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Abstract 

Following the renewed interest in the volatile inventory of the Moon witnessed in the last 

decade, from both sample studies and data from orbital missions, it is timely to reassess the 

distribution and likely source(s) of light element volatiles (C, N, He, Ne, and Ar) in a 

diverse suite of lunar mare basalts and soils,  providing new insights about volatiles 

indigenous to the lunar interior, volatiles produced in situ at the lunar surface, and volatiles 

delivered to and implanted into the lunar surface. Simultaneous static-mode mass 

spectrometric measurements of these key volatiles, extracted from the same aliquot of 

sample by high-resolution stepped combustion, enable a more detailed identification of the 

different volatile components present by comparing their varying release patterns across a 

range of temperature steps. Taken in context with other studies of different volatile 

elements, this new data contributes towards a greater understanding of the Earth-Moon 

system, with additional implications for future in situ resource utilisation at the lunar 

surface.  

With an average δ
15

N value of +0.93 ± 9.39 ‰, the indigenous N component measured in 

mare basalts is most compatible with a CO carbonaceous chondrite source for nitrogen in 

the lunar interior, although some caveats exist.  Variations in abundance and isotopic 

composition of indigenous nitrogen imply a heterogeneous lunar mantle.  Assuming up to 

~50 % loss of solar wind 
36

Ar from lunar soils, nitrogen trapped in soils can be reconciled 

with up to 87 % being contributed from a non-solar source with an isotopic composition of 

between +87 ‰ and +160 ‰.  

Noble gases in soils are dominated by solar wind components, with only minor amounts of 

cosmogenic neon being released at the highest temperature steps.  In mare basalts, noble 

gases are a mixture of trapped, radiogenic, and cosmogenic components (from which 

cosmogenic production rates can be calculated and exposure ages for previously undated 

samples suggested.  
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Earth’s only natural satellite has fascinated and inspired countless generations of people 

through the ages, including authors, poets, artists, philosophers, and even scientists 

(starting with the first telescopic observations of the cratered lunar surface made by the 

Italian astronomer, physicist, and mathematician Galileo Galilei, published in his 1610 

book ‘Sidereus Nuncius’).  Interest in the Moon reached a thrilling peak in 1969, when 

NASA’s ‘Apollo’ programme brought about the first successful manned lunar landing, 

with the lunar module of Apollo 11 touching down in Mare Tranquillitatis on July 20
th

. To 

humanity as a whole, this remarkable feat stood as testimony to mankind’s technological 

achievements, reaching out to a celestial body from our own home planet for the first time.  

However, to the scientific community, these manned ‘Apollo’ and unmanned Soviet 

‘Luna’ missions offered a unique opportunity to study the origins of our Earth-Moon 

system through the analysis of returned samples of lunar rocks and soils.  This treasure 

trove of precious samples is still able to yield ground-breaking results today, after more 

than four decades of dedicated research by groups all over the world. 

One aspect of lunar science that has experienced a true renaissance in recent years has been 

the field of lunar volatile research, with major implications for how we view not only the 

Moon’s origin, but also that of the Earth (and other terrestrial planets in our Solar System). 

1.1: Theories of Lunar Formation  

Before samples of the Moon were returned to Earth for analysis, several theories for lunar 

formation were postulated.  The oldest, published by Darwin in 1879, and modified over 

the years, suggested that the Moon formed from a molten, fast-spinning Earth, with the 

material that formed the Moon being ejected into space by the speed of Earth’s rotation 

(Darwin, 1879; Ringwood, 1960; Wise, 1969).  However, such a rotational fission 

formation mechanism would have required the angular momentum of the Earth to be 
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around 73 % greater than it is today (de Meijer et al., 2013), leading some to hypothesise 

that, assuming a similar angular momentum for the early Earth to that of the present-day 

Earth-Moon system, the only way to provide the extra energy needed to eject enough 

silicate material from the Earth to form the Moon is via a natural nuclear fission reaction at 

the terrestrial core-mantle boundary (de Meijer et al., 2013).  Although this concept 

explains the observed compositional similarities between the Earth and Moon, and also 

removes the need for a major loss of angular momentum in the Earth-Moon system, it 

requires a very specific set of circumstances and thus is not currently seen as the most 

likely scenario. 

Other early ideas about lunar formation include the suggestion that the gravitational field 

of the early Earth was strong enough to capture a small planetesimal (which had formed 

elsewhere in the Solar System and migrated into Earth’s orbit) (e.g. Gerstenkorn, 1955; 

Wood, 1986).  However, the compositional similarity of the Earth and Moon is difficult to 

reconcile with a model which requires the two bodies to be formed in different regions of 

the Solar System. 

Alternatively, it was proposed that the Earth and Moon formed together, at the same time, 

as a binary planetary system (e.g. Schmidt, 1959), although this idea also fails to account 

for the current angular momentum of the Earth-Moon system. 

The most widely-accepted theory of lunar formation involves the early Earth being hit by a 

glancing blow from a slow-moving Mars-sized body, at some point around 40 to 62 Ma 

after the formation of the Solar System (Cameron and Ward, 1976; Canup and Asphaug, 

2001; Halliday, 2003, 2004; Hartmann and Davis, 1975; Touboul et al., 2007).  Whilst this 

theory satisfies constraints such as the present angular momentum of the Earth-Moon 

system and the mass of material required to form the Moon, the resultant Moon in this case 
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predominantly forms from impactor material (Shearer et al., 2006), and not from material 

derived from the early Earth, contradicting evidence from a growing number of isotope 

systems (e.g. tungsten (Touboul et al., 2007), titanium (Zhang et al., 2012), silicon 

(Armytage et al., 2012), oxygen (Hallis et al., 2010; Wiechert et al., 2001), and chromium 

(Trinquier et al., 2008)) which all point towards the Earth and Moon forming from a 

common starting material.  The chemical and isotopic similarities between the two bodies 

can be reconciled with this ‘Giant Impact’ model if it assumed that such an impact created 

a proto-lunar disc of vaporised material which underwent equilibration with the outer part 

of the terrestrial silicate mantle, resulting in homogeneity between the Earth and Moon 

prior to lunar accretion (Pahlevan and Stevenson, 2007).  However, by the time such 

homogenisation occurred throughout the entire thickness of the vapour disc (~ 100 Ma), 

the parts of the disc furthest away from the Earth would have begun to accrete (Salmon and 

Canup, 2012), making an entirely homogenous Earth-Moon system difficult to achieve. 

Ultimately, although variations of the canonical Giant Impact model of lunar formation are 

favoured by a majority of current researchers, no one theory of lunar formation to date 

completely satisfies all of the various conditions required to produce an Earth-Moon 

system as observed today. 

Whichever theory of lunar formation is adopted, questions still remain about the timing of 

volatile delivery to the two bodies; the process of planetary accretion is thought to have 

removed most of the volatile elements from the Earth-Moon system (Albarède, 2009), 

requiring a so-called ‘Late Veneer’ of material to be added to both bodies from a 

chondritic source (with suggestions ranging from an ordinary chondrite (e.g. O’Neill, 

1991), a primitive chondrite (e.g. Dale et al., 2012), an H chondrite (e.g. Wood et al., 

2010), or a carbonaceous chondrite (e.g. Javoy, 1997) source).  A ‘Late Veneer’ is also 



                                                                                                                                 Chapter One: Introduction 

 

5 

 

employed to explain the over-abundance of siderophile elements in the terrestrial mantle 

(Willbold et al., 2011).  However, identical tungsten isotopic compositions between the 

Earth and Moon, for example, place a limit on the amount of material added to the Earth 

(and, accepting any late accretion occurred in a stochastic manner, place an even lower 

limit on the amount of material added to the Moon) during a ‘Late Veneer’ event, with 0.3 

± 0.3 % of Earth’s tungsten added from an ordinary chondrite source, or a maximum of 0.5 

± 0.6 % added from a CI carbonaceous chondrite source; such low percentages of material 

added during a late veneer cannot account for the present abundances of volatiles (such as 

carbon, sulphur, and water) in the Earth (Halliday, 2008).  This implies that, if indeed 

volatiles were delivered to the Earth-Moon system during a Late Veneer event alongside 

siderophile elements, such a late accretion did not contribute the entire volatile budget of 

the two bodies.  

Therefore, not only is the formation of the Moon itself still a topic for debate, but so too is 

the timing of volatile delivery to the Earth-Moon system, whether this was prior to lunar 

formation, during the lunar forming impact, or delivery after formation as part of a ‘Late 

Veneer’ of material to the terrestrial planets. 

1.2: A Brief Overview of Lunar Geological History 

Following lunar formation, it is thought that the accretionary processes involved resulted in 

planetary-scale melting, thereby forming a Lunar Magma Ocean (LMO) (Wieczorek et al., 

2006), which underwent crystallisation to produce a suite of rocks as differentiation 

occurred.  These products of the LMO include ferroan anorthosites (representing the 

primary products of crystallisation, forming between 4.29 Ga and 4.56 Ga (Shearer et al., 

2006)), Mg- and Fe-rich cumulates (e.g. dunites, nortites, and troctolites, which sank down 

through the LMO to form cumulate piles (Dymek et al., 1975a; Shearer and Papike, 1999; 
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Shearer and Papike, 2005)), a plagioclase primary lunar crust (crystallising at around 60 % 

to 80 % crystallisation, and floating up through the LMO to form the crust (Phinney, 

1991)), and the final products of LMO crystallisation, urKREEP (enriched in the 

incompatible elements potassium (K), phosphorous (P), and Rare Earth Elements (REE)) 

and ilmenite (crystallised from Fe- and Ti-enriched melts; this dense ilmenite-rich layer is 

gravitationally unstable, and sinks down through the cumulate pile at the base of the LMO) 

(Elardo et al., 2011; Hess and Parmentier, 1995; Shearer and Papike, 2005)). 

Towards the end of this earliest period of lunar history, at around 3.9 Ga (e.g. Morbidelli et 

al., 2012), the Earth-Moon system is thought to have experienced a ‘late heavy 

bombardment’ from~ 90 % asteroidal and 10 % cometary sources (Bottke et al., 2010; Joy 

et al., 2012), which formed most of the large basins in the lunar crust (Kring and Cohen, 

2002).   

Following the supposed ‘late heavy bombardment’, between ~ 3.95 and 3.1 Ga, basaltic 

melts were erupted onto the lunar surface, spreading out to fill in basins and form the lunar 

maria (e.g. Nyquist and Shih, 1992).  Displaying wide heterogeneities in terms of their 

major oxide contents, these mare basalts are thought to be derived from a heterogeneous 

lunar mantle (Hallis et al., 2014; Ray and Misra, 2014), with source regions varying in 

estimated depth from 150 km below the lunar surface (Papike et al., 1976), down to 700 

km (Hess, 1991).  Some mare basalt samples, particularly those collected during the 

Apollo 15 mission, are enriched in KREEP, suggesting they interacted with urKREEP 

material at depth to form these KREEP basalts (Lucey et al., 2006). 

Mare volcanism also produced fire fountaining, fuelled by the rapid degasing of volatiles 

as melts rose to the lunar surface (McCubbin et al., In Press ; Wilson and Head, 1981).  

Erupted into the cold vacuum conditions at the lunar surface, these rising magmas rapidly 
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quenched from temperatures in excess of 1450 ºC (Grove and Krawczynski, 2009) to form 

glass beads of variable chemical composition (Delano, 1986; Elkins-Tanton et al., 2003); 

like mare basalts, these volcanic glasses are thought to have formed from melts originating 

in the lunar upper mantle (Grove and Krawczynski, 2009; Longhi, 1992).  

The lunar basaltic meteorite ‘Kalahari 009’ has been dated to 4.35 Ga (Terada et al., 2007), 

and is thus thought to represent an earlier phase of basaltic volcanism (forming 

‘cryptomare’ deposits), although such cryptomare basalts have since been blanketed and 

hidden by subsequent impact ejecta (Antonenko et al., 1995). 

1.3: The Lunar Surface 

The lunar surface is comprised of layers of debris and brecciated material which vary in 

thickness laterally, from a few metres thick to several tens of metres thick, dependent upon 

location.  This jumbled coating is known as the ‘lunar regolith’, and contains rock 

fragments of varying sizes, from large boulders to extremely fine (µm-sized) grains (‘lunar 

soil’) (McKay et al., 1993). 

The principal method of formation for the lunar regolith is via extra-lunar material 

impacting the solid lunar anorthositic crustal and mare basaltic bedrock (Langevin and 

Arnold, 1977).  This can take the form of cometary/meteoroid impacts (on the largest 

scale), which physically fracture and break apart competent bedrock; this is the first stage 

of regolith formation.  Whilst the regolith is still relatively shallow (several cm in depth), 

fresh impacts can excavate deep enough to regularly break apart new pieces of bedrock.  

However, once the regolith layer reaches roughly 1 m in depth, only the largest, infrequent 

impacts can penetrate down to bedrock level (McKay et al., 1993).   
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Thus begins the secondary phase of regolith evolution, where smaller and more regular 

impacts mix and ‘garden’ the existing coarser fraction; at this point, regolith formation 

rates slow down markedly (McKay et al., 1993), and instead existing fragments are broken 

down further to form finer particles (comminution) (Langevin and Arnold, 1977). 

While exposed at the lunar surface, the grains in the regolith experience bombardment by 

more than just meteoritic and cometary impacts.  Cosmic dust particles can cause pitting 

(microcraters) on exposed grain surfaces, and solar wind charged atoms interact with grain 

surfaces in a range of chemical and physical processes.  Galactic cosmic rays can penetrate 

materials to depths of around 1 m, interacting with material at the lunar surface to produce 

cosmogenic isotopes from target atoms via a process known as spallation.  These all 

contribute to the phenomenon of space weathering, and the effects of such space 

weathering increase with the increase in exposure ages of the lunar regolith (McKay et al., 

1993). 

Impacts on the lunar regolith have several effects; minerals can undergo shock 

metamorphism, grains may be fused together (impact breccias), the finest fraction of the 

lunar soil particles may be melted upon impact and so form either fused ‘agglutinates’ or 

agglutinitic glasses (Papike et al., 1982), and some material may be vaporised and either 

lost to space or recondensed elsewhere on the lunar surface (Langevin and Arnold, 1977; 

McKay et al., 1993). 

Space weathering by ionised radiation can also alter the regolith, in particular when 

protons and other atoms from the solar wind interact with the finer lunar soil grains.  Solar 

wind protons penetrate the uppermost layers of the soil grains and can either be lost back to 

space via diffusion through the soil (Crider and Vondrak (2002) suggest that 1 % of 

incident solar wind protons may be backscattered immediately), or trapped chemically by 
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reactive broken surfaces on soil grains or within the crystal lattice structures of soil grains 

themselves; this can happen wherever there exist weakened bonds as a result of previous 

bombardment breaking apart chemical bonds to leave ‘dangling’ negatively-charged O 

atoms within mineral structures that readily accumulate incident ions from the solar wind 

(Crider and Vondrak, 2002; McCord et al., 2011; McKay et al., 1993).  This process can 

form hydrogen, carbon, and nitrogen-bearing volatile species, bonded to the lunar soil 

particles, which may then be removed by further sputtering by fresh incident solar wind 

protons at a later date (Crider and Vondrak, 2002). 

Also, subsequent impacts which heat the soil and thus release these protons enable them to 

react with O in FeO in lunar soil impact melts; this reduction produces nanophase Fe 

particles (np-Fe
0
).  The abundance of such non-charged Fe microparticles increases with 

soil maturity and so forms a useful measurement of soil surface exposure age (maturity), 

when expressed as the ratio of observed ferromagnetic intensity of a soil divided by its 

total Fe content (Is/FeO) (McCord et al., 2011; McKay et al., 1993). By contrast, Pillinger 

et al. (1976) suggest that this finely-divided metallic iron (Fe
0
) in lunar soils can be formed 

instead by preferential sputtering of oxygen in lunar soils, reducing ferrous iron to non-

charged metallic iron.  However, these alternative mechanisms for nanophase iron 

production in lunar soils still need to be resolved. 

1.4: Lunar Soil 

Lunar soils can be described as poorly-sorted (well-graded) sandy silts to silty sand, with 

an average particle size of 70 µm (median lies between 40-130 µm), with between 10-20% 

of particles being <20 µm (Carrier et al., 1993).  

Soil particles display a wide range of shapes, from spherical to extremely angular, although 

the majority are elongate and subangular/angular (Carrier et al., 1993). 



                                                                                                                                 Chapter One: Introduction 

 

10 

 

Bulk densities for lunar soils vary slightly; Carrier et al. (1993) state that the ‘best 

estimate’ for bulk density of the top 15 cm of soil is 1.50 ± 0.05 g/cm
3
, which rises to 1.66 

± 0.05 g/cm
3
 when considering the top 60 cm of the lunar soil.  However, Vinogradov 

(1972) states that the bulk density of Luna 20 soil is 1.1 to 1.2 g/cm
3
, which reaches 1.7 to 

1.8 g/cm
3
 upon compaction, which it undergoes readily. 

Due to the highly irregular surfaces of lunar soil grains, soil particles undergo mechanical 

interlocking, making soils highly cohesive (with a high frictional shear strength).  

Combined with the low gravity conditions present on the Moon, this enabled Apollo 

astronauts to excavate sample trenches down to around 40 cm depth with near-vertical 

sides, without the sides collapsing (Carrier, 2005).  However, Lindsay (1976) states that 

the lunar soil at the surface is only weakly cohesive. 

Since the optical properties of lunar soils are dominated by the finer fractions (< 45 µm) 

(Taylor et al., 2010), many mineralogical studies focus on these smaller grain sizes.  

However, modal mineralogy varies between different size fractions of the same soil 

sample, with lithic fragments and fused soil particles being more dominant in larger grain 

size fractions, and the proportion of monomineralic grains and glasses increasing with 

decreasing grain size (McKay et al., 1993; Papike et al., 1982).   

Furthermore, although soil samples typically contain a small amount of exotic material, 

laterally transported from elsewhere on the lunar surface, soil mineralogy is linked to the 

bedrock in the immediate vicinity (Lindsay, 1976; McKay et al., 1993); indeed, Shoemaker 

et al. (1970) estimated that around 95 % of a lunar soil sample at any given location may 

be derived from bedrock within a 100 km radius.  Thus, highland soils have a higher 

proportion of highland anorthositic lithics and feldspars compared to mare soils, which 

instead display higher proportions of mare basaltic lithics and mafic minerals (Papike et 
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al., 1982).  In addition, minerals such as plagioclase, which have good cleavage, are readily 

broken and, alongside any fine-grained crystals in the original bedrock, are preferentially 

concentrated in the finest grain size fractions of the lunar soil (McKay et al., 1993). 

Alongside monomineralic grains, the lunar soil also contains lithic fragments (‘mini-

rocks’, typically in the larger grain size fractions, and including brecciated crystalline rock 

fragments and soil breccias), agglutinates and glasses (Lindsay, 1976). 

Agglutinates are described by Lindsay (1976) as ‘intimate mixtures of inhomogeneous 

dark-brown to black glass and mineral grains, many of which are partially vitrified’, being 

irregular in shape and containing microscopic iron (as Fe
0
) droplets and FeS (troilite), most 

probably formed by micrometeorite bombardments which mix the lunar soil and fuse it 

together with associated impact melts.  Vesicles in agglutinates are thought to form by 

solar-wind implanted elements and compounds (e.g. H2, N2, noble gases, CH4, and H2O, 

which might be produced by H reacting with OH species) being degassed (McKay et al., 

1993). 

Glasses may be either derived from ejected impact melts, which cool before landing on the 

lunar surface again (giving rise to spheroidal/rounded rotational shapes, unless 

subsequently broken up by further comminution); such glasses are largely homogeneous 

and restricted to smaller grain sizes (larger glass beads do not cool quickly enough and so 

are broken apart into smaller beads when they land on the lunar surface) (Lindsay, 1976). 

Alternatively, glasses in the lunar soil may be derived from volcanic fire-fountaining, as 

outlined in Section 1.2.  Such glasses may be covered by a thin coat of condensates of 

volatile elements, and can form layers of localised pyroclastic debris, quite unlike the wide 

distribution across the lunar surface of impact-derived glasses (McKay et al., 1993). 
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1.5: Apollo Lunar Samples 

As part of the six successful NASA Apollo missions that landed on the Moon, a total of 

around 382 kg of rock and soil samples were returned to Earth, with samples collected 

from each landing site on the lunar near-side.  The Apollo 11 and 12 collections represent 

lunar mare regions, the Apollo 16 mission collected anorthositic highlands samples, and 

samples returned by Apollo 14, 15, and 17 come from both mare and highlands areas.  The 

main masses of Apollo samples are identified using five digit numbers, assigned by the 

Lunar Samples Preliminary Examination Team (LSPET) thus:  for Apollo 11 samples, the 

first two digits are ‘10___’, with Apollo 12, 14, and 15 samples named ‘12___’, ‘14___’, 

and ‘15___’ respectively.  For samples collected by Apollo missions 11 to 14, the 

remaining three digits assigned to the sample names were generic numbers with no relation 

to sample location or type.  For Apollo 15, 16, and 17, the last digit (‘____0’ to ‘____9’) 

refers to sample size, grading upwards from fines to rock samples > 10 mm.  For Apollo 16 

and 17, the naming scheme was changed slightly, so that the first digit represented the 

mission number (‘6____’ and ‘7____’ respectively), and the second digit referenced the 

sample collection location.  Generally, in this present work, samples are referred to using 

this five digit generic number, although specific subsample numbers of between one and 

four digits follow the generic five digit name to identify individual allocated subsamples.  

1.6: Previous Laboratory Analyses of Volatiles in Lunar Samples 

Studies conducted to date of volatiles in both lunar rocks and soil samples have recently 

been reviewed in detail by McCubbin et al. (In Press); whilst a similarly exhaustive 

overview of previous research is beyond the scope of this introduction, and largely 

superfluous to the original research discussed in later chapters, it seems necessary at this 
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point to give a brief outline of prior efforts to characterise some of the volatiles also 

analysed in this present work. 

Carbon abundances and isotopic compositions (expressed as δ
13

C, or the parts-per-

thousand deviation from the terrestrial Vienna Pee Dee Belemnite (vPDB) standard) have 

long been measured for both lunar rock and soil samples, starting with the return of the 

first samples by Apollo 11 (e.g. Epstein and Taylor, 1970; Kaplan and Smith, 1970; Moore 

et al., 1970), and continuing for many decades thereafter (e.g. Becker, 1980; Cadogan et 

al., 1971; Chang et al., 1974; Des Marais, 1978, 1983; Friedman et al., 1974; Gardiner et 

al., 1978; Grady and Pillinger, 1990, Kerridge et al., 1978; Norris et al., 1983, Pillinger, 

1979).  Using a variety of different techniques, it was demonstrated that carbon 

abundances are typically below 260 ppm (less than 70 ppm in mare basalts (McCubbin et 

al., In Press)), with isotopic compositions ranging from δ
13

C values of -40 ‰ to +24 ‰ 

(McCubbin et al., In Press).  Lunar soils contain much more carbon than lunar rocks, with 

carbon in soils dominated by surface-correlated components (Des Marais et al., 1975; 

Kerridge et al., 1974; Moore et al., 1970).  It was also noted that carbon isotopic 

compositions within a single sample are highly variable, which suggests the presence of 

several carbon components from different sources within lunar samples (Kaplan and 

Petrowski, 1971).  Mare basalts display a 
13

C-depleted isotopic composition (with average 

δ
13

C values of around -25 ‰), compared to lunar soils, which have more 
13

C-enriched 

signatures of around +10 ‰ (McCubbin et al., In Press).  This may be explained by the 

much lower abundances of indigenous lunar carbon present in rock samples compared to 

soils, making them more susceptible to the effects of terrestrial contamination, thereby 

masking the true lunar carbon signature.  Carbon measured in volcanic glass beads (e.g. 

Gibson, 1977; Gibson and Moore, 1973; Kaplan and Petrowski, 1971), like carbon in lunar 

soils, is thought by some to be derived primarily from a solar wind source (e.g. Epstein and 
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Taylor, 1973).  However, others have measured indigenous lunar carbon in melt inclusions 

inside lunar glasses (0.47 ppm to 5.65 ppm), and calculated lunar mantle carbon 

abundances up to 0.57 ppm (Wetzel et al., 2014).   

Like carbon, nitrogen has been extensively studied in lunar samples, although the low 

abundances measured in lunar rocks (typically less than 1 ppm of indigenous nitrogen 

(Becker et al., 1976; Des Marais, 1978, 1983; Mathew and Marti, 2001; Müller, 1974)) 

have often been below the detection limits of the instruments used, making the 

measurement of isotopic composition impossible (e.g. Kaplan et al., 1976).  Nevertheless, 

a small number of studies have succeeded in measuring nitrogen thought to be indigenous 

to the Moon (e.g. Becker et al., 1976; Kerridge et al., 1991; Mathew and Marti, 2001; 

Murty and Goswami, 1992), deriving δ
15

N values (parts-per-thousand deviation from the 

terrestrial air (AIR) standard) of between +10 ‰ and +16.9 ± 3.4 ‰.  A preliminary study 

involving the crushing of mare basalts obtained a wider range of δ
15

N values, from -0.25 

‰ to +22.40 ‰ (Barry et al., 2013). 

By contrast, nitrogen in lunar soils is much more abundant than in lunar rocks, and so has 

been well documented; all lunar soils analysed by stepped heating techniques display a 

characteristic ‘V-shaped’ pattern of varying isotopic composition with temperature 

(Assonov et al., 2002; Becker and Clayton, 1975; Becker et al., 1976; Brilliant et al., 1994; 

Kerridge, 1993; Thiemens and Clayton, 1980) that was thought to represent either a secular 

variation in the composition of the solar wind over time (Becker and Clayton, 1975; 

Clayton and Thiemens, 1980; Kerridge, 1975), or, more recently, a mixing of solar and 

non-solar nitrogen components delivered to the lunar surface (e.g. Assonov et al., 2002; 

Wieler et al., 1999).  In light of firm measurements of the isotopic composition of the solar 

wind from the Genesis mission (δ
15

N = -407 ± 7 ‰ (Marty et al., 2011)), it has most 
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recently been suggested that the majority of nitrogen in lunar soils is derived from a non-

solar source, enriched in 
15

N, and most likely contributed by interplanetary dust particles 

(IDPs) or by CR chondrites (Füri et al., 2012). 

Studies of noble gases in lunar samples have been used to derive cosmic-ray exposure ages 

for samples (e.g. Signer et al., 1977), correlating abundances of cosmogenic isotopes such 

as 
21

Necosm with the amount of time a sample has spent at or close to the lunar surface, 

whilst measurements of crystallisation ages have relied on Ar-Ar dating techniques (e.g. 

Stettler et al., 1973).  The isotopic composition of the solar wind has also been measured 

using lunar soil noble gases (e.g. Heber et al., 2003), and noble gas analyses, when 

conducted in conjunction with other volatile measurements in the same sample, have 

helped to constrain the origins and proportions of different sources of volatiles being 

delivered to the Moon (e.g. Füri et al., 2012; Hashizume et al., 2000, 2002; Murty and 

Goswami, 1992; Ozima et al., 2005; Wieler et al., 1999).     

In addition to these sample studies which chart the long-term interest of the scientific 

community in the field of lunar volatiles, within the last decade/fifteen years, a renewed 

effort to characterise the volatile inventory of the Moon through sample analysis was 

spurred on by a number of ground-breaking measurements of water (as water ice, hydroxyl 

ions, or as molecular hydrogen) all over the lunar surface by orbiting spacecraft and fly-by 

missions such as Clementine, Lunar Prospector, Cassini, Deep Impact, Chandrayaan-1, 

LRO (Lunar Reconnaissance Orbiter), and LCROSS (Lunar Crater Observation and 

Sensing Satellite) (e.g. Clark, 2009; Colaprete et al., 2010; Feldman et al., 1998; 

Mitrofanov et al., 2010; Nozette et al., 1996; Pieters et al., 2009; Sunshine et al., 2009;).  In 

addition, the LCROSS experiment, through its UV spectrometer, observed light 

hydrocarbons, carbon dioxide, and sulphur-bearing species within the ejecta plume created 
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by the impact of a spent rocket section with the regolith inside the south pole crater 

‘Cabeus’.  The estimated water ice content of this crater was calculated to be 5.6 ± 2.9 % 

by mass (Colaprete et al., 2010).  Since then, new analyses of returned samples (lunar 

glasses and apatite crystals in lunar rocks) have suggested initial magma volatile contents 

(mainly H, reported as either OH or H2O) many times higher than previously reported 

(e.g., Anand et al., 2014; Füri et al., 2014; McCubbin et al., 2010; Saal et al., 2008; Tartèse 

et al., 2013), some with terrestrial-like volatile abundances (e.g., Barnes et al., 2014; Hauri 

et al., 2011).   

In light of these new data for hydrogen, and given the advances in analytical techniques 

and understanding made in the decades since the first analyses of other light element 

volatiles (C, N) and noble gases (He, Ne, Ar) in returned lunar samples, it seems timely to 

reassess the volatile inventory of the Moon in respect to these particular volatiles, to better 

constrain their abundances, distribution, and source(s).   

1.7: Research Aims and Objectives 

This original research has several foci, falling into three main categories: 

1. Volatiles in the lunar interior 

2. Volatiles produced in situ at/on the Moon 

3. Volatiles delivered to the lunar surface 

For each of these three categories of lunar volatiles, this work aims to answer the following 

broad questions: 

 In what abundance are volatiles (C, N, He, Ne, Ar) present? 

 How are these volatiles distributed? 

 From which source(s) are these volatiles derived? 
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and more specifically: 

 Can indigenous nitrogen from the lunar interior be identified, and if so, what is its 

isotopic composition? 

 Can cosmogenic isotope production rates be calculated from the results of this 

work, and if so, can exposure ages for as yet undated samples be suggested? 

 Can measurements of trapped nitrogen and implanted solar wind noble gases in 

lunar soils be used to deconvolute the much-debated sources of nitrogen at the 

lunar surface? 

 How chemically similar are the terrestrial and lunar mantles, and what does this 

reveal about the starting material from which the Earth-Moon system was formed?   

To answer these fundamental research questions, the following objectives will be sought: 

 Analyse a wide range of both mare basalt and lunar soil samples, including (where 

possible) several from each Apollo mission, to fully explore the distribution of 

volatiles across the different regions of the Moon represented by the Apollo sample 

collection 

 Utilise stepped combustion techniques that permit the separation by release 

temperature of different volatile components within lunar samples 

 Collect abundance and isotopic data for C, N, He, Ne, and Ar simultaneously from 

the same aliquot of sample material to permit comparisons and cross-checking 

between different volatile systems and thus aid data interpretation 

 Where necessary, take into account the effects of any terrestrial contamination, 

mass fractionation in the mass spectrometer, and terrestrial system blanks so that 

true lunar abundances and isotopic data are revealed. 
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2.1: Samples 

2.1.1: Mare Basalts 

A suite of fifteen Apollo mare basalts (powders which were previously prepared: see 

Section 2.2.2.1) were chosen for stepped combustion analyses, representing five of the six 

Apollo landing sites, a range of crystallisation ages, cosmic ray exposure (CRE) ages, and 

chemical compositions.  In addition, a fresh chip of one mare basalts (12064) was 

investigated for the effects of crushing on trapped noble gas inventories.  These chips were 

left uncrushed, and were prepared and analysed using the same protocols as the powdered 

samples (described in detail in Section 2.2.2.2). 

Some samples were analysed multiple times, with time intervals between analyses varying 

from weeks to months.  This was done to monitor data reproducibility, ensuring that results 

were not anomalous and not affected in any way by other (non-lunar) samples run 

immediately before each batch of lunar material and associated ‘blank’ analysis runs. 
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Apollo 

Mission 

Sample 

Number 

Sample 

Weight(s) 

Crystallisation 

Age (Ga) 

CRE Age 

(Ma) 

Sample 

Description 
 

     

Apollo 

11 
10017,342 4.670 mg 3.575 ± 0.215

i
 480 ± 25

d
 

High Ti, low Al, high K 

ilmenite basalt (Type A)
l
 

Apollo 

11 
10050,169 5.277 mg 3.75 ± 0.03

h
 480

j
 

High Ti, low Al, low K, 

ilmenite basalt
l
 

Apollo 

11 
10057,285 4.240 mg 3.63 ± 0.02

u
 54.2

f
 

High Ti, low Al, high K, 

ilmenite basalt (Type A)
l
 

Apollo 

11 
10072,173 6.222 mg 3.64 ± 0.05

v
 240

c
 

High Ti, low Al, high K, 

ilmenite basalt (Type A)
l
 

 
     

Apollo 

12 
12016,37 4.895 mg Not known Not known 

Low Ti, low Al, low K, 

ilmenite basalt
l
 

Apollo 

12 
12040,206 4.656 mg 3.21 ± 0.1

b
 285 ± 50

a
 

Low Ti, low Al, low K, 

olivine basalt
l
 

Apollo 

12 
12047,34 5.146 mg 3.316 ± 0.074

k
 Not known 

Low Ti, low Al, low K, 

ilmenite basalt
l
 

Apollo 

12 
12064,138 

5.528 mg; 

6.357 mg 
3.18 ± 0.01

n
 

190 – 220
m
; 

255
n
 

Low Ti, low Al, low K, 

ilmenite basalt
l
 

 
     

Apollo 

14 
14053,260 5.482 mg 3.94 ± 0.04

x
 21 ± 5

p
 

Low Ti, high Al, low K, 

(Group C)
l
 

 
     

Apollo 

15 
15386,54 5.129 mg 3.94 ± 0.01

t
 235 ± 5

x
 * KREEP basalt

l
 

Apollo 

15 
15555,982 4.662 mg 3.32 ± 0.06

y
 81

q
 

Low Ti, low Al, low K, 

olivine basalt
l
 

 
     

Apollo 

17 
70017,543 4.252 mg 3.68 ± 0.18

s
 220 ± 20

w
 

High Ti, low Al, low K, 

ilmenite basalt
l
 

Apollo 

17 
70035,194 5.330 mg 3.82 ± 0.06

g
 95 – 100

x
 

High Ti, low Al, low K, 

(unclassified basalt)
l
 

Apollo 

17 
74275,323 5.143 mg 3.85 ± 0.08

r
 32.2 ± 1.4

e
 

High Ti, low Al, low K, 

ilmenite basalt (Type C)
l
 

Apollo 

17 
75055,120 5.426 mg 3.772 ± 0.009

z
 95

o
 

High Ti, low Al, low K, 

ilmenite basalt (Type A)
l
 

 

2.1.1.1: Powdered Samples 

Table 2.1: Summary of powdered lunar basalt samples analysed in this study, including 

crystallisation and CRE ages, along with brief sample descriptions, from previous studies. 

*This is the age of 15382, a related KREEP basalt (no CRE age data exist for15386 itself). 

