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Abstract 13 

Little is known about the mechanisms influencing the differences in attenuation of antibiotics 14 

between rivers. In this study, the natural attenuation of four antibiotics (azithromycin, 15 

clarithromycin, sulfapyridine, and sulfamethoxazole) during transport along the Thames River, UK, 16 

over a distance of 8.3 km, and the Katsura River, Japan, over a distance of 7.6 km were compared. 17 

To assist interpretation of the field data, the individual degradation and sorption characteristics of 18 

the antibiotics were estimated by laboratory experiments using surface water or sediment taken 19 

from the same rivers. Azithromycin, clarithromycin, and sulfapyridine were attenuated by 92%, 20 

48%, and 11% in the Thames River stretch. The first-order decay constants of azithromycin and 21 

sulfapyridine were similar to those in the Katsura River, while that of clarithromycin was 4.4 times 22 

higher. For sulfamethoxazole the attenuation was limited in both rivers. Loss of sulfapyridine was 23 

attributed to both direct and indirect photolysis in the Thames River, but to only direct photolysis 24 

in the Katsura River. Loss of azithromycin and clarithromycin was attributed to sorption to sediment 25 

in both rivers. The probable explanation behind the difference in loss rates of clarithromycin 26 
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between the two rivers was considered to be sediment sorption capacity. 27 

Keywords 28 

antibiotics, natural attenuation, sorption, sediment, direct photolysis, indirect photolysis 29 

Introduction 30 

Antibiotics have been detected worldwide in various environmental media including fresh water 31 

(Kolpin et al. 2002; Kasprzyk-Hordern et al. 2008; Shimizu et al. 2013), coastal water (Managaki 32 

et al. 2007; Jia et al. 2011; Shimizu et al. 2013), and sediments (Feitosa-Felizzola et al. 2009; Blair 33 

et al. 2013; Xu et al. 2014). Due to the potential risk to aquatic organisms (Cooper et al. 2008; 34 

Boxall et al. 2012; Cizmas et al. 2015) and possible links to antibiotic resistance (Ågerstrand et al. 35 

2015), antibiotics are considered some of the most important emerging contaminants in aquatic 36 

environments. Studies on antibiotic resistant bacteria have shown their wide prevalence in natural 37 

environments, including drinking water resources (Sharma et al. 2016), which is one of the most 38 

important challenges to the health care sector in the 21st century (Carvalho and Santos 2016). 39 

Therefore, in order to assess their risk and to aid in their management, the environmental fate and 40 

behaviour of antibiotics should be modeled. 41 

In the aquatic environment, antibiotics may be attenuated by physical, chemical, and/or 42 

biological processes. Studies on the natural attenuation of antibiotics during river transport suggest 43 

rapid removal is possible for some macrolide, quinolone, and tetracycline antibiotics (Hanamoto et 44 

al. 2013; Barber et al. 2013; Luo et al. 2011). However, the reported attenuation of pharmaceuticals, 45 

including antibiotics, often differs between rivers (Li et al. 2016; Radke et al. 2010; Kunkel et al. 46 

2011; Dickenson et al. 2011; Acuña et al. 2015; Aymerich et al. 2016). 47 

To understand natural attenuation, we must identify which are the key factors or processes that 48 

can explain the different loss rates between rivers. The mechanisms influencing the different 49 

attenuation of antibiotics between rivers have been estimated based on general characteristics of 50 

rivers such as hydrological, meteorological, and water quality parameters (Li et al. 2016; Dickenson 51 

et al. 2011; Acuña et al. 2015). Li et al. (2016) observed the attenuation of pharmaceuticals in four 52 

European rivers, and suggested that shallow depth and low turbidity made the photochemical 53 

attenuation more efficient in a small river, compared with larger rivers. However, in most cases, no 54 

obvious explanation was found for the difference between rivers. It is presumed river characteristics, 55 

such as the composition of sediments, dissolved matter, and microbial communities (which are 56 

related to sorption, photolysis, and biodegradation processes, respectively), are determining the 57 

different fates of antibiotics among rivers. But to date little research has been carried out to resolve 58 

the importance of these processes on the different fates. 59 

Thus, the aim of this study was to identify the mechanisms influencing the different fate and 60 

behaviour of selected antibiotics between rivers. The natural attenuation of the antibiotics in the 61 

Thames River (UK) were compared with the observations for the Katsura River (Japan) examined 62 

previously (Hanamoto et al. 2013). To help distinguish the roles of the local degradation potential 63 
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and sorption characteristics for the antibiotics in both rivers, laboratory experiments and model 64 

estimations were used. The antibiotics studied were two macrolides (azithromycin and 65 

clarithromycin) and two sulfonamides (sulfapyridine and sulfamethoxazole). Their physical 66 

properties are summarized in the Supporting Information (SI) Table S1. It is desirable to be in a 67 

better position to predict the fate of pharmaceuticals and particularly antibiotics in rivers. In this 68 

case the significance of the fate and behaviour of the same compounds in very different 69 

rivers/climates/topologies was examined essentially to ask how predictable is their loss? 70 

Materials and methods 71 

Site descriptions 72 

Samplings were conducted along an 8.3 km stretch of the Thames River (Fig. 1A), between site 73 

1 (51°42′55″N, 1°14′11″W) and site 3 (51°40′14″N, 1°16′8″W), in Oxfordshire. The stretch 74 

receives water from Littlemore Brook (site 2), where treated wastewater is discharged 1.6 km 75 

upstream of site 2. The Katsura River stretch (7.6 km) receives water from two wastewater 76 

treatment plants (sites a-c) and two tributaries (sites d and e) (Fig. 1B). There is little vegetation 77 

and no significant additional inflows along the two river stretches. The Thames River stretch 78 

catchment is mostly composed of limestone, clay/mudstone, and sandstone (Smith 2013), while the 79 

Katsura River stretch catchment is mostly granite, chalk, clay/mudstone, and sandstone (Ministry 80 

of Land, Infrastructure and Transport 2014). Most residents in both catchments are connected to 81 

the respective sewer system. These stretches were selected because they are highly impacted by 82 

treated wastewater, and antibiotics concentrations were expected to be higher there than elsewhere 83 

in each river. The general characteristics of the Thames River stretch and the Katsura River stretch 84 

are summarized in Table 1. 85 

 86 
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Table 1 General characteristics of the Thames and Katsura River stretches. 87 

