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Design for Wire + Arc Additive Manufacture: Design Rules and Build 

Orientation Selection  

Abstract 

Wire + Arc Additive Manufacture (WAAM) is an additive manufacturing technology that can 

produce near net-shape parts layer by layer in an automated manner using welding technology 

controlled by a robot or CNC machine. WAAM has been shown to produce parts with good structural 

integrity in a range of materials including titanium, steel and aluminium and has the potential to 

produce high value structural parts at lower cost with much less waste material and shorter lead times 

that conventional manufacturing processes.  

This paper provides an initial set of design rules for WAAM and presents a methodology for build 

orientation selection for WAAM parts.  The paper begins with a comparison between the design 

requirements and capabilities of WAAM and other additive manufacturing technologies, design 

guidelines for WAAM are then presented based on experimental work.   A methodology to select the 

most appropriate build orientation for WAAM parts is then presented using a multi attribute decision 

matrix approach to compare different design alternatives.  Two aerospace case study parts are 

provided to illustrate the methodology.  

Keywords: additive manufacture, design for manufacture, aerospace engineering 

Nomenclature 

𝐶𝑖  Decision Criteria i 

𝑀+
𝐴𝑀 Mass of deposited material above the central plane of the substrate 

𝑀−
𝐴𝑀 Mass of deposited material below the central plane of the substrate 

𝑀𝑖
𝐴𝑀 Mass of WAAM deposited material 

𝑀𝑓 Mass of final part 

𝑀𝑖
𝑀 Mass of initial billet 

𝑀𝑠 Mass of the start substrate 

𝑀𝑠𝑓 Mass of the substrate incorporated into the final part 

N Number of WAAM Build Operations 

𝑆𝑗 Score for Build Option  j 

 

1. Introduction 

Additive Manufacture refers to manufacturing processes where parts are built up layer by layer 

directly from a 3D model. Wire + Arc Additive Manufacture is an additive manufacturing technology 
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that uses wire feedstock to produce parts by depositing material layer by layer onto a substrate plate,  

using welding technology controlled by a robot or CNC machine (Williams et al. 2015).  The part 

may be mounted on a part-rotator so that the build direction can be changed during deposition (this is 

referred to as multi-axis deposition (Zhang and Liou 2013)) and regions of the substrate plate can be 

incorporated into the final part if required. The part may be machined to its final dimensions either 

during deposition or after deposition is complete, depending on the application (Williams et al. 2015).  

WAAM has been shown to produce medium to large scale parts with good structural integrity 

in a range of materials, and has the potential to produce high value structural parts at lower cost, with 

shorter lead times, and greatly reduced waste material than conventional manufacturing processes. 

Typical deposition rates are up to approximately 1.5 kg per hour and layer height is typically 1 - 2 mm 

(Williams et al. 2015).  WAAM does not allow unlimited design freedom and for successful WAAM 

manufacture it is necessary to consider the build orientation, build sequence and design constraints of 

the WAAM process. If post-machining is required, for example in structural applications where stress 

raising features are of concern or for mating faces, then machining constraints must also be 

considered.  However, WAAM also opens a wide range of new design opportunities, for example 

through hybrid manufacture with other processes, functionally graded materials, and parts with 

internal features. These design constraints and opportunities are substantially different to those offered 

by powder additive manufacturing technologies and require a different approach to design. 

A key objective of WAAM is to reduce waste material produced during manufacturing. In the 

Aerospace industry this waste material is referred to as the buy-to-fly (BTF) ratio, which is defined as 

the ratio of the mass of material purchased to manufacture the part to the mass of the finished part that 

is flown on the aircraft. Allen (2006) states that for aero engine components the buy-to-fly ratios can 

be as high as 25, highlighting the substantial material saving benefits of a near-net-shape process. 

The aims of this paper are to firstly to illustrate the differences between designing for WAAM 

and other AM processes, secondly propose a set of design guidelines for WAAM, and thirdly provide 

a methodology for WAAM build orientation assessment that maximises the benefits of WAAM 
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production.    The paper is structured into six parts.  Section 2 provides a literature review of design 

for additive manufacturing methods, section 3 compares design for WAAM and other AM 

technologies and presents the general design requirements for WAAM.  Section 4 proposes a 

methodology to select the most appropriate build orientation for WAAM parts, and the methodology 

is tested on two aerospace case study parts in section 5. The summary and conclusions are presented 

in section 6. 

2. Literature Review 

The concept of design for manufacture is defined by Kalpakjian and Schmid (2008) as “a 

comprehensive approach to the production of goods that integrates the product design process with 

selection of materials, consideration of manufacturing methods, process planning, assembly, testing, 

and quality assurance.”  Design for manufacture has been widely studied for many manufacturing 

processes such as machining, casting and moulding, which have well established design rules 

developed from many years industrial experience.  Design for manufacture methods can be divided 

into three main approaches (Herrmann et al. 2004): (i) manufacturability guidelines based on 

experience (Bralla 1999; Beeley 2001; Clegg 1991) (ii) design assessment tools such as  Design for 

Manufacture and Assembly (DFMA) (Boothroyd, Dewhurst, and Knight 2011) method that provide a 

quantitative basis for comparing design alternatives;  (iii) simulation models that predict a product’s 

performance, for example simulation of cooling rates in castings or thermal behaviour of welding 

processes.  In engineering design there is a common tendency for designers to rely on their own 

knowledge of a limited range of manufacturing processes and designers may not consider unfamiliar 

manufacturing processes that may be more appropriate for their application (Herrmann et al. 2004).  

Design for Manufacture methods help designers compare different manufacturing processes and better 

understand the manufacturing impact of their design choices.  