Crystallisation ages, CRE ages, and sample descriptions taken from: 
a
Burnett et al., 1975; 

b
Compston et al, 1971; 

c
Eberhardt et al., 1970; 

d
Eberhardt et al., 1974, 

e
Eugster et al., 

1977; 
f
Eugster et al., 1984; 

g
Evensen et al., 1973; 

h
Geiss et al., 1977; 

i
Gopalan et al., 1970; 

j
Guggisberg et al., 1979; 

k
Hallis, 2010; 

l
Hallis et al., 2010; 

m
Hintenberger et al., 1971; 

n
Horn et al., 1975; 

o
Huneke et al., 1973; 

p
Husain et al., 1972; 

q
Marti and Lightner, 1971; 

r
Murthy and Coscio, 1977; 

s
Nyquist et al., 1974; 

t
Nyquist et al., 1975; 

u
Papanastassiou et 

al., 1970; 
v
Papanastassiou et al., 1977; 

w
Phinney et al., 1975; 

x
Stettler et al., 1973; 

y
Wasserburg and Papanastassiou, 1971; 

z
Tartèse et al., 2013. 
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2.1.1.2: Unpowdered Samples (Chips) 

 

 

 

 

 

Table 2.2: Summary of unpowdered lunar basalt samples analysed in this study 

(crystallisation ages, CRE ages, and sample descriptions taken from Table 2.1). 

 

2.1.2: Soils 

A number of Apollo lunar soils were also chosen for analysis, and were selected to 

represent a range of Apollo landing and sample collection sites, different soil maturities, 

and degrees of shielding from extra-lunar processes (i.e. soil sample depth, distance from 

Lunar Modules (LMs), protected locations underneath boulders etc.).  As with the mare 

basalt samples listed above (Table 2.1), some soil samples were analysed multiple times, 

using slightly different sample masses (to guard against any potential effect from sample 

heterogeneity), and heating temperature steps (to provide higher resolution data for 

temperature ranges of interest in follow-up analyses). 

 

 

 

 

 

 

Table 2.3: Summary of lunar soil samples analysed in this study. 

 

Apollo 

Mission 

Sample 

Number 

Sample 

Weight(s) 

Crystallisation 

Age (Ga) 

CRE Age 

(Ma) 

Sample 

Description 
 

     

Apollo 

12 
12064,140 5.725 mg 3.18 ± 0.01 

190 - 220 Ma; 

255 Ma 

Low Ti, low 

Al, low K, 

ilmenite basalt 
 

     

 

Apollo 

Mission 

Sample 

Number 

Sample 

Weight(s) 

Maturity 

(Is/FeO) 
Sample Description 

 
    

Apollo 

12 
12070,908 5.211 mg 47 

Sub-mature contingency soil sample, 

collected in front of the Lunar Module 

Apollo 

14 
14141,181 7.637 mg 5.7 One of the most immature soil samples 

Apollo 

15 
15040,3 5.662 mg 94 Surface soil from top of trench 

Apollo 

16 
69921,35 5.377 mg 90 Shaded soil collected near a boulder 

Apollo 

17 
72501,32 4.710 mg 81 Reference soil 
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2.2: Methods 

2.2.1: Introduction to Stepped Heating Techniques 

Heat extraction techniques have been applied to the study of lunar volatiles over the course 

of the last four decades, from the first return of lunar samples by Apollo 11 and continuing, 

with periodic improvements and refinements of technique, to the present day.   

There are several different forms of this technique that have been used in conjunction with 

both crystalline rock and soil (bulk and separated fraction) samples; these are described 

below.  However, all are based on the same basic principle; a sample is heated 

incrementally, and the volatiles liberated from the sample material as gases at each 

temperature step are then transferred to a mass spectrometer for isotopic analysis (e.g. 

Epstein and Taylor, 1970; Füri et al., 2012; Norris et al., 1983). 

Samples can be heated in a number of ways.  The most widely-applied method utilises a 

furnace, although there are some variations in furnace design (e.g. Assonov et al., 2002; 

Burnett et al., 1975; Epstein and Taylor, 1970, 1971, 1972, 1973, 1974, 1975; Friedman et 

al., 1970; Kaplan et al., 1970; Merlivat et al., 1974).  However, it is also possible to use 

infrared CO2 lasers to heat samples in order to extract volatiles from small samples, such as 

lunar volcanic glasses and lunar soil grains (e.g. Hashizume and Marty, 2004; Wieler et al., 

1999). 

The conditions under which a sample is heated are important variables, particularly for 

carbon analyses, with two main variations of the stepped heating technique possible: 

pyrolysis or combustion.  Pyrolysis involves the sample being heated under vacuum 

conditions, without the presence of any oxidising agent (e.g. Epstein and Taylor, 1974; 

Simoneit et al., 1973).  Thus, carbon-bearing volatiles released from the sample are 
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measured in the mass spectrometer as CO, CO2, and CH4 (DesMarais et al., 1973; 

Pillinger, 1979), i.e. preserving original speciation. 

Combustion requires the sample to be heated in the presence of oxygen, causing the 

combustion of all released C-bearing species to CO2 (e.g. Kerridge et al., 1977; Norris et 

al., 1983).  In combustion analyses, all other volatiles (apart from carbon) are released by 

pyrolysis; only C compounds are combusted. 

Previous lunar studies making use of heat extraction techniques have often employed a 

mixture of combustion and pyrolysis techniques, depending on the importance of 

preserving original speciation to each study.  In several studies, the first, low temperature 

step is a combustion step, included to remove terrestrial organic contaminants.  Subsequent 

steps then use pyrolysis to release volatiles (e.g. Mathew and Marti, 2001), although 

Friedman et al. (1970) include one combustion step at 950 °C instead and Becker (1980) at 

850 °C, after volatile release by pyrolysis has occurred.  However, since it has been shown 

that isotopic values collected for the same samples using both pyrolysis and combustion 

methods separately give similar results (Epstein and Taylor, 1971), isotopic data collected 

using these different forms of the technique can be directly compared. 

Although the chosen heating method does not significantly impact the final measured 

isotopic composition of released volatiles, the type of heating regime chosen for different 

analyses can have an effect. The number and temperature of heating steps chosen for 

analyses vary between different studies, and may be pre-determined by sample volatile 

yields and the detection limits of the instrumentation used, or by the release temperatures 

of components of interest (e.g. Burnett et al., 1975; Epstein and Taylor, 1973). An example 

of this is the temperature chosen for the first measurement step; below ~ 500 to 600 °C, 

releases are dominated by terrestrial contamination, and so data from temperatures lower 
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than this step are often discarded, if collected at all (e.g. Norris et al., 1983; Thiemens and 

Clayton, 1980).  Samples can also be heated directly to a final high temperature (e.g. 

Moore et al., 1970; Smith et al., 1973), with the measured volatile abundances and isotopic 

values representing a mixture of all of the volatile components released up to the final 

temperature. 

Such stepped (sometimes known as ‘stepwise’) heating procedures are similar to the 

thermal gas analyses carried out by Gibson et al. in the 1970s (Gibson and Johnson, 1971; 

Gibson and Moore, 1972; Gibson and Moore, 1973), although in these analyses, a ramped 

heating regime was chosen, not stepped heating.  Again coupled with a mass spectrometer 

to record the volatile species released, samples were heated at a rate of either 4 °C or 6 °C 

per minute, giving ‘smooth’ volatile release profiles across the whole temperature range up 

to 1400 °C.  However, in these studies, no isotopic data was collected alongside abundance 

measurements. 

Ultimately, whilst the use of different heating regimes between studies allows for the 

application of the same broad technique to investigate both a whole range of volatile 

species present in varying abundances, with equipment of different sensitivities, 

comparison of data collected by different groups can be problematic. 

2.2.2: Sample Preparation 

2.2.2.1: Sample Powdering Protocols 

To produce homogenised bulk powders for multiple analyses, mare basalt chips of 

approximately 250 mg were powdered using an agate (hydrated SiO2) mortar and pestle.  

This was carried out in a Class 1000 clean room (< 1000 particles per cm
3
 of air) at The 

Open University, conditions which keep any possible terrestrial contamination to a 
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minimum.  The agate mortar and pestle used had previously only been used to crush 

Martian meteorites, and was cleaned before each use with lunar samples using the 

following protocol: 

 Firstly, the mortar and pestle was wiped using acetone and heavy duty synthetic 

wipes (packed in a clean environment), to remove any visible traces of previously-

crushed samples. 

 The agate surfaces were then ground for five minutes using pure quartz sand and 

deionised water to remove any sample material trapped in small imperfections in 

the agate grinding surfaces, before the quartz sand was washed away using more 

deionised water. 

 The mortar and pestle was again cleaned with acetone and synthetic wipes, 

followed by further cleaning with an isopropanol (IPA) solution (70 % IPA mixed 

with 30 % deionised water). 

 Pure N2 was used to visibly dry up any remaining IPA solution on the agate 

surface, before the mortar and pestle was wrapped in pure aluminium foil and 

placed in an oven for around 20 minutes at 150 ºC to bake out. 

 Upon removal from the oven, the foil-wrapped mortar and pestle was allowed to 

cool under ambient clean room conditions for another 20 minutes. 

 Following standard clean room protocol, the sample preparation work area was also 

wiped down with IPA solution and covered with a layer of fresh pure aluminium 

foil before samples were crushed. 

 This procedure was repeated before each individual mare basalt chip was powdered 

to ensure no cross-contamination between lunar samples. 
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After the agate mortar and pestle had been cleaned in this way, lunar basalt chips were 

powdered using the following protocol: 

 The clean room weighing plate was covered with a piece of pure aluminium foil 

and zeroed using the ‘tare’ function. 

 The entire sample chip was placed on top of the foil, and weighed to an accuracy of 

0.1 g, before being crushed in the cleaned mortar and pestle for between five and 

fifteen minutes, until a chalky texture was reached.  Small fragments were 

prevented from jumping out of the mortar by a pure aluminium foil wall wrapped 

around the circumference of the mortar. 

 New air-tight sample vials were cleaned with alcohol and baked dry in an oven for 

several hours.  Cleaned vials were then weighed before the crushed lunar sample 

was transferred into the vial via a piece of folded (v-shaped) aluminium foil.  The 

filled vials were then re-weighed and the crushed sample masses compared with the 

pre-crushed masses to record the loss of material (if any) during the crushing and 

powder transfer processes. 

 The sealed vials were then labelled and stored securely in the clean room suite until 

preparation for analysis. 

 All wipes were used just once before being replaced, and nitrile gloves and foil 

bench coverings were replaced for each new sample preparation. 

 Oxygen isotope and bulk rock analyses were subsequently carried out on these 

homogenised powders (see Hallis et al., 2010; 2014), before the first analyses for this 

project were conducted in April 2013. 
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2.2.2.2: Sample Preparation for Finesse Analyses 

For the purposes of this study, lunar samples (both mare basalts and soils) were prepared in 

small batches, typically consisting of three or four samples each time, immediately prior to 

stepped heating analyses using the Finesse mass spectrometer system (which is described 

in detail in section 2.2.2.3).  This ensured that samples were kept under controlled, air-tight 

conditions in the clean room suite for as long as possible, whilst also enabling analyses to 

continue without interruption, one sample after another, thus maximising available 

machine time. 

All samples (mare basalt powders, chips, and lunar soils) were prepared for analysis in the 

same manner, being weighed out and encased in cleaned platinum foil buckets; the Pt foil 

cleaning procedure is described below: 

 Pt foil is cleaned by rolling up small sheets of 25 µm-thick foil and inserting the 

rolled foil into a quartz tube, along with a foil slug containing CuO. 

 This quartz tube is then pumped down to high vacuum (~ 10
-7

 mbar) using an 

external valve linked to one of the Finesse instrument backline turbo pumps.  As 

the quartz tube/Pt foil is pumped down, it is heated externally using a 

hydrogen/oxygen torch to start the process of oxidising any contaminants on the Pt 

foil; any oxidised contaminants are therefore pumped out of the quartz tube at the 

same time, removing them from the Pt foil. 

 After around 30 minutes, the quartz tube, still under vacuum, is sealed and removed 

from the vacuum line system by torching off the end of the tube containing the Pt 

foil/CuO slug. 

 The sealed quartz tube is then placed in an oven at 900 ºC overnight (at least 12 

hours), before being taken out to cool.  This sealed tube containing the now-cleaned 
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Pt foil is then only opened inside a Class 100 clean room when it is needed for the 

preparation of new samples, minimising any possible re-contamination of the Pt 

foil before use. 

Samples are wrapped in Pt foil for several reasons; the foil helps to hold the small chips or 

fine powder samples together, ensuring that the entire sample mass reaches the furnace at 

the same time, and Pt is used because it acts as a catalyst during the combustion of CH4 

and CO to CO2, and also catalyses the decomposition of nitrous oxides (NOx; a mixture of 

NO and NO2) to N2 (Boyd et al., 1988).  This is important, since measurement of N2 in the 

mass spectrometer is masked by the presence of CO, both having molecular masses of 28, 

and the presence of nitrous oxides can cause mass dependant isotopic fractionation to 

occur between the nitrous oxides and molecular nitrogen, making the isotopic signature of 

any nitrogen released from the samples impossible to determine (Boyd et al., 1988). 

Using the cleaned Pt foil, samples were then prepared inside a Class 100 clean room in the 

following manner: 

 Using approximately 8 mm x 8 mm squares of clean Pt foil, sample buckets were 

made by folding the Pt foil square in half, and turning over two opposite open 

edges, forming an envelope.  This was gently teased open using tweezers to 

facilitate sample transfer into the bucket. 

 The empty bucket was weighed using a balance sensitive to 0.001 mg, and the 

balance was then zeroed using the ‘tare’ function. 

 Holding the empty bucket upright using tweezers in one hand, the sample material 

was then carefully added either by transfer using a second set of tweezers (in the 

case of mare basalt chips), a small spatula (in the case of lunar soils), or by 
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dragging the bucket through a small pile of powdered sample on a separate sheet of 

pure aluminium foil (for powdered mare basalts). 

 The Pt foil bucket containing the sample was weighed again to check that the added 

sample amount was approximately 5 mg.  If not, sample material was either taken 

out of the bucket, or additional sample material added at this stage. 

 Once around 5 mg of sample was inside the bucket, the remaining open edge of the 

Pt foil bucket was folded over, and using tweezers, the bucket and sample crushed 

down into a sphere of roughly ≤ 2 mm diameter, sealing the sample inside. 

 The crushed bucket was then weighed three more times, with the average mass 

being taken as the final mass to be analysed. 

Prepared samples were wrapped in Al foil and labelled before being taken from the clean 

room suite into the laboratory, ready for analysis. 
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2.2.3: ‘Finesse’ 

Lunar samples (prepared as described in Section 2.2.2) were analysed at the Open 

University, using the custom-built Finesse mass spectrometer system.  

2.2.3.1: Overview of the Finesse instrument 

Figure 2.1: Schematic diagram of the entire ‘Finesse’ triple mass spectrometer instrument. 

Boxes shaded in grey indicate more detailed close-up diagrams later in this chapter. 

 

The ‘Finesse’ mass spectrometric instrument consists of three dedicated static-mode mass 

spectrometers (one for carbon, one for nitrogen and argon, and a quadrupole for helium 

and neon), all linked via high vacuum lines to a common sample inlet, combustion furnace, 

and clean-up section (Fig. 2.1).  Movement of gases around the instrument is controlled by 

automated pneumatic valves, and the vacuum system operates at around 10
-7

 mbar (see 

Abernethy et al., 2013; Mikhail, 2011: Verchovsky et al, 1997; Wright et al., 1988; Wright 

and Pillinger, 1989 for further details).   
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For each temperature step, the isotopes of C, N, He, Ne, and Ar were measured 

sequentially, taking approximately 1.5 hours to complete the cycle for five elements.  

System blanks were monitored between sample analyses by putting an empty clean Pt foil 

bucket through the same stepped combustion procedure used for the lunar samples and 

collecting both abundance and isotopic data.  Typical system blank levels were < 10 ng C 

and < 1 ng of N.  Typical system blanks for 
4
He were < 1 x 10

-7
 cc, for 

20
Ne were < 6.5 x 

10
-10

 cc, and for 
40

Ar and 
36

Ar were < 8 x 10
-9

 cc and < 1.2 x 10
-10

, respectively (Mortimer 

et al., 2015).  Before each batch of Pt foil blank and sample analyses, analyses of reference 

gases were performed, to ensure measurement stability within a single analysis, and to 

monitor any potential drifting of reference gas isotopic compositions over time due to 

previous reference gas bleed extractions which may cause fractionation of the remaining 

reference gas reservoir.  

2.2.3.2: Sample Inlet System 

The Finesse sample inlet consists of a horizontal glass pipe with an external manual double 

seal glass valve (V1) for sample loading at one end, with a second manual double seal 

glass valve (V2) isolating it from a vertical glass pipe, leading down, via a manual gate 

valve, into the quartz pipe inside the combustion furnace (Figure 2.2).    

To load Pt-foil-wrapped samples, V2 is closed tightly, to ensure that the main instrument 

vacuum line is not vented to atmosphere.  V1 is removed, and samples transferred into the 

horizontal glass section using tweezers.  V1 is then replaced and mainline ion vacuum 

pumps are isolated using manual valves before V2 is opened to allow the sample inlet 

chamber to be pumped down from atmosphere using a turbo pump (taking around fifteen 

minutes).  Once most of the atmosphere has been pumped out from the sample inlet 

chamber, manual valves are reopened to allow the sample inlet to pump down to the usual 
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instrument high vacuum baseline (around 10
-8

 mbar) using the Finesse backline pumps.  

This ensures that the main sample vacuum line is not contaminated by atmospheric gases, 

and protects the sensitive ion pumps.  This second pump-down again takes approximately 

fifteen minutes to reach high vacuum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Schematic diagram of the Finesse sample inlet section and furnace. N.B. Not to 

scale.  Not shown are the combustion CuO furnace, nor the outlet valve to the analysis 

sections of the instrument. Adapted from Mikhail (2011). 
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When samples have been loaded, and the sample inlet has been fully pumped back down to 

high vacuum, V2 is opened just wide enough to permit the through passage of the crushed 

sample sphere, and the manual gate valve in the vertical glass section is opened (to a 

diameter of 5 mm, which is the internal diameter of the quartz combustion tube).  The 

sample is dragged along the horizontal inlet section, using an internal metal bar which is 

moved along by a manual external magnet, until the sample drops down through V2 and 

the open gate valve, into the combustion furnace.  The pressure reading on the main 

vacuum line increases shortly after a successful sample drop, indicating that the sample is 

now in the furnace, and that the manual gate valve can be safely closed, thereby sealing off 

the main body of the instrument, under high vacuum, from the sample inlet section during 

analyses.    

2.2.3.3: Combustion and Volatile Separation Procedure 

Samples are combusted in a double-walled quartz-ceramic furnace for 30 minutes at each 

temperature step.  Oxygen for combustion is supplied from an adjacent furnace containing 

CuO, which is heated to 930 ºC to liberate oxygen.  After combustion, the CuO furnace is 

allowed to cool to 650 ºC for the resorption of any excess O2 back onto the CuO (this 

process taking fifteen minutes), and continues to cool back down to its idling temperature 

of 350 ºC until the next combustion cycle begins, before transfer of the gases produced to 

the clean-up section (Fig. 2.3).   

Gas fractions are cryogenically separated using liquid nitrogen cooled traps, some of which 

contain molecular sieves.  Liquid nitrogen is automatically pumped (using rotary pumps) 

to the relevant traps at the required times via plastic pipes from a central 50 L flask. 

Carbon is trapped down by freezing CO2 onto a liquid nitrogen-cooled cryotrap (below -

160 ºC), before N2 and Ar are collected on the molecular sieve (also cooled by liquid 
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nitrogen to < -190 ºC).  After this has occurred, the entire clean-up section of the main 

vacuum line is isolated using V8 whilst the combustion furnace is pumped using the 

backline vacuum system, and V11, between the cryotrap and the molecular sieve, is also 

closed.  He and Ne, which are not cryogenically trapped, are also held inside the vacuum 

line of the clean-up section during combustion furnace pumping.  Once pumped, the 

furnace is isolated from the rest of the instrument vacuum lines by closure of a valve; 

combustion then commences at the next temperature step while the released volatiles from 

the previous combustion step are analysed. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Schematic diagram of the Finesse volatile separation and clean-up section. N.B. 

Not to scale.  All valves shown are controlled by an automated pneumatic system.  

Adapted from Mikhail (2011). 
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For the initial batch of 5 powdered mare basalt samples, only thirteen combustion steps 

were used, in 100 °C steps from 200 ºC to 1400 °C.  However, for later mare basalt 

analyses (the remaining powdered basalts plus re-runs of some samples analysed in the 

initial batch), based on the results of the first several samples (volatile yields and 

temperature ranges of interest), a higher-resolution combustion regime was chosen; a total 

of seventeen combustion steps were employed to acquire higher-resolution data across the 

mid-range temperatures, heating in 100 °C steps from 200 - 600 °C, then in 50 °C steps 

from 650 - 950 °C, followed by 100 °C steps from 1000 - 1400 °C. 

The first lunar soil analysis was conducted using the same thirteen combustion steps as the 

initial batch of powdered mare basalts, with subsequent soil analyses using fifteen 

temperature steps (in 100 ºC steps from 200 – 700 ºC, 50 ºC steps from 750 – 850 ºC, and 

100 ºC steps from 900 – 1400 ºC). 

2.2.3.4: He and Ne analysis 

He and Ne are measured in the same procedure using the quadrupole mass spectrometer.  

With CO2 still frozen down onto the cryotrap, and N2 and Ar condensed onto the molecular 

sieve, the clean-up section is opened up to the main vacuum line, and an aliquot of the non-

condensable He and Ne is taken and held in a short section of pipe between two valves.  At 

the same time, a ‘zero’ measurement is made on the quadrupole to register the base levels 

of He and Ne isotopes in the mass spectrometer.  When this is complete, the aliquot of He 

and Ne is admitted into the quadrupole, the mass spectrometer is isolated from both the 

pumps and the rest of the sample main vacuum line by the automated closure of the 

relevant valves, and the He and Ne measurement is made.  He and Ne abundances are 

determined by calibration of the quadrupole peak intensities at masses 4, 20, 21, and 22. 
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Because of the relatively low abundances of Ne released from lunar samples, mass 

interferences in a quadrupole mass spectrometer can be significant; in the case of Ne, 

contributions from CO2
++

 and 
40

Ar
++

 can affect measurement of both 
22

Ne and 
20

Ne 

respectively.  In order to reduce these contributions, a low ionisation voltage of ~40 V was 

used in the quadrupole ion source. Also, Ar present in the system was cooled down on the 

molecular sieves, and an adjacent Ti-Al getter (for Ne purification) was open to the mass 

spectrometer chamber during Ne measurements.  Using this instrument, it has been 

calculated that mass interference from doubly charged CO2 during Ne measurements only 

becomes noticeable when the sample 44/22 ratio is ≥ 100 (Mortimer et al., 2015).   

2.2.3.5: Carbon analysis  

After He and Ne aliquots have been taken, and with V11, separating the cryotrap 

(containing CO2) and the molecular sieve (holding N2 and Ar), still closed, the cryotrap is 

heated to around -75 ºC (see Figure 2.3).  At the same time, a liquid nitrogen cooled cold 

finger adjacent to a calibrated MKS Baratron
TM

 capacitance manometer is cooled to -160 

ºC.  As the cryotrap warms up, it releases the trapped CO2, which is then retrapped down 

onto the Baratron cold finger.  Whilst still at temperatures below 0 ºC, the cryotrap retains 

any H2O present in the system, separating it from CO2.  The transfer of CO2 to the 

Baratron cold finger is checked by monitoring the pressure recorded in the Baratron itself; 

as CO2 is released from the cryotrap, Baratron pressure increases, before decreasing 

rapidly as the CO2 is retrapped down onto the cold finger.  When all of the CO2 has been 

transferred, any non-condensable volatiles in the Baratron section are pumped away.  It is 

then isolated from the rest of the main vacuum line and the cold finger is heated to release 

the CO2 into the Baratron for abundance measurements (calculated from the pressure of 

CO2 inside the calibrated Baratron, accurate to ± 1 %, and recorded as ng of C).   
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After the yield of C has been measured, the Baratron section is reopened to the rest of the 

machine and an aliquot of the sample CO2 is taken by expanding the gas into a section of 

the vacuum line between two valves, ready for analysis in the C mass spectrometer.  This 

aliquot is typically around 1 ng of CO2 (Mikhail, 2011), which provides enough sample gas 

for an accurate isotopic measurement without flooding the mass spectrometer by admitting 

the total released C yield.  

A ‘zero’ measurement is carried out in the C mass spectrometer, to measure the instrument 

background present during sample analysis.  Then, the aliquot of sample gas is expanded 

into the mass spectrometer, and masses 44, 45, and 46 are measured, from which are 

derived 45/44 and 46/44 isotope ratios.  After the measurement has been taken, the mass 

spectrometer is cleared of sample gas by pumping out with an ion pump attached to the 

opposite side of the analysis chamber from the chamber inlet.  An aliquot of reference CO2 

gas is then taken automatically, replicating the sample CO2 aliquot size to within 5 % 

(Mikhail, 2011); if the reference aliquot is not within 5 % of the original sample aliquot, a 

second reference aliquot is taken later. 

After measurement of the reference aliquot, as the reference gas is being pumped away 

from the mass spectrometer chamber, the 
13

C/
12

C ratio of the sample C is calculated from 

the previously measured sample and reference aliquot measurements, and reported using 

the delta notation (δ
13

C), as a parts-per-thousand deviation (‰) from the international 

Vienna Pee Dee Belemnite (VPDB) C standard (where 
13

C/
12

C = 0.0112372). 

2.2.3.6: Nitrogen clean-up and analysis 

With V11 in the clean-up section still closed, the molecular sieve is allowed to heat up to 

250 ºC, releasing N2 and Ar.  At the same time, a second clean-up furnace, next to the 

molecular sieve, containing CuO is heated to 850 ºC to release oxygen into the clean-up 
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section.  V11 is opened, and this liberated oxygen reacts with any CO (mass 28) present in 

the sample N2 (also mass 28), forming CO2 (mass 44); this then no longer poses the threat 

of mass interference during N2 abundance and isotopic measurements. After oxidation of 

CO to CO2, the clean-up CuO is cooled back down to 650 ºC (in order to resorb any excess 

oxygen), then down to 450 ºC (below the temperature at which the CuO powder releases 

oxygen) using an external fan positioned under the clean-up CuO furnace. 

Following this, an aliquot of the purified N2 and Ar is taken and delivered to a Ti-Al getter; 

this purifies the Ar, removing N2, ready for Ar abundance and isotopic analysis.  During Ar 

purification on the getter, with the cryotrap cooled to -160 ºC to minimise background CO2 

levels, a second aliquot of sample N2 (around 5 % of the total N2 release) is taken and 

delivered to the quadrupole mass spectrometer, where a rough nitrogen abundance 

measurement is taken after a ‘zero’ measurement, using the intensity of mass 14.  Mass 14 

is used because it has a low background, and its measurement is not complicated by the 

presence of any CO at mass 28 (Mikhail, 2011).   Total N2 abundance is measured using 

another aliquot of sample nitrogen, on the N mass spectrometer; this aliquot is further 

purified by storing it in a section of vacuum line immediately before the N mass 

spectrometer inlet, where a liquid nitrogen cooled inlet cold finger traps any condensable 

gases at around -160 ºC.  As this is happening, the N mass spectrometer performs a ‘zero’ 

measurement, after which the sample N2 is admitted into the mass spectrometer chamber 

for analysis.  Nitrogen abundance is measured via calibration of the mass spectrometer ion 

current at mass 28.  Masses 28, 29, and 30 are measured, and 28/29 and 30/29 ratios are 

calculated for the sample gas, after which, the N mass spectrometer is pumped using an ion 

pump before a reference gas (terrestrial air) aliquot is measured. The aliquot of reference 

air is taken in the same manner as described above for C; an aliquot of approximately the 

same size as the sample N aliquot is taken automatically and allowed to expand into the 
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section of vacuum line immediately in front of the N mass spectrometer inlet.  Once the N 

reference aliquot has equilibrated, this section of vacuum line is isolated, and the inlet cold 

finger cooled down to -160 ºC (trapping any condensable gases present in the reference 

gas).  When this has occurred, and the N mass spectrometer has been fully pumped so that 

no sample N remains, the reference aliquot is admitted for analysis, where isotopes and 

isotopic ratios are measured in the same way as described above for the sample aliquot.  

After N reference analysis, the N mass spectrometer is again emptied using the ion pump, 

and the computer programme automatically calculates the isotopic composition (expressed 

in delta notation as δ
15

N) of the sample gas as a parts-per-thousand (‰) deviation from the 

terrestrial standard (AIR), where 
15

N/
14

N = 0.003676466. 

2.2.3.7: Argon analysis 

Once the Ar aliquot has been purified on the Ti-Al getter to remove N2 (a process which 

takes around ten minutes), the cleaned sample Ar aliquot is transferred to the N mass 

spectrometer inlet section, where it is held whilst the inlet cold finger (at -160 ºC) traps any 

remaining condensable gases.  The sample Ar is then introduced into the N mass 

spectrometer, where an average value from 50 measurements of masses 36, 37, 38, and 40 

is taken.  As with the He, Ne, and N, Ar abundance is measured via calibration of the mass 

spectrometer ion peak intensities at the above masses.  

By the time the individual clean-up and analysis procedures for the various isotopes have 

been performed (usually taking approximately 1.5 hours per combustion step for He, Ne, 

Ar, C, and N), the next combustion step is ready for analysis, and so is transferred from the 

combustion furnace to the cryotrap and molecular sieve in the clean-up section for the 

process to begin again. 
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3.1: Nitrogen 

The stepped combustion results for nitrogen abundance and isotopic composition of the 

fifteen powdered mare basalts analysed are listed in Tables 3.1.2 to 3.1.5 and displayed in 

Figs. 3.1.1(Apollo 11); 3.1.2 (Apollo 12); 3.1.3 (Apollo 14 and 15); and 3.1.4 (Apollo 17).  

All of the samples display the same general release profiles, with 64–94% of the nitrogen 

being released at temperatures below 500-650 ºC, most likely associated with terrestrial 

contamination. Between 4% and 26% of the N present is released at mid-temperature steps 

(between 600 ºC and 900–1000 ºC, the exact temperature range varying slightly between 

samples), and minor amounts (blank level to 18% of the total N present in the samples) are 

released at high temperatures, typically above 1000–1100 ºC, which in all samples are 

associated with a significant enrichment in 
15

N at these temperature steps (see Table 3.1.1). 

 

Table 3.1.1: Percentages of the total sample N released across the low temperature, mid 

temperature, and high temperature ranges (as outlined in the text above), for each mare 

basalt sample analysed (see Tables 3.1.2 to 3.1.5 for released N abundances in ng). 

 

Sample 

Low Temperature Range 

(<500 to 600/650 ºC) 

 (% Released) 

Mid Temperature Range 

(600/650 to 1000 ºC) 

 (% Released) 

High Temperature Range 

(>1000 to 1100 ºC) 

 (% Released) 
    

10017 67 16 17 

10050 74 8 18 

10057 64 24 12 

10072 92 4 4 

12016 94 5 1 

12040 67 26 7 

12047 86 7 7 

12064 89 10 3 

14053 85 12 3 

15386 92 6 2 

15555 89 4 7 

70017 84 7 9 

70035 94 6 0 (At blank level) 

74275 88 6 6 

75055 76 17 7 
    

Min. % Released 64 4 0 (At blank level) 

Max. % Released 94 26 18 
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Figure 3.1.1: Step plots of nitrogen abundances and isotopic compositions in Apollo 11 

samples, where A = 10017, B = 10050, C = 10057, and D = 10072. The bar chart 

represents the amount of nitrogen released at each step (left axis), and the line with dots 

represents the isotopic δ
15

N signature of nitrogen released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.1.2 for data. 
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Figure 3.1.2: Step plots of nitrogen abundances and isotopic compositions in Apollo 12 

samples, where A = 12016, B = 12040, C = 12047, and D = 12064. The bar chart 

represents the amount of nitrogen released at each step (left axis), and the line with dots 

represents the isotopic δ
15

N signature of nitrogen released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.1.3 for data. 
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Figure 3.1.3: Step plots of nitrogen abundances and isotopic compositions in Apollo 14 

and Apollo 15 samples, where A = 14053, B = 15386, and C = 15555. The bar chart 

represents the amount of nitrogen released at each step (left axis), and the line with dots 

represents the isotopic δ
15

N signature of nitrogen released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.1.4 for data. 
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Figure 3.1.4: Step plots of nitrogen abundances and isotopic compositions in Apollo 17 

samples, where A = 70017, B = 70035, C = 74275, and D = 75055. The bar chart 

represents the amount of nitrogen released at each step (left axis), and the line with dots 

represents the isotopic δ
15

N signature of nitrogen released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.1.5 for data. 
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In all of the step plots above, both the nitrogen abundance and isotopic data have been 

corrected for any contributions from the system blank (blank correction methods are 

outlined in the Appendix).  Errors (in pale blue) are not displayed above 1000 ºC since the 

N abundance from the samples is so close to blank levels at these temperature steps; the 

error propagation method used to calculate the blank-corrected uncertainties generates 

extremely large errors that are unsuitable/unrealistic.  Indeed, in some samples (see sample 

74275/graph C in Fig.3.1.4), even at lower temperature steps, the amount of N released is 

so close to the blank level that the isotopic measurement for that step is associated with 

large uncertainties.  However, for all samples where error bars are not visible at steps 

below 1000 ºC, this is because the uncertainties on the isotopic measurements are smaller 

than the symbol size used in the figures. 

