
Open Research Online
The Open University’s repository of research publications
and other research outputs

Update of time-invalid information in Knowledge Bases
through Mobile Agents
Conference or Workshop Item
How to cite:

Tiddi, Ilaria; Daga, Enrico; Bastianelli, Emanuele and d’Aquin, Mathieu (2016). Update of time-invalid information
in Knowledge Bases through Mobile Agents. In: Integrating Multiple Knowledge Representation and Reasoning
Techniques in Robotics (MIRROR-16), 10 Oct 2016, Deajeon, South Korea.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/131317533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Update of time-invalid information in

Knowledge Bases through Mobile Agents

Ilaria Tiddi, Enrico Daga, Emanuele Bastianelli, Mathieu d’Aquin1

Abstract— In this paper, we investigate the use of a mo-

bile, autonomous agent to update knowledge bases containing

statements that lose validity with time. This constitutes a key

issue in terms of knowledge acquisition and representation,

because dynamic data need to be constantly re-evaluated to

allow reasoning. We focus on the way to represent the time-

validity of statements in a knowledge base, and on the use

of a mobile agent to update time-invalid statements while

planning for “information freshness” as the main objective. We

propose to use Semantic Web standards, namely the RDF model

and the SPARQL query language, to represent time-validity

of information and decide how long this will be considered

valid. Using such a representation, a plan is created for the

agent to update the knowledge, focusing mostly on guaranteeing

the time-validity of the information collected. To show the

feasibility of our approach and discuss its limitations, we test

its implementation on scenarios in the working environment

of our research lab, where an autonomous robot is used

to sense temperature, humidity, wifi signal and number of

people on demand, updating the knowledge base with time-

valid information.

I. INTRODUCTION

The focus of this paper is how to update knowledge
bases containing statements that lose validity with time. Our
problem is that, in many real-world contexts, knowledge
bases contain both static information, i.e. statements that will
be always valid, and dynamic information, i.e. statements
that are only valid for a certain period of time. Dealing with
dynamic data constitutes a key issue in terms of knowledge
acquisition and representation, because data need to be
constantly re-evaluated to allow inference and reasoning.

Let us take the very basic example of a knowledge base
representing a working environment, e.g. the Knowledge Me-
dia Institute (KMi) research department. Here, information
about locations is static, as for instance the coordinates of a
room, but dynamic information such as temperature, humid-
ity, wi-fi signal or number of people in a given room changes
often, therefore statements about them in the knowledge base
might not be valid anymore after some time. For instance,
the number of people or the temperature in the seminar room
(called “the Podium”) varies depending on whether there is a
seminar or a meeting going on, and such information should
be re-evaluated once the seminar has finished.

Common solutions to this problem include temporal ver-
sions of a knowledge base with a time component, e.g.
reproducing the KMi knowledge base with new information
every day and annotating it with a time-stamp, as well
as using sensors in each of the possible locations to be

1Knowledge Media Institute, The Open University, Milton Keynes, MK7
6AA, United Kingdom

considered. These solutions are naturally more costly in
terms of hardware deployment, power consumption and data
collection. Also, they are less flexible as they might only
allow to query the knowledge base at specific locations
where sensors are available. Finally, information might be
constantly updated but rarely queried, therefore much of it
is likely not be useful. While such approaches might be
suitable for a simplified scenario such as the KMi one, their
application at large-scale, as for instance in the smartcities
environment where our current research is focused, might be
more complex.

An alternative solution is to move a sensor upon request,
e.g. using a robot, to re-collect the information that is
“expired” (i.e. that has lost time-validity), and consequently
update the knowledge base, therefore guaranteeing that the
knowledge base will return time-valid information when
queried. For instance, if we query the knowledge base to
know the temperature of the Podium and this is no longer
valid, the robot would move and sense the temperature,
update the knowledge base accordingly and return a result
which is valid in time. In this scenario, our challenges
become:

• how to establish if some information is outdated? In
other words, how to represent time-validity in the
knowledge base?

• how to instruct the robot to perform actions in the right
order, so that none of the statements that answer the
query will lose time-validity? In other words, how to
make a plan that will favor the time-validity of the
information that is collected?

To answer these questions, we present an approach to
update the time-invalid information of a knowledge base
using an autonomous mobile agent on demand, and which
relies on Semantic Web technologies as a framework for
knowledge representation. More specifically:

• we use the RDF1 model to represent time-validity and
annotate statements in the knowledge base with a time-
stamp, which defines the moment in which they will
become invalid (i.e. their expiry date);

• we rely on the SPARQL2 query language to decide how
long information will be considered valid, based on a
set of time-validity rules;

• we use such representation to design a simple planner
that focuses on guaranteeing the time-validity of the
information collected by the robot;

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-sparql-query/

• we instruct the robot to get data at query time and
update the knowledge base with the newly sensed
information.