Design for Additive Manufacturing (DfAM) applies design for manufacture principles to additive 

manufacturing technologies.  To date DfAM has mainly been focussed in two main areas – firstly, 

defining the design freedoms and customisation capabilities of AM (Hague, Mansour, and Saleh 
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2004; Gibson, Rosen, and Stucker 2010; Rosen 2014), and secondly investigating the optimal 

manufacturing strategy for additive manufactured parts (Ponche et al. 2014; Adam and Zimmer 2014; 

Kerbrat, Mognol, and Hascoët 2011).  Laverne et al. (2015) classify these two DFAM research areas 

as “design making” and “design assessment”, and further subdivide design making approaches into 

opportunistic DFAM methods which help designers explore creative shape complexity offered by 

AM, restrictive DFAM methods that take into account the limitations of AM and dual DFAM 

methods which combine the other two approaches. Their proposed early A-DFAM approach is mostly 

focused on the early design stages. Most previously published DfAM research has been applied to 

polymer 3D printing and metal powder AM technologies.  Thompson et al. (2016) provide a 

comprehensive review of design for additive manufacture trends, opportunities and constraints for a 

wide range of AM technologies  and conclude that design for AM is “still in its infancy” and there is 

insufficient understanding of “how and when to design for AM”. 

2.1. Design for Additive Manufacture Guidelines  

Currently there no standard definition of DfAM principles. In 2004 Hague, Mansour, and Saleh 

(2004) stated that “the principal advantage of the additive manufacturing processes (including most, 

but not all, of the currently available RP techniques) is the ability to manufacture parts of virtually any 

complexity of geometry entirely without the need for tooling”.  More recently Gibson, Rosen, and 

Stucker (2010) defined DfAM as “maximis[ing] product performance through synthesis of shapes, 

sizes, hierarchical structures, and material compositions, subject to the capabilities of AM 

technologies” and identified four unique AM capabilities as shape complexity, hierarchical 

complexity, functional complexity and material complexity. Rosen (2014)further extended the set of 

DfAM principles to include customised geometries.  

 Atzeni and Salmi (2012) propose five general design for AM guidelines for Direct Metal 

Laser Sintering that emphasise the need for new design thinking, unconstrained by existing 

manufacturing process constraints.  These can be summarised as (i) avoid conventional design 

principles, (ii) focus on integrated freeform design and reducing part count, (iii) minimise raw 
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material use, (iv) use freeform designs, undercuts and hollow structures if they are useful and (v) 

optimise the part shape according to functionality. 

Several other researchers have presented more detailed design rules for AM.  For example Adam and 

Zimmer (2014) propose a design rule catalogue for additive manufacture that subdivides the part to be 

manufactured into basic elements (shapes such as cylinders, blocks etc.), element transitions (joints) 

and aggregated structures (features that combine two or more basic elements and a transition) and 

then defines design rules for those elements. They created a design rule catalogue for Laser Sintering, 

Laser Melting and Fused Deposition Modelling and undertook experiments to assess the capabilities 

of three AM processes to produce these feature combinations with different thicknesses, then 

developed design rules based on these experiments. Kranz, Herzog, and Emmelmann (2015) present a 

detailed set of design guidelines for laser additive manufacturing of lightweight structures in titanium 

based on an extensive set of experiments.  These guidelines provide pictorial and descriptive design 

guidelines for a wide range of design features, following a similar approach to design handbooks for 

conventional manufacturing processes. 

The published design guidelines for additive manufacture either present general design 

guidelines that are applicable to a group of AM processes or detailed design guidelines for a specific 

technology.  To date there has been a lack of clarity about the differences between the design 

requirements of different additive manufacturing processes and the DfAM guidelines published to 

date are only partially applicable to WAAM due to the differences between WAAM and other AM 

technologies.  There is a need to better understand the similarities and differences between WAAM 

and other AM technologies. The only previously published WAAM design guidelines were produced 

by  Kazanas et al. (2012) who published an initial an investigation into geometric feature deposition 

using WAAM, and Mehnen et al. (2014) who published a design study for WAAM containing some 

examples of design features and process capabilities;  but there are no published methodological 

approaches to designing for WAAM.   
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2.2. Optimal Manufacturing Strategies for Additive Manufacture 

The second DfAM approach relates to the development of optimal manufacturing strategy methods 

for AM parts.  Build orientation selection is a key aspect of AM build strategy and is a trade-off 

between build time, surface finish and manufacturing cost. Several researchers have proposed 

methods to optimise the build orientation of rapid prototyped parts (Kulkarni, Marsan, and Dutta 

2000; Byun and Lee 2006; Canellidis, Giannatsis, and Dedoussis 2009). Kulkarni, Marsan, and Dutta 

(2000) state that build orientation and support structure generation are key tasks to be performed in 

the model domain of process planning for layered manufacturing of polymer parts.  They identify the 

key build orientation selection parameters as being the area of the part that needs to be supported by 

support structures and the build time (usually based on the part’s height). Hu, Lee, and Hur (2002) 

present a build orientation  determination method for hybrid rapid-prototyping (combined additive 

and subtractive manufacturing) based on five key factors: tool accessibility for machining features, 

build time for deposition and machining, number of bridges (machining supports) and number of 

support structures.  The optimal build orientation is selected using a weighted score calculated from 

these five factors.   

 Ponche et al. (2014) developed a more extensive DfAM methodology for additive laser 

manufacturing that comprises three steps:  part orientation, functional optimisation and manufacturing 

path optimisation. In their methodology the part orientation is optimised with the objective of 

minimising support volume, minimising cost and maximising quality. They propose using topological 

optimisation to functionally optimise the part and optimise the manufacturing path to (i) minimise the 

number of path ends, (ii) maximise the curvature radius and (ii) minimise the number of points of 

discontinuity.  Kerbrat, Mognol, and Hascoët (2011) propose a design for manufacture assessment 

tool combining laser powder additive manufacturing and high speed machining.  The 

manufacturability of the design is assessed using indices for additive and subtractive manufacture 

based on design parameters such as geometry, dimensions and material information. The approaches 

presented by Hu, Lee, and Hur (2002)and Kerbrat, Mognol, and Hascoët (2011) have some 

similarities to design for WAAM due to the combination of additive and subtractive manufacturing. 
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However, due to the different constraints and abilities of WAAM these methods are not directly 

applicable to WAAM. The literature review has shown that DfAM is a relatively new but rapidly 

growing field that is being addressed through two main viewpoints: firstly defining design rules and 

guidelines for additive manufacturing, and secondly developing design methods to optimise the 

manufacturing process of AM parts. WAAM does not conform to many of the previously published 

general principles of DfAM, and therefore needs its own specific design rules and methods.  In the 

following section the Design for WAAM (DfWAAM) capabilities and constraints will be compared 

and contrasted with those for AM other processes, and an initial a set of design rules for WAAM will 

be presented. 