Also apparent in the nitrogen step plots above is the release of a high temperature 

component at 1100-1300 ºC in several samples (e.g. 10050, 10057, 74275 and 75055), 

associated with a relative depletion in 
15

N compared to the other high temperature nitrogen 

releases in these same samples.  Both the abundance of this component (up to 5 ng) and its 

isotopic signature indicate that at these temperature steps, the nitrogen being released is not 

of purely cosmogenic origin.  The nature of this somewhat anomalous component will be 

addressed in more detail in Chapter 5. 
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10017 

 

10050 

 

10057 

 

10072 

Temperature  

(°C) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

200 

 

1.36 -7.09 0.66 

 

2.67 7.82 0.32 

 

- - - 

 

5.00 14.44 0.37 

300 

 

3.41 -1.94 0.51 

 

24.91 8.02 0.16 

 

- - - 

 

24.61 16.64 0.32 

400 

 

0.20 -7.98 26.84 

 

16.04 2.92 0.21 

 

4.09 11.34 0.33 

 

7.51 10.81 0.43 

500 

 

† 1.69 60.90 

 

11.99 3.67 0.24 

 

1.12 1.52 0.61 

 

5.00 9.60 0.46 

600 

 

0.16 1.51 36.68 

 

2.81 8.72 0.30 

 

1.50 3.31 0.53 

 

1.53 5.85 0.83 

650 

 

- - - 

 

0.58 -0.82 1.00 

 

0.75 -3.05 0.90 

 

0.93 3.39 1.10 

700 

 

0.48 3.41 5.90 

 

0.57 -0.45 1.00 

 

0.87 -0.24 0.78 

 

0.76 5.02 1.27 

750 

 

- - - 

 

1.06 13.48 0.82 

 

0.83 2.86 0.73 

 

0.66 5.80 1.50 

800 

 

0.53 14.85 10.38 

 

0.84 10.22 1.17 

 

0.44 -6.95 1.70 

 

0.28 12.88 6.21 

850 

 

- - - 

 

0.30 12.80 7.22 

 

0.37 -3.55 1.76 

 

0.11 30.07 53.01 

900 

 

0.17 42.01 29.40 

 

0.13 12.27 30.59 

 

0.30 2.05 1.77 

 

0.26 49.69 18.90 

950 

 

- - - 

 

0.36 21.66 7.43 

 

0.16 17.48 8.77 

 

0.24 89.69 44.67 

1000 

 

0.22 179.08  

 

0.49 54.22  

 

0.12 63.10  

 

0.26 180.52  

1100 

 

0.21 604.83  

 

1.27 191.19  

 

0.23 81.11  

 

0.26 334.84  

1200 

 

0.51 882.24  

 

4.33 94.29  

 

0.77 40.68  

 

0.44 451.38  

1300 

 

0.16 1054.82  

 

5.71 165.17  

 

0.11 136.02  

 

0.37 812.79  

1400 

 

0.02 174.21  

 

1.41 235.26  

 

† 78.79  

 

0.19 581.91  

 

Table 3.1.2: Nitrogen results for Apollo 11 mare basalts.  Note that for 10057, data were not collected below 400 ºC, and for 10017, data was only 

collected in 100 ºC steps (- = not measured, †= blank level). N.B.: High temperature steps containing cosmogenic N have no error reported, since error 

propagation on such small abundances gives unrealistic uncertainties. However, these high temperature isotopic signatures have been used to calculate 

cosmogenic N abundances, and these correlate well with reported exposure ages, suggesting that these isotopic data, although associated with very large 

errors, are fairly reliable. 
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12016 

 

12040 

 

12047 

 

12064 

Temperature  

(°C) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error 

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

200 

 

23.24 21.41 0.33 

 

0.15 -3.29 7.88 

 

9.60 8.34 0.45 

 

10.86 5.98 0.34 

300 

 

26.75 10.91 0.29 

 

5.73 1.03 0.36 

 

20.48 19.53 0.38 

 

15.67 12.77 0.42 

400 

 

11.85 0.29 0.34 

 

3.50 11.26 0.53 

 

8.43 11.18 0.51 

 

6.28 3.28 0.45 

500 

 

9.84 1.51 0.44 

 

0.51 -8.13 3.18 

 

1.53 -2.66 1.30 

 

2.23 3.95 0.63 

600 

 

5.36 7.04 0.38 

 

0.91 -3.66 1.31 

 

2.08 -0.14 0.67 

 

1.75 5.11 0.79 

650 

 

1.16 -0.23 0.94 

 

0.40 -13.41 5.67 

 

0.83 -3.47 1.48 

 

1.11 -6.40 0.91 

700 

 

1.48 -1.61 0.78 

 

0.61 -6.80 2.09 

 

1.09 -11.59 1.28 

 

1.27 -1.80 0.79 

750 

 

1.14 -0.57 1.13 

 

0.97 -5.66 1.34 

 

1.01 -8.78 1.22 

 

1.05 -2.78 0.98 

800 

 

0.54 9.88 2.68 

 

0.52 21.90 4.87 

 

0.44 -4.45 2.70 

 

0.59 3.70 1.62 

850 

 

0.09 14.93 74.81 

 

0.43 49.43 13.64 

 

0.07 -4.32 45.82 

 

0.42 16.13 3.87 

900 

 

† 24.30  

 

† 70.07  

 

0.65 2.33 1.71 

 

† 71.40  

950 

 

† 61.37  

 

0.01 125.81  

 

0.09 1.08 9.52 

 

0.62 135.66  

1000 

 

0.12 131.94  

 

† 120.42  

 

0.01 29.28  

 

0.16 517.78  

1100 

 

0.16 207.55  

 

0.13 458.89  

 

0.35 81.23  

 

0.12 731.58  

1200 

 

0.25 214.75  

 

0.09 456.80  

 

0.36 61.17  

 

0.13 631.58  

1300 

 

0.08 290.60  

 

0.75 429.46  

 

0.84 47.93  

 

0.25 695.70  

1400 

 

† 79.13  

 

† 60.96  

 

1.90 -0.40  

 

0.01 61.77  

Table 3.1.3: Nitrogen results for Apollo 12 mare basalts (- = not measured, †= blank level). N.B.: High temperature steps containing cosmogenic N have 

no error reported, since error propagation on such small abundances gives unrealistic uncertainties. However, these high temperature isotopic signatures 

have been used to calculate cosmogenic N abundances, and these correlate well with reported exposure ages, suggesting that these isotopic data, although 

associated with very large errors, are fairly reliable. 
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14053 

 

15386 

 

15555 

Temperature  

(°C) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N 

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

200 

 

4.48 -9.20 0.71 

 

4.62 4.42 0.37 

 

0.98 -5.72 0.99 

300 

 

10.48 -3.12 0.30 

 

12.27 16.47 0.47 

 

8.82 15.47 0.41 

400 

 

6.82 -1.97 0.45 

 

2.39 9.31 0.95 

 

1.34 26.18 0.97 

500 

 

8.15 0.80 0.36 

 

1.30 9.91 0.90 

 

0.44 -0.34 1.64 

600 

 

2.21 4.50 1.21 

 

1.35 9.62 0.97 

 

0.93 1.05 0.79 

650 

 

- - - 

 

0.56 4.64 1.72 

 

0.75 -0.94 1.02 

700 

 

2.22 7.72 1.21 

 

0.52 5.57 1.95 

 

0.73 2.30 1.02 

750 

 

- - - 

 

0.33 15.37 5.54 

 

0.41 0.64 1.69 

800 

 

1.46 -14.27 1.82 

 

0.10 21.97 58.29 

 

0.39 7.01 2.57 

850 

 

- - - 

 

0.07 44.26 167.43 

 

0.08 1.73 8.27 

900 

 

0.12 4.63 23.91 

 

0.11 73.18 110.96 

 

0.05 -5.30 63.73 

950 

 

- - - 

 

0.10 137.82 251.40 

 

0.04 -1.93 55.21 

1000 

 

0.70 -7.22 3.88 

 

† 387.10  

 

0.04 2.91 37.27 

1100 

 

0.58 41.69  

 

0.10 966.89  

 

0.74 22.07 

 1200 

 

0.43 48.71  

 

0.09 822.51  

 

0.41 52.88 

 1300 

 

0.06 38.56  

 

† 748.88  

 

0.03 306.06 

 1400 

 

0.14 -7.82  

 

† 336.04  

 

† 113.64 

 Table 3.1.4: Nitrogen results for Apollo 14 and Apollo 15 mare basalts.  Note that for 14053, data were only collected in 100 ºC steps (- = not measured, 

†= blank level). N.B.: High temperature steps containing cosmogenic N have no error reported, since error propagation on such small abundances gives 

unrealistic uncertainties. However, these high temperature isotopic signatures have been used to calculate cosmogenic N abundances, and these correlate 

well with reported exposure ages, suggesting that these isotopic data, although associated with very large errors, are fairly reliable. 
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70017 

 

70035 

 

74275 

 

75055 

Temperature  

(°C) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

 

N  

(ng) 

δ
15

N  

(‰) 

Error  

(‰) 

200 

 

4.77 13.79 0.39 

 

4.23 -6.44 1.19 

 

10.73 9.20 0.44 

 

6.15 2.80 0.47 

300 

 

10.12 13.35 0.06 

 

10.49 1.21 0.29 

 

20.94 18.05 0.38 

 

6.72 10.49 0.41 

400 

 

3.25 13.14 0.40 

 

5.94 1.12 0.47 

 

3.41 0.93 0.77 

 

0.39 8.59 11.03 

500 

 

1.37 12.67 0.70 

 

2.64 -0.82 1.04 

 

1.59 1.06 1.20 

 

1.08 3.99 1.07 

600 

 

1.11 12.36 0.88 

 

1.05 15.76 2.49 

 

1.17 -1.76 1.07 

 

0.19 -2.81 9.06 

650 

 

0.54 1.46 1.13 

 

- - - 

 

0.14 -8.01 22.31 

 

0.44 -5.92 2.49 

700 

 

0.60 1.50 1.06 

 

1.58 18.45 1.68 

 

2.02 -0.66 0.71 

 

0.56 -3.81 1.81 

750 

 

0.67 9.92 1.25 

 

- - - 

 

0.19 -0.19 4.45 

 

0.65 -2.83 1.48 

800 

 

0.51 5.32 1.32 

 

1.29 6.51 2.10 

 

0.21 3.00 4.28 

 

0.42 -6.01 2.78 

850 

 

0.30 17.73 4.08 

 

- - - 

 

0.02 13.02 742.47 

 

0.20 1.98 4.01 

900 

 

0.24 25.91 7.55 

 

0.49 6.57 5.21 

 

0.03 -1.29 71.66 

 

0.68 3.67 1.39 

950 

 

0.26 41.54 10.68 

 

- - - 

 

0.03 2.57 42.25 

 

0.21 23.31 14.22 

1000 

 

0.28 62.14 

  

† 53.83 

  

0.01 18.09 

  

0.23 59.21 

 1100 

 

0.45 132.33 

  

† 123.03 

  

0.16 22.13 

  

† 120.93 

 1200 

 

0.44 153.02 

  

† 201.81 

  

0.03 27.87 

  

0.40 116.88 

 1300 

 

0.26 180.50 

  

† 224.46 

  

0.88 39.66 

  

0.49 170.94 

 1400 

 

0.15 239.21 

  

† 319.84 

  

1.44 25.71 

  

0.04 90.83 

 Table 3.1.5: Nitrogen results for Apollo 17 mare basalts.  Note that for 70035, data were only collected in 100 ºC steps (- = not measured, †= blank level). 

N.B.: High temperature steps containing cosmogenic N have no error reported, since error propagation on such small abundances gives unrealistic 

uncertainties. However, these high temperature isotopic signatures have been used to calculate cosmogenic N abundances, and these correlate well with 

reported exposure ages, suggesting that these isotopic data, although associated with very large errors, are fairly reliable.
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3.2: Carbon 

The stepped combustion results for carbon abundance and isotopic composition of the six 

mare basalts are listed in Tables 3.2.2 to 3.2.5 and displayed in Figs. 3.2.1(Apollo 11); 

3.2.2 (Apollo 12); 3.2.3 (Apollo 14 and 15); and 3.2.4 (Apollo 17). In each sample, the 

majority (51–98%) of the carbon present is released below 600 ºC, most likely associated 

with terrestrial contaminants, with variable δ13
C isotopic signatures. Between 1% and 10% 

of the carbon present is released from the samples at mid-temperature steps (typically 

between 650 ºC and 900–1000 ºC), apart from sample 15555, which releases 35% of the 

total carbon present in the sample between 650 ºC and 950 ºC. In the high temperature 

combustion steps (typically above 900–1000 ºC), very low amounts of carbon (<5%, down 

to 0% (blank level)) are released from most of the samples (apart from 15555, which 

releases 14% of the total C present in this range), and are associated with 
13

C-enriched 

isotopic signatures. 
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Sample 

Low Temperature 

Range 

(< 600 ºC) 

(% Released) 

Mid Temperature Range 

(600/650 to 900/1000 ºC) 

(% Released) 

High Temperature 

Range 

(> 900 ºC) 

(% Released) 
    

10017 97 2 1 

10050 91 5 4 

10057 89 10 1 

10072 95 4 1 

12016 92 6 2 

12040 98 1 0 (At blank level) 

12047 89 9 2 

12064 97 3 0 

14053 98 1 1 

15386 98 2 0 (At blank level) 

15555 51 35 14 

70017 94 5 1 

70035 94 1 5 

74275 90 9 0 (At blank level) 

75055 95 3 2 
    

Min. % 

Released 
51 1 0 (At blank level) 

Max. % 

Released 
98 35 14 

Table 3.2.1: Percentages of the total sample C released across the low temperature, mid 

temperature, and high temperature ranges (as outlined in the text above), for each mare 

basalt sample analysed (see Tables 3.2.2 to 3.2.5 for released C abundances in ng). 
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Figure 3.2.1: Step plots of carbon abundances and isotopic compositions in Apollo 11 

samples, where A = 10017, B = 10050, C = 10057, and D = 10072. The bar chart 

represents the amount of carbon released at each step (left axis), and the line with dots 

represents the isotopic δ
13

C signature of carbon released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.2.2 for data. 
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Figure 3.2.2: Step plots of carbon abundances and isotopic compositions in Apollo 12 

samples, where A = 12016, B = 12040, C = 12047, and D = 12064. The bar chart 

represents the amount of carbon released at each step (left axis), and the line with dots 

represents the isotopic δ
13

C signature of carbon released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.2.3 for data. 
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Figure 3.2.3: Step plots of carbon abundances and isotopic compositions in Apollo 14 and 

Apollo 15 samples, where A = 14053, B = 15386, and C = 15555. The bar chart represents 

the amount of carbon released at each step (left axis), and the line with dots represents the 

isotopic δ
13

C signature of carbon released at each step (right axis). N.B.: each plot uses 

different scales for both the left and right axes.  See Table 3.2.4 for data. 
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Figure 3.2.4: Step plots of carbon abundances and isotopic compositions in Apollo 17 

samples, where A = 70017, B = 70035, C = 74275, and D = 75055. The bar chart 

represents the amount of carbon released at each step (left axis), and the line with dots 

represents the isotopic δ
13

C signature of carbon released at each step (right axis). N.B.: 

each plot uses different scales for both the left and right axes.  See Table 3.2.5 for data. 
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Most notably, in basalts 10050, 15555 and 70035 there is a small high temperature release 

of carbon at 1000–1300 ºC (between 3% and 5% of the total carbon released from these 

samples), which is relatively 
13

C-depleted compared to the other high temperature carbon 

isotope measurements made for the same, and the other powdered mare basalt, samples.  

Although a similar relative depletion in 
13

C is seen in several other samples at high 

temperatures (e.g. 75055), these instances are not found in conjunction with a significantly 

higher carbon release at the temperature steps in question. 

In all of the step plots above, both the carbon abundance and isotopic data have been 

corrected for any contributions from the system blank (blank correction methods are 

outlined in the Appendix).  Generally, errors (in pale blue) are not displayed for steps 

where the C abundance from the samples is close to blank levels; due to the error 

propagation method used to calculate the blank-corrected uncertainties, such a low ratio of 

sample C to blank abundance generates extremely large errors that are 

unsuitable/unrealistic.  This is illustrated by the inclusion of error bars in the step plot for 

sample 74275 (graph C in Fig.3.2.4), where errors mostly extend beyond the scale of the 

graph, despite these errors being several orders of magnitude lower than have been 

calculated for other samples where sample C abundance is almost identical to blank levels.  

Therefore, errors are generally not included for other samples where the blank-corrected 

uncertainties would extend far beyond the scale of the graph.  
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10017 

 
10050 

 
10057 

 
10072 

Temperature  

(°C)  

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰)  

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰)  

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰)  

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

200 
 

199.31 -27.88 1.54 
 

141.71 -27.64 0.23 
 

- - - 
 

274.21 -29.18 0.24 

300 
 

446.39 -35.77 1.33 
 

732.04 -29.08 0.18 
 

- - - 
 

919.56 -34.63 0.12 

400 
 

285.72 -29.89 2.33 
 

683.47 -27.69 0.18 
 

840.16 -29.30 0.16 
 

508.20 -30.24 0.15 

500 
 

361.04 -4.93 1.93 
 

447.99 -29.73 0.19 
 

91.49 -30.31 0.72 
 

582.20 -31.32 0.35 

600 
 

153.86 -23.01 0.85 
 

45.35 -6.48 0.19 
 

191.27 -19.26 0.57 
 

423.14 -19.76 0.71 

650 
 

- - - 
 

19.64 -21.42 0.23 
 

47.11 -21.97 1.04 
 

67.35 -21.18 0.39 

700 
 

14.09 -20.40 8.80 
 

35.06 -33.68 0.17 
 

25.01 -26.44 0.69 
 

29.65 -19.43 0.50 

750 
 

- - - 
 

31.87 -30.42 0.21 
 

17.37 -26.86 0.58 
 

11.77 -32.90 0.51 

800 
 

10.10 -17.04 2.39 
 

25.32 -23.70 0.14 
 

5.75 -23.04 0.38 
 

4.42 -25.99 2.06 

850 
 

- - - 
 

6.14 -18.36 0.90 
 

3.69 -21.36 0.49 
 

2.05 -4.35 2.21 

900 
 

2.80 -19.74 18.48 
 

0.49 -27.77 15.39 
 

1.42 -9.99 1.59 
 

2.26 -23.70 2.25 

950 
 

- - - 
 

0.04 -29.44 768.84 
 

26.28 -28.12 4.16 
 

2.33 -22.55 3.03 

1000 
 

4.80 -3.78 3.70 
 

0.07 -29.71 264.48 
 

0.60 -26.61 5.80 
 

3.16 -10.86 2.96 

1100 
 

4.08 15.77 1.95 
 

3.42 -19.54 1.34 
 

1.44 25.39 1.58 
 

7.63 -20.08 1.12 

1200 
 

2.97 64.36 4.10 
 

26.13 -28.83 0.13 
 

2.10 8.70 1.09 
 

7.07 -7.98 0.66 

1300 
 

0.02 5.81 
  

39.64 -29.56 0.16 
 

1.09 3.68 1.93 
 

4.74 117.49 2.71 

1400 
 

† -23.49 
  

17.53 -32.41 0.27 
 

2.35 -22.60 0.77 
 

4.74 -21.02 1.09 

Table 3.2.2: Carbon results for Apollo 11 mare basalts.  Note that for 10057, data was not collected below 400 ºC, and for 10017, data were only collected 

in 100 ºC steps (- = not measured, †= blank level). N.B.: Some temperature steps which release carbon only at/close to blank level have no error reported, 

since error propagation on such small abundances gives unrealistic uncertainties.  
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12016 

 

12040 

 

12047 

 

12064 

Temperature  

(°C) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

200 

 

413.05 -29.22 0.06 

 

93.09 -30.59 0.16 

 

183.38 -22.95 0.25 

 

513.51 -27.75 0.19 

300 

 

980.07 -32.20 0.06 

 

594.65 -35.30 0.30 

 

498.71 -24.61 0.17 

 

795.44 -32.45 0.29 

400 

 

656.53 -29.95 0.14 

 

805.40 -29.88 0.21 

 

413.70 -22.79 0.19 

 

591.19 -33.78 0.18 

500 

 

517.03 -33.50 0.16 

 

288.02 -34.53 0.46 

 

337.69 -27.69 0.34 

 

463.25 -33.81 0.25 

600 

 

235.40 -32.54 0.16 

 

147.77 -33.52 0.47 

 

157.86 -25.50 0.36 

 

166.94 -33.73 0.28 

650 

 

74.85 -27.56 0.13 

 

9.33 -37.10 0.60 

 

41.53 -24.11 0.33 

 

20.77 -29.05 0.64 

700 

 

39.71 -31.83 0.09 

 

6.39 -44.39 0.90 

 

33.73 -25.05 0.26 

 

12.78 -31.68 0.96 

750 

 

27.58 -32.05 0.21 

 

2.65 -28.44 0.29 

 

29.41 -24.15 0.19 

 

10.36 -18.87 1.49 

800 

 

18.51 -30.47 0.14 

 

2.65 -28.44 0.29 

 

18.37 -27.88 0.20 

 

4.93 -17.55 3.17 

850 

 

14.51 -31.37 0.24 

 

5.15 -19.86 0.50 

 

13.16 -28.81 0.34 

 

2.08 -4.29 7.43 

900 

 

12.38 -37.81 0.30 

 

0.32 -23.04 11.12 

 

22.62 -27.52 0.20 

 

0.79 -24.06 22.98 

950 

 

10.32 -53.12 0.31 

 

0.11 -24.29 77.95 

 

6.92 -29.55 0.83 

 

5.71 -22.89 2.67 

1000 

 

11.00 -50.32 0.25 

 

0.20 -25.15 30.65 

 

8.00 -27.58 0.81 

 

0.15 -23.68 

 1100 

 

6.80 -64.52 0.48 

 

0.22 -15.63 20.43 

 

8.06 -28.67 0.55 

 

0.40 -18.59 

 1200 

 

9.17 -59.36 0.30 

 

0.24 -4.96 10.24 

 

7.37 -28.85 0.68 

 

0.23 -15.73 

 1300 

 

6.70 -90.59 0.44 

 

0.85 8.38 2.54 

 

6.84 -33.22 0.71 

 

0.26 -17.29 

 1400 

 

8.67 -65.17 0.30 

 

0.14 -31.09 

  

8.07 -34.32 0.52 

 

0.30 -32.69 

 Table 3.2.3: Carbon results for Apollo 12 mare basalts (- = not measured, †= blank level). N.B.: Some temperature steps which release carbon only 

at/close to blank level have no error reported, since error propagation on such small abundances gives unrealistic uncertainties.  
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14053 

 

15386 

 

15555 

Temperature  

(°C) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

200 

 

206.38 -28.28 0.30 

 

175.90 -24.76 0.15 

 

36.85 -22.32 0.21 

300 

 

434.21 -34.12 0.21 

 

509.39 -30.60 0.12 

 

118.10 -24.02 0.39 

400 

 

403.48 -33.28 0.36 

 

403.72 -32.02 0.23 

 

146.87 -31.31 0.28 

500 

 

332.98 -33.41 0.36 

 

312.37 -35.21 0.13 

 

149.84 -30.17 0.24 

600 

 

267.54 -14.65 0.56 

 

243.55 -30.77 0.12 

 

114.95 -30.59 0.34 

650 

 

- - - 

 

17.19 -27.99 0.25 

 

81.98 -32.84 0.46 

700 

 

9.86 -32.14 0.29 

 

6.77 -20.74 0.54 

 

100.08 -32.22 0.34 

750 

 

- - - 

 

1.87 2.86 2.20 

 

106.43 -32.82 0.28 

800 

 

4.80 -42.07 1.05 

 

0.18 -10.49 46.16 

 

84.72 -33.51 0.44 

850 

 

- - - 

 

2.64 19.20 1.86 

 

46.85 -30.08 0.28 

900 

 

0.11 -30.42 245.72 

 

1.48 28.22 3.77 

 

20.55 -28.49 0.27 

950 

 

- - - 

 

0.99 -6.61 5.38 

 

8.61 -28.86 0.23 

1000 

 

3.94 -26.88 0.72 

 

0.88 -4.64 10.93 

 

4.53 -22.80 0.42 

1100 

 

3.28 -26.77 0.74 

 

0.40 -4.81 25.77 

 

11.53 -24.70 0.50 

1200 

 

2.01 -27.27 1.46 

 

1.60 89.41 2.11 

 

52.89 -30.00 1.28 

1300 

 

0.02 -33.02 

  

0.40 -5.62 10.44 

 

6.76 -25.31 0.27 

1400 

 

0.02 -34.64 

  

† -4.77 4.96 

 

2.29 -29.89 0.96 

Table 3.2.4: Carbon results for Apollo 14 and Apollo 15 mare basalts.  Note that for 14053, data were only collected in 100 ºC steps (- = not measured, †= 

blank level). N.B.: Some temperature steps which release carbon only at/close to blank level have no error reported, since error propagation on such small 

abundances gives unrealistic uncertainties.  
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70017 

 

70035 

 

74275 

 

75055 

Temperature  

(°C) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

 

C  

(ng) 

δ
13

C  

(‰) 

Error  

(‰) 

200 

 

272.87 -25.44 0.36 

 

237.38 -28.81 0.18 

 

241.48 -28.44 0.14 

 

218.49 -26.26 0.39 

300 

 

650.68 -30.09 0.23 

 

642.96 -34.92 0.40 

 

390.10 -28.97 0.23 

 

597.33 -32.79 0.12 

400 

 

374.16 -27.74 0.16 

 

379.68 -33.70 0.49 

 

278.95 -27.10 0.12 

 

396.99 -30.98 0.19 

500 

 

295.85 -31.37 0.34 

 

364.67 -40.09 1.28 

 

343.13 -25.16 0.47 

 

317.04 -33.78 0.15 

600 

 

145.41 -28.20 0.40 

 

170.98 -32.72 0.78 

 

331.12 -17.51 0.42 

 

194.39 -23.94 0.28 

650 

 

41.39 -24.30 1.31 

 

- - - 

 

46.35 -20.44 0.74 

 

21.84 -21.28 0.36 

700 

 

16.72 -25.38 0.35 

 

0.81 -26.62 0.35 

 

105.09 -36.83 4.79 

 

12.19 -25.72 0.36 

750 

 

16.24 -26.25 0.31 

 

- - - 

 

10.21 -30.84 5.45 

 

11.54 -26.43 0.40 

800 

 

11.34 -24.01 0.30 

 

12.94 -31.74 0.49 

 

0.91 -30.30 15.97 

 

9.17 -23.82 2.05 

850 

 

6.29 -19.87 0.34 

 

- - - 

 

0.75 -30.87 9.67 

 

4.11 -11.68 5.30 

900 

 

3.22 -13.26 0.73 

 

5.90 -23.38 0.27 

 

0.50 -30.45 15.13 

 

2.92 14.55 4.01 

950 

 

2.25 0.94 0.95 

 

- - - 

 

† -29.85 355.34 

 

3.05 -3.01 2.30 

1000 

 

0.92 -23.30 3.32 

 

9.59 -20.97 0.33 

 

† -30.08 18.02 

 

3.86 -4.83 1.24 

1100 

 

2.97 -2.35 0.87 

 

59.32 -23.68 2.93 

 

0.18 -29.66 88.64 

 

5.23 -5.52 1.73 

1200 

 

3.13 -1.14 0.76 

 

10.77 -15.22 0.51 

 

0.58 -28.14 15.19 

 

8.88 -10.17 1.45 

1300 

 

4.23 -12.83 0.57 

 

7.25 -20.51 0.89 

 

0.33 -29.20 42.42 

 

5.72 -18.34 2.02 

1400 

 

4.56 -16.31 0.47 

 

1.31 -29.48 2.18 

 

1.86 -36.24 4.93 

 

3.91 -4.95 2.28 

Table 3.2.5: Carbon results for Apollo 17 mare basalts.  Note that for 70035, data were only collected in 100 ºC steps (- = not measured, †= blank level). 

Note the large errors present in high temperature steps for sample 74275, which releases carbon only at/close to blank level; this low abundance over 

blank levels gives rise to large uncertainties during the blank correction calculations.
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3.3: Noble Gases 

The stepped combustion results for noble gases are provided in Tables 3.3.1 through to 

3.3.9.  Ne isotope ratios (Table 3.3.10) have been corrected for mass fractionation in the 

quadrupole mass spectrometer during analyses and for the contribution of a terrestrial 

atmospheric blank.  For most of the powdered mare basalt samples (except 12064,138), the 

Ne content was so low that its isotopic composition could not be measured with any 

reasonable precision because of interference with the mas of doubly charged CO2 at 
22

Ne.  

In these cases, only amounts of 
21

Ne (cosmogenic) and 
20

Ne (trapped) have been calculated using 

the raw data by applying blank corrections for each isotope separately for each temperature 

step. For that, we used the release pattern of 
21

Ne and 
20

Ne, taking the data points outside 

the release peaks for the isotopes as the blank. Then the temperature steps with the blank 

level amounts were fitted with a linear of polynomial fit in order to interpolate the data for 

the temperature steps where the peaks of 
21

Ne and 
20

Ne are observed. This same blank 

correction approach was also used for abundances of isotopes of He and Ar (although a 

linear trendline (not a polynomial) was used to interpolate the blank contributions for steps 

containing He peaks). The 
21

Ne/
20

Ne ratio has been used to take into account the 

contribution of 
21

Ne (trapped) in order to calculate amounts of 
21

Ne (cosmogenic). The Ne 

concentration in sample 12064,138 turned out to be high enough in order to measure its 

isotopic composition and correct it for the blank contribution, since the contribution from 

doubly charged CO2 was almost negligible (mass interference due to the presence of 

doubly charged CO2 only became significant when the 44/22 ratio was ≥ 100; in both 

analyses of 12064,138, the 44/22 ratio was ≤ 50).  He, Ne, and Ar were only measured in 

the second run of basalt 10017 (see Table 2.1). Three different noble gas components have 

been detected in these samples: cosmogenic 
21

Ne, radiogenic 
4
He and 

40
Ar, and trapped 
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20
Ne and 

36
Ar; in most cases, abundances recorded from these analyses match well with 

previous noble gas studies of some of these same samples. 
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10017 10050 10057 10072 12016 12040 12047 12064 14053 15386 15555 70017 70035 74275 75055 

Temperature 

(°C) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

4He 

(cc/g-1) 

200 7.87E-11 5.06E-06 - 8.18E-09 nd nd nd nd 2.23E-09 1.21E-06 4.12E-08 1.89E-06 nd 4.57E-09 9.41E-10 

300 2.15E-05 1.71E-05 1.50E-04 3.38E-05 8.10E-06 3.68E-06 9.35E-06 2.28E-05 1.59E-06 2.98E-05 2.51E-06 3.91E-07 6.77E-06 4.01E-06 3.73E-06 

400 1.11E-04 3.07E-05 1.25E-04 1.28E-04 2.92E-05 1.44E-05 2.67E-05 5.32E-05 5.91E-06 1.28E-04 6.77E-06 9.84E-07 2.39E-05 1.73E-05 1.24E-05 

500 1.99E-04 3.97E-05 3.62E-05 1.90E-04 4.88E-05 3.67E-05 3.33E-05 6.51E-05 1.12E-05 1.74E-04 1.49E-05 1.89E-06 4.35E-05 4.14E-05 2.37E-05 

600 9.41E-05 2.84E-05 4.72E-05 7.77E-05 2.02E-05 2.67E-05 9.08E-06 1.89E-05 3.89E-06 5.16E-05 9.66E-06 1.31E-06 1.89E-05 2.45E-05 9.69E-06 

650 1.18E-05 8.09E-06 1.22E-05 2.70E-05 2.66E-06 3.97E-06 2.46E-06 1.62E-06 - nd 2.27E-06 3.20E-07 - 5.30E-06 2.13E-06 

700 6.26E-06 5.69E-06 8.47E-06 1.82E-05 1.00E-06 1.64E-06 9.64E-07 1.45E-07 1.70E-06 nd 1.16E-06 2.56E-07 6.86E-06 2.92E-06 1.31E-06 

750 4.68E-06 4.05E-06 6.92E-06 1.31E-05 2.59E-07 8.51E-07 8.57E-07 nd - nd 9.53E-07 nd - 8.23E-07 8.79E-07 

800 3.48E-06 5.23E-06 4.75E-06 1.11E-05 3.50E-08 7.37E-07 4.89E-07 nd 8.71E-07 nd 7.10E-07 4.16E-08 4.01E-06 6.62E-07 1.27E-06 

850 4.35E-06 1.48E-06 5.54E-06 9.96E-06 2.14E-07 2.36E-06 2.34E-08 7.88E-08 - nd 6.04E-07 2.76E-08 - 1.13E-06 5.86E-07 

900 4.36E-06 8.05E-07 6.06E-06 8.92E-06 nd 4.84E-07 nd 1.37E-08 5.84E-07 nd 2.75E-07 1.44E-08 3.86E-06 7.10E-07 6.84E-07 

950 5.37E-06 5.36E-07 2.52E-07 9.64E-06 6.13E-07 9.96E-07 nd 4.38E-06 - 3.29E-06 nd 6.53E-08 - 1.85E-06 7.39E-07 

1000 8.86E-06 2.19E-08 9.37E-07 6.35E-06 nd 1.41E-06 nd nd 8.35E-07 9.09E-06 nd 1.39E-09 5.25E-06 1.12E-06 8.09E-07 

1100 1.85E-06 9.02E-09 2.69E-07 1.13E-06 nd 1.24E-07 9.97E-08 nd 1.90E-07 1.91E-06 nd nd 2.24E-06 2.51E-07 2.27E-08 

1200 nd nd 6.99E-08 nd nd nd nd nd nd nd nd nd 3.38E-06 nd nd 

1300 nd nd 2.15E-10 nd nd nd nd nd nd nd nd nd nd 4.55E-08 1.71E-07 

1400 5.52E-10 8.38E-08 2.31E-10 4.10E-08 7.26E-07 nd 7.43E-08 nd 1.45E-08 nd 2.12E-07 nd nd 6.38E-07 nd 

                
Total 4.76E-04 1.47E-04 4.04E-04 5.34E-04 1.12E-04 9.40E-05 8.34E-05 1.66E-04 2.68E-05 3.99E-04 4.01E-05 7.19E-06 1.19E-04 1.03E-04 5.82E-05 

Literature 

Values 

4.91E-04a 

4.98E-04b 
8.00E-04y 6.00E-04c 7.50E-04y  7.60E-05c  1.81E-04a 3.18E-04d  8.97E-05d   8.80E-05x  

Table 3.3.1: Helium results for all powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 10017 were collected during 

Run 2 (see Table 2.1). 
a 
Hintenberger et al. (1971); 

b 
Huneke et al. (1972); 

c 
Eugster et al. (1984a); 

d 
Husain et al. (1972); 

y
 Funkhouser et al. (1970); 

x
 

Eugster et al. (1977). 
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10017 10050 10057 10072 

Temperature 

 (°C) 

 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

200 

 

nd nd nd 9.34E-10 - - 0 0 

300 

 

1.29E-08 3.31E-10 nd nd 3.25E-07 1.39E-09 0 0 

400 

 

3.85E-09 8.68E-10 1.26E-07 nd 5.36E-07 1.05E-09 9.82E-08 1.30E-09 

500 

 

2.68E-09 nd 2.38E-07 nd 5.47E-08 2.81E-13 2.03E-07 3.67E-09 

600 

 

1.96E-08 4.18E-09 2.26E-07 nd 7.10E-08 1.07E-09 1.32E-07 4.95E-09 

650 

 

2.67E-09 nd 3.83E-08 nd nd 1.27E-09 1.89E-08 4.66E-09 

700 

 

nd 5.58E-09 nd 1.25E-09 2.95E-08 1.35E-09 9.07E-10 7.81E-09 

750 

 

nd 1.27E-08 nd 1.34E-09 5.65E-10 2.85E-09 0 1.22E-08 

800 

 

1.85E-08 1.87E-08 nd 7.50E-09 nd 2.68E-09 1.34E-08 1.72E-08 

850 

 

3.59E-08 3.54E-08 nd 6.49E-09 1.08E-09 3.64E-09 1.36E-08 2.39E-08 

900 

 

4.16E-08 4.72E-08 nd 7.50E-09 nd 5.35E-09 3.04E-08 2.99E-08 

950 

 

3.37E-08 4.82E-08 2.65E-08 1.41E-08 nd 2.35E-10 4.54E-08 3.75E-08 

1000 

 

7.03E-08 7.44E-08 3.25E-08 1.81E-08 nd 1.62E-09 3.54E-08 3.62E-08 

1100 

 

6.81E-08 7.32E-08 2.33E-08 2.33E-08 nd 2.64E-09 4.04E-08 4.47E-08 

1200 

 

1.97E-08 2.70E-08 nd nd nd 1.62E-12 3.36E-08 2.61E-08 

1300 

 

6.66E-10 7.02E-11 5.03E-08 1.75E-09 nd 1.90E-12 2.78E-08 1.53E-08 

1400 

 

nd nd nd nd nd nd 0 0 
          

Total 

 

3.30E-07 3.48E-07 7.61E-07 8.23E-08 1.02E-06 2.52E-08 6.93E-07 2.65E-07 

Literature 

Values  
7.92E-07

a
 

4.66E-07
a
 

4.80E-07
b
 

9.00E-06
y
 5.10E-07

y
 1.10E-06

y
 5.20E-08

c
 2.35E-06

y
 2.60E-07

y
 

Table 3.3.2: Neon results for Apollo 11 powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 10017 were collected 

during Run 2 (see Table 2.1). a Hintenberger et al. (1971); 
b
 Huneke et al. (1972); 

c 
Eugster et al. (1984a); 

y
 Funkhouser et al. (1970). 
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12016 12040 12047 12064 

Temperature 

(°C) 

 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 
21

Ne/
22

Ne 
20

Ne/
22

Ne 

200 

 

2.11E-09 1.71E-11 nd nd nd nd 1.52E-11 2.15E-08 0.71 ± 0.04 0.15 ± 0.01 

300 

 

nd nd nd nd 4.22E-08 6.26E-11 5.19E-08 4.52E-08 0.69 ± 0.03 0.88 ± 0.04 

400 

 

4.20E-08 7.97E-11 nd 3.26E-09 2.30E-08 nd 2.66E-07 1.35E-08 0.33 ± 0.02 6.82 ± 0.34 

500 

 

7.80E-08 nd nd 6.91E-09 3.49E-09 nd 3.98E-07 7.29E-09 0.16 ± 0.01 9.39 ± 0.47 

600 

 

7.81E-08 1.54E-09 7.79E-09 1.16E-08 3.71E-08 1.22E-09 2.44E-07 8.62E-09 0.25 ± 0.01 7.54 ± 0.38 

650 

 

1.57E-08 5.99E-10 2.74E-09 6.60E-09 3.23E-08 3.03E-10 1.11E-08 7.35E-09 0.59 ± 0.03 1.37 ± 0.07 

700 

 

1.95E-08 6.35E-09 8.52E-10 1.19E-08 2.43E-09 nd nd 1.07E-08 nd nd 

750 

 

1.06E-08 2.36E-08 2.13E-08 3.24E-08 1.93E-08 1.39E-09 nd 1.52E-08 nd nd 

800 

 

nd 3.46E-08 6.14E-08 9.04E-08 4.26E-08 2.21E-09 nd 1.90E-08 nd nd 

850 

 

1.08E-08 2.81E-08 1.01E-07 9.91E-08 6.38E-11 2.26E-09 nd 2.52E-08 nd nd 

900 

 

2.59E-08 2.75E-08 2.96E-08 5.33E-08 nd 2.77E-09 nd 3.05E-08 nd nd 

950 

 

2.32E-08 2.18E-08 2.21E-08 4.41E-08 2.31E-08 3.65E-09 7.03E-08 6.01E-08 0.81 ± 0.04 1.05 ± 0.05 

1000 

 

4.73E-08 2.91E-08 4.50E-09 3.43E-08 nd 3.78E-09 nd 4.98E-08 nd nd 

1100 

 

nd 2.22E-08 4.64E-08 7.48E-08 2.39E-08 8.32E-09 2.84E-08 5.54E-08 0.89 ± 0.04 0.49 ± 0.02 

1200 

 

3.50E-09 7.20E-12 1.87E-08 3.64E-08 nd 2.14E-09 1.79E-09 3.30E-08 nd nd 

1300 

 

8.61E-09 nd 3.86E-08 2.55E-08 2.53E-08 1.31E-09 nd 1.95E-08 nd nd 

1400 

 

nd nd 8.17E-09 nd nd nd nd 1.84E-10 nd nd 
          

  

Total 

 

3.65E-07 1.96E-07 3.63E-07 5.31E-07 2.75E-07 2.94E-08 1.07E-06 4.22E-07*   

Literature 

Values    
5.40E-08

c
 

4.11E-07
c 

4.20E-07
h
 

  2.95E-07
a
 3.13E-07

a
 

  

Table 3.3.3: Neon results for Apollo 12 powdered mare basalt samples (- = not measured; nd = not detected). a Hintenberger et al. (1971); 
c
 Eugster et al. 

