carlo methods: sampling from the probability distributions of model inputs (and structures 
if we have an ensemble of models) to generate a representative set of possible model 
outputs. In the study by Levy et al. [14], mentioned above, Monte Carlo sampling was used 
to quantify the contribution of parameter and model structural uncertainty to uncertainty 
about the carbon sink of a coniferous forest in southern Sweden. They concluded that the 
sink uncertainty was 92% due to parameter uncertainty and only 8% due to structural 
uncertainty . The key parameter uncertainties were for allocation of carbon to leaves, stems 
and roots. These results were, of course, contingent on the three chosen forest models and 
the single application site. Reyer et al. [25] also demonstrated the importance of parameter 
uncertainty - in their case for prediction of future forest productivity - but in a comparison 
with uncertainty about climatic drivers rather than model structure. Sutton et al. [26] 
showed the importance of uncertainties about model drivers (in particular atmospheric 
nitrogen deposition) and model structure for predictions of forest productivity across 
Europe. Minunno et al. [27] found that uncertainty about soil conditions (water availability 
and fertility) mainly determined the predictive uncertainty of a growth model for Eucalyptus 
globulus in Portugal. In all these studies, the reported predictive uncertainties depended not 
only on uncertainty in inputs and model structure, but also on the conditions for which the 
models were run. In less water-limited conditions than Portugal, for example, outputs of the 
model that was used in [27] might have been less affected by uncertainties in water 
availability. 

Reducing parameter uncertainties: The Bayesian approach 

This section introduces the Bayesian approach to reducing uncertainty. Uncertainty 
reduction is slightly more complicated than uncertainty propagation, which was discussed 
in the previous section. However, the theory is old and well-established, dating back to the 
18th century [28], and we shall only give the essential details here. Longer expositions can 
be found in textbooks [29,30•] and tutorial papers [5,31]. 

We initially focus on the model's parameter values. As noted above, we always have 
some uncertainty about the proper values of a model's parameters, and we can express this 
uncertainty as the probability distribution 𝑝[𝜃]. When new data 𝑦 arrive, we may want to 
use those data to reduce our uncertainty about 𝜃. Bayes' Theorem tells us how to change a 
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prior parameter distribution, 𝑝[𝜃], into a posterior distribution for "𝜃 given 𝑦" denoted as 
𝑝[𝜃|𝑦]: 

𝑝[𝜃|𝑦] ∝ 𝑝[𝜃]𝑝[𝑦|𝜃]  (Bayes’ Theorem). 

So according to Bayes' Theorem, the posterior distribution is proportional to the prior and 
to 𝑝[𝑦|𝜃]. This last term is called the likelihood function of the parameters, as it expresses 
how likely the data are for any value of the parameters, and is often written as 𝐿[𝜃]. 
Parameter estimation using the product of prior and likelihood is called 'Bayesian 
calibration' [23,31]. At this point, we briefly remind the reader that both the parameter 
vector 𝜃 and the data vector 𝑦 can be (highly) multi-dimensional. In other words, the 
posterior distribution for the parameters, 𝑝[𝜃|𝑦], is a joint probability distribution, and it is 
likely that most parameter-pairs in 𝜃 will show some degree of correlation. 

A simple example of Bayesian calibration 
Let us assume, for now, that model error 𝜖𝑚𝑜𝑑𝑒𝑙 is much smaller than measurement error 
and can be ignored. We can then combine the first two equations of this paper to derive the 
likelihood function: 

𝑝[𝑦|𝜃] = 𝑝[𝑓(𝑥, 𝜃) − 𝑦 = 𝜖𝑦]. 

If we would further assume that 𝜖𝑦 has a zero-mean normal distribution and a coefficient of 

variation of 50% (we used the same example before), then the likelihood function would 
simplify to 𝑝[𝑦|𝜃] = 𝑁[𝑓(𝑥, 𝜃) − 𝑦; 𝜇 = 0, 𝜎 = 𝑦/2]. Say that we have also defined the prior 
distribution for the parameters, 𝑝[𝜃], based on literature review and expert opinion. Then 
the final step, as prescribed by Bayes' Theorem, is to find the product of the prior and the 
likelihood. In principle, a representative sample from the posterior distribution can easily be 
generated by Monte Carlo sampling: take a large sample from the prior and use the 
likelihoods as weights in deciding which parameter values to keep. More sophisticated 
methods such as MCMC will be explained in the next section. This simple example captures 
the three essential steps in Bayesian calibration: (1) specify a prior, (2) specify 𝑝[𝜖𝑦] and 

from it the likelihood function, (3) apply Bayes' Theorem. 