Our approach has several advantages. The use of Seman-
tic Web technologies allows us to deal with more flex-
ible schema-less databases and avoid to define specific
data model as for temporal databases, therefore making
our approach simpler and more reusable. Relying on the
RDF/SPARQL paradigm also simplifies the implementation
process of detecting the portion of data relevant to answer
a given query. Finally, the use of an autonomous mobile
agents allows to avoid having to deploy and manage many
unnecessary data-flows. To show its feasibility, we apply it
in a real-world scenario in which a robot moves and senses
information in our department on demand.

II. RELATED WORK

We divide the related work in two sections: first, we
analyze works in robotics that have approached the problem
of time-constrained planning; second, we discuss how time
has been represented and which solutions exists to deal with
dynamic data in the area of the Semantic Web.

A. Time-constrained planning for autonomous mobile agents

The use of mobile agents for mobile sensing as an alterna-
tive to static sensors is not new in the field of robotics. Many
works focused on adapting the traditional planning strategies
to dynamic environments, where plans can be aborted based
on the circumstances [1]. Autonomous mobile agents have
been proposed in Wireless Sensor Networks to collect and
update information from static sensors [5], [9], [27]. These
works approach the robot routing problem using information
from the sensors as the time-constraint (i.e. an ordered
sequence to be visited) that allows to minimize transmission
and traveling energy. These solutions are however specific
and difficult to reuse. A domain-independent planning al-
gorithm based on a heuristic to estimate the completion
time of the plan was presented in [12]. However, this as
well as others, focus on optimizing the way the space is
explored and its coverage so that plans can be repeated
periodically, and without interruption. In temporal planning
and scheduling, time-constraints have been the focus of
timeline-based approaches [8], [15], [18]. These works rely
on a temporal representation based on timelines defined
by time-points that represent the possible evolutions and
changes of individual state variables over time. Temporal
constraints in the planning operators are expressed using
interval algebra. This planners, however, are not scalable
and difficult to write. To cope with that, frameworks such as
FAPE [6] and CHIMP [21] propose to hybrid planners based
on timeline-based planners combined with hierarchical task
decomposition, to be integrated into robotic platforms. The
optimization of plans for robots with limited and uncertain
data collection time is presented in [26]. While the idea is
very similar to the one presented here, only the planning
aspect is approached. Rather than concentrating on planning

optimization, our work is focused on the representation of
the time-validity to execute a plan.

B. Time representation in Semantic Web knowledge bases

Time representation was extensively investigated in the
Semantic Web area with the aim of modeling time-changing
information and being able to reason about it.

Theoretical frameworks to formally extend the RDF data
model to represent time-validity were presented by [10],
and then further extended to include time-intervals [22],
OWL 2 expressions [14] or indeterminate temporal anno-
tations [17]. These models, however, use a time interval-
based representation requiring additional operators, introduc-
ing further complexity in the reasoning process. We instead
represent temporal information as time-validity, enabling the
processing of the knowledge base focusing only on time-
valid information, and the creation of data collection plans
to update the knowledge base when necessary, at query time.

Point in time semantics has been used to analyze how RDF
data change over time, and how to obtain historical records of
them. Temporal databases to represent RDF data with a time-
stamped validity have been proposed by [7] and [24], while
[11] proposes to use named graphs to annotate the different
versions of RDF data stores using the PROV vocabulary3.
The main disadvantage of these solutions is that they can
only deal with static queries executed against the dataset
once, providing retroactive results. Our aim instead is to
identify the portion of the knowledge base that requires to
be updated for a given query.

Continuous queries, which guarantee a constantly time-
valid information, have been studied in the area of stream
processing and reasoning. The work of [20] proposed a vo-
cabulary to describe the spatio-temporal or context semantics
for sensors, and for the networks that provide them (e.g. mea-
surement precision or battery level). Several works presented
approaches to represent streams as time-stamped RDF triples
(see [4], [13], [16], [19]), and the C-SPARQL execution
engine was presented in [3] as a support to it. RDF stream
reasoning solutions, however, present high technical barriers,
such as scalability and low execution throughput due to the
ad-hoc operators used to perform data aggregation [16]. Also,
they can only be applied to the kind of scenarios considered
here if large numbers of continuously active sensors are
deployed.

Little work has been done in the Semantic Web area
towards the incremental maintenance of large knowledge
bases in dynamic environments with frequent changes. This
problem was previously approached by [25], that presented
a solution to identify, remove and update time-invalid infor-
mation from domain ontologies. We report the work of [2],
which used time-varying graphs allowing information up-
dates in the context of the Streaming Linked Data framework,
and of [23], that presents a system to efficiently maintain and
update large knowledge bases using parallelization. These
works are however focusing on a different aspect of temporal

3https://www.w3.org/TR/prov-o/

representations than what is considered here, and are not
directly applicable in our scenario.

