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Summary

For a continuous random variable X with support equal to (a, b), with c.d.f. F , and g :

Ω1 → Ω2 a continuous, strictly increasing function, such that Ω1∩Ω2 ⊇ (a, b), but otherwise

arbitrary, we establish that the random variables F (X)−F (g(X)) and F (g−1(X))−F (X)

have the same distribution. Further developments, accompanied by illustrations and ob-

servations, address as well the equidistribution identity U − ψ(U) =d ψ−1(U) − U for

U ∼ U(0, 1), where ψ is a continuous, strictly increasing and onto function, but other-

wise arbitrary. Finally, we expand on applications with connections to variance reduction

techniques, the discrepancy between distributions, and a risk identity in predictive density

estimation.

AMS 2010 subject classifications: 60E05, 62E15.

Keywords and phrases: Equidistribution; Identity; Uniform distribution.

1 Introduction

Characterizations of probability distributions have a long history and include equidis-

tributional results, some of which are more celebrated than others, but many of which
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are very elegant. As an exemplar, for a Cauchy distributed random variable X with

density {π(1 + x2)}−1 on R, the transformed random variable (X −X−1)/2 has the

same distribution as X. Additionally, the equidistribution even characterizes the

above Cauchy distribution among continuous random variables (Arnold, 1979).

Perhaps the most fundamental equidistributional result is the identity U =d 1 − U

for U ∼ U(0, 1). From this, it follows that F (X) =d 1− F (X) and therefore

X =d F−1(1− F (X)) , (1)

where X is a continuous random variable with strictly increasing c.d.f. F on (a, b) (we

note that this also extends to the case where F is not strictly increasing by defining

F−1(u) = inf{x : F (x) ≥ u}). What is less known, but still straightforward, is that

the identity X =d g(X) with g continuous, strictly decreasing implies or characterizes

g ≡ F−1(1 − F ). Indeed, for t ∈ (a, b), the condition Y =d g(X) =d X ∼ F tells

us that F (t) = P(g−1(Y ) ≤ t) = P(Y ≥ g(t)) = 1 − F (g(t)), which implies that

g(t) = F−1(1 − F (t)). Similarly, it is also the case that g ≡ g−1, i.e., g is its own

inverse (e.g. Kucerovsky et al., 2005).

This note concerns the novel equidistributional identity

F (X)− F (g(X)) =d F (g−1(X))− F (X) , (2)

for a continuous random variable X with support equal to (a, b), with c.d.f. F , and

g : Ω1 → Ω2 a continuous, strictly increasing function, such that Ω1∩Ω2 ⊇ (a, b), but

otherwise arbitrary. Here, it is not required that g be an onto function (i.e., Ω1 = Ω2),

and even less Ω1 = Ω2 = (a, b), but we do require that g and g−1 be well defined on

the support of X, whence the assumption Ω1 ∩ Ω2 ⊇ (a, b).

We put forth the particularly appealing nature of result (2), it seeming to be a

‘natural’ non-monotone complement to (1). The result will be established in Theorem

2.1 and, as far as we can tell, has not been presented previously in the literature.

Obviously, identity (2) continues to hold if the c.d.f. F is replaced throughout by the

survival function F .
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Example 1.1. Here is a simple, immediate, example, helpful to see how identity (2)

can arise. Take X ∼ U(0, 1), and g(x) = cx with c ∈ (0, 1), for which (2) applies.

Here is a direct proof, however. On the one hand, we have F (X)−F (cX) = (1−c)X ∼

U(0, 1− c). We also have F
(
X
c

)
− F (X) =d

(
1
c
− 1
)
X I(0,c](X) + (1−X) I(c,1)(X),

so that

P
(
F

(
X

c

)
− F (X) ≥ t

)
= P

(
ct

1− c
≤ X ≤ 1− t

)
= 1− t

1− c
,

which indeed implies a U(0, 1− c) distribution as well for F
(
X
c

)
− F (X).

For U ∼ U(0, 1), a second identity,

U − ψ(U) =d ψ−1(U)− U , (3)

holds for continuous and strictly increasing functions ψ, such that ψ(0) = 0, ψ(1) = 1.