Likelihood 

In practice, the hardest step in Bayesian calibration is formulating an appropriate likelihood 
function, 𝑝[𝑦|𝜃]. The likelihood function is a conditional probability density function. It is the 
answer to the question: what is the probability of measuring 𝑦 if the true value is 𝑓(𝑥, 𝜃) +
𝜖𝑚𝑜𝑑𝑒𝑙. The likelihood is a powerful concept: 𝑦 is usually multi-dimensional and may consist 
of measurements over time on several different soil and tree variables, yet 𝑝[𝑦|𝜃] can always 
be defined. It is through the likelihood function that Bayesian calibration has the capacity to 
use highly heterogeneous data sets in parameter estimation. Levy et al. [32] used Bayesian 
calibration to reconcile eddy-covariance measurements of N2O emissions with chamber 
measurements of the same fluxes. Patenaude et al. [33] combined remote sensing data from 
satellites with field-based data on Corsican pine stands in the UK, in Bayesian calibration for 
the parameters of forest PBM 3-PG. Höglind et al. [34] combined measurements on 10 
different variables from 5 grassland sites in their likelihood function. With such rich data 
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sets, it becomes important to assess whether measurement errors for different variables 
have correlations that should be expressed in the likelihood function. 

Formulating the likelihood function can be difficult, even when model error can be 
ignored and different variables are measured independently, because measurements can be 
wrong in three different ways, as summarized in the next equation: 

𝜖𝑦 = 𝜖𝑦,𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 + 𝜖𝑦,𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 + 𝜖𝑦,𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠. 

The first of the three data error terms, 𝜖𝑦,𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 , quantifies random measurement noise, 

independent for each data point in 𝑦, which we could represent with a zero-mean normal 
distribution [8]. This is often the only data error recognized by modellers, but it is unlikely 
to be the most important one. The second error term, 𝜖𝑦,𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 represents measurement 

bias which could shift whole time series of data up- or downward. The final term, 
𝜖𝑦,𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, is generally the hardest to quantify. It refers to the possibility of our data 

being derived from other conditions than our model is designed for. If the observed forest 
has a hidden growth limitation, say phosphorus deficiency, that is not expressed in the 
model, then the data - from the point of view of model parameter estimation - will be 
underestimating growth. In contrast to the other two types of measurement error, the scope 
for 𝜖𝑦,𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 cannot be reduced by more careful measurement or greater sampling 

intensity. 

For every data set, the modeller and data expert need to distinguish the three types of 
possible data error, and assign probability distributions to the respective error 
uncertainties. The parameters of these probability distributions, such as the standard 
deviation of the stochastic noise, can be fully specified a priori (e.g. 𝜎𝑦,𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 = 𝑦/2), or 

they can be estimated in the calibration together with the regular tree and soil parameters. 
The latter method would be preferable in this example if we have little information about 
the precision of our measurement instrument. Van Oijen et al. [9] calibrated the degree of 
systematic error in chamber-measurements of soil-fluxes of CO2, N2O and NO using four 
different forest PBMs - and all four calibrations suggested that the measured CO2 emission 
values had been unrealistically high. 

Computational solutions: MCMC and emulation 

As mentioned above, Bayesian calibration tends to be implemented through sampling 
algorithms, thus increasing the computational demand of forest modelling. In this section, 
we present two methods for reducing computational demand: MCMC and model emulation. 

MCMC 

The Bayesian approach to parameter estimation requires modellers to make a major mental 
shift: we no longer aim to find a single 'best' parameter vector - instead we aim to determine 
the posterior probability distribution for the parameters. Only the full distribution 
adequately represents our state of knowledge. Although this shift has made rigorous 
uncertainty quantification possible, it has also created computational problems: when 
models have many parameters, the distribution will be high-dimensional and difficult to 
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sample from. A solution for this problem was provided by Metropolis et al. [35] who 
introduced the so-called Markov Chain Monte Carlo (MCMC) method. 

