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Abstract: Dams play a significant role in altering the spatial pattern of temperature in rivers and
contribute to thermal pollution, which greatly affects the river aquatic ecosystems. Understanding
the temporal and spatial variation of thermal pollution caused by dams is important to prevent or
mitigate its harmful effect. Assessments based on in-situ measurements are often limited in practice
because of the inaccessibility of water temperature records and the scarcity of gauges along rivers.
By contrast, thermal infrared remote sensing provides an alternative approach to monitor thermal
pollution downstream of dams in large rivers, because it can cover a large area and observe the same
zone repeatedly. In this study, Landsat Enhanced Thematic Mapper Plus (ETM+) thermal infrared
imagery were applied to assess the thermal pollution caused by two dams, the Geheyan Dam and
the Gaobazhou Dam, located on the Qingjiang River, a tributary of the Yangtze River downstream
of the Three Gorges Reservoir in Central China. The spatial and temporal characteristics of thermal
pollution were analyzed with water temperatures estimated from 54 cloud-free Landsat ETM+ scenes
acquired in the period from 2000 to 2014. The results show that water temperatures downstream of
both dams are much cooler than those upstream of both dams in summer, and the water temperature
remains stable along the river in winter, showing evident characteristic of the thermal pollution
caused by dams. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream
river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River
enters the Yangtze River. Considering the long time series and global coverage of Landsat ETM+
imagery, the proposed technique in the current study provides a promising method for globally
monitoring the thermal pollution caused by dams in large rivers.

Keywords: dam; thermal pollution; remote sensing; Landsat; water temperature; thermal infrared image

1. Introduction

Water temperature is an important physical property of rivers because it has significant effects
on many economic and ecological aspects [1–4]. Water temperature affects water quality, such as
dissolved oxygen and suspended sediment concentration. It is one of the most critical parameters
that controls the overall health of aquatic ecosystems in rivers, and also has considerable influence
on the growth rate and spatial distribution of aquatic organisms. Moreover, water temperature is
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economically important because of its influence on water requirements for industry and aquaculture.
Water temperature variation in rivers is hard to quantify in practice, because it is typically spatially and
temporally heterogeneous [5]. Generally, river water temperature is affected by many factors, such as
atmospheric conditions, topography and stream discharge [2]. The change of natural conditions,
such as global climate change, affects the pattern of river water temperature [6]. Besides, river water
temperature is also greatly affected by human activities, such as riparian land cover change and
effluent point discharges from power stations [2].

Building dams along rivers is one of the most important human activities that change the
hydrological processes in rivers [7–9]. Specifically, river water temperature is often altered by dams.
The impact of an upstream reservoir on downstream river water temperature primarily depends on
its thermal stratification characteristics, and design and operation mode [10,11]. In a reservoir, thermal
stratification is common in summer, because the upper layers of water are warmed by solar radiation
and cooler waters remain underneath in the hypolimnion. In the winter, however, the upper layer
temperatures often are cooled and the thermal stratification reduces and may disappear because of
full vertical mixing. Therefore, water temperatures downstream dams may be substantially changed
by the reservoir released water at different temperatures. Dam-induced modifications to a river’s
thermal regime can lead to unprecedented ecological and environmental results for the river downstream.
This abrupt thermal shift phenomenon is then often referred as “thermal pollution”, because it tends to
bring harmful consequences to freshwater ecosystems [10,12–14]. Analyzing the spatial and temporal
variation pattern of water temperature downstream of dams caused by thermal pollution is therefore
important for reservoir management to prevent or mitigate thermal pollution using optimized operations.

Thermal pollution attributed to dams is typically analyzed with in-situ measured water
temperature records [10]. By measuring water temperatures using a network of in-stream gauges,
the magnitude, and the spatial and temporal patterns of thermal pollution caused by a dam can be
studied. This technique can provide favorable results if long-term downstream temperature records
measured by a dense observation network are available. In practice, however, long time temperature
records are not always existent or available to the public in many areas. Moreover, in-situ gauges are
often sparsely distributed in rivers, and using data measured in only one or several gauges cannot
provide adequate information on the spatial distribution of water temperature.

