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ABSTRACT 16 

Changing lake-water total organic carbon (TOC) concentrations are of concern for lake 17 

management because of corresponding effects on aquatic ecosystem functioning, drinking water 18 

resources and carbon cycling between land and sea. Understanding the importance of human 19 

activities on TOC changes requires knowledge of past concentrations; however, water-monitoring 20 

data are typically only available for the past few decades, if at all. Here, we present a universal 21 

model to infer past lake-water TOC concentrations in northern lakes across Europe and North 22 

America that uses visible-near-infrared (VNIR) spectroscopy on lake sediments. In the 23 

orthogonal partial least squares model, VNIR spectra of surface-sediment samples are calibrated 24 

against corresponding surface-water TOC concentrations (0.5–41 mg L
-1

) from 345 Arctic to25 

northern temperate lakes in Canada, Greenland, Sweden and Finland. Internal model-cross-26 

validation resulted in a R
2
 of 0.57 and a prediction error of 4.4 mg TOC L

-1
. First applications to27 

lakes in southern Ontario and Scotland, which are outside of the model’s geographic range, show 28 

the model accurately captures monitoring trends, and suggests that TOC dynamics during the 20
th

29 

century at these sites were primarily driven by changes in atmospheric deposition. Our results 30 

demonstrate that the lake-water TOC model has multi-regional applications and is not biased by 31 

post-depositional diagenesis, allowing the identification of past TOC variations in northern lakes 32 

of Europe and North America over timescales of decades to millennia. 33 

34 

Introduction 35 

Changes in total (or dissolved) organic carbon (TOC/DOC) concentrations have been observed 36 

in many lakes across the northern hemisphere over the past few decades, with increasing trends in 37 
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most regions, but also declines in some areas
1-3

. TOC in inland waters is an important component 38 

of the global carbon (C) cycle, as the pathway between the terrestrial environment and the ocean, 39 

lakes and rivers contribute to greenhouse gas emissions and sequester C in their sediments
4-5

. In40 

the functioning of aquatic ecosystems, TOC concentrations play a fundamental role by 41 

influencing physical and chemical water properties, and consequently the structure of biological 42 

communities
6
. For example, TOC affects water acidity

7
, dissolved oxygen levels

8-9
, water color43 

and thus light and heat penetration
10-11

, which in turn regulate the development of thermal44 

stratification and hypoxia/anoxia. TOC is also strongly bound to nutrients, and together these 45 

factors influence species distributions and habitat availability for primary producers (bacteria, 46 

algae) to fish and thus the productivity of aquatic ecosystems
12-16

. Furthermore, TOC affects the47 

transport and sequestration of metals and organic pollutants
17

, the development of toxic algal48 

blooms
18

 and associated costs for drinking water treatment
19-20

.49 

Increasing TOC trends in Europe and NE North America have largely been attributed to 50 

reduced sulfate deposition and the subsequent recovery of soils from acidification, which 51 

increases organic matter solubility and thus TOC export from terrestrial to aquatic environments
1
.52 

Following such a recovery, future TOC dynamics in these and other regions will be dominated by 53 

other stressors (e.g., changes in land use, nitrogen deposition, climate change) that affect the 54 

composition and size of the terrestrial TOC pool as well as the transport of TOC between 55 

terrestrial and aquatic environments. For example, over the next few decades climate-mediated 56 

changes in hydrology and land cover are projected to alter C cycling and TOC levels in lakes 57 

across boreal, subarctic and Arctic landscapes
21-25

. To provide realistic scenarios for these future58 

changes in TOC concentrations and their associated implications for aquatic ecosystems, it is 59 

crucial to understand the role of single natural and anthropogenic stressors and their individual 60 
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contribution to current and past changes in TOC levels. Monitoring data are critical for analyzing 61 

current trends but are available for relatively few lakes and span a few decades at most. 62 