MCMC consists of a walk through parameter space in such a way that the visited points 
together form a representative sample from the posterior distribution. The method requires 
that at each step we decide to accept or reject a proposed new point (= vector of parameter 
values) depending on the prior probability times the likelihood for that parameter vector. In 
this way, the chain gradually moves to the region of highest posterior probability in 
parameter space. Many different variants of MCMC now exist following that general plan. A 
simple introduction to the method, with an example for a forest model, was provided by Van 
Oijen et al. [31] and some frequently asked questions about MCMC are answered by Van 
Oijen [36]. 

Free software exists that makes it easy to encode priors and likelihood functions and 
run the MCMC. These include, in historical order, the packages BUGS (and more recently 
WinBUGS and OpenBUGS), JAGS and Stan. These packages are mainly suited for simple 
stochastic models and not for complex PBMs. However, in recent years, two impressive 
pieces of software have been developed that facilitate the Bayesian calibration of PBMs using 
MCMC: BayesianTools [37•] can run different MCMC algorithms, and it has been incorporated 
in PEcAn [38] which allows the user to choose from a suite of different PBMs and driver 
conditions. 

MCMC is more efficient than MC (e.g. random sampling from the prior followed by 
filtering out low likelihood vectors) because it focuses the sampling effort on the region of 
highest posterior probability; in most circumstances a chain of 104 to 105 steps is long 
enough even for parameter-rich models. However, because of the way MCMC works, it does 
require evaluation of the forest model for each new proposed parameter vector in order to 
calculate the likelihood. And if the data that are compared with model output in the 
likelihood function are derived from 𝑛 different sites (each with different drivers 𝑥), then we 
need to run our model 𝑛 times at each step. So despite the efficiency of MCMC, computational 
demand can still be considerable, all the more so for forest PBMs with short time steps and 
a long forest rotation to simulate. One proposed solution has been to include only a fraction 
of the model's parameters in the calibration [39], a practice referred to as 'parameter 
screening'. Parameter screening speeds up calibration by reducing the dimensionality of the 
parameter space that the MCMC needs to traverse. However, it thereby underestimates 
parameter uncertainty and should if possible be avoided. 

The next section discusses a method for speeding up the forest model itself rather than 
the MCMC. 

Emulators 
An emulator is a replacement for the original model 𝑓. It is also a function of 𝑥 and 𝜃, but its 
output is not 𝑓(𝑥, 𝜃) itself but a probability distribution for it. So the emulator is used to 
probabilistically forecast the output from our model 𝑓 without actually running the model. 
The emulator 𝑝𝑔[. . ] is usually derived from a small training set of N modelling results 

{𝑥𝑖, 𝜃𝑖 , 𝑓(𝑥𝑖, 𝜃𝑖)}𝑖=1:𝑁: 

𝑝𝑔[𝑔|𝑥, 𝜃] = 𝑝[𝑓(𝑥, 𝜃) = 𝑔|{𝑥𝑖 , 𝜃𝑖 , 𝑓(𝑥𝑖, 𝜃𝑖)}]. 
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Emulators are designed to compute faster than the original model, which may make 
sampling from the posterior distribution (e.g. using MCMC) more feasible. However, 
emulator speed comes at the cost of only producing a probabilistic answer. This makes the 
likelihood function more complicated. Say our uncertainty about measurement error is 
captured by the parameter 𝜎𝑦. Then the likelihood function for the original model would be 

𝐿[𝜃] = 𝑝[𝜖𝑦 = 𝑦 − 𝑓(𝑥, 𝜃)|𝜎𝑦], but when using the emulator we would have to integrate out 

our uncertainty for 𝑔: 

𝐿′[𝜃] = ∫ 𝑝
∞

𝑔=−∞

[𝜖𝑦 = 𝑦 − 𝑔|𝜎𝑦]𝑝𝑔[𝑔|𝑥, 𝜃]𝑑𝑔. 

In Bayesian calibration, the posterior would then be proportional to 𝑝[𝜃]𝐿′[𝜃]. To keep 
calculation of the likelihood-integral as well as 𝑝[𝜃]𝐿′[𝜃] manageable, emulators are often 
selected for their mathematical properties. In particular, Gaussian process emulators are 
often used [23], which approximate the original model using the multivariate normal 
distribution and use convenient functions for calculation of covariances. 

From uncertainty reduction to identifying structural error 

A major benefit of Bayesian calibration of the model's parameters is that it makes it easier to 
discern structural errors in the model. After calibration, any remaining differences between 
observations and model outputs will be mainly due to data error and model structural error. 
It is impossible to fully disentangle these two errors, but some heuristic advice can be given 
[9]. 

