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Abstract 

Epidermal layer is crucial for organism’s survival as its ability to close the wound 

is essential for tissue recovery. Planarian epidermis enables animal recovery and survival 

after virtually any body part amputation. Nevertheless, neither the epidermis nor the 

mechanisms endowing such a remarkable wound healing capacity is described in detail in 

planarians. Our work introduces live imaging methodology, which allows following 

epidermal cells and their response to tissue damage or tissue loss for extended time (hours) 

and in high resolution. Using our methods, we followed planarian cells live for the first 

time and in conjunction with electron microscopy analysis we described epidermal cell 

behaviors during tissue maintenance, response to tissue damage and tissue loss. Our data 

provides comprehensive description of cellular wound response, wound closure as well as 

preexisting tissue contribution to tissue restoration. In addition, we performed epidermal 

expression profile analysis to identify the candidate list of epidermally expressed genes to 

depict the machinery endowing these epidermal cell behaviors. In the pilot functional 

(RNAi) screen an array of transcription factors with a tissue maintenance phenotypes were 

identified. Our work established tools for subsequent functional studies of other epidermal 

expressed genes and paved the way to dissect the mechanisms of the epidermis’ 

maintenance and efficient wound healing in planarians. 





v 

 

 

 

 

 

 

 

Joriui ir Agnei, Brangiausiem mano





vii 

Acknowledgements 

It is ten years since I first entered into a research lab. Five laboratories, four 

countries and two continents later I am getting ready to finish my studies. It has been a 

journey through which I was privileged to meet countless inspiring people. Although I will 

not be able to mention them all, I want to express my gratitude to those who made the most 

profound influence to my recent personal and professional development. I want to start by 

thanking my mentor Alejandro Sánchez Alvarado. Meeting him allowed me to discover 

what is the most important in science – the great joy of exploration. I am thankful to 

Alejandro for opportunity to join the lab I loved as well as for helping me to find courage 

to overcome challenges I did not think I was capable to solve. 

I am grateful to my wife, Agne, with whom I shared this journey from the very 

beginning. No achievement would mean much if I could not share it with her. She is the 

best partner and friend and no journey is too long if we travel together. I thank my son 

Joris for all the beautiful emotions he brought to my life. 

I am thankful to Sarah Elliott, Kim Tu, Erin Davies, Alessandro Rossi, Li-Chun 

Chen, Kai Lei and Carrie Adler for all the emotional support they provided. I also want to 

thank my parents, family and friends I left back in Lithuania. Not being able to see each 

other was a sacrifice, but they supported me throughout the way. I also want to thank all of 

my new friends in Kansas City. They made this city feel like home and I cherish moments 

we shared together. 

I want to thank my thesis committee members Robb Krumlauf, Matt Gibson and 

Tatjana Piotrowski, who guided me throughout the project. I want to thank all past and 

current colleagues for opportunity to learn from them. Thank you, Sarah Elliott, An Zeng, 

Hanh Vu, Christopher Arnold, Alessandro Rossi, Longhua Guo, Li-Chun Cheng, Carrie 

Adler, Stephanie Nowotarski, Beth Duncan, Kim Tu, Erin Davies, Kai Lei, Shasha Zhang, 

Carlos Guerrero, Eric Ross, Wei Wang and others for their insight at my lab meetings. 

I am thanking Leanne Wiedemann for organizing my graduate studies, Stephanie 

Nowotarski, Sarah Elliott, Kim Tu, Erin Davies, Hugo Parker, Nishal Patel and Mark 

Mattingly for helping me to improve my writing skills. I want to thank Melainia McClain 

and Rhonda Ross for assisting electron microscopy work, Chris Seidel and Stowers 

molecular biology core for genomic analysis, Jeff Lange for PDMS device fabrication, 

library staff as well as all the other Stowers Institute members whose work and expertise 

contributed to this project. 

 





ix 

Table of Contents 

Abstract  ..................................................................................................................................... iii 

Acknowledgements ......................................................................................................................... vii 

Table of Contents .............................................................................................................................. ix 

Table of Figures ............................................................................................................................. xiii 

Table of Tables ................................................................................................................................. xv 

Chapter 1 Introduction ...................................................................................................................... 1 

1.1  Epidermis – ectodermal epithelia ...................................................................................... 1 

1.2  Wound healing across Metazoa ........................................................................................ 2 

Cellular wound healing – miniature model for damage repair .................................................. 4 

Tissue damage repair across phylogeny: model systems and their adaptations ........................ 5 

Wound healing in Cnidarians ..................................................................................................... 6 

Wound healing in Ecdysozoa...................................................................................................... 7 

The Nematode roundworm Caenorhabditis elegans .............................................................................. 7 

The fruitfly Drosophila melanogaster ................................................................................................... 8 

Wound healing in vertebrates ................................................................................................... 10 

Discussion ................................................................................................................................ 14 

1.3  Regeneration ................................................................................................................... 18 

1.4  Epidermal role in regeneration ........................................................................................ 19 

1.5  Planarians as a model for Lophotrochozoan wound healing ........................................... 20 

The intact planarian epidermis ................................................................................................ 20 

Epidermal homeostasis ....................................................................................................................... 23 

Wound closure .......................................................................................................................... 25 

Epidermal regeneration ........................................................................................................... 27 

Discussion ................................................................................................................................ 28 

Chapter 2 Characterization of S. mediterranea epidermis .......................................................... 31 

2.1  General morphology of S. mediterranea epidermis ........................................................ 31 

2.2  Response to tissue loss in S. mediterranea ...................................................................... 34 

Cellular response to tissue loss (electron microscopy) ............................................................ 35 

Wound closure dynamics visualized by SEM............................................................................ 35 



x 
 

Wound closure and epidermal regeneration visualized by TEM .............................................. 38 

Epidermal tissue reorganization during blastema growth visualized by TEM ......................... 42 

Epidermal tissue regeneration visualized by TEM ................................................................... 44 

Summary 45 

Chapter 3 Live imaging methodology development ...................................................................... 47 

3.1  Animal immobilization ................................................................................................... 47 

Chemical immobilization .......................................................................................................... 47 

Mechanical immobilization ...................................................................................................... 49 

3.2  Cell labeling .................................................................................................................... 55 

Cell permeable organic dyes .................................................................................................... 55 

DiOlistics .................................................................................................................................. 57 

Dynamic interaction in intact epidermis .................................................................................. 58 

Chapter 4 Cellular wound response in S. mediterranea ............................................................... 60 

4.1  Cellular response to tissue damage ................................................................................. 60 

4.2  Cellular response to tissue loss ....................................................................................... 63 

4.3  Epidermal tissue regeneration ......................................................................................... 68 

Chapter 5 Molecular characterization of S. mediterranea epidermis ......................................... 70 

5.1  Epidermal dissection ....................................................................................................... 70 

5.2  Transcriptional profile of S. mediterranea epidermis ...................................................... 71 

Epidermally enriched gene library ........................................................................................... 76 

Chapter 6 Functional screen ........................................................................................................... 80 

6.1  Phenotype summary ........................................................................................................ 80 

Intact tissue phenotypes (homeostasis defects) ......................................................................... 81 

Wound response phenotypes ..................................................................................................... 92 

6.2  Smed-Gfi-1 phenotype characterization.......................................................................... 92 

Chapter 7 Discussion ....................................................................................................................... 98 

Chapter 8 Methods and materials ................................................................................................ 106 

 

Appendix 1 Epidermal marker ..................................................................................................... 122 



xi 

Appendix 2 Post-transcriptional wound response marker ......................................................... 123 

Appendix 3 Rhabdite characterization ........................................................................................ 125 

References  ................................................................................................................................... 131 





xiii 

Table of Figures 

Figure 1-1. Diversity of wound closure mechanisms in Metazoa. ....................................... 17 

Figure 1-2. Schematic representation of major structures in planarian epidermis. .............. 22 

Figure 2-1. General structure of S. mediterranea epidermis. ............................................... 31 

Figure 2-2. Cilia distribution along the epidermis. .............................................................. 32 

Figure 2-3. Structures along lateral and basal surface of epidermal cells of S. mediterranea.

 ...................................................................................................................................... 33 

Figure 2-4. The response to tissue loss in S. mediterranea. ................................................. 34 

Figure 2-5. Immediate epidermal wound response and rapid wound closure in S. 

mediterranea. ................................................................................................................ 36 

Figure 2-6. Long cellular projections invade the wound surface. ........................................ 37 

Figure 2-7. The wound epithelia is not exclusively formed by cells at the wound margin. 37 

Figure 2-8. Structures of unknown nature along the wound surface. .................................. 37 

Figure 2-9. Decapitation is followed by rhabdite release and repoliarization of wound edge 

epidermis. ..................................................................................................................... 39 

Figure 2-10. A sheet of wound edge epidermis extend over the wound surface to close the 

wound. .......................................................................................................................... 40 

Figure 2-11. The wound is closed by a thin, stretched out epidermal layer. ....................... 41 

Figure 2-12. Epidermal layer reorganization over the expanding blastema. ....................... 43 

Figure 2-13. Fully reestablished epidermis. ......................................................................... 44 

Figure 3-1. PDMS device design and its application for planarian immobilization and 

dorsal/ventral surface imaging. .................................................................................... 50 

Figure 3-2. Device for orthogonally mounted sample imaging. .......................................... 52 

Figure 3-3. Wound response visualization in low-melting point agarose-mounted animals.

 ...................................................................................................................................... 54 

Figure 3-4. Live epidermal tissue labeling with cell permeable dyes. ................................. 56 

Figure 3-5. Planarian tissue labeling by DiOlistics. ............................................................. 57 



xiv 
 

Figure 3-6. The dynamic cellular bahaviuor within inatct epidermis. ................................. 59 

Figure 4-1. Diverse cellular wound responses to superficial tissue ablation. ...................... 60 

Figure 4-2. Exocytic wound response after tissue ablation. ................................................ 62 

Figure 4-3. The mechanism of wound closure in decapitated animals. ............................... 64 

Figure 4-4. Epidermal cells migrate and breach the wound surface. ................................... 66 

Figure 4-5. Cellular migration along the wound edge epidermis extension. ....................... 67 

Figure 4-6. Wound edge epidermis contributes to loss tissue regeneration. ....................... 69 

Figure 5-1. Epidermal dissection methodology. .................................................................. 70 

Figure 5-2. Epidermal expression profile analysis .............................................................. 72 

Figure 5-3. Epidermal expression profile validation. .......................................................... 74 

Figure 5-4. Summary of expression patterns represented within “epidermally enriched gene 

library”. ........................................................................................................................ 76 

Figure 5-5. Expression patterns of most robust epidermal markers. ................................... 78 

Figure 6-1. Functional screen (RNAi) screening strategy to identify genes with a role in 

tissue homeostasis, wound closure and regeneration. ................................................. 80 

Figure 6-2. RNAi screen identified diverse homeostasis phenotypes ................................. 83 

Figure 6-3. gfi-1 expression in epidermal lineage. gfi-1 is expressed throughout 

mesenchyme, gut and epidermis. ................................................................................. 94 

Figure 6-4. gfi-1(RNAi) phenotype characterization. ......................................................... 95



xv 

Table of Tables 

Table 1. Differential expression analysis summary. ............................................................ 73 

Table 2 Gene ontology terms represented in epidermal samples. ........................................ 75 

Table 3. Gene number within each expression pattern group (Fig. 5.4) .............................. 77 

Table 4. Identification of markers that overlap with published markers of distinct 

epidermal cell populations. .......................................................................................... 79 

Table 5. Epidermally enriched genes with putative DNA binding domain (putative 

transcription factors) and their phenotypes. ................................................................. 84 

Table 6. Primers of the gene sequences used in this thesis ................................................ 113 

Table 7. The list of most abundant proteins in rhabdite isolate. ........................................ 129 

  





 

1 

 

Introduction 

1.1 Epidermis – ectodermal epithelia 

Epithelia are polarized sheet-like arrangements of cells interconnected with each 

other by belt-like junctions and connected to an underlining basal membrane by focal 

adhesions (Van Lommel, 2003). The ability to establish epithelia was fundamental for 

multicellular life forms to evolve. Although the beginning of epithelial evolution can be 

traced back to sponges, which form polarized monolayers, these organisms do not have 

basal membrane and do not form belt junctions. Therefore, it is believed that sponge 

tissues are not true epithelia. The first true epithelia arose in Cnidarians and its form and 

function have subsequently evolved throughout Metazoan evolution (Tyler, 2003). 

Epithelia can have ectodermal, mesodermal or endodermal origins. Ectodermal epithelia, 

e.g., the epidermis, covers the surface of the animal. In contrast, the endoderm gives rise to 

epithelia lining the majority of the internal organs, and the mesoderm gives rise to the 

circulatory system endothelium, the kidney and lining of the reproductive organs (Van 

Lommel, 2003). 

Variations of epithelial architecture and physiology are apparent. Epithelia range 

from columnar or cuboidal single cell layers to more complex pseudo-stratified or stratified 

multi-layered epithelia in vertebrates (Van Lommel, 2003). Although the primary function 

of epithelia is to support and protect underlining tissues from environmental insults, 

epithelia can also mediate the exchange of substances between underlying tissues and the 

body cavity. Mucosal epithelia lining internal organs or aquatic animal body surfaces 

facilitate absorption of food or oxygen, as well as secretion of biologically active 

substances or waste products. The apical surface of these tissues in organisms other than 

Nematodes and Arthropods may also be covered with cilia. Cilia move fluids along 

stationary mucociliar epithelia surfaces to aid feeding, digestion, respiration, transportation 

or cleansing of the respiratory tract. Epithelia can be also covered by micro-villi, apical 

membrane extensions which increase the absorptive surface in a tissues like the vertebrate 

gastrointestinal tract. Moreover, epithelia cells exposed to external fluxes evolved to detect 

and respond to specific stimuli and are called sensory epithelia (Van Lommel, 2003). 

Despite differences in epithelial architecture among phyla or organs, the mechanisms 

determining epithelial structure are conserved between animals. Studies of epithelial cell 

differentiation in Cnidarians, Arthropods, Nematodes and mammals show that epithelia are 
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established using a similar set of proteins (Knust and Bossinger, 2002; Krämer, 2000; 

Tyler, 2003). Epithelial integrity is maintained by the cytoskeleton and cellular junctions. 

The vertebrate epithelial cells are joined by desmosomes as well as belt-like junctions, 

including the apical-most tight junctions and adherens junctions arrayed just proximal to 

them. Although tight junction-like structures are also seen in certain invertebrate groups, 

invertebrate Chordates and Ctenophores (Harrison and Jane, 1991; Tyler, 2003), most 

invertebrates lack these structures and do not form typical desmosomes. Instead of tight 

junctions, invertebrates form the functionally equivalent septate junctions, which lay basal 

to the most apically situated adherens junctions (Bereiter-Hahn et al., 1984; Tyler, 2003). 

The epidermis is a highly-specialized epithelium of ectodermal origin which 

comprises the surface of an organism. Adult vertebrate skin is composed of a stratified 

epidermis and an underlying mesodermally-derived mesenchymal dermis. The majority of 

invertebrates, on the other hand, possess single cell layer epidermis. It can contain single 

cell or multiple cell types (Van Lommel, 2003), some of which, like those nematocysts in 

Cnidarians, are highly specific to particular clade (David et al., 2008). However, a cellular 

epidermis is not universal for all invertebrates: parasitic flatworms and certain Nematodes 

have a syncytial epidermis (Bereiter-Hahn et al., 1984). 

The epidermis has evolved to provide a protective barrier, however it can also act as 

a secreting surface (Bereiter-Hahn et al., 1984). Keratinized epidermis of terrestrial 

vertebrates and the cuticle covered epidermis of Ecdysozoa (Arthropods and Nematodes) 

are primary barriers, while the mucosal epidermis of Cnidarians and Lophotrochozoans is 

also secretory. The mucociliary epidermis in Turbellaria and Nemertea was adapted for 

locomotion. Not dissimilar to vertebrate airway epithelia, the epidermis in these animals is 

covered with cilia and contains gland cells. Gland cells secrete mucus to coat the adjacent 

substrate, whereas cilia act upon this mucus to generate a gliding form of motility 

(Bereiter-Hahn et al., 1984). 

The epidermal sheet is far from simply being a static barrier. Ectodermal sheet 

movements and interactions with the underlining mesenchyme are especially important 

during early embryonic development (Gilbert, 2014). Epithelial roles in animal body 

morphogenesis are conserved across Metazoa, suggesting their ancestral origin. Arguably, 

as critical and ancient is the ability of epithelia to respond to injury. Occasional damage is 

an inevitable and potentially fatal challenge to any organism. An inherent property of 

epithelial sheets is their ability to respond and reseal themselves. 
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1.2 Wound healing across Metazoa 

Re-establishing homeostasis after injury is essential for the survival of all known 

animal species. A key step in this process is wound healing. Although the relative 

complexity of wound responses increases with evolutionary inventions such as 

multicellularity or immune systems, the principal mechanisms of damage repair appear to 

be conserved among eukaryotes. For example, cellular membrane disruption in yeast or 

amoeba, as well as cutaneous wounds in vertebrates are closed by calcium influx, Rho 

family small GTPases, and mitogen activated protein kinase (MAPK) mediated responses 

(Levin, 2011; Sonnemann and Bement, 2011). Intra-cellular membrane compartment 

fusion, cytoskeleton re-arrangement and subsequent actomyosin contraction drive wound 

closure in these distinct phylogenetic groups suggesting that at least initial steps of wound 

healing are governed by an evolutionarily ancient damage repair mechanism. 

Mechanisms of damage repair have likely been elaborated upon evolution, and 

phylogenic group-specific gain or loss of certain wound responses must have occurred. 

However, our current knowledge of wound repair is based on studies of a handful of model 

systems in which some, and perhaps important, wound responses may be under-

represented and, thus, their roles have yet to be fully appreciated. Distinct model systems 

offer different methodological, anatomical, and biological advantages for their 

investigation. For instance, cutaneous wound healing in mammals is a traditional example 

of Metazoan damage repair; however, it was only after visualization of wound closure in 

the Drosophila (Millard and Martin, 2008) that the dynamic interaction between opposing 

wound edges became apparent. Similarly, the mechanism of cellular damage repair is 

primarily followed in sea urchin eggs/early embryos and Xenopus oocytes (Mandato and 

Bement, 2001; Terasaki et al., 1997). Therefore, it is reasonable to assume that a 

multiphyletic approach that combines the strengths of well-established model systems with 

the study of wound response in both understudied and unexplored organisms is likely to 

prove very informative. 

Injury is one of the most drastic stimuli cells can encounter. Yet, a complete 

understanding of how cells sense and coordinate a response to tissue damage remains 

elusive. The beginning of wound closure often precedes a transcriptional response by many 

hours, indicating that de novo protein synthesis is not necessary for the initial re-

epithelialization stages (Clark et al., 2009; Lacy and Ito, 1984; Wood et al., 2002). As 

such, preexisting proteins can accommodate early cellular wound responses. Transcription 

independent signals (Cordeiro and Jacinto, 2013) and exposure of normally sequestered 
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cues are the most likely candidates to induce wound repair programs. For instance, while 

roles of exocytosis in membrane damage repair are well established, the contribution of 

intracellular membrane transport to wound closure still has to be explored. 

Cellular wound healing – miniature model for damage repair 

The plasma membrane encapsulates and protects vital biochemical reactions of the 

cell from deleterious environmental effects. Traumatic stress and environmental insults 

damage membrane integrity requiring immediate repair. Notably, the mechanisms of 

cellular damage repair are deeply evolutionarily conserved. Membrane disruptions in 

plants, yeast, amoeba, and animals are repaired by two calcium-mediated responses at the 

damage site: exocytosis and cytoskeleton reorganization. 

Visualization of membrane repair in amoeba (Szubinska, 1971) and Echinoderm eggs 

(Steinhardt et al., 1994; Terasaki et al., 1997) demonstrated cellular membrane disruptions 

are immediately resealed by intracellular membrane deposition at the damage site. In sea 

urchin eggs, exocytosis and fusion of abundant yoke granules patch membrane disruption 

and prevent deleterious cytoplasm loss. Since yolk granules have only been identified in 

sea urchin and amphibian eggs thus far, the intracellular compartment responsible for patch 

formation in other animal cells remains unknown. Calcium mediated fusion of lysosomes 

is implicated in damage repair in mammalian cells (Bement et al., 2007), whereas 

peroxisome related Woronin bodies clog septate of damaged hyphae in fungi (Jedd and 

Chua, 2000). 

Studies in sea urchin eggs/embryos and cultured fibroblast suggest that the molecular 

machinery responsible for membrane resealing recapitulates neurotransmitter release: 

calcium/calmodulin-mediated CaM kinase and kynesin motors target intracellular vesicles 

to the damage site where they are fused by calcium dependent SNARE proteins (Steinhardt 

et al., 1994). SNARE proteins are also necessary for freeze damage repair in Arabidopsis, 

indicating that a similar wound response is also present in plants (Schapire et al., 2008). 

Studies in mammalian cells complement the mechanism of cellular wound response by 

suggesting that cytoskeleton remodeling at the damage site by calpains (calcium dependent 

actin severing proteins) is also necessary for membrane fusion and wound patch formation 

(Godell et al., 1997). 

Exocytosis-mediated membrane resealing is followed by cytoskeleton contraction-

driven cellular wound closure, another calcium dependent wound response most 
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extensively studied in frog oocytes (Bement et al., 1999; Benink and Bement, 2005). 

Concentric Rho-family GTPase Cdc42 and RhoA activity zones at the damage site mediate 

closure of cellular membrane disruption. Cdc42 acts to assemble an F-actin and myosin2 

array at the wound periphery, after which small GTPases mediate its contraction and brings 

membrane edges together. 

In yeast, cellular damage is detected and transmitted to Rho GTPase by cell-surface 

integrity sensors (Jendretzki et al., 2011). Rho and its effector Protein kinase C (PKC) 

activate the cell wall integrity (CWI) pathway (Levin, 2011), which governs various 

processes necessary for damage repair. The CWI pathway regulates cell wall biogenesis 

via enzyme function control and MAPK cascade mediated induction of necessary gene 

transcription. The CWI pathway also governs membrane repair by targeting cytoskeletal 

and exocytic wound responses to the damage site (Kono et al., 2012). In intact cells, the 

machinery responsible for this response is deployed at the bud region, thus it has to be re-

polarized upon damage. This reorganization is mediated by CWI induced proteolysis at the 

bud. Since re-polarization is a hallmark of epithelial wound closure, it is possible that 

analogous or even homologous proteolytic responses could also be present in higher 

eukaryotes. 

Mechanisms of cellular membrane repair are also integrated into the multi-cellular 

wound response. Studies in the early frog epithelium have demonstrated that when cellular 

damage is close to cell-cell junctions it is transmitted into neighboring cells (Clark et al., 

2009). These surrounding cells activate Rho and assemble F-actin bundles along the edge 

of the wound of the damaged cells, providing a cyto-architectural scaffold upon which to 

execute a multi-cellular wound response. This observation may suggest that along the 

evolution of multi-cellularity, the mechanism of cellular damage response may have been 

co-opted and redeployed to reseal damaged epithelium. 

Tissue damage repair across phylogeny: model systems and their 

adaptations  

Damage in tissues often cannot be repaired by membrane damage repair mechanisms 

alone. Severely damaged cells, for instance, die and tissue integrity has to be reestablished 

by undamaged neighboring cells. These cells detect the wound/damage in surrounding 

cells and proceed to reorganize their cytoskeleton, repolarize and migrate to reseal the 

wound. Although superficially this process seems different from the previously described 
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membrane damage repair, it is also driven by calcium and small GTPase-mediated 

cytoskeleton remodeling and contraction. Nevertheless, the pattern of cellular wound 

response substantially varies between taxa, tissues, and developmental stages of the same 

organism. The following sections will provide an overview of examples of wound closure 

in different taxa and provide a comprehensive representation of this response in Metazoan 

phylogeny. 

Wound healing in Cnidarians 

Although Cnidarians are not a conventional system to study wounds, some of the 

most remarkable examples of wound response are evident in this phylum. Cnidarians are 

pre-bilaterian animals composed of primarily two single-cell-layer epithelial sheets: 

ectodermal myo-epithelium, and endodermal gastro-epithelium. The life cycle of 

Cnidarians varies from species to species, but after spawning, most if not all known species 

go through the formation of planulas, primary polyps and swimming hydrozoans (Technau 

and Steele, 2011). Several studies have described the cellular responses to wound in polyps 

(Bibb and Campbell, 1973; DuBuc et al., 2014) and swimming hydrozoa (Lin et al., 2000) 

indicating that wound-healing mechanisms are in place throughout the ontogenitc phases 

of development of these organisms. 

In Hydra, for example, healing of cut-through body wall transplant starts by 

filopodial interactions and re-adhesion within the gastro-epithelium. Subsequently, and 

within minutes, the ectodermal cells extend long flattened processes along the gastro-

epithelia, contact each other, and then reestablish cellular junctions between ectodermal 

sheets (Bibb and Campbell, 1973). Ectodermal cell contribution to wound closure could 

also be observed after amputation (Shimizu et al., 2002). After anterior amputation, 

ectodermal cells along the cut edges elongate, contact, and fuse with each other to close the 

anterior pole. It was proposed that this ectodermal cell shape change could also be 

mediated by the under-lying mesoglea, the extracellular matrix (ECM) between ecto- and 

endo-epithelia, contraction in response to wounding. As epithelia reestablish mesoglea 

within days after injury, epithelial cells regain their initial cuboidal shape. The remarkable 

healing potential of Hydra epithelial cells is best illustrated by their ability to reassemble 

polyps from a pellet of dissociated cells (Gierer et al., 1972; Technau et al., 2000). In this 

process, epithelial cells re-aggregate, adopt new spatial identity, synthesize mesoglea, 

proliferate, and coordinate axial patterning of the polyp. The plasticity of Hydra epithelial 

cells is also evident during lost tissue restoration. These animals can heal their wounds and 
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reestablish missing tissues without proliferation (Cummings and Bode, 1984; Hicklin and 

Wolpert, 1973), indicating that a high degree of tissue reorganization potential exists in 

Hydra. 

Wound response to tissue damage was also studied in Nematostella. Shortly after 

through-body wall puncture, the resulting wound is plugged by ejected sticky mucus-like 

material and mesentery structures. Subsequently, wound closure proceeds as the wound 

edge epidermis extends into the wound surface. These wound epithelia extensions can be 

quite long. In a small set of animals they did not join the opposite wound edge but rather 

transversed the entire body cavity and reached into the damaged site on the opposite side 

body wall. It was demonstrated that the wound closure in Nematostella requires 

extracellular signal–regulated kinase (ERK) pathway activation at the wound edge 

epidermis, pharmacological inhibition of this signaling cascade perturbs wound closure as 

well as lost tissue regeneration (DuBuc et al., 2014). 

Ectodermal wounds in another hydrozoan, the jellyfish Polyorchis penicillatus, are 

healed by remarkable phenotypic and functional transformations in their myo-epithelium 

(Lin et al., 2000). When damaged, myo-epithelium at the wound vicinity undergoes a 

phenotypic and functional transformation from a highly polarized “swimming muscle” to 

flat, migratory epithelial sheet cells. Along this transformation myo-epithelial cells 

reabsorb muscle myosin bundles, lose contractility, extend lamellipodia, and crawl to re-

epithelialize the wound. Strikingly, this conversion is achieved by re-arrangement of 

existing proteins rather than de novo protein synthesis. Within 18hr ectodermal wounds are 

re-epithelialized and flattened myo-epithelial cells slowly begin to reestablish their polarity 

and contractibility. 

Wound healing in Ecdysozoa  

The Nematode roundworm Caenorhabditis elegans  

Studies in C. elegans have shown that calcium also triggers wound response in the 

epidermis of this roundworm. Interestingly, it has been demonstrated that wound-

associated calcium wave is dependent on GTL2, a cytoplasmic membrane-associated, 

TRPM family ion channel (Xu and Chisholm, 2011). This is an intriguing observation 

since the TRPM family of ion channels is involved in mechano-sensation, and thus 

provides an intriguing possibility to explain how wound induced changes in membrane 

tension are translated into molecular signals inside the epidermis. It was also demonstrated 



 

8 
 

that initial calcium influx is accompanied by internal calcium flux. Phospholipase C (PLC) 

acts downstream or parallel of GTL-2 to induce calcium release from internal stores by 

Inositol 1,4,5 trisphosphate (IP3) production and its subsequent binding to IP3 receptor 

ITR-1 (Baylis et al., 1999; Xu and Chisholm, 2011).  

Epidermal wounds in the adult C. elegans epidermis are closed by calcium dependent 

cytoskeleton re-organization. Minutes after injury F-actin bundles are assembled along the 

wound edge. GTL2 mutants as well as animals treated with calcium chelators exhibit 

severely compromised F-actin ring formation and wound healing. Analysis of F-actin 

bundle function revealed that actin polymerization, rather than actomyosin contraction, is 

responsible for wound closure in the C. elegans epidermis. Loss of function of Rho-family 

GTPases, conserved regulators of actin organization, demonstrated that Cdc42 is necessary 

for wound closure, whereas knockdown of other Rho-family GTPases did not impair 

healing. In fact, reduction of Rho or its target non-muscle myosin accelerated wound 

closure (Xu and Chisholm, 2011). 

The fruitfly Drosophila melanogaster  

Established genetic and live imaging methodologies in Drosophila have allowed for 

real-time observation and quantification of cellular behaviors associated with wound 

closure (Galko and Krasnow, 2004; Wood et al., 2002). Drosophila wounds are closed by 

two main behaviors within the epidermal cells at the wound perimeter: contraction of 

continuous actomyosin cables, and activity of cellular protrusions.  

Wounds in embryonic epithelia are predominantly closed by formation and 

subsequent contraction of a continuous actomyosin cable along the wound periphery, the 

wound closure mechanism known as “purse string” (Wood et al., 2002). As wound closure 

proceeds and the wound circumference gradually becomes smaller, some epidermal cells 

are withdrawn from the front row or edge of the wound. During re-epithelialization, cells at 

opposite wound edges extend filopodia, which interact with each other, as well as with the 

wound surface (Millard and Martin, 2008). This behavior ultimately is modulated into a 

spatially coordinated wound closure process. At the final stage of re-epithelialization, an 

array of filopodial interactions bring wound edges together, to finally mediate their 

resealing. 

Lamellipodial crawling drives re-epithelialization in post-embryonic Drosophila 

epidermis. Wound closure starts by rapid plug formation at the wound site. At the same 
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time, epidermal cells at the wound edge polarize towards damage. Within hours after 

injury, epithelial cells extend lamellipodia and start crawling along the plug. Along this 

process, migrating epithelial cells fuse their lateral membranes and form large syncytia, 

which in the adult fly is also accompanied by chromosome duplication leading to polyploid 

cell formation (Galko and Krasnow, 2004; Losick et al., 2013). This process is likely 

regulated by signaling events since down regulation of the Hippo pathway has been shown 

to increase syncytium size and decrease polyploid nuclei number (Losick et al., 2013). 

Mechanistic analyses have demonstrated that Stitcher and Platelet-derived growth 

factor/Vascular endothelial growth factor tyrosine kinase receptors (Stit and Pvr), calcium 

influx, Rho-family small GTPases, and MAPK cascades are required for cytoskeleton 

reorganization and cell migration in response to wounding (Galko and Krasnow, 2004; 

Razzell et al., 2013; Wang et al., 2009; Wood et al., 2002; Wu et al., 2009). Tyrosine 

kinase receptors Stit and Pvr are necessary for re-epithelialization of embryonic and post-

embryonic wounds respectively (Wang et al., 2009; Wu et al., 2009). Stit mutants fail to 

assemble an actomyosin ring, suggesting that signaling through tyrosine kinase receptors 

plays a role in the initial wound response (Wang et al., 2009). In larvae wound healing, Pvr 

and its ligand Platelet-derived growth factor/Vascular endothelial growth factor 1 (Pvf1) 

have been shown to be necessary for lamellipodia formation and subsequent wound closure 

(Wu et al., 2009). It is proposed that in intact epidermis Pvf1 is sequestered underneath the 

basal membrane and remains inaccessible to Pvr at the lateral membranes of epidermal 

cells. When epidermis and basal membrane are damaged, Pvf1 is released making it 

possible for it to bind and activate Pvr at the wound edge. 

Stit dependent ERK activation at the wound vicinity is observed in the embryonic 

epidermis (Wang et al., 2009), whereas another MAPK, JNK (c-Jun N-terminal kinase) is 

activated at wound edges in larval wounds (Galko and Krasnow, 2004). JNK perturbation 

impairs cytoskeleton reorganization, decreases the number of cellular protrusions and halts 

re-epithelialization, suggesting that MAPK has a crucial function in wound closure (Baek 

et al., 2010; Galko and Krasnow, 2004; Kwon et al., 2010; Lesch et al., 2010). MAPK role 

in transcriptional wound response was successfully demonstrated (Wang et al., 2009), yet 

its contribution to immediate, transcription independent cellular responses has not been 

extensively explored. Defective assembly of wound edge F-actin bundles after non-

functional JNK expression (Kwon et al., 2010) suggest transcription independent MAPK 

function in the epidermal wound response. Moreover, mechanistic studies revealed that 



 

10 
 

JNK activation causes membrane fusion and syncytial wound epithelia formation by 

disassembling focal adhesion complexes shortly after injury(Wang et al., 2015). 

Cytoskeletal response to the wound is coordinated through Rho-family small 

GTPases. In larvae, Rac1, Rho or Cdc42 loss of function disrupts the cellular wound 

response and wound edge epidermis fails to re-polarize and assemble actin bundles (Baek 

et al., 2010). Distinct Rho-family member contributions to cellular wound response are 

easier to segregate in embryonic wounds. Rho deletion impairs continuous actin ring 

assembly and efficient migration of wound epithelia, whereas Cdc42 function is necessary 

for filopodia formation and final resealing of wound edges (Wood et al., 2002). Unlike 

Rho and Cdc42, Rac1 does not seem to be necessary in embryonic re-epithelialization, but 

is critical in post-embryonic wound closure. Interestingly, it was proposed that Rac, Cdc42 

and Rho act upstream of JNK cascade in a partially redundant manner (Baek et al., 2010). 