3. Design for Wire + Arc Additive Manufacture Capabilities and Constraints  

3.1. General WAAM Design Guidelines and Capabilities 

DfWAAM requires a different design approach to other additive manufacturing processes because, as 

discussed above WAAM introduces different manufacturing constraints, as well as some unique 

manufacturing capabilities that are not possible using other AM technologies. Examples of WAAM 

capabilities include the ability to build overhanging structures without supports and use of coordinate 

motion to change the build orientation during deposition by mounting the part onto a part-rotator. In 

Figure 1, three example WAAM parts are presented showing (a) a structural part in which the 

substrate will form a central web of the part, and (b) a part with overhanging regions that have been 

built without supports (c) a section cut through a part with an internal passageway.  

   

(a) (b) (c) 

Figure 1. Example WAAM Parts Built at Cranfield University, (a) Landing Gear Rib (b) 

Unsupported Overhanging Regions (c) Part with Internal Passageway 
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Table 1 provides a comparison between the DfAM guidelines proposed by Gibson, Rosen, and 

Stucker (2010) and the capabilities of WAAM.   Based on the summary in Table 1 it can be seen that 

the benefits and capabilities of WAAM are somewhat different to other AM technologies. WAAM 

does not aim to compete in the realm of highly complex structures, but aims to reduce the 

manufacturing cost and lead time for high value engineered parts.  We therefore propose a new set of 

general design capabilities for WAAM based on minimising cost and environmental impact, hybrid 

manufacturing opportunities, material properties optimisation, functional and shape optimisation.  The 

WAAM design capabilities are presented in Table 2. 

Table 1. Comparison of General DfAM and DfWAAM Guidelines  

DfAM Design 

Guideline (Gibson, 

Rosen, and Stucker 

2010) 

Description (Gibson, Rosen, and 

Stucker 2010) 

Application to DfWAAM 

Complex Geometry “AM enables the use of complex 

geometry in achieving design goals 

without incurring time or cost 

penalties compared with simple 

geometry” 

WAAM is not suitable for the production 

of parts with complex geometries due to 

relatively large minimum feature size 

(typically 2  mm) 

Customised Geometry “AM enables customised geometry 

and parts by direct production from 

3D data” 

WAAM enables customised geometry and 

parts by direct production from 3D data 

Integrated Assemblies “With AM it is often possible to 

consolidate parts, integrating 

features into more complex parts 

and avoiding assembly issues” 

With WAAM it is often possible to 

consolidate parts by integrating features 

and avoiding assembly issues  

AM Unique 

Capabilities 

“AM allows designers to ignore all 

constraints imposed by conventional 

manufacturing processes (although 

AM-specific constraints might be 

imposed)” 

WAAM offers unique capabilities in 

hybrid manufacturing, functionally graded 

materials and producing parts with 

integrated functionality. Conventional 

machining constraints must be considered 

if the part is to be post-machined  

 

Table 2.  WAAM Design Capabilities   

WAAM Design Capabilities   

Minimising Cost, Environmental 

Impact and Lead Time 

WAAM reduces the cost and environmental impact of manufacturing 

by substantially reducing the amount of waste material during 

manufacture compared to machining from billets or forgings. WAAM 

can also reduce manufacturing lead time compared to forging and 

machining. 

Hybrid Manufacturing WAAM can be integrated with conventional manufacturing processes 

to open up new design opportunities and further reduce 

manufacturing cost.  By using WAAM to deposit features onto pre-

formed parts produced by machining, forging or sheet metal, it is 

possible to produce hybrid parts with lower cost and manufacturing 
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time.  The substrate is commonly designed to be incorporated into the 

final part to minimise the amount of deposition and minimise cost. 

Material Properties Optimisation WAAM parts can be produced using mixed or functionally graded 

materials to tailor the material properties of the part.  This is achieved 

by using multiple wires of different materials; the chemical 

composition can be tailored locally by controlling the wire feed 

speeds. 

Functional Optimisation Parts can be manufactured with internal features and passageways or 

embedded systems including fibre optics and fluidic tubing to 

incorporate functional behaviour into the component.   

Shape Optimisation WAAM can produce parts with shape optimised forms, benefitting 

from the ability to deposit overhanging features without support 

structures either by using multi-axis deposition or by depositing in 

positions other than downwards. However, care must be taken to 

ensure access for post machining if required.  

3.2. Design for WAAM Guidelines 

An initial set of DfWAAM guidelines has been established based on experimental research by 

Sequeira Almeida 2012, Kazanas et al. 2012, Wang et al. 2013, Lin 2015 and Williams et al. 2015. 

The design guidelines are presented in the following sections and are collated into a simple graphical 

table for easy reference in Appendix A.  The table follows the layout used by Adam and Zimmer 

(2014) 

3.2.1. Part Dimensions 

Unlike most other AM technologies, WAAM is not constrained by an enclosed working chamber, 

therefore for materials such as aluminium and steel which do not have stringent requirements for gas 

shielding the maximum part size is determined by the reach capability of the manipulator.  For 

materials such as titanium which require shielding, a bespoke shielding device has been developed 

also allowing unlimited build volumes by avoiding the need for the chamber (Ding et al. 2015).  Parts 

have been built successfully up to 6 metres in length in a two robot cell that could produce parts up to 

10m in length. The minimum wall thickness for deposition is 2mm, and thinner walls can be achieved 

by post machining. 

3.2.2. Symmetry 

Due to the significant heat input in metal AM processes, components can be subject to distortion due 

to the thermal stresses from heating and cooling (Bralla 1999). The residual stresses are associated 

with shrinkage during cooling and are largest along the direction of deposition. Parts can be built 

using a symmetrical deposition strategy where the substrate is positioned at a plane of symmetry on 
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the part and layers are deposited alternately on each side of the plate by rotating the part between 

layers. This balances the build-up of the residual stresses avoiding distortion during the manufacturing 

process (Williams et al. 2015). For parts without a suitable plane of symmetry it may be possible to 

build two parts “back to back” to achieve a symmetrical build as shown in Figure 2.  In this case the 

parts must be heat treated to relax the residual stress before they are separated. 