 88 
 89 

 90 
Fig. 1 Locations of sampling sites on the (A) Thames River stretch and (B) Katsura River stretch. 91 

Thames River stretch Katsura River stretch

temperature (℃)
b

18.0 (16.0 - 19.9) 21.6 (9.4 - 27.3)

pH
b

8.0 (7.8 - 8.1) 7.4 (7.4 - 7.5)

suspended solids (mg/L)
b

8.9 (6.9 - 23.6) 5.8 (3.5 - 19.8)

flow rate (m
3
/s)

c
7.6 (4.0 - 49.5) 22.4 (18.0 - 36.6)

flow velocity (m/s)
c

0.35 (0.26 - 0.90) 0.54 (0.50 - 0.67)

depth (m)
c

0.53 (0.39 - 1.38) 0.48 (0.44 - 0.56)

hydraulic radius (m)
c

0.52 (0.38 - 1.30) 0.47 (0.44 - 0.55)

friction velocity at

sediment-water interface (m/s)
c 0.031 (0.024 - 0.067) 0.048 (0.045 - 0.058)

travel time (h) 6.5 (2.6 - 8.9) 8.6 (7.0 - 9.4)

8.3 7.6

a
Median (minimum - maximum) in the field studies (n = 7, the Thames River; n = 6, the Katsura River), obtained as described in SI

"General Characteristics of the Rivers". 
b
Data at the most downstream site in each stretch. 

c
Average of several sites in each stretch.

Water quality

parameters
a

Stretch length (km)

Hydrological

conditions
a
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Field study 92 

The details of the sampling method in the Thames River stretch are described elsewhere (Nakada 93 

et al. 2017). Surface water samples were collected at three sites, once or twice a summer between 94 

2012 and 2015, yielding a total of seven samplings. All the samples were collected hourly for 24 h 95 

by using automatic water samplers (ISCO Avalanche, ISCO 6712, Hach Sigma SD 900 or Bühler 96 

Montec Xian 1000). For the samples collected in 2012 and 2013, the 24 hourly samples were 97 

combined to 12 two-hourly samples and subjected to the antibiotics analysis separately. Since the 98 

diurnal variations of mass loading of the selected antibiotics were not significant (see “Natural 99 

attenuation of antibiotics ~” below), the samples collected in 2014 and 2015 were collected as 24 100 

h composite samples by combining the 24 hourly samples. The samples were stored in plastic 101 

bottles with ascorbic acid at 1.0 g/L in darkness (to reduce sample deterioration) and taken to the 102 

laboratory. The samples were stored in a dark room at 4 � until treatment. Details of the sample 103 

analysis are described in SI “Analysis of Antibiotics”. Briefly, samples were filtered and 104 

concentrated by solid-phase extraction within two days of collection and the four selected 105 

antibiotics and the antiepileptic agent carbamazepine were measured by ultra-performance liquid 106 

chromatography coupled to a tandem mass spectrometer and quantified by a surrogate method 107 

(Narumiya et al. 2013). Carbamazepine can be considered as a relatively conservative tracer and so 108 

was used to estimate the flow rate (see below). 109 

The mass balance approach was used to estimate the attenuation of the antibiotics. The amount 110 

of an antibiotic attenuated during the transport along the stretch relative to total mass loadings from 111 

sites 1 and 2 is defined as the attenuation rate (equation 1). In addition, since most attenuation 112 

processes in a river can be regarded as first-order reactions (see “Laboratory experiment and model 113 

estimation” described below), a first-order decay constant was determined by equation 2, using the 114 

Goal Seek function of Microsoft Excel. The flow rate at site 3 was estimated by subtracting the 115 

reported flow rate at the Ock River from that at Sutton Courtenay on the Thames River (Centre for 116 

Ecology and Hydrology). The flow rates at sites 1 and 2 were estimated by using the mass balance 117 

of carbamazepine, which is persistent in aquatic environments (Nakada et al. 2008; Yamamoto et 118 

al. 2009) (equations 3 and 4). The laboratory experiments indicated that carbamazepine was also 119 

persistent in the Thames River stretch (see “Biotic and abiotic degradation ~” described below). 120 

The travel time was calculated from length and flow velocity, which was estimated from the flow 121 

rate using an empirical general relationship for rivers in the UK (Round et al. 1998). 122 

ܴ௔ ൌ
ଵܳଵܥ ൅ ଶܳଶܥ െ ଷܳଷܥ

ଵܳଵܥ ൅ ଶܳଶܥ
	ൈ 100					ሺ1ሻ 123 

ଷܳଷܥ ൌ ଵܳଵ݁ି௞ೌ௧భܥ	 ൅  ሺ2ሻ 124					ଶܳଶ݁ି௞ೌ௧మܥ

ܳଵ ൌ
ܳଷሺܥ஼஻௓ଷ െ ஼஻௓ଶሻܥ

஼஻௓ଵܥ െ ஼஻௓ଶܥ
						ሺ3ሻ 125 

ܳଶ ൌ ܳଷ െ ܳଵ						ሺ4ሻ 126 

where ܴ௔ is attenuation rate (%); ݇௔ is first-order decay constant (h-1); ܥ is concentration of an 127 
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antibiotic in surface water (ng/L); ܥ஼஻௓ is concentration of carbamazepine in surface water (ng/L); 128 

ܳ is flow rate (m3/s); ݐ is travel time to site 3 (h); and the subscripts are site IDs in Figure 1. 129 

The sampling and calculation methods for the Katsura River stretch were similar to those for the 130 

Thames River stretch. The samples were collected from seven sites (Fig. 1B) three times in summer 131 

and three times in winter between 2011 and 2012. The details were described in our previous study 132 

(Hanamoto et al. 2013). 133 

Laboratory experiment and model estimation 134 

Indirect photolysis, biodegradation, and sorption tests, and model estimations of direct photolysis 135 

for the selected antibiotics and carbamazepine (test compounds) were carried out. Carbamazepine, 136 

a compound used to estimate the flow rate in the field study, was included here to test its persistence 137 

in the river stretches studied. 138 

Direct photolysis estimation 139 

Direct photolysis represents degradation of a compound derived from direct absorption of light 140 

by the compound, which follows a first-order reaction (Direct photolysis rate in water by sunlight 141 

1998). Direct photolysis rate constants of the test compounds in the Thames River stretch under 142 

average summer conditions were estimated by an equation proposed in our previous study 143 

(Hanamoto et al. 2013). The equation considers the attenuation of sunlight in the atmosphere and 144 

water, and was derived from equations proposed by Zepp et al. (1977) and Tixier et al. (2002) (see 145 