(1984a); 
h
 Bogard et al. (1971). *

21
Ne (cosmogenic) = 3.18E-07 cc/g

-1
. 
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14053 

 

15386 15555 

Temperature  

(°C) 

 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

200 

 

nd nd 

 

nd 2.62E-09 nd nd 

300 

 

1.89E-08 5.81E-12 

 

2.61E-08 1.84E-08 nd nd 

400 

 

2.92E-08 nd 

 

8.89E-08 1.72E-08 nd nd 

500 

 

6.78E-08 7.95E-10 

 

1.15E-07 1.59E-08 nd nd 

600 

 

3.87E-08 6.09E-10 

 

5.68E-08 9.25E-09 nd nd 

650 

 

- - 

 

nd 7.10E-09 nd nd 

700 

 

1.25E-08 1.13E-09 

 

nd 1.05E-08 nd nd 

750 

 

- - 

 

1.26E-08 1.60E-08 nd nd 

800 

 

1.34E-08 2.44E-09 

 

4.40E-09 2.47E-08 nd nd 

850 

 

- - 

 

1.38E-08 3.48E-08 nd 6.42E-10 

900 

 

nd 3.83E-09 

 

2.05E-08 4.39E-08 nd 5.02E-09 

950 

 

- - 

 

2.42E-08 4.82E-08 nd 9.35E-09 

1000 

 

1.82E-09 6.99E-09 

 

2.36E-08 4.51E-08 nd 6.87E-09 

1100 

 

2.41E-08 7.21E-09 

 

2.63E-08 4.91E-08 nd 9.07E-09 

1200 

 

1.53E-08 2.66E-09 

 

nd 2.93E-08 nd nd 

1300 

 

5.78E-10 2.66E-10 

 

3.85E-09 2.27E-08 nd nd 

1400 

 

2.26E-09 nd 

 

nd 1.15E-10 nd nd 
         

Total 

 

2.25E-07 2.59E-08 

 

4.16E-07 3.95E-07 nd 3.10E-08 

Literature 

Values  
1.20E-07

d
 2.21E-08

d
 

   
7.97E-07

d
 1.15E-07

d
 

Table 3.3.4: Neon results for Apollo 14 and Apollo 15 powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 14053 

were only collected in 100 ºC steps. 
d
 Husain et al. (1972). 
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70017 70035 74275 75055 

Temperature  

(°C) 

 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

20
Ne  

(cc/g
-1

) 

21
Ne  

(cc/g
-1

) 

200 

 

nd nd nd nd nd nd nd 1.47E-14 

300 

 

nd nd nd nd 1.65E-09 nd 1.73E-09 4.55E-10 

400 

 

nd 3.29E-10 nd nd nd 2.76E-10 2.59E-08 8.14E-10 

500 

 

nd 2.07E-11 nd nd 6.57E-09 6.99E-10 nd 1.14E-09 

600 

 

nd 2.82E-10 4.23E-10 7.30E-10 2.29E-08 1.57E-10 1.59E-08 2.08E-09 

650 

 

nd 4.57E-10 - - nd nd 1.72E-08 2.50E-09 

700 

 

nd 1.53E-10 nd 5.99E-09 7.69E-09 1.04E-11 3.20E-09 3.99E-09 

750 

 

nd nd - - 1.34E-08 nd 1.75E-08 5.11E-09 

800 

 

nd 1.74E-09 1.17E-08 1.16E-08 nd 1.44E-09 2.22E-08 8.57E-09 

850 

 

nd 2.66E-09 - - 5.35E-08 3.04E-09 nd 8.73E-09 

900 

 

nd 3.44E-09 3.24E-08 2.06E-08 8.15E-09 3.27E-09 1.27E-09 1.23E-08 

950 

 

nd 3.91E-09 - - 6.95E-08 4.76E-09 nd 1.57E-08 

1000 

 

nd 5.13E-09 4.81E-08 3.02E-08 nd 2.96E-09 nd 1.74E-08 

1100 

 

nd 6.42E-09 5.46E-08 2.57E-08 3.96E-08 4.28E-09 nd 2.03E-08 

1200 

 

nd 3.86E-09 1.23E-07 1.02E-08 nd 2.71E-09 4.38E-09 1.49E-08 

1300 

 

nd 1.28E-12 nd nd 1.03E-08 5.33E-10 3.89E-09 8.91E-09 

1400 

 

nd nd 2.00E-09 2.79E-09 nd 1.12E-12 nd 1.03E-13 
          

Total 

 

0 2.84E-08 2.72E-07 1.08E-07 2.33E-07 2.41E-08 1.13E-07 1.23E-07 

Literature 

Values  
    3.44E-08

x
 3.49E-08

x
   

Table 3.3.5: Neon results for Apollo 17 powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 70035 were only 

collected in 100 ºC steps. 
x
 Eugster et al. (1977). 
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10017 10050 10057 10072 

Temperature  

(°C) 

 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

200 

 

nd nd nd 1.15E-12 - - nd 1.51E-10 

300 

 

1.44E-06 nd 3.38E-07 3.88E-12 - - 4.97E-06 nd 

400 

 

4.29E-06 2.93E-09 7.22E-07 5.37E-09 2.76E-05 6.26E-08 1.22E-05 nd 

500 

 

5.57E-06 6.21E-09 1.21E-06 2.20E-08 2.23E-06 nd 1.53E-05 4.02E-09 

600 

 

7.90E-06 1.42E-08 1.73E-06 5.32E-08 9.40E-06 1.20E-08 1.42E-05 1.32E-08 

650 

 

2.91E-06 8.43E-09 1.05E-06 4.99E-08 4.97E-06 7.56E-09 6.74E-06 1.23E-08 

700 

 

2.86E-06 1.15E-08 1.17E-06 5.43E-08 4.70E-06 9.85E-09 5.15E-06 1.94E-08 

750 

 

2.21E-06 8.71E-09 8.18E-07 4.56E-08 4.29E-06 9.58E-09 4.22E-06 2.53E-08 

800 

 

1.79E-06 5.68E-09 7.88E-07 3.68E-08 3.05E-06 5.10E-09 2.89E-06 2.03E-08 

850 

 

1.20E-06 4.75E-09 3.97E-07 1.48E-08 2.17E-06 1.96E-09 1.95E-06 1.32E-08 

900 

 

9.05E-07 nd 3.87E-07 9.18E-09 1.59E-06 nd 1.43E-06 3.39E-09 

950 

 

7.67E-07 nd 4.62E-07 4.08E-09 1.81E-06 4.58E-09 1.11E-06 nd 

1000 

 

1.39E-06 9.49E-09 4.31E-07 1.44E-10 3.23E-07 nd 7.11E-07 nd 

1100 

 

1.34E-06 2.21E-08 3.38E-07 nd 4.50E-07 2.19E-11 1.00E-06 3.06E-09 

1200 

 

4.58E-07 4.11E-08 2.44E-08 nd 3.49E-07 1.93E-09 5.17E-07 2.55E-09 

1300 

 

nd 5.83E-08 nd 3.16E-10 nd 7.08E-10 nd nd 

1400 

 

nd nd 2.03E-08 nd nd nd nd nd 
          

Total 

 

3.50E-05 1.93E-07 9.89E-06 2.96E-07 6.29E-05 1.16E-07 7.24E-05 1.17E-07 

Literature 

Values  

4.95E-05
a
 

4.79E-05
b
 

4.65E-07
a
 2.50E-05

y
 1.50E-06

y
 

4.30E-05
c 

4.72E-05
z
 

1.90E-07
y
 7.60E-05

y
 4.10E-07

y
 

Table 3.3.6: Argon results for Apollo 11 powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 10017 were collected 

during Run 2 (see Table 2.1). a Hintenberger et al. (1971); 
b
 Huneke et al. (1972); 

c
 Eugster et al. (1984a); 

z
 Marti et al. (1970); 

y
 Funkhouser et al. (1970). 
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12016 12040 12047 12064 

Temperature  

(°C) 

 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

200 

 

nd nd nd 8.56E-12 nd nd 3.99E-07 7.39E-11 

300 

 

4.73E-09 nd 2.48E-07 3.12E-10 5.21E-07 nd 6.43E-07 nd 

400 

 

nd nd 8.53E-07 2.01E-10 1.06E-06 9.20E-10 1.39E-06 2.85E-09 

500 

 

6.90E-07 3.69E-09 1.52E-06 6.32E-09 1.92E-06 3.54E-09 2.27E-06 1.41E-08 

600 

 

1.81E-06 1.22E-08 2.06E-06 1.07E-08 3.18E-06 6.08E-09 3.03E-06 2.98E-08 

650 

 

3.82E-07 7.45E-09 1.49E-06 5.84E-09 2.47E-06 4.57E-09 2.14E-06 2.24E-08 

700 

 

1.39E-06 1.56E-08 1.82E-06 7.91E-09 2.48E-06 5.29E-09 2.02E-06 2.96E-08 

750 

 

1.02E-06 1.61E-08 1.82E-06 8.08E-09 2.23E-06 4.47E-09 1.70E-06 3.60E-08 

800 

 

5.08E-07 1.06E-08 1.36E-06 5.39E-09 1.60E-06 2.77E-09 1.21E-06 2.46E-08 

850 

 

1.68E-07 4.91E-09 1.06E-06 3.88E-09 9.91E-07 2.27E-10 6.74E-07 1.15E-08 

900 

 

2.67E-08 2.93E-09 2.00E-07 nd 5.85E-07 nd * * 

950 

 

2.13E-08 3.04E-09 9.39E-08 nd 2.14E-07 nd 4.15E-07 5.34E-09 

1000 

 

nd 5.00E-09 8.59E-09 nd 1.23E-07 nd nd nd 

1100 

 

nd 7.39E-09 nd 3.37E-09 nd 2.33E-09 2.76E-08 9.91E-09 

1200 

 

nd 9.06E-09 nd nd nd nd 2.61E-08 8.01E-09 

1300 

 

1.91E-08 8.20E-09 nd nd nd nd nd nd 

1400 

 

5.48E-07 nd 8.34E-08 nd 4.20E-07 5.20E-10 2.18E-08 nd 

          

Total 

 

6.59E-06 1.06E-07 1.26E-05 5.20E-08 1.78E-05 3.07E-08 1.60E-05 1.94E-07 

Literature 

Values    
9.90E-06

c
 

1.48E-07
c 

2.20E-07
h
   

1.65E-05
a
 1.91E-07

a
 

Table 3.3.7: Argon results for Apollo 12 powdered mare basalt samples (- = not measured; nd = not detected; * = data not collected).                    a 

Hintenberger et al. (1971); c Eugster et al. (1984a); 
h
 Bogard et al. (1971). 
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14053 

 

15386 15555 

Temperature  

(°C) 

 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

200 

 

nd nd 

 

nd nd nd 1.39E-10 

300 

 

1.45E-06 7.38E-09 

 

8.09E-06 1.59E-09 2.64E-07 nd 

400 

 

3.87E-06 1.30E-08 

 

1.85E-05 8.11E-09 3.57E-07 3.02E-10 

500 

 

7.47E-06 1.70E-08 

 

1.98E-05 1.60E-08 6.27E-07 1.10E-09 

600 

 

1.18E-05 2.52E-08 

 

1.47E-05 2.72E-08 1.02E-06 5.19E-09 

650 

 

- - 

 

5.30E-06 2.02E-08 7.72E-07 4.00E-09 

700 

 

1.36E-05 3.32E-08 

 

4.91E-06 2.30E-08 7.75E-07 2.48E-09 

750 

 

- - 

 

4.22E-06 2.20E-08 7.79E-07 3.73E-09 

800 

 

9.99E-06 2.93E-08 

 

3.44E-06 1.64E-08 6.51E-07 3.39E-09 

850 

 

- - 

 

2.23E-06 1.01E-08 5.36E-07 2.80E-09 

900 

 

5.18E-06 1.56E-08 

 

8.90E-07 2.31E-09 3.34E-07 5.71E-10 

950 

 

- - 

 

2.69E-07 nd 1.32E-07 1.05E-10 

1000 

 

3.58E-06 6.45E-09 

 

nd nd nd 6.15E-10 

1100 

 

2.47E-06 5.72E-09 

 

nd 1.04E-09 nd 4.77E-09 

1200 

 

1.61E-06 nd 

 

nd nd nd 9.92E-09 

1300 

 

nd nd 

 

nd nd 6.12E-09 2.08E-08 

1400 

 

nd nd 

 

nd nd 6.55E-08 1.10E-09 
         

Total 

 

6.10E-05 1.53E-07 

 

8.23E-05 1.48E-07 6.32E-06 6.10E-08 

Literature 

Values  
6.42E-05

d
 

4.98E-08
d 

3.00E-08
f
    

9.13E-06
d 

7.32E-06
e
 

1.85E-07
d 

9.11E-08
e
 

Table 3.3.8: Argon results for Apollo 14 and Apollo 15 powdered mare basalt samples (- = not measured; nd = not detected). 
d
 Husain et al. (1972); 

e
 

York et al. (1972); 
f
 Eugster et al. (1984b). 
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70017 70035 74275 75055 

Temperature  

(°C) 

 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

40
Ar  

(cc/g
-1

) 

36
Ar  

(cc/g
-1

) 

200 

 

nd nd 8.73E-11 2.42E-09 nd 2.67E-11 nd nd 

300 

 

8.87E-09 5.86E-11 1.15E-06 nd 7.83E-07 nd 5.55E-08 4.58E-09 

400 

 

1.84E-06 1.86E-08 2.18E-06 4.19E-09 1.63E-06 9.35E-11 2.84E-07 2.16E-10 

500 

 

1.36E-06 2.13E-08 3.68E-06 3.38E-09 2.58E-06 1.73E-09 1.08E-06 3.10E-09 

600 

 

1.99E-06 3.00E-08 5.24E-06 5.64E-09 3.42E-06 1.96E-09 2.31E-06 5.62E-09 

650 

 

1.07E-06 2.15E-08 - - 2.41E-06 2.13E-09 1.52E-06 3.77E-09 

700 

 

9.52E-07 2.03E-08 5.96E-06 5.78E-09 1.76E-06 1.44E-09 1.38E-06 3.92E-09 

750 

 

9.29E-07 1.88E-08 - - 1.09E-06 8.64E-10 1.21E-06 3.90E-09 

800 

 

7.04E-07 1.48E-08 3.94E-06 3.42E-09 1.04E-06 7.65E-10 9.22E-07 3.04E-09 

850 

 

3.89E-07 8.04E-09 - - 8.45E-07 1.44E-09 2.91E-07 9.86E-10 

900 

 

3.18E-07 6.77E-09 2.10E-06 2.46E-09 4.74E-07 9.71E-10 1.10E-07 9.58E-11 

950 

 

8.48E-09 nd - - 2.02E-07 4.34E-10 1.78E-08 nd 

1000 

 

7.05E-08 nd 6.73E-07 nd 7.82E-08 3.49E-10 nd nd 

1100 

 

1.62E-07 9.82E-10 6.12E-07 5.37E-09 nd 1.34E-09 4.08E-08 3.71E-10 

1200 

 

1.94E-07 1.56E-09 1.26E-09 1.99E-10 nd 9.10E-10 9.66E-08 9.26E-10 

1300 

 

4.82E-09 nd 5.16E-09 nd nd 2.37E-08 1.24E-09 nd 

1400 

 

2.52E-08 nd 2.37E-09 nd nd nd nd nd 
          

Total 

 

1.00E-05 1.63E-07 2.55E-05 3.29E-08 1.63E-05 3.81E-08 9.31E-06 3.05E-08 

Literature 

Values  
  1.53E-05

g
 8.41E-08

g
 1.98E-05

x
    

Table 3.3.9: Argon results for Apollo 17 powdered mare basalt samples (- = not measured; nd = not detected).  Note that data for 70035 were only 

collected in 100 ºC steps. 
g
 Stettler et al. (1973); 

x
 Eugster et al. (1977). 
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3.4: Results (Unpowdered Mare Basalt Chip) 

In addition to the fifteen powdered mare basalt samples above, a chip of 12064 was also 

analysed for noble gases (He, Ne, and Ar), to evaluate any potential modifications in the 

indigenous elemental or isotopic signatures of mare basalts through sample preparation 

procedures (e.g. powdering), in response to the measurement of terrestrial atmospheric-like 

neon ratios in the powdered aliquot of 12064 (see Table 3.3.3, and Section 4.3.1).  In 

summary, a 5.725 mg chip of 12064,140 yielded almost identical results (for 
4
He, 

21
Necosm, 

and total 
21

Ne and 
40

Ar abundances (Table 3.4.1)) as analyses of the powdered aliquot of 

12064,138.  However, this chip of 12064 released an order of magnitude less trapped 
20

Ne 

than the powdered sample, and neon isotopic ratios (after corrections for mass 

fractionation in the mass spectrometer and for the presence of a system blank of terrestrial 

atmospheric composition) suggest that most of the neon in the chip is cosmogenic in origin 

(
21

Necosm = 3.65E-07 cc/g
-1

, or 98.5 % of the total 
21

Ne abundance released) (Fig. 3.4.1).   

 

 

 

 

 

 

 

 

Figure 3.4.1: Neon isotopic ratios in an unpowdered chip of 12064,140. Unlike the 

powdered sample (see Sections 3.3 and 4.3.1), here, neon is predominantly cosmogenic. 

 

Solar 

Terrestrial Atmosphere 

Cosmogenic 
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Table 3.4.1: Noble gas results for the unpowdered chip of 12064,140 (nd = not detected). 

*of which 3.65E-07 cc/g
-1

 or 98.5 % is of cosmogenic origin.

Temperature 

(°C) 

4
He 

(cc/g
-1

) 

20
Ne 

(cc/g
-1

) 

21
Ne 

(cc/g
-1

) 
21

Ne/
22

Ne 
20

Ne/
22

Ne 
40

Ar 

(cc/g
-1

) 

36
Ar 

(cc/g
-1

) 

200 1.23E-08 nd nd nd nd 3.72E-08 2.62E-10 

300 2.82E-06 nd 5.65E-09 nd nd nd nd 

400 2.50E-05 5.72E-08 2.55E-08 0.60 ± 0.04 1.25 ± 0.71 2.59E-07 nd 

500 5.10E-05 3.08E-08 1.83E-08 0.52 ± 0.05 0.78 ± 0.30 1.27E-06 1.01E-09 

600 3.17E-05 4.05E-08 6.76E-09 0.37 ± 0.05 2.05 ± 1.24 2.09E-06 9.65E-09 

650 1.17E-05 nd 1.64E-09 nd nd 1.35E-06 4.23E-09 

700 7.34E-06 3.08E-08 1.89E-09 0.19 ± 0.06 2.95 ± 1.33 1.48E-06 1.22E-08 

750 4.72E-06 nd 4.02E-09 nd nd 1.55E-06 2.60E-08 

800 4.35E-06 nd 7.84E-09 nd nd 1.97E-06 1.63E-08 

850 3.61E-06 nd 1.87E-08 nd nd 1.46E-06 6.07E-09 

900 3.21E-06 9.17E-09 2.48E-08 0.73 ± 0.06 0.30 ± 0.07 9.98E-07 2.24E-09 

950 4.71E-06 1.43E-09 2.02E-08 0.71 ± 0.06 0.11 ± 0.03 5.37E-07 nd 

1000 6.52E-06 1.89E-08 2.45E-08 0.72 ± 0.06 0.63 ± 0.07 6.01E-08 nd 

1100 1.76E-05 5.27E-08 4.76E-08 0.81 ± 0.04 0.97 ± 0.05 9.91E-07 2.91E-08 

1200 4.00E-06 5.17E-08 7.58E-08 0.80 ± 0.03 0.61 ± 0.03 1.45E-06 1.25E-07 

1300 nd 8.48E-08 8.59E-08 0.83 ± 0.04 0.90 ± 0.04 nd 9.44E-08 

1400 1.36E-07 nd 1.19E-09 nd nd 5.40E-09 1.82E-10 

Total 1.79E-04 3.78E-07 3.70E-07* 
  

1.55E-05 3.27E-07 
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The release of terrestrial nitrogen from the samples at temperatures below 500 ºC is 

associated with variable δ
15

N values (ranging from -9.2 ‰ to +26.2 ‰). At the highest 

temperatures, very low amounts of nitrogen are released (see Table 3.1.1) with a very 

distinct isotopic signature, which is extremely 
15

N-enriched. This suggests that at high 

temperatures, nitrogen release is dominated by a cosmogenic N component (cosmogenic 

nitrogen containing a high proportion of 
15

N relative to 
14

N). The most 
15

N-enriched 

signature measured was +1054.8 ‰ in sample 10017; this basalt also has one of the 

highest calculated cosmic ray exposure (CRE) ages on the lunar surface, at 480 Ma (Table 

2.1).  Note that sample 10050 also has a CRE age of around 480 Ma, but, as described in 

the preceding chapter (Chapter 3), the presence of a high-temperature component with a 

much more 
15

N-depleted isotopic signature in this sample serves to mask the extreme 
15

N-

enrichment caused by the release of cosmogenic nitrogen, when compared to 10017.  By 

contrast, the least 
15

N-enriched high temperature step with a cosmogenic δ
15

N signature 

(again discounting those samples which display a non-cosmogenic high-temperature 

nitrogen release, as outlined in Chapter 3) is observed in sample 14053, with a δ
15

N value 

of +48.7 ‰.  This sample also has the lowest CRE age, at 21 Ma (Table 2.1).  

The presence of terrestrial contaminants (adsorbed atmospheric nitrogen, terrestrial 

organics etc.) serves to mask any indigenous lunar nitrogen signature at low temperature 

steps, and so too does the release of cosmogenic nitrogen at the higher temperature steps.  

Thus, in attempting to characterise the abundance and isotopic signature of any indigenous 

lunar nitrogen, the mid-temperature range (variable between different samples, based on 

analysis of each sample’s individual release profiles, but typically between 600–700 ºC to 

1000 ºC) offers the best opportunity to do this.  For the fifteen powdered mare basalt 

samples analysed in this study, δ
15

N values in the mid temperature range varied among 
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samples, from a maximum of +8.3 ± 12.4 ‰, down to -6.6 ± 2.7 ‰) (Table 4.1.1 and 

Fig.4.1.1).  

 

Table 4.1.1: Indigenous lunar nitrogen abundance and isotopic composition for all fifteen 

powdered mare basalt samples.  Individual sample isotopic compositions and errors are 

weighted averages.  The average isotopic composition is weighted according to sample 

indigenous nitrogen abundance, and its associated error is 2σ. 

 

This small release (typically between 0.6 and 4.5 ng of N) is attributed to a minor 

indigenous N component in lunar basalts. This range of indigenous δ
15

N values, although 

quite broad, yields a weighted average value of +0.93 ‰ (± 9.39 ‰ (2σ)), which is slightly 

lower than previous measurements of +13.0 ± 1.2 ‰ across the same temperature range, as 

measured by Mathew and Marti (2001).  A δ
15

N value of ~ +13‰ has also been reported 

by Becker et al. (1976), Kerridge et al. (1991) and Murty and Goswami (1992).  Barry et 

al. (2013) reported indigenous lunar nitrogen values between ~ 0 ‰ and ~ +20 ‰ for three 

lunar basalt samples with low CRE ages (Fig. 4.1.2).   

Sample 

 Temperature 

Range 

(°C) 

Nitrogen 

Abundance 

(ng) 

δ
15

N 

(‰) 

Error 

(‰) 

 
 

    

10017  600-800 1.17 8.33 12.44 

10050  650-900 3.49 7.91 2.60 

10057  700-900 2.80 -0.57 1.14 

10072  700-800 1.70 6.60 2.16 
 

 
    

12016  650-850 4.41 0.75 2.63 

12040  600-800 3.41 -2.04 2.51 

12047  700-950 3.36 -6.61 2.69 

12064  650-850 4.44 -0.75 1.27 
 

 
    

14053  700-1000 4.50 -1.82 2.43 
 

 
    

15386  650-750 1.41 7.51 2.70 

15555  800-1000 0.60 4.41 14.25 
 

 
    

70017  700-800 1.78 5.77 1.08 

70035  800-900 1.78 6.53 2.96 

74275  700-950 2.50 -0.18 8.40 

75055  600-900 3.13 -2.15 2.46 

Average    0.93 9.39 (2σ) 
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Figure 4.1.1: Indigenous lunar nitrogen isotopic signature (powdered mare basalt samples). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.2: Indigenous lunar nitrogen isotopic signatures from this study, plus data from 

several previous studies of lunar nitrogen (including data from other mare basalt samples, 

lunar soil drill cores, breccias, and lunar meteorite MAC88105). 
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Although two of the samples in this study (10017 and 15555) have δ
15

N values similar 

(within error) to these previously-reported heavy N signatures, these are the two samples 

with the greatest errors, caused in large part by several individual temperature steps within 

their indigenous nitrogen ranges releasing N in abundances close to system blank levels.  

In these instances, the error propagation calculations used during the blank correction 

procedure (see Appendix) introduce large uncertainties, which are then carried over into 

the average values for these samples.  Nevertheless, there is also good agreement (within 

error) between data collected by Becker et al. (1976) and Barry et al. (2013) for breccia 

68815 and basalt 71557 (respectively) and basalts 10050, 10072, 15386, and 70035 from 

this study (all of these samples being associated with much smaller uncertainties than 

10017 and 15555 mentioned above), with indigenous lunar N signatures between +5 ‰ 

and +10 ‰.  Likewise, the isotopic measurement by Barry et al. (2013) for 12008 agrees 

with measurements in this study for other Apollo 12 basalts (12016, 12040, and 12064), 

plus 10057, 74275, and 75055, suggesting an indigenous lunar N signature of ~ 0 ‰. 

Given the range of abundances and δ
15

N values measured in the fifteen powdered mare 

basalt samples analysed in this study, coupled with the (albeit limited) previous 

measurements of indigenous lunar N described above and shown in Fig. 4.1.2, it appears 

that nitrogen within the mare basalts (and by extension, inside the Moon) is both 

heterogeneously distributed, and also isotopically heterogeneous, with an almost bimodal 

distribution of isotopic signatures, including a group of measurements around 0 ‰, and a 

more 
15

N-enriched grouping between +5 ‰ and +10 ‰ (and possibly higher). 

4.1.1: Indigenous Lunar Nitrogen Isotopic Heterogeneity 

Even taking into account the error-propagated uncertainties associated with these data, 

with such a clear distribution in isotopic measurements, it is necessary to consider possible 
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reasons for this spread of values; factors which could potentially influence the N isotopic 

compositions of these samples are discussed and evaluated in this section. 

4.1.1.1: Mineralogy and Lithology 

Since the indigenous lunar nitrogen measured in this study is released at temperatures up to 

1000 ºC, and from powdered samples as well as a chip of basalt, it can be assumed that 

lunar N is located within the crystal lattice structure of the main rock-forming minerals in 

these samples, and not in the interstices between minerals or in vesicles.  Thus, it is 

possible that changes in modal mineralogy between samples may be driving the N isotopic 

heterogeneity observed in the fifteen basalts analysed in this study.   

However, taking into account the modal mineralogy (taken from James and Jackson (1970) 

for 10017, and Dungan and Brown (1977) for 12047) for the two samples at both extremes 

of the N isotopic range measured (10017 at +8.33 ‰, and 12047 at -6.61 ‰), it is clear 

that, despite their differing N isotopic compositions, they have very similar modal 

mineralogies.  Both 10017 and 12047 are ilmenite basalts, containing 47.6 % and 48.4 % 

pyroxene (respectively), 26.9 % and 38 % plagioclase (respectively), 14.2 % and 5.3 % 

ilmenite (respectively), and 8.5 % and 2 % mesostasis areas (respectively).  Admittedly, 

while pyroxene content is the same between these two samples, there are small differences 

in plagioclase and ilmenite abundances.  Sample 75055 is also an ilmenite basalt with a 

modal mineralogy almost identical to 10017, with 50.2 % pyroxene, 28.6 % plagioclase, 

15.9 % ilmenite, and 0.8 % mesostasis (Brown et al., 1975).  However, whereas indigenous 

N in 10017 is measured at +8.33 ‰, δ
15

N for 75055 is -2.15 ‰.  Therefore, difference in 

modal mineralogy between samples does not seem to be an explanation for variations in N 

isotopic compositions. 
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Considering lithological differences as a potential reason for N heterogeneity, it must be 

noted that most measurements of indigenous lunar nitrogen have been made using basalts; 

indeed, all of the samples in this study are basalts, as are samples in Barry et al. (2013), 

and yet these samples still display considerable heterogeneity in terms of N abundance and 

isotopic composition.  However, sample 68815 (Becker et al., 1976) is a breccia, and gives 

a nitrogen isotopic composition identical within error to the more 
15

N-enriched group of 

basaltic samples in this study.  Similarly, clast W-1 in MAC88105 (Murty and Goswami, 

1992) is a granulitic anorthosite, and yields a δ
15

N value identical (within error) to the 

value measured in black and orange glass beads from the lunar regolith double-drive core 

74001/74002 (Kerridge et al., 1991) and to ferroan anorthosite 60025 and basalt 75075 

(Mathew and Marti, 2001).  This all suggests that lithological differences are not driving N 

isotopic heterogeneities in the lunar interior.  

4.1.1.2: Crystallisation Age 

It is possible that nitrogen isotopes underwent fractionation throughout the significant time 

period during which basaltic melts were being generated and erupted to form mare basalts 

on the lunar surface; nitrogen remaining in the lunar interior could potentially fractionate 

as subsequent basaltic melts containing N are erupted, changing the isotopic signature of 

any N remaining in the lunar interior and also reducing the abundance available for 

incorporation into future basaltic melts.  This scenario assumes that all mare basalts were 

derived from a common source region which underwent fractional crystallisation over time 

(see Section 4.1.1.4). 