 

 

(a)                                            (b)                                 

Figure 2. Schematic of Back-to-Back Build of WAAM Parts (a) During Build (b) After 

Separation from Substrate) 

3.2.3. Enclosed Features 

WAAM parts can have enclosed features such as passageways which cannot be produced using 

conventional subtractive manufacturing. Enclosed features can be produced by using multi-axis build 

techniques or carefully designed deposition paths that allow unsupported regions to be deposited 

without any support structures.  High aspect ratio holes can be produced by drilling holes after each 

deposited layer. Care should be taken when designing parts with enclosed features because they 

cannot be easily inspected or post machined.  Figure 3 shows an example of a part containing a fully 

enclosed passageway in the final part (Lijuan Sun 2015). 
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Figure 3. Example WAAM Part with Enclosed Passageway (Lijuan Sun 2015) 

3.2.4. Unfinished Faces 

For many applications it is not necessary to post-machine some or all of the deposited faces.  

However, there may be stress raising features on unfinished faces, so care must be taken in stressed 

and particularly fatigue driven parts. The surface finish can also be improved without post-machining 

by using techniques such as shot peening or vibratory grinding (Bralla 1999). 

3.2.5. Machining Considerations 

In common with other near-net shape manufacturing technologies such as casting and forging, many 

WAAM parts are post-machined after deposition, particularly for precision engineering applications.  

Where post machining is required, standard design for machining guidelines should be followed and 

consideration must be given to the work holding during post machining.  Suitable location points must 

be provided on the WAAM part for machining setup (Campbell 2004). If an integrated WAAM 

deposition and machining system is used to the part may be machined after every layer, or 

periodically during the manufacturing process.  In this case careful consideration must be given to the 

sequence and accessibility for deposition and machining. A machining allowance must be added to to 

allow for the material removed by the machining process, this is typically 1mm added to all machined 

faces (Williams et al. 2015). 

3.2.6. Undesirable Features 

The WAAM process is not suited to the manufacture of some complex features utilised in other 

additive manufacturing processes. The production of complex 3D lattices is not desirable for WAAM 
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and long thin unsupported members may be difficult to deposit and post machine. Hence, topological 

optimisation should be undertaken with due consideration of the WAAM constraints. 

3.2.7. Corners 

It is preferable to deposit WAAM parts with internal and external radii at corners to allow for 

continuous deposition around the corner and avoid introducing stress raising features as shown in 

Figure 4. WAAM can produce parts with sharp external corners but they are more difficult to 

manufacture due to additional stop-starts in the deposition process.  For parts that will be post-

machined, internal corners must be designed with generous radii to allow for the tool radius during 

post machining as well as to avoid stress concentrations. 

 

Figure 4. WAAM Design Guidelines for Corner Radii 

4. WAAM Build Orientation Selection Methodology 

A WAAM build orientation selection methodology has been developed to help designers investigate 

the best WAAM build strategy for a part.  The methodology provides a structured process to identify 

the best build orientation for based on substrate waste material mass, deposited material mass, number 

of build operations, build complexity and symmetry.  

4.1. Pre-Assessment 

The first stage in the design assessment process checks whether the part meets the general 

manufacturing criteria for WAAM.  Four criteria are used to assess a part’s suitability for WAAM: 

part mass, maximum and minimum bounding box dimension and buy-to-fly ratio. The bounding box 
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is defined as the minimum enclosing cuboid for the part as shown in Figure 5 and provides a rough 

estimate of the buy-to-fly ratio for the part if machined from a rectangular billet.  Note that this 

approach slightly underestimates the actual buy-to-fly ratio of the part because a machining envelope 

of 5 – 10 mm around the finished part is usually assumed for machined parts (Allen 2006) in addition 

to the material required for work holding.  

 

Figure 5. Illustration of Minimum Bounding Box  

The initial selection criteria have been developed based on previous WAAM experience and are 

subject to change as the technology continues to develop and are summarised in Table 3.  

Table 3. Initial Assessment Criteria for WAAM Manufacture 

Design Criteria  Preliminary 

Assessment 

Criteria 

 

Comment 

Minimum part mass 0.5 kg Parts with a mass of less than 0.5kg are unlikely 

to be cost effective for WAAM production 

Minimum bounding box 

dimension 

20 mm Parts with one or more bounding box dimension 

of less than 20mm are unlikely to be cost 

effective for WAAM production because they 

could be produced more cost effectively from 

plate material by machining or other methods  

Maximum bounding box 

dimension 

10 m The maximum part size is limited by the size of 

the WAAM cell.  Currently the largest WAAM 

cell available is 10m in length 

Initial Buy-to-fly estimate 4  Parts with a lower buy-to-fly ratio are likely to be 

more cost effective to machine from billet. 

(Martina and Williams 2015)  Minimum buy-to-

fly ratio is also material dependent  
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4.2. Build Orientation Selection Process 

The first step in the build orientation selection process identifies a wide range of possible build 

orientations and substrate positions that could be used to build the part. These design alternatives are 

then compared using a multiple attribute decision matrix and ranked based on the results.   The part 

design should then be reviewed and if necessary adjusted to take best advantage of the selected build 

option.  This structured design process helps the designer to consider manufacturing requirements at 

the design stage and achieve the best design and manufacturing solution for the part.   The process 

flow for the design methodology is presented in Figure 6. 