Thus, Rho-family GTPase deletion phenocopies tyrosine kinase receptor mutations; 

however, the functional interaction between them remains to be explored. Studies also 

revealed an essential role for Toll receptor signaling at wound induced cytoskeletal 

remodeling and wound closure. Toll and NF-κB transcription factor mutants fail to 

remodel their adherens junctions and do not form actin-cables at the wound edge epidermis 

(Carvalho et al., 2014), suggesting that the Rho-family GTPase mediated wound response 

is either regulated by Toll signals or is tightly linked to cellular junction reorganization at 

the wound margin. 

Wound healing in vertebrates 

The complexity of the wound response has greatly increased in vertebrates (Clark, 

2013; Martin, 1997; Singer and Clark, 1999; Sonnemann and Bement, 2011). Along 

evolution, these animals have elaborated a sophisticated immune response and developed 

stratified epithelia, both of which provide better protection from environmental insults and 

infection. However, and for still unclear reasons, the re-epithelialization and tissue 

restoration efficiency has decreased in these animals when compared to other phyla. For 

example, the lag phase prior to epidermal cell migration to cover the wound has 

dramatically increased in vertebrates (Galko and Krasnow, 2004; Martin, 1997; 

Sonnemann and Bement, 2011; Wood et al., 2002), suggesting the requirement of 

activation of immune system components, or dependence on de novo protein synthesis. 

Due to its clinical significance, wound healing is traditionally studied in mammalian 

models. In fact, wound healing in adult mammalian epidermis is commonly used to 
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generally represent the process of wound repair (Martin, 1997; Singer and Clark, 1999). In 

vertebrates, this process encompasses multiple responses, which are generalized into 

hemostasis, immune system response, wound closure by epidermal cell migration, and 

wound tissue resolution. As in fly, wounds in adult vertebrate epidermis are primarily 

closed by lamellipodial crawling, whereas actomyosin cable contraction drives embryonic 

tissue resealing. However, such apparent and distinct developmental segregation is not 

definitive, because wounds in adult cornea or small wounds in the adult intestine are also 

closed by a purse string (Danjo and Gipson, 1998; Russo et al., 2005). 

It takes days to weeks to repair mammalian wounds, however hemostasis and the 

resulting clot formation provides a quick way to seal the wound (Clark, 2013; Martin, 

1997; Singer and Clark, 1999; Sonnemann and Bement, 2011). This process starts by 

blood-derived platelet activation at the wound. Once activated, these cells aggregate along 

the wound surface and degranulate – release an array of crucial enzymes and signaling 

cues from their abundant intracellular compartment. A release of proteases activates an 

enzymatic cascade that generates a fibrin clot to plug the wound. Upon degranulation 

platelets also release multiple chemokine and growth factors that initiate the next phases of 

wound healing. Consequently, immune system cells, neutrophils and monocytes, are 

recruited to the wound. Neutrophils arrive at the wound where they clear the invading 

pathogens minutes after injury. Monocytes differentiate into macrophages which surveille 

and phagocytose pathogens, remove cell or extracellular matrix debris and release an 

additional battery of growth factors and chemokines into the wound.  

Immune cell infiltration is simultaneous with the epidermal wound response. The 

mechanism of wound response induction in the epidermis is not completely understood, 

but is likely complex (Clark, 2013; Cordeiro and Jacinto, 2013; Sonnemann and Bement, 

2011). The content of damaged cells, growth factors secreted by immune or connective 

tissue cells, changes in composition or properties of the extracellular matrix and even 

changes in potential difference are all thought to coordinate cellular migration through the 

re-epithelialization phase. Before the epidermis can migrate, it has to reorganize existing 

junctions as well as express the proteins needed for new ones. Epidermal cells at the 

wound margin lose desmosomal junctions (cell-cell) and focal adhesions (cell-substrate) 

and start to express a wound-specific set of adhesion molecules (Grinnell, 1992; Martin, 

1997; Singer and Clark, 1999). Consequently, these cells repolarize toward the tear, flatten, 

and start migrating forward by lamellipodia extension driven crawling. Migrating cells 

secrete proteolytic enzymes ahead of them and cut their way through the fibrin clot 
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(Grondahl-Hansen et al., 1988). Although it is accepted that wounds within multilayered 

mammalian epidermis are closed by migration of basal epidermal layer cells (Clark, 2013; 

Martin, 1997; Odland and Ross, 1968), the mechanism of re-epithelialization is somewhat 

controversial. Two adult cutaneous wound re-epithelialization models were proposed: 

sliding and leapfrog. The sliding model assumes that although epithelial cells may 

occasionally change their neighbors and thus break and reestablish cellular junctions, the 

order of the cell layers is fairly well established and retained throughout wound closure 

(Stenn and Depalma, 1988; Woodley, 1988). Contrary to sliding model, the leapfrog (or 

rolling) model postulates that wounds are re-epithelialized by repetitive supra-basal cell 

roll over the basal keratinocytes (Krawczyk, 1971; Paladini et al., 1996; Stenn and 

Depalma, 1988). 

Growth factors are the key chemotactic cues, and the pivotal roles of keratinocyte 

growth factor (KGF), epidermal growth factor (EGF), transforming growth factor–alpha 

(TGF-alpha) and beta (TGF-beta), and heparin binding epidermal growth factor (HB-EGF) 

are well established in mammalian models. Growth factor mediated epidermal wound 

responses are induced by several mechanisms. After the injury, immune and connective 

tissue cells secrete growth factors, which diffuse to the wound periphery and activate 

receptor tyrosine kinases at the wound margin epithelia (Clark, 2013; Martin, 1997; Singer 

and Clark, 1999; Sonnemann and Bement, 2011). Alternatively, epidermal tissue damage 

can expose receptors, which are normally sequestrated within or separated by epidermal 

sheets (Carraway and Carraway, 2007; Vermeer et al., 2003; Vermeer et al., 2006). This 

mechanism is de novo protein synthesis independent and therefore proposed to be present 

in organs where rapid healing is crucial. Studies of tracheal re-epithelialization 

demonstrated that TGF- or EGF- family proteins and their receptors reside at different 

sides of intact tracheal epithelia, and thus come into contact only after epithelial sheet 

damage (Vermeer et al., 2003; Vermeer et al., 2006). Receptor tyrosine kinase activation 

subsequently act through the MAPK signaling cascade to activate transcriptional wound 

responses (Deng et al., 2006; Martin, 1997; Singer and Clark, 1999; Sonnemann and 

Bement, 2011). 

Although in vitro systems do not represent the native complexity of the wound 

healing process, studies in cultured mammalian cells defined the machinery responsible for 

cellular migration (Ridley et al., 2003). Cultured cells crawl by continuously extending 

lamellipodia at the leading edge and repeatedly retracting the trailing edge. Cellular 

movement is regulated by local activation of Rho-family GTPases. Cdc42 establishes 
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polarity and defines the leading edge of the cell. Cdc42 recruits Rac GTPase, which 

subsequently activates Wiskott-Aldrich syndrome family protein complex and therefore 

induces lamellipodial extension by Arp2/3-mediated polymerization of branched actin 

filament network (Welch and Mullins, 2002). Extended lamellipodia bind to ECM via 

integrin family receptors to provide a strong traction point for migration. Subsequently, 

Rho GTPase mediated myosin contraction at the trailing edge pulls the cellular body along 

the protrusion, and therefore the cell translocates (Riento and Ridley, 2003). As the cell 

body is finally pulled to the leading edge, integrin adhesions are disassembled. 

Subsequently, the cell initiates formation of new lamellipodia and repeats the locomotory 

cycle. 

Contrary to actin polymerization and myosin contribution to cellular migration, the 

role of the secretory machinery and microtubules (MT) in repolarization is less understood. 

In migrating cells Cdc42 polarizes Golgi and vesicle trafficking MT cables towards the 

protruding edge (Rodriguez et al., 2003). Although the MT cytoskeleton likely contributes 

to F-actin by providing mechanical support in lamellipodia, the pivotal function of MT re-

organization may be redirection of vesicle secretion. Directed secretion of proteases is 

necessary to cut through ECM ahead of migrating wound edge epithelia (Grondahl-Hansen 

et al., 1988); however other, more fundamental, functions of vesicle trafficking were also 

proposed. It is suggested that the cellular membrane surface is constantly internalized and 

recycled. Therefore, polarized exocytosis kinetically traps receptors on the leading edge of 

the migrating cell (Bretscher, 1983; Bretscher, 2008; Thompson and Bretscher, 2002) 

Directed exocytosis is likely responsible for constant delivery of the ECM binding 

molecules or chemotactic receptors to protruding lamellipodia. Thus, it is also likely acts to 

supply membrane to the surface of extending lamellipodia . 

Onset of vertebrate wound re-epithelialization is followed by proliferation at the 

base of wound margin epidermis (Grinnell, 1992; Poleo et al., 2001; Singer and Clark, 

1999). This response can be observed several hours after onset of epidermal cell migration 

at the base of the wound margin, but not at migrating leading edge cells (Garlick and 

Taichman, 1994). As closure of mammalian wounds continues, the cellular pool wound 

edge cells are expanded by stem cell activation at skin appendages. Stem cells residing in 

hair follicles and sweat glands provide the progeny, which migrate to the wound site and 

assist in re-epithelialization (Ito et al., 2005; Langton et al., 2008; Levy et al., 2007; Rittie 

et al., 2013; Taylor et al., 2000). At late stages of wound closure, invading fibroblasts 

replace the fibrin clot with collagen rich matrix (Clark, 2013; Martin, 1997). At the same 
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time a subset of fibroblasts responds to TGF-1 (Desmouliere et al., 1993) as well as 

mechanical forces (Grinnell, 1994) in the wound and transform into myofibroblasts. These 

cells express smooth muscle actin and consequently support re-epithelization by bringing 

wound edges closer together. 

While it takes weeks to heal deep cutaneous or mucosal tissue wounds in vertebrates, 

the re-epithelization is remarkably fast if the integrity of basal membrane is retained and 

thus no inflammatory response occurs (Donaldson and Dunlap, 1981; Lacy and Ito, 1984; 

Radice, 1980; Rees, 1988). After the chemical ablation of the entire gastric epithelia 

surface, the denuded basal membrane is rapidly repopulated by gastric pit epithelia cells. 

Within 7 minutes after damage, these columnar cells flatten and start migrating along the 

damage site by extending wide lamellipodia. These cells maintain their contacts within the 

epithelia and almost complete recovery of gastric surface lining occurs within 15 minutes 

after damage, suggesting that neither de novo protein synthesis nor proliferative response is 

required for this process (Lacy and Ito, 1984; Rees, 1988). A cellular wound response can 

be as fast in a Xenopus tadpole (Radice, 1980) or newt (Donaldson and Dunlap, 1981) 

mucosal epidermis. If basal membrane has remained intact, tadpole wound re-

epithelization begins within seconds after wounding. Interestingly, these wounds are closed 

by individual cell migration, not a collective epidermal sheet migration. As cells extend 

lamellipodia and crawl forward, their epidermal neighbors respond to the recently vacated 

space in front of them and thus join the migratory behavior. Once the basal membrane is 

repopulated and advancing epidermal cells contact each other, they do not extend further 

suggesting that space/mechanical cues might play a role in closure of these wounds. 

These observations indicate that delayed re-epithelialization in mammals is likely a 

result of reorganization of machinery required for migration on non-native ECM and/or 

negative effect of the inflammatory response, underscoring the critical importance of basal 

membrane integrity. Upon basal membrane damage the native substrate on which epithelial 

cells adhere is removed and thus new, wound specific, matrix has to be laid at the wound 

bed. Consequently, in order to bind and migrate on the new substratum, cells have to re-

express the appropriate receptors (Grinnell, 1992; Martin, 1997; Sonnemann and Bement, 

2011). Rodent models depleted of neutrophil and macrophage lineages show accelerated 

re-epithelialization (Dovi et al., 2003; Martin and Parkhurst, 2004) suggesting an inhibitory 

effect for the immune system in this process. Indeed, wounding in oral mucosa, a tissue 

possessing high re-epithelialization and tissue restoration potential, leads to a much 
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reduced influx of neutrophils and macrophages, and consequently lower levels of several 

inflammatory cytokines and of TGFb1 at the wound site (Szpaderska et al., 2003).  

Discussion 

Studies in various model systems have contributed to our understanding of wound 

healing. Sea urchin embryos and Xenopus oocytes, Drosophila and cultured mammalian 

cells have provided venues to explore membrane damage responses, to follow and 

manipulate wound closure and has helped explain the mechanics of cellular migration. 

Comprehensive analysis in these and other systems have revealed a conserved core of 

molecules mediating damage repair in distinct phylogenetic groups suggesting the 

existence of ancient damage repair machinery. Injury triggers a battery of signaling 

cascades, which orchestrate wound repair. In general, wounds are closed by an array of 

cellular damage responses (Fig. 1.1): cytoskeleton re-organization and phenotypic 

transformation; cell migration by continuous F-actin ring formation and contraction or 

lamellipodilal crawling; and polarized exocytosis.  

Although the major effectors of wound responses are becoming clear, the 

mechanisms activating and coordinating the wound repair program is far less understood. 

Environmental calcium influx through damage sites is believed to induce cellular damage 

repair (Clark et al., 2009; Steinhardt et al., 1994; Szubinska, 1971; Terasaki et al., 1997). 

However, dissolved calcium ion influx from the aquatic environment cannot explain 

wound response initiation in terrestrial animals, thus other signals must function in such 

species. Moreover, it is unclear how the tissue damage response is so rapidly initiated in 

cells not immediately adjacent to the damage site. Transcription independent signals, such 

us as oxidation, electro- or mechano-sensation, represent putative candidates (Cordeiro and 

Jacinto, 2013); however, their contribution still has to be explored. 

Intact epidermis is a highly polarized tissue consisting of tightly connected cells – 

this structure provides an impermeable barrier, which in turn protects the organism. Upon 

injury, epithelial cells undergo drastic morphologic changes. These cells rapidly activate 

cytoskeleton regulatory machinery and re-polarize towards the tear. Cytoskeleton re-

organization is also part of the cellular membrane damage response. The mechanism of 

membrane repair seems to be conserved from yeast to vertebrates (Bement et al., 1999; 

Benink and Bement, 2005; Clark et al., 2009; Kono et al., 2012; Levin, 2011). However, 

the phenotypic plasticity is greater in the lower Metazoan wound response. Cnidarian 

epidermis responds to injury by drastic phenotypic and functional transformation (Lin et 
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al., 2000) (Fig. 1.1). Most remarkable is that re-epithelialization in Cnidarians can be 

achieved by existing proteins rather than de novo protein synthesis (Lin et al., 2000), 

indicating that all the machinery necessary for this response is already present in the cell 

prior to wounding. The remarkably fast epithelial restitution in mammalian mucosal 

epithelia suggests that a similar molecular mechanism might also function during 

vertebrate tissue healing (Donaldson and Dunlap, 1981; Lacy and Ito, 1984; Radice, 1980; 

Rees, 1988). 

For yet not understood reasons, two re-epithelialization mechanisms are evident 

across district phylogenic groups or developmental stages: purse-string and lamellipodial 

crawling (Sonnemann and Bement, 2011) (Fig. 1.1). Embryonic wounds are closed by a 

purse string mechanism driven by continuous actomyosin ring assembly along the wound 

edge and its gradual contraction, which creates force bringing epithelial edges together. At 

the final stages of wound closure actin polymerization mediated filopodila formation reseal 

opposite epidermal edges (Wood et al., 2002). Although purse string is commonly 

associated with embryonic wound healing, actin cable formation was also described in 

adult C. elegans wound healing. Nevertheless, the mechanism of adult nematode wound 

closure seems to differ from embryonic context – it driven by actin cable polymerization 

rather that its contraction (Xu and Chisholm, 2011). Post-embryonic wounds are usually 

closed by lamellipodial crawling (Galko and Krasnow, 2004; Sonnemann and Bement, 

2011). Cells crawl by actin polymerization driven lamellipodial extension at the front 

(leading edge) and subsequent cellular body translocation by actomyosin contraction at the 

trailing edge (Kwon et al., 2010; Ridley et al., 2003). Contrary to purse string-mediated re-

epithelialization, the force for crawling is generated by grasping the wound bed surface, 

which is an extracellular matrix different from one epidermal cells encounter in intact 

tissue. Since a set of wound specific adhesion molecules must be produced before cells can 

engage into lamellipodial crawling  (Grinnell, 1992; Martin, 1997) it might explain why 

epidermal resealing by a purse string appears to be faster wound closure mechanism.  

Live imaging studies in Drosophila have demonstrated that wound closure in 

embryonic tissues follows a well-defined pattern. In developing tissues, where 

reestablishment of tissue patterning is crucial for development, filopodia interactions guide 

wound closure and ensure the wound will be repopulated by epidermis of corresponding 

spatial identity (Millard and Martin, 2008). Analogous interactions control correct animal 

axis establishment during morphogenesis. When fusing epidermal sheets are misaligned 

during dorsal closure, filopodial interactions identify correct longitudinal patterning and 
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pull tissue back into alignment (Millard and Martin, 2008). Filopodia abolishment lead to 

an increase of animal plan pattering abnormalities (Gates et al., 2007). Although filopodia 

mediated spatial recognition has not yet been described in adult tissue context, it has been 

proposed that positional identity incompatability within wound epithelia have a role in 

regenerative response initiation (Carlson, 1974). 

 

 



 

18 
 

 

In vertebrate skin, on the other hand, the covering of the wound surface is likely 

achieved by a proliferative response at the wound edge, as well as de novo molecule 

synthesis. These are time demanding processes, which likely contributes to relatively slow 

wound closure. This response does not seem to be abundant in lower Metazoan epidermis; 

however, chromosome duplication and polyploid epidermal cell formation at Drosophila 

 

Figure 1-1. Diversity of wound closure mechanisms in Metazoa.  
Adult wounds are usually closed via lamellipodial crawling of wound edge epidermis. In 
vertebrates, this process is followed by epidermal proliferation and new cell incorporation. 
In Drosophila, advancing wound edge epidermis expands its surface by cell fusion and 
syncytium formation. Cnidarians and Planarians are able to close their wounds solely by 
morphological transformation of their epidermal cells. Embryonic wounds as well as adult 
C. elegans wounds are closed by actomyosin cable formation at the wound edge epidermis. 
Actin cable contraction drives wound closure in embryos, whereas nematode wounds are 
closed by actin polymerization. 
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wounds (Losick et al., 2013) (Fig. 1.1) could represent an interesting transition towards 

more vertebrate-like wound closure. Moreover, observed cell fusion and syncytium 

formation at post-embryonic fly wounds (Galko and Krasnow, 2004; Losick et al., 2013) 

suggest that different systems possess diverse adaptations of the wound healing 

mechanism. Lateral membrane fusion could provide a way to increase available membrane 

surface, whereas genome duplication at the wound edge epithelial could enhance the de 

novo synthesis of the molecules necessary for wound healing. 

Wounding represents one of the most drastic stimuli animals can experience 

throughout their lifetime. In order to survive, animals devote vital cellular machineries to 

repair damage. Therefore, by studying wound responses, we are exploring fundamental cell 

biology. Cellular migration and morphogenesis are also involved in various developmental 

processes such as cancer, and cytokinesis. Thus, knowledge gained from wound response 

studies should help inform a wide array of physiological and pathological contexts. 

Although it is apparent that mechanisms of wound closure as well as wound healing 

capacity varies among metazoans, the detailed wound healing studies so far were only 

done in few ecdysozoans and vertebrates. It is likely that certain aspects of metazoan 

wound healing were not well represented in these models. Exploring wound responses in 

diverse animal groups holds a potential to expand our understanding of wound healing. It 

can help to uncover wound healing strategies or behaviors which were not pronounced in 

available models and thus can provide the comprehensive representation of metazoan 

wound healing. 

 

1.3 Regeneration  

All animals heal wounds, however, the outcome of this process varies across 

Metazoans. In some animals wound closure is followed by the activation of a regenerative 

program, which restores damaged or missing body parts. Other animals, like mammals, fail 

to activate this program, thus scaring occurs and damaged tissue fails to re-establish its 

original form and function. The hallmark of regenerative response initiation is blastema 

tissue formation - accumulation of undifferentiated cells underneath the closed wound 

epithelia (Nacu and Tanaka, 2011). Although undifferentiated, blastema cells are lineage 

restricted. Cell tracing after murine distal digit-tip or axolotl limb amputation established 

that blastema is composed, and thus regeneration driven, by a heterogeneous collection of 

progenitor cells (Kragl et al., 2009; Rinkevich et al., 2011). It has been long debated 
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whether the blastema cells arise from the resident adult stem cells or differentiated cells 

(Nacu and Tanaka, 2011). Recently, the contributions of both cellular compartments were 

demonstrated: the blastema can be established by progeny derived from adult stem cells, 

which reverted into more embryonic or less committed state, as well as by cell 

dedifferentiation and subsequent propagation (Kragl et al., 2009; Rinkevich et al., 2011; 

Sandoval-Guzman et al., 2014). The degree to which both mechanisms contribute varies 

among metazoans, for example amputated limb muscle regeneration in the axolotl is driven 

by muscle stem cells activity, while new limb muscle restoration is driven by myofiber 

dedifferentiation (Sandoval-Guzman et al., 2014). Dedifferentiation examples were also 

reported during damaged epithelia tissue restoration. After murine intestinal epithelium 

injury, undifferentiated secretory progenitors that are the immediate villin-negative 

progeny of stem cells can revert to a stem cell state after injury (van Es et al., 2012). After 

severe airway epithelia injury differentiated secretory cells occasionally give rise to cells 

that express basal stem cell markers after severe injury (Rawlins et al., 2009). 

Dedifferentiation is more prominent when damage ablates residing stem cells, Such injury 

not only induces fully committed secretory cell proliferation but also converts them into 

stable and functional epithelial stem cells (Tata et al., 2013).  

 

1.4 Epidermal role in regeneration 

It has been known for decades that the interaction between the wound epithelium 

and the underlying wound mesenchyme is essential for successful regeneration. The first 

indication of the epidermal role in this process was demonstrated by various surgical 

manipulations in vertebrates that prevented wound epithelium formation. For example, 

newt limb regeneration capacity is lost if wound re-epithelialization is prevented by 

inserting the stump of an amputated newt limb into the body wall (Goss, 1956) or by 

grafting a full-thickness skin flap over the stump (Mescher, 1976; Tassava and Garling, 

1979). The importance of wound epithelia formation for tissue restoration has also been 

reported in humans, children lose their ability to regenerate lost fingertips if surgeons 

suture wound edges together after the injury (Illingworth, 1974). Intriguingly, it was also 

demonstrated that spatial identity of the cells within wound epithelia is crucial for 

regenerative response. Urodele limbs do not regenerate if the stump is covered by wound 

epithelia composed of only cells with a single positional identity (i.e. dorsal) (Carlson, 

1974). The role of spatial identity in regenerative response onset is even more prominent in 
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invertebrates, where juxtaposition of opposite identity tissue is sufficient to induce 

regenerative response even without tissue loss in flatworms (Kato et al., 2001). 

The molecular mechanism by which the wound epithelia contributes to 

regeneration has been described in vertebrate models. After limb amputation, wound 

epithelia transforms into a crucial regenerative response signaling center called the Apical 

Ectodermal Cap (AEC). AEC cells, which are in direct contact with underlying wound 

tissue, acquire cuboidal morphology and polarize their secretory machinery towards the 

wound mesenchyme (Nye et al., 2003; Thornton, 1960). Analogous basal wound epithelia 

transformation into secretory epithelia also takes place during zebrafish caudal fin 

regeneration (Poss et al., 2003). Wound epithelia interact with underlying wound tissues 

and secrete regenerative response crucial signals such as fibroblast growth factors (Fgfs), 

Sonic hedgehog (Shh), Bone morphogenetic proteins (Bmps), newt anterior gradient 

(nAG) factor, MARCKS-like protein and Wnts (Beck et al., 2006; Kumar et al., 2007; Lee 

et al., 2009; Lin and Slack, 2008; Poss et al., 2000a; Poss et al., 2000b; Quint et al., 2002; 

Schnapp et al., 2005; Smith et al., 2006; Stoick-Cooper et al., 2007; Sugiura et al., 2016; 

Whitehead et al., 2005; Yokoyama et al., 2007). Exposure to AEC secreted factor Fgf8 is 

sufficient to induce partial regenerative response in developmental stages which normally 

do not possess regenerative capacity (Yokoyama et al., 2001). AEC formation and function 

is regulated by underlying wound tissues. Perturbation of blastema derived signals results 

deficient AEC (Beck et al., 2006; Kawakami et al., 2006), whereas their activation or 

exposure to the blastemal tissue secreted Fgf10 induce AEC formation, fgf8 expression and 

consequently endow regenerative capacity (Kawakami et al., 2006; Yokoyama et al., 2001; 

Yokoyama et al., 2000). The importance of nervous tissue derived signal for epidermal 

function in regeneration has also been demonstrated. Nerves are necessary for nAG, a 

crucial regeneration factor, which is expressed at the wound epithelia (Kumar et al., 2007). 

Nerve tissue is able to transform wound epithelia into AEC, presumably via Kgf 

(Keratinocyte growth factor) secretion (Satoh et al., 2008). Thus, nerve deviation into the 

lateral wound site can induce ectopic limb formation if a contralateral skin transplant is 

grafted next to deviated nerve (Endo et al., 2004). The ability of nervous tissue to induce 

tissue formation is also reported in invertebrates, where deviation of ventral nervous cord 

to the lateral epidermis results in ectopic anterior and posterior structure formation in 

Annelids (Kiortsis et al., 1965). 
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1.5 Planarians as a model for Lophotrochozoan wound healing 

The intact planarian epidermis 

The planarian epidermis (Fig. 1.2) is composed of a single layer of entirely post-

mitotic cells. There are obvious morphological differences between the dorsal and ventral 

epidermis. Cells within the dorsal epidermis are tall and columnar, whereas cells of the 

ventral epidermis are shorter and cuboidal. The apical surface of the dorsal epidermis 

appears irregular and rough (Hori, 1989), whereas the ventral surface is smoother. Various 

types of ciliated cells, and in some species even cells with microvilli, are found throughout 

the epidermis. Ciliated cells are most abundant on the ventral surface of the animal, where 

most cells project multiple long motile cilia required for locomotion. The dorsal epidermis, 

on the other hand, contains both non-ciliated and ciliated cell domains. (Hori, 1989; Morita 

and Best, 1974; Pedersen, 1976; Spiegelman and Dudley, 1973). Distinct and less abundant 

types of ciliated cells also been described in the epidermal layer. Short straight cilia 

containing cells are scattered along the epidermal surface (Pedersen, 1976), and ciliated 

sensory cells reside at the anterior body edge of the animal (Macrae, 1967). Thus, the 

planarian epidermis provides a rich cellular palette for studies of wound healing and 

regeneration. 

As in other invertebrates, cells within the planarian epidermis closely adhere to 

each other by septate junctions at their apical edge (Hori, 1989; Macrae, 1967). On the 

basal surface, epidermal cells attach to the underlying basal membrane by focal adhesions. 

However, contrary to epidermis of other organisms, planarian epidermis attach to basal 

membrane only by specific basal processes and not through the entire basal surface of the 

cell (Fig. 1.2). Thus, it appears that epidermal cells attach to the basal membrane by 

intermediate filament-rich cytoplasmic “feet” (Hori, 1978, 1989). These basal processes 

are well pronounced and the gaps between them and the basal membrane are filled with 

electron-lucent extracellular material (Hori, 1989). Another defining feature of planarian 

epidermis sections is the presence of irregular and variable size empty spaces (Hori, 1978, 

1989; Morita and Best, 1974; Spiegelman and Dudley, 1973). These structures seem to 

spread throughout the epidermal layer, however since the cellular boundaries of planarian 

epidermis is hard to discern in the histological sections it is not clear whether they are 

intra- or extra-cellular. 

The planarian epidermis is highly secretory, and various intracellular vesicles are 

present in the cytoplasm of both dorsal and ventral epidermal cells. In fact, one defining 
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characteristic of the planarian epidermis is the presence of rhabdites. Rhabdites are 

abundant rod-shape vesicles surrounded by a double membrane and filled with colorless, 

electron-dense, gelatinous material (Caira and Littlewood, 2001; Skaer, 1961). In Dugesia 

tigrina, Dusesia japonica, and Policelis nigra, rhabdites are present in virtually every 

epidermal cell (Hori, 1978, 1989; Pedersen, 1976; Skaer, 1961; Spiegelman and Dudley, 

1973), whereas in Dugesia dorotocephala these organelles are only observed in non-

ciliated cells (Morita and Best, 1974) (Fig. 1.2). Regardless of the species, rhabdites appear 

larger and more numerous in the dorsal epidermis (Skaer, 1961). 
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Rhabdite contents are readily ejected from epidermal cells as rod-shaped granules. 

Upon contact with the aquatic environment, these particles swell and coalesce to form a 

thin matrix on the animal’s epidermal surface (Pedersen, 1976; Skaer, 1961). Despite their 

abundance within the epidermis of different planarian species, rhabdite function is not 

understood. Traditionally, rhabdites have been thought to be involved in mucus production 

 

Figure 1-2. Schematic representation of major structures in planarian epidermis. 
Planarian epidermis is single cell layer. Dorsal epidermis is columnar and ventral 
epidermis is cuboidal. Apical surface of epidermis is covered with cilia and some 
microvilli. Apically, epidermal cells are interconnected by septate junctions. The basal 
surface of epidermis appears irregular. The distinct extracellular structures are situated 
along the epidermal and basal membrane interface. To establish focal adhesions with basal 
membrane, epidermal cells project the cytoplasmic feet in-between these extracellular 
structures. The cytoplasm of epidermal cells contains multiple rhabdites, large intra-
cellular vesicles. In most planarian species examined, rhabdites are present in virtually all 
epidermal cells. In D. dorotocephala, rhabdites are only present in non-ciliated cells.  
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(Hyman, 1951; Skaer, 1961). It was suggested that rhabdite secretion might provide the 

amount of mucus necessary to make ciliary gliding possible. They have also been 

suggested to have roles in reproductive cocoon formation, prey capture, and predator 

repulsion (Caira and Littlewood, 2001; Hyman, 1951; Martin, 1978). However, definitive 

experimental evidence for any of these functions is still lacking. Histochemical rhabdite 

content analysis indicates that these organelles are strongly acidophilic (Pedersen, 1959; 

Skaer, 1961). They stain positive with polysaccharide stain Lugol’s iodine. However, since 

this staining is not affected by diastase treatment, rhabdites are not thought to contain an 

abundance of starches like polysaccharides. The most thorough chemical analysis of 

rhabdites performed to date merely indicated that these vesicles likely contain arginine, 

purine, and adenine (Skaer, 1961). 

Epidermal homeostasis 

While the planarian epidermis displays a rapid turnover rate, cellular divisions are 

never observed in this tissue (Hori, 1978; Tu et al., 2015). The only dividing cells within 

the planarian body are neoblasts, abundant stem cells found in the mesenchyme (Báguna et 

al., 1989; Newmark and Sánchez Alvarado, 2000). Therefore, the epidermis, as well as 

other planarian tissues, are maintained by neoblast progeny incorporation (Reddien and 

Sánchez Alvarado, 2004; Tu et al., 2015; van Wolfswinkel et al., 2014; Wagner et al., 

2012). The basal membrane separates neoblast progeny migrating out of the mesenchyme 

from the epidermis, creating a barrier through which these replacement cells must pass 

(Hori, 1978; Skaer, 1965). From a cellular biology prospective, this is a truly fascinating 

process. Progenitors must squeeze through an extremely tight basal membrane and 

integrate into the ectodermal sheet while simultaneously differentiating and establishing 

appropriate cellular polarity—all without disrupting the integrity of the epidermis.  

This remarkable process of epidermal cell incorporation was documented in D. 

japonica (Hori, 1978). By electron microscopy, presumed progenitors were “caught” in the 

process of traversing the basal membrane, displaying signs of partial integration into the 

epidermis. Interestingly, these progenitors appeared to extrude cellular regions containing 

nuclei first through the basal membrane, while the non-nucleated portion of the cell with 

the Golgi, endoplasmic reticulum (ER), and mitochondria trailed behind in the 

mesenchyme. Once cells penetrated enough into the epidermal layer, they began to make 

contacts with their neighbors through apical intermediate junctions. Meanwhile, newly 

formed focal adhesions attached the cells to the basal membrane. 
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 Once fully incorporated into the epidermal layer, epidermal cells were observed to 

complete differentiation. At least in D. japonica, differentiation stages could be identified 

based upon discrete cytological characteristics (Hori, 1978). Recently incorporated cells 

were narrower at the apical surface. They also displayed a large nucleus containing one 

prominent nucleolus, a pronounced ER and Golgi bodies, a non-polarized distribution of 

rhabdites, few microvilli, and no obvious glycogen granules or cilia. Although the basal 

surface of these cells appeared rough, prominent cytoplasmic feet were not present. In 

contrast, more mature cells were distinguished by their irregularly shaped nucleus lacking 

a nucleolus, the absence of prominent synthetic organelles like the ER and Golgi, apically 

localized rhabdites, the presence of glycogen granules, and an abundance of microvilli and 

cilia. The basal surface of these cells appeared remarkably smooth, and their basal 

processes were well-defined. 