Compared with in-situ measurements, thermal infrared remote sensing technique provides
an attractive alternative for measuring water temperatures and quantifying spatial patterns of water
temperature at multiple spatial scales [15]. For example, coarse spatial resolution imagery, such
as Moderate Resolution Imaging Spectroradiometer (MODIS), have been widely used to map the
spatial and temporal patterns of temperature in large lakes and reservoirs [16,17]. Medium spatial
resolution satellite imagery, such as Landsat thermal infrared imagery, have been used to quantify
the longitudinal and temporal thermal patterns along rivers [18], and to identify the groundwater
contribution [19]. Fine spatial resolution airborne thermal infrared imagery is becoming popular for
the accurate measurement of water temperatures for small water bodies [5,20–25].

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor, which has a thermal infrared band
with a 60 m spatial resolution and has a large amount of data archived from 1999 available free to public,
provides a promising means to quantify water thermal variability [15,26–30]. Compared with coarse
spatial resolution remote sensing imagery, such as MODIS, which is unsuitable for river applications
due to its coarse spatial resolution, Landsat ETM+ satellite thermal infrared imagery have a finer spatial
resolution and can be used to accurately estimate water temperatures in rivers. Compared with airborne
thermal infrared remote sensing imagery, using Landsat ETM+ satellite thermal infrared imagery also
has its potential advantages. Both the spatial and temporal coverage achievable with airborne remote
sensing are always limited, and only a few thermal infrared images within small areas can be used in
most cases, while Landsat ETM+ satellite imagery has a long period global coverage.

The primary objective of the current research is to investigate the capability of a long series of Landsat
ETM+ satellite thermal infrared images to assess the thermal pollution caused by dams. We investigate
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the temperature estimation method for Landsat ETM+ imagery and analyze the uncertainty of result
caused by imperfect atmospheric correction. The spatio-temporal pattern of thermal pollution caused
by two dams in the study area is then analyzed with estimated river water temperatures. The potential
applications and limitations of the proposed approach are also discussed. The contributions of this
research are twofold. First, to our knowledge, it is the first time that the thermal pollution caused by
dams is assessed by using satellite remote sensing technology. Second, a spatio-temporal analysis method
is proposed in order to decrease the uncertainty of data provided by satellite images.

2. Materials and Methods

2.1. Study Area

The study focused on the Qingjiang River, a first-order tributary of the Yangtze River downstream
of the Three Gorges Reservoir in Hubei Province, Central China. The Qingjiang River has a watershed
area of approximately 17,000 km2, with the mainstream having a total length of 423 km. A cascade of
reservoirs can be found along the Qingjiang River. The study area ranges from the upstream Geheyan
reservoir to the river mouth, including the Geheyan and Gaobazhou Dams that were constructed in
1994 and 2000, respectively (Figure 1). The monthly mean air and water temperatures measured in the
Yichang hydrology station (Figure 1) in the period 2000–2004 are shown in Figure 2. The mean monthly
air temperature is higher than the mean monthly water temperature in summer, while, in winter,
the mean monthly water temperature is higher than the mean monthly air temperature.
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The distance between the Geheyan and Gaobazhou Dams is approximately 50 km, and the
distance between the Gaobazhou Dam and the river mouth into the Yangtze River is approximately
12 km. The river width in the study area is typically between 200 and 500 m. The normal water level
of the Geheyan reservoir is about 200 m, while the normal water level of the Gaobazhou reservoir is
about 80 m. The monthly mean discharges of both reservoirs in the period 2000 to 2004 are shown in
Figure 3, and the annual flow discharges in this period are 400 m3/s and 436 m3/s, respectively.
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Figure 4 shows the change of water temperature with the water depth in various seasons for the
Geheyan reservoir [31]. It is shown that the water temperature distribution is stratified in the vertical
domain and the pattern varies in time. In summer, for example, on 28 July 1995, the surface water
temperature was higher than 30 ◦C. With the increase of water depth, the water temperature decreased
rapidly at first. From the depths 10 to 40 m, the water temperature began to decrease slowly. However,
from 40 to 50 m, the water temperature had a rapid decrease. Below the depth of 50 m, water temperature
decreased slowly again. On days in other seasons, such as on 26 October 1995 and 24 April 1996, the water
surface temperatures were still higher than those in the depths of 80 m. However, the water difference
was only about 5–10 ◦C, and was much less than that in the summer, which reached 20 ◦C.
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2.2. Landsat Imagery and Processing