The related work shows how different ways of representing
temporal information exists and which problems derive from
each of them. In this work, we propose to maintain a
knowledge base up-to-date at query time by using a mobile
agent, therefore avoiding unnecessary data collection. We
focus on the representation of time-validity and on the way
to exploit it as a planning constraint. Before presenting our
approach in details, the next section gives an overview of the
proposed process.

III. OVERVIEW OF THE PROCESS

Fig. 1. Update of time-invalid information using a mobile agent on request.

We designed and implemented a process in which a user
submits a query to a knowledge base and receives results
that are valid in time, provided that there exists a plan that
enables the agent to collect the required information in the
limited time before it becomes invalid. In the following, we
refer to the guide use case of the Knowledge Media Institute,
already mentioned in the introduction. We also invite the
reader to refer to the experiment section for a map of KMi.
The process, shown in Figure 1, is articulated as described
below.

1) QUERY. The user expresses the query to the knowledge
base. For instance, a user in KMi asks what is the
temperature of the Podium before bringing his invitees
there.

2) INVALID INFORMATION COLLECTION. In this step, the
time-validity of the statements required to compute
the query answer is evaluated, and invalid statements
(marked “invalid triples” in the figure) are collected.
In the previous example, if the information about the
temperature in the Podium has lost its time-validity (it
has been not sensed for some time), the corresponding
statement in the knowledge base is marked as time-
invalid and sent to the planner.

3) PLANNING. The planner receives the invalid informa-
tion and asks the mobile agent for its location. Based
on this, it builds the initial state (planning problem)
and calculates the plan to send to the agent, i.e. the
right sequence of actions to perform so that none of

the statements in the answer set remains time-invalid
(the planning goal). For instance, given the time-invalid
information of the temperature in the Podium, and a
mobile agent which is located in the coffee area, the
planner will compute a plan of the form
[move_to(Podium), sense(temperature, Podium)].

4) KNOWLEDGE UPDATE. The robot receives the plan and
performs it. When collecting a new piece of informa-
tion, it is sent to the knowledge base, which is updated,
including calculating the duration of its time-validity.
Once all the actions have been executed, the user is
shown the answer in which all the involved statements
are time-valid, e.g. the freshly sensed temperature in
the Podium.

It is worth mentioning that if no answer is received, this
means that there is no plan that can be executed so that all
the statements in the answer are time-valid. Let us consider
the case in which the user asks for the temperature of both
the Podium and a room further away (called Room 22). If, by
the time the agent has sensed the temperature of the second
one, the first information collected is no longer valid, then
there is no plan that guarantees time-validity, and such a
query needs to be simplified, e.g. executed once per room.
In the next section, we present our framework to represent
time-validity knowledge, how we used it to evaluate plans
for the robot, and how the required updates are performed.

IV. TIME VALIDITY AND DYNAMIC KNOWLEDGE BASE
UPDATE

In this section, we detail the various aspects of our
approach. First, we describe how we represent and assess the
validity of statements in time; second, we detail how such
information is managed and validated in the knowledge base;
third, we describe how the time-validity of statements used
to answer a query is calculated; finally, we show the basic
planning mechanism which generates robot plans that are
optimal with respect to the time-validity of the information
collected through executing them.

A. Representing time-validity in the Knowledge Base

In our scenario, the knowledge base contains both static in-
formation, and information that is time-dependent, i.e. which
is only valid for a certain period of time. We use Semantic
Web technologies, namely RDF graph representation and
the SPARQL query language, as a basic framework for
knowledge representation.

RDF is a directed, labeled graph representation language
connecting resources (entities) and literals of various
datatypes. The elementary representation component in
RDF is a triple representing a link.

Definition 1 (RDF triple): A RDF triple is a unit of
representation of the form hs, p, oi, where s is a resource, p
is a resource, and o is a literal or a resource. Resources are
identified through URIs4. s is generally called the subject of

4https://tools.ietf.org/html/rfc3986

the triple, p the predicate and o the object. A triple therefore
represents a labeled link between the subject and the object
where the label is the predicate.

For example, the triples in Figure 2 represent
information about the Podium, specifying its type
and linking it to its location. To simplify, we will
use for the remainder of this article an abbreviated
representation for URIs using prefixes, where for example
<http://data.open.ac.uk/kmi/area/Podium> is replaced
by the shorter version location:Podium. The main issue
we are tackling in this paper is that, while the information
represented in Figure 2 is relatively static, other types of
information, such as the temperature in the Podium, are
very much dependent on time. As discussed in the related
work section, there are many ways to represent temporal
information, including in RDF.