Recently, transcription-based approaches have been used to describe epidermal 

lineage progression in S. mediterranea. A subset of stem cells, called zeta-class neoblasts, 

were found to give rise to the epidermal lineage (Eisenhoffer et al., 2008; van Wolfswinkel 

et al., 2014). Zeta-class neoblast progeny expressing Smed-prog-1 represent early 

differentiating epidermal cells, while zeta-class neoblasts expressing Smed-agat represent 

late differentiating epidermal cells (Eisenhoffer et al., 2008; Tu et al., 2015). Several 

transcription factors regulate epidermal cell differentiation (Tu et al., 2015; van 

Wolfswinkel et al., 2014; Wagner et al., 2012). The zinc finger transcription factor Smed-

zfp-1 is responsible for the initial allocation of neoblast into the zeta-class (van 

Wolfswinkel et al., 2014; Wagner et al., 2012). Another Zn-finger transcription factor, 

Smed-egr-5, functions later in the lineage where it is required to initiate the final stages of 

terminal differentiation (Tu et al., 2015). Smed-zpuf-6 (zeta-class protein with unknown 

function-6) expression marks the cells undergoing this final process of maturation. 

Specifically, zpuf-6 is enriched in late epidermal progenitors underneath the basal 

membrane, as well as in a subset of epidermal cells. This epidermal zpuf-6 expression 

seems to be limited to recently incorporated, juvenile cells. It is believed that as cells 

complete their differentiation program within the epidermal layer, e.g., sprout cilia, they 

downregulate zpuf-6 expression. Two anatomically distinct ciliated cell domains can be 

distinguished in dorsal epidermis: the lateral multicilated cell domain and the “racing 

stripe”, two stripes of ciliated cells along the medial part of the animal. Ciliated cells on 

both sides of the animal can be depicted by Smed-FoxJ1-4 as well as intraflagellar 

transport protein gene expression, perturbation of these gene expression causes motility 
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defects and edema formation (Rink et al., 2009; Vij et al., 2012). Although the molecular 

complexity of planarian epidermis has not been extensively explored, it can be further 

subdivided into at least two cell populations: Smed-Fox J1-1 expression is specific to 

ciliated racing stripe cells (Vij et al., 2012), whereas the Smed-laminin B and NB.21.11e 

mark the sensory cells at the animal body edge epidermis (van Wolfswinkel et al., 2014). 

Wound closure 

Immediately after amputation, the body wall musculature around the wound 

forcefully contracts, bringing the dorsal and ventral epidermis close together. At about the 

same time, a dramatic morphological transformation of terminally differentiated epidermal 

cells at the wound boundary can be observed: normally columnar epithelial cells eject cilia, 

secrete rhabdites, lose their apical-basal polarity to become flattened, and extend 100 µm 

along the wound surface (Hori, 1978, 1989; Morita and Best, 1974). These extending cells 

maintain their attachments to the basal membrane and to their epidermal neighbors. 

Therefore, as the epidermis closes the wound, multiple rows of epidermal cells stretch over 

the damaged basal membrane. The epidermis, now an extremely thin single-cell layer, 

successfully covers the wound. Some cilia and a few microvilli can be seen along its 

surface (Hori, 1989). Shortly after wound closure, the body wall muscle relaxes, which 

helps pull additional epidermal cells at the wound margin across the wound surface (Hori, 

1989; Pedersen, 1976). Consequently, the cells of the most distal wound epithelia lose their 

attachments to the basal membrane, but still maintain overall epithelial integrity through 

irregularly spaced septate junctions (Hori, 1978). 

The time required for wound closure has been observed to vary amongst different 

planarian species. For example, D. tigrina and D. japonica were found to close wounds 

within a few hours after decapitation (Hori, 1989; Spiegelman and Dudley, 1973). 

Meanwhile, D. lugubris and D. dorotocephala required 10 and 16 hours, respectively 

(Morita and Best, 1974; Pascolini et al., 1984). It is currently unclear whether these 

variations in epidermal closure dynamics represent real biological species differences or 

simply experimental artifacts resulting from different preparation methods for these 

delicate tissues (Hori, 1989; Pascolini et al., 1979; Pedersen, 1976). 

Although all investigators recognize the importance of muscle and epidermal cells 

during wound closure, the extent of their contribution to planarian wound healing is 

disputed. According to the more accepted view, active migration of epidermal cells at the 

wound edges is the primary mechanism of planarian wound closure, whereas muscle 
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contraction only aids this process by bringing the wound edges closer together. This view 

is supported by the examination of fixed wound tissue. The presence of thinly stretched 

epidermal cell extensions over the wound surface has been interpreted as evidence of 

cellular migration. This migratory behavior was only associated with cells directly facing 

the wound surface, and it was postulated that loss of basal membrane integrity provides 

migratory cues (Hori, 1989). It was reported that the wound epithelia closely associates 

with cells of the wound parenchyma. Thus, it was suggested that the parenchyma provides 

a substrate for epidermal cell migration (Hori, 1989; Morita and Best, 1974). Other authors 

suggested that migrating epidermal cells might be supported by rhabdite-derived materials 

(Pascolini et al., 1984; Pedersen, 1976). Shortly after injury, rhabdites are ejected from 

cells and their contents disperse along the wound, forming a meshwork of randomly 

oriented filaments that closely associate with the surface of the migrating epidermis. 

Chandebois, on the other hand, argued against the notion of active cell migration 

mediating wound closure in planarians, and instead proposed that wounds are closed 

because the opposing tissue edges are brought together by muscle contraction (Chandebois, 

1980b). Likewise, another researcher suggested that, upon fixation, wounds burst open and 

any tear apart any reestablished epidermal layer. As a result, an extensively elongated 

wound surface is observed by EM, producing a false impression that these epidermal cells 

are migratory. In support of this, filopodia and ruffles are not seen in the wound epithelia, 

which would be expected from migratory cells (Pedersen, 1976). Furthermore, epidermal 

cells at the wound edge were not observed to establish obvious cellular contacts with each 

other or with the basal membrane. 

According to Chandebois’ model, shortly after the muscle contraction brings the 

opposing wound edges close together, “spurs” (distinct multicellular extensions from the 

wound edge epidermis) link the opposing epidermal edges. Once the muscles relax and the 

wound edges begin shifting away from each other, the attached epidermal cells are pulled 

over the wound surface. Thus, a continuous thin sheet of wound epithelia is stretched over 

the wound. Interestingly, Chandebois also suggested that the mechanism of wound closure 

is different at anterior- versus posterior-facing amputations. Anterior wounds were 

suggested to be closed by dorsal epidermal extension, whereas the ventral epidermis was 

proposed to cover over the posterior wound surface. Therefore, Chandebois argued that the 

orientation of wound closure might provide axials cues that specify anterior- versus 

posterior-specific regenerative programs (Chandebois, 1980b). 
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Immuno-electron microscopy suggested the existence of a heterogeneous wound 

response in the planarian epidermis. Only distinct cells within the wound epithelia were 

observed to respond to damage by flattening and migrating over the wound surface. 

Contrary to non-responding neighbors, flattened cells displayed close contact with the 

basal membrane and had an extensive microfilament network. Their cytoplasm and cellular 

junctions were rich with actin. As cells stretched further into the wound, actin became 

enriched in the cortical cytoplasm and cellular processes. Adenylate cyclase became 

enriched in the membranes of advancing cells, and their surface stained intensively with 

Concanavalin A (Pascolini et al., 1988a; Pascolini et al., 1988b). 

Numerous lines of evidence indicate that planarian wound healing is independent 

of cell proliferation. Planarians that have been lethally irradiated, which eliminates all 

dividing cells, are still able to close wounds in a manner indistinguishable from un-

irradiated animals (Hori, 1979). Furthermore, the fact that wound healing is not affected by 

colchicine-induced disruption of mitotic spindles (Hori, 1978) not only indicates that 

wound healing is independent of proliferation, but also that microtubule dynamics is not 

required for wound closure. Actin polymerization, on the other hand, is crucial. When actin 

is perturbed by cytochalasin A treatment, wounds fail to close (Pascolini et al., 1984). 

If the predominant classical view is true and planarian wounds are closed by 

epidermal cell migration, it is unlikely to be driven by conventional lamellipodial crawling. 

Most ultrastructural studies suggest that the wound epithelia does not establish prominent 

contacts with the wound mesenchyme. In addition, wound closure defects have not been 

reported after de novo protein synthesis inhibition with cycloheximide (Wenemoser et al., 

2012), suggesting that neither integrin reorganization nor wound-specific ECM synthesis 

are required for wound closure in this organism. 

Epidermal regeneration 

Wound closure in planarians is followed by a robust regenerative response. In 

response to injury neoblasts proliferate and their progeny accumulate underneath the 

wound epithelia to form blastema tissue (Morita and Best, 1974; Spiegelman and Dudley, 

1973). Blastema formation marks the beginning of regenerative response, blastema cells 

differentiate into all the cell types lost in the injury and subsequently their progeny 

reestablishes missing tissues. 

Epidermal regeneration is evident by the second day after amputation (Hori, 1978). 

Epidermal progenitors must migrate from the mesenchymal blastema and incorporate into 
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the flattened wound epithelia. These progenitors can be distinguished by the presence of 

rhabdites, and they exhibit an elongated amoeboid morphology with cytoplasmic 

extensions oriented towards the body surface (Morita and Best, 1974; Spiegelman and 

Dudley, 1973). As new cells integrate into the epidermal layer at 2 days post amputation 

(dpa), the cellular density and thickness of the epidermis increases significantly (Hori, 

1978; Morita and Best, 1974). Incorporating cells establish cellular junctions within the 

epidermis, acquire apical-basal polarity, and assume a columnar morphology. These early-

integrating cells do not possess cilia; however, the basal bodies are already present (Morita 

and Best, 1974). Cytologically, most cells within the regenerating epidermis at this 

timepoint closely resemble newly differentiated cells of the intact epidermis (Hori, 1978). 

They have a small number of microvilli, a large nucleus, and variable sizes of cytoplasmic 

rhabdites. At this stage, the basal membrane and focal adhesions are still not fully restored 

(Hori, 1978). 

The timing of basal membrane restoration—the last step in epidermal 

regeneration—seems to vary amongst planarian species. In D. dorotocephala, it is 

reestablished by 3 dpa (Morita and Best, 1974), whereas it takes 7 and 9 days in D. 

japonica and D. tigrina, respectively (Hori, 1978; Spiegelman and Dudley, 1973). 

Interestingly, in D. japonica, basal membrane restoration requires the presence of neoblasts 

and, thus, irradiated animals cannot reestablish this structure (Hori, 1979). Shortly after 

basal membrane restoration, specialized sensory cells are reestablished within the 

regenerating epidermis (Spiegelman and Dudley, 1973), and the new epidermis becomes 

indistinguishable from the old tissue. 

 

Discussion 

 
Several properties of planarian epidermis distinguish it from adult epidermal layer 

in other metazoan models. Unlike adult epidermis in other invertebrate models, planarian 

tissue has constant cell turnover, contrary to cuticulized ecdysozoan epidermis or 

keratinized vertebrate skin, planarian epidermis is highly secretory ciliated epithelia. 

Nevertheless, the most distinguishable feature of planarian epidermis is its remarkable 

wound closure capacity. Planaria is a classical regeneration model organism that is capable 

to recover after the most extensive tissue loss. The epidermal ability to rapidly reseal itself 

after severe damage is fundamental for this process. After tissue loss, the vast wound 

surface is closed efficiently within several hours by the mechanism independent neither of 
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proliferation or de novo protein synthesis. Yet the mechanism underpinning such a 

remarkable epidermal wound response or its contribution to tissue restoration are 

unknown.  

Since planaria is an organism with high regenerative capacity, comparative studies 

of its wound response to tissue loss and damage provides an opportunity to identify the 

cellular behaviours associated with the regenerative response. The comprehensive 

representation of epidermal wound response in S. mediterranea requires cyto-structural 

analysis as well as live studies of epidermal cell behaviours. Electron microscopy analysis 

of its epidermis will have to revisit the findings made in other planarian species as well as 

will provide description of epidermal structures which might endow the efficient wound 

healing in this organism. Whereas introduction of live cellular biology studies in planarian, 

will allow to follow wound closure mechanism and assess cellular wound response 

contribution to tissue restoration.  

The comprehensive study of planarian wound response requires the description of 

cellular and molecular composition of planarian epidermis as well as its functional 

analysis. Due to small number of available markers, the heterogeneity of this tissue were 

not yet extensively explored. Thus, since no wound closure phenotypes were described in 

planaria, neither the mechanism of efficient wound closure nor cellular wound response 

contribution to tissue restoration were investigated. Performing transcription profile 

analysis of planarian epidermis will allow to explore its composition as well as provide the 

candidates for subsequent mechanistic studies. Planaria is amenable for high throughput 

(RNAi) gene function studies and thus the knock-down screen of epidermal candidate 

genes could identify proteins required for epidermal wound response. Subsequent analysis 

of their phenotypes will depict the mechanism of wound closure and cellular wound 

response role in regenerative response. 
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Characterization of S. mediterranea epidermis 

2.1 General morphology of S. mediterranea epidermis 

S. mediterranea is most common planarian model, however neither its epidermis 

nor epidermal wound response was previously described in detail. To characterize this 

tissue, we analyzed its structure by Transmitted Electron Microscopy (TEM) as well as 

immunostaining. The body of this animal is covered with a single cell layer mucociliary 

epidermis. The epidermis is highly secretory, and rhabdites (large rod-shaped intracellular 

vesicles) are abundant in the tissue. In contrast to other planarian species previously 

studied, such as the D. dorotocephala epidermis (Morita and Best, 1974), no microvilli are 

found along the apical surface of the S. mediterranea epidermis. Instead, this tissue appears 

much more homogeneous. Very similar structures are seen throughout most of the 

epidermal layer, and there is no obvious specialization into exclusively ciliated or rhabdite-

 
Figure 2-1. General structure of S. mediterranea epidermis.  
Sagittal section through dorsal columnar (A) and ventral multi-ciliated cuboidal 
epidermis (B). Nucleus (nc). 5 µm scale bar. 
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forming cells. Nevertheless, epidermal cell morphology is different on the dorsal versus the 

ventral side of the animal. Dorsal epidermis is made of taller columnar cells, whereas 

cuboidal multiciliated cells make up the ventral epidermis (Fig 2.1, A and B; Fig 2.2, A). 

Consistent with previous depiction of planarian epidermis (Hori, 1978, 1989; Morita and 

Best, 1974; Spiegelman and Dudley, 1973), the irregular, various size empty spaces were 

also observed by TEM in S. mediterranea epidermis. These structures were scattered 

through-out the epidermal sections (Fig 2.1, A and B), however since individual cell 

boundaries were hard to distinguish, we could not determine whether these empty spaces 

represent intracellular vesicles or extracellular space between individual cells. 

Although cilia are less abundant on the dorsal side, two distinct ciliated cell 

domains are also present at the dorsal surface (Fig 2.2, A). The so-called racing stripe is a 

ciliated domain highly enriched for acetylated tubulin, consisting of two rows of ciliated 

cells running along the body midline from anterior to posterior. A separate domain of 

ciliated epidermal cells expressing lower levels of acetylated tubulin are situated at the 

dorsal-lateral body margin. The racing stripe and dorsal-lateral domain is separated by 

sparsely ciliated/non-ciliated epidermis. Structurally, the cilia of dorsal domains, as well as 

the ventral epidermis, is similar. A typical 9+2 microtubule arrangement is visible in all of 

these cilia in cross-sections (Fig 2.2, B). 

 
Figure 2-2. Cilia distribution along the epidermis.  
Cilia covers the entire ventral surface, as well as two distinct domains within the 
dorsal epidermis of adult uninjured planarians: dorsal-lateral and racing stripe 
domains (A, acetylated tubulin staining by immunohistochemistry). Cilia in all 
locations have a 9+2 microtubule arrangement by TEM (B). 50 µm scale bar in A and 
0.2 µm in B. 
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The apical and basal surface of the S. mediterranea epidermis is irregular. The 

apical surface appears rough and the basal surface does not adhere uniformly to the 

underlying basal membrane (Fig 2.1, A and B). Epidermal cells attach to the basal 

membrane at distinct domains of their basal surface (Fig 2.3, E and F). The space between 

these domains is filled with extracellular matrix (Fig 2.3, F and F’). Therefore, basal 

surface extensions are well defined, and it appears that epidermal cells rest on the basal 

membrane by their cytoplasmic “feet.” The electron-dense spots along their points of 

contact with the basal membrane demarcate focal adhesions that are enriched at the tips of 

the basal surface extension (Fig 2.3 E). 

Individual epidermal cell boundaries are often difficult to discern in electron 

micrographs. Nevertheless, different types of cellular junctions are recognizable at cell 

interfaces (Fig 2.3, A-D). Apically, cells in S. mediterranea are joined by septate junctions, 

which are tight zipper-like structures spanning more than 1.5 µm of the most apical region 

of the cell membrane (Fig 2.3, B). More basally, epidermal cells are joined by desmosome-

like structures (Fig 2.3, C). These junctions are over 1 µm in length and the dense 

cytoskeletal bundles extend from their surface into the cytoplasm. In cases where 

neighboring cell membranes are not as tightly juxtaposed, less pronounced and sparsely 

distributed spot-junction-like structures could also be visualized along the lateral 

membrane. 

 
Figure 2-3. Structures along lateral and basal surface of epidermal cells of S. 
mediterranea.  
Schematic representation of the described structures (A). Epidermal cells attach to each 
other by septate junctions (B), desmosomes (C), and spot adherens junctions (D). At the 
basal surface, epidermal cells attach to basal membrane by focal adhesions (E). Epidermal 
cells attach to the basal membrane by distinct domains of their basal surface (F and E) the 
space between these domains is filed with extracellular matrix structures (F’, black arrow) 
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2.2 Response to tissue loss in S. mediterranea 

Shortly after an amputation, the body wall contract at the wound site (Fig 2.4). This 

brings opposing wound edges together, and internal cellular debris is expelled in the 

process. One hour after the decapitation the tissues around wound margin begin to 

gradually relax, the wound surface appears smooth and expulsion of cellular debris is no 

longer observed. By the end of the first day after amputation, the injured body wall is no 

longer contracted, as it relaxes the wound tissue expands. On the second day after 

amputation, the blastema begins to form. The unpigmented blastemal tissue expands 

further as the missing tissues are regenerated over the next week. Although lost tissues are 

re-established within a week, the new tissue still lacks pigmentation and thus can be still 

distinguished from an old tissue. Within a month blastemal tissue gets pigmented (not 

shown) and regenerated tissue becomes indistinguishable from intact counterpart.  

 

 
Figure 2-4. The response to tissue loss in S. mediterranea.  
Minutes after decapitation, body wall around the wound contract and internal tissue is 
expelled. Within 1 hour, the wound surface closes and appears smooth. At 1 day post 
amputation, the body wall start to relax and an indentation is observed across the wound 
surface. Blastema formation is obvious by 2 days post amputation, and eye spots are 
visible in the regenerate within 5-6 days post amputation. 500 µm scale bar. 
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Cellular response to tissue loss (electron microscopy) 

Our characterization of the wound response in S. mediterranea also examined the 

cellular changes occurring in the epidermis during wound healing. To visualize this 

process, Scanning Electron Microscopy (SEM) and TEM were performed. SEM 

preparation preserved the fragile cellular morphology and allowed a three-dimensional 

view of the epidermis during wound closure. TEM, on the other hand, complemented the 

SEM analysis by providing high-resolution ultrastructural information about the individual 

epidermal cells during wound healing and later stages of regeneration. 

Wound closure dynamics visualized by SEM  

SEM revealed that S. mediterranea displays a remarkably fast and robust cellular 

wound response. At 5 minutes after decapitation, a robust epidermal cell response is 

evident (Fig. 2.5, B), and nearly half of the wound area is already covered by stretching 

wound edge epidermis. The cells of the wound epithelia advance across the wound surface 

while displaying lamellipodia-like protrusions. At subsequent stages of wound closure, 

injured body wall contractions reduce the area of the wound surface by bringing opposing 

wound edges closer together (Fig. 2.5, C). Although wound closure duration varies slightly 

between samples, the entire wound surface becomes covered by a smooth layer of 

epidermal cells within 1-1.5 hours after decapitation (Fig. 2.5, D). Several explanations of 

observed variability of wound closure dynamics are possible, such as: the natural variation 

of wound closure speed within individual animals, the variable degree of surrounding 

tissue between amputations and the occasional failure to preserve wound epithelia in fixed 

samples. 
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Although wound closure is driven by epidermal repolarization and the extension of 

lamellipodia-like protrusions, distinct types of wound edge epidermis protrusions were also 

captured. Out of dozen animals fixed 5 min after the amputation, two specimens exhibited 

prominent projections of their wound edge epidermis. On the first occasion, the epidermis 

formed long and thin extension of epidermis (Fig, 2.6). This structure stretched 100 µm 

over the wound surface and interconnected the opposite wound edges. On the second 

occasion, the epidermal projection extended apically over the epidermal cells situated 

directly at the wound margin and thus connected interior epidermis with advancing wound 

epithelia (Fig. 2.7).  

 
Figure 2-5. Immediate epidermal wound response and rapid wound closure in S. 
mediterranea.  
SEM of wound immediately following decapitation (A). 5 min after decapitation, 
lamellipodia-like extensions from the wound edge epidermis (green) already cover a 
significant area of the wound surface (outlined by a dashed line) (B). As the wound 
closure progresses, body wall contraction reduce wound surface area and bring the 
wound edges together, 30 min (C). Wound closure is completed by 90 min. Smooth 
wound epithelia covers the entire wound surface. Body wall contraction at the wound 
site is no longer present  (D). 100 µm scale bar. 
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Figure 2-6. Long cellular projections invade the wound surface.  

Cells of wound edge epidermis form long and thin projections (arrows) over the wound 
surface. These structures transverse over 100 µm distance to breach the wound surface to 
inter-connect opposite wound edges. 5 min after decapitation. Dashed line represents the 
open wound surface. 100 µm scale bar.  

 

Figure 2-7. The wound epithelia is not exclusively formed by cells at the wound 
margin.  

The apical surface of epidermal cell(s) residing further away from the wound margin and 
wound epithelia are connected by cellular projection (arrows). Dashed line represents the 
wound margin. 5 min after decapitation. 100 µm scale bar. 

 

Figure 2-8. Structures of unknown nature along the wound surface.  

A dense meshwork of unknown material spans the wound 5 min (A) and 90 min (B) after 
decapitation (B). 100 µm scale bar. 
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Interestingly, the early wound response might be even more complex that what was 

described above. Occasionally, a meshwork of finger-like structures is observed in samples 

at various stages of wound closure (Fig. 2.8, A and B). These structures are abundant and 

they do not project in a specific pattern. Although these structures seem to be associated 

with the wound epithelia, their origin remains to be determined. 

 

Wound closure and epidermal regeneration visualized by TEM  

The processes of wound closure and wound epithelia formation were studied by 

TEM. Immediately after decapitation (Fig. 2.9, A), the dramatic release of rhabdites and 

their contents is observed throughout the epidermis. This response is not limited to the 

wound edge epidermis, as rhabdite ejection is evident in cells far from the wound site. 

Right after injury wound edge epidermis stay attached to the remaining basal membrane, 

and no signs of cell repolarization towards the wound are visible. The wound edge 

epidermis appears disorganized with empty spaces between its cells (Fig. 2.9, A’). 

Shortly after decapitation (5-15 min) (Fig 2.9, B and B’, C and C’), the wound 

tissues coalesce and become more compact. Epidermal cells at the wound margin, as well 

as epidermal cells several cell rows behind them, repolarize and start to extend towards the 

wound. Marginal epidermal cells undergo a drastic morphological conversion from apical-

basal polarized columnar cells to ones that are stretched (Fig 2.9, C’) and extremely 

flattened (Fig 2.9, C’ and Fig 2.5, B). These cells maintain their attachments to each other 

and the basal membrane. As multiple rows of wound edge cells polarize towards the 

wound, some cell stretch over their anterior neighbors. As a result, the extending wound 

epithelia become composed of several layers of thinly stretched epidermal cells. 

At later stages of wound closure (30-75 min), multiple cells of wound edge 

epidermis are visible along the wound surface. The advancing wound epithelia consists of 

3-7 epidermal cells (Fig. 2.10, A-C). The leading cells are no longer attached to the basal 

membrane at the wound margin. However, they do maintain attachments to their 

neighboring epidermal cells. The basal surface of the epidermis is not connected to any 

structures at the wound surface. This suggests that re-epithelialization in S. mediterranea is 

driven by cellular extension, and not typical lamellipodial crawling along the wound 

surface. 
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Although our previous SEM studies demonstrated that epidermal integrity is 

reestablished over the wound surface by around 1.5 hr, the continuous layer of wound 

epithelia could not be preserved in TEM samples earlier than 24 hr after the decapitation. 

At this point, wound epithelia covers the wound surface as an extremely stretched out, 

continuous cell layer (Fig. 2.11, A). At the wound margin, several epidermal cells stretch 

over each other (Fig. 2.11, A’). Nevertheless, most of the wound surface is covered with a 

layer of epidermis one cell thick (Fig. 2.11, A”). Flattened nuclei are sparsely distributed 

along the wound epithelium (Fig. 2.11, A’’’). Although empty spaces separate the wound 

epithelium from the wound mesenchyme, distinct mesenchymal cells are aligned along the 

basal surface of the wound epithelia (Fig. 2.11, A’’ and A’’’). 

 
Figure 2-9. Decapitation is followed by rhabdite release and repoliarization of 
wound edge epidermis.  
Decapitation results in robust rhabdite realease in the wound edge epidermis (A, 0 
min; B, 5 min; C, 15 min). Although the wound edge epidermis appears 
dissorganized immediately after injury (A’), it poliarizes towards the wound within 
minutes (C’, 15 min). 4 subsequent rows of epidermal cells stretch over each other 
and into the wound (C’). Red dashed line marks the wound edge. Nuclei (nc). 5 µm 
scale bar.  
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Lethally irradiated animals (7 days after irradiation) formed wound epithelia which 

appeared indistinguishable from controls, confirming that planarian wound closure is 

independent of cell proliferation (Fig. 2.11, B and B’). These animals lacked mesenchymal 

cells underneath their wound epithelia, suggesting that these mesenchymal cells have little 

 
Figure 2-10. A sheet of wound edge epidermis extend over the wound surface to 
close the wound.  
Advancing cells are no longer attached to the basal membrane at the wound egde; 
however, they mainatin their conatcts to each other and remain in the epidermal sheet. 
The wound epithelia does not associate with the wound surafce, instead appearing to 
extend over the wound surface rather than migrating along it (B, C). Red dashed line 
marks the wound edge. 30min after the decapitaion at A and B and 75min at C. Dorsal 
at A and C, ventral at B. Nuclei (nc). 5 µm scale bar.  
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to no effect on wound re-epithelization. Thus, since animals are already deprived of most 

epidermal progenitors by 7 days after irradiation (Eisenhoffer et al., 2008; Tu et al., 2015), 

indicates that the incorporation of newly differentiated epidermal progenitors into the 

epidermis is not necessary for planarian wound closure. 

  

 
Figure 2-11. The wound is closed by a thin, stretched out epidermal layer. 
Wound epithelia covering the wound surface next day after injury (A). At the wound 
margin, multiple cells stretch over each other (A’). However, most of the wound 
surface is covered with a thin, stretched out epidermal layer (A’’ and A’’’). Wound 
epithelia in lethally irradiated animal next day after injury (B). Animals were irradiated 
one week prior the wounding. Red dashed line marks the wound edge. Nuclei (nc). 5 
µm scale bar.  
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Epidermal tissue reorganization during blastema growth visualized by 

TEM 

Wound closure is followed by the formation of a blastema. As regeneration 

progresses, the thin, stretched epidermal layer (1 day after decapitation), Fig. 2.11, A) 

expands further to accommodate the growing blastemal tissue (2 days post amputation 

(dpa), Fig 2.12, A). At 2 dpa, blastema cells accumulate underneath the wound epithelia by 

tightly filling the available space underneath the wound epithelia (Fig. 2.12, A, A’). Two 

mechanisms of epidermal tissue expansion are evident in sections examined: 1.) newly 

differentiated epidermal cells originating in the mesenchyme incorporate into the 

epidermis, and 2.) the epidermis undergoes reorganization. The evidence of mesenchymal 

cells entering the epidermal layer was captured because the wound epithelia thickened 

enough to resolve the boundaries of individual cells. By 4 dpa, newly differentiated cells 

enter the epidermis by squeezing between the basal lateral surface of pre-existing 

epidermal cells (Fig 2.12, C’). Integrating cells show some signs of epidermal 

differentiation, and even possess small cytoplasmic rhabdites. However, most of these cells 

do not stretch as far along the length of wound epithelia as the pre-existing epidermal cells, 

and their apical surfaces do not fully extend to the outside surface of the animal. 

Furthermore, an examination of the epidermis in the vicinity of the wound indicates that 

cells of the intact columnar epidermis also contribute to the expanding wound epithelia. 

Accumulating mesenchymal cells cause the epidermal layer to stretch far beyond the 

wound surface, and a gradual decrease in epidermal tissue height is evident in the intact 

columnar epidermis. By the time the blastema forms, the stretched epidermal domain was 

100 µm in length (2 dpa, Fig. 2.12, A). As wound tissues expand further, the stretched 

epidermis domain spans 180 µm into the intact tissue (4 dpa, Fig. 2.12, C, C’’, and C’’’). 

Similar epidermal reorganization does not happen in irradiated samples because blastema 

formation and, thus, mechanical expansion of the wound epithelia does not occur (Fig. 

2.12, B and B’). 
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Figure 2-12. Epidermal layer reorganization over the expanding blastema. 
By 2 dpa, mesenchymal cells accumulate underneath the wound epithelia (A). By 4 
dpa, the integrity of the epidermis covering the expanding blastema (C) is maintained 
by two mechanisms: new epidermal cells integrating into the wound epithelia (C’) 
and cell recruitment from the columnar epidermis (note the change in columnar 
epidermis height in A versus C). The closer to the damage site, the more stretched 
columnar epidermis becomes (note epidermal height in C’’ versus C’’’). Epidermal 
reorganization observed in C does not occur if blastema formation is prevented by 
irradiation (B). Red dashed line marks the wound edge. Nuclei (nc). 5 µm scale bar.  
 



 

46 
 

Epidermal tissue regeneration visualized by TEM 

During the subsequent days following wound closure, the wound epithelia 

gradually reestablishes the morphology observed in intact animals. As more cells are 

recruited into the wound epithelia between 1-6 dpa, the thickness of the wound epithelia 

increase and reacquires its typical columnar morphology (Fig. 2.11, A; Fig. 2.12, A and C; 

Fig. 2.13, A). By 6 dpa, the epidermis covering the blastema is indistinguishable from that 

of intact tissue (Fig. 2.13, A). At this time-point the basal membrane is already fully 

reestablished and the wound margin is no longer identifiable. The cells of the wound 

epithelia display a columnar morphology, and various signs of terminal epidermal 

differentiation are visible within this tissue. For example, the size and numbers of rhabdites 

is reestablished in all of the epidermal cells. The ventral surface is now covered with 

ciliated cells, and the specialized adhesion gland cells are easily recognizable at the body 

edge. In contrast, none of these epidermal characteristics could be observed in irradiated 

animals (Fig. 2.13, B). However, contrary to D. japonica (Hori, 1979), irradiated S. 

mediterranea was able to restore basal membrane, suggesting that the formation of this 

support structure is independent on neoblast function in this species.  

 
Figure 2-13. Fully reestablished epidermis. 
By 6 dpa, epidermal morphology and composition is reestablished (A). Epidermal cells 
are columnar in shape, the basal membrane has formed, and rhabdites and cilia are 
abundant. The epidermal component of the adhesion gland has regenerated (arrow). 
Basal membrane is reestablished in irradiated animals (B). Red dashed line marks the 
wound edge. Nuclei (nc). 5 µm scale bar. 
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Summary  

The wound response to tissue loss in planaria is remarkably robust and efficient, 

however, the cellular mechanism governing this process is not yet fully understood. 

Electron microscopy analysis demonstrated that wound closure in S. mediterranea is 

remarkably fast (1.5 hr; Fig. 2.5). Wound closure is mediated by drastic phenotypic 

transformation of differentiated columnar epithelial cells. Immediately after injury, 

epidermis exhibit robust exocytic wound response (rhabdite release) (Fig. 2.9, A) and starts 

to repolarize into extremely flat and thin wound epithelia (5 min; Fig. 2.5, B and Fig. 2.9, 

C`). Minutes after the tissue loss, these cells start to advance over the wound surface by 

extending wide lamellipodia-like structures (5 min; Fig. 2.5, B) as well as occasionally 

forming distinct long and thin cellular projections (Fig. 2.6 and Fig. 2.6). Wound is re-

epithelialized by a one-cell thick sheet of wound edge epidermis (Fig. 2.10). The cells in 

advancing wound epithelia adhere to the wound surface and thus it appears that planarian 

wound closure is mediated by a cell extension mechanism rather than the crawling/active 

migration of wound edge epidermis.  

Several aspects of planarian cellular wound response make it particularly 

interesting to study it in greater detail. Although planaria epidermis can rapidly reseal the 

vast wound surface after the extensive tissue damage and loss, this is achieved by 

epidermal cell morphology transformation rather than by increasing epidermal cell number 

(Hori, 1978; Hori, 1979). Intriguingly, wound closure in planaria is independent of de novo 

protein synthesis (Wenemoser et al., 2012), suggesting that the machinery endowing 

remarkable wound healing capacity of planarian epidermis is already present in an intact 

tissue. Captured novel wound responses such as long cellular projection formation 

suggesting that wound response in planaria is truly unconventional. However, since wound 

response cannot be followed in the fixed samples, neither the mechanism underpinning 

wound closure in planaria nor the function of observed wound responses could be 

interrogated.  

