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Log-periodic power laws often occur as signatures of impending criticality of hierarchical
systems in the physical sciences. It has been proposed that similar signatures may be
apparent in the price evolution of financial markets as bubbles and the associated crashes
develop. The features of such market bubbles have been extensively studied over the past
20 years, and models derived from an initial discrete scale invariance assumption have
been developed and tested against the wealth of financial data with varying degrees of
success. In this paper, the equations that form the basis for the standard log-periodic
power law model and its higher extensions are compared to a logistic model derived
from the solution of the Schröder equation for the renormalization group with nonlinear
scaling function. Results for the S&P 500 and Nikkei 225 indices studied previously in
the literature are presented and compared to established models, including a discussion
of the apparent frequency shifting observed in the S&P 500 index in the 1980s. In the
particular case of the Nikkei 225 anti-bubble between 1990 and 2003, the logistic model
appears to provide a better description of the large-scale observed features over the whole
13-year period, particularly near the end of the anti-bubble.

Keywords: Log-periodic power laws; renormalization group; financial bubbles; discrete
scale invariance; criticality.

1. Introduction

The work of Sornette et al. (1996) and Feigenbaum & Freund (1996), which
spawned the ubiquitous log-periodic power-law (LPPL) models for bubble forma-
tion in financial markets, had their origins in phenomenological observations of the
Standard & Poor’s (S&P) 500 index in the period leading up to the crash of October
1987 and a similar time series progression in the Dow Jones index preceding the
great crash of 1929.

In this paper, we take a step back from the evolution of these ideas over the
past 20 years and revisit the initial renormalization group formalism from which
a series of models have been derived to fit the observed data. In the spirit of the



work of Curtright & Zachos (2011) in the physical context, we suggest a new series
of models derived from the logistic differential equation which gives a nonlinear
perturbation of the standard linear transformation in the renormalization group
equation.

Each of these models, ours included, can be thought of as an attempt to describe
the periodic fluctuations around a faster than exponential development in prices
observed in financial time series prior to many of the significant market collapses.
If a constant-return hypothesis is assumed, one expects to see exponential price
development, but, during periods in which the market price is in an accelerating
regime prior to a large drawdown, price development can be observed to follow
a power law. It has long been suggested (see, for example, Sornette et al. (1996))
that this unsustainable growth up until some critical time is a consequence of the
tendency for traders or market professionals to exhibit imitative or cooperative
behavior. Furthermore, if analogies of studies of hierarchical systems in the natural
sciences (Sornette 2002, 2009) are to be extended to financial markets, it would be
reasonable to expect observations of discrete scale invariance around this critical
time (Feigenbaum & Freund 1996), implying log-periodic corrections to the power
law, which are indeed observed in some instances. This fundamental expectation
has been the genesis of the last twenty years of discussion on the matter of financial
crashes as critical points (Geraskin & Fantazzini 2013).

The original LPPL model (which we refer to here as the first-order model) was
extended in Sornette & Johansen (1997) to take account of an apparent frequency
shift in the log-periodic oscillation observed in the S&P 500 index from the beginning
of 1980 to the crash of 1987. This was achieved by considering a Landau expansion
and the model was further extended in Johansen & Sornette (1999a) by considering
the next order of this expansion. This completes what we refer to as the original
LPPL hierarchy of models.

It has been suggested in Vandewalle et al. (1998a) that logarithmic divergence
with a universal critical exponent of zero could be preferable to the power law diver-
gence exhibited by the above hierarchy (although Johansen & Sornette (1999b) note
this provides inferior calibration results), and there have been other variations pre-
sented in the literature. However, in the considerations below, we confine discussion
to the principal three LPPL models as comparators of the new models presented in
this paper.

These models, their relevance and their predictive powers have not been with-
out their detractors, see Laloux et al. (1998), Feigenbaum (2001), Sornette et al.
(2013), and Bree & Joseph (2013) amongst others. However, in this paper we do
not concern ourselves with these controversies, but rather present what we hope is
a useful addition to the available toolbox of models that are based on the renormal-
ization group and that go some way, at least, to explaining how financial bubbles
develop.



This paper is structured as follows: we begin Sec. 2 with some revision on the
motivations and derivation behind the current LPPL models primarily developed
by Sornette and co-workers, followed by the derivation of a new model (and its
extension) derived from the logistic differential equation. This can be thought of
as a nonlinear perturbation of the renormalization group models map from which
the LPPL models have been derived. In Sec. 3, we compare how well these logis-
tic models describe the S&P 500 bubble preceding the stock market crash of 1987
and the long Nikkei 225 index bear market between 1990 and 2003, in compari-
son with the hierarchy of LPPL models, and we discuss the fitting methodology
used for the logistic models. We conclude in Sec. 4 with suggestions for further
investigations.

2. Renormalization Group Model with Linear and Nonlinear
Scaling Corrections

In this section, we outline the LPPL model hierarchy and derive the logistic model
and its extension. Our starting point is the renormalization group equation itself
(which is used to derive models for direct fitting to either price or log-price time
series), rather than the stochastic differential equation with specified hazard rate
derived from the renormalization group equation (Johansen et al. 2000). This latter
has been the focus of later work in the field and has become known as the Johansen–
Ledoit–Sornette model of rational expectation bubbles with finite-time singularity
hazard rate (Sornette et al. 2013).

Therefore, for our purposes, we introduce the following notation, which follows
the notation used by Sornette and co-workers. Let I(t) be a stock index at time t.
In practice, I(t) is frequently taken to be the logarithm of a stock index, thereby
linearizing any constant rate of return trend, but the theory we give here applies
equally to both cases. The critical time is denoted tc and the time to criticality by
x. If we are considering an asset bubble (for which the critical time is in the future
and I(t) is trending upwards), we write x = tc − t and write F (x) = I(tc) − I(t).
For an anti-bubble (for which the critical time is in the past and I(t) is trending
downwards) we write x = t − tc and F (x) = I(tc) − I(t). This enables us to write
the renormalization group equations in a standard form which is applicable to both
bubbles and anti-bubbles. Note that the critical time corresponds to x = 0 in both
cases, and that x = |tc − t|. We further note that for bubbles tc > t and similarly
for anti-bubbles tc < t.