Paleolimnological studies have shown that it is possible to reconstruct past trends in TOC/DOC 63 

concentrations in lakes from sediment records using inference models based on visible-near-64 

infrared (VNIR) spectroscopy
26-29

. VNIR spectroscopy is a fast, inexpensive and non-destructive65 

technique that is particularly sensitive to changes in organic matter quality. The technique is 66 

widely used for quality control in industrial processes but has also become an important tool in 67 

environmental and biological studies to determine, for example, plant and animal tissue 68 

composition
30

, different soil constituents
31

 and chlorophyll-a concentrations in sediments
32

. By69 

employing a transfer function between VNIR spectra of lake-surface sediments (i.e., the most 70 

recently accumulated material) and corresponding TOC/DOC concentrations in the water 71 

column, the method allows for the reconstruction of long-term data from sediment cores on the 72 

scales of decades to millennia. These long-term data provide critical knowledge about TOC 73 

changes in response to past environmental change, natural long-term TOC variability and 74 

reference levels prior to human disturbances. For example, recent studies in southern and central 75 

Sweden showed that the current TOC increase was preceded by a long-term decline over the last 76 

500 to 1000 years in response to increasing human land use
27-28, 33

. In southern Sweden, changes77 

in acid deposition were identified as an important factor contributing to TOC dynamics during 78 

the 20
th

century
34-35

. In other studies, the technique has allowed the tracking of TOC/DOC 79 

variations throughout the Holocene in response to environmental changes that have included 80 

treeline migration, mire development and permafrost dynamics
26, 36-40

.81 

The existing VNIR inference models for lake-water TOC/DOC are based on regional lake 82 

calibration sets from Sweden
26-28

 and Canada
29

. However, first applications of these models to83 

sediment records from outside their geographical calibration range suggest that the technique 84 
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may not be geographically restricted
29, 39

, and that it might be possible to develop a universal 85 

model for lakes across large environmental gradients. Such a supra-regional model would allow 86 

for the application of the technique in other regions without the time and expense required to 87 

generate a sufficiently large regional calibration set. 88 

Here, we combine sediment and water chemistry data from 345 lakes from Canada, Greenland, 89 

Sweden and Finland to establish a universal VNIR lake-water TOC inference model for northern 90 

lakes in Europe and North America (hereafter referred to as the NL-TOC model). The calibration 91 

lakes span large vegetation and climate gradients from the Arctic across the boreal forest to the 92 

northern temperate zone (Fig. 1). To evaluate the NL-TOC model’s performance, we applied it to 93 

sediment records from lakes that are located a) within (boreal Sweden, subarctic Canada) and b) 94 

outside (United Kingdom, northern temperate Canada) the model’s geographic calibration range, 95 

and compared sediment-inferred to monitored lake-water TOC/DOC trends. By applying the 96 

model to a series of annually laminated sediment cores collected from the same lake over a 27-97 

year period
41-42

, we further assessed whether post-depositional (diagenetic) changes in the98 

sediment composition distort the reconstructions of past TOC levels. 99 

100 

Materials and methods 101 

Calibration samples. The NL-TOC model is based on surface-sediment samples and 102 

corresponding lake-water TOC measurements from 345 lakes covering a TOC range from 0.5 to 103 

41 mg L
-1

. The model includes samples from previously developed models for Sweden (n=146;104 

0.7–22 mg TOC L
-1

)
26-28

 and Canada (n=142; 0.9–41 mg TOC L
-1

)
29

, as well as additional105 

samples from Finland (n=47; 0.5–18 mg TOC L
-1

) and Greenland (n=10; 4.9–28 mg TOC L
-1

).106 

The study lakes span a large geographic and environmental gradient from the high Arctic to 107 
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boreal and northern temperate zones, and from western Canada across to eastern Fennoscandia, 108 

and vary in elevation from sea level to 1387 m above sea level (a.s.l.). The calibration set covers 109 

a climate range with mean July air temperature from 3.5 to 17.0°C and range in mean annual 110 

precipitation from <150 to 1900 mm. Catchment vegetation ranges from polar desert in the 111 

Canadian high Arctic through tundra and boreal coniferous forests to mixed coniferous and 112 

deciduous forest in southern Sweden. The lakes vary in depth from 2 to 49 m, and are relatively 113 

undisturbed by human activities, except for atmospheric deposition and some agriculture and 114 

infrastructure developments, predominantly in southern Sweden. Lake characteristics vary from 115 