Although planarian wound closure is a dynamic process, it was only studied in 

fixed samples and thus it was not directly visualized. Our work as well as previuos studies 

(Chandebois, 1980b; Hori, 1989; Pascolini et al., 1979; Pedersen, 1976) noted that 

planarian wound response might not be well preserved in fixed samples. Body wall 

contraction at the wound as well as delicate wound edge epithelia structures usually are not 

well retained within TEM samples, hence making it hard to infer the wound closure 

mechanism. Previously two contradictory wound closure mechanisms were proposed: 
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muscle contraction and cell migration mediated. Our results suggest planarian wounds are 

primarily closed by repolarization and extension of wound edge epidermis. However since 

wound close was not visualized live, the validity of either wound closure model cannot be 

tested. Live imaging methodology is critical for detail characterization of cellular wound 

response and its role in subsequent stages of wound healing. It allows to visualize wound 

closure, the first and critical step of wound healing, and provides the necessary tool for 

mechanistic studies of wound response and its contribution for subsequent wound healing 

steps. Thus, the ability to track cells live allows investigation of wound edge epidermis 

behavior and contribution to lost tissue restoration.  
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Live imaging methodology development 

Due to a lack of development of modern cell biology tools, the cellular wound 

response has not previously been extensively studied in an organism with high regenerative 

potential. No detailed live imaging studies had been performed in planaria mainly due to 

two hurdles: (i) the lack of efficient animal immobilization methodologies and (ii) an 

inability to label living cells. To provide the most comprehensive description of the cellular 

wound response in this system we have committed to overcoming these challenges. 

3.1 Animal immobilization 

Animal immobilization strategies are crucial for successful visualization of live 

tissue, being especially important in experiments designed to follow cellular behavior. In 

such cases, immobilization methodologies have to be efficient but non-deleterious to the 

tissue being examined throughout the extended imaging sessions. Several aspects of 

planarian physiology hinder the live visualization of their tissues. These animals are 

strongly photophobic and thus they swim away to avoid the light during microscopic 

examination. Remarkably, this behavior is also exhibited by body fragments from which 

photoreceptors or the central nervous system had been removed by decapitation. The 

anatomy of the planarian body makes it hard to obstruct their movements. These aquatic 

invertebrates do not have a firm body - the planarian body can extensively contract, stretch, 

and bend. In addition to extreme elasticity, these animals possess strong musculature 

allowing them to squeeze their mucus-covered body through tight confinements. Since the 

ability to maintain planarian tissue within the field of view of the microscope optics was a 

critical first step towards the visualization of the cellular behaviors in this system, two 

animal immobilization strategies were tested: chemical and mechanical.  

Chemical immobilization 

We investigated whether animals could be immobilized for extended time periods 

solely by application of bioactive compounds. A series of candidates predicted to affect 

animal sensory input or muscular function were considered. Despite safety concerns and 

compound availability limiting the number of the reagents we could test, the effectiveness 

of an array of candidate molecules was assessed.  
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The applicability of compounds with known effects on planarian motility was 

tested first. It has been previously reported that planarian locomotion is reduced after the 

exposure to chloretone (Guedelhoefer and Sánchez Alvarado, 2012) or ethanol (Stevenson 

and Beane, 2010). Although continuous exposure to chloretone (0.15%) completely 

immobilized the animal within minutes after the administration, its application for long-

term animal observation was limited. Animal motility resumed shortly (5 min) after 

chloretone withdrawal, whereas continuous exposure to this compound (45 min) caused 

animal lysis. Exposure to a low concentration of ethanol (3%) was not effective. Ethanol 

impaired cilia-mediated “gliding” locomotion, however it did not abolish muscle-mediated 

locomotion and thus animals were still able to move by inching along the bottom of the 

dish. 

Subsequently, it was investigated whether an efficient planarian immobilization 

reagent could be identified by screening an array of available molecules. First, compounds 

with known anesthetic or sedative properties in vertebrates (Ross and Ross, 2009; West et 

al., 2014) (tricane, eugenol, chloral hydrate, tubocurarine) were tested. However, no 

efficient immobilization of planarians was achieved with these compounds. Continuous 

exposure to aromatic alcohols, on the other hand, had a profound effect on planarian 

motility. 1-Phenoxy-2-propanol (10 mM) and 2-Phenoxyethanol (10 mM) led to complete 

immobilization within minutes after their administration. As animal motility reduced, their 

pharynxes extruded, suggesting that animal immobilization most likely involved 

musculature relaxation in these cases. Prolonged exposure (>60 min) to these molecules 

did not result in animal lysis and animals remained immobile long after (30 min) 1-

Phenoxy-2-propanol withdrawal. 

Magnesium ion-mediated muscle relaxation protocols are common in various 

invertebrates (Lewbart, 2011), thus their applicability for planarian immobilization was 

also investigated. Indeed, a brief, few-minute exposure to MgCl2 (3.5%) resulted in 

complete animal immobilization. Although planaria remained immobile 40-60 min after 

acute exposure to magnesium, its effectiveness was limited to high salt concentration, 

which also caused occasional animal lysis. Such lysis was less prominent at lower 

magnesium salt concentration; however, immobilization effectiveness was not maintained 

in these conditions. 

Efficient immobilization was also achieved by continuous exposure to a 50% 

solution of saturated menthol. This immobilization strategy was especially well suited for 

extended visualization of planarian tissues. If menthol evaporation was prevented by 
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mounting animals between two coverslips, intact animals could be maintained immobile 

for prolonged time periods (>3 hrs). Nevertheless, although menthol administration 

abolished muscle-mediated movements, slow animal body drift was still noticeable at 

higher magnifications. We reasoned that cilia-mediated locomotion is the most likely cause 

of the remaining motility and thus we have modified our protocol to prevent it. The tissue 

drift was eliminated once immobile animals were mounted within menthol solution 

containing viscous 6% methylcellulose matrix.  

Although continuous exposure to chloretone, aromatic alcohols (1-Phenoxy-2-

propanol and 2-Phenoxyethanol) and menthol could immobilize intact planaria, their 

applicability to injured animal visualization showed far less promise. Decapitated animals 

failed to contract muscles at the injury site and their wound-edge tissues started to 

deteriorate eventually leading to whole body lysis. Animals immobilized by acute 

magnesium salt treatment usually survived decapitation, however their wound closure only 

proceeded as the animal started to recover motility. Since none of the effective chemical 

immobilization regimens were compatible with wound closure, alternative immobilization 

strategies had to be developed. 

Mechanical immobilization 

We next sought to determine whether we could immobilize planarian tissue and yet 

preserve wound closure solely by physically restricting animal movements. Initially we 

attempted immobilization by embedding the animal in low melting-point agarose. 

However, even high percentage (>6%) agarose did not sufficiently restrict worm 

movements and animals swam out of the agarose as it was beginning to solidify. Next, we 

tried to restrict animal movements by permanently adhering one side of the animal with 

“wet stitches” - the adhesives commonly used to close tissue cuts after oral surgery. 

However, upon contact with planaria, adhesives quickly spread along the animal body and 

permanently engulfed its entire surface, making it unsuitable for visualization.  

Custom made PDMS (Polydimethylsiloxane) devices have been successfully used 

to restrict animal movements in invertebrate systems (Ben-Yakar et al., 2009; Hulme et al., 

2007), thus we explored their applicability in planaria. One particular PDMS device, 

previously designed to image fly larvae (Ghannad-Rezaie et al., 2012), seemed to be 

compatible with the flatworm body plan. The original device immobilized the animal by 

restricting its movements within an elongated 3.5x1.5 mm chamber (Fig. 3.1). Although 

these proportions resemble those of the planarian body, the chamber dimensions could 

only accommodate medium-sized planarians. Therefore, to suit the wide range of planarian 
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sizes, multiple separate devices with modified chamber dimensions were fabricated and 

subjected to testing. 
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Figure 3-1. PDMS device design and its application for planarian immobilization and 
dorsal/ventral surface imaging.  
Schematics of PDMS device design (A). Negative pressure ensures device adhesion to the 
coverslip. The negative pressure channel does not connect to the sample chamber 
(Ghannad-Rezaie et al., 2012). Schematics representing the procedure of animal mounting 
in PDMS device (B). 
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Although the adapted devices did not eliminate minor contractions of animal tissue, 

the nearly complete animal immobilization without tissue damage was successfully 

achieved when the animal body matched well with the chamber dimensions. Several 

device features made it well suited for prolonged and high-resolution observation of animal 

tissues. Since a separate channel ran along the device interface with a coverslip, the force 

by which the device attached to the glass surface could be adjusted. The constant 

application of negative pressure within this channel kept the coverslip tightly adherent to 

the device. As a result, the chamber remained closed and thus we were able to maintain 

planaria entirely flat along the coverslip surface, which made it submissive for prolonged 

observation with inverted microscope optics.  

Next, we explored the PDMS applicability for wound response visualization. 

Animals with various extents of tissue damage were subjected to PDMS immobilization 

methodology and their wounds were subsequently visualized. Although the PDMS device 

did not prevent the smaller superficial wound closure, the mounting procedure was found 

to elicit further damage to the wound tissues. Upon application, the device pushed upon 

animal tissues which consequently displaced the wound edges and often tore the wound 

edge epidermis. This damage was most profound in the decapitated animals, in which their 

wounds became forced open and the cellular debris was pushed through the wound surface. 

The adapted PDMS device proved to be a feasible platform for intact animal 

immobilization, however its design was neither suitable for large wound closure nor 

decapitated animal wound response visualization and thus it had to be modified. 

Depending on which side of the animal was mounted on the coverslip, the original device 

only exposed the dorsal or ventral surface of planaria. Decapitation, on the other hand, 

creates a wound surface which is perpendicular to the animal surface, a plane of orientation 

that was not accessible for observation using the available device. Thus, the PDMS device 

design had to be specially tailored for wound response visualization in the decapitated 

animal. 
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Figure 3-2. Device for orthogonally mounted sample imaging. 
Schematics of device design (A). Negative pressure ensures device adhesion to the 
coverslip. The animal is mounted in the “theta” capillary. The circulation channel 
allows hydration and washing of the mounted sample. Schematics representing animal 
mounting in the capillary into capillary (B). 
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To visualize the decapitation-elicited wound surface, animals had to be mounted 

perpendicular to the coverslip. However, a PDMS chamber that would enable 

immobilization of the animals in this orientation could not be successfully designed. We 

reasoned that the cellular response to tissue loss could be visualized if decapitated animals 

were immobilized within a perpendicularly-positioned glass capillary, therefore we 

designed and tested a PDMS platform which allowed a capillary to be maintained in the 

desired orientation (Fig. 3.2). When decapitated worms were loaded into the capillary by 

mouth pipette it became apparent that a conventional capillary did not efficiently constrain 

animal movements. The “theta” capillary (the inside of which is divided into two -D-

shaped channels by a septum), on the other hand, proved to be an efficient immobilization 

platform. The divided capillary contained two chambers, which not only better resembled 

the animal body shape but also allowed removal of the cellular debris by washing prior to 

decapitated-wound visualization.  

Although the capillary approach was found to be a platform to visualize wound 

response in decapitated animals, it only allowed for the mounting of animals of restricted 

sizes and it required carefull sample positioning within the working distance of the 

microscope optics. Therefore, we also sought to develop a more versatile and less labor-

intensive immobilization strategy. Although neither animal immobilization within 

solidifying low melting-point agarose (6%) nor acute exposure to chloretone (0.15%) alone 

were successful, the combination of both these methodologies proved to be efficient. Short 

exposure to chloretone maintained animals immobile long enough for low melting-point 

agarose to solidify over their body surface. As animals recovered after the chloretone 

withdrawal, they were tightly encased within agarose, which completely restricted their 

body movements. This strategy enabled the immobilization of large numbers of animals of 

various sizes. Once solidified, agarose blocks containing an animal could be trimmed and 

positioned in virtually any orientation along the coverslip surface (Fig. 3.3). Injured tissues 

did not deteriorate after mounted animal decapitation and the normal wound muscle 

contraction was visible at the damage site.  
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Figure 3-3. Wound response visualization in low-melting point agarose-mounted 
animals.  
Schematics of animal immobilization in agarose procedure. Chloretone anesthetized 
animals are embedded in low-melting point agarose. Once agarose solidifies, excess 
agarose is trimmed. To follow wound response after tissue loss, animals are decapitated 
and their wounds positioned in front of the microscope optics.  
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3.2 Cell labeling 

The development of immobilization methodologies allowed us to visualize the 

dorsal or ventral animal surface with transmitted light microscopy. However, resolving 

cellular behaviors within animal tissues or imaging orthogonally-mounted decapitates 

required fluorescent labeling of the epidermal tissue. Exogenous protein expression 

methodologies are not yet developed in planaria, therefore we explored the possibility of 

labeling planarian tissues with various commonly available fluorescent dyes. 

Cell permeable organic dyes 

Since the main goal of this project was to follow wound response at the epidermis, 

the outermost tissue of the animal, it was reasoned that soaking intact planaria in cell-

permeable dyes would allow specific labelling of this tissue. The properties of the Cell 

Tracker and Cell Trace family of fluorescent probes (Invitrogen) made them seem well 

suited for this purpose. Once these cell permeable molecules enter the cytoplasm, they are 

converted into fluorescent probes which also covalently bind cellular proteins and 

therefore ensure well-retained cell labeling (Haugland et al., 2002). To label the planarian 

epidermis, multiple intact animals were soaked in 10 µM of dye and rinsed a few times 

with 1x Montjuich salt solution before imaging. Labeling with Cell Tracker dyes (Cell 

Tracker green and Cell Tracker orange) was the most successful approach. Robust 

epidermal-specific discrete cell labeling was achieved after 15 min incubation in this dye 

solution (Fig. 3.4, A). Extended incubation also results in the accumulation of the dye in 

the epidermal rhabdites, an intracellular vesicle compartments, as well as it can label the 

gut epithelia (not shown). Interestingly, in contrast to the Cell Tracker dyes, 15 min 

incubation in Cell Trace (10 µM) exclusively labels rhabdite compartment (Fig. 3.4, B) 

without labeling the epidermal cell cytoplasm. The robust epidermal tissue nuclei staining 

was achieved by soaking animals for 45min in Draq5 (10 µM) (Fig. 3,4, C). 
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Although Cell Tracker dyes allowed visualization of live epidermis, the 

comprehensive analysis of epidermal cell behavior required cellular membrane labeling 

methodologies. Traditionally, DiI or its derivatives are used to label the cellular membrane 

of various organisms (Terasaki and Jaffe, 2004, Haugland, 2002 #3616). However, soaking 

animals in these lipophilic dyes did not label the planarian epidermis. Alternative dye 

delivery strategies were also tested; however, neither exposure to an oily dye suspension, 

nor placing dye crystals into the epidermal layer were effective. Although soaking of the 

animal in Cell Mask dye (Invitrogen) labeled the epidermal cell membrane (Fig. 3.4, D) 

and cilia (Fig. 3.4, D’), the staining was not robust and resulted in high background 

staining. 

 

 

Figure 3-4. Live epidermal tissue labeling with cell permeable dyes. 
Epidermal cell labeling with Cell Tracker Green (A), rhabdite labeling with Cell Trace 
Far Red (B), nuclei labeling with Draq5 (C), cell membrane (D) and cilia (D`) labeling 
with Cell Mask dye. 10 µm scale bar. 
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DiOlistics 

Molecule delivery by high velocity particle bombardment (biolistics) has been 

successfully used in various organisms (Christou et al., 1988; O'Brien and Lummis, 2004; 

Praitis, 2006; Sambrook and Russell, 2006). Although biolistics is primarily used to deliver 

nucleic acids, this method can also be used to deliver a broad variety of molecules. Several 

authors have used this approach for DiI or its derivative molecule delivery and cell labeling 

(DiOlistics) (Gan et al., 2000; O'Brien and Lummis, 2004; O'Brien and Lummis, 2007; 

O'Brien and Lummis, 2006). Successful application of DiOlistics in other systems, 

encouraged us to adapt this technique for planarian cell labeling. The particle labeling and 

loading methodology was specifically adapted for a PDS-1000/He (Biorad) instrument, 

and thus the optimal parameters for robust epidermal tissue labeling were established (Fig 

3.5). Specifically, 0.5mg of labeled 0.7 µm tungsten particles were loaded into the 

instrument by drying their ethanol (or methylene chloride) suspension onto a macro-carrier 

disk, a 10 psi vacuum was created inside the instrument, and the dry animal surface was 

bombarded from 9 cm by accelerating labeled particles with a 1100 psi burst of helium gas. 

 

Figure 3-5. Planarian tissue labeling by DiOlistics. 
Robust epidermal cell (live) labeling by DiI labeled particle bombardment (A), sub-
epidermal muscle fiber (live) labeling (B). 10 µm scale bar. 
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Dynamic interaction in intact epidermis 

To demonstrate the efficiency of our newly developed suite of live imaging 

methodologies, we followed cellular dynamics within intact planarian tissue. One day after 

the dorsal epidermis labeling with DiOlistic (DiI), a handful of intact animals were 

mounted into PDMS device (Fig 3.1) and their epidermal tissue was visualized live. Since 

this labeling strategy robustly outlined the cellular membrane of discrete cells scattered 

along the animal surface, the shape of basolateral surface of individual epidermal cells 

could be visualized. Intact epidermis behavior was analyzed in a few dozen animals and 

vast majority of the cells (hundreds) stood straight within columnar epithelia with their 

entire lateral surface perpendicular to the basal membrane. To our surprise, the 

morphology of several cells (n=4) within a few animals was considerably different. 

Specifically, although these few cells were still part of the epidermal layer, their 

basolateral surface protruded far into the surrounding epidermis (Fig. 3.6). At the 

basolateral surface these cells formed prominent lamellipodia-like or invadopodia-like 

protrusions as well as multiple smaller filopodia. It appeared that extended protrusions 

intervene between the neighboring epidermal cells or project under the neighbor interface 

with the basal membrane. Filopodial projections were extended and retracted on multiple 

sides of the cells, consistent with the possibility that cells are probing their environment 

rather than trying to migrate in any specific direction. 

The biological significance of observed behaviors still has to be characterized more 

vigorously. The fact that a vast majority of diolisticaly labeled cells did not exhibit 

protrusive behaviors suggests that latter is not a response to labeling technique used. The 

rarity of this cellular protrusion activity might have several explanations: epidermal cells 

exhibit these behaviors only for a short period of time; it is associated with rare 

homeostatic event (e.g. new cell incorporation into the epidermal layer or reorganization of 

epidermis); or these behaviors are restricted to scarcely distributed epidermal cell 

population. So far, protrusive cell behaviours were not observed in cell permeable dye 

labeled epidermis. Cell Tracker dyes predominately label cell cytoplasm in a labeling 

pattern that is not conducive for fine cellular membrane extension visualization. Thus, 

contrary to biolistics, cell permeable dye labeling provides a relatively uniform epidermal 

staining, which might make it difficult to discriminate lateral surface of an individual cell 

and its protrusions within the tissue. 
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Figure 3-6. The dynamic cellular bahaviuor within inatct epidermis.  
Schematic representation of the observed behaviors (A): epidermal cells exhibit protrusive 
behaviors along their basal lateral surface (B and C). DiI labeling (dark) within unlabeled 
tissue. Enhanced contrast at the lower panels (B` and C`). 10 µm scale bar. 
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Cellular wound response in S. mediterranea 

4.1 Cellular response to tissue damage  

To describe the response of the epidermis in S. mediterranea to tissue damage, we 

performed laser mediated tissue ablation. Since the extent of epidermal damage can be 

controlled to some degree in this assay, we visualized the epidermal response to different 

size wounds. Interestingly, the epidermal wound response varied with the extent of 

epidermal damage (Fig. 4.1). 

 

Schematic representation of the wounding paradigm (A). Laser elicted wounds close either 
by symmetric (B) or asymmetric (C) response of wound edge epidermis as well as by plug 
formation (D). The ablated tissue area is marked by red dashed line: (B) symmetrical 
wound response after 550 µm2 ablation (~ 4 cells ablated), (C) asymmetrical wound 
response after 9500 µm2 ablation (~ 70 cells ablated), and (D) plug frormation after 6000 
µm2 ablation (~ 44 cells ablated). The average epidermal cell occupies 134.13 µm2 area 
(Appendix 3). 10 µm scale bar. Time scale is minutes:seconds 
  

 

Figure 4-1. Diverse cellular wound responses to superficial tissue ablation.  



 

64 
 

 
 The smallest wounds (around 550 µm2 tissue or 4-cell ablation) closed within 

seconds by a rapid and uniform contraction of the wound margin (2/2) (Fig. 4.1, A). 

Visually, this response resembled that of actin cable mediated contraction wound closure. 

However, the mechanism of small wound closure could not be further characterized using 

light microscopy. We were not able to discern whether small wounds close by epidermal 

wound response and/or underlying muscle contraction. 

To visualize epidermal response to more severe tissue damage we ablated 6000-

10000 µm2 (roughly 44-77 cells) of epidermis. In 3/9 cases epidermal wound response was 

not uniform along the circumference of the wound (Fig. 4.1, B). Shortly after tissue 

damage (<2 min), the epidermis at one edge (or several edges) of the wound flattened and 

extended over the wound surface. Its cells collectively migrated over the wound surface, 

like a multicellular tongue. This structure reached the opposing wound edge and thus 

covered entire wound surface within 3 min after injury. In 6/9 cases no cellular behaviors 

were visible at the wound edge epidermis (Fig. 4.1, C). Minutes after damage, the wound 

surface became irregular and the wound edge could no longer be identified. Over the next 

few minutes the appearance of the wound surface continued to change. It gradually 

darkened and, as the animal contracted its tissues (>10 min), it became apparent that a 

scab/plug structure formed over the damaged area. 
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The S. mediterranea response to tissue damage was also visualized using florescence 

microscopy (Fig. 4.2). Shortly after the laser ablation (minutes) an amorphous, fluorescent 

cloud of particles was released from cells near the damage site (5/5). These structures 

quickly expanded over the damage site and thus interfered with our ability to visualize the 

cellular wound response at the wound edge epidermis. As they expanded, the shape of 

individual particles got better defined. By 7-16 min the particles were elongated, rod-like 

structures, suggesting that they were likely rhabdites released from the damaged tissue. 

Subsequently (7-24 min), the expanded particles started to disintegrate and their contents 

dispersed further over the wound surface.

 

Figure 4-2. Exocytic wound response after tissue ablation.  
Schematic representation (A): rod-shaped particles are released from a wound surface (B). 
Upon released particles expand and diffuse along wound surface. 550 µm2 ablation (~ 4 
cells). Minutes. 10 µm scale bar. 
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4.2 Cellular response to tissue loss  

 

The S. mediterranea response to tissue loss was characterized by monitoring the 

cellular behaviors of fluorescently labeled epidermis cells in the decapitated animals (pre- 

pharyngeal amputation). Capturing the cellular behavior along the entire wound edge 

epidermis in high resolution and through the entire wound closure proved to be extremely 

challenging. To visualize cellular wound response live, around one hundred animals were 

immobilized in agarose and decapitated (Fig. 3.3; pharyngeal amputation). Specimens 

which maintained tissue integrity after immobilization as well as remained immobile after 

the decapitation (roughly the fourth of immobilized animals) were subjected for live 

imaging. To make sure that manipulation had not interfered with animal’s ability to 

respond to wound, we attempted to follow wound closure only in the specimens (n=9) 

which exhibited the body wall muscle contraction along the entire wound circumvent, the 

first and stereotypical wound response. Re-occurring tissue movements, poorly defined 

wound edge epidermis as well as fluorescent debris impeded our ability to follow wound 

response in most of the specimens (8/9). Nevertheless, the entire wound edge epidermis of 

one specimen was successfully visualized and its cellular behaviors were followed through 

the wound closure in high resolution for a first time in planaria (Fig. 4.3). 

The wound edge epidermis exhibited dynamic cellular behaviors throughout the 

wound closure process (Fig. 4.3). Shortly after the decapitation, epidermal cell protrusions 

were visible along the entire circumference of the wound. Lamellipodia and filopodia-like 

structures continuously extended into the wound, but they did not make stable contacts 

with its surface. Live imaging revealed that decapitated animal wound re-epithelialization 

is driven by epidermal cell extension rather than cell migration. Wound closure started (7 

min) close to the intersection between the dorsal and ventral wound edges. The gap 

between opposing wound edges was the narrowest in this region and epidermal cell 

extensions breached it first. As dorsal and ventral epidermis protrusions reached each 

other, they made prominent contacts which pulled the opposing wound edges closer 

together. The narrowing wound surface allowed subsequent contacts between the dorsal 

and ventral epidermis, and the opposing wound edges continued fusing inwards in a 

zipper-like fashion (zipper-like closure; Fig. 4.3, B). 
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Figure 4-3. The mechanism of wound closure in decapitated animals.  
Schematic representation (A) and live imaging (B). Wound closure by filopodia zipper and 
long extension of wound edge epidermis (arrows). Cell Tracker Green labeled epidermis 
(white), wound surface (dark). Time scale is hours:minutes:seconds. 10 µm scale bar.  
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Epidermal cell interactions were not limited to closely juxtaposed wound edges. 

Occasionally, opposing wound edges interacted via long epidermal cell projections. 

Pronounced multicellular ventral epidermal extensions extended far (~80 µm) across the 

wound surface (protrusions across the wound; Fig. 4.3, B). Although these epidermal 

structures projected parallel to the advancing wound edges, they exhibited dynamic 

filopodia, which interacted with the dorsal epidermis wound edge. Narrower and less 

complex extensions projected from the dorsal epidermis (protrusions within the wound; 

Fig. 4.3, B). These structures extended over the wound surface (~50 µm) and made 

permanent contacts with the ventral wound edge. Upon contact, opposite wound edges 

were brought closer together and thus wound closure was nearly completed within 1.5 hrs. 

The wound closure time in the agarose immobilized animal corresponded to the time of 

wound surface smoothening during gross tissue wound response visualization observed in 

non-immobilized animals (Fig. 2.4) as well as to electron microscopy study results (Fig. 

2.5), suggesting that wound closure dynamics were not altered by agarose immobilization 

methodology or florescent tissue labeling. 

Cellular response was also followed in diolisticaly labeled epidermis. We labeled 

dorsal epidermis in around hundred animals and subsequently subjected them to agarose 

immobilization strategy to visualized their wound response. The wound contraction was 

clearly present in five specimens, however the wound edge epidermis could be visualized 

and successfully followed for an extended time period only in a single animal (Fig. 4.4). In 

response to tissue loss, epidermis formed long and thin extensions of wound edge 

epidermis analogues to the one captured in wound SEM analysis (Fig. 2.6).   

 



 

69 

 

During the wound closure a few epidermal cells at wound edge epidermis extended from 

the wound margin and migrated over 100 µm to reach the opposite wound edge (Fig, 4.4). 

Throughout this process, the migrating cell(s) remained attached to the wound edge by the 

fine stretch of their cytoplasm, which got increasingly thinner as epidermis moved further 

along the wound surface. As migrating cell(s) reached the wound edge they incorporated 

into the opposing epidermal layer. At the same time, the recently breached wound margins 

moved closer together and wound closure advanced further.  

To demonstrate that long epidermal extensions formation is not specific to agarose 

immobilization methodology, we attempted to visualize them in capillary immobilized 

animals. We also sought to provide the detail description of this novel structure behaviour, 

thus we followed wound response in cytoplasmic (Cell Tracker) and nuclear (Draq5) dye 

labeled epidermis. Around hundred labeled animals were decapitated and subjected to 

immobilization in capillary. Wound surface could be visualized in 20 specimens, however 

due to animal movements or poorly defined wound edge epidermis the wound response 

could not be followed live in most of them (19/20). The cellular wound response of wound 

edge epidermis was successfully followed in one specimen (Fig. 4.5) and its epidermis 

formed long projections on two separate occasions (Fig. 4.5, A and B). The extensions of 

wound edge epidermis were either retracted (Fig. 4.5, A) or reached over the wound and 

extended further until they became too thin and hence the fluorescent label of their 

cytoplasm was too weak to detect it (Fig. 4.5, B). Epidermal nuclei labeling (Draq5) 

demonstrated that these structures are multicellular (Fig. 4.5, B and B`). Intriguingly, 

 

 

Figure 4-4. Epidermal cells migrate and breach the wound surface.  
Occasionally cells extend from the one wound edge, migrate along the wound surface to 
incorporate into the opposing wound edge (arrow) epidermis. Cells remain attached to their 
original location throughout the migration. Schematics at the upper panel, live imaging 
snapshots at the lower panel. DiI labeled dorsal epidermis (red). Time scale is 
minutes:seconds. 10 µm scale bar.  
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tracking these nuclei further captured cell translocation along epidermal projections (Fig. 

4.5, B`) indicating that these long structures are not simply the protrusions of wound edge 

epidermis: they represent a distinct mode of cellular migration over the wound surface. 

Therefore, we call these discrete, long range, uni- or multi-cellular extensions of the wound 

edge epidermis “cellular bridges”. 

 

 
Figure 4-5. Cellular migration along the wound edge epidermis extension.  
Long multicellular extensions of wound edge epidermis were followed live in decapitated 
and capillary immobilized animals. Wound edge epidermis (white) extend long 
multicellular projections (white arrow) over the decapitated animal wound (no label, dark). 
Epidermal extensions are either retracted (A) or are extended further (B) and mediate cell 
translocation over the wound surface (nuclei, magenta arrows) (B and B`). Snapshots form 
a time-lapse movie. Epidermal cells labeled with Cell Tracker Green (white), nuclei 
labeled with Draq5 (magenta). 10 µm scale bar. wound surface (dark). 10 µm scale bar.
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4.3 Epidermal tissue regeneration 

Due to the inability to label live, differentiated cells, neither the fate of the wound 

epithelia after wound closure nor its cell contribution to planarian tissue regeneration was 

observed previously. Our electron microscopy study has showed that differentiated 

epidermis can rearrange and contribute to the cellular pool of re-growing tissues. To better 

describe this process, we applied live cell labeling to follow terminally differentiated 

epidermal cells during head regeneration (Fig. 4.6). Epidermal tissue labeling results were 

consistent with our previous observations. The regenerating epidermis consisted of both 

newly incorporated, unlabeled cells as well as labeled, and thus differentiated wound edge 

epidermis-derived cells. Labeled cells were found far beyond the amputation site; they 

were scattered over the entire regenerated surface. By 5-7 dpa, when most head tissues had 

regenerated, labeled cells accounted for roughly half of the epidermal layer, indicating that 

differentiated cells were a major contributor to the regenerated epidermis. The presence of 

wound edge epidermis within reestablished columnar epidermis shows that although the 

wound epithelia is a temporary tissue, the fate of its cells is not limited to this tissue 

formation. Epidermal cells that participate in wound healing can re-differentiate into 

columnar epidermis, thus remaining part of epidermis for more than two weeks after 

wound closure. Throughout this time the number of epidermal wound edge derived cells 

gradually decreases with kinetics that seem consistent with that of the normal epidermal 

cell turnover rate (Tu et al., 2015; van Wolfswinkel et al., 2014). 
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Figure 4-6. Wound edge epidermis contributes to loss tissue regeneration.  
After wound closure, cells of wound edge epidermis incorporate into the regenerated 
columnar epidermis and remain in this tissue form more than two weeks following 
decapitation (A). A, upper panel: cells that resided in epidermal layer at the time of 
decapitation, Cell Tracker Green (white); newly incorporated epidermal cells (dark, no 
labeling). A, lower panel: transmitted light images of upper panel. B. Optical sections 
demonstrate that live cell labeling is epidermis specific (5 dpa); Cell tracker cells (white) 
are found in epidermis (most superficial tissue) and absent in mesenchyme.  
Red dashed lines represents decapitation site. 50 µm scale bar. 
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Molecular characterization of S. mediterranea epidermis 

5.1 Epidermal dissection 

A molecular description of the planarian epidermis required the development of an 

epidermal dissection protocol which would allow for the precise dissociation of the animal 

epidermis away from the underlying tissues. During the development of animal 

immobilization techniques, we discovered that high salt treatment can cause epidermal 

layer detachment from the underlying basement membrane. Immediately after exposure to 

1M NaCl, animals have curled their body ventrally and released rhabdite material. 

Subsequent animal movements ceased and the changes within the epidermis became 

apparent. Within 4-7 min of NaCl treatment, the normally translucent epidermal tissue 

started to become opaque, a transition which is marked by the epidermal layer detachment 

from the basal membrane (Fig. 5.1, B). Although animals did not survive past this point, 

their tissues did not disintegrate and epidermis remained as a continuous opaque layer 

along the animal surface. Therefore, we reasoned that the detached epidermal tissue could 

be surgically dissected and removed from the animal surface. 

 

Figure 5-1. Epidermal dissection methodology.  
Salt treatment (7min, 1M NaCl) causes epidermis detachment from basal membrane. 
Epidermal cross-section before (A) and after salt treatment (B). Epidermal layer is 
dissection (C and D). Basal membrane remains intact after epidermal dissection, H&E 
staining (E). Scale bar is 5 µm in A and B, 50 µm in C and D, 20 µm in E. 
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Once detached from the basal membrane, the entire dorsal or ventral epidermis can 

be harvested from the animal surface (Fig. 5.1, C and D) by a fine insect pin (total 

procedure time 10min). Due to the flexible nature of the instrument, the gentle application 

of its longitudinal surface allows one to scrape the pieces of epidermal sheets without 

obvious damage to the underlying tissues (Fig. 5.1 E). This procedure does not damage the 

underlying basal membrane and the sub-epidermal pigment layer remains intact after 

epidermal cell collection.  

We further assessed whether our epidermal dissection methodology is compatible 

with any downstream molecular characterization approaches. Specifically, we subjected 

dissociated epidermal samples to protein and RNA isolation protocols. The precipitated 

proteins were difficult to solubilize and thus the amenability of epidermal samples to 

proteomic approaches was limited. However, nucleic acid purification was successful and 

up to 210 ng total RNA was isolated from the individual animal dorsal or ventral 

epidermis. Total RNA concentration was higher than 75 ng in 5/10 dorsal and 6/10 ventral 

samples. The integrity of isolated RNA was confirmed by electrophoretogram 

(Bioanalyser, Agilen): samples had well defined ribosomal RNA peaks with no signs of 

RNA degradation (smear).  