The derivation of the basic power-law model of a stock index I(t) at time t is
founded on three assumptions: (i) there is some critical time t = tc at which point
I(t) is singular in its derivative and I(tc) �= 0,∞; (ii) the value of the index at time
t is related to the value of the index at some other time, which in the x coordinate
is denoted φ(x), and; (iii) at t = tc, F (x) is invariant with some appropriate scaling,
under the transformation φ(x), i.e. F (x) exhibits nonlinear discrete scale invariance.



This leads to the renormalization-group approach to financial bubbles, for which
close to the critical time x = 0, the real function F (x) satisfies the renormalization
group equationa:

F (x) = µ−1F (φ(x)), φ(x) = λx+O(x2), x > 0, (2.1)

where λ and µ are positive constants. The function F (x) satisfies F (0) = 0 with
F ′(x) singular at x = 0. The solution set of (2.1) depends significantly on the
smoothness class of φ(x) and F (x). In relation to stock-market indices it is usual
to assume that φ(x) is a differentiable function near to x = 0, with φ(0) = 0,
φ′(0) = λ > 0, and that F is continuous at x = 0.

2.1. Log-periodic power-law model hierarchy

2.1.1. Linear scaling

Suppose φ is linear so that φ(x) = λx. Then, as can be readily verified, the general
solution of (2.1) for F (x) can be written as

F (x) = xβG(ω log x), x > 0, (2.2)

where β = logµ/ logλ, ω = 2π/ logλ and G(x) is any function satisfying G(x) =
G(x+ 2π).

Another approach is to complexify F and to seek a solution of the form F (x) =
Axα, where A, α ∈ C. When α ∈ R we obtain the relation α = β = logµ/ logλ and
the power-law model

I(t) = A+B|tc − t|β , (2.3)

where A = I(tc) and B are constants. Typically, for financial time series, µ < λ so
that 0 < β = logµ/ logλ < 1, which corresponds to continuity of I(t) at tc but a
discontinuity in the first derivative of I(t) at tc.

The expectation of discrete scale invariance around the critical time requires
α ∈ C and λα/µ = 1 = ei2πn, giving

α =
logµ
logλ

+
i2πn
logλ

(n = 0, 1, 2, . . .). (2.4)

Since the renormalization group equation is linear in F a solution is given by the
Fourier series

F (x) = xβ
∞∑

n=0

kne
inω log x, kn ∈ C, (2.5)

where β = logµ/ logλ and ω = 2π/ logλ. Taking the real part of F we obtain the
power law given in (2.3) for n = 0, and taking terms to n = 1 gives the familiar

aThe full renormalization group equation is F (x) = g(x) + µ−1F (φ(x)) (Sornette & Johansen
1997) where the nonsingular element of F (x) is characterized by some differentiable function g(x),
with g(0) = 0. We follow most authors and set g(x) ≡ 0 in our analysis; for a discussion of the full
equation and the significance of g(x) see Gluzman & Sornette (2002).



log-periodic power law

F (x) = A+ |tc − t|β(B + C1 cos(ω log |tc − t|) + C2 sin(ω log |tc − t|)), (2.6)

where A = I(tc), B, C1 and C2 are constants, to be fitted to the data along with tc
and ω, the angular log-frequency of the model. The model (2.6) is often referred to as
the first-order model, since it is the first of a series of models proposed originally by
Sornette et al. (1996), and was simultaneously proposed by Feigenbaum & Freund
(1996). An example of fitting the first-order model to S&P 500 index prices from
the 1980s is shown in Fig. 1.

2.1.2. Nonlinear corrections to scaling

One of the original motivations behind the development of nonlinear corrections to
scaling in the renormalization group equations stemmed from an apparent frequency
shift in the first-order model when fitted to the time series of the S&P 500 index
between 1980 and the crash of 1987 (Feigenbaum & Freund 1996). This is illustrated
in Fig. 1 where we show the Feigenbaum and Freund fits of (2.6) starting from 1980
and from 1986 up until three weeks before the 1987 crash. By fixing tc to be the
date of the crash, they found values of the angular log-frequency ω of 12.94 and
8.06 respectively. It should be noted that these fits have been made using absolute
index price rather than the more usual use of log prices. Moreover, one can see that
the fit to the time series from the beginning of 1980 seems to over-oscillate in the
period between 1986 and the crash in late 1987.
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Fig. 1. First-order model fits of the S&P 500 for the periods from 1980 and 1986 up until three weeks
before the crash in October 1997, with parameters taken from Feigenbaum & Freund (1996). For
both plots, tc = 1987.8 (the date of the crash). The plot from 1980 (left) has parameters β = 0.20,
ω = 12.94, and the plot from 1986 (right) has parameters β = 0.20, ω = 8.06. In the latter example,
the authors chose to fit their model to prices rather than the more usual choice of log-price. Notice
that the angular log-frequency of the shorter plot is less than that of the longer plot, and that at
this frequency this plot over-oscillates closer to tc.



To account for this apparent frequency shift, Sornette & Johansen (1997)
developed a nonlinear correction to the first-order model motivated by Landau
expansions from the theory of phase transitions in statistical mechanics. Tak-
ing the derivative of the power law F (x) = Axα with respect to log x gives
dF (x)/d log x = αF (x). Clearly, for real α > 0, |F (x)| increases with logx, and
conversely when α < 0, |F (x)| decreases with log x. Therefore, F (x) = 0 is an
unstable equilibrium when α is positive, and a stable equilibrium when α is neg-
ative. Therefore, regarding α as a bifurcation parameter, the point α = 0 is a
bifurcation point for a saddle-node bifurcation. Complexifying, writing α = β+ iω,
with real parameters β and ω > 0, and taking an unfolding of the bifurcation to
order O(|F |3), leads to the following model equation:

dF (x)
d lnx

= (β + iω)F (x) + (η + iκ)|F (x)|2F (x) +O(F (x)5). (2.7)

Writing F (x) = R(x) exp(iΨ(x)), and with a little effort (Sornette & Johansen
1997), one can solve (2.7) and recast the solution in a form analogous to the first-
order equation (2.6). We refer to the resulting model as the second-order LPPL
model:

I(t) = A+
|tc − t|β√

1 +
( |tc − t|

∆t

)2β
(B + C1 cos θ(t) + C2 sin θ(t)),

where

θ(t) = ω log |tc − t| + ∆ω

2β
log

(
1 +

( |tc − t|
∆t

)2β
)
, (2.8)

and the parameters in (2.7) are absorbed by the parameters in (2.8), which include
the new model parameters ∆t and ∆ω.