SI equation S2). The parameters used in the estimation were set as follows. Reported values 146 

(Hanamoto et al. 2013) were used for the photochemical properties (i.e., quantum yields and molar 147 

absorption coefficients). The depth of water was estimated from the reported flow rate (Centre for 148 

Ecology and Hydrology), estimated flow velocity (Round et al. 1998), and river width measured in 149 

Google Maps©, assuming the river cross-section to be a rectangle. To determine light penetration 150 

in water, we collected surface water at site 3 under low flow conditions in 2013 summer and 151 

measured the absorptivity between 290 and 490 nm with a UV-Vis spectrophotometer (UV-2500PC, 152 

Shimadzu, Kyoto, Japan). The measured value was used for the light absorption coefficient of the 153 

water body. Reported values at latitude 50°N in summer under clear sky (Direct photolysis rate in 154 

water by sunlight 1998) were used for the spectrum of sunlight at the water surface. Since we could 155 

not obtain any monitoring data for UVB or UVA in the UK, those measured in Kyoto city, Japan 156 

(Project for monitoring sunlight intensity) were substituted to estimate the average fraction of 157 

sunlight blocked by the clouds. Theoretical values for sky radiation were used for the fraction of 158 

sunlight reflected at the water surface and the path length of sunlight in the water (Zepp et al. 1977). 159 

Since there was little overhanging vegetation along the river stretch, the fraction of sunlight shaded 160 

by plants was set to 0. Direct photolysis rate constants in the Katsura River stretch were estimated 161 

using the same equation under average summer and winter conditions, because the field studies in 162 

the stretch were conducted in both summer and winter (see Table 1). The parameters used in the 163 

estimation were obtained in our previous study (Hanamoto et al. 2013) for the Katsura River stretch. 164 

The parameters for the Thames and Katsura river stretches are summarized in SI Table S3. 165 
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Indirect photolysis test 166 

Indirect photolysis represents degradation of a compound driven by reactive species (e.g., singlet 167 

oxygen and hydroxyl radical) produced under light irradiance to dissolved matter (e.g. humic 168 

substance and nitrate) in surface water. Indirect photolysis rate constants of test compounds in the 169 

river stretches were assessed by applying U.S. Environmental Protection Agency’s (USEPA) 170 

harmonized test guideline 835.5270 (Indirect photolysis screening test 1998) to the surface water 171 

with an assumption of extrapolation as described below. Grab samples collected at site 3 in the 172 

Thames River stretch were brought to the laboratory, and filtered through a 1 μm pore size glass 173 

fiber filter (GF/B, Whatman, UK) to prevent sorption of test compounds to suspended solids. A 174 

phosphate buffer solution (10 mM) at pH 7.8 (same as the surface water) was prepared with 175 

ultrapure water. The test compounds were added to the filtered surface water and phosphate buffer 176 

to give an initial concentration of 5 μg/L each. The 10 mL solutions in 20 mL quartz tubes were 177 

exposed to natural sunlight under a clear sky in the daytime for 4 h. The test compounds before and 178 

after the exposure were analyzed as described above. The change in concentrations in darkness was 179 

negligible (data not shown). The surface water sample was collected in 2015 summer under low 180 

flow condition (7th percentile in 2010-2014, obtained in Centre for Ecology and Hydrology), and 181 

the experiment was conducted in duplicate in an open space at the Centre for Ecology and 182 

Hydrology, UK (51°36′9″N, 1°6′45″W), within two days of the sample collection. The same 183 

laboratory conditions and procedures were applied to the surface water sample collected at the 184 

Miyamae Bridge, the most downstream site in the Katsura River stretch (site g in Figure 1B), under 185 

low flow condition (9th percentile in 2010-2014, obtained in Ministry of Land, Infrastructure and 186 

Transport; website). The sunlight exposure to the Katsura River water was conducted in open space 187 

at the Research Center for Environmental Quality Management, Japan (35°0′9″N, 135°53′24″E). 188 

Since the indirect photolysis is generally a pseudo-first-order reaction (Indirect photolysis 189 

screening test 1998), the indirect photolysis rate constant in the test tube was estimated by 190 

subtracting the first-order rate constant in the phosphate buffer from that in the surface water 191 

(equations 5 and 6). To extrapolate from the rate in the quartz test tube to that in the Thames River 192 

stretch, the ratio of sunlight absorbed by influential dissolved matter (i.e., dissolved matter 193 

producing reactive species influential on the antibiotics degradation) in the stretch to that in the 194 

tube is needed. Calculated sunlight intensities in the tubes with surface water and phosphate buffer 195 

were similar (data not shown) due to the short light path length in the tube. Most dissolved matter 196 

and also antibiotics absorb sunlight mainly in the 300-400 nm range (Hanamoto et al. 2013). 197 

Therefore, the ratio was estimated by dividing the direct photolysis rate constants of antibiotics 198 

estimated in the stretch (݇ௗ௘௡௩) by those observed in the test tube (݇௣௪௧௨௕), assuming that the shape 199 

of the solar action spectrum of the influential dissolved matter is similar to that of the antibiotics. 200 

The indirect photolysis rate constant in the Thames River stretch was then estimated using this ratio 201 

(equation 7). 202 

݇௦௪/௣௪௧௨௕ ൌ െ
1
௜ݐ
ln
௦௪/௣௪௔௙௧ܥ
௦௪/௣௪௕௘௙ܥ

					ሺ5ሻ 203 
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݇௜௧௨௕ ൌ 	݇௦௪௧௨௕ െ ݇௣௪௧௨௕				ሺ6ሻ 204 

݇௜௘௡௩ ൌ
݇௜௧௨௕݇ௗ௘௡௩
݇௣௪௧௨௕

					ሺ7ሻ 205 

where ݇ is first-order rate constant (h-1); ܥ is concentration in the water (ng/L); ݐ௜ is exposure 206 

time (h);	݇௜ is indirect photolysis rate constant (h-1); ݇ௗ is direct photolysis rate constant (h-1); 207 

and subscripts tub, env, sw, pw, bef and aft are values in the test tube, aquatic environment, surface 208 

water, ultrapure water, before the exposure, and after the exposure. 209 

Biodegradation test 210 

To assess the degradation of test compounds resulting from the activity of microorganisms which 211 

live in surface water in the river stretches, a simple simulation test was conducted with reference 212 

to USEPA’s harmonized test guideline 835.3170 (Shake Flask Die-Away Test 1998). Surface water 213 

grab samples collected at site 3 in the Thames River stretch were brought to the laboratory. The test 214 

compounds were first dissolved in ultrapure water and then added to the river water samples to give 215 

an initial concentration of 0.5 μg/L of each. The solutions were incubated at 20 ± 1 °C in the dark 216 

on a rotating shaker at 100 rpm for 24 h. The test compounds in the dissolved phase before and 217 

after the incubation were analyzed as described above, and those in the particulate phase were 218 

analyzed as described in SI “Analysis of Antibiotics”. The amount of a compound in the solution 219 

