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ABSTRACT 
Technologies such as algorithms, applications and formats are an 
important part of the knowledge produced and reused in the 
research process. Typically, a technology is expected to originate 
in the context of a research area and then spread and contribute to 
several other fields. For example, Semantic Web technologies 
have been successfully adopted by a variety of fields, e.g., 
Information Retrieval, Human Computer Interaction, Biology, and 
many others. Unfortunately, the spreading of technologies across 
research areas may be a slow and inefficient process, since it is 
easy for researchers to be unaware of potentially relevant 
solutions produced by other research communities. In this paper, 
we hypothesise that it is possible to learn typical technology 
propagation patterns from historical data and to exploit this 
knowledge i) to anticipate where a technology may be adopted 
next and ii) to alert relevant stakeholders about emerging and 
relevant technologies in other fields. To do so, we propose the 
Technology-Topic Framework, a novel approach which uses a 
semantically enhanced technology-topic model to forecast the 
propagation of technologies to research areas. A formal evaluation 
of the approach on a set of technologies in the Semantic Web and 
Artificial Intelligence areas has produced excellent results, 
confirming the validity of our solution. 

CCS CONCEPTS 
• Information systems → Information retrieval; • Computing 
methodologies → Artificial intelligence 

KEYWORDS 
Scholarly Data, Semantic Web, Technology, Ontology 

1 INTRODUCTION 
Every new piece of research, no matter how ground-breaking, 
adopts previous knowledge and reuses tools and methodologies 

from the past. As emphasised by Isaac Newton, researchers stand 
“on the shoulders of giants”: we constantly reuse ideas, methods 
and materials. Today, as the number of papers and the available 
scientific knowledge is growing rapidly, it is becoming 
increasingly harder to keep track of all the relevant knowledge 
and methodologies that could facilitate a research initiative, 
trigger a research idea, or spark a collaboration between experts 
from different fields. The availability of research material on the 
Web and the presence of academic search engines (e.g., Google 
Scholar, Microsoft Academic Search, SciVal Scopus) and 
systems, which support the exploration of the research 
environment (e.g., Semantic Scholar1 , aMiner [1], Saffron [2], 
Rexplore [3]), alleviates only marginally this issue. Indeed, while 
these systems are effective at processing keyword-based queries 
on the literature and at producing a variety of analytics about the 
research landscape, they do not attempt to represent explicitly the 
knowledge described in scholarly publications.  

The vision underlying the work presented here is one in which 
researchers are assisted by software capable of applying data-
driven methodologies to machine-readable descriptions of 
research knowledge. The aim is to expand the conceptual horizon 
of researchers and combine human creativity with the data mining 
ability of computers. The Semantic Web community has already 
started to work in this direction, by fostering the Semantic 
Publishing paradigm [4], creating bibliographic repositories in the 
Linked Data Cloud [5], generating knowledge bases of biological 
data [6], formalising research workflows [7], implementing 
systems for managing nano-publications [8, 9] and micro-
publications [10], organising relevant workshops (e.g., Linked 
Science and SemSci at ISWC, Scientometrics and Sepublica at 
ESWC, SAVE-SD at WWW) and challenges (e.g., the ESWC 
Semantic Publishing Challenge), and creating a variety of 
ontologies to describe scholarly data, e.g., SWRC 2 , BIBO 3 , 
BiDO4, FABIO5. Recently, Kitano [11] proposed an even more 
ambitious vision, suggesting the development of an artificial 
intelligence system able to make major scientific discoveries in 
biomedical sciences and win a Nobel Prize.  

Technologies, such as algorithms, formats, and applications, 
are a very important part of the knowledge produced and reused in 

                                                                    
1 https://www.semanticscholar.org 
2 http://ontoware.org/swrc 
3 http://bibliontology.com 
4 http://purl.org/spar/bido 
5 http://purl.org/spar/fabio 
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the research process. Typically, a technology will first appear in a 
particular research community and will then spread and contribute 
to a variety of other research areas. For example, Semantic Web 
technologies (e.g., RDF, OWL) were first created by research 
communities in the field of Artificial Intelligence, Knowledge 
Base Systems, Formal Ontology and others; subsequently they 
contributed to a variety of other research areas, e.g., Information 
Retrieval, Human Computer Interaction, Biology, and many 
others. It is however easy to miss an interesting piece of 
knowledge from a different field. Therefore, the transfer of a 
technology from a one research area (e.g., Semantic Web) to a 
different and possibly conceptually distant other area (e.g., Digital 
Humanities) may take several years, potentially slowing down the 
research process. 