 

5.2 Transcriptional profile of S. mediterranea epidermis 

Our newly developed tissue isolation methodology was subsequently applied to 

characterize the transcriptional profile of S. mediterranea epidermis. In order to identify 

epidermal-specific transcripts, epidermal samples need to be compared to a control sample 

representing all animal tissues excluding the epidermis itself. However, harvesting the 

entire dorsal and ventral epidermis (dorsal and ventral) proved to be technically 

challenging. Considering that epidermal tissue represents only a small fraction of the entire 

animal body, epidermal transcripts should be underrepresented in an all-tissue context. 

Therefore, we reasoned that epidermally enriched transcripts could be identified by 

differential gene expression analysis between dissected epidermis and whole worm (all 

tissues) (Fig. 5.2). It was also decided that a separate analysis should be performed for 

dorsal and ventral epidermal samples. Dorsal columnar and ventral cuboidal epidermis are 

morphologically distinct and hence their molecular signatures should also differ. 
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Figure 5-2. Epidermal expression profile analysis 
Epidermally enriched genes were determined by comparing expression signatures of 
dissected epidermis and whole worm (WW) samples.Correlation between quadruplicates 
expression profiles (A and A`). Sample “D_7” and “ww_4” (E) data were excluded form 
subsequent analysis (A`). Schematic representation of the expression profile comparisons 
(B). MA plots of differential expression analysis results (adjusted p value < 0.01 and fold 
change > 2): dorsal epidermis vs ventral epidermis (C), dorsal epidermis vs WW (D), 
ventral epidermis vs WW (E). between quadruplicates expression profiles (A and A`). 
Sample “D_7” and “ww_4” (E) data were excluded form subsequent analysis (A`). 
Schematic representation of the expression profile comparisons (B). MA plots of 
differential expression analysis results (adjusted p value < 0.01 and fold change > 2): 
dorsal epidermis vs ventral epidermis (C), dorsal epidermis vs WW (D), ventral epidermis 
vs WW (E).  
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Samples (quadruplicates) representing dorsal and ventral epidermis of single worm 

were collected and their transcriptional profile determined (Fig. 5.2). The transcription 

profile analysis of most quadruplicates showed high degree of correlation (Fig. 5.2, A) and 

these samples were used for subsequent analysis (Fig. 5.2, A’). To determine epidermally 

expressed transcripts, the expression profiles of dorsal and ventral epidermis samples were 

compared to a dissection buffer treated whole worm (WW), all-tissue reference (Fig. 5.2, 

B). Differential expression analysis between epidermal samples and WW reference 

identified 6189 dorsal-enriched and 5886 ventral- enriched genes (adj. p value<0.01 and 

fold change >2). Subsequently, different tissue markers were used to demonstrate the 

specificity of our epidermal-enrichment approach. Genes with published epidermal 

expression patterns, but not markers of other sub-epidermal tissues (differentiating 

progenitors, gut, nervous system, muscle) (Eisenhoffer et al., 2008; Tu et al., 2015; van 

Wolfswinkel et al., 2014), had at least two-fold enrichment either in dorsal or ventral 

epidermis samples compared to WW samples (Fig. 5.3). Therefore, we were able to 

validate the specificity of our dorsal and ventral tissue-enrichment approach. Genes with 

known dorsal-specific expression patterns such as bambi (Gavino and Reddien, 2011) and 

slc-26a-4 (Vu et al., 2015), were over four-fold enriched in dissected dorsal epidermis 

when compared to ventral samples. 

 

comparison  up  down 

Dorsal/ww  6189  8568 

Ventral/ww  5886  8744 

Dorsal/Ventral  2478  3140 
Table 1. Differential expression analysis summary.  
Gene number in Fig. 5.2. Adjusted p value < 0.01 and fold change > 2. 
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Next, we sought to perform gene ontology (GO) analysis to describe the processes 

and the structures represented in the epidermal transcription profiles. The epidermal 

transcription profile analysis (Fig. 5.2) have identified extensive list of epidermally 

enriched genes (Table 1). To reduce gene number for subsequent GO term analysis we 

focused on epidermal genes with highest enrichment in respect to whole animal samples 

(FC>8 and p. value <0.01). Reduced gene list included genes enriched in both dorsal and 

ventral samples (790), dorsal sample specific genes (585) and ventral sample specific 

genes (1045). GO analysis of these datasets identified 1880 terms enriched in both dorsal 

and ventral datasets and 1894 terms enriched in ventral specific dataset (p.value > 0.01). 

No terms were significantly enriched in dorsal sample specific gene dataset. The dorsal and 

ventral dataset contained terms associated with various epithelia structures (e.g. various 

cellular junctions, cilia) as well as terms associated with an array of signaling pathways 

(Table 2, A). Specifically, Notch, JNK, STAT, NF-kappaB and integrin signaling as well 

as positive regulation of non- and canonical Wnt signaling pathways. The ventral sample 

specific terms included TOR, Erbb, Slit-Robbo and Smoothened signaling pathways, 

negative regulation of non-canonical Wnt signaling pathway as well as chromatin 

modifying machinery associated terms (MLL3/4, Set/Compass, SAGA) (Table 2, B). 

 

  

 

Figure 5-3. Epidermal expression profile validation. 
Epidermal markers, but not other tissue markers, are enriched in dissected epidermis 
samples (epidermal/whole animal sample comparison).  
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Table 2 Gene ontology terms represented in epidermal samples. 
Datasets representing epidermally enriched genes (FC>8 and p. value<0.01 in respect to 
whole animal samples) were analyzed. The selected gene ontology terms and their 
enrichment p. value displayed: enriched in both dorsal and ventral sample (A), enriched 
and specific to ventral sample (A). 

A   
GO terms enriched in both Dorsal and Ventral samples  p. value 

integrin‐mediated signaling pathway  1.62E‐13 

intermediate filament cytoskeleton  4.04E‐13 

apical cortex  9.02E‐13 

basal plasma membrane  1.29E‐12 

positive regulation of non‐canonical Wnt signaling pathway  3.45E‐11 

dorsal/ventral pattern formation, imaginal disc  2.58E‐10 

epithelial cell type specification, open tracheal system  6.79E‐10 

Notch signaling involved in heart development  1.39E‐08 

establishment or maintenance of epithelial cell apical/basal polarity  1.60E‐08 

1. intermediate filament  2.39E‐08 

apical junction complex  3.00E‐08 

cation channel complex  5.08E‐08 

adherens junction  1.81E‐07 

bicellular tight junction  3.45E‐07 

JNK cascade  4.04E‐07 

positive regulation of protein kinase B signaling  5.62E‐07 

cilium morphogenesis  1.91E‐06 

toll‐like receptor signaling pathway  2.09E‐06 

regulation of insulin receptor signaling pathway  1.29E‐05 

regulation of GTPase activity  5.54E‐05 

positive regulation of exocytosis  7.79E‐05 

I‐kappaB kinase/NF‐kappaB signaling  8.29E‐05 

focal adhesion  1.52E‐04 

regulation of JAK‐STAT cascade  1.85E‐04 

protein kinase B signaling  2.40E‐04 

positive regulation of canonical Wnt signaling pathway  4.54E‐04 

   
B  
2. Ventral sample specific GO terms  p. value 
positive regulation of TOR signaling  2.37E‐10 

3. smoothened signaling pathway 8.79E‐10 

negative regulation of non‐canonical Wnt signaling pathway  1.30E‐08 

MLL3/4 complex  1.09E‐07 

SAGA complex  2.56E‐07 

Slit‐Robo signaling complex  4.15E‐07 

Set1C/COMPASS complex  2.92E‐06 

regulation of ERBB signaling pathway  1.01E‐03 
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Epidermally enriched gene library  

Differential expression analysis has provided an extensive list of epidermally-

enriched genes for further molecular and functional characterization of the S. mediterranea 

epidermis. To create a comprehensive resource for further studies, a specific cohort of 

these genes (~460) were selected and cloned to generate an “epidermally-enriched gene 

library”.This collection was composed of epidermal genes (dorsal and/or ventral) which 

had the highest fold change or mostly significant enrichment (smallest p. value) in over the 

all tissue-whole worm reference. Thus, since transcription factors are crucial regulators of 

epidermal biology (Tu et al., 2015; van Wolfswinkel et al., 2014), an array of epidermal 

genes which contained predicted DNA binding domain were also included into the library. 

We characterized the range of expression patterns represented within the generated 

library by performing an in situ hybridization (ISH) screen. We were able to detect 

expression patterns of nearly one third of the genes cloned (>28%). Virtually all of these 

genes were expressed at the most superficial tissues. Although expression within deeper 

animal tissues staining was rare, some of the genes were expressed broadly throughout the 

animal mesenchyme, outer surface of the pharynx, or within the cells surrounding the 

central nervous system (CNS).  

  

 

 

Figure 5-4. Summary of expression patterns represented within “epidermally 
enriched gene library”. 
Group I: no expression pattern detected; Group II: strong or weak expression pattern along 
animal surface; Group III: expression in discrete epidermal/sub-epidermal cells; Group IV: 
expression pattern resembling ciliated cell distribution; Group V: expression pattern bias to 
dorsal surface; Group VI: expression pattern bias to ventral surface; Group 6: expression 
along dorsal/ventral tissue interface (body edge/perimeter); 
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Based on their expression patterns, the cloned genes were classified into 6 

categories (Fig. 5.4; Table 3): (I) ubiquitous, usually weak expression throughout the 

epidermis; (II) expression within discrete sub-/epidermal cells; (III) ciliated cell-like 

expression pattern (lateral domains of dorsal epidermis and ventral surface); (IV) dorsal 

biased expression; (V) ventral biased expression; (VI) expression at the dorsal and ventral 

epidermis intersection (animal body edge or perimeter). 

The epidermally-enriched genes exhibiting the strongest expression patterns were 

subjected for more detailed characterization with fluorescent in situ hybridization (FISH) 

methodology. The expression patterns of approximately 50 genes were assessed by FISH 

and the expression of 24 genes could be successfully visualized for further 

characterization. Although the expression of most of these genes resembled the expression 

patterns associated with already defined epidermal cell populations (ciliated cells, adhesion 

glands, newly differentiated epidermal cells), some of the patterns appeared to be more 

specific (Fig. 5.5). For example, SMED30006763 was expressed in a subset of ciliated 

epidermal cells, SMED30026425 was expressed in the ventral ciliated epidermis and 

racing stripe cilia, but not in the dorsal-lateral ciliated epidermis. SMED30019993 and 

caveolin (SMED30003024)-encoding transcripts were specifically expressed in the dorsal 

epidermis, whereas another putative caveolin (SMED30003024) gene was specifically 

localized to the ventral epidermis. An Na+/K+-ATPase alpha-subunit (SMED30010071) 

gene had an expression that was enriched in the dorsal epidermis, however it seemed to be 

specifically absent in the ciliated cells of the racing stripe. 

Table 3. Gene number within each expression pattern group (Fig. 5.4) 
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The potential overlap between some of the identified and previously published 

markers of distinct epidermal cell populations (Tu et al., 2015), specifically zpuf-6, vim and 

rootletin, were assessed next (Table 3). All markers which were expressed in both 

epidermis as well as the discrete sub-epidermal cells overlapped to some extent with zpuf6 

expression pattern, a marker of newly differentiated epidermal cells within sub-/epidermis 

(Tu et al., 2015). Thus, our results showed no alternative, zpuf-6 negative epidermal 

progenitor population in S. mediterranea. Epidermal- specific expression patterns which 

did not overlap with zpuf6 were either broadly expressed throughout the epidermal layer or 

were co-expressed with the ciliated cell marker rootletin, suggesting that their expression 

coincides with terminal stages of epidermal differentiation. 

 
 

 
Figure 5-5. Expression patterns of most robust epidermal markers. 
Dorsal and ventral epidermis at the head region. If gene homology could be determined it 
is represented above the expression pattern. Transcript number below the expression 
pattern. Expression pattern (white), DAPI (blue). 50 µm scale bar. 
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Table 4. Identification of markers that overlap with published markers of distinct 
epidermal cell populations.  
zpuf-6+- newly differentiated epidermal cells in the mesenchyme and epidermis; rootletin+- 
ciliated cell marker; vim+ - marks the transition along zpuf-6+ differentiation into ciliated 
(rootletin+) cells; Group number corresponds to marker expression pattern group at Fig.5.5 
and Table 1. 

id  group  
zpuf6 

vim 
rootletin 
(cilia) mesenchyme   epidermis 

SMED30025672  I  no  no  no    

SMED30030663  I  no  yes       

SMED30005345  I  yes  yes  yes  yes 

SMED30022344  I  yes  yes  yes  yes 

SMED30028069  I  yes  yes     yes 

SMED30006268  II  no  no   yes    

SMED30032199  II  no  yes  yes    

SMED30000746  II  yes  yes       

SMED30024850  II  no  no  no  yes 

SMED30029019  II  yes  yes  yes    

SMED30030007  III  no  no  no    

SMED30019305  III  no  no       

SMED30012136  III  no  no       

SMED30006763  III  no  no  no  yes 

SMED30029546  III  no  no  no    

SMED30021874  IV  no  no  no  yes 

SMED30010071  IV  no  yes  yes  yes 

SMED30034787  IV  yes  yes     yes 

SMED30012786  IV  yes  yes     no 

SMED30021589  IV  yes  yes       

SMED30019993  IV  no  no  no  yes 

SMED30000158  V  no  yes  yes    

SMED30026425  V  no  yes  no  yes 

SMED30003024  V           yes 
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Functional screen  

6.1 Phenotype summary  

The generation of an epidermally-enriched gene library has provided candidate 

gene sequences for functional studies in order to determine whether any of them may play 

a role in planarian tissue homeostasis or wound repair. An extensive list (~463) of 

epidermal transcript sequences within the generated clone library provides templates for 

dsRNA synthesis and thus enabled subsequent functional characterization via RNAi 

mediated knock-down. To explore the mechanism underpinning various aspects of 

planarian epidermal biology, we designed a screening strategy capable of identifying 

epidermal genes important for tissue homeostasis, wound closure and regeneration (Fig. 

6.1). Since our epidermal gene library list was too extensive for a feasible functional RNAi 

screen, we decided to focus on genes containing a putative (or predicted) DNA-binding 

domain. We reasoned that knock-down of transcriptional regulator would perturb a vast 

array of downstream targets and thus would yield the highest chance of causing a 

noticeable and quantifiable phenotype. More than hundred epidermally enriched genes 

contained putative DNA binding domain (zinc finger, helix loop helix, homeobox, 

forkhead-box and etc.). This list (Table 5) included transcription factor homologues as well 

as genes typically not associated with transcription regulation but yet containing DNA 

binding domain-like sequences (e.g. homoebox domain in ceramide synthetase 2). We 

have selected 46 of these genes for subsequent functional studies. dsRNAs corresponding 

 
 
Figure 6-1. Functional screen (RNAi) screening strategy to identify genes with a role 
in tissue homeostasis, wound closure and regeneration. 
Multiple doses of dsRNA are administered to intact animals. Any resulting intact tissue 
defects are classified as homeostasis phenotypes. Subsequently animals are decapitated and 
their ability to close wounds and regenerate lost tissue are assessed.  
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to candidate gene sequences were fed to animals every 4 days at least 8 times over a course 

of 36 days and any intact tissue defects (lesions, lysis, reduction in locomotion etc.) were 

classified as homeostasis defects. Genes without any obvious homeostasis defects after 36 

days were subjected to amputation (head and tail) and further screened for wound and 

regenerative response defects for a duration of 12 days after amputation. Animal lysis or 

persistent muscle contraction at the wound site 12-24 hrs after amputation would be 

indicative of a wound closure defect, whereas surviving animal fragments with an inability 

to reestablish anterior and/or posterior tissues would indicate the candidate gene plays a 

potential role in regeneration. 

Intact tissue phenotypes (homeostasis defects) 

Multiple genes (10/46) from our candidate list were identified as giving intact tissue 

phenotypes in our RNAi screen (Fig. 6.2; Table 5). Identified defects included previously 

described (Reddien et al., 2005) as well as novel phenotype classes. The most abundant 

phenotype in our screen (4/46) was whole body lysis, however the severity and length of 

this phenotype progression varied. The phenotype of fork-head domain containing gene 

SMED30006455 as well as zinc-finger domain containing gene SMED30011041 

progressed the fastest, causing complete penetrance and entire animal body lysis after just 

3-4 doses of dsRNA administration.  SMED30000740, a helix-turn-helix containing gene 

exhibited similar phenotype after 6-8 doses of dsRNA (Fig 6.2). Although the knockdown 

of zinc finger protein SMED30001601 with sequence similarity to mouse Growth factor 

independent 1 (Gfi-1) transcription factor eventually also caused animal lysis, the 

phenotype progression was distinct from those mentioned above (Fig 6.2; further 

description at Fig. 6.4). Initially, small lesions appeared above the pharynx on the dorsal 

side of the animal body. As the phenotype further progressed these lesions healed, 

however, the animal body started to curl ventrally, the behavior stereotypical to neoblast 

function perturbation (Reddien et al., 2005). Our screen also identified a phenotype class 

not reported in any previous studies - anterior-posterior axis-specific tissue failure. 

Knockdown of Microphthalmia-associated transcription factor (MITF) - like 

SMED30020410 gene resulted in anterior (head) tissue lysis, whereas fork-head box 

containing gene SMED30035239 RNAi predominantly caused posterior (tail) tissue lysis 

(Fig 6.2). 

Several RNAi conditions caused very specific tissue defects without animal lysis. 

Knockdown of Forkhead box protein P4 (SMED30032631) resulted in loss of body 
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pigmentation (Fig. 6.2), a rare phenotype class which was also identified in previous large 

scale functional screens (Reddien et al., 2005). FoxP4 (RNAi) phenotype progressed from 

the anterior to posterior end of the animal. Worms remained devoid of pigmentation even 

weeks after the last RNAi administration, suggesting either extremely slow pigment cell 

turnover or pigment synthesis. The Fork-head SMED30014407 RNAi knockdown caused 

animal body edema, a common phenotype due to excretory system failure from cilia and 

solute carrier gene perturbation (Reddien et al., 2005; Vij et al., 2012; Vu et al., 2015)(Fig. 

6.2). Knock-down of homeobox gene SMED30016301 with sequence similarity to the 

vertebrate Nk 6.1 transcription factor had a profound effect on animal locomotion/behavior 

(Fig. 6.2). Although these worms exhibited photophobic behavior and tried to avoid the 

light, they could not detach their ventral tail surface from the substrate. Hence, these 

animals extensively extended the anterior portion of their body and exhibited very thinned 

body column, therefore resembling rare “stick and stretch” phenotype reported after 

hepatocellular-associated antigen (NBE.8.11C) RNAi treatment (Reddien et al., 2005). 

Nearly half of identified phenotypes (4/10) were caused by knockdown of forkhead 

box (Fox) transcription factor proteins, indicating that this family plays various distinct 

roles in planarian tissue homeostasis. These evolutionary conserved transcription factors 

(Golson and Kaestner, 2016) are crucial for both metazoan tissue development and 

maintenance and the deletion of even a single Fox transcription factor is usually lethal. In 

vertebrates Fox family members regulate specification, differentiation and maintenance of 

trophectoderm, liver, pancreas, ovaries, intestine, lung, kidney, prostate, brain, thyroid, 

skeletal and heart muscle, skeleton, vascular tissue and immune cells (Golson and 

Kaestner, 2016; Zhu, 2016). Although other phenotype causing genes in our screen 

belonged to different families of transcription regulators (eg. hoemobox, leucine zipper, 

zinc finger), their homologue’s roles in tissue establishment or maintenance have been also 

characterized in vertebrates. NK6 homeobox protein has an important role in beta cell 

establishment in pancreas (Iype et al., 2004) as well as neuronal fate specification (Sander 

et al., 2000). MITF is a basic helix-loop-helix leucine zipper transcription factor involved 

in lineage-specific pathway regulation of many types of cells including melanocytes, 

osteoclasts, and mast cells (Hershey and Fisher, 2004; Watanabe et al., 1998). MITF 

mutations are implicated in Waardenburg and Tietz syndromes, which result in deafness, 

bone loss, small eyes, and poorly pigmented eyes and skin in vertebrates (Moore, 1995; 

Smith et al., 1997; Watanabe et al., 1998). In vertebrates Gfi-1 zinc-finger protein is 

essential transcription repressor for hematopoiesis (Person et al., 2003) as well as inner ear 



 

86 
 

cell maintenance (Hertzano et al., 2004). Its mutation perturbs myeloid differentiation 

(Person et al., 2003)and results in inner ear hair cell loss (Hertzano et al., 2004). 

 

 

  

 

 
Figure 6-2. RNAi screen identified diverse homeostasis phenotypes 
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Table 5. Epidermally enriched genes with putative DNA binding domain (putative transcription factors) and their phenotypes.  

smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

4
. 

R
N
A i Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

Enriched at Dorsal and Ventral epidermis (FC>2): 
                                      

SMED30010536  distal‐less homeobox 5   7.E‐14   3.25    3.41   7.E‐54  1.E‐61  +          

SMED30014407  forkhead box J3   3.E‐16   2.23    3.87   5.E‐33  1.E‐89 
 

Edema       

SMED30002934  forkhead box J1   4.E‐42   2.54    3.24   4.E‐43  3.E‐69  +          

SMED30015041  retinoic acid receptor, beta   3.E‐24   2.95    2.57   4.E‐58  5.E‐49  +     Lysis    

SMED30000740  E74‐like factor 2   7.E‐18   2.78    2.62   7.E‐28  7.E‐27  +  Lysis       

SMED30015704  homeobox A10   3.E‐17   2.87    2.46   5.E‐35  2.E‐28 
 

        

SMED30011754  E74‐like factor 2   5.E‐07   2.51    2.75   1.E‐43  7.E‐55  +          

SMED30016301  NK6 homeobox 1   4.E‐36   2.33    2.92   2.E‐30  2.E‐48  +  Locomotion       

SMED30016899  .  .   2.24    2.73   1.E‐26  5.E‐40  +          

SMED30035514  ankyrin repeat domain 50   3.E‐09   2.00    2.85   2.E‐23  3.E‐47 
 

        

SMED30027170  HIV type I enhancer binding protein 3   1.E‐12   2.38    2.35   2.E‐17  4.E‐18 
 

        

SMED30032625  .  .   2.00    2.65   6.E‐16  2.E‐28 
 

        

SMED30006454  .  .   2.16    2.38   8.E‐16  6.E‐20  +          

SMED30025473  MAX interactor 1, dimerization protein   4.E‐06   1.87    2.64   2.E‐25  5.E‐50  +          

SMED30024319  SAM pointed domain containing ets TF  4.E‐20   1.94    2.45   2.E‐26  1.E‐42 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 

SMED30009043  forkhead box J2   4.E‐28   2.01    2.35   4.E‐20  3.E‐28 
 

        

SMED30018339  .  .   2.29    1.95   3.E‐21  3.E‐17 
 

        

SMED30000458  E1A binding protein p300   0.E+00   2.22    1.92   5.E‐09  1.E‐07  +          

SMED30028553  zinc finger, BED type containing 4   1.E‐64   2.14    1.97   3.E‐34  2.E‐31 
 

        

SMED30002579  E74‐like factor 3   7.E‐07   1.46    2.53   2.E‐08  7.E‐23 
 

        

SMED30018122  myocyte enhancer factor 2C   4.E‐09   1.65    2.25   7.E‐16  2.E‐29 
 

        

SMED30029242  LIM homeobox protein 2   3.E‐29   1.22    2.60   2.E‐12  2.E‐53  +          

SMED30019262  heat shock factor 1   5.E‐36   1.67    1.99   5.E‐19  4.E‐28          

SMED30003975  ceramide synthase 2   2.E‐72   2.41    1.13   4.E‐31  5.E‐09  +          

SMED30023587  .  .   1.34    1.95   6.E‐13  3.E‐27 
 

        

SMED30019431 

D site albumin promoter binding 

protein   2.E‐09   1.86    1.42   2.E‐23  2.E‐15  +          

SMED30013043  runt related transcription factor 2   6.E‐40   1.77    1.36   8.E‐20  1.E‐13 
 

        

SMED30020022  E74‐like factor 5   2.E‐06   1.34    1.71   8.E‐12  1.E‐19 
 

        

SMED30023819  .  .   1.25    1.66   1.E‐11  6.E‐21 
 

        

SMED30020090  zinc finger protein 541   1.E‐21   1.43    1.44   1.E‐16  3.E‐18  +          

SMED30005237  predicted gene 14401   4.E‐17   1.59    1.27   4.E‐14  2.E‐10  +          

SMED30028898  .  .   1.32    1.51   6.E‐11  6.E‐15  +          

SMED30001601  Growth factor independent 1 (Gfi‐1)   7.E‐13   1.65    1.11   7.E‐20  9.E‐11  +  Curling/Lysis       

SMED30005073  zinc finger, BED type containing 5   9.E‐124   1.53    1.22   6.E‐16  2.E‐11 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

SMED30016927  .  .   1.40    1.23   7.E‐11  3.E‐09 
 

        

SMED30031794  myocyte enhancer factor 2A   7.E‐41   1.08    1.49   1.E‐08  1.E‐16  +  Sick       

SMED30006392  Zn finger and BTB domain containing 40   9.E‐08   1.17    1.26   5.E‐06  4.E‐07 
 

        

SMED30008041  .  .   1.13    1.27   1.E‐07  4.E‐10 
 

        

SMED30014937  ELK1, member of ETS oncogene family   4.E‐10   1.01    1.28   1.E‐07  2.E‐12 
 

        
                     
Enriched at Dorsal epidermis (FC>2): 

                                      
SMED30026019  msh homeobox 1   5.E‐37   4.14    0.05   6.E‐34  9.E‐01  +          

SMED30031351  GATA binding protein 3   3.E‐49   4.00   ‐0.25   2.E‐33  4.E‐01  +          

SMED30032395  T‐box 3   2.E‐118   3.89   ‐0.42   4.E‐18  3.E‐01  +          

SMED30032592  ovo like zinc finger 1   4.E‐47   3.42    0.34   1.E‐37  2.E‐01  +          

SMED30000485  PR domain containing 1, with ZNF domain   4.E‐55   3.17   ‐0.82   3.E‐17  2.E‐02  +          

SMED30013810  teashirt zinc finger family member 2   2.E‐06   2.96    0.92   1.E‐28  2.E‐04 
 

        

SMED30011553  T‐box 2   3.E‐72   2.62   ‐1.34   2.E‐32  5.E‐10  +          

SMED30010268  forkhead box D3   7.E‐44   1.32   ‐2.23   9.E‐03  3.E‐04 
 

        

SMED30029873  early growth response 1   8.E‐28   2.41    0.68   2.E‐38  1.E‐04  +          

SMED30031744  forkhead box K1   9.E‐47   1.95    0.70   2.E‐25  9.E‐05 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

SMED30014326  ovo like zinc finger 1   9.E‐50   1.36   ‐1.41   2.E‐08  7.E‐08  +          

SMED30022030  early growth response 4   3.E‐25   1.74    0.32   3.E‐04  5.E‐01 
 

        

SMED30020689  E74‐like factor 4   3.E‐27   1.56    0.77   1.E‐19  2.E‐06  +          

SMED30009224  early growth response 1   2.E‐24   1.62    0.33   2.E‐03  5.E‐01 
 

        

SMED30032631  forkhead box P4   3.E‐23   1.46    0.59   4.E‐16  6.E‐04  +  Albino       

SMED30029780  early growth response 4   7.E‐26   1.51    0.24   7.E‐04  6.E‐01 
 

        

SMED30003389  serum response factor   1.E‐28   1.45    0.25   4.E‐15  2.E‐01 
 

        

SMED30026666  zinc finger protein 341   4.E‐42   1.08    0.94   7.E‐07  5.E‐06          

SMED30017247  .  .   1.28    0.40   2.E‐03  4.E‐01 
 

        

SMED30029253  .  .   1.12    0.70   1.E‐03  4.E‐02 
 

        

SMED30027272  CREB binding protein   0.E+00   1.11    0.70   3.E‐11  1.E‐05 
 

        

SMED30006455  forkhead box J3   2.E‐17   1.16    0.54   8.E‐13  6.E‐04  +  Lysis       

SMED30028733  Pbx/knotted 1 homeobox 2   1.E‐61   1.16    0.35   5.E‐08  9.E‐02  +        No anterior reg. 

SMED30014280  l(3)mbt‐like 3 (Drosophila)   1.E‐88   1.07    0.40   9.E‐06  9.E‐02  +          

SMED30017865  nuclear transcription factor‐Y alpha   3.E‐26   1.01    0.51   7.E‐09  3.E‐03 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

Enriched at Ventral epidermis (FC>2): 
                                      

SMED30026741  Kruppel‐like factor 4 (gut)   2.E‐42  ‐5.53    2.01   2.E‐04  2.E‐03  +          

SMED30008131  orthodenticle homeobox 1   1.E‐17  ‐3.36    4.46   1.E‐20  6.E‐82 
 

        

SMED30013740  forkhead box D1   2.E‐44  ‐4.50    2.01   5.E‐21  2.E‐11 
 

        

SMED30032163  regulatory factor X, 4   5.E‐46  ‐1.40    4.58   2.E‐07  6.E‐61 
 

        

SMED30030504  Iroquois related homeobox 6 (Drosophila)   6.E‐38  ‐2.92    2.69   2.E‐10  9.E‐14 
 

        

SMED30018592  ovo like zinc finger 2   4.E‐35  ‐3.35    1.58   2.E‐04  4.E‐03 
 

        

SMED30033757  forkhead box J1   1.E‐34   0.69    3.49   7.E‐03  1.E‐44  +          

SMED30000893  NK2 homeobox 4   3.E‐27  ‐1.14    2.80   1.E‐01  6.E‐05  +          

SMED30016788  zinc finger protein of the cerebellum 2   8.E‐81  ‐1.71    2.28   1.E‐07  2.E‐15  +          

SMED30026965  TEA domain family member 1   3.E‐71   0.21    2.56   3.E‐01  3.E‐43  +          

SMED30003390  .  .   0.92    2.09   4.E‐05  2.E‐22 
 

        

SMED30021262  RAB GEF 1   1.E‐72   0.96    1.81   4.E‐08  1.E‐26  +          

SMED30001802  .  .  ‐1.60    1.12   6.E‐06  7.E‐04 
 

        

SMED30001785  RAR‐related orphan receptor alpha   3.E‐19  ‐0.90    1.52   8.E‐04  2.E‐10  +          

SMED30001207  calmodulin binding transcr.activator 2   1.E‐27   0.48    1.65   1.E‐02  1.E‐19 
 

        

SMED30032613  homeobox A4   6.E‐33   0.92    1.39   2.E‐03  6.E‐07 
 

        

SMED30021694  heat shock factor 1   1.E‐26  ‐0.67    1.46   3.E‐03  4.E‐12 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

SMED30006028  .  .  ‐1.09    1.07   3.E‐02  2.E‐02  +          

SMED30000346  .  .   0.38    1.45   4.E‐02  2.E‐16 
 

        

SMED30011041  .  .   0.07    1.42   8.E‐01  3.E‐08 
 

Lysis       

SMED30011885  cAMP responsive element BP 3‐like 4   3.E‐23   0.93    1.08   6.E‐08  4.E‐11 
 

        

SMED30032477  endothelial differentiation‐related 1   2.E‐51   0.58    1.25   3.E‐03  2.E‐11 
 

        

SMED30032935  scratch family zinc finger 1   4.E‐31  ‐0.53    1.18   4.E‐01  3.E‐02 
 

        

SMED30003001  signal transducer and activator of transcrip. 5A   9.E‐14  ‐0.26    1.25   3.E‐01  1.E‐09 
 

        

SMED30035662  regulatory factor X, 1   1.E‐156   0.59    1.06   3.E‐04  6.E‐12  +          

SMED30032427  .  .   0.24    1.16   6.E‐01  9.E‐03 
 

        

SMED30029528  zinc finger protein 90   6.E‐07   0.52    1.05   6.E‐03  2.E‐09 
 

        

SMED30030829  Y box protein 3   2.E‐27   0.35    1.03   2.E‐01  3.E‐06 
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smed id 
homology to vertebrate (mouse) proteins  Log2FC  Adj.p‐value 

R
N
A
i  Phenotype 

description  E.value  D/ww  V/ww  D/ww  V/ww  Homoestasis  W. healing  Regeneration 
                     

Enriched in Dorsal and/or Ventral epidermis (FC<2): 
                                      

SMED30033237  nuclear receptor subfamily , F, 1   6.E‐31   0.99    0.79   4.E‐09  1.E‐06  +          

SMED30020410  microphthalmia‐associated TF  1.E‐12   0.60    0.59   5.E‐03  4.E‐03  +  Lysis (head)       

SMED30001441  lysine (K)‐specific demethylase 5C   0.E+00   0.69    0.51   5.E‐05  2.E‐03  +          

SMED30033789  one cut domain, family member 1   3.E‐70   0.98    0.68   6.E‐10  8.E‐06  +          

SMED30035239  forkhead box K2   7.E‐48   0.42    0.45   1.E‐02  4.E‐03  +  Lysis (tail)       

SMED30021726  zinc finger, AN1‐type domain 5   8.E‐29   0.65    0.68   5.E‐04  1.E‐04  +          

SMED30014114  myocyte enhancer factor 2C   3.E‐47   0.62   ‐0.22   4.E‐03  3.E‐01  +          

SMED30019046  TEA domain family member 1   3.E‐111   0.94    0.52   1.E‐06  5.E‐03 
 

        

SMED30027645  zinc finger protein 768   2.E‐17   0.81    0.56   3.E‐06  7.E‐04 
 

        

SMED30012510  early growth response 1   2.E‐34   0.77   ‐0.12   4.E‐05  5.E‐01 
 

        

SMED30029241  RAR‐related orphan receptor alpha   2.E‐22   0.67   ‐0.41   3.E‐04  2.E‐02 
 

        

SMED30035670  zinc finger, AN1‐type domain 6   1.E‐19  ‐0.04    0.69   9.E‐01  1.E‐04 
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Wound response phenotypes 

RNAi knockdown of Transcription factors which did not result in severe intact tissue 

phenotypes were selected for subsequent functional studies in injury repair. To investigate 

whether candidate genes are important for wound response, RNAi animals were subjected 

to amputation (head and tail) and scored for their ability to close wounds and regenerate 

missing tissue.  

