
Open Research Online
The Open University’s repository of research publications
and other research outputs

Building scalable digital library ingestion pipelines using
microservices
Conference or Workshop Item
How to cite:

Cancellieri, Matteo; Pontika, Nancy; Pearce, Samuel; Anastasiou, Lucas and Knoth, Petr (2017). Building
scalable digital library ingestion pipelines using microservices. In: MSTR 2017: 11th International Conference on
Metadata and Semantics Research, 28 Nov - 1 Dec 2017, Tallinn, Estonia.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.mtsr-conf.org/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/131316998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.mtsr-conf.org/
http://oro.open.ac.uk/policies.html


Building scalable digital library ingestion
pipelines using microservices

Matteo Cancellieri (0000-0002-9558-9772), Nancy Pontika
(000-0002-2091-0402), Samuel Pearce (0000-0001-5616-7000), Lucas Anastasiou

(0000-0002-1587-5104), and Petr Knoth (0000-0003-1161-7359)

CORE, The Open University, Milton Kenyes, MK7 6AA, UK,
theteam@core.ac.uk,

WWW home page: https://core.ac.uk/

Abstract. CORE, a harvesting service offering access to millions of
open access research papers from around the world, has shifted its har-
vesting process from following a monolithic approach to the adoption
of a microservices infrastructure. In this paper, we explain how we re-
arranged and re-scheduled our old ingestion pipeline, present CORE’s
move to managing microservices and outline the tools we use in a new
and optimised ingestion system. In addition, we discuss the inefficiencies
of our old harvesting process, the advantages, and challenges of our new
ingestion system and our future plans. We conclude that via the adop-
tion of microservices architecture we managed to achieve a scalable and
distributed system that would assist with CORE’s future performance
and evolution.
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1 Introduction

Aggregators are being used in many aspects of everyday life, from newspapers to
traveling websites and from movies’ reviews to social networking services. In the
constantly growing scholarly communications environment, plenty of aggregators
were developed due to the large amount of scientific knowledge published each
year and the scholars’ need to discover and extract the knowledge included in
them. Moreover, the recent shift of sciences to interdisciplinarity created the
need for a seamless tool that would make the retrieval of scientific literature
from various subject fields possible.

Aggregators can collect, enrich and clean metadata to harmonise their access,
allow a uniform search across a variety of platforms increasing the content’s
visibility, and bring to the end user an advanced discovering experience, by
showcasing new trends in sciences and growth [1]. Due to their role, aggregators
must be capable of processing large amounts of data and be developed in a
scalable and sustainable infrastructure over time.



The transition process to microservices is described via a real life scenario, the
CORE project, a global harvesting service aggregating millions of open access
research papers. In the past, CORE’s harvesting infrastructure was designed in a
rather monolithic approach. Even though the scaling up and the continuation of
its use was possible, the architecture suffered from complexity and maintenance
issues, especially when facing a larger and extended amount of data, and had
strong interdependent components that challenged its sustainability. Being in a
need to restructure the current system and make it easier to scale, we introduced
a microservices architecture, which is defined as small, autonomous components
in a larger infrastructure that harmoniously work together [2]. This technology
is lately widely used due to the advancement of the available software and re-
sources. A benefit of the microservices is that programmers are able to efficiently
focus on the implementation of the components performed in a single brief task.

In this paper we describe the evolution of a monolithic harvesting infrastruc-
ture to the creation of a microservices oriented architecture. Although migrating
from a monolithic architecture to a microservices one is already covered in the
literature, we believe that our contribution is worth to be described; our specific
use case is applied to a combination of metadata harvesting, full text collection,
crawling and enrichments of research outputs. The main contributions of this
paper are outlined as follows:

– Define the requirements for designing a scalable aggregation infrastructure.
– Guided by the requirements, we propose a design based on microservices

that can be applied to any aggregation and digital library infrastructure.
– Describe our experience migrating from a monolithic architecture to a mi-

croservices orientend one, in a real life scenario of the CORE project.