We thus need to develop new methods to foster this process 
and possibly predict the spreading of technologies across research 
fields. Unfortunately, standard technology diffusion and 
forecasting models [19-25] cannot tackle this issue, since they are 
designed to assess the general potential of technologies associated 
with a good number of documents. Conversely, we want to predict 
that a technology that has no or very few initial publications in 
topic T will be adopted by researchers working on T. 

We hypothesise that technologies which exhibit similar 
spreading patterns across multiple research topics will tend to be 
adopted by similar topics. Following this intuition, we introduce 
the Technology-Topic Framework (TTF), a novel approach which 
uses a semantically enhanced technology-topic model to predict 
the technologies that will be adopted by a research field. TTF 
characterises technologies in terms of a set of topics drawn from a 
large-scale ontology of research areas over a given time period 
and applies machine learning on these data to forecast technology 
spreading. Our goal is to suggest promising technologies to 
scholars in a field, thus helping to accelerate the knowledge flow 
and the pace of technology propagation. 

The main contributions of this paper are: 
- The definition and implementation of the Technology-

Topic Framework, a novel approach to characterise and 
forecast technology propagation; 

- A dataset associating technologies to research topics 
throughout time, which can be used to perform further 
analysis of technologies in the fields of Semantic Web and 
Artificial Intelligence; 

- An evaluation on 1,118 technologies in the 1990-2013 
period, which shows that our methodology can forecast 
technology spreading with a high precision. 

 
The remainder of this paper is organised as follows. In Section 

2, we discuss in details the Technology Topic Framework and the 
input knowledge bases. In Section 3, we discuss the state of the art 
of current methods to forecasting technologies. In Section 4 we 
evaluate our approach by comparing six machine learning 
algorithms. We conclude in Section 5 by outlining future 
directions of research. 

2 TECHNOLOGY-TOPIC FRAMEWORK 

Figure 1 shows the architecture of the Technology-Topic 
Framework (TTF). It takes as input a dataset of research papers, a 
list of technologies and a research topic ontology. It then 
characterises technologies according to their propagation through 
research topics and uses this representation to forecast the future 
propagation of novel technologies. 
Of course, a technology can propagate to a topic as a result of 
events that cannot be anticipated by the knowledge of previous 
spreading patterns. Indeed, the adoption of a technology in a new 
research topic can be fostered by the creation of multidisciplinary 
workshops, by a scientific collaboration, by the inclusion of the 
technology in a commercial application, by the intuition of a 
researcher, and by many other events. The goal of TTF is 
therefore to focus on technology propagation events that follow to 
some extent previously observed patterns and forecast them with 
high enough precision for reliably suggesting new technologies to 
researchers. Naturally, the adoption of a technology does not 
hinge only upon the awareness of its existence, but it depends on a 
variety of technological, social, and political factors, whose 
analysis is out of the scope of this paper.  

 
Figure 1. The Technology-Topic Framework architecture. 

2.1 Input Knowledge Bases 
The Technology-Topic Framework (TTF) takes as input three 
knowledge bases: 

1) a dataset of research papers, described by means of their 
titles, abstracts, and keywords; 

2) a list of input technologies, associated to the relevant 
publications in the research paper dataset; 

3) an ontology of research areas, describing topics and their 
relationships. 

In the following, we will discuss the specific knowledge bases 
adopted for the study of 1,118 technologies in Semantic Web and 
Artificial Intelligence presented in this paper. We will also 
suggest some alternative data sources that could be used to 
implement TTF. 

Dataset. We used a dump of the Scopus database in the 1990-
2013 period, containing about 16 million papers, mainly in the 
field of Computer Science. Scopus is a very large and high-quality 
database of peer-reviewed literature. Each paper is described by 
title, abstract, and a set of keywords. Similar available datasets 
which contain titles and abstracts of scholarly publications are 
Microsoft Academic Graph6, Core7, OpenAIRE8, and CiteSeerX9. 