We expected the RNAi conditions affecting wound closure would result in 

prolonged wound muscle contraction and/or injured tissue lysis within the first 24hrs after 

amputation. Although RNAi knockdown of most of the transcription factors gave no 

obvious wound-closure phenotype in our assay, knockdown of nuclear hormone receptor 

(SMED30015041) resulted in injured tissue lysis. Interestingly, this gene did not show a 

severe phenotype in intact animals, suggesting that it may have a wound closure-specific 

function which could be subsequently analyzed with live imaging techniques. 

Nevertheless, although the SMED30015041 (RNAi) wound closure phenotype was 

reproduced once after the initial screen, we could not reproduce it in subsequent RNAi 

attempts. 

To identify regeneration-specific phenotypes, we examined the ability of animal 

fragments to reestablish lost anterior and posterior tissues after transverse amputations. The 

knock-down of homeodomain containing gene SMED30028733 resulted in a penetrant 

anterior-tissue-specific regeneration defect. Nevertheless, closer SMED30028733 sequence 

analysis revealed that this gene function has been previously described. SMED30028733 

clone sequence matched to Smed-prep (Felix and Aboobaker, 2010), already published 

regulator of anterior tissue specific regeneration. 

 

6.2 Smed-Gfi-1 phenotype characterization 

 

Our functional screen identified an array of homeostatic defects. Some of these 

defects resembled previously characterized planarian phenotypes. For example edema 

formation after FoxJ3 knockdown phenocopied cilia function perturbation (Reddien et al., 

2005; Vij et al., 2012; Vu et al., 2015), ventral curling after the Gfi-1 (RNAi) was 

stereotypical to neoblast function and epidermal lineage maintenance perturbation 

(Reddien et al., 2005; van Wolfswinkel et al., 2014; Wagner et al., 2012). The mechanism 

behind novel phenotypes progression was harder to infer. Some phenotypes were either 
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novel (eg. anterior-posterior specific lysis) or were not previously characterized in detail 

(eg. stick and stretch, depigmentation). Therefore, due to time limitation we were not able 

to pursue their characterization. 

The Gfi-1 knockdown caused complete and 100% penetrant tissue maintenance 

failure and its phenotype progression (ventral curling followed by lysis) closely resembled 

epidermal lineage maintenance defects (Reddien et al., 2005; van Wolfswinkel et al., 2014; 

Wagner et al., 2012). Therefore Gfi-1 phenotype was selected for more detail 

characterization. In our initial epidermally-enriched ISH screen failed to detect an 

expression pattern for Gfi-1 (group 0), thus we decided that its expression pattern analysis 

had to be revisited. Extended signal development (overnight) revealed that Gfi-1 

(FC(1.65)log2 and FC(1.11)log2 in dorsal/ww and ventral/ww samples respectively) was 

also expressed  throughout the animal mesenchyme (Fig. 6.3, A). We followed the gfi-1 

expression pattern of these undifferentiated mesenchymal cells in irradiated animals to 

determine their cell turnover kinetics. The mesenchymal expression pattern was reduced 

one day after irradiation and continued to diminish within next 7 days, indicating that gfi-1 

is expressed in a subset of neoblasts as well as their mesenchymal progeny (Eisenhoffer et 

al., 2008). As mesenchymal staining was reduced, gfi-1 expression in the differentiated 

tissues became more apparent. This gene was revealed to be expressed in the gut epithelia, 

sensory neurons at the anterior region of the brain as well as epidermis. 

 



 

97 
 

To provide a more comprehensive description of the gfi-1 expression pattern, we 

performed co-localization studies with established neoblast and their mesenchymal 

progeny markers (Fig. 6.3, B). Within the neoblast compartment, gfi-1 expression 

overlapped with epidermal lineage zeta-class (van Wolfswinkel et al., 2014) cells (96%), 

whereas co-localization with sigma- and gamma-class neoblasts (van Wolfswinkel et al., 

2014) was much lower (15% and 40% respectively). Consequently, we determined gfi-1 to 

be expressed within differentiating epidermal progenitors. gfi-1 transcripts were present in 

nearly all early (prog-1, 96%) and late (agat, 99%) epidermal progenitors as well as most 

of the zpuf-6+ cells in mesenchyme and epidermal layer (89% and 77% respectively). 

 

 

Figure 6-3. gfi-1 expression in epidermal lineage. gfi-1 is expressed throughout 
mesenchyme, gut and epidermis.  
Expression pattern analysis in irradiated animals (A). Within mesenchyme gfi-1 is mainly 
expressed in zeta, epidermal lineage, neoblasts as well as early (prog-1) and late epidermal 
lineage progenitors (agat and zpuf-6). Neoblast lineage marker pools (van Wolfswinkel et 
al., 2014): zeta (fgfr-1, zfp-1, soxP-3, and egr-1); gamma (hnf-4, gata456, and nkx2.2); 
sigma (soxP-1 and soxP-2). 10 µm scale bar. 
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We then sought to investigate the role of Gfi-1 in planarian tissue maintenance. At 

the time-point (12 after the first dsRNA feeding) when knock-down animals developed 

dorsal lesions and stopped eating (Fig. 6.3, A), they completely lacked pharynges (laminin; 

Fig. 6.4, C). Although the neoblast (smedwi-1) number decrease was modest (piwi-1; Fig. 

6.4, C), the density of epidermal lineage cells was increased at the dorsal lesion site and 

overall their numbers decreased. Gfi-1 RNAi knock-down animals had a significant 

 
 
Figure 6-4. gfi-1(RNAi) phenotype characterization.  
gfi-1(RNAi) causes dorsal lesions, head regression and ventral curling phenotypes (arrows) 
(A); Epidermal density decreases after gfi-1(RNAi). Epidermal nuclei (DAPI) density 
quantification within ventral epidermis, 20 days after the first dsRNA feeding (B); gfi-
1(RNAi) have reduced early epidermal progenitors (prog-1) and lose their pharynx by 16 
days after the first dsRNA feeding. Scale bar is 200 µm in A and 100 µm in C. 
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reduction of early epidermal progenitor number (prog-1; Fig. 6.4, C), whereas the decrease 

in late epidermal progenitor (agat; Fig. 6.4, C) and zpuf-6+ cells numbers was modest at the 

time-point examined (16 days after the first dsRNA). As the phenotype progressed further 

and animals started to curl ventrally (20-24 days after the first dsRNA), we were able to 

quantify the gfi-1(RNAi) effect on epidermal maintenance. Epidermal cell density was 

significantly decreased (median 85±6,9 and 122±3 per 100 µm2; p.value 0.0001) at the 

ventral epidermis (Fig. 6.4, C), demonstrating that the final stages of gfi-1(RNAi) 

phenotype progression are indeed a result of epidermal maintenance failure. 
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Discussion 

While all animals appear capable of healing their wounds, wound closure 

mechanisms can nevertheless vary widely between species, tissues and/or developmental 

stages. Despite the observed variability of the Metazoan wound response, mechanistic 

cellular wound response studies have been primarily done in few Ecdysozoan models, i.e., 

Drosophila and C. elegans (Galko and Krasnow, 2004; Lesch et al., 2010; Millard and 

Martin, 2008; Xu and Chisholm, 2011), with large Metazoan groups like the 

Lophotrochozoa remaining virtually unexplored. It is unlikely that the breadth of Metazoan 

wound healing mechanisms is well represented within the few Ecdysozoans thus far 

examined, for example. In fact, the epidermis of flies and Nematodes is rather specialized, 

as both are covered by a cuticule, and in the case of C. elegans, it is also syncytial. Hence, 

it is unclear how well the Ecdysozoan epidermis may inform the wound responses of other 

animals or of other tissues such as mucosal epithelia. 

Although regeneration is widespread among the Metazoa, it is not understood why 

such capacity has been lost/reduced in numerous species, tissues and/or developmental 

stages. Studies have suggested that the epidermal wound response is crucial for initiating 

regeneration (Brockes and Kumar, 2008). For instance, the regenerative response is 

abolished if wound epithelia formation is perturbed in salamanders or humans (Goss, 1956; 

Illingworth, 1974; Mescher, 1976). In fact, the discrete mechanisms underpinning the 

initiation of regeneration is yet to be determined. Therefore, wound healing studies across 

diverse animal groups that vary in regenerative capacity might help reveal factors 

associated with the initiation and/or loss of response to regenerative processes. 

Studies in planaria offer an opportunity to significantly expand our understanding 

of metazoan wound healing for several important reasons. Planaria can survive extensive 

tissue damage, nevertheless the mechanism endowing such robust and efficient healing 

capacity remains elusive. The wound closure capacity of planarian epidermis is even more 

remarkable if one considers that it is capable to repopulate wound surface without 

proliferation and increase in its cell number. Furthermore, several observations also 

suggest that re-epithelialization in planarian is achieved by proteins that are already present 

in the intact epidermis: wound closure is remarkably fast, it is neither perturbed by 

exposure to the protein synthesis inhibitor cycloheximide nor by knock-down of wound 

induced genes (Wenemoser et al., 2012). Wound closure in planarians is followed by 



 

102 
 

regenerative program activation and complete lost tissue reestablishment. Thus, planaria 

model allows to characterize wound response in organism with high regenerative capacity 

and, unlike other wound healing models, provides an opportunity to compare cellular 

wound response to tissue loss and tissue damage.  

Live visualization of cellular wound response to laser ablation of epidermis 

demonstrated that cellular response to tissue damage in planaria is almost instantaneous 

(seconds). Although the exact mechanism of wound re-epithelization is yet to be 

determined, the observed symmetric and asymmetric wound closure patterns imply that 

several wound closure mechanisms might be utilized in planarian epidermis. In case of 

asymmetric wound response, advancing wound epithelia is flat with wide lamellipodia 

forming at the leading edge. This wound closure pattern resembles collective cell 

migration, nevertheless it still has to be determined whether this re-epithelialization is 

driven by lamellipodia crawling or re-poliarization and extension of wound edge 

epidermis. The ability of epidermis to immediately respond to tissue damage suggest that 

epidermal cells might be competent to engage in wound response even before injury. 

Alternatively, wound response might be initiated by mechanical cues resulting from the 

loss of epidermal integrity or contraction of injured body wall. In light of this hypothesis, 

observed dynamic protrusive behaviors in intact epidermis might indeed represent the 

innate ability of epidermal cells to respond to tissue damage or their capacity to probe 

epidermal tissue integrity thus immediately respond to its damage. 

Established wound healing models only allow to study wound response to tissue 

damage, whereas planaria can also survive and recover after extensive tissue loss. 

Nevertheless, the mechanism endowing such a robust and efficient wound healing has not 

been characterized in detail. Electron microscopy analysis as well as development and 

application of live imaging methodologies allowed us to visualize planarian wound 

response to decapitation and reassess the validity of two previously proposed wound 

closure mechanisms. First, the more accepted view postulated that planarian wounds are 

closed by active migration of wound edge epidermis, whereas, the second argued against 

cell migration and suggested wounds are re-epithelized by muscle contraction. Although 

both the body wall contraction contribution and occasional cellular migration-like 

behaviors of wound edge epidermis were observed in our studies, neither the typical 

lamellipodial crawling mediated cell migration or muscle contraction is the primary 

mechanism of planarian wounds closure. Inconsistent with lamellipodial crawling 

mechanism (Hori, 1989; Morita and Best, 1974; Pascolini et al., 1984; Spiegelman and 
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Dudley, 1973), cells of advancing wound edge epidermis do not establish prominent 

contacts with wound surfaces and thus do not seem to grasp over the underlining wound 

tissues. Instead, these cells maintain intracellular junctions and remain within epidermal 

sheet rather than acquiring typical migratory mesenchymal cell-like state. Furthermore, 

fixed and live wound visualization also contradicted the notion that planarian wounds are 

closed within minutes solely by muscle contraction (Chandebois, 1980a). In our 

experiments, wounds remained open even after body wall contraction which suggests that 

this wound response may aid, but is not sufficient to complete wound closure. 

Our work shows that wounds of decapitated animals are closed by extension of the 

wound edge epidermis and subsequently by filopodia-mediated fusion of opposing wound 

edges. Minutes after the decapitation, the wound edge epidermis loses its columnar 

morphology, repolarizes and extends flat lamellipodia-like protrusions into the wound 

surface while remaining attached to the basal membrane. Later, the leading wound edge 

cells depart from the basal membrane, but remain attached to their epidermal neighbors at 

the wound margin. The advancing epidermal cells do not appear to establish contacts with 

wound surface indicating that planarian epithelialization is not driven by lamellipodial 

crawling mediated cell migration. As wound epithelia advances over the wound surface it 

does not seem to be supported by extracellular structures or cellular debris, thus it appears 

that planarian wounds are closed as wound edge epidermis repolarizes and extends over 

the wound surface. Wound edge epidermis advances over the wound surface as 

multicellular extension, which morphologically resembles Chamdebois’ (1980) proposed 

epidermal spurs.  

Live imaging demonstrated that the final stages of wound closure in decapitated 

planarians is mediated by filopodial interactions between opposing wound edge epidermis, 

a mechanism not entirely dissimilar to the epidermal sheet fusion reported during 

Drosophila embryonic dorsal closure. Initially filopodia interactions are observed in the 

lateral wound edges, areas where the distance between opposing wound edges are the 

shortest. As filopodia pull the epidermal sheets closer together, new interactions are 

formed along the interface of juxtaposed epidermal cells and thus wound closure continues 

to gradually progress inward in a zipper-like fashion. This process in Drosophila 

embryonic dorsal closure involves actin cable contraction, but it still has to be investigated 

whether such structures are also formed during planaria wound closure. Thus, in 

Drosophila filopodia also conduct spatial surveillance along juxtaposed epidermal edges to 

ensure that the correct body plan will be established after dorsal epidermal sheet fusion 
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(Millard and Martin, 2008). It would be interesting to investigate whether filopodia 

function analogously during planarian wound closure. In contrast to the longitudinal axis 

of the Arthropod body, planaria are not clearly segmented, however thier bodies have a 

well defined dorsal-ventral boundary which needs to be re-established after tissue loss. 

Subsequent wound closure analyses could test if filopodia behavior is affected in entirely 

dorsalized or ventralized animals (after BMP pathway perturbation)(Gavino and Reddien, 

2011; Molina et al., 2007; Orii and Watanabe, 2007; Reddien et al., 2007) and help 

determine whether filopodia also play spatial recognition roles in planaria. 

Although planarian wound response shares some resemblance with Drosophila 

embryonic dorsal closure, it encompasses additional complex cellular behaviors. In 

planarians, interaction between fusing epidermal sheets is not limited to filopodia 

protrusions. The long, unicellular or multicellular projections of the marginal epidermis 

occasionally reach over the wound surface to contact the opposite wound edge. As these 

structures extend they always remain attached to their original location at the marginal 

basal membrane. Morphologically, these structures vary from being extremely thin and 

likely unicellular to being wider and multi-cellular. When these structures are formed, the 

cellular bodies and nuclei migrate along their length, traverse over the wound surface and 

reach the opposite wound edge. Similar cellular wound responses have yet to be described 

in established wound healing systems; however, we suspect that this type of cellular 

behavior might be also present in other Metazoans given that long actin projections have 

been also reported in cnidarian wounds (DuBuc et al., 2014). Currently, analogous cellular 

migration has been only visualized in primary cultures of human mucosal epithelia, 

specifically bronchia and mammary epithelia (Zani and Edelman, 2010; Zani et al., 2010). 

Human mucosal epithelia cells can form extremely long (up to one millimeter) “epithelial 

bridges” or projections between neighboring colonies. These uni- and multi-cellular 

structures hover freely above the underlying substratum and mediate single or multiple cell 

migration, as well as intra-cellular communication. Although the physiological 

significance of these structures remains to be investigated in much greater mechanistic 

detail, epithelia bridge formation in other systems is known to be stimulated by 

inflammatory pathways, the inhibition of nuclear factor (NF)-kB or cyclooxygenase 

(COX) pathways, as well as increased reactive oxygen species (ROS) (Zani et al., 2010). 

Planarian wound closure is dependent on neither proliferation nor mesenchymal 

cell intercalation into epidermis. Hence, irradiated (and thus neoblast and epidermal 

progenitor depleted) animals are still able to close their wounds. This process is relatively 
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fast. After decapitation, for instance, S. mediterranea closes its wounds within 1-2 hours. 

As the wound edge epidermis meets along the wound surface, a thinly stretched sheet of 

wound epithelium is formed. Although wound epithelium covers the wound as a single-

cell-layer sheet, multiple wound epithelia cells are initially stretched over each other at the 

wound margin. Epidermal cells continue to be recruited to the wound epithelium after 

wound closure: cells depart from the basal membrane to intercalate into the wound 

epithelium, the integrity of which is maintained by intracellular connections between 

epidermal neighbors rather that attachment to the wound tissues. Although wound 

epithelium is directly exposed to the wound mesenchyme, both tissues remain separated by 

empty spaces up until blastemal formation. As the expanding blastema starts to stretch the 

wound epithelial monolayer, more cells are observed being recruited into the wound 

epithelia from the surrounding, intact columnar epidermis. At around 4 days after the 

decapitation, epidermal progeny starts to intercalate into the epidermal layer from the 

mesenchyme. As cell numbers within the wound epithelium increase, the tissue become 

thicker. After the basement membrane is restored (5-6dpa), the epidermis reacquires its 

intact morphology and reestablishes its composition. Live tracing demonstrated that thinly 

stretched wound epithelia revert to columnar morphology and reintegrate into the 

regenerated epidermis. Therefore, the regenerated epidermal layer consists of both newly 

differentiated cells as well as cells recruited from the wound edge epidermis. Our studies 

have also uncovered that contrary to D. japonica (Hori, 1979), S. mediterranea can 

reestablish basal membrane even after lethal irradiation, suggesting that different 

mechanism of lost tissue reestablishment might be present even among different planarian 

species. 

Developed epidermal dissection methodology and subsequent transcriptional 

profile analysis provided a list of epidermally expressed genes. Expression of some of 

these genes were restricted to certain domains of epidermis, therefore suggesting that 

planarian epidermis is more heterogonous than it was previously recognized. These 

transcripts provide useful markers for subsequent studies of planarian epidermis biology. 

They can be applied to measure epidermal cell specification during homeostasis as well as 

to follow epidermal cell fate throughout the wound response and regeneration. In response 

to tissue loss differentiated wound edge epidermis undergoes morphological 

transformation into the thin sheet of wound epithelia, which gradually resumes its 

columnar shape and contribute to tissue restoration. Identified markers allow to begin 

investigating whether these terminally differentiated cells maintain their fate throughout 
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this morphological transformation and to assess whether dedifferentiation occurs during 

planarian regeneration. 

The identified epidermal expression profile analysis provided a list of genes for 

subsequent mechanistic studies of epidermal maintenance, function and wound response. 

We reasoned that knockdown of epidermally enriched transcription regulators has the 

highest chance of causing the epidermal phenotypes for the following reasons. 

Transcription factors are the key for differentiation, therefore targeting these molecules has 

a high chance of causing homeostasis or regeneration phenotypes. Thus, their knockdown 

ultimately should also cause the depletion of an array of their target genes in intact 

epidermis, some of which might be crucial for epidermal ability to respond to wound. 

Although none of the selected genes had reproducible wound healing phenotypes in our 

pilot screen, nearly a fifth (19.1%, 11/47) of assessed transcription factors yielded 

homeostasis defects. The identified phenotypes included a range of tissue maintenance 

defects. We characterized Smed-Gfi-1 (RNAi) phenotype in greater detail and 

demonstrated that this gene indeed has a role in epidermal maintenance. The subsequent 

characterization of other identified homeostasis phenotypes will allow to further 

investigate transcription regulator role in epidermal maintenance. The follow up studies 

should also interrogate the signaling cascade role in epidermal homeostasis. Wnt, Notch, 

STAT, JNK and NF-kappaB signaling pathway components were enriched in 

transcriptional profile of planarian epidermis, yet their contribution to planarian epidermis 

has not been explored.  

Planarian re-epithelization starts immediately after injury and it is independent on 

de novo protein synthesis (Wenemoser et al., 2012), therefore it must be executed by 

proteins that are already present in intact tissue. Since these molecules likely are 

represented in epidermal sample expression profile, they could be identified by knockdown 

screen of selected epidermally expressed genes. Various conserved metazoan wound 

response mediators are enriched in epidermis and hence they are good candidates for the 

functional studies. Knockdown of receptors (transmembrane domain containing proteins), 

MAPK kinases, small GTPases and proteins implicated in cytoskeleton remodeling (e.g. 

actin polymerization machinery) will help elucidate their role in planarian wound healing. 

Developed live imaging methodology will allow to measure target gene role in wound 

healing and would allow to compare it to other metazoans.  

Elucidating the mechanism responsible for remarkable wound healing capacity in 

planaria might also require investigating the function of structures or processes which are 
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unique to planarian epidermis. Several features differentiate planarian epidermis form 

other wound healing models: the irregular epidermal cell morphology, the dynamic 

protrusive behaviors, the formation of prominent cytoplasmic feet along their basal surface 

as well as the abundant intracellular rhabdite vesicle formation. The robust rhabdite release 

in response to injury raises the intriguing but yet investigated possibility that exocytic 

response might play an important role in planarian wound healing. Rhabdites could contain 

cues, which are normally sequestered in intact tissue and quickly released in response to 

injury. Developed rhabdite isolation and proteomic characterization methodology 

(Appendix 3) allows to perform molecular characterization of these organelles and 

provides an opportunity to assess their content role in would healing. Exocytic wound 

response in planaria could also be a part of the mechanism allowing to expand the surface 

epidermis and thus rapidly close the wound. Post-mitotic epidermis must have a 

mechanism allowing re-epithelialize the wound without an increase in epidermal cell 

number. Adult arthropod epidermis expands its surface by cell fusion and syncytium 

formation (Losick et al., 2013). It would be interesting to investigate whether rhabdite 

exocytosis and their membrane incorporation into epidermal cell plasma membrane acts to 

expand the surface of wound epithelia and thus is required for wound closure. The 

potential rhabdite membrane contribution to wound epithelia surface expansion is truly 

impressive. Per our estimates the intracellular rhabdite surface is equal to the plasma 

membrane surface (Appendix 3). Analysis of wound closure dynamics after exocytic 

machinery perturbation (genetic or pharmacological) will allow to assess whether rhabdite 

membrane incorporation indeed is a novel strategy for wound epithelia surface expansion 

and therefore fast wound closure in post-mitotic epidermis.  
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Methods and materials 

Animal husbandry 

The CIW4 clonal line of Schmidtea mediterranea was maintained at 20°C in 1× 

Montjuich salts (1.6 mM NaCl, 1.0 mM CaCl2, 1.0 mM MgSO4, 0.1 mM MgCl2, 0.1 mM 

KCl and 1.2 mM NaHCO3prepared in Milli-Q water) (Cebria and Newmark, 2005). 1 

week starved animals were used for all experiments. 

 

Electron microscopy 

Transmitted electron microscopy was done as previously described (Vu et al., 2015): 

(1) 6-7mm specimens were fixed overnight in cold fixative (2.5% glutaraldehyde, 2% 

paraformaldehyde, 1% sucrose, 1 mM CaCl2 in 0.05 M sodium cacodylate buffer pH 

7.36); (2) washed in wash buffer (0.1 M sodium cacodylate buffer; 1 mM CaCl2; and 1% 

sucrose) for 1 hr (3–4 exchanges); (3) fixed in 1% osmium tetroxide in 0.1 M sodium 

cacodylate buffer ( containing 1 mM CaCl2) for 2 hr; (4) washed in wash buffer for 1 hr 

(3–4 exchanges) and in Milli-Q water for 30 min (3–4 exchanges); (5) fixed overnight in 

0.5% aqueous uranyl acetate (in dark); (6) washed in Milli-Q water for 30 min (3–4 

exchanges), and (7) dehydrated in acetone 30% (20 min), 50% (20 min), 70% (overnight), 

90% (20 min, 2 times), and 100% (20 min, 3 times). Specimens were then embedded in 

epon-araldite or Spurr's resin as follows: 25% resin/acetone for 3 hr; 50% resin/acetone for 

2.5 hr; 75% resin/acetone overnight; 100% resin without accelerator with microwave at 

350 W for 3 min on/3 min off/3 min on for 1 day (2 exchanges); 100% resin with 

accelerator with microwave at 350 W for 3 min on/3 min off/3 min on for 1 day (2 

exchanges) and placed in 60°C oven for polymerization for 2 days. Ultra-thin 50–100 nm 

sections were collected using a Leica UC6 Ultramicrotome. TEM specimens were stained 

with Sato's lead (3 min)/4% uranyl acetate in 70% methanol (4 min)/Sato's lead (6 min) 

prior to imaging on a FEI Technai BioTwin at 80 kV equipped with a Gatan UltraScan 

1000 digital camera. Captured images were stitched by FIJI (Schneider et al., 2012) 

stitching plugins. 

For scanning electron microscopy (1) 6-7mm samples were fixed overnight in cold 

2.5% glutaraldehyde in 0.05 M sodium cacodylate (containing 1 mM CaCl2), (2) rinsed in 

Milli-Q water, (3) treated overnight with 2% aqueous osmium tetroxide in 4°C, (4) 
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dehydrated in a graded series of ethanol and (5) dried in a Tousimis Samdri-795 critical 

point dryer. Samples were mounted on stubs and sputter coated with gold palladium. 

Imaging was done with a Hitachi TM-1000 tabletop SEM. 

 

Gamma irradiation 

For irradiation experiments, animals were exposed to 10000 rads of γ-irradiation on a 

GammaCell 40 Exactor (Best Theratronics) irradiator. Animal amputations were done 7 

days after irradiation. 

 

Animal immobilization: chemical  

Animal chemical immobilization was done by one of the following methods: 

exposure to 0.15% Chloretone (112054, Sigma), 0.25% Menthol (W266590, Sigma),10 

µM 1-Phenoxy-2-propanol (484423, Sigma), 10 µM, 2-Phenoxyethanol (56753, Sigma) or 

acute treatment with 3.5% Magnesium chloride hexahydrate (M2670, Sigma). Menthol 

treatment effectiveness was improved by limiting its evaporation throughout the imaging 

sessions and by mounting immobilized animals in 6% methyl cellulose (9004-65-3, Acros 

organics) 0.25% menthol ointment. 

 

Animal immobilization: mechanical 

Microfluidic chips were fabricated using conventional photolithography as 

previously described (Ghannad-Rezaie et al., 2012). A silicon wafer was first coated with 

SU-8 (Microchem) using a spin coater. Films of various thickness were manufactured, so 

the spin procedures were performed as suggested on the SU-8 product literature. The wafer 

was then pre-baked according to product literature. The microfluidic design was achieved 

by UV exposing through a custom drawn mask. The mold was then post-baked and placed 

in the SU-8 developer for the suggested time. Chips were then replica molded from the 

SU-8 mold using Polydimethylsiloxane (PDMS)(Sylgard 184, Dow Corning) in a 10:1 

(prepolymer to curing agent) ratio. The device was then baked at 80°C for 20 minutes. A 

borosilicate theta capillary (1mm ID x1.5mm OD x 0.2mm septum, Friedrich & Dimmock) 

was inserted into an orthogonal immobilization device through a hand punched hole. 

Tubing was connected to the vacuum chamber with 19-gauge stainless steel needle. A tight 

seal between the PDMS chip and the coverslip was created by applying weak vacuum 
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inside connected tubing. Vacuum was generated either manually, using a 10cc syringe, or 

by using a mechanical pump (Pico plus, Harvard apparatus). 

Animal immobilization within agarose was done by the following procedure: 

chloretone (5-7min, 0.15%) anesthetized animals were submerged within solidifying 6% 

low melting point agarose (50084, Lonza) in 1x Montjuich salt solution. As agarose 

solidified, animals were decapitated and subsequently positioned on the coverslip for 

subsequent visualization with inverted microscope optics (Fig. 3.3). 

Animal immobilization with adhesives was performed by sticking ventral side of the 

animal on a PeriAcryl 90 (P-ACRYL5, GluStitch) or GluSeal (GLUSEAL5, GluStitch) 

covered plastic surface. 

 

Live cell labeling:  

Animals were labeled by 15-30min incubation in 10 µM Cell Tracker Green (C7025, 

Life Technologies) or Cell Tracker Orange (C7025, Life Technologies), 5 µM Cell Trace 

Far Red (C34564, Life Technologies), 1-2x Cell Mask Deep Red stain (C10046, Life 

Technologies). Epidermal nuclei were labeled by 60min incubation in 10 µM DRAQ5 

(DR05500, Biostatus). After labeling, animals were rinsed a few times in 1x Montjuich salt 

solution. Unless specified otherwise (Fig. 4.6), labeled animals were imaged shortly after 

the tissue labeling. 

 

Live cell labeling: Diolistics 

Tungsten micro-carriers (0.7 micron; 1652266, BioRad) were covered with DiI 

(D282, life technologies) as previously described (Gan et al., 2000). 0.5mg of labeled 

micro-carriers were re-suspended in small volume (10-20 µl) ethanol (64-17-5, Fisher) or 

methylene chloride (494453, Sigma), spread and dried along the center of macro-carrier 

disk (1652335, BioRad). Macro-carrier disc was loaded into the PDS-1000/He instrument 

(1652257, BioRad) as recommended by manufacturer (M1652249 user manual, BioRad). 

Prior to bombardment, 10-20 (8mm) animals were placed in the center of a 60mm petri 

dish. After water was removed from animal surface, the dish was placed onto the target 

shelf of the instrument set at 9 cm from micro-carrier launch assembly. The 10 psi vacuum 

was created inside the instrument and labeled micro-carriers were accelerated by burst of 

1100 psi (rupture disk 1652329, BioRad) helium. Immediately after bombardment, 

labeling animals were rinsed and left to recover in 1x Montjuich salt solution. Animals 

were imaged 2-24hrs after tissue labeling. 



 

112 
 

 

 

 

Epidermal dissection 

Medium size animals (8mm) were placed in a spot test plate (Pyrex) and incubated in 

100 µl dissection buffer (1M NaCl, 100 mM Tris pH 8.0, 5mM EDTA pH 8.0) at room 

temperature for 4-7min. As epidermal tissue became opaque, the pieces of epidermal sheet 

were dissected from the animal surface by gently applying the side of the fine insect pin 

(size 000; 654300, Carolina Biological Supply). The dissected epidermis (single animal 

dorsal or ventral epidermis) containing buffer was collected and subjected to RNA 

isolation by the following methodology: (1) tissue containing dissection buffer (~100 µl) 

was mixed with 1200 µl Trizol (15596018, Invitrogen) and snap frozen in liquid nitrogen; 

(2) samples were thawed in room temperature, mixed with 346ul chloroform (X205, 

Amersco), shaken by hand for 15 seconds and let sit at room temperature for 3 minutes; 

subsequently, (3) samples were spun at 12000G for 15min (4C); (4) aqueous phase was 

collected and mixed with 1040 µl isopropanol (I9516, Sigma) and 7.5 µg linear acrylamide 

(AM9520, Ambion); (5) samples were precipitated overnight at -20C; (6) the next day, 

spun at 12000G for 15min at 4C; (7) the resulting pellet was washed twice with 1ml of ice 

cold 75% ethanol; (8) air dried and re-suspended in 7.5 µl RNAse free water. The quality 

of RNA sample was assessed by Qubit (Invitrogen) and 2100 Bioanalyzer (Agilent 

Technologies) platform. 

 

RNAseq 

For RNAseq analysis the biological replicates of dissected dorsal epidermis samples, 

dissected ventral epidermis samples as well as whole animal (all tissue) samples were 

collected and subjected to Trizol RNA isolation. mRNAseq libraries were generated from 

84-100 ng of high quality total RNA, as assessed using the Agilent 2100 Bioanalyzer. 

Libraries were made according to the manufacturer’s directions for the TruSeq Stranded 

mRNA LT Kit (Illumina, RS-122-2101). Resulting short fragment libraries were checked 

for quality and quantity using the Bioanalyzer and Qubit Fluorometer (Life Technologies).  

Equal molar libraries were pooled, requantified and sequenced as 50 bp single read on the 

Illumina HiSeq 2500 instrument using HiSeq Control Software 2.2.38. Following 

sequencing, Illumina Primary Analysis version RTA 1.18.61.0 and Secondary Analysis 

version CASAVA-1.8.2 were run to demultiplex reads for all libraries and generate 



 

113 
 

FASTQ files. Genes were defined as exhibiting altered expression in RNAseq analysis if 

they had a minimum fold change of 2 and an adjusted p-value < 0.01. 