(i.e., total of dissolved and particulate phase) that was lost in the incubation relative to the amount 220 

before the incubation was defined as a biodegradation loss (equation 8). Sorption of test compounds 221 

to glassware was negligible (Hanamoto et al. 2013). The change in suspended solids concentration 222 

during the incubation was negligible (data not shown). The surface water samples were collected 223 

twice in 2015 summer under low flow conditions (7th and 12th percentile of the 5 year daily flow 224 

data 2010-2014, obtained in Centre for Ecology and Hydrology), and the experiments were 225 

conducted in duplicate within a day after the sample collection. The same laboratory conditions 226 

and procedures were applied to the surface water samples collected at the Miyamae Bridge in the 227 

Katsura River stretch (site g in Figure 1B), although the experiment was conducted only once using 228 

sample collected under high flow condition (83rd percentile of the 5 year daily flow data 2010-2014, 229 

obtained in Ministry of Land, Infrastructure and Transport; website). Since the biodegradation of a 230 

compound of low concentration is a first-order reaction (Shake Flask Die-Away Test 1998), a 231 

biodegradation rate constant was determined by equation 9. 232 

௕ܮ ൌ
௕௘௙ܯ െ ௔௙௧ܯ

௕௘௙ܯ
	ൈ 100					ሺ8ሻ 233 

݇௕ ൌ െ
1
௕ݐ
ln ൬1 െ

௕ܮ
100

൰					ሺ9ሻ 234 

where ܮ௕ is biodegradation loss (%); ݇௕ is biodegradation rate constant (h-1); ܯ is mass of a 235 

compound in the solution (i.e., total of dissolved and particulate phase) (ng); ݐ௕ is incubation time 236 

(h); and subscripts bef and aft are values before and after the incubation. 237 
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Sorption test 238 

Since the sorption rate of a compound to river sediment is difficult to determine at laboratory 239 

scale due to complications by hydrological factors such as hyporheic exchange, the sediment-water 240 

partition coefficient was measured to evaluate sediment sorption capacity. The sediment-water 241 

partition coefficients of test compounds were estimated in accordance with OECD test guideline 242 

No. 106 (Adsorption–desorption using a batch equilibrium method 1995). Sediment grab samples 243 

were collected from the top 5 cm in the Thames River stretch - two mixture sites and in the Katsura 244 

River stretch - three mixture sites in 2014 summer under low flow conditions and brought to the 245 

laboratory, air-dried, and passed through a 2 mm sieve. The solvent used for the sorption 246 

experiments with the sediments was surface water from the Katsura River at the Miyamae Bridge 247 

(site g in Figure 1B) which was filtered through a 1 μm pore size glass fiber filter, and to which 248 

0.02% sodium azide was added to minimize microbial activity. Sediments (0.15-0.20 g) and river 249 

water (50 ml) were put into glass centrifuge tubes and the test compounds were added to give an 250 

initial concentration of 200 ng/L each. The tubes were then rotated at 20 ± 1 °C in the dark. After 251 

two days, the test compounds in the water and sediment were analyzed as described above and in 252 

SI “Analysis of Antibiotics” respectively. We had previously observed that the sediment-water 253 

equilibrium for the test compounds was nearly reached within two days and that changes in 254 

concentration without sediment were negligible (Hanamoto et al. 2013). The sediment-water 255 

partition coefficients were determined by dividing the concentration in the sediment by that in the 256 

water (equation 10). A higher coefficient indicates a greater sorption capacity of the sediment. The 257 

experiment was conducted in duplicate.  258 

௣ܭ ൌ
௦௘௤ܥ
௪௘௤ܥ

					ሺ10ሻ 259 

where ܭ௣ is sediment-water partitioning coefficient (L/kg); ܥ௪௘௤ is concentration in the water at 260 

equilibrium (ng/L); and ܥ௦௘௤ is concentration in the sediment at equilibrium (ng/kg). 261 

Results and discussion 262 

Natural attenuation of antibiotics in the rivers Thames and Katsura  263 

Concentrations of the selected antibiotics and carbamazepine in the Littlemore Brook (site 2), a 264 

wastewater-impacted tributary, were much higher than those in the Thames River (sites 1 and 3, 265 

Fig. 2A). The mass loadings from site 2 were higher than those from site 1 for azithromycin and 266 

clarithromycin, and vice versa for the others (Fig. 2B). This difference between compounds would 267 

be mainly attributable to the attenuation of the two macrolides during the transport in the stretch 268 

upstream of site 1. Coefficients of variations (CVs) of concentrations within a day at the major 269 

sources (i.e., site 2 for the two macrolides and site 1 for the others) were low (below 20%, see SI 270 

Figure S1), indicating diurnal variation of concentration would not produce substantial errors in 271 

estimating attenuations and flow rates by equations 1-4. Higher CVs of the two macrolides in sites 272 
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1 and 3 might be attributed to temporal variability of attenuation in the Thames River. 273 

The attenuation rates for the Thames River stretch were low for the two sulfonamides, 274 

sulfamethoxazole (-2% on average) and sulfapyridine (11%), and higher for the two macrolides, 275 

clarithromycin (48%) and azithromycin (92%), indicating substantial losses for the macrolides. The 276 

estimated average half-lives in the Thames River stretch were 29.2, 4.5, and 1.9 h for sulfapyridine, 277 

clarithromycin, and azithromycin, respectively. The decay constants in the Thames River were 4.4, 278 

1.2, and 1.2 times higher than those in the Katsura River for clarithromycin, azithromycin, and 279 

sulfapyridine, respectively (Fig. 3). Thus, the fate of clarithromycin, in particular, was very 280 

different between the rivers. Though there was no statistically significant difference in the decay 281 

constants of antibiotics between the rivers even for clarithromycin (p = 0.087), this was attributable 282 

to their high fluctuation between sampling days and the limited number of samples. The fluctuation 283 

of the decay constants would be mainly driven by the daily variation in environmental factors such 284 

as sunlight intensity and flow velocity (see “Mechanistic considerations for ~” described below). 285 