Here, we focus on the validity of the information, i.e. on
representing the fact that some triples might only be valid
for a certain period of time (e.g. the temperature in the room
is only considered valid for 5 minutes). In our scenario,
such validity is represented as a binary-concept; however,
other scenarios can be studied to make the information
validity a more fuzzy notion, which decays gracefully with
time. This is left for future work. We therefore need to be
able to associate to each triple in the knowledge base an
additional annotation related to the time at which it will
become invalid (i.e. its “expiry date”).

To achieve this, we rely on the named graph feature of
RDF, which can be used to divide the general graph into
sub-graphs. Effectively, this corresponds to extending RDF
triples into RDF quads, where the fourth component is the
graph to which the triple belong.

Definition 2 (RDF Quad): A RDF quad is a unit of
representation of the form hs, p, o, gi, where s, p and o are
as in Definition 1 and g is a resource (identified by a URI)
corresponding to a graph to which the triple hs, p, oi belongs.

Our approach therefore relies on creating graphs which
URIs are constructed to represent the time at which the
triples they include will expire. For example, the following
quad:

location:Podium robo:hasTemperature
"23.4" timegraph:1468917352.

represents the fact that the temperature in the Podium room
is 23.4 �C and that this information will expire at the time
represented by the epoch timestamp 1468917352.

Using the named graphs as meta-level annotations makes
the information query-able in the same format as it would
without this feature, as a homogeneous triple collection.
This makes the choice of quads preferable to other possible
RDF representations of time-validity (e.g. the reification the
triple), which change the data model from a triple based one
to a more complex set of N-ary relations.

B. Updating the Knowledge Base with Time-Validity Infor-

mation

Having established our approach for representing the
time-validity of triples, we need a mechanism to derive this
information for any triple added to the knowledge base. To
achieve this, we define, as a configuration of the knowledge
base, a set of contextual time-validity rules. Each rule
represents a way to decide how long a given triple will be
considered valid.

Definition 3 (Time-validity rule): A time validity rule
r = (p, d) associates a triple pattern p to a duration d.
A triple pattern is a triple in which some elements might
have been replaced by variables, acting as wildcards. The
duration d represents the time during which triples that
match the pattern p will be considered valid.

For any triple hs, p, oi to be added to the knowledge base,
we therefore select the rules r = (p, d) for which the triple
matches the pattern p, and create a quad of the form

hs, p, o, current_time+ di.
For example, given a triple
location:Podium robo:hasTemperature 20.6 .

the rule r = (p, 300) with p being the pattern
?x robo:hasTemperature ?y .

applies and can be used to decide that the considered triple
will expire in 5 minutes (and therefore add it to the relevant
named graph).

Note that more than one rule might match a given triple.
In this case, we prioritize the most specific rule, and if
some rules are equally specific, we use the shortest declared
duration. For example, a rule with a pattern
location:Podium robo:hasTemperature ?y .

would be considered more specific than the one previously
defined.

C. Assessing the time-validity of query results

In terms of the process described in Figure 1, the first
step to be considered once having establish the way to handle
time-validity information in the knowledge base is to process
the user query so that we can extract which part of the
knowledge base used to answer the query is invalid, and
establish a plan to update this part.

SPARQL is the standard language for querying RDF
knowledge bases. To briefly illustrate the principles on which
SPARQL relies, the example below shows a SELECT query
asking for the temperature in every meeting room:
SELECT ?t ?g WHERE {

?x rdf:type robo:MeetingRoom .
?x robo:hasLocation ?y .
?y robo:hasTemperature ?t

}

We can see from this example that SPARQL is essentially
based on defining a set of triple patterns, which identify a

<http://data.open.ac.uk/kmi/area/Podium>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://data.open.ac.uk/kmi/robo/MeetingRoom> ;
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://data.open.ac.uk/kmi/robo/Location> ;
<http://data.open.ac.uk/kmi/robo/xCoord> "7.05" ;
<http://data.open.ac.uk/kmi/robo/yCoord> "-29.3" .

Fig. 2. Example of RDF representation of a room.

sub-graph within the knowledge base, and returning from
this sub-graph the nodes (resources, literals) and the relations
(predicates) that correspond to bound variables.

Our goal is therefore to extract from the knowledge base
the expiry dates of all the triples in the sub-graph that match
the given triple patterns. Without going into the details, this
is achieved by first executing the query onto the current
(potentially time-invalid) knowledge base, and monitoring
the query execution process to retrieve the graphs from which
triples are obtained. From this, we can obtain the latest expiry
date of each of these triples, and identify which have expired
and which have not.

The objective of this step is first to assess whether the
knowledge base is currently able to answer the query with
time-valid information, but also (in case it is not) to create
a plan for an autonomous agent to be used as a dynamic,
mobile sensor that can update the knowledge base with
the necessary, time-valid information. The input to this
planning phase, as described in the next section, is therefore
constructed as a set of RDF quads, formed out of the triples
that require an update, with the fourth element representing
the current state of time-validity of this triple. To simplify
this step, we transform the expiry dates extracted from the
query and the knowledge base into a “time to invalidity”
value, representing the time during which a given triple will
remain valid (which is negative in case the triple is currently
time-invalid).