 

Figure 6.  WAAM Build Orientation Assessment Methodology Process Flow 

The build orientations and substrate positions are selected using the following guidelines and 

illustrated in Figure 7: 

1. A central web on a part plane of symmetry  

2. Planar outer part walls  

3. Planar part internal walls  

4. Plane of symmetry or partial symmetry (not aligned with a wall of the part)  



16 

 

 

 

 
 

(a) Central Web on 

Plane of Symmetry 
(b) Planar Outer Wall 

(c) Planar Internal 

Wall 

(d) Plane of Symmetry 

or Partial Symmetry 

(Not Aligned with a 

Wall) 

 

Figure 7. Guidelines for Substrate Positions 

Each build option is then assessed using a multiple attribute decision matrix with five assessment 

criteria: substrate waste, deposited material, number of deposition operations, build complexity and 

symmetry. Each criterion is assessed on a normalised scale between 0 and 1 and in each case the best 

option is the maximum value of 1. In order to perform the assessment a 3D CAD model of the 

designed part and substrate is required to calculate the required material masses. The amount of waste 

material from WAAM deposition is assumed to be small compared to the substrate waste and is 

therefore not included in the assessment; the additional material required for machining allowance and 

work holding is also not considered. 

The evaluation criteria used in the assessment are defined as follows (the objective is to maximise all 

criteria when scoring a design): 

 Substrate Waste (C1) is the ratio of substrate waste material mass (Msf) to the initial billet 

mass for the machined part (𝑀𝑖
𝑀). The complement of the score is used to provide a 

maximum score for minimum waste material. 

𝐶1 = 1 −
𝑀𝑠𝑓

𝑀𝑖
𝑀        (1) 

 Deposited Material (C2) is the ratio of the deposited material mass (𝑀𝑖
𝐴𝑀) to the final part 

mass(Mf). The complement of the score is used to provide a maximum score for minimum 

deposited material. 

𝐶2 = 1 −
𝑀𝑖
𝐴𝑀

𝑀𝑓
       (2) 
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 Number of Build Operations (C3) is the reciprocal of the number of WAAM build 

operations (N) required to build the part. When assessing the number of build operations it is 

assumed that the part is mounted on a part-rotator so that the deposition direction can be 

changed between operations to build features in different orientations as shown in Figure 8.  

Each change of position is considered to be a build operation. Double sided build operations 

where the part is rotated between each layer are considered as two build operations.  

𝐶3 =
1

𝑁
         (3) 

  

 

(a) (b)  (c) 

Figure 8. Example Assessment of Number of Build Operations for a Simple Part  (a) 

Substrate Mounted on a Part Rotator (b) First (Double Sided) Build Operation to Build Base 

of Part (c) Part Rotated before second (Single Sided) Build Operation to Build Side-Walls of 

Part 

 Build Complexity (C4) is a qualitative assessment of the build process complexity scored 

between 0 and 1.  The complexity is assessed based on the number of features in the part, 

number of intersections, variation in wall thickness and build angle/ curvature.  A part with a 

single constant thickness feature where all walls are built vertically will score 1, whereas a 

part with many features and intersections, varying wall thickness/ angle will score 0. 

 Symmetry (C5) is the ratio of the deposited material mass above the substrate centre-plane 

(𝑀+
𝐴𝑀) to the deposited material mass below the substrate centre-plane (𝑀−

𝐴𝑀).  The absolute 

value of the ratio is used to avoid negative values. 

𝐶5 = 1 − 𝑎𝑏𝑠(
𝑀+
𝐴𝑀

𝑀−
𝐴𝑀)      (4) 
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A weighting factor w can be applied to each criteria Ci based on the experience of the designer if 

required.  The sum of the five weighting factors must be 100. The score for each build option j is 

calculated as the weighted sum of the five decision criteria. In the case studies presented in this 

paper all of the criteria are weighted equally. 

   𝑆𝑗 = ∑ 𝑤𝑖𝐶𝑖
5
1          (5) 

4.2.1. Demonstration of the Build Orientation Selection Process 

The build orientation selection process will be explained using a simple part selected from the STEP 

tools part database (http://www.steptools.com/support/stdev_docs/stpfiles/ap203/Boeing.step).  The 

first step in the process is to assess whether the part meets the criteria for WAAM manufacture.  As 

shown in Table 4, it can be seen that the part meets the initial assessment criteria for WAAM 

manufacture with a buy-to-fly ratio of 6.6, minimum bounding box dimension of 20mm and weight of 

9.6 kg.  

Table 4. Simple Stiffened Part Initial Assessment. 

Part  Boundin

g box 

mass (kg) 

Machinin

g Buy-to-

fly 

estimate 

Boundin

g Box X 

(mm) 

Boundin

g Box Y 

(mm) 

Boundin

g Box Z 

(mm) 

Part 

Mass 

(kg) 

Suitable 

for 

WAAM

? 

 

WAAM Criteria 
 >4 >20mm >20mm >20mm 

>0.5k

g 
 

 

63.95 6.6 610 305 127 9.64kg YES 

 

The second step is to define the possible build orientations for the part.   Five possible substrate 

positions have been identified for this part.  The substrate has been assumed to be rectangular and to 

extend by 25mm in all directions from the base of the part, and the substrate is assumed to be 10 mm 

thick in all cases.  The details of the build options and the build orientation assessment results are 

shown in Tables 5 and 6 

  

http://www.steptools.com/support/stdev_docs/stpfiles/ap203/Boeing.step
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Table 5. Simple Stiffened Part Build Option Details  

  Build Option 1 Build Option 2 Build Option 3 Build Option 

4 

Build Option 

5 

 

 

 

 

 

 

 

 

 
 

 
 

Buy to Fly WAAM 1.2 1.2 1.2 1.1 1.1 

Substrate Mass (kg) 6.3 3.2 2.5 1.2 1.0 

Deposited Material 

Mass (kg) 

5.2 8.5 9.4 9.2 9.3 

Waste Material from 

Substrate (kg) 

1.9 2.0 2.2 1.0 0.7 

Number of Build 

Operations 

1 2 2 2 2 

No. of Double Sided 

Build Operations 

0 0 1 1 0 

Total Build 

Operations 

1 2 3 3 2 

Mass Above 

Substrate (kg) 

9.6 9.6 4.4 4.8 9.6 

Mass Below 

Substrate (kg) 

0.0 0.0 5.4 4.8 0.0 

 

Table 6. Stiffened Part Multiple Attribute Decision Matrix  

 
Build Option 

1 

Build Option 

2 

Build Option 

3 

Build Option 

4 

Build Option 

5 
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Substrate 

Waste 

20 0.97 19.42 0.97 19.38 0.96 19.30 0.98 19.69 0.99 19.79 

Deposited 

Material 

Factor 

20 0.5 9.3 0.1 2.5 0.0 0.5 0.0 1.0 0.0 0.7 
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Number of 