(ultra)oligotrophic to eutrophic (TP: 0.1–68 µg L
-1

) and from acidic to alkaline (pH 3.5–8.8)116 

(Table S1). 117 

Surface sediments (topmost 0.5 cm or 1.0 cm) for the calibration model were generally 118 

recovered from the deepest part of each lake using a gravity corer, except for some high Arctic 119 

lakes where samples were taken mostly at shallower near-shore sites (<1 m water depth), as these 120 

lakes typically maintained extensive ice covers, even in summer. Surface water sampling (within 121 

uppermost 1 m of water column) and water chemistry analyses followed standard protocols. TOC 122 

concentrations used for the calibration are mostly based on single measurements, except for 47 123 

Swedish reference lakes (http://miljodata.slu.se/mvm/), which were sampled at least four times 124 

per year and the average TOC concentrations over the 3 years prior to sediment sampling were 125 

used in model development. More information about lake characteristics and limnological 126 

variables can be found in Table S1 and in the respective regional model papers
26-27, 29

. The NL-127 

TOC model is calibrated against TOC concentrations because these were quantified for all lakes 128 

in contrast to DOC. In lakes for which DOC and TOC were measured (n=241), DOC 129 

compromised on average 87% of the TOC pool. 130 
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Diagenesis series. Nylandssjön (62° 57′ N, 18° 17′ E; 34 m asl) is a 17.5 m deep, mesotrophic 131 

boreal-forest-lake with a surface area of 0.28 km
2
 located at the coast of the Gulf of Bothnia in 132 

northern Sweden. Since the beginning of the 20
th

century when the lake was culturally 133 

eutrophied, hypolimnetic hypoxia has occurred regularly during the summer and winter, leading 134 

to the formation of annually laminated (varved) sediment. The varved character of the sediment 135 

enables accurate subsampling of individual years, and sediment cores have been repeatedly 136 

recovered from Nylandssjön over the past four decades using a freeze corer
41-42

. In this study, we137 

used sediment cores recovered in 1983, 1985, 1989, 1992, 1993, 1997, 2002, 2004, 2006, 2007 138 

and 2010. This core series allows tracking the influence of post-depositional, diagenetic 139 

processes on the composition of sediment that accumulated in the 1982 varve (surface varve of 140 

1983 core) after 2, 6, 9, 10, 14, 19, 21, 23, 24 and 27 years. 141 

Long-term TOC reconstruction lakes. We applied the NL-TOC model to sediment records 142 

from six lakes, with three each located within and outside the model’s geographical calibration 143 

range (Fig. 1). The lakes located within the geographic range of the model include Långsjön (60° 144 

43′60′′ N, 16° 25′46′′ E; 239 m a.s.l.; Zmax = 6 m; area = 0.07 km
2
) and Gipsjön (60° 39′01′′ N,145 

13°37′23′′ E; 376 m a.s.l.; Zmax = 14 m; area = 0.67 km
2
). Both of these are humic, naturally146 

acidic (pH = 6.1/5.5 in 2010–2012) lakes located in the spruce and pine-dominated boreal forest 147 

of south-central Sweden, and have been part of the Swedish freshwater monitoring program since 148 

1987
28

. Slipper Lake (64°35′65′′ N, 110°50′07′′ W; 460 m a.s.l.; Zmaz = 17 m, area = 1.9 km
2
) is a149 

slightly acidic (pH = 6.4), oligotrophic tundra lake in the central Canadian subarctic, located ~50 150 

km north of the current treeline
29, 43

.151 

Lakes located outside of the geographic limits of the model include Heney Lake (45° 23′ N, 152 

79° 07′ W; 351 m a.s.l.) and Eagle Lake (44° 40′19′′ N, 76° 40′26′′ W; 198 m a.s.l.), which are 153 

oligotrophic lakes surrounded by mixed coniferous and broad-leaved forests in south-154 
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central/southern Ontario, Canada. Heney Lake is a relatively small (0.21 km
2
) acidic lake (pH = 155 