This follows by setting g ≡ F−1 ◦ ψ ◦ F in (2), since F (X) ∼ U(0, 1). In the latter

case, g is an onto function such that Ω1 = Ω2 = (a, b) = (0, 1), and identities (2)

and (3) are equivalent for such g’s. (Indeed, setting a = 0, b = 1 and g = ψ, (3)

also arises from (2) by choosing F to be the U(0, 1) c.d.f.) However, (3) does not

imply, or lead to (2), in situations where Ω1 6= Ω2 or Ω1 = Ω2 6= (a, b). Identity (3) is

appealing due to its simplicity, and as a ‘natural’ non-monotone complement to the

simple monotone U ∼ 1 − U relationship. Also, observe that ψ can be taken to be

a strictly increasing c.d.f. on (0,1) and ψ−1 the corresponding, strictly increasing,

quantile function, or vice-versa.

The rest of the paper is organized as follows. Proofs, along with some related prop-

erties, are presented in Section 2. Developments relative to specific examples of

identities (2) and (3) are provided in Section 3. In particular, these involve the com-

mon distribution in (3) when ψ(t) = tc for c = 2, 3, 4. Finally, Section 4 is devoted to

applications.
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2 Main results

Theorem 2.1. Let X be a continuous random variable with c.d.f. F and support

equal to or contained in (a, b). Let g : Ω1 → Ω2 be a continuous, strictly increasing

function, such that Ω1 ∩ Ω2 ⊇ (a, b). Let H1(X) = F (X) − F (g(X)) and H2(X) =

F (g−1(X))− F (X). Then H1(X) and H2(X) have identical distributions.

Proof. We show that P(H1(X) > t) = P(H2(X) > t) for all t ∈ R (although H1(X)

and H2(X) have support contained in (−1, 1)). Fix t and let

A = {x : H1(x) > t} =
M∑
n=1

(an, bn) ,

setting M = ∞ whenever the set of crossings of H1(x) and t is countably infinite.

Here, the continuity of H1 implies that A is an open set and thus decomposable as

an at most countable number of intervals. Similarly, consider B = {x : H2(x) > t}

and observe that, because H2(g(X)) = H1(X), x ∈ A⇐⇒ g(x) ∈ B implying that

B =
M∑
n=1

(g(an), g(bn)) .

It thus follows that

P(H1(X) > t) =
M∑
n=1

{F (bn)−F (an)} , P(H2(X) > t) =
M∑
n=1

{F (g(bn))−F (g(an))} .

(4)

Finally, since H1(an) = H1(bn) by definition of the an, bn’s, we obtain that F (bn) −

F (an) = F (g(bn)) − F (g(an)) for all 1 ≤ n ≤ M , and the equality of P(H1(X) > t)

and P(H2(X) > t) follows from (4), for all t.

As mentioned in the Introduction, identity (2) implies identity (3), but not vice-

versa. An interesting consequence of (3) is, of course, equality of expectations of any

absolutely continuous function, h say, of the random variables concerned, i.e.,∫ 1

0

h{u− ψ(u)}du =

∫ 1

0

h{ψ−1(z)− z}dz . (5)
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On the other hand, if one were to establish (5) directly, then we would have a second,

independent proof of (3); this is done in Theorem 2.2.

Theorem 2.2. Equation (5) holds for absolutely continuous h. Consequently, for U ∼

U(0, 1), the random variables U − ψ(U) and ψ−1(U)− U have identical distributions

for any function ψ : (0, 1)→ (0, 1) continuous, strictly increasing and onto.

Proof. For the equidistributional part, it will more than suffice to establish (5) as this

implies equality of the moment generating functions by the selection h(t) = est, s ∈ R.

Write∫ 1

0

h{u− ψ(u)}du =

∫ 1

0

{1− ψ′(u)}h{u− ψ(u)}du+

∫ 1

0

ψ′(u)h{u− ψ(u)}du. (6)

The result follows by the substitution w = u−ψ(u) in the first integral on the right-

hand side of (6) yielding zero, and the substitution z = ψ(u) for the second integral

yielding the right-hand side of (5).

3 Examples and discussion

Identity (2) is universal with respect to F and g, while identity (3) is universal with

respect to ψ, subject to the given conditions, of course. A long list of examples

is not pertinent. Here is thus a selection of illustrative examples, complementary

developments and remarks.

Example 3.1. Consider X ∼ Exp(λ) with c.d.f. F (t) = 1− e−λt for t > 0. Theorem

2.1 tells us, by the selection g(t) = ct with c > 0, that e−cλX−e−λX and e−λX−e−λX/c

share the same distribution. Here g is onto and equivalent identity (3) yields the

equidistribution of U c − U and U − U1/c, for U ∼ U(0, 1), which we will investigate

further in Example 3.2.