1.1 Related work

The design of an aggregation system is usually conducted from square one, due
to the variety of the application scenario per each project (or use case), which
is defined both by the availability of resources and the flexibility of the distri-
bution [3]. So far a number of architectural solutions have been released; some
of them focusing on specific use cases, while others aim to address and solve the
lack of reusable infrastructures. The D-NET component infrastructure, which
is developed and implemented by the OpenAIRE project [4], addresses similar
complexities to the ones we are encountering in our harvesting process and their
proposed solution is very similar to CORE’s infrastructure. The harvesting is
accomplished using the Open Archives Initiative Metadata Harvesting Proto-
col (OAI-PMH) [5] and the harvested metadata are converted into XML files,
creating a graph model information structure. Nonetheless, OpenAIRE’s aim is
to connect publications, data set repositories and Current Research Information
Systems (CRIS) [6], therefore its main interest is to collect and enrich metadata
only. On the other hand, CORE’s focus lies both in crawling metadata pages
and discovering the full text.

Another aggregation infrastructure has been implemented by the SHARE
project [7]. Although the project focuses more on aggregating information about



research activity metadata, its pipeline and the technologies used have main
similarities with the processes we are describing in this paper. For example, the
SHARE infrastructure uses RabbitMQ [8] as a messaging system and a Celery
scheduler[9], which arranges how the workers will be collecting, normalising and
making the content searchable via the ElasticSearch [10] index. Nonetheless,
SHARE’s architecture does not extend to providing tools for crawling and en-
riching full text documents as well. The BASE project [11], is another metadata
aggregator facilitating search via repositories. The harvesting infrastructure im-
plemented by BASE is similar to the aforementioned aggregation infrastructures;
data is harvested via the OAI-PMH endpoint and the metadata are exposed and
made searchable through the SOLR [12] index.

Commercial solutions, such as Google Scholar and Microsoft Academic Graph,
use search engine crawl facilities to recognise full text and index it. Nonetheless,
both of them limit user access at the granularity level with no access to raw
data[13]. CiteSeerX [14], a metadata and full text harvesting service, defines
three components of a scalable system that is capable of crawling citations from
full text; harvester, document archive and search interface. With this system,
the issue of scalability is approached horizontally, mirroring the servers and the
locations that scale up the system.

All the aforementioned projects describe scalable architectures, but, there is
no specific reference explaining a transition from a monolithic architecture to
a microservices approach. In addition, CORE’s case is unique, because it com-
bines a) metadata harvesting, b) full text crawling and c) enrichments in the
same infrastructure while the other projects architectures are mostly oriented on
aggregating metadata and enriching metadata. Furthermore, no previous work
refers to scalability from the aggregation point of view of harvesting and enrich-
ing the content; the aforementioned literature describes the scalability approach
following the front end availability only.

1.2 Real-life scenario: CORE

CORE harvests open access (OA) journals and repositories, institutional and
disciplinary, from all over the world and provides seamless access to millions
of OA research papers. (OA is defined as content offered digital, online, free of
charge and free of most copyright restrictions [15]). While the OA movement
is gradually growing, the amount of available scientific information follows this
growth. CORE attempts to address this flourishing availability of OA content by
aggregating large volumes of OA research papers and offers them via its search
engine and other services, e.g. API and Dataset. As of March 2017, CORE
harvested content from 6,000 OA journals and 2,437 repositories and offered
access to 70 million metadata records and over 6 million full text PDFs. In
addition, it provides its content via three access levels [13] and demonstrates the
granulated structure of the raw data, the scientific papers and the collections as
a whole. By taking into consideration the various research stakeholders who can
benefit from CORE, the service offers 1) raw data access, 2) transactional and
3) analytical information access, addressing the needs of 1) text miners, digital



libraries, developers, 2) researchers, students, general public and 3) funders and
repository managers, respectively.

To collect its metadata, CORE uses the OAI-PMH, a widely supported proto-
col for collecting and exposing metadata records. In most cases, these metadata
are mostly formatted using the Dublin Core schema [16]. In addition, CORE
expands its use by supporting other standards as well, such as the Metadata
Encoding and Transmission Standard [17], the RIOXX Metadata Application
Profile [18], and the OpenAIRE Guidelines for Literature Repositories [4].

CORE is not merely a metadata aggregation service, but it expands also to
aggregating and caching the full text. In an effort to solve the lack of an existing
standard for harvesting a paper’s full text, CORE has established a methodology
and follows various procedures: a) recognising the full-text links in the metadata
record, b) performing a crawling technique from an online resource to derive to
the link of a specific paper, c) composing the full-text link by using recognised
patterns, which are obtained by analysing the structure of our data providers
and d) following other custom built approaches, whereby the machine readable
structures of specific content providers are being examined.