5.9 in 2010–2012), with a maximum depth of 6 m, and has been regularly sampled for DOC and 156 

other lake-water variables since 1978 as part of the Ontario Ministry of the Environment and 157 

Climate Change’s long-term monitoring program at the Dorset Environmental Science Centre. 158 

Eagle Lake is a slightly alkaline (pH = 7.9), comparatively large (6.65 km
2
) and deep (31 m) lake,159 

and DOC concentrations have periodically been measured since 2001
44

. Round Loch of Glenhead160 

(55°5’ N, 4°25’W; 298 m a.s.l.) is an oligotrophic moorland lake in south-west Scotland, United 161 

Kingdom. The lake has a surface area of 0.13 km
2
, a maximum depth of 14 m

45
 and is part of the162 

United Kingdom Upland Waters Monitoring Network (UWMN), formerly the UK Acid Waters 163 

Monitoring Network, with data extending back to 1988. The lake was acidified by atmospheric 164 

acid deposition during the last century and is currently recovering, with a pH of 5.3 in 2011–165 

2013
46

. 166 

All sediment cores were radiometrically dated by analyzing 
210

Pb, 
226

Ra (via its granddaughter 167 

isotope 
214

Pb), 
137

Cs, and 
241

Am using gamma spectrometry. Resulting age-depth relationships for 168 

the past 100-150 years were calculated using the constant rate of 
210

Pb supply (CRS) dating 169 

model
47

. For Gipsjön, Långsjön and Slipper Lake, sediment ages beyond the dating range of 
210

Pb 170 

were constrained by accelerator mass spectroscopy (AMS) radiocarbon ages determined on 171 

terrestrial macrofossils and bulk sediments. Deeper sediments from Heney Lake, Eagle Lake and 172 

Round Loch of Glenhead were not radiocarbon dated and sediment ages beyond the 
210

Pb dating173 

range were estimated based on linear extrapolations of the 
210

Pb chronologies. Additional 174 

information regarding site descriptions, sampling and dating techniques can be found in detailed 175 

studies of the sediment records from Långsjön and Gipsjön
28

, Slipper Lake
29, 43

, Heney Lake
48

,176 

Eagle Lake
44

, and in the SI for Round Loch of Glenhead (Fig. S1).177 
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Because of the potential mobility of sulfur in sediments, we used total lead (Pb) concentrations 178 

in the sediment records from Heney Lake, Eagle Lake and Round Loch of Glenhead as an 179 

indicator of the level of atmospheric pollutant deposition in the respective areas. Over the last 180 

two centuries Pb emissions increased in a similar manner to sulfur dioxide emissions following 181 

industrialization as a consequence of increased ore smelting, combustion of coal and, later, 182 

leaded gasoline, which peaked in the 1970s
49-51

. In the Canadian lakes, Pb was measured on183 

freeze-dried powdered sample material by wavelength dispersive X-ray fluorescence using a 184 

Bruker S8 Tiger spectrometer, while a Spectro XLAB2000 X-ray fluorescence spectrometer was 185 

used for Round Loch of Glenhead. 186 

VNIR spectroscopy and model development. Prior to spectroscopic analyses, sediment 187 

samples were freeze-dried and subsequently sieved (125 µm mesh) or ground to a fine powder to 188 

remove the effects of water and particle size on the VNIR signal. VNIR spectra were recorded 189 

with a FOSS XDS Rapid Content Analyser in diffuse reflectance mode. Each sediment sample 190 

spectra represents a mean of 32 scans at 2-nm resolution in the wavelength range from 400 to 191 

2500 nm. The measured diffuse reflectance (R) of light in the VNIR region was transformed to 192 

apparent absorbance (A) following the equation: A = log (1/R). Orthogonal Partial Least Squares 193 

(O-PLS) regression modeling
52

 was used to establish the calibration model between the VNIR194 

spectral information of the surface sediments and the corresponding measured TOC concentration 195 

in the surface water. Prior to numerical analysis, VNIR spectra were centered, while TOC 196 

concentrations were standardized and square-root transformed. To evaluate the model 197 

performance, we used the cross-validated (CV) coefficient of determination (R
2

cv) and the root198 

mean square error of cross-validation (RMSECV) (in mg TOC L
-1

) resulting from seven-fold199 

cross-validation. PLS modeling and lake-water TOC reconstruction were performed using 200 