Build 

Operations 

20 1.0 20.0 0.5 10.0 0.3 6.7 0.3 6.7 0.5 10.0 

Build 

Complexity  

20 0.8 16.0 0.5 10.0 0.2 4.0 0.2 4.0 0.5 10.0 

Symmetry  20 0.0 0.0 0.0 0.0 0.9 17.8 1.0 20.0 0.0 0.0 

Total 100 
 

65 
 

42 
 

48 
 

51 
 

40 

 

The results identify Build Option 1 with a score of 65 as the best option for this part. Build Option 1 

allows for simple, one sided deposition with low deposited material mass and effective utilisation of 

the substrate in the final part.  Build Option 4 achieves the second highest score of 51 with a 

symmetrical double-sided build and relatively simple build strategy, but requiring more build 

operations.  Option 3 achieves the third highest score with partially symmetric deposition and a 

relatively simple build strategy.  

The methodology provides a structured approach to selecting the WAAM build orientation.  It 

can be seen that the process ensures that the designer considers the build strategy for the part at the 

design stage before the design is finalised.  It is recommended that the part design is reviewed after 

the build option has been selected to consider possible design changes that can maximise the benefits 

of WAAM. 

The methodology has been tested on two structural aerospace components and the results are 

presented in Section 5.   Redesign opportunities have been considered for the second case study and 

compared to the original design. 

5. Case Studies 

Two case studies are presented in this section to test the build orientation selection process.  The case 

studies were selected as being representative of the type of aerospace components that could benefit 

from WAAM production.  The first case study (the wing rib) includes only the build orientation 
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selection process, whereas the second case study (the flap track) considers design changes that could 

further reduce the cost of WAAM.  

5.1. Wing Rib Component 

The first case study is an aluminium light wing rib (John 2013) shown in Figure 9. The part is 1.4 m 

long, with a mass of 2.9 kg and a buy-to-fly ratio of 26.4 for the machined part. The first step in the 

process is to assess whether the wing rib meets the initial criteria for WAAM, and the results show 

that the part meets the general requirement with suitable dimensions and a high buy-to-fly ratio for the 

machined part (Table 7). 

  

Figure 9. Rib Component and Minimum Bounding Box 

Table 7. Rib Component Initial assessment  

Part  Bounding 

box mass 

(kg) 

Machining 

Buy-to-fly 

estimate 

Bounding 

Box X 

(mm) 

Bounding 

Box Y 

(mm) 

Bounding 

Box Z 

(mm) 

Part 

Mass 

(kg) 

Suitable 

for 

WAAM? 

WAAM Criteria  >4 >20mm >20mm >20mm >0.5kg  

 

76.6 26.4 1401 69 292 2.9kg YES 

 

The second step is to identify possible build orientations for the part.   Four substrate positions have 

been identified for this part, three on planes of symmetry and one aligned with a planar end face. The 

build orientations are then assessed against the five assessment criteria and the results are shown in 

Tables 8 and 9. The substrate is assumed to be rectangular and extend by 25mm in all directions from 

the base of the part, and the substrate is assumed to be 10 mm thick in all cases.  
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Table 8.  Rib Component Build Orientation Options   

 
Build Option 1 Build 

Option 2 

Build 

Option 3 

Build Option 4 

 
  

 

 
 

 
 

 
 

Buy to Fly Ratio WAAM 2.6 1.3 1.4 4.8 

Substrate Mass (kg) 4.7 1.1 1.1 13.0 

Deposited Material  (kg) 2.8 2.8 2.9 0.8 

Waste Material from Substrate 

(kg) 

4.6 1.0 1.1 10.9 

Number of Build Operations 2 2 2 1 

No. of Double Sided Operations 2 1 2 1 

Total Build operations 4 3 4 2 

Mass above Substrate (kg) 1.4 2.9 1.4 1.4 

Mass below Substrate (kg) 1.5 0.0 1.5 1.5 

 

Table 9 Rib component Multiple Attribute Decision Matrix  

 
Build Option 1 Build Option 2 Build Option 3 Build Option 4 
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Substrate Waste  20 0.94 18.80 0.99 19.74 0.99 19.73 0.86 17.16 

Deposited Material  20 0.0 0.6 0.0 0.6 0.0 0.1 0.7 14.8 

Number of Build 

Operations  

20 0.3 5.0 0.3 6.7 0.3 5.0 0.5 10.0 

Build Complexity  20 0.2 4.0 0.2 4.0 0.2 4.0 0.8 16.0 

Symmetry  20 1.0 19.5 0.0 0.0 1.0 19.5 1.0 19.7 

Total 100   48   31   48   78 
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Based on the above assessment Build Option 4 is the preferred candidate with the highest score of 78. 

This build option allows for straightforward symmetrical deposition with the lowest mass of deposited 

material, but has the highest substrate waste material.  By contrast Build Options 1 – 3 all have a 

much higher mass of deposited material and require more build operations. Build Options 1 and 3 are 

preferable to Option 2 due to their symmetrical build.   The total mass of raw material for each build 

option is shown in Figure 10. It can be seen that Build Option 4 gives a waste material saving of 63 kg 

per rib, whereas Build Option 3 gives a greater saving of 73 kg per rib. However, Option 3 requires a 

much higher mass of WAAM deposition and due to the high machining rate of Aluminium it is likely 

to be more cost effective to manufacture Build Option 4 using WAAM. 

 

Figure 10 Rib Comparison of Raw Material Mass for Machining and WAAM Build Options  

5.2. Flap Track Component 

The second case study part is a flap track component which is to be produced in Ti-6Al-4V by 

machining from billet (Osa-Uwagboe 2010).  The part is 1.2 m long with a mass of 16.2 kg and has a 

buy-to-fly ratio for the machined part of 5.1. A picture of the component is shown in Figure 11.  
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Figure 11. Flap Track Component and bounding box  

The flap track component meets the initial selection criteria for WAAM production as shown by the 

results in Table 10.  The buy-to-fly ratio is moderate at 5.1, but due to the high material cost of 

titanium there is still an opportunity to save manufacturing cost using WAAM. 