D. Creating a plan to collect time-valid information

Based on the foundations described in the previous section,
the problem represented by the second step of the overall
process described in Figure 1 can be formulated as: Given a

set of time-invalid quads and an autonomous agent (a robot)

capable of navigating and sensing the kind of information

required, how to utilize the robot to update the time-invalid

information? This can be straightforwardly translated into a
planning problem, where the plan to be generated is designed
to favor the validity in time of the information collected by
the robot. In this section, we describe the basic elements of
this planning task.

Since the focus of this article is on the time-validity
representation and on demonstrating the feasibility of the
overall approach, we employ a naïve implementation of a
planner based on fixed and constant motion times between
locations, and make no claim regarding the efficiency of
this planner. We use a best-first search strategy where a plan
is a path in a tree, whose nodes represent the states of the
considered quads and the current location of the robot, and
whose edges are the operators (i.e. the actions) that might
be applied by the robot to transition from one state to the
other, as per the definitions below.

Definition 4 (Plan state): A state s = (Q, loc) is
represented by a set of quads Q, including their expected
time to invalidity tv, and the expected location loc of the
robot. To simplify, the location is represented in terms of
a room or area (e.g. the Podium in our previous example),
for which information about coordinates is available.

Definition 5 (Robot operator): An operator represents an
action that the robot can perform, as well as a transition
from a given state to a modified state. We consider two types
of operators: Sensing operators that carry out a measurement
and modify the time-validity of the corresponding quads,
and movement operators that update the location of the
robot5. Each operator O is associated with the estimated
time tO it requires to be executed, which is often dependent
on the parameters of the operator (e.g. the duration of a
movement operator depends on the location of the robot in
the input state and on the required location in the output
state).

Therefore, starting from an initial state corresponding
to the quad extracted from the user query as described in
the previous section, and the current location of the robot,
the objective is to find the best path to a state where all
the information in the quads is time-valid. A key element
here is in the way we evaluate a plan in terms of the
time-validity of the information resulting in executing the
plan. Indeed, while it would appear natural to compute
a plan that minimizes the time required to execute the
plan, this “shortest” plan might in some cases lead to
information that is less “fresh” than it could be, depending
on the time-validity duration of the various measures to
be collected. We therefore define the cost of a transition
between states (i.e. the application of an operator) in the
following way:

Definition 6 (Cost of a transition): The cost of a transi-
tion, corresponding to applying an operator at a given stage
of the plan, is calculated as a function of the minimum time
to invalidity of the quads of the state generated as output of
the applied operator. In other words, given pre = (Q, loc) the
current state, O the operator to apply and post = (Q0, loc0)
the state resulting from applying o on the state pre, the cost
of the transition from pre to post is given by:

cost(pres, post) = � min
8<s,p,o,tv>2Q0

(tv)

Naturally, this requires that the creation of the output state

5This is assuming that the implementation of the approach relies on robots
with basic spatial navigation and motion planning capabilities.

post within the planning process is designed so that it
updates the quads in Q0 from Q depending on both the time
tO required to execute the operator (Definition 5) and on the
information produced by O in the case of a sensing operator.

Following from this, a key property of applying best-first
search for planning in the setting described above is that
the search is optimal with respect to the considered cost-
function. This means that, if a valid plan exists that leads to
a state where all the quads in the final state are time-valid,
we can guarantee (based on the cost-function in Definition 6)
that the plan will produce information which stays valid for
the longest possible time. On the other hand, it also means
that if the best-first search process fails to produce a plan
where all quads end-up being time-valid, we can guarantee
that no such plan exists (i.e. that it always takes longer to
collect the required information than for this information to
expire). The next section illustrates a set of use cases within
the working environment of a research lab.

V. EXPERIMENTS

The aim of this section is to evaluate the feasibility of our
approach. We used a real-world example, where a robot has
to move in the KMi department on demand, and updates the
outdated information of the KMi knowledge base. Next, we
present the four scenarios that were designed, which reflect
real application requests. We report the queries that were
asked to the system and discuss its behavior in details. Note
that a video of each scenario can be seen online, following
the link provided. Our code is also publicly available online6.

A. Experimental Setting

For the experimentation, in a first instance we acquired a
map of the north wing of KMi through SLAM, as provided
in the gmapping package of the Robot Operating System
(ROS). As platform, we used a iRobot Create 2 equipped
with a Kinect to emulate the laser range finder. The so-
acquired map used in the experiment is shown in Figure 3.
It consists of 8 areas, divided in 4 meeting rooms (namely
the Podium, the MarkBucks, Room 20 and Room 22), and
4 open-space activity areas numbered from 2 to 5.