Since surface water samples were collected as composite samples, the sampling error is minimal. 286 

The limited attenuation of the sulfonamides in both rivers is similar to several observations in 287 

Swedish rivers (Bendz et al. 2005; Li et al. 2016), American rivers (Barber et al. 2013), and a 288 

Spanish river (Aymerich et al. 2016). No report on the decay constant was found for the investigated 289 

macrolides, but that of erythromycin, a similar macrolide antibiotic, was reported in Iberian rivers 290 

(0.17 h-1) (Acuña et al. 2015). This is comparable to that of clarithromycin observed in the Thames 291 

River stretch. 292 

 293 

 294 
Fig. 2 (A) Measured concentrations and (B) source distribution of antibiotics and carbamazepine 295 

in the Thames River stretch. For A, the vertical bars denote means, and the error bars denote 296 

standard deviations (n = 7). For B, the vertical bars denote medians (n = 7). 297 
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 298 

Fig. 3 Comparison of the first-order decay constants of the antibiotics between the Thames River 299 

stretch and the Katsura River stretch (means and standard deviations). The decay constant in the 300 

Katsura River was measured in a previous study (Hanamoto et al. 2013). For sulfapyridine, there 301 

was a significant difference between the summer and winter sampling campaigns in the Katsura 302 

River stretch (see SI Figure S2), so only the three decay constants obtained in summer were 303 

included, while all six decay constants were included for the other antibiotics. The number of 304 

samples was n = 7 for all antibiotics in the Thames River; n = 3 for sulfapyridine in the Katsura 305 

River; n = 6 for the other antibiotics in the Katsura River. 306 

 307 

Biotic and abiotic degradation and sorption characteristics of antibiotics in the Thames and 308 

Katsura Rivers 309 

The direct photolysis rate constant of sulfapyridine was 0.011 h-1 in the Thames River stretch 310 

and 0.022 h-1 in the Katsura River stretch under average summer conditions and below 0.010 h-1 in 311 

the Katsura River stretch in winter. The lower rate constant in the Thames River compared to the 312 

Katsura in summer was mainly due to a higher light absorption coefficient of the water body (see 313 

SI Figure S3). The direct photolysis of sulfapyridine was attributed to desulfonation and/or 314 

denitrification, as well as hydroxylation of photo-oxidized heterocyclic rings (Baena-Nogueras et 315 

al. 2017). The rate constants of the other antibiotics were below 0.010 h-1 in both rivers. 316 

The first-order rate constant of sulfapyridine observed in the indirect photolysis experiment in 317 

the Thames River water was 2.4 times higher than that in the ultrapure water, while the constant of 318 

sulfapyridine in the Katsura River water was similar to that in the ultrapure water (see SI Figure 319 

S4). The estimated indirect photolysis rate constant of sulfapyridine in the Thames River stretch 320 

was 0.015 h-1, while that in the Katsura River stretch was below 0.010 h-1. Previously, significant 321 
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indirect photolysis of sulfapyridine was reported in water from a constructed wetland, and this was 322 

attributed not to nitrate but to a portion of dissolved organic matter (Challis et al. 2013). Since 323 

there is no other study on indirect photolysis of sulfapyridine under sunlight, further mechanistic 324 

studies should be conducted to elucidate constituents of dissolved organic matter determining the 325 

indirect photolysis of sulfapyridine. The decrease in concentrations of the other antibiotics during 326 

the sunlit experiment were below 20%, yielding indirect photolysis rate constants of below 0.010 327 

h-1 in both rivers. 328 

The biodegradation losses derived from the laboratory experiments over 24 h were below 20% 329 

and the biodegradation rate constants were below 0.010 h-1 for all antibiotics in both rivers. The 330 

reported biodegradation rate constants of the antibiotics, which were observed in Katsura River 331 

water under the five-day incubation test, were also below 0.010 h-1 (Hanamoto et al. 2013). 332 

The relative sediment-water partitioning coefficients were azithromycin > clarithromycin ≫ 333 

sulfapyridine > sulfamethoxazole in both rivers. The partitioning coefficients for the Thames River 334 

sediments were 1.4 and 5.5 times (on average) higher than those for the Katsura River sediment for 335 

azithromycin and clarithromycin, respectively. Since the two macrolides mostly exist in cationic 336 

forms in surface water (Sibley et al. 2008), their sorption is likely to be due to coulombic attraction 337 

to negatively charged surface sites on sediments (e.g. permanent negative charge on aluminosilicate 338 

clays, deprotonated surface hydroxyl groups on sediment metal oxides, and deprotonated surface 339 

hydroxyl or carboxylic acid groups on sediment organic matter, Vasudevan et al. 2009). Because of 340 

the multiple sorption sites, sorption capacities of macrolides did not correlate with general 341 

properties of soils (e.g. organic carbon content, cation exchange capacity) (Kodešová et al. 2015; 342 

Srinivasan et al. 2014), and there is no related mechanistic study with sediments. Given the geologic 343 

differences between the two catchments (see “Site descriptions” above), mineralogical 344 

compositions of sediments seem to be different between the rivers, and this might have caused the 345 

much higher partitioning coefficient of clarithromycin in the Thames River than in the Katsura 346 

River. Therefore, further mechanistic studies should be conducted to elucidate sediment 347 

constituents determining the sorption capacity of clarithromycin. As for the difference in 348 

partitioning coefficients between the compounds, previous studies on sediments indicated that the 349 

octanol-water partitioning coefficient (Kow), the indicator of hydrophobicity of a compound, could 350 

not explain the different sorptivity between pharmaceuticals (Yamamoto et al. 2009; Schaffer et al. 351 

2012). Given the hydrophilic and ionizable properties of pharmaceuticals and negatively charged 352 

surface sites on sediments, the fraction of pharmaceuticals existing in cationic form would be the 353 

most influential factor differentiating antibiotics sorptivities. Therefore, the observed low 354 

sorptivities of the two sulfonamides could be because they mostly exist in anionic or neutral forms 355 

within the common environmental pH range (Gao and Pedersen, 2005). 356 

For carbamazepine, all the degradation rate constants were below 0.010 h-1, the partitioning 357 

coefficient was not measurable due to its low sorptivity, and its predicted volatilization is expected 358 

to be negligible (Hanamoto et al. 2013) in both rivers, indicating the validity of using it as a 359 

conservative tracer to estimate the flow rate in the river stretches. 360 
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Mechanistic considerations for the difference in attenuation between the rivers 361 