The first recommended step after Bayesian calibration is to inspect the marginal 
posterior pdf's, i.e. the probability distribution for each individual parameter in the model. 
When any of these probability distributions is highly skewed, creeping up to its lower or 
upper prior bound, that may be an indication that the process affected by that parameter, or 
related processes, are incorrectly implemented. For example, if the litter decomposition rate 
constant a posteriori is higher than expected, that may indicate that other decomposition 
processes were overlooked. 

The second step is decomposition of the mean squared deviance (MSD) of time series 
[40]. Forest PBMs simulate the dynamics of forest biogeochemistry, so after calibration we 
can compare observed and simulated time series of, for example, gas fluxes. MSD-
decomposition allows us to split the MSD into three additive terms that quantify differences 
between the time series in their mean, variance and phase. For example, if model and data 
mean differ, the model may be missing a process; if the variances differ, the model may be 
missing a feedback mechanism; if the phases differ, the model may be missing a linked state 
variable e.g. in a decomposition chain. MSD-decomposition was applied to the mismatch 
between observed and simulated gas flux time series for four forest models calibrated for a 
Norway spruce site in Germany [9] and to two models for growth and respiration of E. 
globulus in Portugal [27]. 

The third step is to check any assumptions of parameter universality. Did we carry out 
a calibration using data from multiple forest sites assuming that parameter values should be 
generic, i.e. the same everywhere? Then we could redo the calibration with genotype- or site-
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specific parameter estimation. However, this approach pits two extreme ideas against each 
other: generic vs. site-specific parameters. A better approach would be to allow parameters 
to vary between sites or genotypes but not completely independently - and let the calibration 
reveal the appropriate degree of parameter independence. Such a more flexible, hierarchical 
approach is becoming common in environmental and ecological modelling [41] and is 
explained in the next section. 

Bayesian Hierarchical Modelling (BHM) 

Hierarchical modelling constitutes a simple but powerful idea: do not assume that all the 
model's parameters are unknown constants, but allow for some or all of them to have 
variability - and capture that variability in another set of parameters, the so-called 
hyperparameters [8,41,42]. For example, modellers need not assume that all trees in a region 
have the same wood density, but can allow for spatial variation represented by two 
hyperparameters: mean wood density and its standard deviation. 

In recent years, forest modellers have given increased attention to how various tree 
traits - usually represented as parameters in PBMs - vary with environmental conditions 
[43]. Hierarchical modelling allows for great flexibility in such cases: each parameter can 
range from being completely site- or condition-specific (large standard deviation) to being 
completely generic (zero standard deviation). When we carry out Bayesian calibration of the 
parameters and hyperparameters in a hierarchical model, statisticians refer to the approach 
as Bayesian Hierarchical Modelling [44]. In BHM, we specify a prior for the hyperparameters, 
𝑝[𝜉], which then automatically implies a prior for the regular parameters, 𝑝[𝜃|𝜉] or 𝑝[𝜃|𝑥, 𝜉]. 
The likelihood function does not change in this hierarchical setup, because model output 
𝑓(𝑥, 𝜃) only depends on the regular model parameters, not the hyperparameters. So, in BHM, 
the posterior distribution is defined as: 

𝑝[𝜃, 𝜉|𝑦] ∝ 𝑝[𝜉]𝑝[𝜃|𝜉]𝐿[𝜃] 

Note that the use of BHM implies greater data needs. If the hyperparameters in the BHM 
stand for spatial variability, then calibration cannot be effective without data from dispersed 
sites. 

A good introduction to hierarchical modelling in the context of forest research was 
provided by Dietze et al. [45]. They quantified variability in parameters for tree allometry 
(power law relationships for height vs. crown area) both within and between species in 
southeastern US forests, and showed how even species for which few data were available 
could be fit reliably within the hierarchical model. 

Discrepancy and ensembles 

In this section, we focus on how model structural error, also called the discrepancy [46,47] - 
we use the terms interchangeably - can complicate Bayesian parameter calibration. We first 
discuss the treatment of discrepancy in case we have only one forest model in our study, and 
thereafter consider the case where we have an ensemble of models. 
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Treatment of discrepancy in single-model calibration 

As explained, Bayesian calibration combines prior information with the likelihood, and it is 
in the latter term that model outputs are compared with data. There are three different ways 
in which the discrepancy can be treated in the likelihood: (1) ignore it, (2) lump it with data 
error, (3) account for data error and discrepancy separately. We now discuss the merits of 
the three methods. 