                                                                    
6 https://www.microsoft.com/en-us/research/project/microsoft-academic-graph 
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Technology list. In general it is possible to generate a set of 
technologies by i) extracting them from research papers by means 
of automatic methods [12, 13], ii) obtaining them from a manually 
curated software repository (e.g., the Resource Identification 
Initiative portal [14]), or iii) getting them from a general 
knowledge base (e.g., DBpedia [15]). Since the focus of this study 
is on the analysis of technologies and not on their identification, 
we created a manually curated set of technologies in the fields of 
Semantic Web and Artificial Intelligence. 

We first selected an initial set of about 2,000 technologies by 
running TechMiner [12] on a set of 3,000 papers in Semantic Web 
in order to find technologies that were originated or adopted by 
this field. We then manually cleaned and enriched the resulting 
dataset by discarding incorrect results and we also added 500 
other technologies sourced from Wikipedia pages listing Artificial 
Intelligence and Machine Learning algorithms and methods. 
Specifically, we focused on three categories of technologies: 
algorithms and approaches (e.g., Support Vector Machines, 
Particle Swarm Optimisation, Latent Semantic Analysis), formats 
(e.g., Rule Interchange Format, OWL 2, Systems Modeling 
Language), and tools and applications (e.g., OntoClean, Taverna, 
Annotea). We then used an Elasticsearch instance to map each 
technology to all the papers in the Scopus dump which contained 
the technology name in the title or in the abstract, as done in 
previous technology forecasting studies [16]. Finally, we selected 
a set of 1,118 technologies which appeared in more than 10 
publications.  

Topic ontology. As a reference topic ontology, we used the 
Computer Science Ontology (CSO), created to represent topics in 
the Rexplore system [3], which is currently being trialled by 
Springer Nature to classify proceedings in the field of Computer 
Science [17], such as the well-known LNCS series. CSO was 
created by applying the Klink-2 algorithm [18] to the 16 million 
publications of our Scopus-derived dataset [3]. The Klink-2 
algorithm combines semantic technologies, machine learning and 
knowledge from external sources (e.g., DBpedia, calls for papers, 
web pages) to automatically generate a fully populated ontology 
of research areas, which uses the Klink data model10. 

CSO is an extension of the BIBO ontology11 which in turn is 
built on top of SKOS. It includes three semantic relationships: 
relatedEquivalent, which indicates that two topics can be treated 
as equivalent for the purpose of exploring research data (e.g., 
Ontology Matching, Ontology Mapping), skos:broaderGeneric, 
which indicates that a topic is a sub-area of another one (e.g., 
Linked Data, Semantic Web), and contributesTo, which indicates 
that the research output of a topic contributes to another (e.g., 
Ontology Engineering, Semantic Web).  

2.2  Generation of Technology-Topic Matrices 

                                                                                                                 
7 https://core.ac.uk 
8 https://www.openaire.eu  
9 http://citeseerx.ist.psu.edu 
10 http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl 
11 http://purl.org/ontology/bibo 

The aim of this phase is to build for each year a matrix that 
characterises technologies in terms of their number of publications 
in different research topics. To this end, we first map each paper 
associated with at least one technology to a set of topics. 

The classic way to do so is to adopt keywords as proxy for 
research topics or to apply a probabilistic topic model. However, 
as extensively discussed in previous works [3, 17, 18], these 
solutions ignore the rich network of semantic relationships 
between research topics and are often unable to distinguish 
research areas from other terms that may be used to annotate 
publications. Therefore, we exploit the topic ontology by 
associating to each paper i) all the concepts in CSO whose label is 
found either in the title, the abstract or the keyword set, as well as 
ii) all skos:broaderGeneric and iii) all relatedEquivalent areas of 
the initial set of topics extracted from the scholarly dataset. For 
example, a publication associated with the term SPARQL will be 
tagged also with higher-level topics such as RDF, Linked Data, 
Semantic Web, World Wide Web, and Computer Science.  

Finally, for each technology, we count the number of papers 
for each topic in each year. The result is a sequence of matrices, 
one matrix for each year, in which rows represent technologies, 
columns represent topics, and cells contain the number of 
publications of a technology (e.g., Annotea) in a topic (e.g., 
Semantic Web) yielded in a given year. 

 

 
Figure 2. The technology-topic matrices. 