The degradation and volatilization (Hanamoto et al. 2013) rates were negligible and sediment 362 

sorption capacity was low in both rivers for sulfamethoxazole, which is consistent with its limited 363 

natural attenuation (see Figure 3). Since biodegradation and volatilization (Hanamoto et al. 2013) 364 

were negligible and sediment sorption capacity was low in both rivers for sulfapyridine, its major 365 

loss mechanism during transport along the river stretches was direct and/or indirect photolysis. The 366 

decay constants of sulfapyridine observed in the river stretches were comparable to the sum of its 367 

direct and indirect photolysis rate constants under average summer conditions (Fig. 4), indicating 368 

the assumption made in extrapolating the indirect photolysis rate constants observed in the test 369 

tubes into those in the river stretches (see “Indirect photolysis test” described above) did not 370 

produce a substantial error in the estimate. Therefore, the attenuation of sulfapyridine can be 371 

considered to be mainly due to both direct and indirect photolysis in the Thames River, but to only 372 

direct photolysis in the Katsura River. The difference in indirect photolysis between the rivers is 373 

attributable to constituents of dissolved organic matter (see “Biotic and abiotic degradation ~” 374 

above). 375 

The degradation and volatilization (Hanamoto et al. 2013) rates were also negligible but the 376 

sediment sorption capacity was high in both rivers for azithromycin and clarithromycin. Therefore, 377 

the major loss mechanism during transport along the river stretches for the two macrolides would 378 

be sorption to sediment, which is consistent with their reported high concentrations in sediments 379 

(Blair et al. 2013; Feitosa-Felizzola et al. 2009; Xu et al. 2014; Luo et al. 2011). The much higher 380 

decay constant of clarithromycin in the Thames River than in the Katsura River was attributable to 381 

the higher sediment sorption capacity in the former, given their positive relationship shown in 382 

Figure 5. Sorption rate constant of a compound (i.e., mass transferred from overlaying water into 383 

sediment per unit time) is determined by a driving force, which is defined as difference in sediment 384 

pore water and overlaying water concentrations, and a mass transfer coefficient (Thibodeaux 1996). 385 

The sediment sorption capacity is an influential factor determining the driving force of sorption to 386 

sediment. 387 

Another possible factor differentiating the driving force of sorption between the rivers could be 388 

biodegradation of clarithromycin within the sediment. Though there is no related study on 389 

sediments, degradation rates of the macrolides were quite low within soils (Kodešová et al. 2016) 390 

and biosolids-amended soils (Walters et al. 2010) (half lives were mostly over 100d), which 391 

indicates biodegradation within sediment is likely to be low for clarithromycin. The sorption rate 392 

constant is also affected by hydrological parameters such as flow velocity, hydraulic radius, and 393 

hyporheic exchange, which are determinants of the mass transfer coefficient, and replacement of 394 

surface sediment during high flow events, which affects the driving force. However, these 395 

parameters could not explain the fact that the fate of only clarithromycin was very different between 396 

the two rivers, since such parameters do not have substance-specific effects (Thibodeaux 1996). 397 

The sorption to suspended solids was also not considered to be playing an important role given that 398 

the concentration was low in both rivers (see Table 1). Thus, though there are some unquantified 399 
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factors, the sediment sorption capacity would be a key factor explaining the different fate of 400 

clarithromycin between the rivers. Further studies to estimate the sorption rate constant should be 401 

conducted and compared with the observed attenuation to help confirm this. 402 

 403 

 404 
Fig. 4 Comparison of the observed first-order decay constant and the estimated photolysis rate 405 

constants for sulfapyridine under average summer conditions. Since there was a significant 406 

difference in the decay constants between the summer and winter sampling campaigns in the 407 

Katsura River stretch, the comparison was conducted under summer conditions. Means and standard 408 

errors of measurements in summer sampling campaigns were substituted for the decay constants (n 409 

= 7 for the Thames River; n = 3 for the Katsura River). The decay constant in the Katsura River 410 

was measured in a previous study (Hanamoto et al. 2013). 411 
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 413 
Fig. 5 Comparison of the first-order decay constants (݇௔ ) and the sediment-water partitioning 414 

coefficients (ܭ௣) for antibiotics. Means were substituted for the decay constant (n = 7 for all 415 

antibiotics in the Thames River; n = 3 for sulfapyridine in the Katsura River; n = 6 for the other 416 

antibiotics in the Katsura River). The decay constants in the Katsura River were measured in a 417 

previous study (Hanamoto et al. 2013). A higher partitioning coefficient indicates a greater sorption 418 

capacity of the sediment. Since the partitioning coefficient of sulfamethoxazole was not available 419 

due to its low sorptivity, it was plotted as 0. 420 
 421 

Conclusions 422 

 The field study revealed that the decay constants in the Thames River were 4.4, 1.2, and 1.2 423 

times higher than those in the Katsura River for clarithromycin, azithromycin, and sulfapyridine 424 

respectively, while the attenuation was limited in both rivers for sulfamethoxazole. River 425 

characterization highlighted sediment sorption capacity played an important role in the different 426 

loss rates of clarithromycin between the two rivers. Attenuation of azithromycin was also attributed 427 

to sorption to sediment in both rivers. Both direct and indirect photolysis affected attenuation of 428 

sulfapyridine in the Thames River, while indirect photolysis was negligible in the Katsura River. 429 

These findings provide a better understanding of the key factors differentiating natural attenuation 430 

of antibiotics between rivers. Future work should focus on the sediment properties which determine 431 

the sorption capacity of the macrolides. In addition, more information is needed on the types of 432 

dissolved organic matter determining indirect photolysis of sulfapyridine, as well as on sorption 433 

rate constants of the macrolides in the rivers. 434 
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Selected Antibiotics 17 

Table S1. Physical properties of the selected antibiotics. 18 

 19 

 20 

Analysis of Antibiotics 21 

The four selected antibiotics and carbamazepine (test compounds) in the dissolved phase were analyzed 22 

as follows. A 500 mL surface water sample was filtered through a glass fiber filter (GF/B, 1.0 μm, Whatman, 23 