By taking higher order unfoldings of the bifurcation, one can obtain a hierarchy
of models. For example, an unfolding up to order O(|F |5) leads to the LPPL third-
order model (Johansen & Sornette 1999a), although as the order increases so does
the complexity of solving the differential equation and of fitting the resulting model.
In Table 1, we show the four models in the LPPL hierarchy.

Table 1. Summary of log-periodic power law models.

Model Amplitude R(x) Phase θ(x)

Power xβ

First xβ ω log x

Second xβ

(1+( x
∆t

)2β)1/2 ω log x + ∆ω
2β

log(1 + ( x
∆t

)2β)

Third xβ

(1+( x
∆t

)2β+( x
∆′

t
)4β)1/2 ω log x + ∆ω

2β
log(1 + ( x

∆t
)2β) +

∆′
ω

4β
log(1 + ( x

∆t
)4β)

Note: x = |tc − t|.
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Fig. 2. First- and second-order model fits from 1980 to the 1987 S&P 500 crash, fitted using the
Levenberg–Marquardt algorithm for nonlinear least squares using randomly generated parameter
seed values. For a fixed value of the critical time tc = 1987.80, being the date of the actual crash,
the parameters that generate the smallest r.m.s. error in the second-order model are β = 0.68,
ω = 8.79, ∆t = 11.74 and ∆ω = 4.68. This is compared to the first-order model, which has been
fitted here using the same method, with parameters β = 0.53 and ω = 12.56. One can clearly see
how the second-order model corrects the first-order model’s over-oscillations between 1986 and the
crash in late 1987.

Referring to the second-order model (2.8), one can see that as t approaches
the critical time the angular log-frequency shifts from ω + ∆ω → ω, and that the
timing of the frequency cross-over is controlled by ∆t. Fitting the second-order
model parameters using methods described later in Sec. 3.1, we can see in Fig. 2
that the model appears to fit the oscillations quite reasonably for a fixed value of
tc when compared to a similar fit of the first-order model. It should be noted that,
in contrast to Fig. 1, log prices are used here to filter out long-term exponential
growth.

2.2. The logistic model

2.2.1. Solutions to the renormalization group equations
and the Schröder equation

Returning to the general case of nonlinear φ(x), we solve (2.1) by a making a change
of x-coordinate. We assume there is a solution ψ(x) around x = 0 of the Schröder
equation ψ(φ(x)) = λψ(x), satisfying ψ(0) = 0. For convenience, we further assume
the normalization ψ′(0) = 1. Therefore, ψ(x) conjugates φ(x) to its linearization
λx around x = 0. When ψ(x) is known, it is straightforward to reduce (2.1) to



the linear case by making the change of coordinateb x → ψ(x), so that writing
F (x) = F̃ (ψ(x)) gives us

F̃ (ψ(x)) = µ−1F̃ (λψ(x)), ψ(x) > 0. (2.9)

Then, from (2.2) we obtain the general solution for F (x) of (2.1), at least for x > 0
sufficiently small, in the following form:

F (x) = F̃ (ψ(x)) = ψ(x)βG(ω logψ(x)), x > 0, (2.10)

where β = logµ/logλ and ω = 2π/ logλ. Note that (2.10) reduces to (2.2) in the
case φ(x) = λx (for which ψ(x) = x).

In general the Schröder equation cannot be solved in closed form, but when φ(x)
is the time-1 map of an autonomous differential equation the conjugating function
ψ(x) may be readily found. Consider the differential equation

dx

dt
= ρh(x), x(0) = x0, h(x) = x+O(x2). (2.11)

The solution x(t) of (2.11) is obtained implicitly by separation of variables in terms
of the function

H(x(t)) def=
∫

dx

h(x)
= ρt+ C, (2.12)

where C is a constant of integration, which gives H(x(t)) − H(x0) = ρt when
x(0) = x0. Exponentiating this expression gives

exp[H(x(t))] = exp[H(x0)]eρt. (2.13)

Now, defining φ(x0) = x(1), ψ(x0) = exp[H(x0)] and λ = eρ, we obtain the
functional equation ψ(φ(x0)) = λψ(x0), as required. Furthermore, H(x) = log x +
C+o(1) as x→ 0+, where C is an arbitrary constant of integration. Setting C = 0,
gives, on taking the limit x→ 0+, the normalizations ψ(0) = 0 and ψ′(0) = 1.

2.2.2. Logistic differential equation

Consider the special case of the logistic differential equation. Integrating

dx

dt
= ρx(1 + νx), x(0) = x0, ρ = logλ, λ > 1, (2.14)

gives the solution x(t) = eρtx0/(1 + νx0(1 − eρt)) and fractional-linear time-1 map

φ(x0) =
λx0

1 + νx0(1 − λ)
, (2.15)

bD. Sornette has kindly pointed out that this change of coordinate could be interpreted as a
nonlinear map from calendar time to an “investor time” in line with the concept of subordination.
See Geman & Ané (1996) and Mandelbrot et al. (1997).



which, on replacing x0 by x, gives a nonlinear perturbation of φ(x) = λx,
parametrized by ν. The conjugating function ψ(x) may also be calculated
explicitly:

ψ(x) =
x

1 + νx
. (2.16)

The behavior of the solution is dependent on the sign of ν. There is a finite-time
singularity in the solution of (2.14) when ν > 0, and the map φ(x) has a singularity
at x = (ν(λ − 1))−1, but the function ψ(x) is well defined for all x ≥ 0, and
saturates at ν−1 as x → ∞. However, for ν < 0, φ(x) is finite for x > 0, but ψ(x)
has a singularity at x = −ν−1, and therefore F (x) has a singularity for x > 0 as
well as at x = 0.