Naturally, this representation rests on the assumption that a 
research topic will not change radically in time. We recognise that 
this is not necessarily true, being possible for a research area to 
shift, as new paradigms and ideas emerges. It is however a very 
common assumption that is adopted by most system for exploring 
research [1, 2, 3] and tends to work well in most cases. 

In our implementation of TTF, the sequence of matrices is 
materialised as a json file that is fed to the forecasting module, 
which will use it for predicting which technology will emerge in 
which topic in the years to follow12. 

When analysing the spreading of technologies through the 
research landscape, it is useful to know the most frequent patterns. 

                                                                    
12 The technology-topic matrices and the TTF code are available at 
http://rexplore.kmi.open.ac.uk/TTF/downloads/code_and_data.zip.  
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To do so, we implemented a python script that extracts 
frequent technology spreading patterns from the matrices. Since 
the focus of this paper is on forecasting, we will only describe it 
briefly. 

We define a technology spreading pattern across a set of topics 
as an ordered tuple of n topics associated with the number of 
technologies that traversed the topics during a time interval. We 
say that topic T1 is subsequent to topic T2 in a pattern for a 
certain technology only if the technology that traversed T1 enters 
in T2 within a n years’ time window (n=5 in our implementation). 

Our method for extracting these patterns iterates over years 
and technologies, and counts the number of publications 
associated with the most common spreading patterns. Even if this 
technique simply finds the most common sequences of technology 
spreading patterns, without any assumption on the causality of the 
propagation links, it allows us to identify valuable and interesting 
patterns. For example, the patterns linking artificial intelligence 
and information retrieval to the fields of medical imaging and 
bioinformatics show the variety of technologies that were adopted 
by these fields over time, such as Support Vector Machine, Neural 
Networks, Finite-state Machine, Gesture Recognition 
applications, MapReduce, and so on. Some other patterns 
highlight how a variety of techniques first adopted for image 
analysis (e.g., AdaBoost, Boltzman machine, Conditional Random 
Fields, Neural Networks, Non-Negative Matrix Factorisation) 
were then used also for speech recognition (and vice versa). A full 
analysis of these patterns is not within the scope of this paper and 
will be presented in future works. 

2.3  Technology Propagation Forecasting 
The forecasting of technology propagation is treated as 𝑀separate 
classification problems, one for each topic of interest. Pseudocode 
1 highlights the steps of the process. For the 𝑚#$  topic, the 
sequence of technology-topic matrices is processed to extract 
examples to be fed to the machine learning models. Each example 
consists of a pair (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙), represented respectively in 
light blue and pink in Figure 3, where 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  is a vector 
characterising (in terms of topics) a technology in one or more 
years and 𝑙𝑎𝑏𝑒𝑙 is a boolean indicating whether the technology in 
the example will spread to the topic of interest in a window of 

future years equal to the 𝑙𝑜𝑜𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑 input parameter (set to 5 
by default). For each one of the M classification problems, the 
examples are organised into training sets and a test set including 
all examples after a certain year (defined by the 𝑠𝑝𝑙𝑖𝑡_𝑦𝑒𝑎𝑟 
parameter) for evaluating the precision, recall and F1 score of the 
classifiers.  

In order to produce suitable examples for one of the 𝑀 
classification problems, the sequence of technology-topic matrices 
(𝑇𝑇𝑀 for short) is scanned by year (within an input range) and by 
technology; each element 𝑡𝑡𝑚:,#	of 𝑇𝑇𝑀  locates precisely one 
and only one topic distribution about technology 𝑡  in year 𝑦 
within the sequence of technology-topic matrices. For each 
𝑡𝑡𝑚:,#	we compute its cumulative topic distribution 𝐶𝑇𝐷:,#: 

𝐶𝑇𝐷:,# = 𝑡𝑡𝑚?,#

:

?@A?BC#_:DEB

 

where 𝑡𝑡𝑚?,#, 𝐶𝑇𝐷:,# ∈ ℝH , first_year is the first year of the 
period under analysis (i.e. 1990), and 𝑁  is the number of 
components pertaining to a topic distribution, i.e. the number of 
topics considered in the problem statement (200 by default). This 
is in principle different from the number of classifications 
problems 𝑀. 

Given a topic 𝑚, an example is created from a 𝐶𝑇𝐷:,# if and 

only if the number of publications for that topic 𝐶𝑇𝐷:,#
J  is less 

than 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , a threshold accounting for the 
presence (absence) of a technology in a topic (set empirically to 5 
in this work). This condition ensures that the machine learning 
algorithms focus only on cases in which a technology has not yet 
propagated to topic 𝑚. 