SIMCA 14.0 (Umetrics AB, Umeå, Sweden). 201 
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202 

Results and discussion 203 

Northern lakes TOC model. The calibration between 345 surface sediment VNIR spectra and 204 

corresponding measured lake-water TOC concentrations resulted in a 7-component OPLS model 205 

with an R
2

cv of 0.57 and RMSECV of 4.4 mg L
-1

 (10.9% of TOC gradient) (Fig.2, Table S2). The206 

internal performance of the NL-TOC model is slightly less accurate than, but comparable to, the 207 

previously published regional TOC/DOC models for Sweden and Arctic Canada (R
2

cv = 0.61–208 

0.72; RMSECV = 1.6–4.4 mg L
-1

 (10.8–11.3% of TOC/DOC gradient)
26-27, 29

. Part of the 209 

discrepancy between sediment-inferred and measured TOC concentrations results from the fact 210 

that most lake-water TOC concentrations used for the calibration are based on single 211 

measurements (n=291), which do not account for inter- and intra-annual TOC variability, which 212 

can be large in lakes with low residence time, and/or high mean concentrations. For example, in 213 

the 47 Swedish reference lakes, the only lakes in the calibration set with multiple measurements 214 

(n ≥ 4 per year), TOC varied substantially over the 3 years preceding sediment sampling, with an 215 

average standard deviation of 2.0 (0.5–6.1) mg L
-1

 (18.5% (6.1–58.0%) of the mean TOC216 

content) across all lakes. High TOC concentrations are less accurately inferred and commonly 217 

underestimated (Figs. 2 and S2), which is likely a consequence of having few lakes with high 218 

TOC in the calibration set (13 lakes with TOC >20 mg L
-1

).219 

Impact of diagenesis on lake-water TOC reconstruction. The NL-TOC model infers an 220 

average TOC concentration of 7.6 ±0.3 mg L
-1

 (n = 11) for the sediment varve from Nylandssjön221 

that formed in 1982, which has been repeatedly sampled from sediment cores that were recovered 222 

over the subsequent 27 years (Fig.3). No relationship was found between sediment aging and 223 

inferred lake-water TOC content (R² = 0.003; p = 0.87). Previous studies have shown that 224 
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sediments in Nylandssjön undergo strong early diagenetic changes in the first three decades after 225 

sediment deposition (but especially in the first 5–10 years), altering the organic matter quantity 226 

and quality (e.g., C and nitrogen (N) content, C and N isotopes, specific biomarkers). For 227 

example, post-depositional changes led to an average total C loss of 23% (20% after 5 years), a 228 

total nitrogen loss of 35% (30% after 5 years) and consequently an increase in C/N ratios from 229 

~10 to ~12 within 27 years after deposition
41-42, 53

. Despite these diagenetic changes, sediment-230 

inferred lake-water TOC concentrations remain unaltered, which demonstrates that sediment 231 

aging does not bias the reconstruction of lake-water TOC dynamics over the last few decades. 232 

The robustness of the method to diagenesis during these early critical years, when diagenetic 233 

processes are greatest, strongly suggests that diagenesis is also not a major factor influencing 234 

lake-water TOC reconstructions over longer timescales, when diagenetic changes are more 235 

subtle. 236 

Sediment-inferred long-term trends. Långsjön, Gipsjön (Sweden) and Slipper Lake (Canada) 237 

are located within the NL-TOC model’s calibration range (Fig.1). Inferred lake-water TOC 238 

concentrations for these lakes match previously published long-term trends based on the regional 239 

Swedish and Canadian TOC/DOC models, respectively, as well as available monitoring trends 240 

for the past three decades (Fig.4). As shown previously with the regional Swedish model, the 241 

universal NL-TOC model shows a long-term declining trend since the 17
th

 century (Fig.4a-b) for242 

Långsjön and Gipsjön, which has been attributed to human landscape alteration through early 243 

forest grazing and farming in central Sweden
28

. Compared to the regional model, the universal244 

NL-TOC model somewhat underestimates absolute values during the monitoring period for 245 