Taking just the N isotopic data from this study alone, it is obvious that crystallisation age 

has no correlation with isotopic composition (Fig.4.1.3). Sample 10050 is one of the older 

mare basalts in this study, and crystallised at 3.75 ± 0.03 Ga, with an indigenous lunar 
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δ15
N value of +7.91 ‰.  Sample 14053 is the oldest basalt in this study, crystallising at 

3.94 ± 0.04 Ga, and yet has one of the most 
15

N-depleted indigenous lunar N isotopic 

signatures, at -1.82 ‰.  By contrast, the youngest sample in this study (12064, which 

crystallised at 3.18 ± 0.01 Ga) has an indigenous N signature of -0.75 ‰, and thus also 

falls into the same 
15

N-depleted grouping as the oldest mare basalt in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.3: Relationship between crystallisation age and indigenous lunar nitrogen 

isotopic signature.  Crystallisation age data taken from Table 2.1 and references therein. 

 

There is a similar lack of correlation between indigenous N abundance and crystallisation 

age, with the oldest sample (14053) releasing 4.50 ng of N, and the youngest sample 

(12054) also releasing a comparable 4.44 ng of N across the mid-temperature range taken 

as representing the release of indigenous N. 
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4.1.1.3: CRE Age 

Although care has been taken to exclude from assessments of indigenous lunar N those 

temperature steps which display evidence of contributions to N isotopic signatures from 

cosmic-ray induced spallation reactions, it may be the case that, with indigenous N 

temperature ranges extending up to 1000 ºC in some samples, a small contribution from 

cosmogenic sources to a largely indigenous lunar N release could result in small variations 

in N isotopic composition.  As discussed previously, since spallation reactions produce a 

high proportion of 
15

N relative to 
14

N, even a small input from cosmogenic N would 

increase the δ
15

N signature of the indigenous N in a sample to a more 
15

N-enriched value. 

Comparing the N data for the fifteen basalts in this study (Table 4.1.1) with CRE ages 

taken from the literature (Table 2.1 and references therein), it is immediately apparent that 

no temperature steps including a cosmogenic N input have been included in the 

characterisations of indigenous lunar N.  Indigenous N in basalt 14053 was determined to 

be released between 700-1000 ºC, the upper limit of this being a temperature which in 

other samples already displays evidence for the presence of cosmogenic N.  However, in 

14053, a δ
15

N signature of -1.82 ± 2.43 ‰ shows that this N release is relatively depleted 

in 
15

N and thus does not contain any cosmogenic N contribution.  Alternatively, some of 

the samples with the most 
15

N-enriched indigenous N signatures are associated with a 

temperature range only extending up to 750-850 ºC, well below the temperatures at which 

cosmogenic components begin to be released.    

Finally, samples 10072, 12040, 12064, 15386, and 70017 all have similar CRE ages (of 

around 240 Ma on average), and yet still display considerable isotopic heterogeneity, with 

isotopic signatures of +6.60 ‰, -2.04 ‰, -0.75 ‰, +7.51 ‰, and +5.77 ‰, respectively.  

Furthermore, 12040 and 75055 both have identical indigenous N signatures of -2.04 ± 2.51 
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‰ and -2.15 ± 2.46 ‰, respectively, but very different CRE ages of 285 Ma and 95 Ma, 

respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.1.4: Relationship between cosmic ray exposure age and indigenous lunar nitrogen 

signature. CRE age data taken from Table 2.1 and references therein. 
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4.1.1.4: Basaltic Melt Source Regions  

As shown in Table 2.1, mare basalts can be divided into several different groups based on 

their major element geochemical characteristics, as well as by their modal mineralogy.  

One of the main geochemical differences between basalts is in their Ti content, which can 

range from 1to14 wt.%, with low-Ti basalts at 1-5 wt.% TiO2, and high-Ti basalts 

containing 9-14 wt.% TiO2 (Papike et al., 1976).  In general, high-Ti basalts form a 

grouping of older samples, with crystallisation ages from 3.85 ± 0.08 Ga to 3.575 ± 0.215 

Ga.  Low-Ti basalts tend to be younger in age, with crystallisation ages from 3.32 ± 0.06 

Ga to 3.18 ± 0.01 Ga.  However, 14053 is an unusual sample, being a low-Ti basalt (2.93 

wt.% TiO2 (Papike et al., 1976)) that crystallised at 3.94 ± 0.04 Ga, making it one of the 

oldest mare basalt samples (See Table 2.1 and references therein).  Where earlier (Section 

4.1.1.2) it was suggested that, in a scenario where crystallisation age has an impact on 

indigenous lunar N isotopic heterogeneity, a common source (undergoing progressive 

partial melting/fractional crystallisation) for all mare basalts was required, major and trace 

element geochemical data suggest that in fact, the scale of Ti content differences between 

mare basalt samples is evidence for multiple source regions, both laterally and in terms of 

depth, giving rise to basaltic melts of different starting compositions (Hallis et al., 2014; 

Papike et al., 1976; Ray and Misra, 2014).  Through assessment of trace element contents, 

and via experimental high-pressure phase equilibria studies, it has been suggested that 

high-Ti and low-Ti basalts are derived from different depths within the lunar interior, 

although there is some disagreement about the exact depths these separate basaltic melts 

were generated at.  Papike et al. (1976) propose that low-Ti basalts may be derived from an 

olivine-pyroxene source at a depth ranging between 500 km, up to 200 km below the lunar 

surface.  They also found that high-Ti basalts were likely to have come from olivine-

pyroxene-ilmenite cumulate sources within the outermost 150 km of the Moon.  Ray and 
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Misra (2014) assume a pressure gradient of 20 km/kbar in the outer portion of the Moon, 

and from this suggest that high-Ti basaltic glasses were derived from melts forming at 

depths of around 300 km, with low-Ti mare basaltic melts being generated at shallower 

lunar mantle depths of between 200 km and 300 km (a similar range to Papike et al., 1976).  

The disagreement about the depth of high-Ti basalt melt generation is further complicated 

by Hess (1991), whose thermodynamic and phase equilibria studies suggest that high-Ti 

picritic mare glasses are derived from melting of cumulate sources ‘only modestly 

endowed with ilmenite-enriched crystallisation products’, with the partial melt rising 

adiabatically as diapirs from initial mantle depths below 700 km.  As the source diapirs 

rise, they experience pressure-release melting and incorporate significant amounts of 

surrounding (shallower) mantle material.  Thus, the final high-Ti basaltic melts represent 

material sampled from different depths within the lunar mantle. 

However complex the melt generation history for these samples may be, a simple 

observation is that high-Ti and low-Ti basalts are derived from different depths within the 

lunar mantle, and so, if a correlation between source depth and indigenous lunar N is 

sought, nitrogen isotopic signatures should be compared to Ti content (Fig. 4.1.5).  As this 

scatter plot shows, both the low-Ti and high-Ti basalt groups (from different depths within 

the lunar mantle) display considerable indigenous N isotopic heterogeneity; therefore, this 

heterogeneity cannot be caused by different melts being generated at different depths. 
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Figure 4.1.5: Correlation between TiO2 content (as a proxy for depth of melt generation) 

and indigenous lunar N isotopic composition.  TiO2 data taken from Compston et al., 1970; 

Compston et al., 1971; Duncan et al., 1974; Duncan et al., 1976; Dymek et al., 1975b; 

Hubbard et al., 1972; Maxwell et al., 1970; Rhodes et al., 1973; Rhodes et al., 1976; 

Rhodes et al., 1977; Rhodes et al., 1980; and Wänke et al., 1971. 

 

4.1.1.5: Degassing 

The degree of degassing a melt undergoes is affected by the solubility of the element in 

question under the P-T-ƒ02 conditions specific to each planetary body.  Solubility in the 

melt under mantle conditions is itself controlled by speciation, which is dependent upon 

oxygen fugacity. Under the oxidising conditions of the terrestrial mantle, carbon dissolves 

into the melt as carbonate ions, and degasses as CO2.  Upon degassing, C in the melt 

fractionates and gradually becomes more 
13

C-depleted, leading to lower δ
13

C values in 

degassed melts.  By contrast, N in the terrestrial mantle is much less soluble, and so is 
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more readily degassed from melts than C.  When degassing occurs, N isotopes are 

fractionated in the opposite sense to those of C, such that 
14

N is preferentially degassed 

over 
15

N, leading to higher δ
15

N values in the degassed melt (Cartigny et al., 2001). 

However, under the reducing conditions of the lunar mantle, relative solubilities of C and 

N are very different, meaning so too is the expected degassing (and associated isotopic 

fractionation) behaviour of these two elements.  Under reducing conditions, N solubility is 

greatly increased by dissolution into the melt as N
3-

 species, which then bond with atoms in 

the silicate melt network (Libourel et al., 2003).  At the same time, under reducing 

conditions (ƒO2 lower than -0.55 relative to the iron wüstite buffer), carbon dissolves in the 

melt as Fe-pentacarbonyl and (to a lesser degree) methane. This change in speciation (from 

dissolving as carbonate under oxidising conditions) decreases carbon solubility by a factor 

of two (Wetzel et al., 2013). Therefore, under the reducing conditions of the lunar mantle, 

carbon is expected to preferentially degas compared to nitrogen.  Under such conditions, 

taking into account the bonding of dissolved N
3-

 species into the silicate melt network, it is 

reasonable to suggest that relatively little nitrogen degassed from lunar basaltic melts prior 

to/during crystallisation, and therefore, should not have played a major role in driving the 

observed N isotopic heterogeneities in lunar rocks. 

Although there are no estimates for the amount of N degassing lunar samples may or may 

not have experienced, degassing of H and its associated isotopic fractionation effect on 

final measured H isotopic compositions has been modelled using H isotopic measurements 

of the late-forming mineral apatite in mare basalts (e.g.: Tartèse et al., 2013; Tartèse et al., 

2014).  In contrast to N, hydrogen is readily degassed from lunar magmas as H2 under 

reducing conditions (Tartèse et al., 2013), and during degassing, significantly fractionates 
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hydrogen from deuterium, leaving the residual H in the melt enriched in 
2
H (deuterium, or 

D) (Anand et al., 2014). 

If it is assumed that any degassing of N is occurring at the same time as H degassing, since 

much less N is expected to degas from lunar basaltic melts compared to H, comparing the 

amount of H degassing a sample has undergone against its N isotopic composition should 

result in a very weak/no correlation.  That is, more degassed samples should show similar 

N isotopic compositions to less degassed samples (See Fig. 4.1.6). 

Taking H degassing data for 15386 and 15555 from Tartèse et al. (2014) and Tartèse et al. 

(2013) (80-90 % degassed and 98 % degassed, respectively), and plotting these against 

δ
15

N values (from this study), it appears that basalts with a 
15

N-enriched indigenous N 

signature (+7.51 ‰ and +4.41 ‰) are also highly degassed.  However, 12064 experienced 

99 % degassing (Tartèse et al., 2013), and yet has a 
15

N-depleted signature of -0.75 ‰.   

Several additional basalt samples can be added to this comparison, using the equations for 

H2 degassing in Tartèse et al. (2014), and calculations for the enrichment of H left in the 

melt caused by incompatibility with crystallising phases during fractional crystallisation 

(Tartèse et al., 2013), plus H2O abundance data for apatites in 12040, 14053, and 75055 

(measured by Greenwood et al., 2011).   Making these calculations for 75055 (starting 

from a hypothetical source region with a δD value of -100 ‰ relative to Vienna Standard 

Mean Ocean Water (VSMOW) (following the conclusions of Barnes et al., 2014), and an 

H2O abundance of between 1000-3000 ppm), it seems that this basalt most likely 

experienced 95- 98 % degassing (Fig.4.1.7), and yet has a N isotopic signature of -2.15 ‰.  

12040, with a similar N isotopic composition, is likely to have experienced very little 

degassing; even after the H-abundance enriching effects of fractional crystallisation, 

apatite in this sample contains no more water than the detection limit of Greenwood et al. 
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(2011).  14053 is another sample which probably experienced very little degassing, based 

on its apatite water content and measured δD values, and yet also has a 
15

N-depleted 

indigenous N signature of -1.82 ‰.   

Figure 4.1.6: Relationship between amount of degassing a sample has experienced 

(assuming that a sample highly degassed in H will also be degassed to a relative degree in 

N) and indigenous lunar N isotopic composition.  H degassing values taken from Tartèse et 

al., 2013; Tartèse et al., 2014, and calculated from H abundance and isotopic data in 

Greenwood et al., 2011.  
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Although this comparison does seem to suggest that degassing of lunar melts has no impact 

on N isotopic heterogeneity, a rather large caveat is that this assumes that N degassing (if 

indeed any significant N degassing does occur, given the bonding into the silicate melt 

network that N species experience under reducing lunar mantle conditions) occurs to the 

same degree as H degassing in the same samples.  Also, H data is collected from the 

mineral apatite, which crystallises at >95 % crystallisation (Greenwood et al., 2011); since 

the N-hosting phase(s) in mare basalts are unknown, it is possible that N is incorporated 

into minerals much earlier in the crystallisation sequence, whilst degassing is still taking 

place, making the degree of H degassing incomparable with any N degassing that may 

have occurred. 

Figure 4.1.7: H2O abundance in the melt at various stages of degassing and fractional 

crystallisation versus H isotopic composition of the degassing/crystallising melt.  The grey 

degassing curve assumes a starting δD value of -100 ‰ and an initial melt abundance of 

1000 ppm.  The black degassing curve represents a starting δD value of -100 ‰ and an 

initial melt abundance of 3000 ppm.  The red crystallisation sequence illustrates increasing 

H2O abundance in the remaining melt (at constant δD) as crystallisation progresses.  The 

red oval indicates the point during crystallisation at which apatite crystallised, and the δD 

value of these apatites (from Greenwood et al., 2011).  
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4.1.1.6: Contamination from Extra-Lunar Sources 

Another possible explanation for such heterogeneity in both N abundances and isotopic 

composition between samples could involve the addition of non-lunar sources of N to the 

indigenous lunar N component, differing amounts of which would cause varying degrees 

of departure from the true indigenous lunar abundance and isotopic composition. 

Firstly, as already stated, only N releases in the mid-temperature steps are used in this 

study to characterise the indigenous lunar N component; these temperatures are safely 

above the low temperature steps where any adsorbed terrestrial atmospheric N may be 

released. 

Secondly, fuel used by the Lunar Module (LM) descent rockets was a mixture of N2H4 and 

(CH3)2N2H2 in equal parts by weight, with N2O4 as an oxidiser.  Therefore, the LM exhaust 

gases contained appreciable amounts of N2 (which, along with water, H2, and CO 

constituted up to ~ 90 mole % of the total LM fuel combustion products.  N2 alone 

accounted for 32 mole % of the LM exhaust gases) (Aronowitz et al., 1968).  Estimated 

desorption rates for these exhaust gases indicate that chemically adsorbed H2O, N2, and 

OH will have undergone such minimal desorption over the timescale of sample collection 

on the lunar surface that returned samples should contain detectable abundances of these 

exhaust gases.  Furthermore, modelling suggested that exhaust gas N2 abundances of up to 

several μg/cm
2
 could be expected even several hundred metres away from the LM landing 

site (Aronowitz et al., 1968).  However, adsorbed LM exhaust gases would be surface-

correlated contaminants, and the samples used in this study were taken from the interiors 

of the returned mare basalts upon sample splitting back on Earth; thus, contamination from 

LM exhaust gases is not expected in these basalt samples.  A simple check for this involves 

comparing the δ
15

N values of these samples with the distances from the LM at which they 
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were collected.  Samples collected closest to the LM landing sites should have experienced 

the greatest degree of contamination from exhaust gases, and samples collected several km 

away should have experienced minimal contamination.  All of the Apollo 11 basalt 

samples in this study were collected in an area immediately to the SSW of the LM, within 

approximately 20 m of the landing site, and while three samples display an elevated 

isotopic signature, 10057 falls into the lower, 
15

N-depleted grouping (Fig. 4.1.8).  At the 

Apollo 17 landing site, samples 70017 and 70035 were collected close to the LM (within 

tens to hundreds of metres away), and both have 
15

N-enriched signatures.  However, at the 

Apollo 15 landing site, similarly 
15

N-enriched signatures occur in samples collected both 2 

km to the west of the LM, and 4-5 km to the south of the LM.  Measuring similar isotopic 

signatures at different distances from the LM (Fig. 4.1.8), and in different directions away 

from the LM at the same site (which eliminates the possibility of the distal 
15

N-enriched 

values being caused by the LM landing trajectory flying over that sampling site) all 

suggests that the N isotopic heterogeneity seen in these samples is not a result of varying 

amounts of contamination from LM exhaust gases. 
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Figure 4.1.8: Relationship between distance from the LM at which samples were collected 

and indigenous lunar N isotopic composition.  Collection site locations were taken from 

Apollo Sample Catalogs and Sample Information documents. 

 

4.1.1.7: Analytical Factors (date of runs) 

A final possibility is that the observed isotopic heterogeneity is merely an artefact of small-

scale variations in the analytical conditions over time.  The Finesse mass spectrometer 

instrument has low, stable system blank levels (e.g. Mikhail, 2011), and furthermore, 

instrument blank levels were monitored regularly, before each sample batch was analysed.  

In this way, even if there was a small, temporary anomaly in system blank levels and 

isotopic composition, the sample data collected at these times would be corrected for the 

presence of this anomalous blank.  The mare basalt samples used for this study were 

processed and analysed in several batches spread out over more than twelve months; it is 
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striking that there is no correlation between the dates of analyses and the indigenous N 

isotopic composition (Fig. 4.1.9), which strongly suggests that the observed N 

heterogeneity has nothing to do with any analytical factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.9: Relationship between dates of sample analyses and indigenous lunar N 

isotopic composition. 

 

After exhausting possible reasons to explain the observed N heterogeneity in lunar basalts, 

the only conclusion that may be drawn is that N within the Moon is innately 

heterogeneously distributed and of heterogeneous isotopic composition.  Perhaps this is not 

unexpected, given recent data collected for other volatiles in the lunar interior (e.g. H 

abundance and isotopic composition (Robinson and Taylor, 2014, and references therein)). 
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4.2: C/N Elemental Ratios 

As outlined for indigenous N in Section 4.1, using the stepped combustion method, it is 

possible to identify the temperature ranges where indigenous lunar volatile signatures are 

overprinted by terrestrial contamination, and an extra-lunar addition from cosmogenic 

spallation processes. This leaves a ‘window’ at mid temperatures (typically between 650–

700 ºC and 1000–1100 ºC) where it is feasible to quantify the amount and isotopic 

composition of indigenous volatile components in lunar basalts. By comparing the release 

profiles of C and N in the six basalt samples studied, it is possible to identify several 

samples where the C and N are most likely co-located in the same phase, although the 

exact nature of this phase remains unidentified on the basis of release temperature alone. 

Since C and N do seem to be located in the same phase, it is possible to use the calculated 

C/N ratios for these indigenous volatile components (released at mid temperatures) as a 

means of characterising the C and N properties of the lunar mantle, from which these 

samples are derived. However, degassing during magma eruption and emplacement on the 

lunar surface may have caused some degree of elemental fractionation, modifying the true 

lunar mantle ratio, and, therefore, a range of lunar mantle C/N ratios may be expected 

(discussed in greater detail later in this section).  

The average blank-corrected C/N ratios of the mid temperature indigenous components 

(Table 4.2.1, including several C/N ratios previously reported in Mortimer et al., 2014) for 

fourteen out of the fifteen samples analysed are relatively tightly constrained, between 4 

and 40, with an average C/N ratio of 20. The exception to this is sample 15555, which has 

a much higher C/N ratio of 275, probably owing to the greater release of low temperature 

carbon contamination still being released at mid-temperature steps in this sample. Since 

this extra C release is not associated with N, the ratio of C to N increases. Excluding the 

data for sample 15555, average C/N ratios measured among the basalts in this study, over 
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the temperature interval interpreted as representing indigenous volatile components, are 

much smaller than those measured for the terrestrial depleted mantle (C/Nmantle = 535 ± 224 

(Halliday, 2013; Marty, 2012)), or even for bulk silicate Earth (BSE) (C/NBSE = ~ 40– 50 

(calculated from data in Halliday, 2013)), although 12016 and 12047 C/N ratios approach 

the lower end of this BSE range, potentially through the inclusion of C releases at 650-700 

ºC, which in these samples may still be affected by the last remnants of terrestrial 

contamination release.  

Sample C/N Ratio δ
15

NAIR (‰) 

10017 21 8.33 

10050 34 7.91 

10057 19 -0.57 

10072 27 6.6 

12016 40 0.75 

12040 8 -2.04 

12047 37 -6.61 

12064 11 -0.75 

14053 4 -1.82 

15386 18 7.51 

15555 275 4.41 

70017 25 5.77 

70035 11 6.53 

74275 5 -0.18 

75055 20 -2.15 

Lunar Average 20 0.93 ± 9.39 

Terrestrial Depleted Mantle 535 ± 224
a
 -5 to -30

c
 

Bulk Silicate Earth (BSE) 40 to 50
e
  

Enstatite Chondrites 4.5 to 15
b
 -29.2 ± 0.6

b
 

CI Chondrites 16
d
 ~33

c
 

CM Chondrites 24
d
 ~15 to 50

c
 

CO Chondrites 14
d
 ~-20 to 12

c
 

Table 4.2.1: C/N ratios of mid-temperature indigenous lunar C and N. (N.B. 15555 has a 

higher C/N ratio than the other samples in this study (see text for further discussion)). 
a 

Taken from Marty and Zimmermann (1999). 
b
 Calculated from data in Wasson and 

Kallemeyn (1988) and Thiemens and Clayton (1983). 
c
 Taken and calculated from Marty 

(2012). 
d
 Calculated from average C and N abundances in Pearson et al. (2006). 

e
calculated 

using data in Halliday (2013). 
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The large difference in average C/N ratios between the terrestrial depleted mantle and 

indigenous lunar values may be explained by the significant influence of subducted 

biological organics greatly increasing the C content of the Earth’s mantle relative to N, 

compared to that of the Moon. Without active plate tectonics, any C added from extra-

lunar sources or processes remains at the lunar surface, and is not incorporated into the 

lunar mantle, from which these basalt samples were derived. Therefore, a more relevant 

comparison might be made between primordial terrestrial mantle C and N values and this 

indigenous lunar C and N data, although no direct measurements of the primordial 

terrestrial mantle are available. Taking an enstatite chondrite composition as a proxy for 

the primordial terrestrial mantle (Javoy et al., 2010), and using carbon values averaging 

3800 ppm (Wasson and Kallemeyn, 1988) and the extremes of the nitrogen values 

proposed by Thiemens and Clayton (1983) (254–850 ppm), a C/N ratio of between 4.5 and 

15 is obtained. Both of these C/N ratios for enstatite chondrites fall within the range found 

in this study for indigenous C and N in lunar basalts. However, there is a difference 

between the indigenous δ
15

N signatures for these lunar basalts, and the values measured for 

enstatite chondrites (-29.2 ± 0.6 ‰ (Thiemens and Clayton, 1983)), suggesting that 

indigenous lunar N does not share a common source with that of enstatite chondrites. 

Considering carbonaceous chondrites as a possible source for volatiles in the Earth–Moon 

system (e.g. Marty, 2012), CI and CM chondrites have elemental C/N ratios within/similar 

to the range calculated for lunar samples. However, N isotopic signatures for these two 

primitive chondrite groups are heavier than lunar values (Table 4.2.1), with an average of 

around +40 ‰. CO chondrites, by contrast, not only have C/N ratios within the same range 

as lunar samples, but also have comparable δ
15

N values, supporting the theory that 

volatiles in the Earth and lunar interior may have a carbonaceous chondrite heritage (e.g. 

Saal et al., 2013).  
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A complicating factor regarding the use of C/N ratios is the varying solubility of both C 

and N between different Solar System bodies (as discussed in Section 4.1.1.5), which can 

have an impact on the C/N elemental ratios measured in mantle-derived samples. Within 

the Earth, CO2 solubility is much greater than that of N2, and hence during degassing, C/N 

ratios can greatly increase in the residual melt (Cartigny et al., 2001), giving rise to the 

much higher C/N ratios for the terrestrial mantle as listed in Table 4.2.1. Because of this 

link between solubility and elemental fractionation, the degree of elemental fractionation 

depends on the speciation of C and N within the mantle melts. Thus, in the reducing 

conditions of the lunar mantle, N solubility is greatly increased (Libourel et al., 2003), 

whilst C solubility is decreased by a factor of two (Wetzel et al., 2013). Therefore, with C 

being preferentially degassed compared to N, elemental C/N ratios decrease in the residual 

melts from which lunar mare basalts were formed. These differences between C and N 

solubilities in the lunar and terrestrial mantles may also explain the observed disparity 

between elemental C/N ratios in these two bodies. 

4.3: Noble Gases 

4.3.1: Trapped Noble Gases 

The release of radiogenic 
4
He is correlated with a low-temperature release of a trapped 

20
Ne component in most samples (10050, 10057, 10072, 12016, 12047, 12064, 14053, 

15386, and 75055 (e.g. Fig. 4.3.1.1), although interestingly, in samples 10017, 12040, 

70035, and 74275 which do not show co-release of 
20

Ne with 
4
He, the main release of 

20
Ne 

is at higher temperatures and correlated with the release of cosmogenic 
21

Ne instead (e.g. 

Fig. 4.3.1.2).  No trapped 
20

Ne was released above blank levels in 15555 and 70017.  
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Figure 4.3.1.1: Correlation between release profiles of trapped 
20

Ne with radiogenic 
4
He in 

mare basalts A) 10050, B) 12064, C) 14053, and D) 15386. 
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Figure 4.3.1.2: Correlation between release profiles of 
20

Ne with 
21

Ne in mare basalts A) 

10017, and B) 12040, suggesting that for samples which show a high temperature 

maximum release of 
20

Ne, the released 
20

Ne is predominantly of cosmogenic origin. 
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One possible explanation for this unexpected variation in 
20

Ne release profiles could be 

that the trapped 
20

Ne component is introduced during sample preparation, when highly 

reactive fresh mineral surfaces are created during powdering, which can attract any 

atmospheric gases present. Any such terrestrial contaminant gases would be only weakly 

bound to the mineral surface and could be expected to be released at low temperature steps 

during analysis. Alternatively, the friction generated during sample powdering may cause 

local atomic level heating, and thus some grain surfaces may be annealed, trapping the 

weakly-bonded gases in the mineral sub-surface as an ‘inclusion’; such pseudo-inclusions 

would then release the trapped gas only at higher temperatures, as the trapped component 

begins to diffuse out of the sample. Thus, it may be possible to release a terrestrial trapped 

Ne component at the same high temperature steps as cosmogenic 
21

Ne. A similar 

explanation is proposed by Niedermann and Eugster (1992), who observed over 75% of the 

terrestrial noble gases incorporated during crushing of lunar anorthositic samples being 

released at temperatures above 600 ºC. In their study, they attribute these high-release 

temperatures with noble gas fixing by strong chemisorptive bonding, or by trapping 

beneath the sample surface, due to mechanical and thermal energy supplied during the 

crushing process.  

Although in most samples, significant interference from doubly-charged CO2 during 
22

Ne 

measurements was observed (where CO2
++

/
22

Ne ≥ 100), in 12064, this interference was 

minimal (CO2
++

/
22

Ne < 50) (Mortimer et al., 2014).  This means that the measured Ne 

isotopic ratios (
20

Ne/
22

Ne and 
21

Ne/
22

Ne), after correction for both the presence of a system 

blank of terrestrial atmospheric composition and for any mass fractionation in the mass 

spectrometer during analysis, can be used to characterise both the low and high 

temperature 
20

Ne releases.  In 12064, even after correcting both the ratios of 
21

Ne/
22

Ne and 

20
Ne/

22
Ne for these contributions/effects, a mixing trend between cosmogenic Ne and 
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terrestrial atmospheric Ne is observed (Fig. 4.3.1.3).  Comparing the isotope ratios for the 

steps at which the low-temperature maximum 
20

Ne release is observed in this sample 

reveals that this release is of a composition close to terrestrial atmospheric Ne, indicating 

that in 12064, maximum 
20

Ne release comes from a predominantly terrestrial atmospheric 

source mixing with a more minor cosmogenic component.  This is certainly in keeping 

with the suggestions outlined above that atmospheric Ne could be incorporated into the 

sample during the powdering procedure prior to analysis. Whilst this confirms a low 

temperature release for terrestrial trapped Ne, suggesting that Ne added during crushing is 

only relatively weakly bound to the sample, and not trapped via the strong chemisorptive 

bonding mechanism proposed by Niedermann and Eugster (1992), it does not explain why 

this trapping of terrestrial Ne is only seen as a major effect in some samples and not others 

(i.e. samples where maximum 
20

Ne release occurs at much higher temperatures, correlated 

with cosmogenic 
21

Ne releases (Figure 4.3.1.2)), since all samples underwent the same 

crushing procedures in the same clean room suite. 

For the other mare basalts which also show this abundant low temperature release of 
20

Ne, 

although similar comparisons with their Ne isotopic compositions cannot be made due to 

the presence of doubly-charged CO2 (which has the effect of offsetting the points plotted 

on a three-isotope diagram down towards the origin), it is plausible to suggest a similar 

explanation, invoking the trapping of terrestrial atmospheric Ne which is being released 

from the powdered samples at 500 ºC (maximum release). 
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Figure 4.3.1.3: Ne isotopes in 12064 (powdered sample), with the release temperatures for 

individual points annotated.  Note that the low temperature peak release of 
20

Ne in this 

sample is at 500 ºC (panel B, Fig. 4.3.1.1), and is associated with the most terrestrial-like 

Ne isotopic composition on this plot.  The less abundant high temperature release of 
20

Ne 

is associated with almost purely cosmogenic Ne compositions. 

 

The other trapped noble gas for which data were collected is 
36

Ar; as with any trapped 

atmospheric Ne, a higher abundance of 
36

Ar might be expected if additional terrestrial 

atmospheric gases were introduced during sample crushing for this study. However, whilst 

a higher abundance of 
36

Ar is observed in sample 14053 compared to published values, in 

most other samples in this study there is good agreement between these data and literature 
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values, and in several samples, the amount of 
36

Ar observed is lower than that measured in 

previous studies (See Tables 3.3.6 to 3.3.9), suggesting that Ar is not incorporated into the 

powdered mare basalts during the crushing procedure alongside terrestrial atmospheric Ne. 

Similarly, assuming that all of the trapped 
20

Ne in 12064 was introduced during sample 

crushing and is therefore from the terrestrial atmosphere, a high abundance of N may also 

be expected, since N is many orders of magnitude more abundant in the terrestrial 

atmosphere than either Ne or Ar. By taking the relative abundances of N and Ne in the 

current terrestrial atmosphere (N2/
20

Ne = 65902.39 (by mass)), and applying that to the 

total abundance of trapped 
20

Ne in sample 12064, the expected abundance of any trapped 

terrestrial N can be calculated (62960.52 ng of N). However, basalt 12064 releases only 

42.52 ng of N in total, (almost 1500 times lower than the calculated expected abundance) 

and therefore, does not seem to show any evidence of significant trapped terrestrial 

atmospheric N, especially considering the fact that the majority of the N released in 12064 

can be attributed (based on its C/N ratios (average C/N = 100, across the temperature range 

where the majority of N in 12064 is released) and release temperatures) to terrestrial 

organic material and not the terrestrial atmosphere. Discounting the terrestrial organic N 

contribution, the measured abundance of N in 12064 is significantly lower than the 

expected contribution from contamination by terrestrial atmospheric N. 

 

 

 

 

 



                                                                                                Chapter Four: Mare Basalt Analysis Discussion 

 

106 

 

4.3.2: Radiogenic Noble Gases 

Radiogenic 
4
He is found in all of the basalts for which helium data were collected. In every 

sample (apart from 10057, which contains higher 
4
He abundances in low temperature steps 

caused by the sample being held in the furnace for longer than usual as a result of cooling 

failures), the peak release is at 500 ºC.  Radiogenic 
40

Ar is also released from the basalt 

samples across a wide temperature range, but with peak releases between 600 and 700 ºC, 

the slightly higher release temperature for 
40

Ar being a function of the slower diffusion rate 

of the larger Ar atom compared to that of He (Fig. 4.3.2.1). 
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Figure 4.3.2.1: Release profiles for radiogenic noble gases 
4
He and 

40
Ar.  Note that 

4
He 

peak release is at 500 ºC (thin grey line), and peak release for 
40

Ar is often between 600 ºC 

and 700 ºC (thick grey box), these temperatures being a function of differing diffusion 

rates out of the samples. However, in two samples, 10072 and 15386, peak 
40

Ar release 

occurs at 500 ºC, alongside 
4
He peak release. 
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It is worth noting that the actual amounts of radiogenic He and Ar vary across the samples; 

4
He and 

40
Ar are formed in situ by the radioactive decay of U and Th, and K, respectively. 

Because of a correlation between the known chemical compositions of the samples with 

radiogenic isotope abundances, samples of the same age with greater initial U and Th, and 

K can be expected to release greater abundances of radiogenic 
4
He and 

40
Ar.  Using 

literature values, sample 15386 has the highest K abundance, at ~ 0.67 wt.% (Rhodes, 

1973) and based on the results of this study, it also releases the most 
40

Ar (Table 3.3.8).  

This is to be expected, since 15386 is a KREEP basalt, enriched in K compared to other 

mare basalts. Conversely, basalt 15555 has one of the lowest K contents represented in this 

sample set, at ~ 0.04 wt.% (Chappell and Green, 1973), corresponding with the lowest 
40

Ar 

value measured in this study (Fig. 4.3.2.2).  

The abundances of radiogenic He and Ar are also related to the formation age of their host 

rocks. Out of the fourteen non-KREEP basalts, the sample which releases the most 
40

Ar 

(totalled across all temperature steps) is 10072, with a crystallisation age of 3.64 Ga 

(Papanastassiou et al., 1977). By comparison, out of the 2 samples with the lowest 
40

Ar 

releases (12016 and 15555), 15555 has a younger crystallisation age of 3.32 Ga 

(Wasserburg and Papanastassiou, 1971), although 12016 has not yet been dated.  

Besides these expected correlations between released 
40

Ar abundance, sample composition 

(K abundance) and crystallisation ages for the samples analysed in this study, comparisons 

with previously published values from different laboratories show a close agreement in the 

case of 
40

Ar, and a good general agreement for 
4
He values, demonstrating the effectiveness 

of the extraction technique used in this study. 
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Figure 4.3.2.2: Correlation between K content of basalts with the total 
40

Ar abundance 

released across all temperature steps.  K2O data taken from: Chappell et al., 1972; 

Compston et al., 1970; Compston et al., 1971; Duncan et al., 1974; Dymek et al., 1975b; 

Hubbard et al., 1972; O’Kelley et al., 1970; Rhodes and Hubbard, 1973; Rhodes et al., 

1976; Rhodes et al., 1977; Rhodes and Blanchard, 1980; Wänke et al., 1971; Wänke et al., 

1974.  
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4.3.3: Cosmogenic Volatiles 

The following table outlines the calculated abundances of cosmogenic isotopes present in 

each sample: 

 

 

 

 

 

 

 

 

Table 4.3.3.1: Calculated abundances of cosmogenic isotopes in powdered mare basalts. 