Features vectors are obtained by concatenating the 𝐶𝑇𝐷 of the 
year 𝑦  with the 𝐶𝑇𝐷𝑠  of the previous years, according to the 
variable 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 (set to 2 by default): 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠:,# = 𝐶𝑇𝐷:OPQQRSETR,#, … , 𝐶𝑇𝐷:OV,#, 𝐶𝑇𝐷:,#  

Whenever a past year is missing or beyond the dataset 
boundaries, a zero-padding strategy is adopted by using 
𝐶𝑇𝐷WEXX?YZ = 	 0, 0, … , 0 ∈ ℝH. 

The 𝑙𝑎𝑏𝑒𝑙  related to an example built around 𝐶𝑇𝐷:,#  is 
computed by looking at future values of the technology for topic 

Figure 3. Construction of examples for topic m. 
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𝑚 within 𝐶𝑇𝐷:\V,#, … , 𝐶𝑇𝐷:\PQQRAQB]EBX,# : if at least one of the 
𝐶𝑇𝐷(J)	 is equal or greater than 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,  then 
the label associated to the example is positive, otherwise it is 
negative. Namely: 

𝑙𝑎𝑏𝑒𝑙:,# = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐶𝑇𝐷 ,#
J

:\PQQRAQB]EBX

^@:\V

 

where 	𝐶𝑇𝐷 ,#
J 	 is the 𝑚#$  component of 𝐶𝑇𝐷 ,# , i.e. the 

cumulative number of publications about technology 𝑡 associated 
to topic 𝑚 up to year 𝑦, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(	) is a function yielding 
𝑇𝑟𝑢𝑒  when the argument is greater than 
𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝐹𝑎𝑙𝑠𝑒  otherwise. In analogy to the 
window 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘,  the window 𝑙𝑜𝑜𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑  defines the 
maximum number of future years in which the approach checks 
whether a technology propagates to a topic. 

We use Random Forest as default since it yielded the best 
performance for this task, as it will be discussed in the evaluation. 
However, the current implementation of TTF allows us to choose 
between six different machine learning classifiers.  

An important point is that TTF cannot be applied 
indiscriminately to all research areas. Some of them will tend to 
adopt specific technologies and thus be more predictable, while 
others can be inherently more erratic. For this reason, in a realistic 
setting, it is necessary to evaluate the method on historical data 
and to return only the most reliable predictions, involving the 
subset of topics yielding the best results. 

 
Pseudocode 1. The pseudocode of the TTF forecasting step. 

3 RELATED WORK 
Technology forecasting is an established research area, which can 
be tracked all the way back to the 1930s and currently adopts a 
variety of modern data driven methods [19, 20]. It has 
traditionally focused on detecting emerging [16] or vacant [21] 
technologies and assessing their potential. Most approaches to 
technology forecasting aim at supporting human experts with 
comprehensive models representing technical, social and political 
information about technologies. In recent years, we have also 

witnessed the emergence of (semi-)automatic methods for 
identifying and assessing promising technologies [22, 23]. Since 
TTF is a fully automatic method, we will focus on this second 
category. 
Most of these approaches detect and assess technologies by 
analysing scientific literature [22] and patents [23]. For example, 
Kim et al. [21] used Latent Dirichlet Allocation for clustering 
patent documents and detecting promising technologies. 
Similarly, Jun et al. [24] forecasted vacant technologies by 
exploiting a K- medoids clustering method based on support 
vector clustering applied on patents. Chen et al. [23] presented an 
approach that integrates bibliometric and patent analysis into the 
logistic growth curve model for hydrogen energy and fuel cell 
technologies with the aim of identifying the optimal patent 
strategy for the fuel cell industry. Bengisu and Nekhili [16] used a 
scientometric approach to determine the number of publications 
and patents for some emerging technologies and assess their 
trends. Several analyses on the diffusion of technologies showed 
that their growth could be approximated by a S-shaped curve. 
which is usually modelled and predicted using Bass, Gompertz, 
Logistic, Richards and other statistical models [25]. 