Table 10. Flap Track Initial Assessment  

Part  Bounding 

box mass 

(kg) 

Machining 

Buy-to-fly 

estimate 

Bounding 

Box X 

(mm) 

Bounding 

Box Y 

(mm) 

Bounding 

Box Z 

(mm) 

Part 

Mass 

(kg) 

Suitable 

for 

WAAM? 

WAAM Criteria  >4 >20mm >20mm >20mm >0.5kg  

 

81.8 kg 5.05 1236 60 247 16.2kg Yes 

 

Five substrate positions are been considered for the flap track at planes of symmetry and planar faces 

on the part.  The build orientations are then assessed against the five assessment criteria: substrate 

buy-to-fly, deposited material factor, deposition complexity, number of deposition operations and 

symmetry. The substrate is assumed to be rectangular and extend by 50 mm in all directions from the 

base of the part at its intersection with the substrate; and the substrate is assumed to be 10 mm thick in 

all cases. The results of the evaluation are shown in Table 11 and 12. 
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Table 11. Flap Track Build Strategies  

  Build Option 1 Build Option 2 Build Option 3 Build Option 4 Build Option 5 

 
 

 
  

 

 
 

 
 

 

Buy to Fly Ratio 

WAAM 

1.2 1.3 1.2 2.0 1.1 

Substrate Mass 

(kg) 

5.0 6.5 5.0 20.7 1.1 

Deposited Material 

Mass  (kg) 

15.1 14.7 15.0 11.8 16.0 

Waste Material 

from Substrate 

(kg) 

4.0 5.0 3.8 16.4 1.0 

Number of Build 

Operations 

5 3 4 2 4 

No. of Double 

Sided Operations 

1 1 1 1 2 

Total Build 

Operations 

6 4 5 3 6 

Mass Above 

Substrate (kg) 

15.9 4.1 11.2 8.1 11.9 

Mass Below 

Substrate (kg) 

0.1 9.4 5.0 8.1 4.3 

 

Table 12. Flap Track Multiple Attribute Decision Matrix  

  Build 

Option 1 

Build 

Option 2 

Build 

Option 3 

Build 

Option 4 

Build Option 5 
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Substrate 

Waste  20 1.0 19.0 0.9 18.8 1.0 19.1 0.8 16.0 1.0 19.8 

Deposited 

Material  20 0.1 1.4 0.1 1.9 0.1 1.5 0.3 5.4 0.0 0.2 



26 

 

Number of 

Build 

Operations  
20 0.2 3.3 0.3 5.0 0.2 4.0 0.3 6.7 0.2 3.3 

Build 

Complexity  20 0.5 10.0 0.7 14.0 0.7 14.0 0.9 18.0 0.5 10.0 

Symmetry  
20 0.0 0.5 0.7 13.4 0.6 12.4 1.0 20.0 0.5 10.6 

Total 100  34  53  51  66  44 

 

Based on the assessment, Build Option 4 has the best score of 66 due to the symmetrical build with 

low deposited material mass and low build complexity.  However, this option also has the highest 

substrate waste material mass.  Build Option 2 is the second best option with good substrate utilisation 

and moderate deposition symmetry. For series production, the buy-to-fly ratio of Build Option 4 could 

be improved by nesting several parts on to the substrate plate, but the waste material is still relatively 

high, and Build Option 2 could be used as a good starting point for a lower waste design. This 

opportunity may not be obvious from initial inspection of the part, but is highlighted by the 

assessment method. The comparison of total raw material usage for each build option is shown in 

Figure 12.  Once again it can be seen that while the best option does not have the lowest material 

utilisation it still saves 49 kg of titanium material waste per component compared to machining from 

billet. Build Option 3 can save a further 12 kg per component. 
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Figure 12. Flap Track Comparison of Raw Material Mass for Machining and WAAM Build 

Options  

A design study was performed to investigate whether the flap track could be redesigned to allow for 

more efficient WAAM production and reduced part mass.  The design study proposed redesigning the 

flap track using a hybrid manufacture strategy to maximise the use of the substrate in the part and 

reduce the volume of deposited material, the redesigned parts are shown in Figure 13.  The first 

redesign (Figure 13 (a)) is composed of a thicker substrate plate with the track flanges built up using 

simple two sided WAAM deposition (shown in green).  The substrate waste material assessment has 

been performed assuming that 12 parts would be nested together onto a substrate plate measuring 2.6 

x 1.3 x .022 m. The DfWAAM design guidelines presented in appendix A were used during the 

redesign process, and the new design has a symmetrical build and generous internal and external 

fillets on all corners. Unfinished faces are not considered due to the fatigue requirements for this part. 

The second redesign option (Figure 13 (b)) uses a formed extrusion as the base part with WAAM 

deposition to produce the attachment features. This approach greatly reduces the amount of waste 

material but increases the cost and lead time for manufacturing by introducing an additional 

manufacturing process. The DfWAAM design guidelines presented in appendix A were used during 

the redesign, and the new design uses of hybrid manufacture. It is not possible to achieve a 
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symmetrical build for this design, but the stiff I-section extrusion should minimise the risk of 

distortion after deposition. A static finite element analysis was performed for both designs to ensure 

that they met the structural requirements of the original design.   