By writing ν = 1/∆t, this nonlinear perturbation, which we call the logistic
model, may be cast in a form comparable to those in Table 1:

I(t) = A+
|tc − t|β(

1 +
|tc − t|

∆t

)β
[B + C1 cos θ(t) + C2 sin θ(t)], (2.17)

θ(t) = ω log |tc − t| − ω log
(

1 +
|tc − t|

∆t

)
. (2.18)

Whilst the second-order and logistic models coincide with the first-order model for
small |tc − t|, the properties of the logistic model (2.17) for large |tc − t| are distinct
from those of (2.8). For ∆t > 0, both models lead to saturation of the amplitude
with limit ∆β

t . However, model (2.8) exhibits a frequency shift ω → ω + ∆ω in
the log-periodic oscillations (since θ(t) ∼ (ω + ∆ω) log |tc − t| − ∆w log ∆t for large
|tc − t|), whilst in model (2.17) θ(t) → ω log ∆t as |tc − t| → ∞ and the log-periodic
oscillations die away. This difference can be used to determine which model is of
more practical usefulness in analyzing various asset bubbles and anti-bubbles. For
∆t < 0, the logistic model has a secondary critical point at |tc − t| = |∆t|.

This means that the log-periodic oscillations leading up to this secondary critical
point grow without bound. Throughout the literature on this topic, the aim has
always been to consider cases only where F (x) remains bounded, since singular
behavior is not seen in real world observations. This suggests we should neglect
cases where ∆t < 0. However, as we will see later, allowing this situation can
lead to some interesting results, and the model can nevertheless be used to obtain
remarkable fits in some cases, implying both beginning and end points to regions
of cooperative behavior. It should be noted that the LPPL and logistic models
are applicable only during these periods of cooperative behavior and are not valid
outside the bounds of t > tc for a bubble and t < tc for an anti-bubble. Moreover,
for ∆t < 0, the logistic model is additionally not valid outside the bounds t > tc+∆t

and t < tc+|∆t| for bubble and anti-bubble respectively. Applications of the logistic
model are described in Sec. 3.



2.2.3. Perturbation of the logistic differential equation

By taking higher-order nonlinearities in the differential equation (2.14), it is possible
to build a hierarchy of models as in the LPPL approach. For example, taking a
perturbation of the logistic differential equation

dx

dt
= ρx(1 + νx)(1 + σx), |σ| < |ν|, (2.19)

gives (2.10) with

ψ(x) =
x(1 + σx)

σ
ν−σ

(1 + νx)
ν

ν−σ
. (2.20)

Writing ν = 1/∆t and σ = ε/∆t, gives

ψ(x) =
x

(
1 +

εx

∆t

) ε
1−ε

(
1 +

x

∆t

) 1
1−ε

, (2.21)

and so we have a modified logistic model :

I(t) = A+



|tc − t|

(
1 +

ε|tc − t|
∆t

)ε/(1−ε)

(
1 +

|tc − t|
∆t

)1/(1−ε)




β

[B + C1 cos θ(t) + C2 sin θ(t)], (2.22)

θ(t) = ω

(
log |tc − t| − 1

1 − ε

(
1 +

|tc − t|
∆t

)
+

ε

1 − ε

(
1 +

ε|tc − t|
∆t

))
. (2.23)

Although not necessary for the purposes of this paper, it is straightforward to
adapt the techniques described in this paper to fit the modified logistic model (and
other models obtained from other perturbations of the logistic differential equation)
to financial time series displaying the characteristics of bubbles and anti-bubbles.

3. Comparison of Model Fitting for S&P 500 and Nikkei 225
Indices

3.1. Example 1: S&P 500 bubble from 1980 to October 1987

Our first case study is the long bull market in the 1980s leading to the crash of
October 1987. The S&P 500 index during this period has been used extensively as
a testing ground for models of financial crashes.

3.1.1. Fitting the models

Fitting these nonlinear models to the observed data is a difficult computational task,
and it is unclear by what measure a set of parameter choices could be described
as providing a “best fit”. Bree et al. (2013) give a very interesting account of the



challenges faced, and take a close look at fitting LPPLs to financial time series
using the Levenberg–Marquardt algorithm (Gavin 2011). It is clear that very small
changes in some parameters have a very large effect on the r.m.s errors between the
model and the data points, and on the other hand, for some parameters, very large
changes barely affect the r.m.s errors at all. Therefore, one can find many widely
varying parameter sets that have essentially equivalent r.m.s errors.

In the formulae for the various models in Table 1, (2.17) and (2.22), the index
I(t) is a linear function of several of the parameters, e.g. A, B, C1 and C2. In
our work below, we refer to these parameters as the linear parameters of the
model. We call the other parameters, most particularly tc, ω and β, nonlinear
parameters. In common with the approach of Sornette and co-workers, for each
choice of nonlinear parameters, we use a standard least-squares algorithm to fit the
remaining linear parameters, thereby reducing significantly the computational task
involved.

In keeping with a large portion of practitioners in this field, we have used the
Levenberg–Marquardt nonlinear least-squares algorithm to create the plots in Fig. 2.
Bree et al. (2013) found that varying tc had only a small effect on the r.m.s. errors,
but tc was very sensitive to the inclusion or exclusion of various data points. There-
fore, following Feigenbaum & Freund (1996), we fixed the value of the nonlinear
parameter tc = 1987.80. We then generated many thousands of parameter val-
ues for the remaining nonlinear parameters ω and β in the case of the first-order
LPPL model, along with ∆t and ∆ω in the case of the second-order model. For
each randomly generated set of nonlinear parameters we found the corresponding
linear parameters analytically by functional linear least squares. The Levenberg–
Marquardt algorithm then was applied to each of these parameter sets and the set
that minimized the r.m.s. errors for each model was chosen. The results shown in
Fig. 2 illustrate the advantage of the second-order LPPL model to the first-order
model in the specific example of the S&P 500 index time series between 1980 and
the crash in October 1987.