Långsjön, but with a closer match in Gipsjön. This demonstrates that the model’s reduced site-246 

specificity compared to the regional model does not affect the ability to predict past TOC trends 247 
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but may lower the accuracy of the approach. When applied to Slipper Lake (Canada), the NL-248 

TOC model closely reproduces the dynamics inferred by the Canadian DOC model
29

 (Fig.4c). 249 

Heney Lake, Eagle Lake (Canada) and Round Loch of Glenhead (Scotland, UK) are located 250 

outside of the NL-TOC model’s geographical calibration range (Fig.1). Inferred TOC trends for 251 

the three lakes are in good agreement with monitoring data and capture the ongoing TOC 252 

increase (Fig.5). While sediment-inferred absolute TOC values match measured DOC 253 

concentrations in Heney Lake and Eagle Lake, the NL-TOC model slightly overestimates (~2 mg 254 

L
-1

) DOC concentrations monitored in Round Loch of Glenhead. Long-term TOC reconstructions255 

for the three lakes show a similar pattern, with higher TOC levels prior to a pronounced decline 256 

during the 20
th

 century, followed by the currently observed TOC increase (Fig.5). Prior to ~1900257 

C.E., TOC values were relatively stable in Heney Lake (6.8 ±0.5 mg L
-1

) and Eagle Lake (6.1258 

±0.4 mg L
-1

), while past dynamics in Round Loch of Glenhead were more complex, with inferred259 

TOC values around 5–7.5 mg L
-1

 during ~1500–1700 C.E. followed by elevated values around 8–260 

10 mg L
-1

 during ~1700–1850 C.E. By the late-19
th

 to early-20
th

 century, TOC decreased in all261 

lakes by 50–70%, from concentrations in the range of 6–7.5 mg L
-1

 to minimum values of 2–3.5262 

mg L
-1

 during the mid-20
th

 century. Recovery of TOC levels started in the 1980’s and 1990’s in263 

Heney Lake and Eagle Lake, and by the 1970’s in Round Loch of Glenhead, with inferred 264 

concentrations for the topmost samples of 4.6, 4.7 and 7.0 mg L
-1

, respectively.265 

The three lakes are located in areas that experienced notable acid deposition during the past 266 

century, and soils and surface waters in these areas are currently recovering from the effects of 267 

acidification
2
. For example, diatom-based pH reconstructions showed a distinct pH decline from268 

5.5 to 4.8 in Round Loch of Glenhead following industrialisation
45, 54

. In all lakes, sediment-269 

inferred TOC dynamics closely follow changes in sulfate deposition and mirror the increase in 270 

sulfur dioxide emissions in the late 19
th

 to early 20
th

 century, as well as emissions reductions271 
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since the 1970’s
50, 55-56

 (Fig. 6). The concurrent changes strongly suggest that TOC dynamics in 272 

these lakes were mainly driven by changes in deposition chemistry during the 20
th

 century. These 273 

data support the assumption that the currently observed TOC increase in these former high 274 

deposition areas is largely a response to reduced acid deposition, promoting TOC export from 275 

catchment soils to the lakes
1
. All three of these study lakes record inferred TOC decreases in276 

concert with the rise of total Pb concentrations (a robust proxy for changes in deposition of 277 

atmospheric pollutants, including sulfur, following industrialization) in the sediments, which 278 

emphasizes their common response to acid deposition (Fig 6). 279 

Current TOC concentrations remain beneath inferred pre-industrial levels in the two Canadian 280 

lakes, which suggests the potential for TOC to increase further by an order of ~2 mg L
-1

 in the281 

latter phase of recovery from acidification. However, human activities (road and cottage 282 

development, forestry, mining) over the past ~150 years have altered the lakes’ catchment 283 

characteristics such as vegetation cover and composition, complicating the identification of 284 

appropriate TOC reference levels, such as recorded in the long-term land-use driven changes in 285 

south-central Sweden
28

. In addition, other concurrent environmental changes in response to286 

climate change or atmospheric N deposition may have further shifted the post-acidification TOC 287 

baseline
57

. For Round Loch of Glenhead, the identification of pre-industrial TOC levels is more288 

difficult because of the landscape’s long history of anthropogenic disturbance, including land 289 

clearance, burning, and grazing, over several millennia. Elevated TOC levels prior to the TOC 290 

decline coincide with a period of increased blanket peat erosion around the lake
45, 58