Until recently, CORE was operating in a rather monolithic approach. Even
though it was in position to process simultaneously several repositories, the
harvesting pipeline was centralised around each repository. All these years CORE
has progressed and custom solutions were applied to: a) improve the harvesting
process and growth of our collection, b) address technology advancement issues,
such as repository software updates and the establishment of new metadata
profiles like RIOXX, and c) assist with the integration of new and emerging
services. The accumulation of all these lines of code and the unavoidable high
code coupling, would often prove to be difficult to manage, require an extra effort
of constant fixes and affect the capabilities and strengths of our performance.
As a result, we experienced challenges in efficiently managing all the existing
services and fear that the quality of our services would decline. Availability was
also an issue; the services designed for public use were strongly coupled to the
harvesting infrastructure, thus an overload of the system while harvesting would
impact directly the overall availability of the service.

1.3 Ingestion pipeline

CORE’s ingestion pipeline currently consists of five tasks, but is in principle
extensible to more tasks. The process can be described as a pipeline, a concept
first introduced in computer science by the UNIX operating system and then
extended to software architectures models as for example in Doberkat [19], and
on a context similar to our use case by Abrams et al. [20]. Each task performs a
certain action, while the result of each one of them creates the corpus of a full
record, including of metadata and full text, available in the CORE collection
(Figure 1).

1. Metadata Download



(a) Extraction: The metadata of a journal or repository, institutional or
disciplinary, (thereafter called only ”repository”) are downloaded and
extracted in the CORE database for local storage.

(b) Cleaning: The data is being processed for cleaning, such as performing
an author name normalisation. The data is also standardised and nor-
malised across the various supported standards.

2. Full-text download: CORE downloads and stores a cached version of the
downloaded full-text in its database.

3. Information extraction
(a) Text extraction: To enable full text searching, the downloaded PDFs are

analysed and the full text is extracted into a text file.
(b) Language detection: Performed to offer a filtering option for advanced

searches.
(c) Citation extraction: CORE cross-matches whether the referenced paper

is available and provided by our service. If the paper is available, then
the two papers are linked. If it is not, CORE receives the referenced
papers Digital Object Identifier (DOI) via the CrossRef service [21].

4. Enrichment
(a) Duplicates detection: CORE detects duplicate records and marks these

files in its database.
(b) Related Content Identification: With the use of information retrieval

procedures, CORE matches the semantically related papers. (CORE’s
recommender, a plug-in for repositories and open journal systems, is
highly dependent on this task.)

5. Indexing: This is the last step in the ingestion pipeline, which empowers the
search functionality, while it supports the use of the CORE API and the
CORE Dataset.

Fig. 1. CORE’s ingestion pipeline.

2 Scalable infrastructure requirements

Abstracting from our real life use case, we have defined a set of requirements that
are generic and can be used in any aggregation or digital library scenario. Taking
into consideration the features of the CiteSeerX [14] architecture, we built our
requirements on a generic distributed system and we extended them focusing
on systems that follow specific workflows and need to interact with a number of
external services. In the initial phase we developed a set of requirements that
the infrastructure had to support:



– Easy to maintain: The solution should be easy to manage and the code
should be accessible for maintenance, fixes, and improvements.

– High levels of automatisation: We should be able to achieve a completely
automated harvesting process allowing also a manual interaction.

– Fail fast: Items in the pipeline should be validated immediately after a task
is performed, instead of having only one and final validation at the end of
the pipeline. This has the benefit of recognising issues early in the process
and programmers are notified earlier of possible failures and issues.

– Easy to troubleshoot: Possible bugs in the code should be easily discerned.
– Distributed and scalable: The addition of new nodes in the system should

allow scalability, be transparent and replicable.
– No single point of failure: A single crash should not affect the whole

ingestion pipeline, but tasks should work independently.
– High availability: The infrastructure containing services designed for pub-

lic use should not be attached to the harvesting pipeline and be invariably
available.

– Recoverable: When a harvesting task stops, either manually or due to a
failure, the system should be able to recover and resume the task without
intervening manually.