However, as discussed in the introduction, these methods 
cannot be applied on the task addressed by this paper, since they 
focus on forecasting the growth of a technology, rather than 
predicting its adoption by researchers working on a specific 
research topic. In the latter case, the technology would not be 
associated with enough publications in the topic of interest to 
allow the application of statistical techniques. 

Characterising the research environment through scientific 
artefacts, epistemological concepts (e.g., claims, hypothesis, 
motivation, background, experiment), and other research concepts 
is becoming increasingly important for analysing research and 
ensuring reproducibility. For example, The Resource 
Identification Initiative portal [14] is a manually curated archive 
which collects and assigns IDs to a number of scientific objects, 
including applications, systems and prototypes. Bio2RDF [6] is an 
initiative which provides a large network of Linked Data for the 
Life Sciences and includes information about biological 
compounds, drugs and genes. Taverna [7] is a workflow 
management system for designing, representing and executing 
scientific workflows. In addition, Linked Data repositories, such 
as Scholarly.org [5], and projects fostering the Open Science 
movement, such as OpenAIRE [26], provide a variety of data 
about scientific papers, authors, venues, and so on. Another way 
to express scientific knowledge is by means of nano-publications 
[8, 9] which are units of information that contain scientific claims 
that can be uniquely identified and attributed to their authors. 
Similarly, micro-publications [10] usually serialised in the Web 
Ontology Language, represent scientific claims and how they 
support and/or challenge one another. The FORCE 11 Software 
citation group 13  is also contributing to this endeavour by 
producing a set of principles to foster the traceability of software 
in research. These initiatives are complementary to TTF: they can 
potentially provide input information to TTF and exploit its output 
to better characterise the flow of knowledge in research.  

TTF characterises technologies with a distribution of research 
topics from an ontology. Representing entities, such as authors, 
venues, communities and citations according to their associated 
                                                                    
13 https://www.force11.org/group/software-citation-working-group 

Function TTF_forecast (ttm, year_range, split_year, lookback, lookforward, topics)

for topic in topics do

features, labels � [ ], [ ];
for year in year_range do

for technology in ttm[year] do

examplefeatures  � [ctd(ttm[year � lookback][technology]), . . . ,
. . . , ctd(ttm[year][technology])];

examplelabel  � threshold(ctd(ttm[year + 1][technology]), . . .
. . . , ctd(ttm[year + lookforward][technology]));

if example is valid then

features.append(examplefeatures);
labels.append(examplelabel);

end

end

end

xtrain, xtest, ytrain, ytest  � split(features, labels, split_year);
if enough examples then

train(xtrain, ytrain);
predictions = predict(xtest);
eval_metrics = evaluate(predictions, ytest);

end

end

return predictions, eval_metrics;
end

1
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topic has proved to be very useful for generating analytics on 
research. For example, the Author-Conference-Topic (ACT) 
model [1] uses Latent Dirichlet Allocation and treats authors as 
probability distributions over topics, conferences and journals. 
Zhao et al. [27] proposed a topic-oriented community detection 
approach which combines both topic clustering and link analysis. 
Similarly, Racherla and Hu [28] identified topic-oriented 
communities by exploiting a topic similarity matrix and assigning 
a predefined research topic to each document and author. 
Differently from these approaches, we characterise topics through 
a formal ontology since this solution allows us to generate a 
structured set of unambiguous research topics linked by semantic 
relationships [18]. 

4 EVALUATION 
We evaluated TTF on 1,118 technologies and 173 topics in the 
field of Computer Science during the 1990-2013 period14. The 
evaluation had two main purposes. First, to confirm the initial 
hypothesis, i.e., that it is possible to forecast technology 
propagation, at least for a certain subset of technologies and 
topics, by learning how technologies spread in the past. Secondly, 
to compare the performance of several machine learning 
algorithms on this task. 

4.1 Experimental Setup 
We selected as training set examples in the 1990-2004 period and 
as test set examples in the 2005-2008 period. We chose these 
intervals as they allowed us to label the examples in the test set 
using a 𝑙𝑜𝑜𝑘𝑓𝑜𝑟𝑤𝑎𝑟𝑑 window of five years (2009-2013). We set 
the 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  threshold to 5 and 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘  to 2 
years. Since we wanted to focus on predicting relatively new 
technologies, we considered only examples about technologies 
which existed for no more than 5 years and in which a technology 
has two or fewer publications in a topic. We simulated a realistic 
situation by assuming 2005 as current year and not using any 
information successive to that year to label the examples in the 
training set.  