When comparing the hierarchy of LPPL models with the logistic model, we
avoided the computational difficulties of the Levenberg–Marquardt algorithm, and
focused on the interdependencies of a subset of nonlinear parameters. As in several
works by Sornette and his co-workers (Sornette 2003) and Vandewalle et al. (1998b),
our approach uses the gross features of the time series to obtain a relationship
between the critical time tc and the angular log-frequency ω.

Denoting by tk the times at which the time series is a local maximum (as deter-
mined by eye and ignoring smaller scale oscillations), and assuming a constant
angular log-frequency in the log-periodic oscillations, we may use two pairs of con-
secutive points, (t1, t2) and (t3, t4), to estimate the critical time using the cross-ratio
condition (tc−t1)/(tc−t2) = (tc−t3)/(tc−t4). This gives an estimate for the critical
time tF implied by the first-order model

tF =
c2
c1
, c1 = t1 + t4 − t2 − t3, c2 = t1t4 − t2t3, (3.1)
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Fig. 3. First-order fit of the S&P 500 index 1980–1988. The times corresponding to peaks in the
oscillations are marked by arrows. Assuming a constant angular log-frequency ω throughout the
period, and requiring the model to fit the log-frequency of the peaks between 1980 and 1984 and
between 1986 and 1987.5, we derive the value tF = 1988.30 where t1 = 1980.91, t2 = 1983.78, t3 =
1986.5, and t4 = 1987.2 in (3.1). From this value of tF , we find ω = 12.74, and finally β = 0.4 is
used to minimize the r.m.s. errors.

and it follows that an estimate for first-order angular log-frequency, ωF , is given by

ωF =
2π

log(tF − t1) − log(tF − t2)
. (3.2)

This method is illustrated for the S&P 500 index in the period 1980–1988 in
Fig. 3. If we require the first-order model to fit the angular log-frequencies in the
period between 1980 and 1984 and between 1986 and 1987.5, thus “solving” the
issue of the apparent frequency shift shown in Fig. 1, then, by (3.1), the consecutive
peaks at 1980.91 and 1983.78, and later at 1986.5 and 1987.2, give a unique value for
tF = 1988.30. Having found this value of tF , from (3.2) we find that ω = 12.74, being
very close to the value found in Feigenbaum & Freund (1996) for the plot between
1980 and 1987.8. However, the value of tF does not seem to be a good predictor
of the time of the crash (1987.80). Here, we are not claiming that the critical time
should indeed be the actual time of the crash; we are merely confirming that the
first-order model cannot fit the gross features of both the long-term and the short-
term time series with a constant angular log-frequency if one assumes the time of
the crash and the critical time are coincident.

3.1.2. Frequency shifting in S&P 500 and the logistic model

As mentioned above, the second-order LPPL model was developed to explain the
apparent frequency shift in the log-periodic oscillations of the S&P 500 index



observed by Feigenbaum & Freund. However, we note that by moving the criti-
cal time out further into 1988, the first-order model can fit the long-term data very
well. Nevertheless, if it is required that the fitted critical time tc is close to the actual
time of the crash, the logistic model’s nonlinear perturbation of the first-order LPPL
model may also be of some assistance in this particular case.

In fitting the logistic model, a similar method can be used to obtain an estimate
for tL, the critical time associated with the logistic model. Using the times t1, . . . , t4,
as above, and the relation for two consecutive times tk and tk+1

ωL =
2π

log


 tL − tk

1 +
tL − tk

∆t


− log


 tL − tk+1

1 +
tL − tk+1

∆t



, (3.3)

gives, on exponentiating,(
tL − t1
tL − t2

)(
∆t + tL − t2
∆t + tL − t1

)
=
(
tL − t3
tL − t4

)(
∆t + tL − t4
∆t + tL − t3

)
, (3.4)

which, on expanding gives the quadratic equation in tL:

−c1∆tt
2
L + (c1∆2

t + 2c2∆t)tL − c2∆2
t + c3∆t = 0, (3.5)

where c1, c2 are as above and c3 = t1t2t3 − t1t2t4 − t1t3t4 + t2t3t4. With a little
rearranging, we find a relationship in terms of the control parameter, ∆t and the
first-order estimated critical time, tF

tL = tF − ∆t

2
±
√

∆2
t

4
+ κ, (3.6)

where κ = (c22 + c1c3)/c21 > 0.
If one takes the positive root, then, as ∆t → ∞, the critical time tL → tF from

above, and, as ∆t → −∞, tL → ∞. This means that, by taking this positive root,
it is impossible to find a value for tL < tF . On the other hand, if one takes the
negative root, then, as ∆t → ∞, the critical time tL → −∞, but as ∆t → −∞,
tL → tF from below. Since by taking the positive root, one cannot find a critical
time closer to the time of the actual crash than tF , and, if it is important that tL
is close to the actual crash time, we must take the negative root.

Equation (3.6) gives a relation between tL and ∆t. In the case of the S&P index
between 1980 and 1987.8 we further assume tL = 1987.8, the time of the crash. This
enables us to derive ∆t = −15.70 from (3.6) with t1 = 1980.91, t2 = 1983.78, t3 =
1986.5, and t4 = 1987.2. Then from (3.3) we have ω = 7.65.