2.1 The CORE HARvesting System (CHARS)

The design of the architecture is based on the following main components (Figure
2):

1. Worker (Wi): an independent and standalone application capable to execute
a specific task and communicate via a queue;

2. Task Coordinator (scheduler): it becomes active when a task starts or finishes
and coordinates the task workflow in the system;

3. Queue Handling System (Qn): a messaging system that assists with the
communication between the components;

4. Cron Scheduler: lines up tasks periodically;
5. Harvesting endpoint (supervisor): an API endpoint that facilitates the sub-

mission of task in the system and therefore works as an entry point for new
harvesting requests.

All Workers (1) share the same lifecycle after receiving a task (Table 1). The
lifecycle has been designed to be simple, generic and easy to troubleshoot.

The Event Scheduler (2), decides how the tasks should be moving and chooses
the next task to run in the ingestion pipeline. If there are enough resources
available in the system, i.e. idle Workers, the Scheduler adds new harvesting
tasks based on the following policy: first, is adds repositories in the queue with
metadata records older than a certain time window and, second, includes new
repositories if no other priorities are being met. With this policy, our goal is to
efficiently use all the available resources without overloading our system. Since



Fig. 2. CHARS architecture

Item Description

0 Notify start

1 Collect data to perform task

2 Perform task

3 Finalise execution and collect metrics

4 Assess results (success or failure)

5 Notify end
Table 1. Worker lifecycle

our aim is to keep the content in our collection as fresh as possible, we periodi-
cally re-harvest repositories and add new ones without them interfering with the
existing procedures.

The communication infrastructure is accomplished via a publish/subscribe
pattern [22]. The Workers with the ability to perform a metadata download task
express interest in the concept of metadata download and, when a producer
submits a message, a Worker will be notified and act on it. A message is an
item that is transmitted between components, such as a task definition or a
start/finish event. When a CORE staff member wishes to harvest a repository,
s/he needs to send a message to the harvesting endpoint by clicking a button in
the administrator console. The task will then be created and submitted to the
queue system.



2.2 Implementation of CHARS

In deciding the software and tools to use in the implementation of CHARS, we
investigated software that fulfilled the following two requirements; out-of-the box
solution and ease of integration with our system.

We implemented CHARS following an iterative approach; in the first iter-
ation, we introduced the new architecture and attempted to limit the changes
to our existing codebase. During the second iteration, we focused on modifying
the harvesting pipeline and moved some tasks, such as information extraction,
enrichment and indexing, from a repository level to an article level. With this
change we managed to increase the depth of parallelism in our system. For the
third iteration, we looked into detail at the mechanics of each task and investi-
gated possible inefficiencies.

The backbone of our infrastructure is written in Java [23] and the Spring
Framework [24]; nonetheless, the system equally supports a variety of different
technologies for implementing workers. The persistent state of the system was
already implemented using MySQL [25] and ElasticSearch and has been migrated
as it is from the old infrastructure, since it was already meeting our requirements.

The infrastructure is built and managed through the SupervisorD software
[26], which is able to restart the workers when they fail and allows us to define
event based actions. SupervisorD uses a static configuration per server, meaning
that we are able to define the amount of workers running on a single server based
on its hardware specifications. As an alternative to SupervisorD, we explored the
possibility of adopting container-based microservices using Docker and Kuber-
netes [27]. A container-based approach would allow a reusable microservices im-
plementation with a dynamic and fine-grained management of the workers based
on the available resources. One disadvantage, though, is that their configuration
and usage would have increased the level of complexity of our infrastructure.
In the end, we decided to postpone this approach and adopt a container-based
microservices approach in a future iteration of the CHARS infrastructure.

2.3 Queuing system

For the queue message system, we explored two solutions, RabbitMQ [8] and
Kafka [28]. Even though the latter has superior performance in terms of mes-
sage rate[29], nonetheless it offers less out-of-the-box functionalities. Although
Kafka performed better in the message rate, our use case did not need a system
that could process an extremely high number, for example millions, of messages
per second. Therefore, we decided to adopt RabbitMQ, which was easier than
Kafka to configure and could be integrated with our existing infrastructure and
code base. An additional functionality of RabbitMQ was the out-of-the-box sup-
port for message priorities. Prioritising in harvesting is necessary, since we often
receive requests from our data providers to re-harvest repository collections in
order to capture record updates, metadata and full text. Similarly, while fixing
and resolving technical harvesting issues, we need to re-harvest a repository more
than once, and we need to skip the existing queue.