First, we may choose not to represent the discrepancy at all, in which case our 
calibration is formally conditional on the model being structurally correct. For ease of 
exposition, let us assume that error uncertainties are represented by zero-mean Gaussians. 
Then our likelihood function would read: 

𝑝[𝑦|𝜃] = 𝑁[𝑦 − 𝑓(𝑥, 𝜃); 𝜇 = 0, 𝜎2 = 𝜎𝑦
2], 

where we have the usual choice of pre-specifying the value of 𝜎𝑦
2 or adding it to the 

parameters to be calibrated, in which case we must specify a prior distribution for it. 
Ignoring the discrepancy in this way is quite common; it is akin to linear regression without 
considering the possibility of a nonlinear function. It is a simple method that underestimates 
predictive uncertainty of the model because it can only propagate input uncertainty, not 
structural uncertainty. This method has been used in forest modelling [31], but we may want 
to move away from it. 

The second approach also does not recognize the discrepancy explicitly but estimates 
the sum of data and model structural error, i.e. the overall mismatch between data and model 
outputs. Again using Gaussians, the likelihood would then read: 

𝑝[𝑦|𝜃] = 𝑁[𝑦 − 𝑓(𝑥, 𝜃); 𝜇 = 0, 𝜎2 = 𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
2 ], 

where we make no attempt to decompose 𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
2  into contributions from data error and 

discrepancy. In this method, the 𝜎𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ
2 -term cannot be pre-specified - because we cannot 

foresee how much model outputs will deviate from data - and must be added as a parameter 
to be calibrated. This method was used by, amongst others, Kavetski et al. [48]. Despite being 
simple, this method is also not to be advised, as it obscures the difference between errors in 
data and model [46]. It also leads to overestimation of predictive uncertainty: we do not want 
to predict future measurements (𝑓(𝑥, 𝜃) + 𝜖𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 𝑓(𝑥, 𝜃) + 𝜖𝑦 + 𝜖𝑚𝑜𝑑𝑒𝑙) but future 

true values (𝑓(𝑥, 𝜃) + 𝜖𝑚𝑜𝑑𝑒𝑙). 
This leaves the third method, rarely used but to be recommended: explicitly 

distinguishing errors in data from those in model structure: 

𝑝[𝑦|𝜃] = 𝑁[𝑦 − 𝑓(𝑥, 𝜃); 𝜇 = 0, 𝜎2 = 𝜎𝑦
2 + 𝜎𝑚𝑜𝑑𝑒𝑙

2 ], 

where we have to specify a prior for 𝜎𝑚𝑜𝑑𝑒𝑙. In this approach, we can account for all sources 
of model predictive uncertainty (𝑝[𝑥], 𝑝[𝜃|𝑦], 𝑝[𝜖𝑚𝑜𝑑𝑒𝑙]). And information we may have 
about the precision of our data (𝜎𝑦

2) can still be used, in contrast to the ‘mismatch’ method. 

Although this third method is in principle superior to any other, it may be difficult to specify 
the prior for the discrepancy because simple Gaussians are unlikely to be adequate. 
However, the method has been sketched out in ground-breaking papers [23,46] and should 
be developed further. 
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Treatment of discrepancy in multi-model calibration 

Uncertainty with respect to model structure itself is more difficult to visualize and represent 
formally than parameter uncertainty. For parameters, as we have seen, we can simply define 
a probability distribution 𝑝[𝜃], but how would we specify a probability distribution 𝑝[𝑓]? A 
practical solution to this issue is to collect multiple forest models and assume that the set 
forms a representative sample from 'model space'. Such ensemble modelling is becoming 
increasingly common [47]; for examples with forest models see e.g. [13,17]. It allows us to 
define 𝑝[𝑓] as a discrete probability distribution over the models in the set. There are then 
two ways to proceed, based on how we treat the discrepancy. We may make the additional 
assumption that one of the models is exactly correct, i.e. has no discrepancy. That simplifies 
the treatment considerably because we can then find data and use Bayes' Theorem to reduce 
the uncertainty about which model is correct: 

𝑝[𝑓|𝑦] ∝ 𝑝[𝑓]𝑝[𝑦|𝑓], 

where the model likelihood, 𝑝[𝑦|𝑓], requires integrating out parameter uncertainty: 

𝑝[𝑦|𝑓] = ∫ 𝑝[𝑦|𝜃, 𝑓]𝑝[𝜃]𝑑𝜃. 