This fit is shown in Fig. 4. Although to the eye the fit is not as good as the fit that
can be achieved with the first-order model with tF = 1988.30, the logistic model
with tL = 1987.80 does not show the over-oscillation of the first-order model with
tF = 1987.80. However, the logistic model does not perform as well as the second-
order LPPL model of Sornette & Johansen (1997). Nevertheless, if one relaxes the
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Fig. 4. Fit of the logistic model to S&P 500 1980–1988, with peaks marked by arrows. The param-
eter ∆t is calculated from (3.5) the logistic model assuming a constant angular log-frequency ω
and tc = 1987.8, which gives ∆t = −15.7, and ω = 7.65. The logistic model picks out the main
features more accurately than the first-order model when one fixes the critical time to that of the
crash itself, but not as well as the second-order model with the additional parameter, ∆ω .

requirement that the critical time is close to the observed crash, then the S&P 500
series with the apparent frequency shifting observed by Feigenbaum & Freund can be
well described by a constant angular log-frequency with the nonlinear perturbation
given by the logistic model. We observe, in fact, that the logistic model gives an
equally good account of the observed data as the second-order model if one allows
the value of tc to vary away from the actual crash date. To match the second-order
model in terms of r.m.s. errors, the value of tc for the logistic model is approximately
1988.

3.2. Example 2: Nikkei 225 anti-bubble from 1990 to 2003

Our second case study is the period 1990–2003 in which the Japanese stock market
experienced a long bear run following the Japanese asset price bubble of the late
1980s. In the following analysis, we consider time-series data between the known
start and end dates of the anti-bubble.

For anti-bubbles, we expect the critical time, tc to be located prior to the for-
mation of the herding phenomenon which leads to a faster than exponential decline
in asset prices. Therefore, each of the equations describing the LPPL hierarchy
or logistic models must be rewritten to such that tc − t is replaced with t − tc.
Rewriting (3.4) as(

t2 − tL
t1 − tL

)(
∆t + t1 − tL
∆t + t2 − tL

)
=
(
t4 − tL
t3 − tL

)(
∆t + t3 − tL
∆t + t4 − tL

)
, (3.7)



we obtain the relationship between tL and ∆t for the logistic model of an anti-bubble
regime:

∆t =
c1t

2
L − 2c2tL − c3
c1tL − c2

, (3.8)

where, as before,

c1 = t1 + t4 − t2 − t3, (3.9)

c2 = t1t4 − t2t3, (3.10)

c3 = t1t2t3 − t1t2t4 − t1t3t4 + t2t3t4, (3.11)

and the angular log-frequency is given by

ω =
2π

log


 tk+1 − tL

1 +
tk+1 − tL

∆t


− log


 tk − tL

1 +
tk − tL

∆t



. (3.12)

As with the previous example, we have picked out the gross features of the Nikkei
225 index between the origin of the anti-bubble at the beginning of 1990s to the
end of the long down-turn in 2003. However, in this example the peaks seem to be
less well defined than that of the S&P 500 index between 1980 and 1988. Therefore,
we have marked the periodicity using the troughs, which are better defined.

We can determine a value for ∆t using (3.8) by taking two pairs of consecutive
troughs, and specifying the value of tL. In an anti-bubble regime, we expect the
critical time to occur before the start of the regime. In this particular time series
there is a sharp peak in the observations just before the beginning of the 1990s, so,
in this case, we have made the decision that, first, it is important to set the critical
time at the point where the anti-bubble begins, and, second, that this beginning is
at tL = 1989.95.

As can be seen from Fig. 5, there are many pairs of consecutive troughs that can
be chosen, and in contrast to the S&P 500 example where an attempt was made to
correct the over-oscillations of the first-order model in a particular period, in the
Nikkei 225 problem there are no a priori reasons to choose one pair over any other.

Therefore, we have found values of ∆t and the corresponding values for ω

using (3.8), and all combinations of consecutive pairs of troughs. The results of
these calculations can be seen in Table 2. Apart from a few outlying data points
(corresponding to pairs of troughs at the beginning and the end of the time period),
the values of ∆t calculated from picking out these troughs by eye show remarkable
consistency over a very long time span. From this data, we are able to derive a
limited distribution of values for ∆t and ω, by including only the data from Table 2
corresponding to times within the data set being analyzed.

In an anti-bubble regime, if the value of tc signals the beginning of the anti-
bubble, then the singularity at t = tc + |∆t| signals its end. Therefore, we must also
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Fig. 5. The peaks of the Nikkei 225 index are not very well defined so, in this case, we use the
troughs as markers for the periodicity. As one can see, we have included a marker at t = 2001.15
but neglected to do so for the intermediate trough around t = 1994. The reason for this is that
the latter dip seems not be in keeping with a general downward trend. Clearly this is a largely
subjective judgement.

Table 2. Implied values for ω and ∆t from pairs of consecutive troughs.

t1 t2 t3 t4 ω ∆t

1990.20 1990.70 1990.70 1992.60 6.12 6.38
1990.20 1990.70 1992.60 1995.50 5.49 −11.35

1990.20 1990.70 1995.50 1998.80 5.51 −12.28
1990.20 1990.70 1998.80 2001.15 5.52 −12.80
1990.20 1990.70 2001.15 2001.90 5.51 −12.33
1990.20 1990.70 2001.90 2003.35 5.54 −14.21
1990.70 1992.60 1992.60 1995.50 3.98 −7.76
1990.70 1992.60 1995.50 1998.80 4.27 −10.75
1990.70 1992.60 1998.80 2001.15 4.35 −12.20
1990.70 1992.60 2001.15 2001.90 4.35 −12.20
1990.70 1992.60 2001.90 2003.35 4.43 −13.94
1992.60 1995.50 1995.50 1998.80 5.84 −12.78
1992.60 1995.50 1998.80 2001.15 5.89 −13.01
1992.60 1995.50 2001.15 2001.90 5.74 −12.37
1992.60 1995.50 2001.90 2003.35 6.16 −14.37
1995.50 1998.80 1998.80 2001.15 6.03 −13.09
1995.50 1998.80 2001.15 2001.90 5.55 −12.34
1995.50 1998.80 2001.90 2003.35 6.81 −14.56
1998.80 2001.15 2001.15 2001.90 4.35 −12.20
1998.80 2001.15 2001.90 2003.35 9.07 −15.25
2001.15 2001.90 2001.90 2003.35 −13.09 −10.16



exclude values of ∆t that imply an end to the anti-bubble prior to the end of the
data set. If one accepts this argument, one must also exclude any positive value of
∆t which implies the end of the anti-bubble being located before its start. However,
logistic anti-bubble models with ∆t > 0 do not exhibit finite-time singularities but
rather saturate as t → ∞, which does not describe well the long-term progression
of the Nikkei 225 index from 1990 to 2003.