We then built the KMi knowledge base as follows.
We represented environments as URI resources, e.g. the
location:Podium that we used in our running example. We
then used coordinates, types of area and sensor information
such as temperature, humidity, wifi signal quality in dB and
number of people, to define the set of static and dynamic
predicates to build an RDF representation for each area. We
invite the reader to refer to Figure 2 for an example of such
a representation. At the first initialization of the knowledge
base, all the dynamic information is set as invalid.

In the following step, we defined the set of time-validity
rules r that will be matched against a triple once a new
information is sensed, in order to establish the triple expiry
date. For the sake of readability, we report in Table I only
the time-validity that can be inferred from the rules, for each
location (rows) and property (columns).

6http://data.mksmart.org/apps/dka/code

TABLE I
TIME-VALIDITY (IN SECS) OF THE PROPERTIES FOR EACH LOCATION.

Room temp hum wifi people X Y type7

Podium 180 300 540 1.800 1 1 1
MarkBucks 180 300 540 1.800 1 1 1
Room 20 300 300 540 3.600 1 1 1
Room 22 60 300 540 1.800 1 1 1
Activity 2 300 300 540 3.600 1 1 1
Activity 3 300 300 540 3.600 1 1 1
Activity 4 300 300 540 3.600 1 1 1
Activity 5 300 300 540 3.600 1 1 1

From our setting, we can see how the coordinates of a
location or its type (meeting room/activity area) never lose
time-validity, while sensed information does. We considered
activity areas to have a longer time-validity, because they
are areas with assigned desks, while meeting rooms, that are
booked on regular basis for different purposes, have a shorter
time-validity.

Finally, we carried out the evaluation with a simula-
tion. We simulated the environment and the robot through
the stage simulator of the ROS, and used move_base
as motion planner. We also activated odometry and laser
reading errors in the simulator in order to reproduce real
application conditions. We also simulated sensor readings
using a pseudo-random generator for temperature, humidity
and people count, while wifi signal was read directly from
the interface of the laptop running the simulation.

B. Scenarios

The four scenarios we designed are described next,
including the original query and a discussion on the
behavior of our system.

1) Which activity area has the best wifi signal?

8

The first scenario is a simple query in which a user wants
to know where is the best activity area in terms of wifi signal.
This means that we need to measure the wifi signal of 4
activity areas before answering, and consequently that the
system needs to find a plan that guarantees that none of
the 4 wifi signals will be expired by the time the robot has
achieved the last operation. The query is expressed as:
SELECT ?room ?wifiSignal
WHERE {

graph ?expiryDateInMs {
?room robo:hasWiFiSignal ?wifiSignal.}.

graph ?static {
?room a location:Activity. }

}
ORDER BY DESC(?t) LIMIT 1

In the video, the knowledge base is queried a first time to
check how many results are time-invalid. In this case, all the
information about the wifi signal in the activities is expired
and has to be updated. A plan of 8 operations is found. The
time-validity for the wifi signal is likely to be sufficiently
long (540 seconds, as per Table I) to guarantee to performed

7Columns X, Y and type correspond to the properties robo:Xcoord,
robo:Xcoord and rdf:type of Figure 2.

8http://data.mksmart.org/apps/dka/v1/video1

Fig. 3. Map of the Knowledge Media Institute (north wing).

the entire plan without losing time-validity of the results.
The plan is therefore sent to the robot, which moves from
Activity 2 to Activity 5 starting from its original position,
i.e. Room 22. As said, each time that the robot reaches an
Activity and senses its wifi, the new information is written
in the knowledge base with an epoch timestamp of when the
triple will expire, as:
location:Activity2 robo:hasWiFiSignal -81

timegraph:1468917352

Once the robot has executed the plan, the original query
is executed again, and the valid answer (in our case, Activity
2) is shown to the user.

2) Which is the temperature of Room 20 and 22?

9

In this scenario, a user wants to know the temperature of
Room 20 and Room 22 before choosing where to work. This
is expressed as follows:
SELECT ?room ?temp
WHERE {

graph ?expiryDateInMs {
VALUES(?room)

{(location:Room20) (location:Room22)}.
?room robo:hasTemperature ?temp.
}

}

The robot is situated in the MarkBucks and needs to sense
the temperatures of both rooms. The plan to be executed
includes 4 actions. As one can see, although Room 22
is the first one on the robot’s path, the robot moves first
to Room 20 and then to Room 22. This is motivated by
the fact that Room 22 has a shorter time-validity, which
would expire if sensed before the one of Room 20. This
scenario shows in practice how the plan is designed to
favor the validity in time of the information collected
and not the overall time required to execute the plan.
Once both temperatures have been sensed (respectively,
location:Room20 robo:hasTemperature 18.26 and loca-

tion:Room22 robo:hasTemperature 21.09) and updated in
the knowledge base, they are finally shown to the user.