4.3.3.1: Cosmogenic Neon 

Cosmogenic 
21

Ne is also released from all the mare basalt samples in this study. To 

calculate the abundance of cosmogenic 
21

Ne, the following equation was used: 

    
         

               ⁄
    

 
          ⁄

  
           ⁄

    

          ⁄
  

           ⁄
    

 

(where 
21

Necosm=cosmogenic 
21

Ne abundance, 
22

Nemeas=measured 
22

Ne abundance, 

(
21

Ne/
22

Ne)cosm=cosmogenic end-member ratio, (
21

Ne/
22

Ne)tr=terrestrial atmospheric ratio, 

(
21

Ne/
22

Ne)meas=measured sample ratio). 

Generally, between 70 % and 98 % of the total 
21

Ne released from the powdered mare 

basalts was of cosmogenic origin, and plotting these cosmogenic 
21

Ne abundances against 

published exposure ages reveals a positive correlation (Fig. 4.3.3.1).  For example, 

Sample CRE Age 
21

Necosm (cc/g) 
38

Arcosm (cc/g) 
15

Ncosm (ng) 

10017 480 ± 25 3.38E-07 2.68E-07 2.90E-03 

10050 480 1.63E-07 1.48E-07 7.18E-03 

10057 54.2 1.18E-08 1.99E-08 4.58E-04 

10072 240 2.46E-07 1.78E-07 2.86E-03 

12016 
 

1.63E-07 8.90E-08 4.64E-04 

12040 285 ± 50 3.68E-07 7.36E-08 1.76E-03 

12047 
 

1.30E-08 3.10E-08 3.34E-04 

12064 220 ± 30 3.18E-07 9.14E-08 1.88E-03 

14053 21 ± 5 2.59E-08 1.96E-08 1.74E-04 

15386 235 ± 5 3.61E-07 1.60E-07 1.76E-03 

15555 81 3.10E-08 4.62E-08 8.01E-04 

70017 220 ± 20 2.72E-08 1.26E-08 1.97E-03 

70035 97.5 ± 2.5 1.08E-07 3.82E-08 1.77E-04 

74275 32.2 ± 1.4 8.35E-09 8.86E-09 2.81E-04 

75055 95 9.47E-08 4.63E-08 8.87E-04 
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Hintenberger et al. (1971) measured 3.13E-07 cc/g
-1

 of cosmogenic 
21

Ne being released 

from 12064, from which they calculated a CRE age of 220 Ma for this sample. By 

comparison, analyses from this study recorded a total 
21

Ne release for sample 12064 of 

4.22E-07 cc/g
-1

, of which around 75% (3.18E-07 cc/g
-1

) is of cosmogenic origin, almost 

identical to the published abundance data.  

Cosmogenic 
21

Ne is produced via spallation of major elements (Na, Mg, Al, Si, Ca, and 

Fe) within a sample (Hohenberg et al., 1978).  Using the predicted production rates for 

21
Ne from each of these principle targets in Hohenberg et al. (1978) and applying these to 

the major element compositions of individual samples, and using the calculated 

cosmogenic 
21

Ne abundances from the present study, an average production rate (P21) of 

1.42E-09 cc/g rock/Ma is calculated.  However, taking the 
21

Necosm abundances from this 

study, and using the published CRE ages for these samples, a slightly lower production rate 

is calculated (P21 = 9.50E-10 cc/g rock/Ma, excluding samples 10017, 10050, and 70017 

which plot below the main trend).  Although this is a fairly small difference in production 

rate, especially taking into account errors in measurements and calculations of cosmogenic 

isotope abundances and major element abundances, and errors placed on published CRE 

ages, it is in keeping with the findings of Hohenberg et al. (1978), who found that their 

predicted production rates for 
21

Necosm were around 25-30 % higher than their observed 

production rate (which, at 8.50E-10 cc/g rock/Ma, is in agreement with the observed 

production rate for cosmogenic 
21

Ne in this present study).  Whilst there is a good general 

correlation for most samples, there are three samples which plot far away from the main 

trend.  97.3 % of the total 
21

Ne abundance in 10017 is of cosmogenic origin, and yet this 

sample, despite being the longest-exposed (480 Ma) in this present study sample set, 

contains a similar abundance of cosmogenic Ne as samples exposed for only 230-240 Ma.  

This may be caused by several factors: either, as with 10050 and 70017, an unusually low 
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abundance of total 
21

Ne was measured in this sample for some reason, or alternatively, 

samples exposed for longer than approximately 250 Ma reach a plateau in cosmogenic Ne 

production, representing a saturation in the amount of cosmogenic Ne that a sample can 

produce.    

Samples 12016 and 12047 have no published exposure ages and so cannot be added to 

Fig.4.3.3.1.  However, using the same calculations to work out the percentage of total 
21

Ne 

that is of cosmogenic origin, rough CRE ages of around 150 Ma and 70 Ma (respectively) 

can be tentatively suggested, based on the correlation observed in Fig.4.3.3.1 (excluding 

anomalous samples 10050 and 70017).  Using the calculated value for P21 from this study, 

CRE ages of 170 Ma and 15 Ma (respectively) can be calculated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.1.1: Correlation between CRE age and calculated abundances of cosmogenic 
21

Ne in powdered mare basalt samples.  CRE ages are taken from Table 2.1 and references 

therein. Three samples which do not fit the correlation displayed by the other basalts are 

labelled (10017, 10050, and 70017).  Samples 12016 and 12047 (which do not have 

published CRE ages) are shown in black circles, positioned along the main correlation line 

according to their calculated cosmogenic 
21

Ne abundances. 
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4.3.3.2: Cosmogenic Argon 

Cosmogenic 
38

Ar is also released from all the mare basalt samples in this study. To 

calculate the abundance of cosmogenic 
38

Ar, the following equation was used: 

    
         

     
          ⁄

    
           ⁄

  

          ⁄
    

           ⁄
  

 

(where 
38

Arcosm=cosmogenic 
38

Ar abundance, 
38

Armeas=measured 
38

Ar abundance, 

(
36

Ar/
38

Ar)cosm=cosmogenic end-member ratio, (
36

Ar/
38

Ar)tr=terrestrial atmospheric ratio, 

(
36

Ar/
38

Ar)meas=measured sample ratio). 

Generally, around 80% to 95 % of the total 
38

Ar released from the powdered mare basalts 

was of cosmogenic origin.  As with cosmogenic 
21

Ne, plotting cosmogenic 
38

Ar 

abundances against published CRE ages reveals a good positive correlation (Fig. 

4.3.3.2.1).   

However, three samples plot below the main trend (these being 70017, 12040, and 10050).  

Taking into account the large error on the CRE age of 12040, and assuming that this 

sample could be from the lower end of this age range instead (e.g. 235 Ma), then this 

sample does not plot too far from the trend established by the other samples.  Nevertheless, 

70017 and 10050 contain significantly lower cosmogenic 
38

Ar abundances than might be 

expected based on their published CRE ages.  It is interesting to note that these samples are 

also anomalous in terms of their cosmogenic 
21

Ne abundances too, indicating that these 

basalts have had an eventful exposure history at the lunar surface.   

It is reasonable to suggest that perhaps these anomalously low cosmogenic abundances 

may reflect some analytical issue such as a valve failing to close fully, resulting in the loss 

of some of the released gases.  However, since neon and argon are measured in two 

different processes on two separate mass spectrometers, it is highly unlikely that a problem 

of this kind could occur in two different parts of the machine at the same time, especially 
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considering these two samples were analysed six months apart.  Rather, the agreement 

between cosmogenic noble gas abundances in these samples suggests that they may have 

much younger CRE ages than previous studies have concluded.   

Assuming that the published CRE ages for these samples are correct, using the calculated 

abundances of cosmogenic 
38

Ar (excluding abundances for samples which plot below the 

main correlation), an average production rate for cosmogenic 
38

Ar (P38) of 5.56E-10 cc/g 

rock/Ma is calculated.  There is some variation in calculated P38 values between samples, 

but all are within the same order of magnitude (2.75E-10 to 9.35E-10 cc/g rock/Ma), and in 

agreement with a production rate (P38 = 8.14E-10
 
cc/g rock/Ma) calculated using 

cosmogenic 
38

Ar abundances and a 
81

Kr-Kr age for an ilmenite concentrate of 10071 

reported by Eberhardt et al. (1974).  However, Hashizume et al. (2002) suggested that P38 

for samples within the lunar regolith could be as little as half of this absolute rate, and 

therefore in even closer agreement with the cosmogenic 
38

Ar production rate calculated in 

this study.  Using the P38 value derived from data in this present study, samples 12016 and 

12047, which have no published CRE ages, are calculated to have exposure ages of around 

160 Ma and 60 Ma (respectively), in good agreement with the ages suggested by 

cosmogenic 
21

Ne abundances. 
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Figure 4.3.3.2.1: Correlation between CRE age and calculated abundances of cosmogenic 
38

Ar in powdered mare basalt samples.  CRE ages are taken from Table 2.1 and references 

therein. Three samples which do not fit the correlation displayed by the other basalts are 

labelled (10050, 12040, and 70017).  Samples 12016 and 12047 (which do not have 

published CRE ages) are shown in black circles, positioned along the main correlation line 

according to their calculated cosmogenic 
38

Ar abundances. 
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4.3.3.3: Cosmogenic Nitrogen 

In addition to the correlations observed between cosmogenic 
21

Ne abundance, cosmogenic 

38
Ar abundance, and published exposure ages for mare basalts, the abundance of 

cosmogenic 
15

N is well-correlated with published exposure ages (excepting 70035, which 

has a much lower abundance of cosmogenic 
15

N than expected compared to other samples 

of a similar exposure age) (Fig. 4.3.3.3.1).  Since cosmogenic 
15

N is produced via 

spallation from target 
16

O atoms (Mathew and Marti, 2001), which are ubiquitous in 

silicate samples such as basalts, final measured abundances of cosmogenic 
15

N ought to be 

unaffected by compositional variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.3.1: Correlation between CRE age and abundances of cosmogenic 
15

N in 

powdered mare basalt samples.  CRE ages are taken from Table 2.1 and references therein.  

70035 does not fit the otherwise excellent correlation seen for the group of samples 

exposed for the shortest time. 

R
2
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R
2
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Interestingly, discounting 70035, there seems to be two separate trends observed in the 

data; a steeper trendline (shown in solid black in Fig. 4.3.3.3.1), passing through samples 

up to 95 Ma, and including 10072 (at 240 Ma) and 10050 (at 480 Ma) with an R
2
 value of 

0.9909, and a slightly shallower trendline (in dashed black in Fig. 4.3.3.3.1) passing 

through the same samples up to 95 Ma, and including 12064 and 70017 (at 220 Ma), 15386 

(at 235 Ma), 12040 (at 285 Ma), and 10017 (at 480 Ma), with an R
2
 value of 0.9377.  

Perhaps this reflects the fact that these aliquots were taken from samples collected from 

different locations on the lunar surface, none of which were in situ outcrops, and so 

separate samples will have experienced very different exposure histories, with some sitting 

at the top of the regolith, undisturbed for the entire duration of their exposure, and others 

experiencing more frequent burial/re-exposure cycles caused by the bombardment of the 

lunar surface by impactors; such burial/turnover of individual samples would provide 

varying degrees of shielding from incident cosmic rays and so have an effect on the 

production of cosmogenic 
15

N.  Also, these aliquots were subsampled from the interiors of 

the original collected sample masses, and so could have experienced different levels of 

shielding depending upon the location of the subsampling area relative to the exterior of 

the main sample mass, and its original orientation on the lunar surface. 

Assuming that published CRE ages for these samples are correct, using these abundances 

of cosmogenic 
15

N, an average production rate for cosmogenic 
15

N (P15) of 1.67E-12 g 

15
N/g rock/Ma is calculated.  There is considerable variation in calculated P15 values 

between samples, with one sample giving a production rate an order of magnitude lower 

than the rate calculated for shielding at 225g/cm
2
 (P15 = 3.2E-12 g 

15
N/g rock/Ma (Mathew 

and Murty, 1993)).  Perhaps this variation in production rates may be an artefact of very 

little N being released above system blank levels at temperature steps over 1000 ºC, 
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thereby introducing large errors on δ
15

N values for these releases, from which cosmogenic 

15
N abundances are then calculated. 

However, taking into account either or both of these correlations, it seems that the 

abundance of cosmogenic 
15

N (released at temperatures above ~ 1000 ºC) may also be a 

useful exposure parameter, alongside cosmogenic noble gases. 

While abundances of cosmogenic 
21

Ne suggest CRE ages for 12016 and 12047 of 150 Ma 

and 70 Ma (respectively), and abundances of cosmogenic 
38

Ar suggest CRE ages of 160 

Ma and 60 Ma (respectively), abundances of cosmogenic 
15

N suggest slightly shorter 

exposure ages of ~ 50 Ma and 40 Ma respectively. 
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The following chapter is written as a manuscript and is being submitted to Meteoritics and 

Planetary Science for peer review.  Stepped combustion work was conducted by J. 

Mortimer.  Stepped crushing was performed by A. B. Verchovsky and A. Buikin 

(Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia); the 

crushing results were processed and interpreted by J. Mortimer. 
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Volatiles in Lunar Soils 

Introduction 

For decades, there has been debate about the source(s) of nitrogen in lunar soil samples; 

since noble gases in lunar soils are predominantly solar, and nitrogen is both well 

correlated with these solar components, and likewise, co-located on soil grain surfaces 

(Wieler et al, 1999), a predominantly solar source for nitrogen was expected.  However, 

stepped heating analyses of lunar regolith have consistently revealed a similar release 

profile across all Apollo and Luna soils, with low temperature, 
15

N-enriched nitrogen 

preceding a mid-temperature, 
15

N-depleted component, which is then followed at the 

highest temperature steps by a second 
15

N-enriched release (e.g. Assonov et al, 2002; 

Brilliant et al, 1994).  This pattern of heavy-light-heavy (‘V-shaped’) nitrogen, with large-

scale variations in nitrogen isotopic composition of around 300 ‰ (Assonov et al, 2002; 

Becker and Clayton, 1975; Brilliant et al, 1994; Clayton and Thiemens, 1980; Frick et al, 

1988; Füri et al, 2012; Kerridge, 1975, 1993; Wieler et al, 1999), coupled with the 

observation that N isotopic variations correlate with 
40

Ar/
36

Ar ratios (which are taken as a 

proxy for soil antiquity, or when in the past a soil was exposed at the lunar surface) (Furi et 

al, 2012), led many to suggest that the composition of the solar wind must have changed 

over time, becoming relatively more enriched in 
15

N (Becker and Clayton, 1975; Clayton 

and Thiemens, 1980; Kerridge, 1975).   

In contrast, solar noble gases as measured in soils display very minor variations in 

comparison to nitrogen isotopic compositions (e.g. Kerridge, 1989, 1993), casting doubt on 

a predominantly solar source of nitrogen in soils.  Further, N/
36

Ar ratios measured in soils 

(Assonov et al, 2002; Frick et al., 1988; Kerridge, 1993; Wieler et al, 1999) are around ten 

times greater than the solar elemental abundance ratio of 37 (Anders and Grevesse, 1989), 
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and, whilst 
15

N-depleted (‘light’) nitrogen is correlated with the release of solar wind D-

depleted hydrogen from the outer rims of lunar soil grains, 
15

N-enriched (‘heavy’) nitrogen 

correlates with the release of D-enriched hydrogen from a planetary source (Hashizume et 

al, 2000). Thus, the observed trend of higher average δ
15

N values with decreasing soil 

antiquity may not be caused by a secular variation in solar wind composition, but instead 

may be recording a change in the relative contribution of a planetary nitrogen source to the 

lunar surface (Hashizume et al, 2002).  Therefore, many now agree that nitrogen in lunar 

soils represents mixing between a ‘heavy’ planetary nitrogen component with a solar wind 

component of ‘light’ composition (Assonov et al, 2002; Furi et al, 2012; Geiss and 

Bochsler, 1982; Hashizume et al., 2000, 2002; Marty et al., 2003; Ozima et al., 2005; 

Wieler et al., 1999).  This has been supported by recent direct measurements of solar wind 

nitrogen implanted into the Genesis Solar Wind Concentrator target, which gave a modern-

day δ
15

N value for solar wind of -407 ± 7 ‰ (Marty et al, 2011), comparable to the 

composition of protosolar nitrogen (-383 ± 8 ‰ (Marty et al, 2011)), and to that of the 

Jovian atmosphere (Owen et al., 2001). 

In light of this, Furi et al (2012) calculated that most of the nitrogen released from Luna 24 

soil grains is from a non-solar source with a planetary composition of between +100 ‰ 

and +160 ‰, assuming binary mixing with 
15

N-depleted solar wind, with the highest 

proportion contribution from a non-solar source being found in recently exposed Apollo 

soils (with 
40

Ar/
36

Ar ratios ≤ 1.5). 

In this study, a diverse set of Apollo lunar soils have been analysed both by stepped 

combustion and by mechanical crushing in vacuo.  With both methods, gases released were 

simultaneously analysed for nitrogen and noble gases (He, Ne, and Ar).  
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Samples 

Five Apollo lunar soils, representing both extremely mature (e.g. Is/FeO = 94) and 

immature (e.g. Is/FeO = 5.7) samples, and covering a range of collection locations, from 

Apollo 12, 14, 15, 16, and 17, and including both shaded soils and samples collected at the 

surface of the regolith in unshaded locations, were chosen for stepped combustion analyses 

(with 12070 analysed twice) (Table 1).  Of these, further aliquots of the same allocated 

sample material were taken for three of the lunar soils, for the purposes of crushing under 

vacuum conditions (Table 2).  All samples, regardless of volatile extraction method, were 

analysed using the same gas clean-up and separation sections, and mass spectrometers (as 

outlined in Methods).   

Table 5.1: List of five lunar soil samples chosen for stepped combustion analysis, with the 

weights of three of these soils that were chosen for crushing analysis. (
a
 Morris, 1978). 

 

 

 

 

Apollo 

Sample 

Weight (mg) 

(Combustion) 

Weight (mg) 

(Crushing) 

Maturity 

(Is/FeO) 
Description 

12070 

Run 1: 2.063    

22.2 47
a
 

Collected as part of the 

contingency sample, taken from a 

location in front of the Lunar 

Module (LM) 
Run 2: 5.211 

14141 7.637 21.7 5.7
a
 

Coarse soil, collected from near 

the rim of Cone Crater 

15040 5.662 - 94
a
 

Collected at Station 8, from the 

surface at the top of a trench  

69921 5.377 24.7 90
a
 

Skim soil, collected from top 1 cm 

of regolith in shaded area next to a 

small (0.5 m) boulder at Station 9 

72501 4.710 - 81
a
 

Collected from landslide at Station 

2, at the base of the slope of the 

South Massif, close to Nansen 

Crater 
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Methods 

For stepped combustion analyses, samples were weighed out and transferred into 4 mm x 4 

mm clean platinum foil buckets in a Class 100 clean room (Pt foil cleaning methods are as 

described in Abernethy et al., 2013). Tweezers and spatulas used to transfer the sample 

fines from their respective vials to the platinum buckets were cleaned before use, and 

wiped with acetone using lint-free cloths between uses with separate samples.  For 

crushing analyses, soil samples were weighed out in the same Class 100 clean room, and 

transferred to the laboratory in vials for introduction into the crushing tube. 

The ‘Finesse’ mass spectrometric instrument used in this study is a custom-built mass 

spectrometer system, consisting of three dedicated static-mode mass spectrometers (one for 

carbon, one for nitrogen and argon, and a quadrupole for helium and neon), all linked via 

high vacuum lines to a common sample inlet and gas clean-up sections, and combustion 

furnace (see Verchovsky et al., 1997 ; Wright et al., 1988; and Wright and Pillinger, 1989 

for further details, and Boyd et al., 1997, for a review of the stepped-heating method).   

The custom-built small volume mechanical crusher (Figure 1) is also attached to this triple 

mass spectrometer and gas clean-up system, and consists of a vertical stainless steel tube 

mounted on a 34 mm flange, with a concave stainless steel end piece at the bottom (into 

which the sample is loaded). A magnetic metal rod of a slightly smaller diameter than the 

inside of the crushing tube is then inserted; this crushing rod has a convex lower end 

designed to fit the curve of the concave sample holding depression at the base of the 

crushing tube.  The top of the crushing tube is attached, via a stainless steel vacuum line 

and computer-controlled pneumatic valve, to the main gas handling and analysis sections 

of ‘Finesse’, allowing the crusher to be pumped down to vacuum and baked out at ~ 200 

ºC for 12 hours before crushing begins, and for immediate transfer of released gases to the 
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mass spectrometers at predetermined steps during the crushing procedure.  A series of five 

computer-controlled solenoids on the outside of the crushing tube work in sequence to 

raise the magnetic crushing rod inside, before it is allowed to drop back down onto the 

sample.  Gases released during crushing are held in the crushing tube until transfer into the 

rest of the mass spectrometer system for cleaning, separation, and measurements.  The 

crusher is cleaned after every sample with fine sandpaper (to remove any ingrained 

material from internal surfaces), and washed with acetone before being sonicated 

overnight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Diagram of the mechanical crusher used in this study. 
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Stepped Combustion Procedure 

Samples were combusted in oxygen, supplied from CuO, in a double-walled quartz-

ceramic furnace for 30 minutes at each temperature step, followed by 15 min for oxygen 

resorption, before transfer 

of the gases produced to the clean-up section. For Run 1 of soil 12070, twelve combustion 

steps were used, in 100 ºC steps from 300 to 1400 ºC. However, for Run 2 of soil 12070, 

fifteen combustion steps were employed to acquire higher-resolution data, heating in 100 

ºC steps from 200 to 700 ºC, then in 50 ºC steps from 750 to 850 ºC, followed by 100 ºC 

steps from 900 to 1400 ºC. All other soil samples were combusted in seventeen 

temperature steps, in increments of 100 ºC from 200 to 600 ºC, then in 50 ºC steps from 

650 to 850 ºC, followed by 100 ºC steps from 900 to 1400 ºC.  During stepped combustion 

analyses, C, N, He, Ne, and Ar data were collected. 

 

Crushing Procedure 

Samples were crushed in steps under vacuum conditions, with the released gases being 

transferred to the clean-up and analysis sections of ‘Finesse’ after a predetermined number 

of strokes had been completed.  The number of strokes between transfers of gases out of 

the crusher was increased during the analyses, from an initial ten strokes, up to durations of 

2000 to 3000 strokes each time.  Cumulatively, the number of crushing strokes performed 

on a sample totalled 14280 strokes for 12070, 13880 strokes for 14141, and 18880 strokes 

for 69921.  The cumulative numbers of strokes a sample experienced varied based on the 

measured release of gases; for each sample, crushing ended when the abundance of gas 

released per stroke had decreased to almost negligible amounts.  Unlike stepped 

combustion analyses, C was not measured during the crushing experiments, only N and 

noble gases (He, Ne, and Ar). 
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Gas fractions released from both stepped combustion and crushing extraction procedures 

were processed in the same way.  First, the released gases were cryogenically separated 

using liquid nitrogen cooled traps, one of which was filled with a molecular sieve. Argon 

and neon were purified using Ti–Al getters, and nitrogen was purified using a CuO furnace 

to ensure no CO was present. Carbon yields (recorded as ng of C) were calculated using 

the pressure of CO2 measured on a calibrated MKS Baratron™ capacitance manometer. 

Nitrogen yields (also recorded as ng) were measured via calibration of the mass 

spectrometer ion current at m/z = 28, with yields of noble gases also determined by 

calibration of mass spectrometer peak intensities at the appropriate m/z values.  Gases were 

transferred to different parts of the machine using a system of computer-controlled 

pneumatic valves. For each temperature step, the isotopes of C, N, He, Ne, and Ar were 

measured sequentially, taking approximately 1.5 hours to complete the cycle for five 

elements. Once all measurements were complete, the high vacuum line was pumped before 

the next temperature step. 

In order to reduce the contributions from CO2 
++

 and 
40

Ar 
++

 on Ne masses (22 and 20), a 

low ionisation voltage of ~ 40 V was used in the quadrupole ion source. Also, Ar present 

in the system was cooled down on the molecular sieves and the Ti–Al getter was open to 

the mass spectrometer chamber during Ne measurements. 

Isotopic data are expressed using the delta (δ) notation, as parts per thousand (‰) 

deviations from standards (Vienna Peedee Belemnite (VPDB) for C, and terrestrial air (AIR) 

for N). System blanks 

were monitored between sample analyses by putting an empty clean Pt foil bucket through 

the same stepped combustion procedure used for the lunar samples and collecting both 

abundance and isotopic data. Typical system blank levels for stepped combustion were < 

10 ng of C and < 1 ng of N. Typical system blanks for 
4
He were < 1E-7 cc, for 

20
Ne were < 
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6.5E-10 cc, and for 
40

Ar and 
36

Ar were < 8E-9 cc and < 1.2E-10, respectively. For crushing 

analyses, system blanks were monitored at several stages during the total sample crushing 

runs by stopping crushing and closing off the crushing tube for a length of time 

comparable to the next crushing step duration, and typically these were < 0.76 ng of N, < 

6E-9 cc for 
20

Ne, < 8.5E-6 cc for 
4
He, and for 

40
Ar and 

36
Ar were < 1.65E-8 cc and < 3.7E-

10 cc, respectively. 

All data presented in this manuscript have been corrected for the contribution of system 

blanks (unless otherwise stated), and any isotopic averages presented are calculated as 

weighted averages. 

 

Stepped Combustion Results 

Stepped combustion analyses in this study reveal volatile releases that are in excellent 

agreement with previous combustion work.  For all soil samples, N is released in the 

characteristic heavy-light-heavy isotopic profile (as previously observed by Assonov et al, 

2002; Brilliant et al, 1994 etc) (Table E; Figure 2). 
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Figure 5.2: Step plots showing nitrogen release profiles for all soils analysed by stepped 

combustion.  Abundances, measured on left-hand axis, are displayed as a histogram, and 

isotopic compositions, measured on the right-hand axis, are displayed as a line graph. (A = 

12070 Run 1; B = 12070 Run 2; C = 14141; D = 15040; E = 69921; F = 72501). 
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For each soil, the most 
15

N-depleted (‘lightest’) isotopic signature is measured at 850-900 

ºC (apart from 12070 Run 1 (Panel A, Figure 2), where the 900 ºC step released N at little 

over the system blank level).  It must be noted that the combustion steps releasing the 

lightest nitrogen component are not coincident with the maximum N abundances, but 

instead are associated with some of the lower released abundances (relative to combustion 

steps at temperatures either side of 850-900 ºC), which, given a solar wind N isotopic 

signature of around -400 ‰ (Marty et al, 2011), indicates that the main contributor to N 

abundances in lunar soils must be from a non-solar source with a much more 
15

N-enriched 

(‘heavier’) isotopic composition (see Discussion section). 

In contrast to N releases, hundreds of ng of C are released from the first few temperature 

steps, up to 500-600 ºC.  This is associated with the release of terrestrial contaminants from 

the samples.  However, above this temperature, two further releases of C are observed in 

all soils; one at roughly 600-900 ºC, and a second at temperatures above 1000 ºC (Table D; 

Figure 3).  Although large uncertainties are associated with some of these C releases, C 

isotopic composition varies considerably; in some samples (14141, 15040, and 72501) 

there is an apparent relative depletion in 
13

C associated with the 600-900 ºC release peak of 

C, but in general, despite variations in isotopic composition, δ
13

C values for C released 

above around 600 ºC are positive (i.e. 
13

C-enriched).  The exception to this observation is 

14141, which is the least mature soil included in this sample set.  Whilst this soil shows 

similar relative patterns of varying isotopic composition to the other, more mature, soils, in 

this case, δ
13

C values remain between -35 ‰ and -20 ‰.   

Again, as previously noted by others (e.g. Assonov et al, 2002; Brilliant et al, 1994; 

Hohenberg et al, 1970), 
40

Ar, 
36

Ar, and N are co-released in all samples (Figures 4 and 5), 

albeit with an additional release peak of 
40

Ar at lower temperatures (typically between 400 
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ºC and 600 ºC) that is not observed in releases of 
36

Ar, which gives rise to the elevated 

40
Ar/

36
Ar ratios at these lower temperatures (Table B).  Assonov et al (2002) explain this 

low temperature 
40

Ar release as being attributable to terrestrial atmospheric contamination 

and/or re-implantation of 
40

Ar liberated to the lunar atmosphere during regolith reworking 

events (this re-implanted 
40

Ar being much more loosely fixed at the surfaces of grains 

which have experienced little or no reworking than the bulk of the argon contained in the 

soils, which, after soil reworking, is immured deeper within grains; thus re-implanted 
40

Ar 

is liberated at lower temperatures during analysis).  As noted in previous studies (e.g. 

Assonov et al, 2002), atomic N/
36

Ar ratios above ~650 ºC are relatively constant, at around 

ten times the solar ratio (as estimated by Anders and Grevesse, 1989). 
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Figure 5.3: Step plots showing carbon release profiles for soils analysed by stepped 

combustion. N.B: No carbon data was collected for 12070 Run 1. Abundances, measured 

on left-hand axis, are displayed as a histogram, and isotopic compositions, measured on the 

right-hand axis, are displayed as a line graph. (A = 12070 Run 2; B = 14141; C = 15040; D 

= 69921; E = 72501). 
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Figure 5.4: Release patterns for nitrogen (grey histogram, with values corresponding to the 

left-hand axis) and 
40

Ar (dotted black lines, with values corresponding to the right-hand 

axis) abundances, showing the co-release of 
40

Ar and N at temperatures above ~ 650 ºC, 

plus the additional low temperature (400-600 ºC) release of 
40

Ar, attributable to terrestrial 

atmospheric contamination and/or re-implanted 
40

Ar liberated into the lunar atmosphere by 

impact reworking of the lunar regolith (Assonov et al, 2002). (A = 12070 Run 1; B = 

12070 Run 2; C = 14141; D = 15040; E = 69921; F = 72501). 
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Figure 5.5: Release patterns of 
40

Ar (black dotted lines, with values corresponding to the 

left-hand axis) and 
36

Ar (solid black lines, with values corresponding to the right-hand 

axis), showing co-release of both isotopes at temperatures over approximately 650 ºC. (A = 

12070 Run 1; B = 12070 Run 2; C = 14141; D = 15040; E = 69921; F = 72501). 
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4
He is released from all soil samples by stepped combustion (Figure 6), and is present in 

much greater abundances than in lunar basalts (Mortimer et al, 2015).  However, unlike 

4
He in mare basalts, which is of radiogenic origin, 

4
He in soils is from a solar wind source 

(e.g. Wieler, 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Stepped combustion releases of 
4
He from all soil samples in this study, 

showing varying abundances between samples, but the common peak release temperature 

of 500 ºC (vertical black line). 

 

Neon is also released from all soil samples by stepped combustion (Table C); after 

correcting Ne isotope ratios for both the contribution of a system blank of atmospheric 

composition, and for the effects of fractionation in the mass spectrometer during analysis, 

the majority of the Ne released by combustion appears to be from a solar source, which is 
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fractionated away from the pure solar values upon implantation into the lunar surface.  

This dominant solar Ne component is also mixed with a much less abundant cosmogenic 

Ne component in some samples, although even the highest temperature steps still appear to 

be a mixture of solar and cosmogenic Ne (Table H; Figure 7). 
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Figure 5.7: Neon isotopic compositions for stepped combustion analyses of lunar soils.  

Most of the neon released is from a solar source, fractionated away from true solar values 

during implantation.  In some soils, this fractionated solar neon component is mixed with a 

minor cosmogenic neon component (grey dotted lines indicate mixing trend).  Solar and 

cosmogenic end-member compositions are represented by orange circles and grey ellipses 

(respectively).  Instrument errors are 5 %. (A = 12070 Run 1; B = 12070 Run 2; C = 

14141; D = 15040; E = 69921; F = 72501). 
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Crushing Results 

Noble gas (He, Ne, and Ar) and nitrogen data were collected for soils 12070, 14141, and 

69921.  Carbon data were not collected during crushing analyses. 

Crushing in vacuum released much lower abundances of nitrogen from the samples than 

stepped combustion, ranging from 0.2 % of the total combustion release to 1.8 % (Table 

3).  Most of the nitrogen that was released by crushing was liberated within the first few 

tens to hundreds of strokes (Table F; Figure 8), with a marked decrease in the amount of N 

being released as crushing progressed.  The fact that crushing only releases a few percent 

of the total N known to be liberated by stepped combustion suggests that the mechanism of 

nitrogen release is different to that of noble gases.  Being highly reactive, nitrogen may be 

more strongly bound to molecules within minerals than unreactive noble gases, making it 

much less likely to be released.  Also, if nitrogen is bound up in crystal lattices, and not 

weakly implanted into grain surfaces (as solar noble gases are), then it will require longer 

timescales to diffuse out from these deeper depths into void spaces in sample material, 

from where it can be released when these voids are cracked open during crushing.  There 

may also be a kinetic effect at work, with any frictional heating caused by crushing 

happening in a highly localised and transient way (i.e. not equilibrium heating, as with 

stepped combustion).  In this case, soil grains may not experience heating for long enough 

to aid the release of bound nitrogen and its diffusion into void spaces within the sample.  

Interestingly, despite the low abundances of N released by crushing, there is a positive 

correlation between the total N abundance (from crushing) and soil maturity. 
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Sample 
Total N from 

Combustion (ng/g) 

Total N from 

Crushing (ng/g) 

% of Combustion Total 

Released by Crushing 

12070 254.24 (Run2) 0.60 0.2 

14141 18.56 0.34 1.8 

69921 108.04 1.51 1.4 

Table 5.2: Total N abundances released by stepped combustion, compared with total N 

abundances released from lunar soils by crushing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Cumulative release curves for nitrogen released by crushing, showing the rate 

at which N is released slowing down considerably after the first few hundred strokes.   

 

Noble gases released by crushing display some unusual trends. During stepped combustion 

analyses, 
4
He reaches maximum release first, followed by 

20
Ne, and then 

36
Ar; this is true 

for all samples in this study.  However, when crushed, only the least mature soil (14141) 

shows this trend, with 
20

Ne released from 12070 and 69921overtaking that of 
4
He after 



                                                                                                                    Chapter Five: Lunar Soil Analysis 

 

139 

 

several hundred crushing strokes and reaching maximum release first (Table G; Figure 9).  

Whilst this is unexpected, a possible explanation may be that frictional heating caused by 

the crushing process is highly localised and affects grain surfaces more than grain interiors.  

Although both 
4
He and 

20
Ne in lunar soils are of solar origin, studies have shown that 

4
He 

is implanted to greater depths into grains of target material than neon or argon (e.g. 