In this approach, predictive uncertainty can make use of the whole model ensemble by 
weighting each model's contribution by its posterior probability 𝑝[𝑓|𝑦]. This is referred to 
as Bayesian Model Averaging [49], and an example using six forest models was given by Van 
Oijen et al. [13]. Remarkably, BMA-predictions tend to be superior to those of any single 
model in the ensemble. 

A more advanced method would be to recognize that each model in the ensemble is 
wrong and try to estimate any biases shared by all models, as well as discrepancies specific 
to individual models. This method was initially proposed by Chandler [47] for climate model 
ensembles, based on the realisation that there is always some convergence in model 
development, leading to errors that are shared by all models in the ensemble. Although this 
approach is in principle the most comprehensive and realistic, it requires assigning priors to 
the biases, for which no heuristics yet exist. 

Uncertainty communication 

Our theme in this paper has been that uncertainties are represented by probability 
distributions. This raises the issue: how to communicate probability distributions to others 
in, for example, a scientific publication or a report for a forest manager? This is a complicated 
issue, exacerbated by the fact that the posterior predictive uncertainty for different output 
variables is typically represented by a high-dimensional joint probability distribution with 
possibly many non-zero correlations. 

Formally, only the full joint probability distribution captures all information about 
predictive uncertainty. However, summarization is inevitably required, and the way to 
report uncertainty should depend on both the shape of the distribution and the needs of the 
persons who are expected to read the report [50]. If the distribution is symmetric and bell-
shaped, then providing the mean value and the standard deviation may be sufficient. For 
more complicated distributions, reporting quantiles may be preferable and strong 
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correlations should be identified [31]. However, we note that the field of uncertainty 
communication is still in flux, and several researchers recommend the use of different 
graphical representations of uncertainty over verbal or numerical reporting [50,51•]. 
Examples of reporting posterior uncertainties following Bayesian calibration of forest 
models are provided by, amongst others, Van Oijen et al. [9,13,31] and a map showing how 
predictive uncertainty of carbon sequestration in UK forests varies spatially is provided by 
Van Oijen & Thomson [15]. 

The Bayesian method facilitates uncertainty analysis, and this in turn makes it easy to 
calculate risk as the probabilistic expectation of loss - in terms of a model output variable 
such as stem volume or primary productivity - due to some type of hazardous event. A reader 
might prefer to see depictions of risk rather than the underlying probability distribution for 
the variable. Recently, a novel method was proposed for decomposing risk into hazard 
probability and ecosystem vulnerability, and this was used with six vegetation models 
(including the forest model BASFOR) to analyse future drought risks to vegetation in Europe 
[52•] - showing highest risks for Mediterranean forests. Risk, vulnerability and hazard 
probability were depicted visually on maps and as bar charts. 

In its simplest form, the Bayesian method formalizes the flow of information from data 
to model parameters and ultimately model output. However, we have shown that the method 
can be expanded to a much more comprehensive framework involving multiple models, 
model emulators, uncertain drivers, uncertain parameters and hyperparameters combined 
in a Bayesian hierarchical model. Whilst powerful, the complexity of the framework may 
obscure a reader's grasp of the flows of information between different components. In this 
paper, we opted for verbal descriptions and mathematical equations to explain the 
methodology, but a visual alternative exists in the form of graphical models, such as Bayesian 
Belief Networks [53]. BBNs typically depict all uncertain quantities in separate circles or 
boxes, linked by arrows representing conditional probabilities. For example, an arrow from 
a circle labeled 𝜃 to one labeled 𝑦 would represent the likelihood 𝑝[𝑦|𝜃]. The use of graphical 
models might thus be considered as a tool for introducing the Bayesian approach to 
uncertainties in forest modelling to a new audience, although equations remain essential to 
communicate the exact details of the approach. 