The primary data source was a series of Landsat-7 ETM+ satellite images. The spatial resolution
of the thermal infrared band (10.45 to 12.5 µm) for the ETM+ is 60 m × 60 m; other bands (1, 2, 3, 4,
5 and 7) for ETM+ have a spatial resolution of 30 m. The selected Landsat scene was path 125/row 39,
which covers the extent of the area of interest. Scenes that were mostly cloud-free from 2000 to 2014 were
ordered and downloaded for free from the United States Geological Survey Earth Explorer website [32].
All images were Level 1T products, which have been precision and terrain corrected in the GeoTIFF
format and are in the UTM Zone 49N projection and WGS datum. The resulting dataset comprised
54 full scenes, including 39 scan-line corrector off (SLC-off) images. In the analysis, the SLC-off data
would lower the data quality and affect the result. Although the gaps caused by SLC-off appeared in
different locations along the Qingjiang River, no gap filling method was used in this study to avoid the
uncertainty brought by gap filling methods.

2.3. Methods

In this study, the spatio-temporal pattern of thermal pollution caused by dams was analyzed using
the time series Landsat ETM+ images through the steps, as shown in Figure 5, which are introduced in
detail in the following sections.
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infrared images.

2.3.1. Water Mask

First, to determine the water temperature along the river, a water mask was generated.
The unsupervised Iterative Self-Organizing Data Analysis Technique (ISODATA) was applied on
all six 30 m spatial resolution bands for each Landsat scene [33]. The resulting clusters were then
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aggregated into a land/water classification map, which was used to create a binary water mask.
Considering that the water mask has a finer spatial resolution (30 m) than the thermal band, only the
coarse resolution pixels in the thermal infrared band that are fully integrated into the water mask were
considered as water and were applied to determine water temperature.

2.3.2. Water Surface Temperature Estimation

Digital numbers (DN) for each water pixel in the band 6 (low gain) of Landsat ETM+ scenes
were then used to derive water surface temperatures. First, digital numbers were converted to Top of
Atmospheric (TOA) spectral radiance by applying the gain and bias coefficients provided along with
Landsat ETM+ scenes:

Lλ = gain× DN + bias. (1)

where Lλ is the TOA spectral radiance at λ wavelength in W ·m2 · sr ·mm, DN is the digital number
in the scene, and gain and bias are calibration parameters, and are set to be 0.067087 and −0.07 for the
band 6 (low gain) of Landsat 7 ETM+ images.

Then, the TOA spectral radiance was further converted to a surface-leaving radiance by
prescribing the target emissivity and removing the effect of the atmosphere, which are the most
important issues for the estimation of temperature, based on the radiative transfer equation [34].
The equation used for this correction is:

Lλ(Ts) =
Lλ − Lup

λ

t× ελ
− 1− ελ

ελ
× Ldown

λ . (2)

where Lλ(Ts) is the corrected surface radiance, Lλ is the uncorrected spectral radiance calculated in
Equation (1), Lup

λ is the upwelling radiance, Ldown
λ is the downwelling radiance, t is the atmospheric

transmissivity, and ελ is the water emissivity.
In this study, the emissivity of water was set as 0.9885 according to Simon et al. [35]. The other

three parameters used in Equation (2) were obtained with the atmospheric correction tool [36]
developed by Barsi et al. [34] for the TM and ETM+ thermal bands. According to the date, time,
and location of the Landsat scene, the atmospheric correction parameter calculator uses the National
Centers for Environmental Prediction-modeled global atmospheric profiles as input data, along
with MODTRAN and other integration algorithms, to derive site-specific atmospheric transmission,
upwelling atmospheric radiance and down-welling atmospheric for each given Landsat scene.