We selected the 173 topics which were associated with at least 
30 positive examples in both the training and the test sets in the 
period under analysis and trained a classifier for each of them. 
Each topic classifier was trained on average on 5,136 ± 240 
examples (for a total of 888,633 examples) and was evaluated on 
679 ± 90 examples (for a total of 117,516 examples).  

As discussed previously, it is not possible to apply to this task 
the standard models for forecasting the potential of a technology. 
We thus tested six machine learning algorithms on the 
technology-topic model that characterise the propagation patterns: 
Logistic Regression, Random Forest, Decision Tree, Support 
Vector Machine, Neural Network, and Gradient Boosting. The 
tuning of hyper-parameters used in each single model was 
performed by a twofold cross-validation over the training set as 
supported by the scikit-learn library15. 

                                                                    
14 The evaluation data are available at http://rexplore.kmi.open.ac.uk/TTF 
15 http://scikit-learn.org 

We measured the performance of the classifiers by computing 
precision, recall and F1 score. The overall performance over a 
number of topics was determined by computing the micro-average 
of these metrics. The significance of the results on the categorical 
variables precision and recall was assessed by using the chi-
square test for tables of cross-categorised frequency data rxc (with 
Yates’ correction for 2x2 tables), or, when more appropriate the 
McNemar’s test for correlated proportions (recall). The existence 
of statistical differences among n F1 not-independent distributions 
was explored with non-parametric tests, Wilcoxon’s for n=2 and 
Friedman’s for n>2. Similarities in the behaviour of two F1 
distributions were investigated using the within-subject ANOVA 
to compute the intra-class correlation coefficient ICC (0-1), which 
measures the item reliability, and the h2 coefficient (0-1), also 
known as Cronbach’s coefficient, which measures the tendency of 
the correlated members of two distributions to have approximately 
the same values. The closer ICC and h2 to 1, the higher the 
similarity. 

4.2 Results 
Figure 4 and Figure 5 show respectively the precision and the 
recall obtained by the six algorithms on the first n topics, ordered 
by the number of positive labels in the test set. The classifiers 
perform better on the topics associated to a higher number of 
technology propagation events, so the performance decrease with 
the number of topics.  

 

 

Figure 4. Average precision of the six machine learning 
approaches on the first n topics. 

The first part of the analysis considered the ensemble of the six 
algorithms, arranging in two 6x2 contingency tables (5 degrees of 
freedom) the values of precision and recall. The chi-square test 
evidenced a highly significant difference among the 6 approaches 
both for precision and recall (p<0.0001). We then zoomed the 
analysis on the three top performers: Random Forest, Decision 
Tree, and Gradient Boosting. Random Forest yielded the best 
result in terms of precision. For the first 20 topics, its precision 
was over 74.4%, significantly higher (p<0.0001) than the value of 
69.4% obtained with Decision Tree and 67.2% with Gradient 
Boosting. Also, considering the first 100 topics, Random Forest 
scored best, with 70.2% versus 62.9% of Decision Tree and 
64.4% of Gradient Boosting (p<0.0001). Conversely, Gradient 
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Boosting performed best in terms of recall. For the first 20 topics, 
it scored 47.2%, significantly higher than the value of 44.7% for 
Random Forest (p=0.04) and the value of 42.5% for Decision 
Tree (p<0.0001). For the first 100 topics, the Gradient Boosting 
recall was 35.1%, again significantly higher (p<0.0001) than 32% 
for Random Forest and 31.5% for Decision Tree.  

 

Figure 5. Average recall of the six machine learning 
approaches on the first n topics. 
 

The F1 distributions of the six algorithms resulted significantly 
different when compared with Friedman’s test for multiple 
correlated distributions (p<0.0001). Zooming again on the three 
top performers, also based on the results obtained for precision 
and recall, we carried out three one-to-one direct comparisons: 
Random Forest vs Gradient Boosting, Random Forest vs Decision 
Tree and Gradient Boosting vs Decision Tree. For the first 
comparison, we obtained ICC=1 and h2=0.99; the excellent 
agreement between the two algorithms was confirmed by 
Wilcoxon’s test (p=0.11, no significant differences). Decision 
Tree was instead significantly different from both Random Forest 
and Gradient Boosting (p=0.003), with lower values of ICC and 
h2 (ICC= 0.9 and 0.86 respectively and h2=0.94 and 0.92).  