UK), and spiked with a surrogate standard mixture (containing 50 μg each of five isotopically labelled 24 

pharmaceuticals) (Narumiya et al., 2013). The test compounds in the dissolved phase were concentrated by 25 

solid-phase extraction through Oasis HLB cartridges (500 mg, 6cc, Waters, Japan). The cartridges containing 26 

the sample concentrate and surrogate standards were stored in a refrigerator for up to a few weeks, then 27 

extracted with 6 mL of methanol before being measured by ACQUITY ultra-performance liquid 28 

chromatography system (Waters, USA) coupled to a Micromass Quattro micro API Tandem Quadrupole 29 

system (Waters, USA). An ACQUITY BEH C18 column (1.7 μm, 2.1 mm × 100 mm, Waters, USA) was 30 

used for separation. Measured concentrations were quantified by the surrogate method (Narumiya et al., 31 

2013). Details of the analytical method and quantification limit of test compounds can be found in previous 32 

studies (Okuda et al. 2009; Narumiya et al. 2013). 33 

The test compounds in the particulate phase of the water and sediments were analyzed as follows. 34 

Suspended solids trapped on a 1-µm pore size glass fiber filter or 0.20-g subsamples of the sediment were 35 

spiked with a surrogate mixture, and accelerated solvent extraction (ASE) was performed with an ASE 200 36 

system (Thermo Fisher Scientific Inc., Waltham, MA, USA) in 11-mL ASE cells under the following 37 

conditions: 100 °C, 10 min static, 3 cycles, 2000 psi, and 60% flush. Methanol/water (1:1, v/v) with 0.5% 38 

(v/v) aqueous ammonia (pH = 11) was used as a solvent. The extracts were filtered through a cellulose filter 39 

(ASE extraction filters, Thermo Fisher Scientific) installed at the bottom of the cell, diluted with ultrapure 40 

water to reduce the concentration of methanol to <5% (v/v), and had ascorbic acid (2 g/L) and 41 

ethylenediaminetetraacetic acid disodium (1 g/L) added to them. Solid-phase extraction was used to clean-42 

up the extracts by using Oasis HLB cartridge (200 mg, 6cc, Waters, USA). Test compounds were treated, 43 

measured, and quantified as described above. 44 

To test the analytical reproducibility of the test compounds in the dissolved phase, the following 45 

therapeutic class formula molecular weight pK a logK ow
Henry's Law constant

(atm-m
3
/mole)

azithromycin macrolide antibiotics C38H72N2O12 749.0 8.7 4.0 5.3×10
-29

clarithromycin macrolide antibiotics C38H69NO13 748.0 9.0 3.2 1.7×10
-29

sulfapyridine sulfonamides C11H11N3O2S 249.3 2.7, 8.4 0.35 1.1×10
-13

sulfamethoxazole sulfonamides C10H11N3O3S 253.3 1.6, 5.7 0.89 6.4×10
-13

There data were obtained from Syracuse Research Corporation, PhysProp Database (http://www.srcinc.com/what-we-
do/databaseforms.aspx?id=386) or EPI Suite (http://www.epa.gov/opptintr/exposure/pubs/episuite.htm)



experiment was conducted. Three ultrapure water samples (200 mL) were spiked with a surrogate standard 46 

mixture containing 50 ng of each and the test compounds were analyzed as described above. The relative 47 

standard deviations of absolute recoveries of the test compounds in the water samples ranged from 1.1% 48 

(carbamazepine) to 12.8% (sulfapyridine), indicating that the analytical procedure was accurate. In addition, 49 

to validate the method for sediment samples, the following experiment was conducted. The sediment sample 50 

collected in the Katsura River was passed through a 2-mm sieve, and ten 0.20 g subsamples were obtained. 51 

Five were spiked with a test compounds mixture containing 500 ng of each compound, and all ten were 52 

additionally spiked with a surrogate mixture containing 50 ng of each. Then, the test compounds were 53 

analyzed as described above. The accuracy of the analytical method was evaluated using the absolute and 54 

relative recoveries (over extraction, solid-phase extraction, and measurement) of the spiked test compounds. 55 

The absolute recoveries of the test compounds in the sediment ranged from 70.2% (carbamazepine) to 88.6% 56 

(sulfamethoxazole); their relative recoveries ranged from 83.4% (carbamazepine) to 101.4% (azithromycin); 57 

and the relative standard deviations of the relative recoveries ranged from 2.5% (carbamazepine) to 8.3% 58 

(sulfapyridine). Thus, the analytical procedure of the sediment samples was also deemed accurate for the test 59 

compounds. 60 

 61 

General Characteristics of the Rivers 62 

We measured water quality parameters at site 3 in the Thames River during the sampling in 2015, while 63 

for the years 2012-2014 those measured within ± 2 days of our sampling 22.4 km downstream of site 3 in 64 

Wallingford (Personal communication from Dr. Michael J. Bowes) were used. Since the inflows between site 65 

3 and Wallingford are small compared with the flow at site 3, the water quality was similar (Table S2). 66 

Reported data at the Miyamae Bridge (Ministry of land, infrastructure and transport) were used for the water 67 

quality parameters in the Katsura River, though concentration of suspended solids was estimated from 68 

turbidity (estimation accuracy, R2=0.91). 69 

The flow rates at site 3 in the Thames River were estimated by subtracting the reported flow rate at the 70 

Ock River from those at Sutton Courtenay on the Thames River (Centre for Ecology and Hydrology). For 71 

the Katsura River, the reported flow rates at the Miyamae Bridge were used (Ministry of land, infrastructure 72 

and transport). The flow velocities in the Thames River were estimated using a general flow rate-flow 73 

velocity relationship for rivers in the UK (Round et al. 1998), while those in the Katsura River were estimated 74 

using the relationship developed in our previous study (Hanamoto et al. 2013). The depth of water in the 75 

Thames River was estimated from the flow rate, the flow velocity, and river width measured in Google Maps©, 76 

assuming the river cross-section to be a rectangle, while that in the Katsura River was estimated using the 77 

flow rate-water depth relationship developed in our previous study (Hanamoto et al. 2013). The hydraulic 78 

radius was estimated from the river depth and width assuming the river cross-section to be rectangle for the 79 

Thames River, while that in the Katsura River was estimated using the river cross- section diagram obtained 80 

in our previous study (Hanamoto et al. 2013). Friction velocity at the sediment-water interface was estimated 81 

by the equation S1, assigning a value of 0.025 to Manning's roughness coefficient. The travel time was 82 

calculated from length and the flow velocity. 83 



∗ݒ ൌ
ඥ݃݊ݒ

ܴଵ/଺
					ሺS1ሻ 84 

where ݒ∗  is friction velocity at the sediment-water interface (m/s); ݒ  is flow velocity (m/s); ݊  is 85 