Year Metadata Full text

2015 Apr 23,006,000 2,091,334

2016 (Jan - Dec) 66,137,655 4,626,215

2017 (Jan - Mar) 68,387,703 5,852,274
Table 2. CORE’s metadata and full text volume

3 Discussion

CORE has been using the new microservices architecture for the past year.
During that time, our collection doubled; we now have 70 million metadata
records and 6 million full text PDFs (Table 2). Although we cannot correlate the
content increase with the introduction of the new microservices infrastructure,
nonetheless we realised that we achieved a reduction in the consumption of staff
time with regards to maintenance tasks, which favored the uptake of new duties.

One of the lessons we have learnt is that, by dividing the monolithic code
into small components with specific operations, we were able to maintain and
troubleshoot our system easier and more efficiently comparing to the past. In
addition, when an issue arises, programmers can focus on small problematic
units of code instead of going through the whole monolithic code base. Another
improvement in the system’s efficiency relates to recoverability. CORE harvests
some large repositories and a task can run for a long time, even days for large data
sets. In our new infrastructure cases of failure or re-deployment of an improved
version of the code are treated differently; the task is not lost and it automatically
resumes without any manual intervention.

By moving the monolithic harvesting approach to a microservices applica-
tion, we were able to focus on the quality and performance of each single task
establishing valid measures, such as success or failure. For example, in our earlier
infrastructure it was problematic to focus on issues, such as delays and quality
assurance control, whereas, currently, we are in position to decide whether we
should direct more effort and resources in specific tasks.

The introduction of microservices allowed us to work in a more scalable
and distributed environment. Scaling up in the old infrastructure required the
addition of new resources or a new server. With the new architecture we are able
to shuffle our services efficiently within the existing hardware infrastructure and
transform it according to our needs.

While introducing microservices in CORE, we also separated our harvesting
infrastructure from our publicly available services. Right now our public services
are connected to the harvesting back-end only through our ElasticSearch index.
The advantages of this distinction, between our front-end and back-end services,
resulted in an increase in the amount of uptime of our services.

Despite the aforementioned advantages, new challenges have emerged. The
first relates to the difficulty of estimating the optimal number of workers in our
system to efficiently run. While the worker allocation is still largely done using
a trial and error approach, we are investigating more sophisticated approaches
based on formal models of distributed computation, such as Petri Nets [30].



For example, we are looking into formally modeling our system to find valid
heuristics for dynamically allocating or launching workers to optimise the usage
of our resources.

The designed architecture has been built with an evolutionary approach
slowly removing the dependencies from the monolithic system. This introduced
a complexity in the production of a formal evaluation framework of our archi-
tecture, one that would not require plenty of time and effort. However, with
building the aforementioned formal model we will be also able to validate the
quality of our approach in an experimental way.

This architecture highlighted an issue of cost-effective resource allocation in
our system. Our previous architecture was designed for a monolothic approach,
where servers were allocated in full for the harvesting process. With the introduc-
tion microservices we were able to fine-grain resource allocation and implement
different ways of collecting hardware resources, such as using cloud services for
storage and computational power.

With regards to CORE’s internal infrastructure, we need to improve the
overall performance of our system and, thus, we are now collecting metrics;
CPU, memory and network usage, freshness of content and quality of full-text
crawling. These metrics will help us define new performance key indicators and
improve our services. Moreover, we are exploring ways of optimising the use of the
resources in an highly efficient way. Even though, our new infrastructure enabled
us to scale up faster than expected, nonetheless we are now facing other issues,
such as error detection in the harvesting process, full text crawling efficiency and
deduplication improvements. All these are currently highlighted in our system
and need to be addressed in future work.

4 Conclusion

In this paper we outlined the requirements of a scalable aggregation system and
by following them we designed a microservices architecture that could be applied
to any aggregation service or digital library. We presented how CORE’s harvest-
ing process migrated from a monolithic to a microservices approach, explained
the harvesting workflow, and the technology used in the real life implementation
of the architecture. Finally, we discussed the advantages and disadvantages of
our new infrastructure and presented future work.
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