Discussion 

Advantages of the Bayesian approach 

Bayesian methods are increasingly used by modellers, including forest modellers. The 
approach offers a consistent way of quantifying and reducing uncertainties, rigorously based 
in probability theory. The concepts are simple, consisting of no more than defining and 
combining priors and likelihoods. This provides a straightforward procedure for assessing 
the reliability of models and model predictions. Moreover, the approach can be used to 
evaluate different measurement strategies. For example, when considering to replace a piece 
of equipment with a higher-precision tool that is more expensive, we could first run Bayesian 
calibrations with virtual data of differing precision in order to assess how much the 
expensive tool is likely to reduce predictive uncertainty [31]. 
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Bayesian calibration may also resolve an issue typical for biogeochemistry PBMs: the 
need for model spin-up. When measurements of soil carbon and nutrients are used as model 
drivers, to initialise the soil pools, the PBM may be forced out of equilibrium, with the first 
simulated years or decades showing unrealistic trends in soil composition and gas fluxes 
when the model slowly reverts to equilibrium. Modellers tend to prevent these early 
unrealistic dynamics by discarding soil data and instead initializing the model with 
equilibrium values for the soil pools - which are found after long spin-up runs. However, this 
amounts to replacing unrealistic dynamics with unrealistic initial pools, and cannot be 
recommended. Yeluripati et al. [54] showed a superior approach where soil measurements 
were not discarded but used together with flux-data in a Bayesian calibration of the 
parameters and initial values of the model. This way, spin-up was avoided. 

The increased uptake of Bayesian methods by the modelling community has been 
stimulated by the appearance of excellent introductory books [29,30•] and computational 
tools (BUGS, JAGS, Stan, BayesianTools). 

The need for improved methodology 

Bayesian methods are computationally demanding and their recent uptake by many 
modellers has only been made possible by the advent of fast computational methods for 
sampling from distributions, in particular MCMC. The new computational tools have 
stimulated interest in application of Bayesian methods to complex, slow models and to 
complex uncertainty assessments, e.g. those where multiple models are considered or where 
parameter uncertainty is defined hierarchically. In such cases, computational demand 
becomes a bottleneck again, and we expect that the search for new MCMC-algorithms and 
model emulators will continue. 

One issue that remains is how to treat the discrepancy between model behaviour and 
real system dynamics. Whereas this was either ignored or treated superficially before in 
Bayesian calibration, we expect intensified methodological research on how to represent 
discrepancy and prior uncertainty about it. Ensemble modelling, which likewise addresses 
model structural uncertainty, is also likely to remain of key interest. 

So far, the main applications of Bayesian hierarchical modelling have been to fairly 
simple stochastic models, especially in the area of spatiotemporal modelling [44]. BHM 
allows for the possibility that parameters measured in different locations may differ yet 
preserve a degree of family resemblance - which the BHM represents using 
hyperparameters. We expect that the modelling of, say, productivity of a tree species across 
Europe would benefit from a hierarchical approach, with hyperparameters representing 
genetic variance between tree provenances in parameters that affect light-use efficiency and 
drought tolerance. But the scope for using BHM goes well beyond representing spatial or 
taxonomic differences: the many different sources of error reviewed in this paper can all be 
represented explicitly, with their own hyperparameters, in a hierarchical statistical model 
[41]. For example, BHM facilitates the use of different data sets in one Bayesian calibration 
whereby differences in measurement precision and accuracy are represented by data set-
specific and generic error-parameters [42]. 

Uncertainties quantified and reduced using Bayesian methods must be communicated 
to end-users of the modelling studies. There seems to be no standard approach or clear trend 
visible in how uncertainties are being reported. However, research on uncertainty 
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communication is continuing and graphical modelling may play an increasingly prominent 
role. Graphical models have been used to convey uncertainty about the impact of 
management decisions on the different ecosystem services that a single ecosystem can 
provide [53]. These issues may acquire even more significance in the future with the 
expected increase in frequency and intensity of extreme climatic events, and their 
concomitant risks to forests [3•]. Risk analysis is a form of uncertainty analysis and will 
therefore benefit from Bayesian methods applied to forest and climate models in order to 
provide reliable estimates of risk, vulnerability and hazard probability. 

Conclusions 

We conclude by listing the major changes we are expecting in the future treatment of errors 
and uncertainties in forest models. The list can also be taken as a point-wise summary of the 
methods discussed in this paper. We expect: 

• more use of Bayesian methods in general, 

• more use of Bayesian hierarchical modelling, 

• replacement of model spin-up by Bayesian calibration, 

• more use of ensemble modelling followed by Bayesian model averaging, 

• novel ways to account for model structural error in calibration, 

• further development of general software for Bayesian calibration of complex models, 

• faster MCMC algorithms, 

• more use (and novel types) of model emulators, 

• novel uncertainty visualization techniques, 

• more use of graphical modelling, 

• more use of risk analysis as a follow-up to Bayesian calibration. 
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