Manning's roughness coefficient (s/m1/3); ݃ is gravity acceleration (m/s2); and ܴ is hydraulic radius (m). 86 

 87 

Table S2. Comparison of water quality between Wallingford and site 3. 88 

 89 

 90 

Field Study 91 

The diurnal variation in concentrations of the test compounds in the Thames River stretch are shown in 92 

Figures S1. Comparison of the first-order decay constants of the antibiotics in the Katsura River stretch 93 

obtained in summer and winter in a previous study (Hanamoto et al. 2013) are shown in Figure S2. 94 

 95 

 96 

Figure S1. Coefficients of variation (CV) of concentration of antibiotics and carbamazepine within 24 hours 97 

(12 samples). The vertical bars denote median and the error bars denote maximum and minimum (n = 4). 98 

date time
temperature
(℃)

pH
suspended solids
(mg/L)

Wallingford
a

August 24, 2015
b

14:40
b

18.4
b

7.9
b

10.8
b

Site 3 August 24, 2015 11:00 19.4 8.0 8.12

a
22.4 km downstream of site 3. 

b
Reference 2.
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 99 
Figure S2. Comparison of the first-order decay constants of the antibiotics in the Katsura River stretch 100 

obtained in summer and winter sampling campaigns in a previous study (Hanamoto et al. 2013). The 101 

vertical bars denote means and the error bars denote the standard deviation (n = 3 for both summer and 102 

winter). 103 

 104 

Laboratory Experiments 105 

The direct photolysis rate constant (݇௣) of a compound in river i was estimated as 106 

݇௣௜ 	ൌ 	߮ ൈ ൝
௜ܤܸܷ ൈ ൫1 െ ܴ௎௏஻௜൯ ൈ ൫1 െ ௎௏஻௜൯ܤ

௧ܤܸܷ
ൈ ෍

ఒܮ ൈ ൫1 െ 10ିఈഊ೔ൈ௟೔൯ ൈ ఒߝ
ఒ௜ߙ ൈ ௜ܦ

ଷଵହ
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107 
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where ߮ is quantum yield of the compound (–); ܷܸܤ and ܷܸܣ are sunlight intensity at Earth’s surface in 109 

those wavelengths (W/m2); ܴ௎௏஻ and ܴ௎௏஺ are fraction of sunlight reflected at the surface of the water 110 

body in those wavelengths (–); ܤ௎௏஻ and ܤ௎௏஺ are fraction of sunlight shaded by aquatic and overhanging 111 

vegetation in those wavelengths (–); ܷܸܤ௧ and ܷܸܣ௧ are theoretical sunlight intensity at Earth’s surface 112 

in those wavelengths (W/m2); ܮఒ is theoretical sunlight intensity at Earth’s surface at wavelength λ (10–3 113 

Einstein cm-2 h-1); ߙఒ is light absorption coefficient of the water body at wavelength λ (m–1); ݈ is path 114 

length of sunlight in the water body (m); ߝఒ is molar absorption coefficient of the compound at wavelength 115 

λ (M–1 cm–1); and ܦ is depth of the water (m). This equation was proposed in a previous study (Hanamoto 116 

et al. 2013). 117 

 The parameters used for the estimation of the direct photolysis constant in the Thames and Katsura river 118 

stretches are summarized in Table S3. 119 

 120 
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Table S3. Parameters used for the estimation of the direct photolysis constants of test compounds in the 121 

Thames and Katsura river stretches. 122 

 123 
 124 

The light absorption coefficient of the surface water at site 3 in the Thames River was compared with those 125 

reported at the Miyamae Bridge in the Katsura River (Hanamoto et al. 2013) (Figure S3). The light absorption 126 

coefficient was much higher in the Thames River, which is attributable to higher suspended solids and 127 

dissolved organic matter in the Thames River. 128 

 129 

Thames River stretch
a

Katsura River stretch
b

UVB , UVA Sunlight intensity at Earth’s surface
in UVB or UVA

Reported value in Kyoto city

UVB t , UVA t Theoretical sunlight intensity at
Earth’s surface in  UVB or UVA

Theoretical value at latitude 40°N

L λ Theoretical sunlight intensity at
Earth’s surface at wavelength λ

Theoretical value at latitude 50°N Theoretical value at latitude 40°N

B UVB , B UVA Fraction of sunlight shaded by plants
in  UVB or UVA

R UVB , R UVA Fraction of sunlight reflected at
water surface in  UVB or UVA

Theoretical value for sky radiation Theoretical value for sky radiation

l Path length of sunlight in water body Theoretical value for sky radiation Theoretical value for sky radiation

α λ Light absorption coefficient of water
body at wavelength λ

Measurements at site 3 Measurements at site f

D Depth of water Estimate from reported flow rate Estimate from reported flow rate

φ Quantum yield of the compound Reported value Reported value

ε λ Molar absorption coefficient of the
compound at wavelength λ

Reported value Reported value

a
Details and references for the Thames River stretch were shown in the main text "Direct photolysis estimation".  

b
Details and

references for the Katsura River stretch were shown in a previous study (Hanamoto et al. 2013).

Outline of used data

Since there is little overhanging vegetation along the river stretches,
these were set to 0

The ratios UVB/UVB t  and

UVA/UVA t  were estimate from

observed and teoritical sunlight
intensity in Kyoto city
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Figure S3. The light absorption coefficient of surface water at site 3 in the Thames River compared with 130 

those reported at the Miyamae Bridge in the Katsura River (Hanamoto et al. 2013). The solid line denote 131 

means and dashed line denote standard deviations in year-round sampling for the Katsura River (n = 6), 132 

whereas the absorption of the Thames River surface water was only measured once during low flow 133 

conditions in 2013 summer. 134 

 135 

The first-order rate constants of sulfapyridine observed in the indirect photolysis experiments are shown 136 

in Figure S4. 137 

 138 

Figure S4. The first-order rate constants of sulfapyridine observed in the indirect photolysis experiments 139 

conducted in (A) the UK and (B) Japan. The experiment was conducted in duplicate. Irradiation times in the 140 

UK and Japan were 4.0 h and 2.2 h, respectively. The concentrations decreases were 49% (ultrapure water 141 

in Japan) to 90% (Thames River water). The concentration decreases of the other antibiotics and 142 

carbamazepine during the experiment were not appreciable (< 20%) in all samples. 143 

 144 
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