 

 

Protein isolation 

Proteins were isolated from rhanbdite particles by the following procedure: (1) 2-4 

animals (8mm) were placed in the spot test plate; (2) exposed to 200 µl of dissection buffer 

(1M NaCl, 100 mM Tris pH 8.0, 5mM EDTA pH 8.0) for 5-10min at room temperature; 

(3) once rhabdite particles were released, the buffer was collected by pipette without 

touching the animal surface; (4) samples were mixed with 200 µl 2x RIPA buffer (300mM 

sodium chloride, 2% NP-40, 1% sodium deoxycholate, 0.2% SDS, 100 mM Tris pH 8.0) 

and rotated 1hr at 4°C; (5) samples were treated with 0.1U of Benzonase (E8263, Sigma); 

(5) mixed with 100µl 100% trichloroacetic acid (91226, Sigma) and precipitated overnight 

at 4C; (5) spun at 14,000rpm for 30 min at 4°C; (6) the resulting pellet was washed twice 

with 500 µl of ice cold acetone (65051, Sigma) and spun 14,000rpm for 10 min after each 

wash; and (8) pellet was air dried. A Small amount of sample was re-suspended in 100 µl 

100mM Tris-HCl (pH 8.5), ran on SDS-PAGE gel and stained with silver nitrate as 

previously described (Chevallet et al., 2006). The remaining sample was subjected for 

proteomic analysis by Multidimensional Protein Identification Technology (MudPIT) as 

previously described (Florens and Washburn, 2006). The protein abundance was evaluated 

by calculating Normalized Spectral Abundance Factor (NSAF) metrics: 

ܨܣܵܰ ൌ 	
.ݑ 			ܽݎݐܿ݁݌ݏ

	݊݅݁ݐ݋ݎ݌	݂݋	݄ݐ݈݃݊݁
ܺ	݂݋	 ሺ	݉ݑݏ

.ݑ 	ܽݎݐܿ݁݌ݏ
݊݅݁ݐ݋ݎ݌	݂݋	݄ݐ݈݃݊݁

൘ ሻ	݂݋	݈݈ܽ	݊݋݊	ݐ݊ܽ݀݊ݑ݀݁ݎ	ݏ݊݅݁ݐ݋ݎ݌		

 

Cloning 

Primers with overhangs (CATTACCATCCCG in forward and CCAATTCTACCCG 

in reverse primer) homologous to pPR-T4P vector (J. Rink) were used for PCR 

amplification from a cDNA library generated with SuperScriptIII (18080051, Life 

Technologies). PCR products were treated with T4 polymerase (M0203, New England 

BioLabs), mixed with linearized vector (digested with SmaI and treated with T4 

polymerase) and incubated for 10 min at room temperature. Constructs were transformed 

into Escherichia coli strain DH5alpha, clones were selected by colony PCR and verified by 

sequencing. Primers used for cloning are described in Table 5. 
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In situ hybridization 

Antisense riboprobes were synthesized and colorimetric or fluorescent in situ 

hybridization was performed as previously described (King and Newmark, 2013; Pearson 

et al., 2009). The published in situ hybridization protocols were optimized for epidermal 

expression pattern detection: fixation time increased to 1hr at room temperature, no DTT 

reduction step was performed, animals were bleached (5% formamide, 0.5X SSC, and 

1.2% H2O2) for no longer than 1.5hr and extended colorimetric signal development times 

(up to 8hr at room temperature and overnight at 4°C) were used. NBT/BCIP developed 

whole-mount in situ specimens were mounted in mounting media containing 80% glycerol. 

Fluorescent whole-mount in situ specimens were mounted in modified ScaleA2 containing 

20% glycerol, 2.5% DABCO and 4 M urea (Hama et al., 2011). 

 

RNAi 

RNAi feedings were performed as described previously (Gurley et al., 2008) with 

the following modifications: soft-serve RNAi food for all genes was prepared 4 times 

more concentrated. Animals were fed 8-12 times every 4 days prior to amputation. For all 

RNAi experiments, animals were cut 4-5 days after the last feeding. 

 

Immunostaining 

Animals were fixed as previously described (Pearson et al., 2009) rehydrated, 

blocked with 5% horse serum in PBS 0.5% Triton X and incubated with primary antibody 

overnight at 4°C. Primary antibodies used in this study: pERK (1:400; 4370 Cell Signaling 

Technologies), Ezrin (1:400; CPTC-Ezrin-1, DSHB), acetylated tubulin (1:1000; T7451, 

Sigma). The next day, samples were five times 15 min washed with PBS 0.5% Triton X 

and incubated with alexa-conjugated secondary antibodies (1:1000; Abcam) for 2 hours at 

room temperature, five times 15 min washed with PBS 0.5% Triton X, and mounted in 

Aqua-Poly/mount (18606, Polysciences). 

 

Microscopy 

Colorimetric in situ images were captured on Zeiss Lumar stereoscopes. Confocal 

and live images were captured on a Zeiss LSM510-PRO, LSM700 Falcon, LSM 780 

inverted microscopes with a 10x 0.45 Plan-Apochromat, 20x 0.8 Plan-Apochromat or 40x 
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1.1 LD C-Apochromat objectives (all Zeiss). Image processing was done by FIJI 

(Schneider et al., 2012), Zen (Zeiss) or Imaris (Bitplane) software. 

Tissue ablation experiments were performed on LSM510-PRO microscope (Zeiss) 

equipped with C-Apochromat 40x/1.20 W objective (Zeiss) and tunable two photon laser 

(Chamelion, Coherent) set at 720 µm (1.125mW). 

 

 

Western blot analysis 

Animal tissue was snap frozen in liquid nitrogen and subsequently lysed by 

incubating in loading buffer (50 mM TrisHCl pH6.8, 2% SDS, 6% Glycerol, 0.1M DTT, 

0.004% bromophenol blue, 1x cOmplete protease inhibitor Cocktail (0589279100, Roche) 

and 1x phosphatase inhibitor Phosstop (4906845001, Roche)) for 10min at 90°C. Tissue 

lysates were subjected to western blot analysis as previously described (Liu et al., 2014). 

The following primary antibodies were used: pERK (1:1000; 4370 Cell Signaling 

Technologies), Hsp60 (1:1000; 12165, Cell Signaling Technologies) and alpha-tubulin 

(1:10000; T5168, Sigma). Primary antibodies were either detected by HRP conjugated 

antibodies and signal developed with ECL Prime Western Blotting Detection Reagent 

(RPN2232, Amersham) or fluorophore conjugated antibodies (1:1000; Rockland 

Immunochemicals) and imaged on an Odyssey imager (Li-Cor). 

 

Pharmacology 

Animals (8mm) were exposed to 5 µM trametinib, selumetinib, vemurafenib (all 

BioMed Valley Discoveries) or U0126 (1144, Tocris) for 1hr at room temperature, cut into 

5 fragments and subjected for western blot analysis 30 minutes after injury. 
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Table 6. Primers of the gene sequences used in this thesis 
id  forward primer  reverse primer 
SMED30000732  GGCCTTAGTGATAACTGCTG  TCTCTGCCCATTCAACATAC 

SMED30001032  CTCGAACCTTAATGATCTGC  GGCTTCACTCGAAGACATAG 
SMED30001049  CTTATCGAAAACCGCTCTC  AGGCATATGGGTGTATTCTG 
SMED30001115  CGGCTACGCTGTAAAAATAG  TGTAGTTGCAGACATTGGAG 
SMED30001248  ATCACCTGACCGATAGAATG  GGACAAAACTGGAGTGAGAC 
SMED30002304  TCTCTGGAAAACTGTGAAGC  TTTGGTACTTGGAGTTCCTG 
SMED30002382  CTGTTTGGTCTGATGACCTC  CATTAGATCCAGGTAGTCCG 
SMED30003537  ACGGATAACCTACCATTGTG  CTCCTATAATGGTTTCGACG 
SMED30003685  TAAATGCCATCCAGTAGAGC  TTCTTCTGTCTAGTCCCTCG 
SMED30003823  AATTACGGGACAGTAACGTG  GTCTTTCAGCTGATTAACCG 
SMED30003953  ATCAAGCTCCATCAAGAACC  TAAGTGTGCGAATACAGACG 
SMED30005904  CAGGAGAGGAAATCACTTTG  TGGATGAGATCATCGTGTAG 
SMED30006006  GGAACGTAAAGTTGGACTTG  CGTTGGATCTTTCAGCATC 
SMED30006193  ATTAGCTGTGCTGTTTGACC  CGCAATTCCAGAGACTTATC 
SMED30006335  AAACTCAACTCTTGCAGCTC  GTACTTCCCTCCCATAAACC 
SMED30006857  CCAGAGACTCCAATTTTGAC  TATGATTCTGGAGGTTCCTG 
SMED30007095  GATCAAGTTAGATGGCAAGC  ACGTTCTGATCTGGTATTGG 
SMED30007302  TATACCATGGAGAAGGGATG  GTGGTGAACTTTCGTAGGTC 
SMED30008678  CATTCGGGTTCTCGTTATAG  GATGACGTACAAAAAGGAGG 
SMED30008700  GATGTGCAAATGATAGTCCC  GTAGCCGATTTCGTTCTTAC 
SMED30009081  GTTCAGCTATATTCAACGGG  CATTCTCTTTGTCTCTTCGG 
SMED30009121  ATACGAGGAATAATGAGCGG  CAACGTCTCCCTTTGATTTC 
SMED30009166  GCAATGAAAACACTACCGAG  GTTTAACTGCCAATCTCCAG 
SMED30009277  GAATTGCAGTCCAAAGTAGC  TGAGTATCCTGGTCCATTTC 
SMED30009865  AAGCAACTAAGGGCGTATG  AGTCAAGAGCTTTGGCTTG 
SMED30010702  AGTGAATACATTACAGCCGC  CTCTACTTCCGATAACACGG 
SMED30011027  TGGAAGAGCTAGAAGAATGG  ATCCAAAAGACCCTCTGTG 
SMED30011096  AGATAAACTTAGCCCCAACC  TATCCCATAGGCCAATACAC 
SMED30011449  CTTATCGAAAACCGCTCTC  AGGCATATGGGTGTATTCTG 
SMED30012759  CAAATGTGTTAGCACGTCAC  GACCAAACTTGACTTTCTGC 
SMED30012836  GCAATACGAATCGGAGATAG  GTGCTTTCTGGAGTTGTAGC 
SMED30013041  ACTGCTCAGTTCTTTAACGC  GATTGCGTCGTAACTTCTTC 
SMED30013197  AACCACTAGTCGAAATTCCC  TAACCGAGTCTTTCTGTTGG 
SMED30013615  CGAGGAGTCAGAAAATTGAC  ACCGTACATCACCATCTTTC 
SMED30013884  TAATGGTTCCTCAGAGAAGG  TCTTTAGATGATGCTGACCC 
SMED30014140  AACTTATCCAGGAGGAAAGG  TCTGGGGTTGAGTGTATCTC 
SMED30014221  CCAAAATCCGTTCTTGC  AATCTACAGGATTGTTCCCC 
SMED30014416  AGCGAAATCTTGAAGCG  CCTGTCTGACATGATACTTCC 
SMED30014642  TAGCGGGTCAAAGGTTAAAG  TCTCCTGGTGGTATCATTTC 
SMED30015574  GACTGGATAATCCTGCAAAG  CAGTAGGGTTTCTGTTAGCG 
SMED30015584  CGGAAAGTCTTGGAGTAGTG  GCTAAGTTTGACGTGGTTTC 
SMED30016052  GAAAAAGTCCACTGGATGAG  ACTGCCAGGTGAAATAAGG 
SMED30016082  GATTATCGACGACTCAATGC  TAACCATCCCTTCTCTATGG 
SMED30016189  GTATCCCCAATTCCTAAACC  AGGTTTTCCTCGACAAAGTC 
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SMED30016661  CTTGGAAGTTAGCAGTGACC  TACTAGCTGCTCGATCTTCC 
SMED30016674  AACTGATTGGACAGAGTTGC  TTCTGTTTCCATGGTAGAGG 
SMED30016720  GGATTTACGAAGTGAGATCG  TCACATCTATTGTCACTGGG 
SMED30017525  GCAGGAGAACTACCAGTCAC  CTATCTGCTCCCACATTTTC 
SMED30017790  CAACCTAAATATGGGTCAGC  CGCAAACAATGTCTAGTGAC 
SMED30018550  CAGGGACTGATGAAAAACTC  CTTGGACAGTATCGAAGCTC 
SMED30018972  TTCCGATGATGAAGAGAGTC  CCAACCAATACTTTACCGAG 
SMED30019258  GAAGCCACTTTTATACAGCG  GACAAAGGTTTCTCAGTTGG 
SMED30019819  AACCTCTCATCATTCCACAG  AATCGATCTGTCACTTGGAG 
SMED30019979  TGAGAGAATCAACGAGGAAC  GACTAACTTCGTCGTATCGG 
SMED30020349  GAGATTTTATGGGGCCTAAC  ATAACAAGCCAGACTATCGG 
SMED30020899  TCAAGTTAACGGAAGCTGAC  CATCTCTTCCTCTCTGAACG 
SMED30021002  GGTGGCACACATCTACCTAC  GGATCGACATTCTATATGCC 
SMED30021695  TTTACCTGCTCAAGAGCTTC  TGGATTCTCTCTAAAGCGTC 
SMED30021715  GCACCATCTATCGTCCTAAC  CTTGTCTTCTTGGTGCTTTC 
SMED30022144  GAATCGAAAGTACCGCATAC  GGACTCTATACGCAATGTCC 
SMED30022307  AGTCTGGGAAATTAGAACCC  ATGCTGCTTCCAGAGTATTG 
SMED30022317  CACACACACACATACACACG  CAACGAATACTGGAGAAACC 
SMED30024800  AAGTTGTTGTGTCCCTCTTG  CTGTGCATAACCCTGTATCC 
SMED30026604  GGAGAGTGCGAGAGTGATAC  CGTCGGGAATAACTGACTAC 
SMED30027315  GTTCGGTATAGTCGTTTTCG  CTCACACTCAACTTAAGCCC 
SMED30027324  ATCTTGCTGCATTGACAGAC  TTACCCTATGACGCGTAAAC 
SMED30027376  CTGTCGAAATCCAATCTAGC  GAAGAGATACGTGAAGCAGC 
SMED30028012  AACGCAATTGGAAGGTC  TGGCAGATTTGATGTCG 
SMED30028153  AGTTATCAGGAGATTGAGCG  GTATCCCGTTTTGTTACTGC 
SMED30028290  GCATTAGTCAGAAATACGGG  GAAAATACTCGCTTACTCGC 
SMED30028456  GCTTCAATGCACCAATG  GATTGTGAAGACTGCTGTTG 
SMED30028816  AAGCAGCCAATCAGAAGTC  ATTTGACGCTCGACTATCAC 
SMED30028872  GGTACTGATGAAGAAGTCGG  ATTCTGGCATGAGATCTGTC 
SMED30029112  ACAGGTTTTTGACAGGTGAC  ATAGGTCGACTTTGCTGAAG 
SMED30029281  TGCATGTCAGAACTCAGAAC  TACACCAACACGACTGAGAC 
SMED30029358  CTCCAATATTAAGGTTCGCC  CTCGATGGACAGAATATCAC 
SMED30029492  GCTACGGTTAGTCGATTGAG  AACCCTGGACGTTGTATATG 
SMED30029820  GTCAAGGGAACAGATAATGC  AGACCTACACACTGGACAGC 
SMED30029909  TGAACGGGTACAACTCTCTC  GGGTTATGTGTTTGACGTTC 
SMED30030319  ACAGTAAATGGTCATCCGAG  CGTTCAGCCTCTTCTCTAAG 
SMED30031165  AAAAGCCCTACGAAGATACC  AACAACTCTGCATAACCCAC 
SMED30031605  GGCTCTGTGTGGTATATTCTG  TAGTTGCCTTCTTCGCTATC 
SMED30031722  TTCCGATGATGAAGAGAGTC  CCAACCAATACTTTACCGAG 
SMED30031927  CTCCTATCACTGGCAAAGAC  GTTGTCCATAATCGTCATCC 
SMED30032103  CATTAAGTATTCCACCTGGG  TACGACTTAGCCCCAGTTAC 
SMED30032156  GTTGGGCAACTTACGAGTAG  CATGAGCCTATAAACCAACC 
SMED30032832  GGCGAGAAAAGACTTATGTG  CTTCCAGATCTCTTGCATTC 
SMED30032906  GAATGGTAGTTCTAGTGCGG  GGAAATCTTTGTCAGTGGAG 
SMED30033093  GAGGATCTGATTGAAGAAGC  ATCTTGGATGACCGACTTG 
SMED30033411  AATCAGGTGAGATCACAAGG  ATGGTGAGACTGTTCTTTGG 
SMED30033423  GCAGTTGGTTCTTTTCTGAG  ATGCCTTCTGATTCAGTCAC 
SMED30033689  GGGATCTCCTATTAACACCG  CCTTCTCACTGAATTTGGAC 
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SMED30033718  GAGTCACTTTTAATCGCTCC  GCTTTTTCAGCTTCTACGAG 
SMED30034130  GAGACTCATCTTGAAGCAGG  GTAGTATCGGTGAAGATGCC 
SMED30034249  TTGTCAGTACAAACCTGACG  GCTTGACACTCTCCTTTGAC 
SMED30035617  TCCATTATTACCACTCCAGG  GAGCAACTTGGTTCGATTAC 
SMED30000740  ACTCAATGACCAAGATACCG  TTTCAAGGTCCGTACATAGC 
SMED30002243  CAATAACTTGAGAGCGGAAC  TCTCATCTAATCATCTCCGC 
SMED30003118  CCAGCTCTAAATCGAAACC  GCAAATCTTCGCTAGCATTG 
SMED30003738  GTCGCGTTTGTTTTACTAGC  GCTCATTGAATCTCTGTTCC 
SMED30004065  ACTGCCATCAATTTACCGTC  GATCGTTGGTAGTGAAGAGG 
SMED30004092  CTTTGTCGGTTATGGAAAGC  GTTCGATTGGTAGAGTGAGTG 
SMED30005143  CATCTTAGCGATTCTCATGG  ACCCTTCCACACATATAAGC 
SMED30005191  CACAAAGACAACAACAGCAG  TCTAACTAGCAAATGGGCTG 
SMED30005345  TTGGAGGTCCGAATATAGAC  CTAGATCAGCTTTGGGTTTC 
SMED30005462  TCTTCGACGTTACATTGCTC  CAATCTTTCGACTTGAGAGG 
SMED30006268  GACAGTGGATTTCACGATTC  ATTCAGACTCGTTGTTCCAG 
SMED30008239  GATGATCAGAGCTAATTGCC  CAATCAGTATAGCAGCCACC 
SMED30008241  GGCTCTAGAAGCATCAAATG  CAGTTTCGATGACACTTTCC 
SMED30008761  CTTGGTTTAAAGAGGCACAC  ATCCGACACTGAGACTATGG 
SMED30008810  TGATTCTGACTTTAGCTGGG  ATTGCTAGACTGAGATTCGG 
SMED30009007  TGAGATCCATGACGAACATC  AAAGAGCCCTCTATCGATTC 
SMED30009121  TCAATCTACATGGATCTGCC  CAACGTCTCCCTTTGATTTC 
SMED30009793  CTTAATTACGGTTCCAGACG  CTTTATCGGACAGAGACTCG 
SMED30010180  CACAGCACAATCAACAACTC  CAATAGACCGATTGAAGAGG 
SMED30011521  GCCCATTATCAGTTGATGTC  AAAACGACTACCACAACGAC 
SMED30011842  TACGATGTCTGTGTTAACGG  CAAGTATTTCCTTCTGCGTG 
SMED30012985  GAAAGTCAAGGTGACGAAAG  CATGTCAGATTCTTCTTCGG 
SMED30013747  CGTAAATAAAGAGGTGGAGG  GATAAACTTTCTTGGGAGCC 
SMED30014567  GAATTGTTACCAGAAGTCCG  GAAACATTAAGAGTGCGACC 
SMED30014642  TAGCGGGTCAAAGGTTAAAG  GGTTTAGGCTTTGGTTGTG 
SMED30015382  TGGCTTCACTGATTAGCAAC  GATCAAGGCCATTGGG 
SMED30015978  TCTTCTAACCGACCCTACAC  TTTCCAGAGCTAGGAATGTG 
SMED30016305  TTTAGATAGCAAGGGGGAAC  GATGACAATGAGGCTGTTG 
SMED30017389  AACAGTGACATTCCTTCGAC  GTTACGGAAACAAACAGCTC 
SMED30018339  TCAGTATTGGGATAGAAGGC  GAATGAGCAATCTTCTCGAC 
SMED30018487  ATTCTACAATGCTGTCCACC  ATGATGAGGTTACTGGGTTG 
SMED30018615  TTACAGGGATAACATCAGGC  GTCTTTCATAAACTGTCCCG 
SMED30019025  CTAATAAGACGGTGGTCTCG  GCTGATGCCTCTTCTAACAC 
SMED30020559  CAACACTTGGTCTCCAAATC  AGCACTCTGAAGGATACAGC 
SMED30020862  AAAACCCCTATAGAGTTGGC  GTATCCTGGAGATTTTCGG 
SMED30021277  CACTGAAAACGGTTCAAAGG  ATCTTGTGCATCTCGTCAAC 
SMED30021613  AAGTTGGTGTGATGGAAGAG  CCGAACAATGAGGAGTTAAG 
SMED30022344  AGATTACCGCACAAGATGTC  CGTTTGTCGACTTTCTTCTC 
SMED30022370  TTAGCTATTTCGCCTCTGTC  GAAGGCAATAATGTCTCTGC 
SMED30024211  CCACTCGAGAGTAGAACTGG  TCTAACATCAAGGGTTGGTC 
SMED30025393  AGTACACGGTCCATTTCAAC  GGCCAAGATAGAACACAGAC 
SMED30027074  CGAGCTTGAGTCAGAAAAAC  TCATTTACTCCACCCTGTTC 
SMED30027368  ACTGGATTAGTGCCATTCAC  CTTCTCACGAATACCCTTTG 
SMED30028069  GGTGCAAAGACAAACATACC  GGCTTATCGACTTTCCTTTC 
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SMED30028306  CTAGGATAAAAAGCACAGCG  CGTAAGGCGACTACTAAATG 
SMED30029112  ACAGGTTTTTGACAGGTGAC  GTCTGACAGGAAATCTGAGC 
SMED30030336  GTGGTGATCTACTTGATTCG  ATGACAACAAACCTGACTCC 
SMED30030586  GTCGGTAGATTTGAGAATGG  CGACATAAAGAGGTAATGGG 
SMED30030663  GATCTGATCGATGAAGCAAC  CATTATGCATCCTGACTGAC 
SMED30031335  TCACGGGGGTAAATATACAG  GACTGGCTTTAATTGCCTC 
SMED30031426  CAGAAAGCATGACCCTATTG  CATTCAGCGGTTACCTTTAG 
SMED30031822  AACTCCAGTTCCAATGTCAG  GATTTCTACTGCTGTGGCTC 
SMED30031828  TTGCATCGCAGCAAAC  AAAACTCTCCTTGTGAGTCG 
SMED30032382  CTTCACTTATTCACTTCGGC  GTTTGATAGCAGGAACTTGG 
SMED30032538  ATCGGTGGTGAAAGAGTTC  GTAACCAACGGTGTTTTCTC 
SMED30033093  CGGGGTTCAATGTGAAGTAG  ATCTTGGATGACCGACTTG 
SMED30033303  GTTGGCCTATACGATGTCTC  GACAAAGCAATAGTTCCTGG 
SMED30033351  AACCAATCTCAGTTGAGTGC  GAGTACAAAAGATCCGACTG 
SMED30033411  TCTCCAGTCCTACAACAACC  GAGACTGTTCTTTGGTTTGG 
SMED30010749  TATTTACCACCGGTTGACTC  ATGAAGTGCTTCCTGAAGAG 
SMED30020061  GAATTGAATACACCCGAGG  ATAGATTCATCACCCGTCAG 
SMED30025100  GACTCAAGTCGATGAGAAGC  CCACGGGACATATGTTTATC 
SMED30031794  GATGAAGAAAGCATACGAGC  GTGGCATAGGATTGAAGTTG 
SMED30015014  GTACTTCAAAAGTGGGAACG  CTTCTGATGGGTCATTGTG 
SMED30035226  CTCAGATCAGGGATTTTCTG  GATTGAGAATGATCTGGTGG 
SMED30011754  AGAAACTCCATCGACTCCTC  GTGACAGGGAATCAAAACTC 
SMED30032631  GTCTGCACTTGCACAATTAG  AATATGACTACGGATGTGGG 
SMED30034228  TGTACGAGATGGAAACGAAG  CTTTCTCTTTCTATCCGGC 
SMED30003887  GAAGAACCAGAAAAGCCAAG  ACCATTCAATTCCTGGG 
SMED30034505  TTACACGTGTGCCTTGTTAG  CCAACTAAGTTTTCGTCCAG 
SMED30023819  CTTCGGAACAACTGAAACTC  CACTTTATTCTATGGAGGCG 
SMED30031862  TTAGCTTTAGGGGACAGTTC  CCTTTTTAGAGTGCTTACGG 
SMED30018383  CTGAAACAAGTACAGAACGG  CAGTAAACGGAGGGTAAATG 
SMED30013338  ACACAGAAGCAGCCTTAGAC  GATTTAACTGAGCGACAACC 
SMED30030245  ATTGCTGGCAGTAGAGAATG  GCTGTCCTTCTCGATTATTG 
SMED30029873  GCCATGTGTAGGGAAAATAG  GAAGATTGCTGTCGTCATAG 
SMED30018122  AAAGAGCTAGCACGTTTGAC  GAATTCCCAGGAAATCTAGG 
SMED30028898  GGCACAAAGTAGACTATCCG  CAAAAGGTAAGCCAAAGTCC 
SMED30017865  TCGAACGGGATCATAGATAG  GAGGTTCAACTTTCACTTCG 
SMED30009482  GCGTCAGGAGTTATTTGAAC  AGGGTGTCACTGAAATATGG 
SMED30014937  ATCGCCTAATTCAGACAGTG  CTTTCCAGTTTCTTAGGTGC 
SMED30014407  CAGGACGAGAATGAAAACTC  TACACACATGCATATCACCC 
SMED30026337  CGAAATACTACCGAAACCTG  CCTTTCAAACTCCTTCAGTG 
SMED30020022  TAACCATGGAATTGGGC  CCCTCTAGCAAAATTCTCG 
SMED30006656  TATGACTTGTGTGGACCTTG  TCTAGGAAACAAGCCGATAG 
SMED30000458  GTGAGACATGCAAACAGTTG  GACTTCGGCATTGTAGTTTC 
SMED30009973  AGAGTTGAGCAACGTCATTC  AACACAGGATCCAGTAGCAG 
SMED30003975  GGAGAACCTAAAGACTTAGCC  ACTGCTTCTTCGTCAGAAAG 
SMED30029509  TAGAACCGGGAATGTAGATG  TCTCCGAATCATTACCTCTG 
SMED30001601  ATTCGATACGACCTCAACAG  GAAATTGGCACTACAGAAGG 
SMED30011885  CTTGCTGATTTACCATCTCC  TTCTACAGTTTTCCACGCTC 
SMED30033237  TCAGTTGTGTTACCGAGTTG  AGATCCATGTGAATACTGGC 
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SMED30032477  AGTATGAGCAAGGTAAAGCG  GGAACTGTTGAAGTAATGCC 
SMED30027170  CTCAAGAGTGGCAATTTCTC  TCAATCACCTCTTGGATAGG 
SMED30019046  CACCGGATATAGAAAACAGC  ATATTGTGAGCCTTGGTCAG 
SMED30024319  AAGATGACAGGGAATGGTG  ACGTTGGACACCAAAACTAC 
SMED30020689  TAACAACTACGGCACACTTG  CTTCTTTTTCTGTTCTCCCC 
SMED30021824  GCCAAACAAGAAAGACAGAC  ACTGTTTTCGATGTACCGTC 
SMED30000740  ACTCAATGACCAAGATACCG  TTTCAAGGTCCGTACATAGC 
SMED30023406  GACAGTGGTAAGCAAAGAGC  ATCTACGAACTCCACACTCG 
SMED30002934  GCTCAATCAGGCTAATCATC  CAATAGATTCATCTAGGCGG 
SMED30032675  GAAGTCGTTAGTACGGATGG  ATTGACTTGTGGAACTGGAG 
SMED30015704  AATCAACTGCTACCTTCGTC  AAGGCTCCATATCTTCAAGG 
SMED30031744  CGCGATGTCAGTTCTAAAG  CGCCTCTACATGCATTTTAC 
SMED30019262  TTCTCAATGGAGTCATCCTC  GATTCGGTTCAAGATCAGAC 
SMED30005904  CAGGAGAGGAAATCACTTTG  TGCTGTAGCGATGTATTGAG 
SMED30004376  GCATATCACTTGCTCTGTCG  CAATATCGTTCAGATCCACC 
SMED30035662  CGACTGTTTCCCTGTTTAAG  TGTGGTAGTCCTCCTCAATC 
SMED30016301  ATCCAGTTTGGACTCTGATG  CTATTCCAGTTTCTTGGTCG 
SMED30013043  GTATCATACGAATCGTTGGC  CTTTGGCATAGAAACTGCTC 
SMED30013608  ATTCGAAGTCTGGATATGGG  CGTCTTCTATCACCACTTCTG 
SMED30005237  GAGTTGGCCGATATTAACAG  GAGTACAGTTCTGAGCCGAC 
SMED30004840  AGTCATTAGATCCGGTTGTG  CGATCATAGCACATTCACAG 
SMED30025473  CCTGGAAGGATCAGAATTG  TGACACTATTTTCTGGTCCC 
SMED30027645  GGGTTAATAGCAGCACAAAC  TGATACAGCACGTTGAGAAC 
SMED30025205  TGGATTCCACAGGAGTTTAC  CTGAAGGGCTTGTATTATGG 
SMED30035805  CTGACATTGTTGACAAGGAG  TACTCACCGGATTATCTTGG 
SMED30002579  GATTGGGAAGACTTAAGCG  GTGCGCTGTTTCTTCATATC 
SMED30015041  GACGGGTACTCAGTTCTTTG  CAATAGCCGAAAAGGTACAC 
SMED30013810  GAACAATACCGAAACTCGTC  GAAGTGTTAGCAGTCGTTCC 
SMED30030229  TCAATGACGACTGTTACTCG  GTAGTCAGACCTAAGCACCG 
SMED30029242  TGTAACGCTTGTCAAGTCAG  AATCGACGAGGATATGTCAC 
SMED30015354  CTCAACGTTAAGACCTCTGG  AGCTGATAATTTAGGGAGGC 
SMED30021262  GACCGAAGAACAATTCTCAG  AGAAACACCACTTCAACCAC 
SMED30011111  GCTGCAATAATAGGAACACC  TGTATATCCCCCTAGTGACG 
SMED30016899  TGACTGCATGGAGTTATGC  ATTATTCCCAGCCAAGTTCG 
SMED30018460  AATGCGAACAACAGAGAGAG  AATCTACCAGAATGAGCTGC 
SMED30006256  GATTCGACGATCTTAACCTG  TCGCGAAGAATTGATCC 
SMED30026172  TCCAATAGAGGAACTAAGCG  GTCATTAAGAATAGCCGGTG 
SMED30010536  CAATCTATTGCCTCCTCATC  CAATGTTATGGGTGGGTAAG 
SMED30033757  AACGCACTAGAGAGGAATTG  TCCATGATCTCTTCTCCATC 
SMED30006454  AACCTGACTTATGAGCCAAC  TAATATCTCTCTCGGCTTGG 
SMED30020410  CAGCAGTGATTACGTGATTG  GAACGCTTATAAGGCACTTG 
SMED30028787  CTGAAGGATGATAATCGGAG  GTGAGCAAATGGAGATGG 
SMED30001441  AGTCAAGCTTACTCTTTGCG  GTGCATAACAGTTCATCGTG 
SMED30033789  CAGTCAGATCTTACCGCTTC  ATTGATAGATGACTGGCTGG 
SMED30020090  TCCCGTAAACCACTCATATC  CTATATTGCGGTCTTTCGAC 
SMED30006455  ATTGGGTGGTAGATGACAAG  AGCTAGCGAGAAACTGAATG 
SMED30000184  AGTCCTTGACCGACATTTG  TTTCTCTGATCATCTGTCCC 
SMED30035239  TGTCTGGGGATTATTACGAC  GTTGGAAACTTGGCTGTTAG 
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SMED30019431  TCATATTCCATGCCTACCTC  GGTTCTACGTCAAAAACGAC 
SMED30015021  ATTGTACGAGGGTCATCTTG  AGATTTCCACAAGTGTCTGG 
SMED30035968  TGGTTCCCTAATCACTCATC  TTCTGGTGAATCCTGATACC 
SMED30013787  GTCACCAATCACAAGTTCAG  CGCCAATTATTCTGGTCAC 
SMED30021726  ACAGGATGTGGTTACTTTGG  TCGTGCTTTACACACAACAC 
SMED30008757  ACCAACATCAGCTCAAACTC  AAGAATCAGTCCACATCCAG 
SMED30011204  GTGGAAAGTGAAAGAGAACG  GAATGCAATCAGAAGGTAGC 
SMED30015427  GTGTGCTTTGGAGGATTTAG  CGGAGTAGAACTTGTTTTGG 
SMED30003438  CTCGAATGTCTGAAAGAAGG  ATTCCGTCATAAGACTCGTG 
SMED30024295  TGAATTTGACGTAGGTCCTC  ACTGTCGCACACATACACAC 
SMED30007480  CTGAACGTAGAGGTCGAATC  AATTCTTCCTCGTCTTCTCC 
SMED30025830  ACTACTCAAGCCGCTACAAG  ACCTCCACAATAATCTGACG 
SMED30035923  AAGTGGCTTGAAACTGAGAG  CAGAATCTCTTAGACACGGG 
SMED30026524  CTGGACAAGCTATGAGTCTG  ATGAGGCTCTATGGACTTCG 
SMED30033971  TAACGTCATGTCTGCTCAAC  CCACCACTTTAACAGATTCC 
SMED30032793  ATTTCTACCTGTGATGCCAC  CAAGAGCTTCTGTCCATTTC 
SMED30008334  ACAACAGTTTCTCCAACAGC  TGGAGACTGTTACCATAGGC 
SMED30020220  CTTACAACAGGCAAAACTCC  GTAACTGCCACTATTGCTCC 
SMED30014565  TCTGCGAGGAGTATTCAAAC  GTGGCTTGATTCCTTGATAC 
SMED30001824  AATCTGCTGGTGAAACAGAC  CATTATATAACCCGCCGATG 
SMED30034824  ACATCAAGTACGACACTTCG  GACCACGACATATGATTTGC 
SMED30010071  CTTGAAGCAGGGTAGAACAC  GTCTCTCGGATTGACTTCAG 
SMED30026323  ACATTTGGACTAGCGAACTC  ATTCCGTTCCCTTTAGGTAG 
SMED30013706  GGTTGACGGTAAAGAAAGTG  ATATTTGTCACCTCGACAGG 
SMED30015660  TATCGAAGAGAATTGCGACG  CAACTTGGTGGTACCCTTC 
SMED30015382  TGGCTTCACTGATTAGCAAC  GATCAAGGCCATTGGG 
SMED30021874  TATGTGTTGAGCTGACAACG  ATCTCACATATGGGACCAAG 
SMED30028535  AGAGTTTGCTAGCCAAGAAC  CAAGTCTTCCACGTTTATCC 
SMED30017636  GGCTGTATGAGAAAATCTGC  TCCTCGTCATCTGGAATATC 
SMED30032870  ACCCGTCTGTTATGGTTATC  TACCAGAACAACAAGAACCC 
SMED30011669  GACGGCAACTGTATAAAAGG  GAGAGAGATGAAGTGGATGC 
SMED30034787  AGGTCGAGGTGAAAAAGAAG  TGACTGCTATCGTCATTGAG 
SMED30012902  GAAAACCCTTCATCAGTCAC  AATCAGTAAACGCACCAGAC 
SMED30010405  ACTTATCGCTCAGGTGTACG  TGTCCTAAAGTATCCGCTTG 
SMED30004590  GTGAATCACCTAGAGATGCC  GCCCTGATTTGTAGACTTTC 
SMED30035101  CTGAACAAGTTGTGCTTGTG  TAAGCAACATCTTAGCGGTC 
SMED30018599  CTGCTTCTGTTACGCAATG  GACATCAAATGAGCACGAG 
SMED30018802  GAGCTCAGTGGACAGAATG  GATGTTGACCTCCTTTTGTG 
SMED30010872  AGCCTACACAATTGATGCTC  GCTCTGGAAGTTGAAGTTTG 
SMED30012786  TCAGTTCCTCCAACAGATTC  TCATCGAATAGGAAGAGAGC 
SMED30022077  AGTACTCTCTCCGTTACTGTG  ACACAGACACCATAAGGCTC 
SMED30008169  TGAAGGTCTGGATCTGTTTC  AACTTGTGGAGCATTCTGAC 
SMED30001834  GTATAAAAGGTGAAGCCTGG  GTTACCATAGGCAGCTTGAG 
SMED30013882  GATGCACATAGTGAACACAC  TTCTTTGAGAGTCAACGGAG 
SMED30010581  TAGCCAGATTCCATATGAGC  CCGATATAGGCAACAATGAG 
SMED30029019  GGCTACCAATGAACAACTTC  TAATTGAGTTCTCCGTCTCC 
SMED30019771  CGGAAATGCTAACCATACTG  ACCACACTGTAATTTCCTGG 
SMED30026612  CTCAGAAGATTCAAAGGCAC  GCTCAACCCTGTATTTCTTG 
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SMED30027542  TGTTATCGTCCACTGACAAG  TAACTAGCCACACCTCTTGG 
SMED30024538  AATCGTAGCGTCTAGCAATG  ACAGCGAATTCAGAGTCATC 
SMED30014731  GATAGCATACATCTGACGACC  CGGAGCCTTGTGATAGAG 
SMED30002072  CTGGTTCTACTTACGGATCG  CTCTTCTTTGTAATGGGTCG 
SMED30018173  CTCTACAACAGAAGAACGGG  TACGCAATGAACACTGG 
SMED30019292  GACTAAAAGACCGTTGTTGC  TAGCAACACGTGGAATGAC 
SMED30019993  TATTAGGCCAGTCATCTTGG  ATTAACTACCCCCTTCTTGC 
SMED30002822  GAATCCGGGGAATTCAATAG  GCGTTACAAAGAGGACAAAC 
SMED30003113  GTACATTGGATGTGTCCACC  GTAATATAACTGCCGATGCC 
SMED30016902  ATCACCACTAACCAAACCAG  GACTCATCAACAGAAAACCC 
SMED30023146  GTGTACAGCTCTTGCTAAAC  GCCAAAAGTCAACAACACAG 
SMED30032199  TGCTCAACGACAACTGTTAC  CAGTCCTGTTGCACTTTTAG 
SMED30021589  TGTAGTGGGGTAAAATGTCC  GTATTTGCCCATTGCTAGAG 
SMED30031844  TAGATGGGATCAAAGGTCAG  CTCCAGATATTGCACAACAG 
SMED30000749  ACTATCCCTCCTCAGCTTTC  ATCGGGAATCTCCTCTATTC 
SMED30010749  TATTTACCACCGGTTGACTC  ATGAAGTGCTTCCTGAAGAG 
SMED30023111  TTGGGAACAACTTGCTAGAC  TAGACTCCAATGGAACATCC 
SMED30001237  TGTCAAAGGATATACCGGAG  TACGCGTGATACATGCTG 
SMED30006763  TGGTTCTCTTTCTCCAACC  AGAGGAGGGAAGAATTTCAG 
SMED30025100  GACTCAAGTCGATGAGAAGC  CCACGGGACATATGTTTATC 
SMED30027478  CTCTTCCAAGTCCAATTGTC  GCTCATTTAGTGAAACCTCC 
SMED30012229  CTCAGTTGTCCTGAATCTCC  CTTTTTCTACCGGCTGTTC 
SMED30029546  CGAGTCCCAAATAATAGCAC  TGAATAGGGAGTTGGTCTTG 
SMED30017762  GAAGTGCGTCGAGAAGTTAC  GTCTTTTAAACTGACCGCAG 
SMED30009873  AACTGAACCTTCAAGTCACG  CTGCCAGATTCTCTCTCATC 
SMED30029668  ACAGGCCTAATGTACCACAG  ACACAGAGGAAGACCATTTG 
SMED30000158  AGGAAGTGATGGAGTTGATG  CTCGTTTCCAAACCTCATAC 
SMED30009782  GGTCCACAATATATGCTTCC  TATGAGCAGCTAGCAGACAG 
SMED30025672  CCACAAGTTCCAGATCAAAC  ACCTCCTCTTCTGGATTTTC 
SMED30028223  GAACAAATACACCCCTCATC  TTCATAAGTAGCCCTTGGTG 
SMED30034903  AGAGAAGCAGTTCGTAATGG  AGCTTATACGAGCATCAACC 
SMED30010991  TATCGGACCTCTTTTCAGTG  AGAATTGGACGTTACAGTCG 
SMED30032001  TCTTAGGGTGCTCGTACTTC  ATCATGAGAGACAGCATTCC 
SMED30015955  CTTCGTGAAGAACTGGAGAG  TCTGAGGGTATACCGAATTG 
SMED30026425  ATGGACACAAAGGTGGATAC  TACAGGTAAATCAGCCAAGC 
SMED30019249  ATCTTTCTCCTCCTTCCATC  CCATTGGTGGGATATCAAG 
SMED30024850  GATCTTGATGATGGCTGC  TCGATAGAGATTCGACTTGC 
SMED30016922  AACAACAACTCCACCATCTC  ATATATGCGTCTTCCCCAC 
SMED30027818  ACTGGAGCACTCCAAGAAC  TTAGTTTCCTGTGTGTGGTG 
SMED30030007  GAACGAGATAGAGATGACGC  TCTCTGCCTTCTAGAGTTCG 
SMED30035592  ACAGATGAGAGGACCATGAG  CAGAGCAATCATCACAACAC 
SMED30000746  TGATTCAGATCGGACTTCTC  TATCGCAAGTCTTCAAGCAG 
SMED30019318  AGACCGCAGAATATTGAGAC  GTGACAAAAAGTCTTCTGGC 
SMED30029006  TCCTCCTGCGTATAATCAAC  TGCGTAACTCATAGAGCTTG 
SMED30011512  CACGGATCAGGTAAAGCTAC  CACTGTTTTGATCAGCAGAC 
SMED30019305  TTCAGTTTAGGCGTTCTCTC  GATTCGGAGACGAGTAATTG 
SMED30001479  GCATGCTTAAGATTCCTCAC  GCTTTACCACCTTCATCTTG 
SMED30011431  TTTTGGTAAGTCACAGACCC  GCTCCAGTAGCATAATGACC 
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SMED30013692  TCGATTTCTAGACGAACCG  GTAGCATCACCACTTTCCAC 
SMED30033366  GCAATCTAGAGATCAAACGG  CAAACAGAGTAAGGACCAGC 
SMED30025181  ATGTCGGTACCTTCAAATGC  TCGGTCCTATTATGCCATC 
SMED30017802  CTTATCACACAATGGGTTGC  CTGAGCTATTCTGATTGCTG 
SMED30014360  CAACCAGAATGGGTTTAGAG  ATCTGGATGGGTGACATTAG 
SMED30000184  AGTCCTTGACCGACATTTG  TTTCTCTGATCATCTGTCCC 
SMED30017127  ACGGTCCTATACAACAGTGG  GAACATCGTTACAAGCTTCC 
SMED30012136  AGATTATCTGGGAAGCAGTG  ATAGCCCATATAGAGGGACC 
SMED30013840  ACAGGCGAGTCATGATATTC  ATTGTCTTCCTGGAGTGTTG 
SMED30009188  TCTACTTGAAGCGTGTGATG  CTATTTTAGCATGCTGTGCC 
SMED30005253  TATATGGAACCACTCCCAAG  GAAATCGGTACGTGAAGAAG 
SMED30010842  AAGAGCACACAGAGAAGCTC  GAGCCATATTCTTCCAACAG 
SMED30027228  TAAGGCCTGGAAGTCATATC  AACAGGAACGGTACAGACAG 
SMED30012757  CCTGTTATCAAGGCAATACC  CGCGAGTATCTAAAAGGTTC 
SMED30003024  CATGTTAGCAACGAGATAGC  AGTGACTGTGTAATGGCCTG 
SMED30000015  GTTAGAAAATTCCGGAGACG  CTATTCAGGTCGTTTCCTTG 
SMED30000485  CAAGTTGCTCAATGACAGAG  GTTACTCGAACTGCTGAACC 
SMED30000830  GCTTAGTTATCTCACCACGG  TCCATTACTCCCACTCTTTG 
SMED30003125  ACCATGCAAGTATGAGTTCC  GAGATACAAAACCAGCTTGC 
SMED30003389  CTCTAATGGATCCGAAACTG  CAACAAGAAATCTCGGTCAG 
SMED30005935  TCAACAGAGACCTGAAATGC  CTGTCATTCAACGGCTTTAC 
SMED30010650  TGAATGACACCTAGATTCCC  AGCTCGTTCAACTTTAGCAG 
SMED30011553  TGTATCCCAACCGTATCTTC  TGAAGTCGACCAACTATTCC 
SMED30012510  GGTTCTATTCATTCAGGCAG  GTTCCATTGTAGAGACAGGG 
SMED30012845  AGTCAATGATGGCGTATCTC  TTTCTCATGGTGCTCATAGG 
SMED30014114  GGAGTCAATGCCTGTCTTAG  GAAGATTCTGTTTGGAGCTG 
SMED30014280  GAGCCAACAATAGAAGATGC  CTCAATAGAAGCATCGAAGG 
SMED30014326  AGAGATCTTCCTATCGACCC  GCACTTGTAAGGACGGATAC 
SMED30022030  CAGGAATTCATGAGTCGTTC  GAGAACATACATTGCACCG 
SMED30025907  CAAATCTCTAACCAGGCAAG  CACTTATTGTTCCAAGGCTC 
SMED30026019  CAGCATGAAACTGCACTAAC  TAAAAGGAAGATGACGAGGG 
SMED30026745  CATCTAAAGAAGTCGTGCAG  AACACTCGGAATTCTGTGAC 
SMED30028733  ATCAATCACACTTCCAGACC  ACACTCATGTCTTCGGATTC 
SMED30029241  GTATGTGGAGCCAAATCTTC  ACATCATTATCCCACAGAGC 
SMED30029780  CAGGAATTCATGAGTCGTTC  TTGTCTAATATGCCTGAGCC 
SMED30029786  AAACCCCGGTTACTTCTATC  GACTGTGATCTGCTTGTGAG 
SMED30031351  AGCAACTACAACAGCAACAG  AGTTGAAGGATGATGTGAGG 
SMED30032395  TGGGTATCCATTCTTACCAC  AAGGCTGGTGTATGAAACTG 
SMED30032592  CAACAGGTGTGGTCATTTC  CTCTTCGTTCTTTGTAACCG 
SMED30000346  CTGATTTGGAGTCAAACGTG  ATCGGGTCCTTGTAATCTG 
SMED30000786  GATCTCAAGACGCAGAAATC  TTATCTACTAATGCCGGAGG 
SMED30001207  GTTGCAAAGATAGCCTTGAG  CCATTGTCACTTTTCCTAGC 
SMED30001802  TTTTAGTAACCTCGCTGGG  GCTTCATGAATGACAGTCG 
SMED30002761  CGTCCTAGTTTGCTTAATCG  TTGGACTTATTAGACTCGGG 
SMED30003001  GTACTCGGATCAACGTATGG  TATATCCGTCGTCTGGATTC 
SMED30003101  CGAATCTGTCTTTCGATCTC  CTGTCGAGAAGGTTAACTCG 
SMED30008131  CCAAGCAAGAATAGATGGAC  CTCGTTGTAAATGGGTTGTC 
SMED30009430  ATTCTAGCAGCTGACGAAAG  GAAAGATCACGATTGTACGC 
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SMED30010773  TGCCTATATTGCTCTCAGTG  CCGCAAACTTGTTAAGG 
SMED30011041  GACTTTCTACGAGTCCATGC  CAATCGATGAGTCTGTTGTG 
SMED30013740  CCCTTACTCCTATATTGCCC  ACTATCTGTCGATGAACACG 
SMED30014356  CAATGTGGAGTGATTTGCC  AACAGCTCTTCTGCTTCTTG 
SMED30015340  GTAACTTGTGCAAGGAAAGG  ACAGTCAGATACATACCGAGG 
SMED30016575  ACGATTGAATCTCTCACAGG  CGTCGATGCAACACAAC 
SMED30016788  TCCAATGTCCCAGTCTATTC  ATACTTCGATGGTCATGCTC 
SMED30021511  GAACTTCATGGGGTTCTTG  GCACATACAGACAAATAGGG 
SMED30021694  TTCTGAATGGAGTCATCCTC  TCGCACTTCACAGTTGTTAC 
SMED30026965  TAAAGCTGAAGAGGATGGAG  GTCTATATTGACAATGGCCC 
SMED30028789  TAGCAATGTGTCTTCTGCTG  CAGTTAGCACTGGAGCATTC 
SMED30030504  GATGCAGGTTTCGTCAAC  CTGCCACATTTTTACAGACC 
SMED30030829  CTACTAAGATCGAAAAGCCG  GCTCTTCTTCATTGTTGGC 
SMED30032163  AAATTACTACTCGGCGACTG  GTTTTACATGGGAGTGGATG 
SMED30035670  ACCTTGTAAATCAGGCTGC  CATACTGACAATTGTGTGCC 
SMED30000179  TACCTGGGTTAACAGTGGAC  GGTAGATCTTCGTTGAAAGG 
SMED30000821  AATGTACAGTTCTTCCGACC  TGCTGGTCACAGATTGATAG 
SMED30001853  TATATGTAATGGGGTGGAGC  CAAACAGAACGACTCCAAAC 
SMED30004187  GGACTATTGCTGATTGTTCC  CACATCTTGATCTGATGCC 
SMED30005698  CATACGTTAACGCACATACC  GGAGACCTTGTACTCACTGG 
SMED30005819  CAATCTATCTCTCGATTGCC  GTAGATCATTGCTTTCCGAG 
SMED30008243  TCTAGATAAGGTGGAGGACG  CCAATCAACTCAATGCAAGG 
SMED30010219  GGAAACCTGTGATTCTAACG  TCAGCAGTCAACTGAAACAC 
SMED30011233  AAGAGGGATCCTCATTTGTC  GTTGGTGCTTCAGTGACTTC 
SMED30011604  AATCGTGGTTAGTGCAGTTC  CAAGCTAGTAATCGGTGGTC 
SMED30012149  TCGTCAGATAATGGTAACCC  GCAGATATTCGAGAGTTTGG 
SMED30012996  GACATAACATGTGCCAACG  ATAATGACAGCAAGTACCCG 
SMED30014180  CTTCACATTTTGCGGTG  ACGTGATCTCTTGGTGATTC 
SMED30014623  GGAATTGTGAGAGTTCTTCG  ACGTATCCATGTAGACCGAC 
SMED30014872  TGAGCTCTACATTTGTGTCG  CCATTCTTCCATGCATCTC 
SMED30015111  CTTTCAACTGGTCTCCAAAG  GGATCGACGAGATACTTCTG 
SMED30016091  TTGCTGAACCTCTATCTTCC  GATATGGGAGACAGAACGAG 
SMED30020599  GTAAATGAGGCCCCAGAG  GTGATGGATTCCACATTCTC 
SMED30022734  CTTCCGAAGAACACTATGC  GTACATGGGGAATCATGAAG 
SMED30023146  GTGTACAGCTCTTGCTAAAC  GCCAAAAGTCAACAACACAG 
SMED30025116  GTAATATGGTCCAAAGCACG  GTTGTTAACATTGGGTGGAG 
SMED30026369  ATACGTTTTATCCTCCTCCG  CACTCTTTAAATCCACCAGG 
SMED30031335  TCACGGGGGTAAATATACAG  GACTGGCTTTAATTGCCTC 
SMED30031995  GGATTTACTGTTGGATCAGC  GCTACAGTGGAATGGAAAAG 
SMED30003024  CATGTTAGCAACGAGATAGC  AGTGACTGTGTAATGGCCTG 
SMED30004903  TCTAGTGGTGGATTTTCTGC  GAAGGAGATAATGTTGCGAG 
SMED30007103  GTATATTTGAAGGCAGGCAG  TCAGAGATTCATCAGGTTCC 
SMED30009541  TGTTGCTGTATCATCCGTAG  TCCTAGTTTGTCGAGATTGG 
SMED30011041  GACTTTCTACGAGTCCATGC  CAATCGATGAGTCTGTTGTG 
SMED30012874  GTTACAGACCTTATGCTGCC  GATCGTAGCGAAAATCACTC 
SMED30012974  GGTTCAACGAAGTTCTATGC  TCTCAATGATTCAGGAGCAG 
SMED30014403  ACACTCCTAACATTTCCACC  ATTGTGCAACACCTAGAAGC 
SMED30015813  GGCTACAATGTTAGTGGCAG  TTGCAGTGAGACTTTGTACG 
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SMED30016795  TAAAAGCAGCCTCAGAAGAC  CCAGCAGAATGAACTCTACC 
SMED30018978  CTTCAAATCAACCTCGCTAC  CTCATCGGTAAGGTTTTCTG 
SMED30019535  GTGGTTATCCTCAAAACGAG  AATTATTCTCGTGGACTCCC 
SMED30019657  ATTCGTGCCTTAGCTCATAG  CGTGGTTATAGCCAAAAGAC 
SMED30023727  TGCATCGGGAGAGTTATG  TGTGTCTCTTGAATGCTGTG 
SMED30024839  ACTCTTGCTTATGAAGTGCC  GAGTCGCCTTGTCAAGTTC 
SMED30025787  CACCACAGCTACATTGACAG  GCTTGATCTATGGCATCTTC 
SMED30025809  GTTGGTTATGGAACATCTGG  ACCAGTAACAGGCTCAAAAC 
SMED30025886  CTAGACTTTGGCTATCGTGG  TTTGTGTTGTACCTTCCTCC 
SMED30026457  GCTCATTTATTGAGACCTGC  CAGATTCCTATTCGACTTGC 
SMED30027474  TAGATTGCTTCGTAACCCC  CTAGAATCTGCATTTACGCC 
SMED30031875  CACCAGATTCGAAAAGTCTC  GGTCACTTAAGCGTTTTGG 
SMED30032382  CTTCACTTATTCACTTCGGC  GTTTGATAGCAGGAACTTGG 
SMED30034555  AAGTCCATAAATGAGCTCCC  ATACTGGTTGATGATCGGAG 
SMED30035902  GCAGTTATCAGAAGCACAAG  AACATCTCAAGTAGCGACAG 
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Appendix 1 