The basic identity (2) will hold for exponential F and functions g satisfying the

given conditions. For instance, with the location shift g(t) = t + α, α > 0, writ-

ing F (t) = max{0, 1− e−λt}, Theorem 2.1 implies that e−λX(1− e−λα) and min{1−
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e−λX , e−λX(eλα−1)} are equidistributed. This location shift is onto with Ω1 = Ω2 = R,

but it does not match the support (0,∞) here, and there is hence no immediate ver-

sion of identity (3). By virtue of Theorem 2.1, the equality of F (X) − F (X − α)

and F (X + α)− F (X) in distribution when X ∼ F is always true, and it also leads

to the equality in distribution of U − F (F−1(U) − α) and F (F−1(U) + α) − U , for

U ∼ U(0, 1) and cases where the support of X is equal to R, which is identity (3) for

ψ(u) = F (F−1(u) − α). Alternatively, whenever the density F ′ is symmetric about

zero, the latter is also a consequence of the identity U =d 1− U via the relationships

F (t) = 1 − F (−t), t ∈ R, and F−1(u) = −F−1(1 − u), u ∈ (0, 1), but continues to

hold in general for non-symmetric F ′ on R also.

Remark 3.1. It is interesting that one can establish the equality of the expectations

of both variables of identity (2) directly as follows. We have under the conditions of

Theorem 2.1, for X1, X2 independent with pdf f = F ′, denoting Ω = Ω1 ∪ Ω2,

E [F (X)− F (g(X)) ] =

∫
Ω

{∫ x2

g(x2)

f(x1) dx1

}
f(x2) dx2

=

∫
Ω

{∫ g−1(x1)

x1

f(x2) dx2

}
f(x1) dx1

= E [F (g−1(X))− F (X) ] .

Since E[F (X)] = 1/2, this also yields the relationship

E[F (g(X)) + F (g−1(X))] = 1.

Example 3.2. An interesting family of applications of identity (3) is given by the

choices ψ(u) = uc with c > 0. We comment here on these equidistributional identities

U − U c =d U1/c − U for c = 2, 3, 4, and the distributions that arise. For c = 2, we

have for t ∈ (0, 1/4):

P(U − U2 ≥ t) = P

(∣∣∣∣U − 1

2

∣∣∣∣ ≤
√

1

4
− t

)
=
√

1− 4t .
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Multiplying by 4, we obtain a Beta distribution on its usual support (0, 1), that is

4U(1− U) and 4
√
U(1−

√
U) ∼ B(1, 1/2) .

We point out that the part that says that 4U(1− U) ∼ B(1, 1/2) is the ν = 1 special

case of the following:

if V ∼ B(ν, ν) then 4V (1− V ) ∼ B(ν, 1/2).

When c = 3, multiply for convenience by K3 = 3
√

3/2, and consider the distribu-

tion of X3 = K3 U(1 − U2) (taking values on (0, 1)). For x ∈ (0, 1), the polynomial

u− u3 − (x/K3) = 0 has two roots on (0, 1) expressible as

ui(x) =
2√
3

cos

{
1

3
cos−1(x) +

(2i− 1)π

3

}
, i = 0, 1.

The common survival function of X3 = K3 U(1−U2) and K3 U
1/3(1−U2/3) is therefore

given by

P(X > x) = u1(x)− u2(x) = 2 sin

{
1

3
cos−1(x)

}
, x ∈ (0, 1),

with corresponding p.d.f.

g3(x) =
2

3

cos
{

1
3

cos−1(x)
}

√
1− x2

, x ∈ (0, 1).

Density g3 is graphed in Figure 1 (dashed line) along with the very similar B(1, 1/2)

density g2(x) = 1/(2
√

1− x) (solid line).

When c = 4, multiply for convenience by K4 = 44/3/3, and consider the distribu-

tion of X4 = K4 U(1−U3) (taking values on (0, 1)). Solutions to U−U4−(x/K4) = 0

are expressible as

1

2

√2Y (x)±

√√√√√ 2

Y (x)
− 2Y (x)

 ,

where

Y (x) =

√
x

21/3
cosh

{
1

3
cosh−1

(
1

x1/3

)}
=

1

24/3

{
(1 +

√
1− x3)1/3 + (1−

√
1− x3)1/3

}
.