9http://data.mksmart.org/apps/dka/v1/video2

3) Which meeting room is more comfortable?

10

In this scenario, the user wants to know which meeting
room is more comfortable to book its meeting. We designed
a simple comfort factor based on temperature, humidity and
number of people in a room, as comfort = temp⇤h

ppl , and
execute the following query:
SELECT ?room ((?temp+?h)/?ppl) AS ?comfort)
WHERE {
graph ?g { ?room robo:hasPeopleCount ?ppl }.
graph ?g1 {?room robo:hasHumidity ?h }.
graph ?g2 {?room robo:hasTemperature ?temp }.
graph ?g3 {?room a location:MeetingRoom }
}

ORDER BY DESC(?t) LIMIT 1

The robot is situated in the MarkBucks and is supposed to
move in 4 different spaces and update their temperature,
humidity and wifi signal before sending a response to
the user. However, the video shows that an empty plan
is sent to the robot and the answer to the query is not
updated. This means that no valid plan existed, where all
the quads involved in the answer could be time-valid and,
in order to guarantee it, the initial query should be simplified.

4) Which meeting room is more comfortable?

11

Following from the previous scenario, the user simplifies
the query and asks for the comfort of Room 22 and the
Podium. A query similar to the previous one is executed:
SELECT ?room ((?temp+?h)/?ppl) AS ?comfort)
WHERE {
graph ?g {
VALUES(?room)
{(location:Room22) (location:Podium)}.

?room robo:hasPeopleCount ?ppl }.
graph ?g1 {
VALUES(?room)
{(location:Room22) (location:Podium)}.

?room robo:hasHumidity ?h }.
graph ?g2 {
VALUES(?room)
{(location:Room22) (location:Podium)}.

?room robo:hasTemperature ?temp }.
}

ORDER BY DESC(?t) LIMIT 1

10http://data.mksmart.org/apps/dka/v1/video3
11http://data.mksmart.org/apps/dka/v1/video4

and this time a plan of 8 actions is found. The robot
moves from the MarkBucks towards the Podium, updates
the information about this room and then moves to Room
22 to update its information. The comfort is then calculated
and the Podium is shown in the answer to the user as the
most comfortable (with a comfort factor of -0.212).

VI. CONCLUSIONS

This paper presented an approach to update information
in a knowledge base that has lost its validity in time
using an autonomous mobile agent moving on demand. We
showed how we relied on Semantic Web technologies for the
representation of our knowledge base, namely how we used
the RDF model to represent the time-validity by annotating
statements with time-stamps representing their expiry date,
and how we used the SPARQL query language to assess the
validity of new information to be written in the knowledge
base, based on a set of time-validity rules. Once defined that,
we used such knowledge representation to design a basic
planner where the generated plans favor the validity in time
of the information to be collected by the mobile agent.

Our work demonstrates the feasibility of the approach and
the encouraging results opened new perspectives to us. As
said, we focused on the knowledge representation aspect and
left the optimization of the planner for future work, e.g. by
using of more realistic models to calculate motion times
rather than constant travel times, or using time-constraints
such as the timeliness of the response expected by the user.
This would allow to express more complex queries without
running into scalability issues. A more flexible notion of
information validity, which decays with time, should also
be investigated. In such a way, we could report the best
information possible for a query, rather than discarding
plans and reporting no answer as soon as validity cannot
be guaranteed anymore. We also look into utilizing the
same knowledge representation framework in a scenario with
multiple coordinating robots, therefore making it more likely
that a plan can be found that can be executed by the time the
information has lost validity. Finally, we intend to work on
more complex time-validity rules, and to see how this affects
our process.

REFERENCES

[1] Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002).
Models and issues in data stream systems. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems (pp. 1-16). ACM.

[2] Balduini, M., Della Valle, E., Dell’Aglio, D., Tsytsarau, M., Palpanas,
T., & Confalonieri, C. (2013). Social listening of city scale events
using the streaming linked data framework. In International Semantic
Web Conference (pp. 1-16). Springer Berlin Heidelberg.

[3] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Grossniklaus, M.
(2009). C-SPARQL: SPARQL for continuous querying. In Proceedings
of the 18th international conference on World wide web (pp. 1061-
1062). ACM.

[4] Calbimonte, J. P., Jeung, H. Y., Corcho, O., & Aberer, K. (2012).
Enabling query technologies for the semantic sensor web. Interna-
tional Journal on Semantic Web and Information Systems, 8(EPFL-
ARTICLE-183971), 43-63.

12The comfort factor may result in a negative score since the strength of
the wi-fi signal is likely to take negative values.

[5] Ciullo, D., Celik, G. D.,& Modiano, E. (2010). Minimizing trans-
mission energy in sensor networks via trajectory control. In Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
2010 Proceedings of the 8th International Symposium on (pp. 132-
141). IEEE.