Verchovsky et al., 2003).  If this is the case for solar wind implantation into lunar soil 

grains, it follows that 
20

Ne would be located closer to the grain surface, and so would be 

expected to be released first, compared to other 
4
He.  
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Figure 5.9: Cumulative release curves for 
4
He, 

20
Ne, and 

36
Ar (expressed as percentages of 

the total abundances released by combustion) for A) 12070, B) 14141, and C) 69921.  Note 

that for A and C (12070 and 69921), release of 
20

Ne overtakes that of 
4
He, unlike B 

(14141), which displays the trend expected based on stepped combustion releases of the 

same isotopes.  Note also that 12070 releases more than 100 % of the total released by 

combustion. 

A 

B 

C 
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For most noble gases, total released abundances from crushing appear to be much lower 

than abundances released by combustion (between 20 % and 40 % of the combustion total 

for 
36

Ar, and 40 % to 80 % of the combustion totals for 
4
He (Table G)), indicating that 

mechanical crushing is a less efficient method for volatile extraction than combustion 

techniques.  Relative variations in the yield of certain isotopes between samples (in 

comparison to yields from combustion analyses), including the release of 
20

Ne from 12070 

at 112 % of the abundance released by combustion, are likely caused by sample 

heterogeneity, with the aliquots used for crushing having a slightly different modal 

compositions to those taken from the same bulk samples for combustion analyses.   

Crushing of lunar soils yields variable 
4
He/

20
Ne and 

20
Ne/

36
Ar ratios (Table 4), although 

the range of ratios measured for 12070 and 14141 are comparable in both cases.  Ratios 

measured during crushing of 69921, however, show a much tighter range of values for both 

4
He/

20
Ne and 

20
Ne/

36
Ar, and the ratios themselves are lower.  Nevertheless, when these 

ranges of ratio values from crushing are compared with the ratios derived from each 

temperature step of the relevant combustion analyses, some similarities emerge.  In the 

case of 
4
He/

20
Ne, crushing ratios match combustion ratios over a wide range of 

temperatures, from 400 ºC up to 900 ºC.  
20

Ne/
36

Ar crushing ratios agree with combustion 

ratios over a much smaller temperature window, from 600 ºC up to 700 ºC.  For both 

ratios, the average combustion temperature of the range that agrees with the crushing ratios 

is 650 ºC, and thus we tentatively suggest that during mechanical crushing in vacuum, 

individual soil grain surfaces are frictionally heated to similar temperatures locally, which 

facilitates the release of volatiles. 
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Table 5.3: 
4
He/

20
Ne and 

20
Ne/

36
Ar ratios measured during soil crushing analyses, with 

combustion temperatures which yield matching ratios. 

 

If crushing does cause the samples to be heated to between 400 ºC and 900 ºC, this helps to 

explain the Ne isotope ratios measured in crushing analyses.  Both combustion runs of 

12070 show mixing of mostly implanted (and therefore fractionated) solar Ne with a 

cosmogenic Ne component, which is only released at temperatures of 900-1000 ºC and 

over.  Ne isotope ratios from crushing analysis of 12070 (Table I; Figure 10) do not show 

any significant cosmogenic Ne input, and so must have been released at temperatures 

lower than 900 ºC. 

 

 

 

 

 

Sample 

4
He/

20
Ne 

range 

(crushing) 

Corresponding 

Combustion 

Temperature Range 

 20
Ne/

36
Ar 

range 

(crushing) 

Corresponding 

Combustion 

Temperature Range 

12070 
18.2 to 

57.1 
500-900 °C 

 3.9 to 

18.4 
600-700 °C 

14141 
19.7 to 

61.3 
400-800 °C 

 4.0 to 

15.9 
600 °C 

69921 
10.0 to 

26.2 
500-750 °C 

 
1.7 to 5.4 650 °C 

  
Min. Temp. = 400 °C  

 
Min. Temp. = 600 °C 

  
Max. Temp. = 900 °C  

 
Max. Temp. = 700 °C 

  
Av. Temp. = 650 °C  

 
Av. Temp. = 650 °C 
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Figure 5.10: Neon isotopic compositions for crushing analyses of lunar soils.  Neon 

released by crushing is from a solar source, fractionated away from true solar values during 

implantation. Unlike in stepped combustion analyses (Fig.7), solar Ne is not mixed with 

cosmogenic Ne in these crushing data.  Solar and cosmogenic end-member compositions 

are represented by orange circles and grey ellipses (respectively).  Instrument errors are 5 

%. (A = 12070; B = 14141; C = 69921). 

A 

B 

C 
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Discussion 

Solar vs non-solar nitrogen 

Although spallation processes generated by incoming cosmic rays lead to a significant 

enrichment in 
15

N progressively over time as a sample resides at or near to the lunar 

surface, stepped combustion analyses of lunar basalts demonstrate that such cosmogenic N 

is only present in very low abundances (between 0.20 ppm and 0.25 ppm) (e.g. Mortimer 

et al. 2015).  Lunar soils contain much greater abundances of total N (ranging from 18.56 

ppm N in immature soil 14141, up to 108.04 ppm N in mature soil 69921), and so the 

effect of a cosmogenic N component on measured isotopic compositions of lunar soils will 

be negligible. Similarly, stepped combustion analyses of lunar basalts reveal a minor 

indigenous lunar nitrogen component (at +0.35 ± 9.11 ‰, and present in abundances of 

between 0.13 ppm and 0.83 ppm (Mortimer et al., 2015)); this is volume-correlated, and as 

with any cosmogenic N, is several orders of magnitude less abundant than the total N 

released from lunar soils, which is mostly surface-correlated anyway (e.g. Hashizume et 

al., 2000).  Therefore, for the purposes of the following calculations, it is assumed that 

inputs from both cosmogenic and indigenous lunar N are so low in relation to the total N 

release from lunar soils that they have essentially no impact on weighted average (across 

all temperature steps) N isotopic compositions for each soil sample. 

Assuming instead that the total N released from lunar soils represents a binary mixture of 

solar and non-solar nitrogen components, and taking into account the isotopic composition 

of the solar wind as measured by Genesis (at -400 ‰ (Marty et al., 2011), it is possible to 

recreate the calculations of Furi et al., 2012 using data from this study, working backwards 

from the measured (mixed) N values to derive estimates for both the percentage 
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contribution from a non-solar source of N to the lunar surface, and the likely isotopic 

composition of this non-solar contributor. 

Weighted average δ
15

Ntr values (the average value for all the nitrogen trapped in a soil 

sample) for the soils in this study vary between +1.0 ‰ and +65.7 ‰, with average atomic 

36
Ar/N ratios (normalised to the solar 

36
Ar/N value of 0.02714, taken from Anders and 

Grevesse, 1989) varying between 0.12 and 0.17 times the solar value (Table 5).  The 

relative proportions of solar and non-solar N are calculated using the following equation: 

    
   

    
          

  

     
 

where δ
15

Ntr is the abundance-weighted average value off all the nitrogen trapped in the 

soil sample,  δ
15

NSW and δ
15

NP are the end-member isotopic compositions of solar wind 

nitrogen and non-solar (‘planetary’) nitrogen, respectively. ƒP is the mixing proportion of 

non-solar to solar nitrogen, and is defined thus: 

   
  

   
 

Clearly, with 
36

Ar/Ntr values varying between 1/9
th

 and 1/6
th

 of the solar ratio, either 

36
ArSW has been lost as a result of impact and gardening processes at the lunar surface 

(with N being preferentially retained as a result of chemisorption onto activated grain 

surfaces), or a significant proportion of non-solar nitrogen (NP) has been added to that 

derived from a solar source (negligible amounts of 
36

Ar are added from the non-solar 

source, as evidenced by the majority of other noble gases (i.e. Ne) being derived from solar 

and not planetary sources).  Whilst the preferential loss of solar noble gases over solar 

nitrogen is certainly an important factor, as evidenced by the relatively easy and abundant 

releases of noble gases from soils during in vacuo crushing compared to the miniscule N 
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crushing yields, average δ
15

Ntr values measured in lunar soils by stepped combustion 

methods display considerable enrichment in 
15

N relative to the solar end-member value, 

which strongly suggests that the majority of the N measured in lunar soils comes from a 

non-solar source.  Therefore, when calculating the relative contributions from both solar 

and non-solar sources of N, assuming that no loss of 
36

ArSW has taken place, and that all of 

the difference between measured and solar 
36

Ar/N values is caused by the addition of non-

solar N, will give an upper limit to the proportion of non-solar N present, or alternatively, 

provide the lower limit of the isotopic composition of the non-solar end-member. 

Thus, to calculate the mixing proportion (ƒP) of non-solar to solar N (NP/NSW), the 

following equation is used: 

        
  

        
  

  
     
     

 

where (
36

Ar/N)tr is the average measured ratio for the soil sample, (
36

Ar/N)SW is the solar 

ratio taken from Anders and Grevesse (1989), and ƒR is the fraction of solar gas lost (which 

here will be taken to be 0). 

Assuming no loss of 
36

ArSW means that a range of NP end-member isotopic compositions 

are required, from +87 ‰ for 12070 (Run 2), up to +140 ‰ for 72501 (Figure 11).  

However, this range of isotopic compositions results in a much tighter range of mixing 

proportions between NP and NSW, with the non-solar nitrogen source contributing 77.15 % 

of the total N in soil 14141, up to 87.25 % of the total N in soil 15040 (Table 5.4).  It is 

interesting to note that, although most sub-mature and mature soils have a similar relative 

contribution from a non-solar source (at approximately 86 % to 87 % of the total N in the 

soils), the sample with the lowest maturity, 14141, also has the lowest relative contribution 

from non-solar sources of N, at 77.15 %.  Therefore, it seems that N contributions from 
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non-solar sources are increasingly dominant as a soil matures at the lunar surface.  

Furthermore, despite slight differences in the mixing proportions of solar and non-solar 

nitrogen sources between samples, it is clear that in all lunar soils, solar N only accounts 

for a small proportion of the total N present (< 23 % solar N).  This conclusion is in 

agreement with those of Furi et al. (2012), who state that between 60 % and 83 % of the N 

present in low-antiquity (
40

Ar/
36

Ar ratios ≤ 1.5) Apollo soils comes from a non-solar 

source.  All of the Apollo soils used in this study have 
40

Ar/
36

Ar ratios ≤ 1.5, except 14141, 

which has a 
40

Ar/
36

Ar ratio of 10.92.  The range of NP isotopic compositions suggested 

here is also in close agreement with values (+90 ‰ to +130 ‰) proposed by Furi et al., 

2012. 

If, however, we assume that some degree of 
36

ArSW loss is also occurring alongside 

addition of non-solar N, theoretical mixing lines can be constructed between a solar N end-

member (at ~ -400 ‰) and a non-solar (NP) end-member composition of +140 ‰ (the 

value suggested by negligible loss of 
36

ArSW from the most 
15

N-enriched soil) (Figure 

5.11).  In this case, 12070 (Run 2) has experienced the largest loss of 
36

ArSW, at ~ 40 % 

loss (ƒR = 0.42) (Table 5.4). 
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Figure 5.11: Isotopic composition of nitrogen released from lunar soils (weighted average 

across all temperature steps) versus measured 
36

Ar/N ratios in samples, normalised to the 

solar ratio (taken from Anders and Grevesse, 1989).  The large red circle at +140 ‰ on the 

y-axis indicates the end-member isotopic composition of the non-solar N contribution, 

assuming no loss (ƒR = 0) of 
36

ArSW from the most 
15

N-enriched sample (72501), and a 

maximum of 40 % loss (ƒR = 0.4) of 
36

ArSW from the least 
15

N-enriched sample (12070 run 

2).  The yellow bar at -400 ‰ represents the composition of solar nitrogen. Solid black 

lines are theoretical mixing lines between solar and non-solar N end-members, assuming 

different fractions of 
36

ArSW loss.  The grey dotted line represents the mixing line between 

solar and non-solar N (with a minimum isotopic composition of +87 ‰), assuming 0 % 

loss of 
36

ArSW from the least 
15

N-enriched sample, and so by extension, the lower limit for 

the isotopic composition of the non-solar end-member for all soils in this study.   

 

Soil maturity (Is/FeO) is positively correlated (R
2
 = 0.58) with weighted average δ

15
N 

values, indicating that, as a soil undergoes progressive processing at the lunar surface, this 

ƒR = 0 ƒR = 0.4 ƒR = 0.2 
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seems to be driving the variations observed in δ
15

N values.  Further, whilst relative 

percentage contributions to the total N present in lunar soils from a non-solar source are 

positively correlated with both weighted average δ
15

N values (R
2
 = 0.47), and with soil 

maturity (R
2
 = 0.77), indicating that relatively more N comes from non-solar sources as a 

soil is processed and matured at the lunar surface, the weaker correlation with average N 

isotopic compositions suggests that the addition of non-solar N is not the only factor which 

determines the overall isotopic composition of soils.  

If, therefore, the potential loss of 
36

ArSW from all soil samples is also taken into account , 

and a non-solar end-member isotopic composition of +160 ‰ is assumed (as proposed by 

Furi et al. (2012)), then the range of relative contributions from a non-solar N source 

remains largely the same (71.6 %, up to 83 % non-solar N) (Table 5.4), confirming that 

non-solar N is the major contributor to the total N present in lunar soils, and that solar N 

contributes only around a quarter of the N total abundance.  A non-solar composition of 

+160 ‰ requires losses of 
36

ArSW of between 18 % and 48 %, which again fits well with 

the calculations of Furi et al. (2012) (Figure 5.12). 
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ƒR = 0 
ƒR = 0.4 ƒR = 0.2 ƒR = 0.6 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Isotopic composition versus (
36

Ar/N)tr/(
36

Ar/N)SW ratios. The purple square at 

+160 ‰ on the y-axis indicates the end-member isotopic composition of NP, taken from 

Furi et al, 2012.  The yellow bar at -400 ‰ represents the composition of solar nitrogen. 

Solid black lines are theoretical mixing lines between solar and non-solar N end-members, 

assuming different fractions of 
36

ArSW loss.   
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Table 5.4: Comparing mixing proportions of solar and non-solar N end-members in 3 

different scenarios (no loss of 
36

ArSW and variable NP compositions; variable loss of 
36

ArSW 

and NP = +140 ‰; variable loss of 
36

ArSW and NP = +160 ‰). 

 

Assuming 0 % loss of 36ArSW 

 
12070 

Run 1 

12070 

Run 2 
14141 15040 69921 72501 

Weighted Average Isotopic 

Composition (δ15N, ‰) 
32.3 23.3 1.0 36.2 34.6 65.7 

Non-Solar End-Member Isotopic 

Composition (δ15N, ‰) 
120 87 120 100 100 140 

Contribution of Non-Solar Nitrogen (%) 83.15 86.90 77.15 87.25 86.90 86.25 

Contribution of Solar Nitrogen (%) 16.85 13.10 22.85 12.75 13.10 13.75 

Loss of Solar Wind 36Ar (%) 0 0 0 0 0 0 

ƒR 0 0 0 0 0 0 

ƒP 4.935 6.634 3.376 6.843 6.634 6.273 

(1-ƒR)/(1+ƒP) 0.1685 0.1310 0.2285 0.1275 0.1310 0.1375 

(36Ar/N)tr/(
36Ar/N)SW 0.1685 0.1270 0.2319 0.1206 0.1282 0.1325 

       
Assuming NP = +140 ‰ 

 

12070 

Run 1 

12070 

Run 2 
14141 15040 69921 72501 

Weighted Average Isotopic 

Composition (δ15N, ‰) 
32.3 23.3 1.0 36.2 34.6 65.7 

Non-Solar End-Member Isotopic 

Composition (δ15N, ‰) 
140 140 140 140 140 140 

Contribution of Non-Solar Nitrogen (%) 80.05 78.40 74.26 80.80 80.15 86.20 

Contribution of Solar Nitrogen (%) 19.95 21.60 25.74 19.20 19.85 13.80 

Loss of Solar Wind 36Ar (%) 15 42 10 37 35 4 

ƒR 0.15 0.42 0.10 0.37 0.35 0.04 

ƒP 4.013 3.630 2.885 4.208 4.038 6.246 

(1-ƒR)/(1+ƒP) 0.1696 0.1253 0.2317 0.1210 0.1290 0.1325 

(36Ar/N)tr/(
36Ar/N)SW 0.1685 0.1270 0.2319 0.1206 0.1282 0.1325 

       
Assuming NP = +160 ‰ 

 

12070 

Run 1 

12070 

Run 2 
14141 15040 69921 72501 

Weighted Average Isotopic 

Composition (δ15N, ‰) 
32.3 23.3 1.0 36.2 34.6 65.7 

Non-Solar End-Member Isotopic 

Composition (δ15N, ‰) 
160 160 160 160 160 160 

Contribution of Non-Solar Nitrogen (%) 77.2 75.6 71.6 77.9 77.6 83 

Contribution of Solar Nitrogen (%) 22.8 24.4 28.4 22.1 22.4 17 

Loss of Solar Wind 36Ar (%) 25 48 18 45 42 20 

ƒR 0.25 0.48 0.18 0.45 0.42 0.2 

ƒP 3.386 3.098 2.521 3.525 3.464 4.882 

(1-ƒR)/(1+ƒP) 0.1710 0.1269 0.2329 0.1215 0.1299 0.1360 

(36Ar/N)tr/(
36Ar/N)SW 0.1685 0.1270 0.2319 0.1206 0.1282 0.1325 
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Conclusions 

Simultaneous measurements of carbon, nitrogen, and noble gases in lunar soils by stepped 

combustion analysis reveal the characteristic release pattern of heavy-light-heavy nitrogen, 

as well as reconfirming that 
40

Ar, 
36

Ar, and N releases are well-correlated (above 650 ºC).  

An excess of 
40

Ar (relative to releases of 
36

Ar) at low temperatures is most likely caused by 

the re-implantation of liberated 
40

Ar from the lunar atmosphere and/or terrestrial 

atmospheric contamination.  The correlation between argon and nitrogen releases perhaps 

implies a common source for these volatiles.  Neon isotopes measured by stepped 

combustion reveal that the majority of neon in lunar soils comes from a solar source, with 

a minor cosmogenic component released at only the highest temperature steps.  However, 

the release of 
15

N-enriched nitrogen from soils shows that it is not purely solar in origin 

(given solar wind nitrogen signatures of around -400 ‰), and calculations reveal that up to 

87 % of the nitrogen measured in lunar soils could come from a non-solar/planetary 

source, with an isotopic signature of between +87 ‰, up to +160 ‰. 

Mechanical crushing of lunar soils under vacuum conditions suggests that any liberated 

nitrogen is almost instantly retrapped down onto freshly created grain surfaces, and so is 

only released in negligible amounts, especially compared to noble gases, which are readily 

released by crushing. Comparing noble gas ratios obtained by crushing with those obtained 

at different temperatures during stepped combustion analyses indicates that localised 

frictional heating during the crushing process results in temperatures of between 400 ºC 

and 900 ºC, with solar neon isotopes showing no evidence of mixing with cosmogenic 

neon in crushed samples, which also supports the conclusion that crushing does not 

produce temperatures above around 1000 ºC. 
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Table 5A: Releases of 
4
He from lunar soils by stepped combustion analysis. (- = not measured; nd = not detected). 

 

 

Temperature 

Step (ºC) 

12070 (Run 1) 
4
He (cc g

-1
) 

12070 (Run 2) 
4
He (cc g

-1
) 

14141 
4
He (cc g

-1
) 

15040 
4
He (cc g

-1
) 

69921 
4
He (cc g

-1
) 

72501 
4
He (cc g

-1
) 

200 - 2.50E-03 1.89E-04 2.59E-03 2.32E-03 6.22E-04 

300 8.01E-03 5.35E-03 1.21E-03 5.50E-03 4.40E-03 1.76E-03 

400 9.64E-03 8.36E-03 2.81E-03 7.81E-03 5.75E-03 4.26E-03 

500 1.55E-02 1.05E-02 3.52E-03 9.26E-03 6.60E-03 5.82E-03 

600 1.27E-02 9.30E-03 2.77E-03 8.43E-03 5.88E-03 5.01E-03 

650 - - 2.68E-03 4.65E-03 2.56E-03 2.19E-03 

700 8.22E-03 6.73E-03 4.40E-04 3.03E-03 1.51E-03 1.35E-03 

750 - 2.96E-03 8.09E-04 2.22E-03 9.91E-04 8.64E-04 

800 4.68E-03 2.11E-03 1.02E-03 1.77E-03 6.21E-04 5.96E-04 

850 - 1.67E-03 9.85E-04 1.32E-03 3.46E-04 3.27E-04 

900 2.65E-03 9.68E-04 8.83E-04 7.00E-04 2.31E-04 1.95E-04 

1000 8.45E-04 7.38E-04 1.14E-03 4.60E-04 1.81E-04 1.54E-04 

1100 1.33E-05 1.40E-05 3.48E-05 3.67E-05 2.99E-05 1.13E-05 

1200 4.02E-06 4.00E-06 5.47E-06 5.90E-06 8.72E-06 2.15E-06 

1300 nd 2.05E-06 1.21E-05 5.49E-06 6.46E-07 nd 

1400 nd 1.72E-06 nd 9.61E-07 9.35E-10 nd 

Total 6.23E-02 5.13E-02 1.85E-02 4.78E-02 3.14E-02 2.32E-02 
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Table 5B: Releases of 
40

Ar
 
and 

36
Ar from lunar soils by stepped combustion analysis. (- = not measured; nd = not detected). 

 

 

 12070 (Run 1) 12070 (Run 2) 14141 15040 69921 72501 

Temperature 

Step (ºC) 

40
Ar 

(cc g
-1

) 

36
Ar 

(cc g
-1

) 

40
Ar 

(cc g
-1

) 

36
Ar 

(cc g
-1

) 

40
Ar 

(cc g
-1

) 

36
Ar 

(cc g
-1

) 

40
Ar 

(cc g
-1

) 

36
Ar 

(cc g
-1

) 

40
Ar  

(cc g
-1

) 

36
Ar  

(cc g
-1

) 

40
Ar  

(cc g
-1

) 

36
Ar  

(cc g
-1

) 

200 - - 2.16E-10 1.64E-10 nd 7.86E-12 nd nd nd 9.47E-12 nd nd 

300 1.34E-09 nd 4.87E-10 3.69E-10 7.33E-06 1.63E-07 2.56E-06 nd 2.27E-06 2.06E-11 1.12E-08 nd 

400 nd nd 1.34E-06 8.69E-07 6.88E-05 1.52E-06 1.03E-05 1.09E-06 6.65E-06 1.24E-06 6.88E-06 1.13E-06 

500 1.46E-05 9.46E-06 1.21E-05 9.33E-06 3.02E-04 9.82E-06 4.04E-05 1.03E-05 3.12E-05 9.60E-06 3.88E-05 1.03E-05 

600 2.82E-05 3.56E-05 2.74E-05 3.91E-05 3.76E-04 2.37E-05 5.50E-05 3.80E-05 8.44E-05 4.48E-05 9.27E-05 4.15E-05 

650 - - - - 3.44E-04 3.75E-05 2.87E-05 4.44E-05 8.68E-05 7.83E-05 5.61E-05 5.74E-05 

700 1.79E-05 4.94E-05 4.06E-05 1.21E-04 4.92E-05 7.41E-06 3.60E-05 8.22E-05 7.38E-05 1.01E-04 5.63E-05 9.36E-05 

750 - - 1.01E-05 4.40E-05 9.19E-05 1.53E-05 3.59E-05 9.60E-05 6.03E-05 9.62E-05 5.37E-05 9.49E-05 

800 4.18E-05 1.34E-04 1.27E-05 4.52E-05 9.68E-05 1.62E-05 3.13E-05 7.96E-05 7.38E-05 1.02E-04 3.64E-05 5.84E-05 

850 - - 1.24E-05 3.87E-05 7.84E-05 1.27E-05 2.37E-05 5.63E-05 5.07E-05 6.35E-05 2.00E-05 3.18E-05 

900 3.42E-05 7.76E-05 1.23E-05 3.58E-05 5.59E-05 7.81E-06 2.31E-05 4.99E-05 3.39E-05 3.63E-05 2.11E-05 2.90E-05 

1000 2.10E-05 4.21E-05 1.63E-05 4.33E-05 5.56E-05 7.09E-06 3.21E-05 6.01E-05 2.40E-05 2.25E-05 2.15E-05 2.82E-05 

1100 1.66E-05 3.79E-05 1.35E-05 3.88E-05 3.75E-05 4.55E-06 1.84E-05 3.43E-05 1.74E-05 1.91E-05 1.48E-05 2.48E-05 

1200 1.32E-05 2.66E-05 2.43E-05 4.49E-05 4.60E-05 5.35E-06 2.85E-05 4.63E-05 4.40E-05 4.26E-05 3.40E-05 4.17E-05 

1300 nd nd 1.71E-06 6.27E-06 2.89E-05 9.57E-07 1.03E-05 7.95E-06 7.90E-05 6.58E-05 1.02E-05 1.29E-05 

1400 nd nd 1.06E-08 8.06E-09 nd 5.76E-11 nd nd nd 4.26E-10 nd nd 

Total 1.87E-04 4.12E-04 1.85E-04 4.68E-04 1.64E-03 1.50E-04 3.76E-04 6.06E-04 6.68E-04 6.82E-04 4.62E-04 5.26E-04 
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Table 5C: Releases of 
20

Ne
 
and 

21
Ne from lunar soils by stepped combustion analysis. (- = not measured; nd = not detected). 

 

 

 
12070 (Run 1) 12070 (Run 2) 14141 15040 69921 72501 

Temperature 

Step (ºC) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

20
Ne 

(cc g
-1

) 

21
Ne 

(cc g
-1

) 

200 - - 1.19E-05 2.82E-08 7.75E-07 2.41E-12 1.50E-05 3.97E-08 9.78E-06 2.48E-08 2.58E-06 1.66E-08 

300 4.22E-05 1.12E-07 2.69E-05 6.95E-08 5.58E-06 5.40E-12 3.52E-05 9.31E-08 2.22E-05 5.77E-08 8.26E-06 2.49E-08 

400 1.09E-04 2.70E-07 1.26E-04 3.27E-07 5.96E-05 1.49E-07 1.96E-04 5.34E-07 9.81E-05 2.58E-07 7.48E-05 2.02E-07 

500 3.60E-04 9.53E-07 3.64E-04 1.01E-06 1.54E-04 4.29E-07 5.74E-04 1.66E-06 2.67E-04 7.69E-07 1.77E-04 4.74E-07 

600 3.72E-04 1.05E-06 3.79E-04 1.08E-06 1.50E-04 4.13E-07 5.64E-04 1.66E-06 2.88E-04 8.58E-07 1.64E-04 4.32E-07 

650 - - - - 1.13E-04 3.06E-07 2.43E-04 7.12E-07 1.35E-04 4.05E-07 7.24E-05 1.78E-07 

700 3.25E-04 9.43E-07 3.22E-04 9.27E-07 1.41E-05 7.27E-08 1.88E-04 5.68E-07 1.06E-04 3.14E-07 5.97E-05 1.95E-07 

750 - - 1.45E-04 4.22E-07 2.09E-05 5.35E-08 1.48E-04 4.60E-07 9.10E-05 3.36E-07 5.12E-05 2.89E-07 

800 2.14E-04 6.59E-07 8.82E-05 2.80E-07 1.74E-05 3.63E-08 1.10E-04 3.54E-07 6.69E-05 4.80E-07 3.95E-05 2.69E-07 

850 - - 6.27E-05 2.17E-07 1.27E-05 2.27E-08 7.98E-05 2.83E-07 4.70E-05 8.55E-07 2.92E-05 4.47E-07 

900 1.09E-04 8.57E-07 4.74E-05 3.92E-07 1.02E-05 2.59E-08 5.67E-05 5.17E-07 3.81E-05 7.49E-07 2.32E-05 3.92E-07 

1000 9.18E-05 1.80E-06 9.51E-05 8.24E-07 2.48E-05 6.41E-08 9.90E-05 9.62E-07 5.27E-05 1.13E-06 4.03E-05 6.67E-07 

1100 3.92E-05 9.98E-07 4.09E-05 1.07E-06 1.22E-05 2.56E-07 5.10E-05 1.46E-06 3.17E-05 7.02E-07 2.02E-05 3.54E-07 

1200 9.50E-06 4.50E-07 1.13E-05 5.37E-07 6.21E-06 1.17E-07 1.32E-05 6.83E-07 1.59E-05 3.98E-07 9.82E-06 1.99E-07 

1300 1.09E-06 1.19E-07 1.95E-06 2.83E-07 9.52E-07 1.01E-10 1.54E-06 1.84E-07 3.10E-06 1.34E-07 4.53E-07 3.46E-08 

1400 3.38E-08 1.00E-08 6.63E-07 8.63E-08 nd nd 1.26E-06 2.05E-07 2.56E-07 1.19E-08 7.53E-08 3.12E-08 

Total 1.67E-03 8.22E-06 1.72E-03 7.55E-06 6.02E-04 1.95E-06 2.38E-03 1.04E-05 1.27E-03 7.48E-06 7.72E-04 4.21E-06 
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Table 5D: Releases of carbon from lunar soils by stepped combustion analysis. (- = not measured; nd = not detected). 

 

 

 
12070 (Run 1) 12070 (Run 2) 14141 15040 69921 72501 

Temperature 

Step (ºC) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

C  

(ng) 

δ13CVPDB  

(‰) 

Error  

(‰) 

200 - - - 262.92 -23.10 0.83 4.99 -27.64 0.23 222.10 -25.41 0.69 604.66 -40.35 0.85 218.74 -29.29 0.23 

300 - - - 314.70 -27.92 0.55 502.23 -29.08 0.18 362.58 -30.78 0.65 823.52 -31.23 0.55 538.20 -28.20 0.19 

400 - - - 277.62 -26.89 0.63 453.67 -27.69 0.18 248.88 -23.19 0.20 776.31 -28.19 0.40 430.60 -18.79 1.12 

500 - - - 14.80 -38.97 0.43 402.99 -29.73 0.19 183.71 -10.97 0.58 375.04 -22.63 0.19 180.33 -17.42 0.38 

600 - - - 269.03 -23.57 0.60 0.35 -6.48 0.19 88.56 5.97 0.56 168.02 3.02 1.01 60.95 0.70 0.53 

650 - - - - - - 19.64 -21.42 0.23 41.10 4.26 0.23 121.18 -1.54 1.78 17.90 39.78 0.65 

700 - - - 82.78 -0.32 0.57 35.06 -33.68 0.17 52.67 1.40 0.79 132.34 2.60 2.10 25.21 56.87 1.04 

750 - - - 53.27 11.45 0.51 31.87 -30.42 0.21 76.43 28.43 0.66 197.22 5.35 1.44 40.55 35.04 0.30 

800 - - - 2.88 42.31 2.40 25.32 -23.70 0.14 91.65 14.96 0.20 225.66 9.22 1.48 50.27 35.67 0.96 

850 - - - 0.01 8.70 462.23 6.14 -18.36 0.90 68.95 27.78 0.23 81.30 13.61 0.26 32.00 68.96 1.72 

900 - - - 0.36 27.72 33.91 0.49 -27.77 15.39 58.70 29.17 9.85 73.92 29.31 0.23 16.68 108.47 0.80 

1000 - - - 4.91 29.74 1.37 0.07 -29.71 264.48 54.83 10.08 0.87 45.40 31.57 0.45 15.27 101.09 0.86 

1100 - - - 40.63 19.22 0.56 3.42 -19.54 1.34 69.38 17.58 0.30 63.20 16.18 0.34 31.71 29.93 0.29 

1200 - - - 0.26 10.39 41.19 26.13 -28.83 0.13 111.01 18.29 0.22 133.11 29.62 0.86 82.71 16.66 0.36 

1300 - - - 0.46 16.22 37.05 39.64 -29.56 0.16 69.46 -1.82 0.37 112.16 8.98 0.17 65.07 -8.81 0.46 

1400 - - - 0.17 48.88 94.55 17.53 -32.41 0.27 22.12 20.46 0.42 33.39 -8.59 0.29 58.96 -21.46 0.49 
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Table 5E: Releases of nitrogen from lunar soils by stepped combustion analysis. (- = not measured; † = blank level). 