(7)
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Figure 1: Densities g2 (solid), g3 (dashed) and g4 (dotted)

The survival function of X4 and of K4 U
1/4(1− (U1/4)3) will therefore be of the form√√√√√ 2

Y (x)
− 2Y (x).

The corresponding density is

g4(x) =
1

249/12Y 5/4(x)

1 + (2Y )3/2(x)√
1−
√

2Y 3/2(x)

1√
1− x3

{
(1 +

√
1− x3)2/3 − (1−

√
1− x3)2/3

}
.

Density g4 is also graphed in Figure 1 (dotted line), and it too is similar to the densities

when c = 2 and c = 3.

Remark 3.2. Here are some further remarks concerning distributional identities of

the type U =d γ(U) with γ non-monotone, U ∼ U(0, 1). By composition with (3),

such identities generate further equidistributional identities of the form

U − ψ(U) ∼ γ(U)− ψ(γ(U)) ∼ ψ−1(γ(U))− γ(U) ∼ ψ−1(U)− U . (8)

As mentioned in the Introduction, requiring γ to be continuous and monotone leads

to the unique pair of solutions γ(u) = u and γ(u) = 1−u. There are, however, many

non-monotone functions of U that are also distributed as U(0, 1). One such is the

symmetric triangular function

γ1(U) = 2 min(U, 1− U),
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another its complement

γ2(U) = 1− γ1(U) = |2U − 1|.

We point out that γ1(U) is the c = 1/2 symmetric special case of asymmetric trian-

gular functions of the form

U

c
I(0 < U ≤ c) +

1− U
1− c

I(c < U < 1) ,

which are also all U(0, 1) for any 0 < c < 1. Another interesting, less obvious,

non-monotone function of U that is also distributed as U(0, 1) is:

γ3(U) = 2 min(
√
U, 1−

√
U),

along with its complement

γ4(U) = |2
√
U − 1|.

As an illustration of (8), returning to the case ψ(u) = u2, we obtain that 4(γi(U) −

γ2
i (U)) =d 4(

√
γi(U)− γi(U)) ∼ B(1, 1/2) for the above γi’s, yielding, for instance,

8
{√

U − 2U + max(0, 2
√
U − 1)

}
∼ B(1, 1/2) ,

with the choice 4(γ4(U)− γ2
4(U)).

The more standard way to generate a B(1, 1/2) distribution is via the inverse c.d.f.

method F−1(h(U)), where h(U) =d U ∼ U(0, 1) and F−1(t) = t(2−t) is the B(1, 1/2)

quantile function. For instance, the quantities

U(2−U); 1−U2; |2U−1|(2−|2U−1|); |2
√
U−1|(2−|2

√
U−1|); |2

√
1− U−1|(2−|2

√
1− U−1|);

are all B(1, 1/2) distributed and generated by F−1(h(U)) with h(u) = u; 1−u; γ2(u); γ4(u);

γ4(1−u), respectively. Finally, we point out that the inverse c.d.f. scheme F−1(h(U))

matches the one represented by (8) for a given γ(U) ∼ U(0, 1) by the choices h(u) =

2 min(γ(u), 1 − γ(u)) = γ1 ◦ γ(u) and h(u) = 2 min(
√
γ(u), 1 −

√
γ(u)) = γ3 ◦ γ(u),

respectively for 4(γ(U)− γ2(U)) and 4(
√
γ(U)− γ(U)).
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4 Applications

We conclude this paper with a trio of applications which capitalize on the key iden-

tities (2) and (3) in different ways.

4.1 A reduction of variance application

Suppose that one wishes to approximately calculate

I ≡ E{U − ψ(U)} ,

or equivalently E(ψ(U) = 1/2 − I, where U ∼ U(0, 1), ψ : (0, 1) → (0, 1) satisfies

the conditions of Theorem 2.1, and u − ψ(u) is non-degenerate. We know from the

findings above that, inter alia, it is also the case that

I = E{ψ−1(U)− U}

and, therefore, also, that

I =
1

2

[
E{U − ψ(U)}+ E{ψ−1(U)− U}

]
=

1

2
E{ψ−1(U)− ψ(U)}.

Now, define T1(U) = U − ψ(U), T2(U) = ψ−1(U)− U and, in the spirit of antithetic

variables, TM(U) = 1
2
{T1(U) + T2(U)} so that

TM(U) =
1

2
{ψ−1(U)− ψ(U)}.

It is straightforward to see that

V {TM(U)} < V {T1(U)} = V {T2(U)} .