4.3 Discussion 
The evaluation confirms our initial hypothesis: it is indeed 
possible to learn from historical spreading patterns and forecast 
technology propagation, at least for the set of topics that are more 
involved in technology propagation events. In particular, the good 
value of precision indicates we may be able to safely produce 
sound suggestions to researchers in those fields. The recall seems 
to confirm the intuition that is not possible to forecast all 
propagation events only on the basis of previous propagation 
patterns.  

Our study suggests that Random Forest performs best in term 
of precision, while Gradient Boosting offers an advantage in terms 
of recall. It is possible that a higher number of examples might 
have favoured the neural network approach or other similar 
approaches that need very large example sets. However, currently 
it is still a challenge to generate large datasets of technology data. 
Since, the main aim of TTF is to forecast a set of propagations 
with high precision, we adopted Random Forest as default. 

Table 1 shows the best research areas in term of F1 score when 
adopting Random Forest. Naturally, TTF tends to work best on 
topics associated with a large set of publications and technologies. 
However, the performance also depends on the inherent nature of 
topics and their behaviour in term of adopted technologies. For 
example, research areas about computer networks, sensors, and 
peer-to-peer systems perform well since they are usually 
associated with a coherent set of technologies. Similarly, research 
areas associated to the image processing field also yield good 
results, receiving a constant flow of approaches and formats to 
elaborate and describe images.  
 

Table 1. Performance of Random Forest on the first 24 topics, 
with at least 50 positive labels, ordered by F1 score. 

 
Table 2. Example of topics correctly forecasted by TTF. 

 
 
Table 2 shows, as an example, seven technologies taken in 
consideration in the 2005-2008 period and the set of topics where 
they did propagate after a few years, as correctly forecasted by 
TTF. For example, TTF correctly suggested that the novel (at that 
time) Extreme Learning Machine, which is a feedforward neural 
network with a single layer of hidden nodes, was deemed to be 
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applied to topics such as speech recognition, computer vision, and 
robotics. Similarly, it was able to forecast that Latent Dirichlet 
Allocation was going to be adopted by the Semantic Web area, as 
well as by communities working on data reduction, image 
compression, data security, and so on. TTF also anticipated the 
strong propagation of Semantic Web formats such as Web 
Ontology Language, SKOS and Semantic Web Rule Language to 
several research areas, such as bioinformatics, social network, 
electronic commerce, e-learning, and so on. 

5 CONCLUSIONS 
In this paper, we presented the Technology-Topic Framework, a 
novel approach that characterises technologies in terms of relevant 
research topics over time and forecasts technology propagation 
across research areas. An implementation of the system was 
evaluated on a set of 1,118 technologies in the fields of Semantic 
Web and Artificial Intelligence, yielding a precision of 74.4% and 
a recall of 47.7% for the first 20 research areas when using 
Random Forest. These results confirm that is possible to use 
historical propagation patterns for forecasting technology 
spreading. 

Nonetheless, TTF presents some limitations that we intend to 
address in future works. First, it trains each classifier sequentially, 
and therefore it is not very scalable. This issue could be solved by 
parallelising the training phase or by adopting multi-class/multi-
label classification. In the second instance, the current method for 
associating technologies to research papers is purely syntactic. 
While this solution has been used by several technology 
forecasting systems [16], we think that a semantic characterisation 
of research technologies could possibly yield better results. 
Therefore, we intend to create an ontology of technologies and 
exploit it for mapping technologies to papers. In the third instance, 
TTF only focus on technology spreading patterns and does not 
take in account other potentially significant factors, such as the 
persons championing a technology, the cost of adoption, the 
presence of usable implementations, and the socio-political 
context. We plan to enrich the forecasting model by considering 
text generated features and possibly derive additional features 
from external knowledge bases and social media. The aim is to 
combine all these knowledge sources to forecast technology 
propagation events even when they do not match a previously 
observed pattern. We also intend to expand the scope of our work, 
by including in the analysis a more varied set of research fields, 
such as Biology, Social Science and Engineering. Finally, we 
intend to create a web application enabling researchers to explore 
technology patterns and to receive tailored suggestions of 
technologies that may support their research work. 
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