, which291 

would have increased the input of terrestrial-derived organic matter and thus elevated the lake’s 292 

TOC load. Inferred TOC for this period may therefore overestimate pre-industrial reference 293 

conditions, suggesting that current TOC concentrations in Round Loch of Glenhead might have 294 

already returned to, or possibly exceeded, pre-industrial levels. 295 
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The strong agreement between monitored and sediment-inferred TOC/DOC trends, as well as 296 

the consistent response to a common environmental stressor (i.e., acid deposition) for lakes in 297 

different geographic regions, demonstrates that the NL-TOC model can accurately infer past 298 

lake-water TOC trends, even in regions outside of its geographic coverage. With its wide 299 

applicability across large environmental gradients, the universal NL-TOC model is a powerful 300 

tool for the fast, cost-efficient reconstruction of long-term TOC dynamics in northern lakes 301 

across Europe and North America, and potentially also in other northern regions for which 302 

regional calibration sets do not yet exist. Application of the technique can provide new insights 303 

into long-term C cycling in inland waters, help to identify the confounding effects of concurrent 304 

changes in TOC when interpreting biotic changes in aquatic community structures, and to 305 

determine appropriate reference conditions for drinking water management. Knowledge about 306 

past TOC variations will help to refine process-based TOC/DOC models
34, 59-60

, and thus better307 

predict future changes in surface-water chemistry. 308 
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FIGURE CAPTIONS 510 

Figure 1. Location map of the lakes included in the Northern lakes total organic carbon (TOC) 511 

model (colored symbols) and lakes for which lake-water TOC reconstructions are presented in 512 
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this study (stars). Different symbol colors and shapes refer to the individual sample sets from 513 

Canada, Greenland, Sweden and Finland, respectively. 514 

Figure 2. Measured versus sediment-inferred lake-water total organic carbon concentrations 515 

(TOC; mg·L
-1

) for the Northern lakes TOC model resulting from internal cross-validation, where516 

different symbol colors and shapes refer to the individual sample sets from Canada, Greenland, 517 

Sweden and Finland, respectively. 518 

Figure 3. Sediment-inferred lake-water total organic carbon concentrations (TOC; mg·L
-1

) using 519 

the Northern lakes TOC model (open circles) for the 1982 sediment varve from Nylandssjön, 520 

northern Sweden, and the respective relative C loss in the samples (area plot)
41

 based on the521 

original concentration in the 1983 core (16.1 wt% C), which demonstrates the impact of 522 

diagenesis on the sediment organic matter composition over 27 years. The horizontal black line 523 

indicates average inferred lake-water TOC concentration across all samples of the 1982 varve. 524 

Figure 4. a-b) Monitored (light grey line plot; annual average – dark blue line plot) versus 525 

sediment-inferred lake-water total organic carbon concentrations (TOC; mg·L
-1

) for two lakes in526 

central Sweden using the Swedish (filled circles)
28

 and the Northern lakes TOC model (open527 

circles). Insets represent an enlarged view of the period 1975–2015 C.E. c) Sediment-inferred 528 

lake-water dissolved organic carbon concentrations (DOC; mg·L
-1

) using the Canadian lake-529 

water DOC model (filled circles)
29

 and sediment-inferred lake-water TOC concentrations using530 

the Northern lakes TOC model (open circles) are plotted against sediment depth for Slipper Lake, 531 

Canada. 532 

Figure 5. Monitored lake-water dissolved organic carbon concentrations (DOC; mg·L
-1

; light 533 

grey line plot; annual average – dark blue line plot) versus sediment-inferred lake-water total 534 
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organic carbon concentrations (TOC; mg·L
-1