Thus, we would need fewer simulations to estimate I by averaging simulated values of

TM(U) than by directly averaging simulated values of T1(U) or T2(U). More precisely,

one shows that the relative reduction in variance is equal to

V {T1(U)} − V {TM(U)}
V {T1(U)}

=
1

2
− 1

2
ρ{T1(U), T2(U)} , (9)

with ρ the Pearson correlation coefficient.
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Example 4.1. As an illustration, and for ease of calculations, consider the toy prob-

lem case ψ(u) = u2, for which I = 1/6, with T1(U) = U − U2, T2(U) =
√
U − U,

TM(U) = 1
2
(
√
U − U2). It is easy to calculate and show that

V {T1(U)} = V {T2(U)} = 1/180 ' 0.00556 , while V {TM(U)} = 11/252 ' 0.00437 ,

a reduction in variance of 3/14. Alternatively, this can be calculated from (9) with

ρ{U − U2,
√
U − U} = 2/7.

Potential gains are also available with the use of antithetic variables per se. These

would combine T1(U) with T1(1−U), or T2(U) with T2(1−U) to result in consideration

of

TA1(U) =
1

2
{1− ψ(U)− ψ(1− U)}, TA2(U) =

1

2
{ψ−1(U) + ψ−1(1− U)− 1} .

We will always have V {TAi
(U)} ≤ V {Ti(U)}, i = 1, 2, with equality iff TAi

coin-

cides with Ti. In fact, expression (9) for the reduction in variance applies with the

correlation taken instead between Ti(U) and Ti(1− U).

Remark 4.1. One may further consider TMA(U) = 1
2
{TM(U) + TM(1 − U)} (also

equal to 1
2
{TA1(U) + TA2(U)}). This will improve on TM(U), but not necessarily on

TA1 or TA2, since the latter do not have the same variances in general and the use of

antithetic variables as above is not guaranteed to be more efficient in such cases.

Example 4.2. (Example 4.1 continued) Consider again ψ(U) = U2 in which case

TA1(U) = T1(U) and nothing is gained; which is a rare example where antithetic

variables per se doesn’t work directly. However, TA2(U) = 1
2
(
√
U +
√

1− U − 1) and

a calculation tells us that

V {TA2(U)} =
π

16
− 7

36
' 0.00191,

a more considerable reduction of over 65% on T1(U) (and over 56% on TM(U)). Note

that TA2(U) is itself only available because we know we can alternatively work with
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T2(U). Finally, we have for ψ(U) = U2: TMA(U) ≡ 1
2
{TM(U) + TM(1− U)} =

1
4

(√
U +
√

1− U − 2U2 + 2U − 1
)

, and a calculation yields V {TMA(U)} = π
64
−

23
504
' 0.00345; a good improvement on T1(U) and TM(U), but not on TA2(U) which

is illustrative of Remark 4.1.

4.2 An application to the discrepancy of distributions

On the one hand, the (asymmetric, unweighted) Cramér-von Mises discrepancy be-

tween distributions with c.d.f. G and F is∫
{G(x)− F (x)}2f(x)dx.

On the other hand, if X ∼ F (x), then defining Y = g(X) ∼ F (g−1(x)) where g is a

monotone transformation involving one or two parameters is a leading way of generat-

ing more flexible distributions from simpler starting points (e.g. introducing skewness

and tailweight flexibility into normal F by, say, Tukey’s g-and h transformation). For

appropriate g, it is also interesting to define Z = g−1(X), with c.d.f. F ◦ g, to get a

different family of distributions with, presumably, ‘opposite’ properties. For X ∈ R,

an interesting family of g’s are the sinh-arcsinh transformations:

ga,b(x) = sinh(a+ b sinh−1(x)), g−1
a,b(x) = sinh

(
−a
b

+ 1
b

sinh−1(x)
)

= g−a/b,1/b(x),

a ∈ R, b > 0 (Jones & Pewsey, 2009)), with g0,1 the identity transformation.

Now, observe that identity (2) (and only the second-moment equivalence) tells us

that ∫
{F (g−1(x))− F (x)}2f(x)dx =

∫
{F (g(x))− F (x)}2f(x)dx.