 

 

 

(a) 

 

 

(b) 

Figure 13. Alternative Design Solutions for Flap Track (a) WAAM Deposition on Thick Plate 

(b) WAAM Deposition on Formed Extrusion (WAAM Deposition Shown in Green) 

The two alternative designs have been compared with the best two build options for the original 

design and the results are shown in Tables 13 and 14. It can be seen from the results that the second 

design option based achieves the highest score with very little waste material from the extrusion and 

very simple WAAM deposition.  The thick plate also scores highly, but the waste material from the 

substrate is high, even with several parts nested close together on the substrate. 
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Table 13. Redesigned Flap Track Build Strategies  

  Build Option 2 Build Option 4 Redesign 1: 

Thick Plate 

Redesign 1: 

Extrusion 

 

 

 
 

 

 

 
 

Part Mass 16.2 16.2 11.6 11.2 

Buy to Fly Ratio WAAM 1.3 2.0 2.5 1.3 

Substrate Mass (kg) 6.5 20.7 26.6 10.4 

Deposited Material Mass  

(kg) 

14.7 11.8 2.1 3.8 

Waste material from 

substrate (kg) 

5.0 16.4 17.0 0.7 

Number of Build 

Operations 

3 2 1 2 

No. of Double Sided 

Operations 

1 1 1 0 

Total Build Operations 4 3 2 2 

Mass Above Substrate (kg) 4.1 8.1 1.0 2.5 

Mass Below Substrate (kg) 9.4 8.1 1.0 1.3 

 

 Table 14.  Redesigned Flap Track Multiple Attribute Decision Matrix  

  Build Option 2 Build Option 4 Redesign 1: 

Thick Plate 

Redesign 2: 

Extrusion 
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Substrate 

Waste 

20.0 0.9 18.8 0.8 16.0 0.8 15.8 1.0 19.8 

Deposited 

Material  

20.0 0.1 1.9 0.3 5.4 0.9 17.4 0.8 15.3 

Number of 

Build 

Operations 

20.0 0.3 5.0 0.3 6.7 0.5 10.0 0.5 10.0 
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Build 

Complexity  

20.0 0.7 14.0 0.9 18.0 1.0 20.0 0.9 18.0 

Symmetry  20.0 0.7 13.4 1.0 20.0 1.0 20.0 0.9 18.6 

Total 100   53   66   83   82 

 

Based on the results in Table 14 it can be seen that the redesigned parts achieve the highest scores of 

83 and 82.  Redesign 2, based on an extrusion has minimum waste material and simple deposition 

whereas Redesign 1, has higher waste material, but a very simple manufacturing process.  One 

limitation of the build assessment method is that the higher cost and lead time of the additional 

manufacturing process for the bent extrusion are not considered. 

6. Summary and Conclusions 

This paper has presented an initial investigation into designing for WAAM.  The literature review 

identified that most existing Design for Additive Manufacture methods are developed for powder bed 

additive manufacturing processes and cannot be applied to WAAM, due to the very different 

manufacturing constraints and opportunities of these technologies. An initial set of design guidelines 

for WAAM have been developed based on experimental work undertaken at Cranfield University that 

can be used to help designers to take into account the capabilities and constraints of WAAM.  

The paper also provides a build orientation assessment method for WAAM production that can help 

designers to consider a wide range of WAAM manufacturing strategies for a part and then tailor the 

design where possible for WAAM manufacture. This structured approach ensures that the design is 

adapted to WAAM production from an early in the design process.  The assessment criteria for 

WAAM are defined as substrate waste, deposited material mass, number of build operations, build 

complexity and symmetry. These are different criteria to those used in other AM build orientation 

assessments, for example the method developed by Ponche et al. (2014) which minimises support 

volume, minimises cost and maximises quality. 
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The use of a multiple attribute decision matrix provides a quantitative method to compare 

different build options. This approach helps the designer to consider a wide range of options to 

minimise the volume of waste material and manufacturing complexity, however engineering 

judgement is still required in order to ensure a practical solution. The method has been tested on two 

engineering case studies and the results reviewed by WAAM manufacturing experts at Cranfield 

University.  The methodology has been shown to select appropriate build strategies for WAAM parts 

and helps the designer to consider potential design changes that could prove the manufacturability of 

WAAM parts.  

One potential weakness of the multiple attribute decision matrix methodology is that poor 

performance in one criterion can be compensated by good performance in another, meaning that the 

best ranked solution could have a poor score in one attribute.   

Future work will include testing the methodology on a wider range of industrial parts and 

assessing its suitability to assist non-specialist designer engineers when designing for this new 

manufacturing process.  
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Appendix A. DfWAAM Guidelines 

Wire + Arc Additive Manufacture – Design Guidelines 

Feature Example Description 
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There is no theoretical limit on maximum part length and wall 

thickness for WAAM manufacture. The minimum practical part 

length is typically 50mm, and the minimum deposited wall 

thickness is 2mm.  Thinner walls can be achieved by post-

machining and are limited only by the machining capabilities. 
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Parts should be designed where possible so that the part can be 

built symmetrically on both sides of the substrate in order to 

avoid buckling distortion and for ease of tooling. Alternatively 

parts may designed to allow them to be built back-to-back on the 

same substrate to achieve a symmetrical build and then separated 

after deposition 
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Enclosed features can be produced using WAAM but may be 

difficult to inspect or post-machine  
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Further cost savings can be achieved by leaving faces unfinished 

in unstressed regions.  Care must be taken not to introduce stress 

concentrations on unfinished faces. Fatigue and damage tolerance 

should also be considered.  
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 Ensure that all design features can be accessed for post 

machining 

 Avoid very thin walls that may distort during manufacture 

 Avoid high aspect ratio features and undercuts 

 Apply fillet radii on all internal corners (Bralla, 1998) 

For parts that must be post-machined standard design for machining 

guidelines should be followed WAAM parts.  Alternatively, using an 

integrated system, parts may be machined in-process after each layer is 

deposited.  Consider whether some faces can be left unfinished to further 

save cost. The manufacturing process should be carefully planned to 

achieve the ease of tooling and work holding during machining. 
U

n
d

es
ir

a
b

le
 F

ea
tu

re
s 

 

Complex 3D Lattice Structures are not appropriate for WAAM 

deposition and are costly/ inaccessible for post- machining.  Avoid these 

design features for WAAM. 

 

Unsupported thin members may be difficult to deposit and costly to 

machine. 
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Unfavourable 

 

Better 

 

Internal corners should be designed with a generous radius to allow for 

post machining and avoid stress raisers. 
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Unfavourable

 

Best 

 

External corners are recommended be designed with a generous radius 

where possible for ease of manufacture. This will reduce the number of 

stop/ starts during deposition and reduces material waste. 

 

Parts with sharp external corners can be produced but are more difficult 

to manufacture due to residual stresses in the corners.  
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