; open circles) by the Northern lakes TOC model for 535 

Heney Lake and Eagle Lake, Ontario, Canada, and Round Loch of Glenhead, Scotland, UK. 536 

Sample ages older than ~1870 C.E. are based on extrapolations of the 
210

Pb chronologies and537 

insets represent an enlarged view of the period 1975–2015 C.E. 538 

Figure 6. a) Estimated historical sulfur dioxide (SO2) emissions from the USA and Canada
50

539 

(black diamonds) and the United Kingdom
56

 (grey squares) in mega tonnes (Mt). b-d) Lake-540 

water TOC (open circles) versus total Pb concentrations (area plot; proxy for changes in 541 

deposition of atmospheric pollutants, including sulfur, following industrialization) in the 542 

sediment for Heney Lake, Eagle Lake and Round Loch of Glenhead, exemplifying the influence 543 

of changes in atmospheric deposition chemistry on lake-water TOC dynamics. Sediment sample 544 

ages older than ~1870 C.E. are based on extrapolations of the 
210

Pb chronologies.545 
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Figure 1. Location map of the lakes included in the Northern lakes total organic carbon (TOC) model (colored 
symbols) and lakes for which lake-water TOC reconstructions are presented in this study (stars). Different 
symbol colors and shapes refer to the individual sample sets from Canada, Greenland, Sweden and Finland, 

respectively.  
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Figure 2. Measured versus sediment-inferred lake-water total organic carbon concentrations (TOC; mg·L-1) 
for the Northern lakes TOC model resulting from internal cross-validation, where different symbol colors and 

shapes refer to the individual sample sets from Canada, Greenland, Sweden and Finland, respectively.  
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Figure 3. Sediment-inferred lake-water total organic carbon concentrations (TOC; mg·L-1) using the Northern 
lakes TOC model (open circles) for the 1982 sediment varve from Nylandssjön, northern Sweden, and the 
respective relative C loss in the samples (area plot)41 based on the original concentration in the 1983 core 

(16.1 wt% C), which demonstrates the impact of diagenesis on the sediment organic matter composition 
over 27 years. The horizontal black line indicates average inferred lake-water TOC concentration across all 

samples of the 1982 varve.  
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Figure 4. a-b) Monitored (light grey line plot; annual average – dark blue line plot) versus sediment-inferred 
lake-water total organic carbon concentrations (TOC; mg·L-1) for two lakes in central Sweden using the 

Swedish (filled circles)28 and the Northern lakes TOC model (open circles). Insets represent an enlarged view 
of the period 1975–2015 C.E. c) Sediment-inferred lake-water dissolved organic carbon concentrations 

(DOC; mg·L-1) using the Canadian lake-water DOC model (filled circles)29 and sediment-inferred lake-water 
TOC concentrations using the Northern lakes TOC model (open circles) are plotted against sediment depth 

for Slipper Lake, Canada.  
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Figure 5. Monitored lake-water dissolved organic carbon concentrations (DOC; mg·L-1; light grey line plot; 
annual average – dark blue line plot) versus sediment-inferred lake-water total organic carbon 

concentrations (TOC; mg·L-1; open circles) by the Northern lakes TOC model for Heney Lake and Eagle Lake, 
Ontario, Canada, and Round Loch of Glenhead, Scotland, UK. Sample ages older than ~1870 C.E. are based 
on extrapolations of the 210Pb chronologies and insets represent an enlarged view of the period 1975–2015 

C.E.  
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Figure 6. a) Estimated historical sulfur dioxide (SO2) emissions from the USA and Canada50 (black diamonds) 
and the United Kingdom56 (grey squares) in mega tonnes (Mt). b-d) Lake-water TOC (open circles) versus 
total Pb concentrations (area plot; proxy for changes in deposition of atmospheric pollutants, including 

sulfur, following industrialization) in the sediment for Heney Lake, Eagle Lake and Round Loch of Glenhead, 
exemplifying the influence of changes in atmospheric deposition chemistry on lake-water TOC dynamics. 
Sediment sample ages older than ~1870 C.E. are based on extrapolations of the 210Pb chronologies.  
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