That is, the Cramer-von Mises discrepancy between a ‘base’ distribution F and the

transformed distribution using transformation g is the same as the Cramer-von Mises

discrepancy between the base distribution F and the transformed distribution using

transformation g−1. In the sinh-arcsinh special case, the Cramer-von Mises discrep-

ancy between base distribution F and the transformed distribution using ga,b is the
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same as the Cramer-von Mises discrepancy between the base distribution F and the

transformed distribution using g−a/b,1/b. Our identity therefore allows us to state in

what concrete way the distributions resulting from inverse transformations are ‘the

same distance from’ (but ‘in different directions to’) the base distribution. To con-

clude, we point out that the above argument does not depend on what F is, and would

hold too for any even function of G(x)− F (x) in the Cramér-von Mises discrepancy

such as the absolute value version which underlies a test statistic of Green & Hagezy

(1975).

4.3 An application for a Gamma model predictive density

estimation problem

We describe here how Theorem 2.1 implies a frequentist risk property, appearing

below in (10), in a predictive density estimation framework. For the model X|β ∼

Ga(α1, β), Y |β ∼ Ga(α2, β) independently distributed, L’Moudden et al. (2017)

study, for restricted parameter spaces, either β ∈ C = (a, b) or β ∈ C = [a, b], the

Kullback-Leibler risk performance of several predictive density estimators, including

Bayesian predictive density estimators, associated with a prior density π for β, given

by

q̂π (y;x) =

∫
R+

q(y|β) π(β|x) dβ ,

where q(·|β) is the model density for Y and π(·|x) is the posterior density. Two

such priors, along with the corresponding predictive densities, are given by π0 (β) =

1
β
I(0,∞)(β), π0,C(β) = π0(β) IC(β) ,

q̂π0 (y;x) =
Γ (α1 + α2)

Γ (α1) Γ (α2)

1

x

(y
x

)α2−1 (
1 +

y

x

)−(α1+α2)

I(0,∞)(y) ,

and
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q̂π0,C (y;x) = q̂π0 (y;x)
Fα1+α2

(
x+y
a

)
− Fα1+α2

(
x+y
b

)
Fα1

(
x
a

)
− Fα1

(
x
b

) ,

with Fα representing, hereafter, the c.d.f. of a Ga(α, 1) distribution. When evaluating

the performance of these predictive densities under Kullback-Leibler risk

RKL(β, q̂) = EXβ
{∫

R+

q(y|β) log

(
q(y|β)

q̂(y;X)

)
dy

}
,

they show that q̂π0,C dominates q̂π0 for β ∈ C. In the process of doing so, they obtain

the frequentist risk representations

RKL(β, q̂π0) = (α1 + α2)Ψ(α1 + α2) + log Γ(α1)− log Γ(α1 + α2)− α2 − α1Ψ(α1),

and

RKL(β, q̂π0,C) = RKL(β, q̂π0) + φ(α1, β)− φ(α1 + α2, β) ,

where Γ, Ψ are the gamma and the digamma functions given by Γ(t) =
∫∞

0
yt−1 e−y dy

and Ψ(t) = d
dt

log Γ(t) respectively, and with φ(α, β) = E [log (Fα(βT/a)− Fα(βT/b))],

the expectation being taken with respect to T ∼ Ga(α, 1) with c.d.f. Fα. Now, con-

sider the difference in risks (φ(α1, a) − φ(α1, b)) − (φ(α1 + α2, a) − φ(α1 + α2, b)) at

the endpoints a, b of the parameter space [a, b] with a > 0, b <∞. Since

φ(α, a) = E [log (Fα(T )− Fα(aT/b))] , φ(α, b) = E [log (Fα(bT/a)− Fα(T ))] ,

and since Theorem 2.1 tells us that Fα(T ) − Fα(aT/b) =d Fα(bT/a) − Fα(T ), for

T ∼ Ga(α, 1), by taking g(t) = at/b, t > 0, we obtain φ(α, a) = φ(α, b) for all α > 0

and hence

RKL(a, q̂π) = RKL(b, q̂π) , (10)

i.e., the frequentist risks at the endpoints of the parameter space β = a and β = b

coincide. Such is a consequence of the “intriguing” distributional identity. We refer

to L’Moudden et al. (2017) for illustrations (e.g., Figure 4) and further details.
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Concluding Remarks

We have introduced, established and illustrated novel and intriguing distributional

identities (2) and (3), which are, to the best of our knowledge, previously unknown.

Other than an intrinsic motivation for presenting these identities, we have expanded

upon applications with connections to variance reduction techniques, the discrepancy

between distributions, and a risk identity in predictive density estimation. Finally, it

would also be of interest to explore extensions to multivariate cases.
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