3.2.1. Fitting the logistic model with Markov Chain Monte Carlo (MCMC)

In the logistic model there are four nonlinear parameters to find, namely tc, β, ω
and ∆t. For this example, we have fixed the critical time tc = 1989.95 and we have
used the information about the distribution of both ω and ∆t derived from Table 2.
We also know that 0 < β < 1 so that the model remains bounded at tc and is
singular in its first derivative at tc, and we use Student’s t-distribution for ω and
∆t. Hence we choose reasonable prior distributions for these parameters

β ∼ U(0, 1), ω ∼ t(ω̄, sω, ν), ∆t ∼ t(∆̄t, s∆t , ν), (3.13)

where the means ω̄ and ∆̄t, and the sample variances s2∆t
and s2ω are calculated

directly from Table 2 with respect to the data set in question making the above
exclusions, and the degrees of freedom, ν, is the number of observations minus 1.
From here, we use MCMC simulation (using the JAGS software implemented in R)
to generate posterior distributions for each of the nonfixed parameters (including the
linear parameters). We note that in practice one needs to truncate the distribution
for ∆t such that a singularity cannot occur within the time span of the data series.

As an illustration, we take two examples from Johansen & Sornette (1999a),
where the authors have fitted the second-order LPPL model to the period between
1990 and 1995.5 and the third-order model to the period between 1990 and 1999.
We compare these fits with the results obtained from fitting the logistic model using
the above method.

First, we exclude the trough pairs that are not suitable for this particular data
set. As can be seen from Table 3, there are only two entries that are suitable, giving
∆̄t = −9.55 and s2∆t

= 6.46, and ω̄t = 4.73 and s2ω = 1.13. Then, as can be seen
from Fig. 6, using the prior distributions in (3.13), the MCMC simulation produces
approximately normal posterior distributions for the parameters ω and β, and a
skew-normal distribution for ∆t as follows:

β ∼ N(0.02, 0.04), ω ∼ N(5.47, 0.10), ∆t ∼ SN(−35.80, 8.29, 0.50). (3.14)

Table 3. Implied values for ω and ∆t from pairs of consectutive troughs
for the period between 1990 and 1995.5 excluding positive values of ∆t.

t1 t2 t3 t4 ω ∆t

1990.20 1990.70 1992.60 1995.50 5.49 −11.35
1990.70 1992.60 1992.60 1995.50 3.98 −7.76
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Fig. 6. Density plots of posterior distributions for logistic model fitted between 1990 and 1995.5
with approximate distributions (dotted lines), normal for ω and β and skew-normal for ∆t.

Using the mode of each of the distributions in (3.14) and the fixed value for tc
we can find the linear parameters analytically by minimizing the r.m.s. errors. It
is interesting to note that 95% confidence interval for ∆t is between −61.97 and
−22.65. Following our earlier argument, this puts the date for the end of the crash
between 2012.65 and 2051.97. However, one can see that the anti-bubble ended
in the first half of 2003 and the calculated value, i.e. the mode of the posterior
distribution, is ∆t = −20.31 which is not representative of the end date of the
anti-bubble.

The results of this model-fitting is compared to that of the second-order LPPL
model in Fig. 7. This second-order model fit is recreated from the parameters given
in Johansen & Sornette (1999a), namely,

tc = 1989.97, β = 0.41, ω = 4.8, ∆t = 9.5, ∆ω = 4.9. (3.15)

One can see that the logistic model fits the 5.5 years of data very well, as does
the second-order model. Figure 7 shows how the observations develop compared to
the predictive progression of the fitted models out until 2002.5. Although neither
of the models provide a meaningful fit to the future, nonfitted data, one can see



1990 1992 1994 1996 1998 2000 2002

9
5

10
0

10
5

L
og

 P
ri

ce
s

Fig. 7. Second-order model using Johansen & Sornette (1999a) parameter fit (dashed line) and
logistic models (solid line) using posterior mean of each parameter from MCMC simulation as
in (3.14). The data set used is between 1990 and 1995.5, the end of this period being marked by
a vertical dotted line. As can be seen the second-order and logistic models fits are similar for this
period. However, when the time series is extended out to 2002.5, at first sight the logistic model
seems to have more accurate long-term predictive properties.

that as the second-order model saturates it cannot follow the steepening downward
trend of the time series. Conversely, as t → tc − ∆t, the logistic model begins to
oscillate more rapidly and tends to the unbounded downside. As we will see, this
seems to more accurately match the actual development of this anti-bubble.

Second, we look at nine years of observed data from the Nikkei 225 index from
1990, and compare the results of the logistic model with those of the third-order
LPPL model.

Following the same method as above, we look for consecutive pairs of troughs
prior to 1999 from Table 2 that give negative values of ∆t. The set of pairs are
shown in Table 4 and give ∆̄t = −10.98 and s2∆t

= 3.87, and ω̄t = 5.02 and s2ωt
=

0.69. Again, using the prior distributions in (3.13), the MCMC simulation produces
approximately normal posterior distributions (Fig. 8) for two of the parameters (ω
and ∆t), and a skew-normal distribution for the third parameter β, as follows:

β ∼ SN(0.013, 0.001, 2.5), ω ∼ N(5.68, 0.06), ∆t ∼ N(−12.59, 0.22). (3.16)

Again, we compare the results of this model fitting to that of a LPPL model, in
this case, the third-order model. This is shown in Fig. 9. This third-order model fit
is again recreated from the parameters given in Johansen & Sornette (1999a). For
this nine-year plot, the authors retain the parameters tc, β and ω from the previous
5.5 year second-order fit and vary only ∆t, ∆ω, ∆′

t and ∆′
ω. The curve is fitted with
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Fig. 8. Density plots of posterior distributions for logistic model fitted between 1990 and 1999 with
approximate normal distributions (dotted lines) for the ω and ∆t parameters. The parameter β is
approximately skew-normally distributed.