[6] Dvorak, F., Bit-Monnot, A., Ingrand, F., & Ghallab, M. (2014). A
flexible ANML actor and planner in robotics. In Planning and Robotics
(PlanRob) Workshop (ICAPS).

[7] Fernández, J. D., Schneider, P., & Umbrich, J. (2015). The DBpedia
wayback machine. In Proceedings of the 11th International Conference
on Semantic Systems (pp. 192-195). ACM.

[8] Frank, J., & Jónsson, A. (2003). Constraint-based attribute and interval
planning. Constraints, 8(4), 339-364.

[9] Goerner, J., Chakraborty, N., & Sycara, K. (2013). Energy efficient
data collection with mobile robots in heterogeneous sensor networks.
In Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on (pp. 2527-2533). IEEE.

[10] Gutierrez, C., Hurtado, C., & Vaisman, A. (2005). Temporal rdf. In
European Semantic Web Conference (pp. 93-107). Springer Berlin
Heidelberg.

[11] Halpin, H., & Cheney, J. (2014). Dynamic provenance for SPARQL
updates using named graphs. In Proceedings of the 23rd International
Conference on World Wide Web (pp. 287-288). ACM.

[12] Haslum, P., & Geffner, H. (2014). Heuristic planning with time and
resources. In Sixth European Conference on Planning.

[13] Komazec, S., Cerri, D., & Fensel, D. (2012). Sparkwave: continu-
ous schema-enhanced pattern matching over RDF data streams. In
Proceedings of the 6th ACM International Conference on Distributed
Event-Based Systems (pp. 58-68). ACM.

[14] Motik, B. (2012). Representing and querying validity time in RDF and
OWL: A logic-based approach. Web Semantics: Science, Services and
Agents on the World Wide Web, 12, 3-21.

[15] Muscettola, N., Dorais, G. A., Fry, C., Levinson, R., & Plaunt, C.
(2002). Idea: Planning at the core of autonomous reactive agents.

[16] Le-Phuoc, D., Dao-Tran, M., Pham, M. D., Boncz, P., Eiter, T., & Fink,
M. (2012). Linked stream data processing engines: Facts and figures.
In International Semantic Web Conference (pp. 300-312). Springer
Berlin Heidelberg.

[17] Pugliese, A., Udrea, O., & Subrahmanian, V. S. (2008). Scaling RDF
with time. In Proceedings of the 17th international conference on
World Wide Web (pp. 605-614). ACM.

[18] Rajan, K., Py, F., McGann, C., Ryan, J., O’Reilly, T., Maughan, T., &
Roman, B. (2009). Onboard Adaptive Control of AUVs using Auto-
mated Planning. In International Symposium on Unmanned Untethered
Submersible Technology (UUST), Durham, NH.

[19] Rinne, M., Abdullah, H., Törmä„ S., & Nuutila, E. (2012). Processing
Heterogeneous RDF Events with Standing SPARQL Update Rules. In
OTM Confederated International Conferences" On the Move to Mean-
ingful Internet Systems" (pp. 797-806). Springer Berlin Heidelberg.

[20] Sheth, A., Henson, C., & Sahoo, S. S. (2008). Semantic sensor web.
IEEE Internet computing, 12(4), 78-83.

[21] Stock, S., Mansouri, M., Pecora, F., & Hertzberg, J. (2015). Hier-
archical hybrid planning in a mobile service robot. In Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche Intel-
ligenz) (pp. 309-315). Springer International Publishing.

[22] Tappolet, J.,& Bernstein, A. (2009). Applied temporal RDF: Efficient
temporal querying of RDF data with SPARQL. In European Semantic
Web Conference (pp. 308-322). Springer Berlin Heidelberg.

[23] Urbani, J., Margara, A., Jacobs, C., Van Harmelen, F., & Bal, H.
(2013). Dynamite: Parallel materialization of dynamic rdf data. In
International Semantic Web Conference (pp. 657-672). Springer Berlin
Heidelberg.

[24] Van de Sompel, H., Sanderson, R., Nelson, M. L., Balakireva, L.
L., Shankar, H., & Ainsworth, S. (2010). An HTTP-based versioning
mechanism for linked data. arXiv preprint arXiv:1003.3661.

[25] Volz, R., Staab, S., & Motik, B. (2005). Incrementally maintaining
materializations of ontologies stored in logic databases. In Journal on
Data Semantics II (pp. 1-34). Springer Berlin Heidelberg.

[26] Wang, R., Veloso, M., & Seshan, S (2016). Active Sensing Data
Collection with Autonomous Mobile Robots. In Proceedings of IEEE
International Conference on Robotics and Automation.

[27] Yuan, B., Orlowska, M., & Sadiq, S. (2007). On the optimal robot
routing problem in wireless sensor networks. IEEE Transactions on
Knowledge and Data Engineering, 19(9), 1252-1261.