Epidermal marker 

During this project, we routinely investigated whether any of the conserved 

epidermal markers could also be used to study planarian epidermis. Since the planarian 

transcriptome encoded several proteins with sequence similarity to vertebrate Ezrin, an 

ERM (Ezrin, Radixin, Moesin) family protein associated with the apical cortical 

cytoskeleton of a variety of epithelia tissues (Berryman et al., 1993; Bretscher et al., 2002), 

we sought to determine its localization in planarian tissues. Surprisingly, the staining 

pattern of anti-Ezrin antibody (CPTC-Ezrin-1, The Developmental Studies Hybridoma 

Bank) was not enriched in the apical cortex, but labeled all epidermal cell nuclei along the 

animal body and pharynx (Appendix 1. A, B). Occasionally we observed Ezrin-positive 

nuclei in sub-epidermal cells just underneath the basal membrane (Appendix 1, C), raising 

the possibility that this epitope expression could also mark late epidermal lineage 

progenitors as they undergo transition into epidermal layer. Nevertheless, the identity of a 

planarian epidermal-specific epitope could not be successfully determined by genetic or 

proteomic approaches. No reduction of this epitope was observed after RNAi knockdown 

of an ERM family homologs. It could also not be successfully immuno-precipitated from 

tissue lysates or be identified by proteomic approaches. 

 

  

 
Appendix 1. CPTC-Ezrin-1 antibody specifically recognizes epidermal nuclei.  
Transverse section through dorsal (A and C) and ventral (B) epidermis. Occasionally the 
antibody also labelled sub-epidermal cells (C, arrow). Scale bar 20 µm in A and B, 5 µm in 
C. 
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Appendix 2 

Post-transcriptional wound response marker 

ERK signaling activation is conserved in wound response in various epithelia 

tissues (Cummins et al., 2003; Dieckgraefe and Weems, 1999; DuBuc et al., 2014; Li et al., 

2013; Wang et al., 2009). ERK involvement in planarian epidermal wound response has 

not been investigated, however, it’s role in mesenchymal wound response has already been 

suggested. Previous studies proposed that ERK activation in wound mesenchyme is 

responsible for blastemal cell differentiation and anterior fate specification in D. japonica 

(Tasaki et al., 2011). Some of the typical ERK pathway targets (egr, jun, fos) have also 

been found among the earliest wound response genes in S. mediterranea (Wenemoser et 

al., 2012). To investigate if this pathway is also implicated in epidermal wound response, 

we tested whether a commercial antibody raised against phosphorylated from of vertebrate 

ERK (#4370, Cell Signaling Technologies) would label the S. mediterranea wound 

epithelia or not. Unlike the previously reported ERK activation pattern in D. japonica 

(Tasaki et al., 2011), this commercial antibody specifically labeled wound epithelia (after 

poke and decapitation) and, in rare occasions, discrete cells patched along the intact 

epidermis (Appendix 2, A-D). This post-translational wound response was evident as early 

as 5 minutes after wound induction and it plateaued by 30min after the injury (Appendix 2, 

E). When the wound closure is completed at 60-90min, the signal started to gradually 

decrease, however this marker remained enriched in wound epithelia even 24hrs after 

injury (Appendix 2, C). This post-translational wound response marker was sensitive to 

pharmacological perturbation of the ERK pathway. Exposure to ERK inhibitors trametinib, 

selumetinib, vemurafenib and U0126 (but not sorafenib) reduced its signal, however none 

of these obviously perturbed wound closure. Subsequently we attempted to determine the 

identity of this wound marker. However, despite our efforts, a planarian epitope could not 

be successfully enriched by immuno-precipitation nor its identity could be successfully 

determined by RNAi knock-down screen of an array of MAPK-like proteins. 
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Appendix 2. Post-translational epidermal wound response marker in S. mediterranea. 
 #4370 antibody labels (magenta) wound epithelia after poke (A) or (B and C) tissue loss 
(30min and 24hr after decapitation). (D) Occasionally it also labels cells in intact epidermis 
(cell boundaries labeled with Concanavalin A). (E) Time-course of post-translational 
wound response activation in decapitated animals. (F) Wound response marker can be 
reduced by ERK pathway inhibitors (30min after decapitation). 
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Appendix 3 

Rhabdite characterization 

Rhabdites, large rod-shaped intracellular vesicles, are abundant throughout the 

planarian epidermis, nevertheless neither their biology nor function is well understood. In 

S. mediterranea, up to eight prominent rhabdites can be found in virtually every cell of the 

dorsal (Appendix 3, A, B and C) and ventral epidermis (Appendix 3, D). The size of 

individual rhabdite can extend to almost the entire height of the cell, reaching around 10 

µm in size in columnar dorsal epithelia. Although rhabdites are primarily found in 

epidermis, occasionally, these organelles can be also seen in sub-epidermal mesenchyme 

(Hori, 1978; Morita and Best, 1974; Skaer, 1961) (Appendix 3, C and D). Rhabdite 

presence is a marker for epidermal differentiation, these vesicles are present in the 

epidermal progenitors as they enter epidermal layer during intact epidermal maintenance 

and regeneration (Hori, 1978). During wound response, massive rhabdite content release is 

present along the wound edge epidermis (Appendix 3, F). Upon secretion, the bi-lipid 

rhabdite membrane (Appendix 3, E) fuse with the apical plasma membrane of the cell 

(Appendix 3, F’) and the meshwork of released rhabdite content expands over the animal 

surface. Since rhabdite exocytosis is part of planarian wound response we sought to 

explore its potential role in planarian wound closure by pilot morphometric and proteomic 

analysis. 
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To estimate the potential rhabdite exocytosis contribution to re-epithelialization we 

assessed whether rhabdite membrane incorporation into the epidermal plasma membrane 

would significantly increase the wound epithelia surface. The live labeling of epidermal 

cells (Cell Tracker), epidermal nuclei (Draq5) and rhabdites (Cell Trace) were used for this 

quantification. First, epidermal cells were labeled with Cell Tracker dye and the average 

basal surface (134.13um2) as well as height of epidermal cell (20 µm) was measured. It 

was assumed that epidermal cells have a cylindrical shape and thus these measurements 

were used to calculate average epidermal cell surface (1090.03um2). Secondly, we imaged 

Cell Trace labeled rhabdite compartment and to measure its surface by Imaris (Bitplane) 

software. The rhabdite surface area was divided by the number of nuclei (Draq5 labeling) 

to estimate rhabdite membrane surface per cell (1196.38 um2). We calculated (Equation 1) 

that the intracellular rhabdite membrane surface was approximately equal to the average 

surface of an epidermal cell (rhabdite/cell surface=1.09). This observation suggests that 

wound edge epidermis could potentially double its surface by incorporating rhabdite 

membrane into its plasma membrane. Further studies are necessary to test whether  

 
Appendix 3. Rhabdite characterization. 
(A) Rhabdites are abundant throughout the S. mediterranea epidermis (dorsal epidermis, 
live tissue labeling with Cell Trace dye). (B) 3D reconstruction of labeled rhabdites (Cell 
Trace). (C-D) Rhabdites are occasionally seen in sub-epidermis (light green, cross-section 
thru dorsal and ventral tissue). (E) Rhabdites are covered by bi-lipid membrane. (F) 
Rhabdites material is released form wound edge epidermis, upon release rhabdite 
membrane fuse with apical membrane of the cell (F’). Scale bar is 20 µm in A and B, 5 µm 
in C-F. 
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rhabdite exocytosis is a novel strategy to rapidly increase wound epithelial surface in post-

mitotic epidermis.  

 

 

To further understand rhabdite biology and function, we performed a proteomic 

analysis of rhabdite content. During the development of animal immobilization 

methodologies, it was noted that high salt treatment (1M NaCl) elicits a massive release of 

rod like structures (Appendix 4, A and A’). Since the animals remained intact throughout 

the treatment it was reasoned that these particles (Appendix 4, B and C) were released 

from the epidermal tissue. Due to their obvious morphological resemblance and abundance 

it was reasoned that these rod-shaped structures likely represent rhabdites. These particles 

were then subjected to protein isolation and proteomic analysis. First, the complexity of 

isolated protein samples was assessed by SDS-PAGE electrophoresis and protein staining, 

which demonstrated that our samples were enriched with small proteins of around 12 kDa 

in size (Appendix 4, D). Protein isolates were then analyzed by mass-spectrometry and the 

most abundant proteins were identified (Table 5; unique spectra >20 and NSAF>0.01, 

NSAF protein abundance metrics described at Equation 2). The resulting list of detected 

proteins contained a few with sequence similarity to the proteomes of other organisms. 

These proteins included Vittellogenin, a vertebrate proto-protein which is cleaved to form 

smaller yolk associated proteins (Finn, 2007), proteolytic protein Neurotrypsin, a cysteine-

rich secretory GLIPR1-like protein, as well as Alpha-1-macroglobulin-like protein. The 

remaining proteins had no obvious homologues in other species, thus their function could 

not be predicted. Nevertheless, some of the structural features were common among these 

proteins. Most of these proteins were small and/or contained predicted signal peptide 

sequence at their N-terminus. 

Equation 1. Intracellular rhabdite membrane surface is roughly equal to the surface 
of epidermal cell. 
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The expression of a cohort of identified protein genes were localized by in situ 

hybridization. Identified expression pattern felt into several categories: discrete sub-

epidermal expression, broad expression in mesenchyme, and gut (Appendix 5, expression 

patterns number corresponds to the protein abundance in the sample). Most small proteins 

(SmedAsxl_20140918_007295c, SmedAsxl_20140918_050218c, 

SmedAsxl_20140918_010747p and SmedAsxl_20140918_005256c) were expressed in 

discrete sub-epidermal cells and resembled the expression pattern of late epidermal lineage 

progenitor marker agat (Eisenhoffer et al., 2008; Tu et al., 2015). 

SmedAsxl_20140918_005955c protein transcript had broad expression pattern throughout 

the mesenchyme, Alpha-1-macroglobulin was expressed in neoblast marker like pattern 

and in the photoreceptors. SmedAsxl_20140918_004683c and 

SmedAsxl_20140918_030655p protein coding transcripts were expressed in the gut. 

 
 

 
Appendix 4. Rhabdite material isolation.  
(A and A’) In response to high salt, rhabdites are released form epidermis. (B and C) 
Isolated rhabdite particles. (D) Small peptides are enriched in rhabdite particles. 10 µm 
scale bar.  
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Table 7. The list of most abundant proteins in rhabdite isolate. 
Unique spectra >20 and NSAF>0.01. NSAF, Normalized Spectral Abundance Factor; Spectra, spectral counts for peptides shared between protein isoforms;  
 

 Protein ID  homology   NSAF   Peptide  Spectra  U_ spectra   kDa    Sig.P  

1  SmedAsxl_20140918_007295c  NA   0.0872   20  125  125  18     

2  SmedAsxl_20140918_050484p  NA   0.0648   4  36  36  7     

3  SRG12_comp24533_c0_seq1_133  NA   0.0489   5  60  58  15   + 

4  SmedAsxl_20140918_049708p  Vitellogenin  0.0373  191  1277  1277  420   

5  SmedAsxl_20140918_025510p  NA   0.0352   13  92  92  32     

6  SmedAsxl_20140918_019728c  Neurotrypsin    0.0336   40  363  359  132   + 

7  SmedAsxl_20140918_050218c  NA   0.0300   3  39  39  16     

8  SmedAsxl_20140918_010747p  NA   0.0286   4  59  59  25     

9  SmedAsxl_20140918_015645c  NA   0.0267   6  38  38  17     

10  SmedAsxl_20140918_005955c  NA   0.0252   4  32  32  16   + 

11  SmedAsxl_20140918_011102c  NA   0.0244   1  21  21  11     

12  SmedAsxl_20140918_010460c  NA   0.0241   15  180  180  92   + 

13  SmedAsxl_20140918_004683c  NA   0.0238   13  94  94  49   + 

14  SmedAsxl_20140918_005256c  NA   0.0213   4  26  26  15   + 

15  SmedAsxl_20140918_030655p  Alpha‐1‐macroglobulin    0.0169   48  301  153  208     

16  SRG12_comp28634_c1_seq1_32  NA   0.0147   2  23  23  19   + 

17  SmedAsxl_20140918_012403p  GLIPR1‐like protein 1    0.0124   10  27  27  27   + 

18  SmedAsxl_20140918_043941c  NA   0.0123   11  31  31  31   + 
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 Subsequent work is still necessary to validate rhabdite isolation and analysis 

protocols. Since no rhabdite markers are currently available, the validation of these 

protocols will require purified protein specific antibody generation. Moreover, it is likely 

that mass-spectrometry analysis protocols should be optimized. Although small (<12kDa) 

proteins are enriched in isolates (Appendix 4, D), it is not well reflected in the mass-

spectrometry data (Table 6). Intriguingly, small peptides are also found in intracellular 

vesicles in hydra (Takaku et al., 2013) and their secretion mediates a wide range of 

functions including cell differentiation, axis establishment, and muscle contraction 

(Fujisawa and Hayakawa, 2012) Therefore, once established, rhabdite proteomic analysis 

methodologies will provide molecular characterization of this organelle and allow 

investigate whether peptides have any analogues in planaria. 

 

 

 

Appendix 5. Expression patters of a cohort of most abundant proteins in a rhabdite 
isolate. Number represents proteins abundance in the Table 5. the 100 µm scale bar. 
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