 
12070 (Run 1) 12070 (Run 2) 14141 15040 69921 72501 

Temperature 

Step (ºC) 

N 

(ng) 

δ15NAIR 

(‰) 

Error 

(‰) 

N 

(ng) 

δ15NAIR 

(‰) 

Error 

(‰) 

N 

(ng) 

δ15NAIR 

(‰) 

Error 

(‰) 

N 

(ng) 

δ15NAIR 

(‰) 

Error 

(‰) 

N 

(ng) 

δ15NAIR 

(‰) 

Error 

(‰) 

N  

(ng) 

δ15NAIR  

(‰) 

Error  

(‰) 

200 - - - 1.59 46.66 2.58 5.07 59.25 0.70 4.74 32.25 0.51 4.07 31.52 0.56 3.34 38.21 0.63 

300 5.49 32.98 1.25 10.41 14.89 0.80 25.85 2.09 0.24 11.75 47.10 0.38 14.10 43.39 0.35 7.98 57.79 0.41 

400 0.80 48.98 13.31 12.07 49.24 0.82 12.78 16.24 0.36 6.54 80.47 0.67 12.10 64.76 0.43 7.70 92.55 0.66 

500 2.10 218.90 5.69 15.06 88.56 0.78 4.99 30.14 0.56 13.78 107.87 0.48 17.89 90.32 0.39 10.79 125.69 0.61 

600 6.89 107.81 1.15 23.32 89.36 0.72 10.29 9.87 0.36 23.48 101.73 0.32 28.26 116.01 0.36 21.70 144.88 0.40 

650 - - - - - - 17.42 -4.26 0.31 27.88 85.54 0.24 31.31 98.30 0.30 24.69 123.39 0.32 

700 17.47 49.36 0.85 54.89 49.82 0.78 6.13 8.71 0.32 56.66 60.40 0.20 37.90 85.35 0.25 39.71 102.38 0.21 

750 - - - 46.10 7.93 0.92 9.18 -28.91 0.48 76.59 34.96 0.26 63.21 65.78 0.37 49.29 73.77 0.19 

800 29.63 -2.88 0.80 32.23 -19.46 0.79 9.85 -40.53 0.50 65.79 9.58 0.28 76.34 23.67 0.36 39.31 24.43 0.17 

850 - - - 28.40 -45.67 0.76 6.11 -63.36 0.73 52.33 -17.53 0.21 56.41 -47.55 0.38 32.31 -23.70 0.18 

900 † 63.91 3.07 25.81 -23.65 0.76 3.43 -79.14 1.34 48.95 4.54 0.23 35.88 -43.78 0.36 22.28 19.58 0.25 

1000 11.40 8.02 0.81 29.99 1.14 0.79 4.61 -28.00 0.51 57.91 16.42 0.29 25.22 16.30 0.32 25.92 39.52 0.23 

1100 9.16 19.34 0.93 26.65 21.35 0.82 2.97 23.34 0.81 48.37 32.93 0.24 23.65 20.67 0.40 18.81 48.50 0.28 

1200 15.14 38.56 0.90 39.86 42.43 0.91 4.32 63.40 0.84 76.00 42.85 0.28 66.16 20.76 0.37 46.55 64.93 0.20 

1300 1.71 97.15 2.96 6.13 136.88 1.48 16.87 21.93 0.36 20.32 54.76 0.36 82.25 37.64 0.36 20.87 78.72 0.32 

1400 0.04 27.55 284.81 1.17 268.63 11.42 1.85 50.01 1.61 9.24 142.07 0.85 6.19 49.26 0.55 6.55 160.44 1.25 
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12070 

Number of 

Strokes 

Cumulative 

Number of Strokes 

N  

(ng) 
Cumulative % 

10 10 2.31 17.42 

20 30 1.45 28.36 

50 80 1.50 39.67 

100 180 1.25 49.12 

200 380 1.28 58.75 

100 480 0.08 59.38 

400 880 1.31 69.24 

800 1680 1.36 79.50 

1600 3280 1.56 91.24 

2000 5280 1.16 100.00 

Total 
 

13.26 
 

    

14141 

Number of 

Strokes 

Cumulative 

Number of Strokes 
N (ng) Cumulative % 

10 10 0.22 3.05 

20 30 0.54 10.52 

50 80 0.81 21.65 

200 280 1.25 38.88 

500 780 1.89 64.84 

1000 1780 1.50 85.43 

2000 3780 0.86 97.24 

2000 5780 0.14 99.10 

2000 7780 † 99.10 

2000 9780 0.07 100.00 

Total 
 

7.28 
 

    

69921 

Number of 

Strokes 

Cumulative 

Number of Strokes 
N (ng) Cumulative % 

10 10 5.34 14.28 

20 30 3.60 23.90 

50 80 4.44 35.77 

100 180 4.35 47.41 

200 380 4.35 59.04 

500 880 5.02 72.48 

1000 1880 3.89 82.88 

2000 3880 3.73 92.86 

2000 5880 1.62 97.19 

2000 7880 0.79 99.29 

3000 10880 0.27 100.00 

Total 
 

37.40 
 

Table 5F: Releases of nitrogen from lunar soils by in vacuo crushing. († = blank level). 
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Table 5G: Releases of 
4
He, 

20
Ne, and 

36
Ar from lunar soils by in vacuo crushing. 

 

 

 

 

 

 

 

12070 

Cumulative 
Number of 

Strokes 

4He  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

20Ne  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

36Ar  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

10 1.05E-03 1.68 2.71E-05 1.62 2.63E-06 0.64 

30 2.00E-03 4.89 4.04E-05 4.04 5.76E-06 1.40 

80 3.66E-03 10.77 7.25E-05 8.37 1.05E-05 2.54 

180 4.63E-03 18.20 9.93E-05 14.31 1.63E-05 3.95 

380 5.33E-03 26.75 1.45E-04 22.97 2.42E-05 5.86 

480 3.78E-03 32.82 6.62E-05 26.93 2.78E-05 6.74 

880 5.13E-03 41.04 2.15E-04 39.78 4.12E-05 9.98 

1680 5.12E-03 49.25 2.57E-04 55.11 5.91E-05 14.33 

3280 5.13E-03 57.48 2.82E-04 71.97 8.23E-05 19.95 

5280 4.97E-03 65.46 2.20E-04 85.15 1.03E-04 24.95 

7280 4.37E-03 72.47 1.61E-04 94.80 1.18E-04 28.64 

9280 3.66E-03 78.34 1.33E-04 102.73 1.30E-04 31.49 

11280 3.06E-03 83.26 1.13E-04 109.50 1.39E-04 33.80 

14280 9.76E-04 84.82 4.53E-05 112.21 1.51E-04 36.64 

Total 5.29E-02 
 

1.88E-03 
 

9.11E-04 
 

       

14141 

Cumulative 
Number of 

Strokes 

4He  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

20Ne  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

36Ar  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

10 2.65E-04 1.43 4.95E-06 0.82 3.43E-07 0.23 

30 2.64E-04 2.86 4.30E-06 1.54 4.60E-07 0.53 

80 8.64E-04 7.53 1.58E-05 4.16 9.93E-07 1.20 

180 1.05E-03 13.20 2.22E-05 7.85 1.55E-06 2.23 

380 1.36E-03 20.56 3.30E-05 13.33 2.49E-06 3.89 

880 1.50E-03 28.67 4.82E-05 21.33 4.27E-06 6.73 

1880 1.42E-03 36.35 4.70E-05 29.13 4.87E-06 9.98 

3880 1.32E-03 43.49 5.25E-05 37.86 6.79E-06 14.50 

5880 8.98E-04 48.34 3.64E-05 43.90 5.81E-06 18.37 

7880 6.65E-04 51.93 2.76E-05 48.49 4.98E-06 21.69 

9880 4.80E-04 54.53 2.15E-05 52.05 4.47E-06 24.66 

11880 3.46E-04 56.40 1.66E-05 54.81 3.68E-06 27.12 

13880 2.51E-04 57.76 1.28E-05 56.93 3.20E-06 29.25 

Total 1.07E-02 
 

3.43E-04 
 

4.39E-05 
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Table 5G (cont.): Releases of 
4
He, 

20
Ne, and 

36
Ar from lunar soils by in vacuo crushing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69921 

Cumulative 
Number of 

Strokes 

4He  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

20Ne  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

36Ar  

(cc g-1) 

Cumulative % 
of Combustion 

Total 

10 6.15E-04 1.96 2.84E-05 2.23 6.84E-06 1.00 

30 8.88E-04 4.78 3.39E-05 4.89 6.99E-06 2.03 

80 1.26E-03 8.80 5.31E-05 9.07 1.03E-05 3.54 

180 1.37E-03 13.17 6.72E-05 14.34 1.24E-05 5.35 

380 1.37E-03 17.53 9.40E-05 21.73 1.80E-05 7.98 

880 1.37E-03 21.87 1.36E-04 32.43 2.81E-05 12.09 

1880 1.33E-03 26.11 1.31E-04 42.71 2.90E-05 16.34 

3880 1.33E-03 30.35 1.33E-04 53.17 3.90E-05 22.06 

5880 1.28E-03 34.42 8.13E-05 59.56 2.98E-05 26.43 

7880 1.03E-03 37.69 5.55E-05 63.92 2.33E-05 29.84 

10880 9.70E-04 40.78 5.64E-05 68.35 2.66E-05 33.74 

12880 5.94E-04 42.67 3.09E-05 70.78 1.65E-05 36.16 

14880 4.87E-04 44.22 2.52E-05 72.75 1.35E-05 38.14 

16880 3.97E-04 45.48 2.10E-05 74.41 1.16E-05 39.84 

18880 2.96E-04 46.42 1.62E-05 75.68 9.34E-06 41.21 

Total 1.46E-02 
 

9.63E-04 
 

2.81E-04 
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Table 5H: Neon isotope ratios for lunar soils analysed by stepped combustion. All ratios have been corrected for contributions from a system blank of 

terrestrial atmospheric composition, and for the effects of mass fractionation in the mass spectrometer. (- = not measured; nd = not detected). 

 

 

 

 
12070 (Run 1) 12070 (Run 2) 14141 

Temperature 

Step (ºC) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 

200 - - - - 0.0317 0.0039 13.9432 0.3030 0.0368 0.0050 13.1912 0.3546 

300 0.0329 0.0036 12.9908 0.2316 0.0329 0.0026 13.3869 0.2027 0.0280 0.0042 12.8005 0.3036 

400 0.0292 0.0020 12.4468 0.1396 0.0308 0.0011 12.5431 0.0777 0.0311 0.0012 11.9979 0.0812 

500 0.0311 0.0010 12.3546 0.0820 0.0317 0.0006 12.1025 0.0461 0.0313 0.0007 11.4805 0.0512 

600 0.0325 0.0011 12.1765 0.0732 0.0323 0.0006 11.9674 0.0400 0.0313 0.0008 11.5426 0.0497 

650 - - - - - - - - 0.0319 0.0008 11.7679 0.0618 

700 0.0331 0.0012 12.0164 0.0791 0.0321 0.0007 11.7561 0.0453 0.0321 0.0016 11.7598 0.0993 

750 - - - - 0.0323 0.0011 11.7355 0.0726 0.0318 0.0018 11.6132 0.1275 

800 0.0344 0.0012 11.8148 0.0938 0.0351 0.0011 11.7060 0.0891 0.0368 0.0025 11.6100 0.1469 

850 - - - - 0.0377 0.0016 11.5506 0.1036 0.0395 0.0027 11.3531 0.1569 

900 0.0392 0.0014 11.6882 0.0897 0.0408 0.0013 11.6273 0.0831 0.0435 0.0029 11.0401 0.1754 

1000 0.0416 0.0011 11.5566 0.0579 0.0420 0.0009 11.4326 0.0495 0.0412 0.0020 11.3683 0.1166 

1100 0.0521 0.0016 11.1987 0.0852 0.0532 0.0011 11.2154 0.0588 0.0460 0.0012 10.7347 0.0672 

1200 0.0887 0.0044 10.4186 0.1518 0.0899 0.0026 10.4679 0.0962 0.0465 0.0019 10.3887 0.0940 

1300 0.1502 0.0156 9.2922 0.3850 0.2147 0.0089 8.5298 0.1548 0.0651 0.0043 9.7657 0.1691 

1400 0.0420 0.0158 8.3728 0.6291 0.1788 0.0140 8.9350 0.2722 nd nd nd nd 
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Table 5H (cont.): Neon isotope ratios for lunar soils analysed by stepped combustion. All ratios have been corrected for contributions from a system blank 

of terrestrial atmospheric composition, and for the effects of mass fractionation in the mass spectrometer. (- = not measured; nd = not detected). 

 

 

 

 
15040 69921 72501 

Temperature 

Step (ºC) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 
21Ne/22Ne 

Error  

(±) 
20Ne/22Ne 

Error  

(±) 

200 0.0364 0.0035 14.4355 0.2610 0.0316 0.0038 13.0858 0.2643 0.0363 0.0208 13.0008 0.4653 

300 0.0334 0.0020 13.2645 0.1582 0.0325 0.0026 13.1427 0.1955 0.0365 0.0141 12.7339 0.3473 

400 0.0315 0.0008 12.1819 0.0513 0.0304 0.0011 12.1821 0.0837 0.0324 0.0021 12.6579 0.1064 

500 0.0318 0.0004 11.6039 0.0282 0.0320 0.0006 11.7555 0.0430 0.0316 0.0011 12.4311 0.0716 

600 0.0323 0.0005 11.5717 0.0294 0.0333 0.0007 11.8054 0.0463 0.0310 0.0011 12.4042 0.0712 

650 0.0324 0.0007 11.6494 0.0464 0.0331 0.0009 11.6975 0.0656 0.0282 0.0019 12.1077 0.0976 

700 0.0333 0.0008 11.6966 0.0507 0.0329 0.0010 11.7163 0.0725 0.0303 0.0019 11.9916 0.0974 

750 0.0338 0.0009 11.4700 0.0565 0.0333 0.0011 11.6437 0.0711 0.0287 0.0014 11.9935 0.0717 

800 0.0349 0.0011 11.5078 0.0620 0.0350 0.0009 11.4754 0.0565 0.0345 0.0017 11.9388 0.0896 

850 0.0382 0.0013 11.3899 0.0758 0.0377 0.0007 11.3015 0.0435 0.0331 0.0011 11.8354 0.0642 

900 0.0437 0.0011 11.3559 0.0609 0.0404 0.0008 11.2470 0.0516 0.0363 0.0014 11.7939 0.0815 

1000 0.0466 0.0009 11.2915 0.0467 0.0440 0.0008 11.2048 0.0430 0.0359 0.0010 11.8796 0.0526 

1100 0.0577 0.0008 10.9996 0.0424 0.0452 0.0010 11.1941 0.0549 0.0372 0.0015 11.6955 0.0744 

1200 0.0964 0.0021 10.2822 0.0754 0.0497 0.0015 10.9629 0.0739 0.0415 0.0026 11.4133 0.0970 

1300 0.1871 0.0081 9.4899 0.1746 0.0817 0.0044 10.9617 0.1643 0.1016 0.0222 10.5483 0.3945 

1400 0.2250 0.0087 8.6669 0.1570 0.0471 0.0088 9.7901 0.3647 0.1791 0.0432 9.5149 0.6011 
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Table 5I: Neon isotope ratios for lunar soils analysed by in vacuo crushing. All ratios have been corrected for contributions from a system blank of 

terrestrial atmospheric composition, and for the effects of mass fractionation in the mass spectrometer. 

 

 

12070 14141 69921 

21
Ne/

22
Ne 

Error  

(±) 
20

Ne/
22

Ne 
Error  

(±) 
21

Ne/
22

Ne 
Error  

(±) 
20

Ne/
22

Ne 
Error  

(±) 
21

Ne/
22

Ne 
Error  

(±) 
20

Ne/
22

Ne 
Error  

(±) 

0.0347 0.0014 13.1155 0.0965 0.0331 0.0016 11.8173 0.1021 0.0366 0.0006 10.8714 0.0368 

0.0352 0.0012 13.1138 0.0816 0.0333 0.0017 12.0156 0.1130 0.0355 0.0005 10.9488 0.0343 

0.0340 0.0009 13.0065 0.0608 0.0331 0.0010 11.8014 0.0576 0.0355 0.0005 10.9582 0.0287 

0.0350 0.0007 12.9561 0.0515 0.0314 0.0039 10.6727 0.2176 0.0350 0.0004 11.0482 0.0246 

0.0350 0.0006 12.7644 0.0452 0.0331 0.0006 11.4916 0.0404 0.0346 0.0003 11.2104 0.0203 

0.0356 0.0009 13.1572 0.0617 0.0334 0.0004 11.2852 0.0304 0.0348 0.0003 11.2941 0.0179 

0.0352 0.0005 12.6808 0.0369 0.0347 0.0005 11.1125 0.0305 0.0349 0.0003 11.1923 0.0181 

0.0356 0.0004 12.5997 0.0303 0.0345 0.0005 10.8509 0.0269 0.0355 0.0003 11.0572 0.0160 

0.0355 0.0004 12.4429 0.0327 0.0342 0.0006 10.8081 0.0357 0.0352 0.0004 10.8129 0.0216 

0.0356 0.0005 12.3328 0.0327 0.0298 0.0049 10.8544 0.3250 0.0355 0.0005 10.7321 0.0239 

0.0362 0.0006 12.2621 0.0404 0.0291 0.0052 9.9670 0.3297 0.0354 0.0004 10.7017 0.0248 

0.0362 0.0007 12.2915 0.0387 0.0347 0.0010 11.2447 0.0587 0.0354 0.0006 10.8164 0.0367 

0.0370 0.0007 12.3021 0.0446 
    

0.0360 0.0007 11.0049 0.0401 

0.0373 0.0006 12.1170 0.0360 
    

0.0357 0.0008 11.1476 0.0418 

        
0.0355 0.0008 11.2027 0.0506 
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The simultaneous collection of abundance and isotopic data for a number of different 

volatiles (carbon, nitrogen, helium, neon, and argon), across a very varied sample set, 

encompassing both mare basalts and soils collected from diverse locations at every Apollo 

landing site, enables several narratives about lunar volatiles to be constructed.  These can 

be categorised into three broad themes: volatiles in the Moon (by which is meant any 

volatiles indigenous to the lunar interior); volatiles formed on the Moon (produced through 

radioactive decay, spallation etc.); and volatiles delivered to the Moon (located at the lunar 

surface and including contributions from solar wind, meteoritic and/or cometary sources).  

This chapter summarises the findings of this study in relation to these three themes, and 

concludes by considering what future steps can be taken to build upon this work to date. 

6.1: Volatiles in the Moon     

When considering volatiles indigenous to the lunar interior, it is necessary to think 

carefully about the types of samples that might contain components from such a source. 

Samples derived from melts generated in the lunar mantle, such as mare basalts, are viable 

options for characterising any indigenous volatiles, since they will inherit such volatiles 

directly from the mantle source regions.  However, the degassing of volatiles from lunar 

melts is also an important process (e.g. Tartèse et al., 2013), leading to some modifications 

of indigenous volatile signatures, such as those proposed for the lunar volcanic glasses 

(e.g. Füri et al., 2014; Hauri et al., 2015).  When making bulk sample measurements (as 

used in this study), the in situ production of cosmogenic volatile species at/near to the lunar 

surface will mask the indigenous volatile signatures to some degree in both basalt and 

volcanic glass samples, but in the case of lunar volcanic glasses, the relatively large surface 

area to volume ratio introduces further masking of the indigenous signatures by the 

presence of surface-correlated non-indigenous volatiles.  Further, the allocated aliquots of 
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mare basalts used in this study came from the interiors of the main sample masses, 

removing the possibility of any surface-correlated volatile contributions to the volume-

correlated indigenous components measured. Thus, mare basalts here represent the best 

available sample type for assessing the indigenous volatile inventory of the lunar interior. 

Using the abundance and isotopic composition data for individual temperature steps, it is 

possible to identify nitrogen releases that represent terrestrial contamination (between 200 

ºC and 600 ºC), and also those which show contributions from cosmogenic nitrogen 

production (released at temperatures over 1000 ºC).  Eliminating these two complicating 

nitrogen components leaves behind a release of nitrogen in the mid-temperature range 

(between 650 ºC and 950 ºC), which is considered to be indigenous to the mare basalts and 

therefore to the lunar interior.   

Average isotopic compositions (weighted by the abundance of the nitrogen releases at each 

temperature step) for these basalts reveal a range of δ
15

N values, from -6.61 ‰ to +8.33 

‰, with an average value for all samples of +0.93 ± 9.39 ‰, close to, but distinct from, 

terrestrial mantle nitrogen values (which vary between -5 ‰ and -30 ‰ (Marty and 

Zimmermann, 1999)).  Indigenous lunar nitrogen values do fall within the range of values 

measured in most carbonaceous chondrite groups, most closely matching the isotopic 

signatures of CO chondrites (+13 ‰ to -30 ‰ (Kerridge, 1985; Pearson et al., 2006)). 

Using the measured abundances of carbon and nitrogen across this mid-temperature 

window (taken to represent indigenous lunar volatile components), elemental C/N ratios of 

lunar basalts appear to be lower (i.e. relatively enriched in nitrogen compared to carbon) 

than C/N ratios of the terrestrial depleted mantle (e.g. Halliday, 2013), and fall within the 

range of C/N ratios measured in CO and CI carbonaceous chondrites, and also enstatite 

chondrites (Mortimer et al., 2015).  However, C/N ratios as measured in lunar basalt 
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samples are likely to have been modified by the preferential degassing of carbon compared 

to nitrogen under reducing conditions in the lunar mantle (i.e. lowering the C/N ratios), 

thus explaining the differences in lunar and terrestrial ratios (the terrestrial mantle being 

more oxidising than that of the Moon, thereby preferentially degassing nitrogen compared 

to carbon instead). 

Whilst C/N ratios may not represent true lunar mantle values, both the range and average 

isotopic composition of indigenous lunar nitrogen measured in this study point to a likely 

CO chondrite source for nitrogen in the lunar interior.  This is slightly different from the 

suggested source for water in the lunar interior (mainly CI chondrites, with some CM 

and/or CO chondrite input, as concluded by Barnes, 2014), although CO chondrites are 

required to satisfy both lunar water and nitrogen sources.  Furthermore, to place this into a 

wider context of Earth-Moon system formation, the CO chondrite source for indigenous 

lunar nitrogen suggested by these data is in agreement with many other studies which 

propose a carbonaceous chondrite source for volatiles delivered to the Earth and Moon, 

although the timing of this volatile delivery (prior to the Moon forming event, during 

accretion, or just after lunar formation) is still unclear (e.g. Marty, 2012).  The similar but 

slightly offset values of terrestrial mantle and indigenous lunar nitrogen isotopic 

compositions does not help to clarify this; the difference could be caused by separate 

mantle evolutions in the two bodies, pulling values away from a common nitrogen 

composition acquired before the Moon formed, or it could represent a slight difference in 

the relative proportions of different chondrite sources delivering volatiles to both bodies 

immediately after lunar formation.   

What the abundance and isotopic composition of indigenous lunar nitrogen do demonstrate 

clearly is that volatiles in the lunar interior are heterogeneous; variations in measured 
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indigenous δ
15

N values cannot be explained by factors such as crystallisation age, CRE 

age, mineralogy, sample location, depths of melting, or possible contamination, suggesting 

that the lunar mantle is heterogeneous.   This conclusion is in agreement with those of 

other recent studies concerned with different volatiles derived from the lunar interior (e.g. 

hydrogen/water (Barnes, 2014); fluorine and chlorine (McCubbin et al., 2011); oxygen 

(Hallis et al., 2010)), and with the results of trace element modelling (Hallis et al., 2014), 

building up a picture of a complex history of lunar mantle evolution. 

6.2: Volatiles formed on the Moon  

Once lunar melts have crystallised at or near to the lunar surface, radiogenic noble gas 

isotopes (e.g. 
4
He and 

40
Ar) are produced within lunar materials as their respective parent 

isotopes decay over time and remain trapped within samples (subject to loss by diffusion 

out of the samples at peak temperatures of 500 ºC and 600-700 ºC, respectively (Mortimer 

et al., 2015)).  Therefore, radiogenic isotope abundances are controlled by both the initial 

composition of samples (U and Th abundances for 
4
He, and K abundance for 

40
Ar), and by 

how much time has elapsed since the formation of the sample in question, with samples 

containing greater abundances of parent isotopes and older crystallisation ages producing a 

greater abundance of radiogenic isotopes.  In mare basalts, this work demonstrates the 

correlation between measured abundances of radiogenic noble gas isotopes and literature 

values for sample compositions and crystallisation ages (Mortimer et al., 2015).  Such 

radiogenic isotopes are volume-correlated, and so this relationship between composition, 

age, and measured abundances of 
40

Ar is not observed in lunar soil samples (releases from 

these samples being dominated by surface-correlated volatiles from non-radiogenic 

source(s)).  Also, the relationship between 
40

Ar abundances, age, and composition of grains 

in soils is complicated by the presence of a ‘parentless’ 
40

Ar component released at low 
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temperatures, thought to represent argon that is liberated into the lunar atmosphere during 

impact events and subsequently reimplanted back down onto the surfaces of grains, or 

representing 
40

Ar adsorbed from the terrestrial atmosphere (Assonov et al., 2002; Wieler, 

2002).  Therefore, not all of the measured 
40

Ar abundances in soils can be unambiguously 

attributed to a lunar radiogenic source.  

Cosmogenic isotopes are produced in all samples exposed at, or near (within the upper two 

metres) to, the lunar surface, and are produced when incident cosmic rays cause spallation 

reactions to occur in target nuclides (Hohenberg et al., 1978).  For the production of 

cosmogenic 
15

N, the target nuclide is predominantly 
16

O (Mathew and Marti, 2001; Reedy, 

1981), whereas cosmogenic 
21

Ne is produced by spallation of major elements (Na, Mg, Al, 

Si, Ca, and Fe) (Hohenberg et al., 1978), and cosmogenic 
38

Ar by spallation of K, Ca, Fe, 

and Ti (Turner and Burgess, 2014).  As a sample resides at or near to the lunar surface, its 

abundance of cosmogenic volatiles is positively correlated with exposure age (e.g. 

Mortimer et al., 2015), making abundances of cosmogenic volatiles important methods for 

dating samples and planetary surfaces.  

After calculating the cosmogenic abundances from the measured total abundances of these 

isotopes in mare basalts, cosmogenic production rates were calculated; for 
21

Necosm and 

38
Arcosm, these production rates appear to be in good agreement with previously published 

production rates, taking into account the spread of values displayed by different basalts.  

Therefore, using these calculated production rates, it was possible to calculate CRE ages 

for two samples (12016 and 12047) for which exposure ages had not previously been 

established, giving ages of 150 Ma and 70 Ma (respectively) from 
21

Necosm, and 160 Ma 

and 55 Ma (respectively) from 
38

Arcosm.  However, in the case of cosmogenic 
15

N, the 

calculated production rate (based on the calculated abundances from the measured totals in 
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the basalt samples) is highly variable between samples, although the average rate is similar 

to that proposed for samples which have experienced a high degree of shielding from 

cosmic rays (Mathew and Murty, 1993).  The 
15

Ncosm production rate calculated using data 

from this present study gives slightly shorter exposure ages for 12016 and 12047 (50 Ma 

and 40 Ma, respectively) than the cosmogenic noble gas isotopes more commonly used to 

date samples. 

Binary mixing between a cosmogenic neon component and a component with a terrestrial 

atmospheric composition is observed in powdered mare basalt samples; by contrast, 

virtually all of the neon measured in an unpowdered chip of 12064 comes from a 

cosmogenic source.  From this observation, the conclusion must be that the powdering 

process, being carried out under atmospheric conditions in a clean room suite, causes 

terrestrial atmospheric neon to be trapped within the samples, which, when released, is 

mixed with the cosmogenic neon component produced at the lunar surface (Mortimer et 

al., 2015).    

As with radiogenic trapped species, cosmogenic volatiles are volume-correlated, and thus 

only contribute a negligible amount to the total volatile abundances measured in lunar soils 

(which have much larger surface area to volume ratios than lunar rocks).  Nevertheless, a 

minor cosmogenic neon component is observed in several soil samples analysed by 

stepped combustion, only being released at temperatures above 1000 ºC, and mixed with 

the dominant surface-correlated solar neon component (e.g. Füri et al., 2014) also present 

in soils. 
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6.3: Volatiles delivered to the Moon 

The mare basalt samples analysed in this work all come from the interiors of the main 

sample masses, and so do not show any evidence for the presence of solar volatiles, despite 

their often lengthy exposure ages in the order of hundreds of millions of years.   

By contrast, noble gases released from lunar soils are predominantly from a solar wind 

source.  This is most clearly observed in neon releases; at temperature steps up to ~ 1000 

ºC, neon isotope ratios are mostly similar to a solar value (
21

Ne/
22

NeSW = 0.0328, 

20
Ne/

22
NeSW = 13.8 (Lupton et al., 2012); 

21
Ne/

22
NeSW = 0.0333 ± 0.0003, 

20
Ne/

22
NeSW = 

13.81 ± 0.08 (Pepin et al., 1999)), with isotope ratios fractionated away from a true solar 

value during implantation into regolith (Füri et al., 2014).  Above 1000 ºC, neon releases 

are mixtures of this solar wind neon (implanted into the lunar surface) with cosmogenic 

neon (produced in situ at the lunar surface).  

Whilst the majority of noble gases released from lunar soils are of solar origin, nitrogen 

measured in soils shows a more complex signature.  The main source for nitrogen at the 

lunar surface was long thought to be solar wind (Kerridge, 1993; Mathew et al., 1998), 

with the widely-observed variations in isotopic compositions of nitrogen from soils 

attributed to either secular changes in the composition of solar wind (e.g. Kerridge, 1993), 

or to lunar soil nitrogen being delivered to the Moon from a mixture of both solar and non-

solar sources (e.g. Kerridge and Marti, 2001; Wieler et al., 1999). Recent direct 

measurements of solar wind nitrogen, where δ
15

NSW = -407 ± 7 ‰ (Marty et al., 2011), 

favour the argument that nitrogen in soils is derived from a mixture of solar and non-solar 

sources (Becker, 2000; Füri et al., 2012; Kerridge and Marti, 2001), since even the most 

15
N-depleted nitrogen releases measured in soils are significantly more enriched in 

15
N in 

comparison to this solar wind signature.  In this work, weighted average δ
15

N values for 
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soils 12070, 14141, 15040, 69921, and 72501 can be reconciled with nitrogen from a solar 

source mixing with non-solar end-members of variable isotopic composition, from +87 ‰ 

to +140 ‰.  This assumes that there has been no loss of solar wind 
36

Ar from any of the 

soils, with between 13 % and 23 % of the total nitrogen derived from the solar source, and 

77 % to 87 % of the total nitrogen coming from non-solar source(s).  Alternatively, 

measured δ
15

N values could represent the mixing of between 14 % and 26 % solar nitrogen 

with 74 % to 86 % non-solar nitrogen, assuming one non-solar end-member signature of 

+140 ‰ and losses of 
36

ArSW of between 4 % and 42 %.  A third possibility, taking a non-

solar end-member composition of +160 ‰ (following the conclusions of Füri et al., 2012) 

and assuming 
36

ArSW losses of between 18 % and 48 %, is that average nitrogen isotopic 

compositions in these soils represents mixing of between 17 % and 28 % solar wind 

nitrogen with between 72 % and 83 % non-solar nitrogen.  Whichever scenario is chosen, 

the common theme from all is that the majority of nitrogen present in lunar soils is derived 

from a non-solar source, which has an end-member isotopic composition at least as 

enriched in 
15

N as +87 ‰.  Therefore, this study confirms the conclusions of Füri et al. 

(2012), who suggest that micro-impactors (Interplanetary Dust Particles, with average δ
15

N 

values of +140 ‰) are the main source of non-solar nitrogen delivered to the lunar surface, 

although it must be noted that CR chondrites are also likely candidates, with average δ
15

N 

values of +130 ‰ (Pearson et al., 2006). 

6.4: Future Considerations 

The techniques used in this work, involving the simultaneous measurement of abundances 

and isotopes of five different volatile elements (C, N, He, Ne, and Ar) across a wide range 

of temperatures (down to a temperature step resolution of 50 ºC), permit the 

characterisation of many different volatile components from several separate sources, and 
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thus this work represents one of the more in-depth and wide-ranging single studies of lunar 

volatiles to date.  However, the data obtained here are only a small part of the wider effort 

within the lunar scientific community to fully understand the Moon’s volatile inventory, 

efforts which have experienced something of a renaissance within the last decade.  

From the perspective of enhancing the specific foci of this study, it seems necessary to 

expand the sample types used to characterise indigenous lunar nitrogen.  Analysing more 

mare basalts will provide better constraints on the abundance and isotopic composition of 

indigenous nitrogen, given the wide range of δ
15

N values measured to date, and this may 

help to answer questions about the extent of the heterogeneity of the lunar mantle.  Whilst 

mare basalts are derived from mantle melts and thus have undergone considerable 

processing prior to eruption and crystallisation, anorthositic samples from the lunar 

highlands may represent a less processed glimpse of nitrogen isotopic composition and 

distribution from the earliest phases of lunar evolution.  However, since the indigenous 

nitrogen measured in mare basalts comes from an unknown phase within the samples, in 

highlands samples with a much less diverse mineralogy, it may be the case that far less 

nitrogen can be incorporated into the rocks upon formation, thereby making nitrogen 

extremely challenging to detect and characterise. 

Whether considering volatiles from the lunar interior, or volatiles delivered to the surface 

of the Moon, all sample studies to date are hampered by the relatively restricted sampling 

sites of the Apollo and Luna mission programmes, leading to a lack of sample diversity in 

returned samples compared to the results of lunar-wide orbital spectroscopic studies.  To 

overcome this bias, lunar meteorites could be used to expand the volatiles dataset; in 

theory, lunar meteorites should be derived from random locations all over the Moon, not 

just sampling the same spatially-restricted regions as the sample return missions of the 
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1970s.  Further, lunar breccias (both from the Apollo and lunar meteorite collections), 

containing a range of clasts of diverse lithologies, ages, and processing histories, will retain 

a record of surface-correlated volatiles delivered to the Moon at various points in lunar 

history and locked into breccia samples when they form, providing ‘time-capsule’ 

snapshots of volatile delivery to the lunar surface over time.  A complicating factor when 

considering the use of lunar meteorite samples is the possibility of volatile loss and 

associated fractionation during ejection from the Moon and entry into the terrestrial 

atmosphere, which may result in the masking of true lunar volatile signatures with 

terrestrial values. 

Ultimately, all lunar sample studies would benefit from a renewed programme of lunar 

landing missions; future sample return missions would be the most ideal option, enabling 

the targeting of regions of the Moon not sampled by previous Apollo and Luna missions, 

with all the benefits in terms of enhanced precision, accuracy, reproducibility, and 

technological capabilities associated with laboratory analysis back on Earth.  Alternatively, 

in situ analyses of volatiles at the lunar surface would provide much needed ground truth 

about the nature of volatiles delivered to the Moon without any of the risks of terrestrial 

contamination that result from analysing even the most carefully curated returned samples. 

Thus, although much ground-breaking work has been conducted in recent years, 

collectively, it forms but a small part of the overall work which must be performed if we 

are to fully comprehend the volatile inventory and history of the Earth-Moon system, 

leaving the field of lunar volatile research wide open for further advancements and 

discoveries in the near future. 
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Blank Correction and Error Propagation Calculations 

Despite the low and stable system blanks associated with the Finesse mass spectrometer 

system, the relatively low abundances of carbon and nitrogen in lunar samples (but 

especially so in mare basalts) leads to an otherwise negligible blank having an impact on 

the measured abundances and isotopic compositions obtained during analyses.   

Correcting the abundances of carbon and nitrogen is very straightforward; the abundance 

measured during a blank run is subtracted from the ‘raw’ abundance measured during 

sample analysis.  If a blank experiment has been run both before and after a sample has 

been analysed, then the average of the two measured blank abundances can be used 

instead: 

(Eq. 1)                                                            

where MC = the corrected abundance/yield; ME = the uncorrected measured abundance; 

and MB = the measured blank abundance (Abernethy, 2014; Mikhail, 2011). 

To correct the isotopic composition of the sample, the following equation is used: 

(Eq. 2)                 
           ((

                      

(        )
)  ( 

        
 

))

  
 

where δC = the corrected isotopic composition; ME = the uncorrected yield; δE = the 

uncorrected isotopic composition; MB1 and δB1 = the yield and isotopic composition of the 

first blank experiment (respectively); MB2 and δB2 = the yield and isotopic composition of 

the second blank experiment (respectively); and MC = the corrected yield (see Eq. 1) 

(Abernethy, 2014; Mikhail, 2011).  
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Error calculations take into account several variables, such as the proportion of the total 

abundance belonging to the blank, any variations in blank isotopic compositions over both 

the temperature range used and the duration of the analysis, and the measurement error 

associated with the Finesse mass spectrometer system itself. 

To take all of these variables into account, errors are calculated using the following error 

propagation equation: 

(Eq. 3)                                           
 

     
   √    

where ΔδC = the calculated propagated error of the corrected isotopic composition of the 

sample; MC = the blank-corrected yield; and terms X and Y are defined thus: 

                     [                 (         )
 
         ] 

                     [        (                
    (       )

 
         )] 

 where δB(avg) = the weighted average isotopic composition of the blank; ΔME = the 

standard deviation of the uncorrected yield; ΔMB = the standard deviation of the blank 

yield; ΔδMtot = the weighted average of the measurement errors for the range of 

temperature steps used; MB(avg) = the weighted average yield of the blank; and ΔδB = the 

standard deviation across the two blank analyses (see Eq. 2) for the temperature steps used 

(Abernethy, 2014; Mikhail, 2011).  
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When I look at the Moon I do not see a hostile, empty world. I see the radiant body where 

man has taken his first steps into a frontier that will never end. 

— David R. Scott, Commander (Apollo 15). 

 