Table 4. Implied values for ω and ∆t from pairs of consecutive troughs suitable
for data between 1990 and 1999 excluding positive values of ∆t.

t1 t2 t3 t4 ω ∆t

1990.20 1990.70 1992.60 1995.50 5.49 −11.35
1990.20 1990.70 1995.50 1998.80 5.51 −12.28
1990.70 1992.60 1992.60 1995.50 3.98 −7.76
1990.70 1992.60 1995.50 1998.80 4.27 −10.75

1992.60 1995.50 1995.50 1998.80 5.84 −12.78

the following values:

∆t = 4.34, ∆ω = −3.10, ∆′
t = 7.83, ∆′

ω = 23.4. (3.17)

Figure 9 shows the third-order model more accurately fitting the amplitudes of
the observed data that the logistic model. However, the logistic model picks out
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Fig. 9. Third-order model using the Johansen & Sornette (1999a) parameter fit (dashed line) and
the logistic models (solid line) using posterior mean of each parameter from the MCMC simulation.
The data set used is between 1990 and 1999, the end of this period being marked by a vertical
dotted line. Note the remarkable predictive quality of the logistic model when the data series is
extended to future, nonfitted data between 1999 and 2002.5. Having a singularity at tc + |∆t| (for
∆t < 0), the logistic model does not apply past the end of the anti-bubble.

the periodicity of the observed data equally as well as the third-order model, and it
manages to do this with three fewer nonlinear parameters. With both the second-
and third-order models, the fits to the data are generally good because as t moves
away from tc their angular log-frequencies are constantly changing. Conversely, the
logistic model is able to track the periodicity by holding its log-frequency constant
but assuming a second singularity at a distance |∆t| from tc.

The striking feature of the logistic model is how the progression of the model
closely follows the development of the nonfitted future data over the subsequent
3.5 years. By this time the third-order model is beginning to saturate and offers no
predictive value past the beginning of 2000. However, the logistic model’s increas-
ingly rapid oscillations and steep descent describe the path of this index very well
to the naked eye. Of course, this is an out of sample fit rather than a prediction,
and it should be noted that in May 1999 the third-order LPPL model produced a
very accurate ex ante prediction of the trend reversal in the Nikkei index over the
subsequent year (Johansen & Sornette 2000).

Furthermore the 95% confidence limit for the distribution of ∆t is between
−12.18 and −13.05 implying an end to the anti-bubble between 2002.18 and 2003.05.
As it happened, the anti-bubble came to an end in the first half of 2003, around
2003.3.

Finally, we show in Fig. 10 a fit of the logistic model using the method employed
for the previous two examples over the whole time period 1990–2003. Given the
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Fig. 10. The logistic model is fitted from 1990 to the beginning of 2003. Although the amplitude
of the oscillations is not accurately described by the model the periodicity seems to be very good.
Additionally, the found value of ∆t implies an end to the anti-bubble at 2003.66. As stated the
Nikkei 225 began its upswing shortly before this around 2003.3.

saturating features of the second- and third-order LPPL equations, one would not
expect these models to perform well, but, intriguingly, the time series seems to suit
the logistic model extraordinarily well.

4. Summary and Suggestions for Further Work

We have shown how the suite of log-periodic power-law models for asset bubbles
and anti-bubbles can be extended to include models derived from solutions to the
Schröder equation which satisfy the original renormalization group equations. In
particular, we have derived models from the logistic differential equation, which we
have called the logistic model and modified logistic model. We do not claim that
these models describe reality better (or worse) than the established models, but we
believe them to be important additions to the modeling toolbox.

Indeed, on examining the S&P 500 index bubble between 1980 and the crash of
October 1987, we have observed that the logistic model may have some advantages
in terms of flexibility over the first-order LPPL model in situations where there is
a required value for the critical time, and where, on first sight, the observed data
appears to have oscillations with varying log-frequencies. Additionally, the logistic
model has the advantage of fewer parameters over the second- and third-order
extensions.

In the case of the Nikkei 225 index anti-bubble between 1990 and 2003, the
addition of a second singularity in the logistic model derived by taking negative
values of ∆t provides a model with features that are remarkably predictive over
long time-periods for this particular data set.



Generally, the use of solutions of the renormalization group formalism corre-
sponding to a nonlinear φ(x) is appealing, as is the implied beginning to the bubble
(and end to the anti-bubble) given by ∆t < 0. However, in this paper we have
not gone far in investigating whether or not these ideas have any concrete advan-
tages over any other method of modeling bubble or anti-bubble regimes. In future
work, one could take a more rigorous approach to the determination of the logis-
tic model’s parameters over a wide range of faster-than-exponential growth/decline
regimes, and discover whether or not there is any value in extending these models
with further perturbations as we have done in our derivation of the modified logistic
model. A key test of the new models will be whether they can successfully make ex
ante predictions of the end of an asset bubble and/or anti-bubble.

Another promising research direction is to use MCMC or other statistical meth-
ods to fit LPPL change-point models to both the pre- and post- crash time-series
to understand better the onset of asset bubbles, the bubble-anti-bubble transition
and the resumption of ‘business as usual’ after the end of the anti-bubble.

Finally, another interesting feature of the logistic model fit to the S&P 500 index
between 1980 and the October 1987 crash is that the fitted value of ∆t = −15.7
implies a singularity I(t) → −∞ when t → 1972.1. Clearly this feature is not seen
in the observed data, and by plotting the model further back in the time series,
the logistic model provides no particular insight into the pre-1980s development of
the bubble, as we have seen in the predictive aspects of the logistic model when
fitted to the Nikkei 225 index anti-bubble between 1990 and 1999. This suggests
that anti-bubbles cannot simply be regarded as bubbles in reverse time, but have
their own distinctive characteristics and dynamics.
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