Finally, the corrected water surface radiance Lλ(Ts) was then converted into water temperature by
using a sensor-specific approximation to Planck’s function [37]:

Ts =
K2

ln
(

K1
Lλ(Ts)+1

) . (3)

where Ts is the water temperature (K). K1 and K2 are thermal constants, where K1 = 1282.71 K and
K2 = 666.09 W ·m2 · sr ·mm for the Landsat ETM+ sensor. With all estimated water temperature
values, the spatio-temporal pattern of thermal pollution caused by both dams could be analyzed.
It needs to be emphasized that no in-situ observation water temperature data are available along the
Qingjiang River at present. Therefore, in this study, the thermal pollution caused by both dams is
assessed using only the Landsat ETM+ images.

3. Results

3.1. Estimated Water Temperature

To validate the estimated water temperatures, the results were compared with in-situ observed
water temperatures. At present, there are no water temperature observation data available in the
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Qingjiang River. Therefore, the water temperature monitoring point (30◦43′15”N, 111◦15′47”E) located
in the Yichang hydrology station in the Yangtze River within the same Landsat scene, as shown in
Figure 1, were used for validation in this study. Five-year daily water temperature measured at
8:00 a.m. local time during 2000–2002 and 2007–2008 were collected. During the period, there are
24 Landsat scenes available and all measured water temperature values were then compared with
corresponding estimated water temperatures, to assess the accuracy of results.

Table 1 shows the measured water temperatures (Tm), estimated water temperatures (Te), along
with all used atmosphere parameters of all validation dates. In general, the accuracy of the water
temperature estimated the radiative transfer equation algorithm is high. Most estimated water
temperature values are similar with measured water temperature values. However, it is also noticed
that there are several larger errors in resulting water temperatures estimated from Landsat images,
especially when the water temperature is high. The main reason is that the in-situ temperatures
were observed at 8:00 a.m. local time, while the satellite passed the area at about 10:00 a.m. local
time. In general, when the water temperature is low, for example in the winter, the difference of
water temperatures between the in-situ observation time and satellite pass time is small. By contrast,
when the water temperature is high, for example in the summer, such as 20 July and 5 August 2001,
the difference of water temperatures between the in-situ observation time and satellite pass time is
large and may be a few degrees.

Table 1. Comparison between measured water surface temperatures (Tm) and estimated water surface
temperatures (Te). dT is the temperature difference between the measured and estimated water
surface temperatures.

Date DN Tm t Lup
˘ Ldown

˘ Te dT

27 March 2000 115 13.3 0.91 0.65 1.12 14.58 1.28
28 April 2000 121 18.1 0.74 1.8 2.9 20.57 2.47
14 May 2000 130 20.6 0.7 2.35 3.8 24.79 4.19
15 June 2000 127 23 0.67 2.49 3.95 24.00 1.00

6 November 2000 121 18.1 0.84 1.16 1.92 18.68 0.58
10 February 2001 108 10.8 0.92 0.45 0.77 11.47 0.67

30 March 2001 116 16.8 0.83 1.17 1.96 16.14 −0.66
20 July 2001 127 27.1 0.39 4.67 6.7 29.99 2.89

5 August 2001 130 27 0.41 4.58 6.63 31.63 4.63
12 January 2002 123 21.8 0.87 0.85 1.43 20.51 −1.29
17 March 2002 123 22.4 0.81 1.2 2.01 21.98 −0.42
2 April 2002 106 8.4 0.63 2.73 4.24 7.26 −1.14

24 August 2002 125 21.6 0.44 4.4 6.47 24.04 2.44
25 September 2002 117 17.2 0.72 2.04 3.23 16.80 −0.40
30 December 2002 115 16.3 0.9 0.55 0.93 16.22 −0.08

2 May 2007 119 17.2 0.73 2.04 3.28 17.38 0.18
6 August 2007 127 24.2 0.46 4.25 6.24 25.77 1.57

23 September 2007 125 22.2 0.83 1.25 2.07 21.14 −1.06
9 October 2007 123 21.8 0.81 1.26 2.05 21.41 −0.39
25 October 2007 123 22.4 0.76 1.69 2.71 21.34 −1.06

14 February 2008 106 10.4 0.95 0.26 0.45 10.02 −0.38
21 May 2008 125 21.6 0.85 1.17 1.96 20.31 −1.29

28 November 2008 117 17.2 0.94 0.34 0.6 16.48 −0.72
14 December 2008 115 16.3 0.93 0.41 0.69 15.38 −0.92

Figure 6 shows the plot of estimated water surface temperature and measured water surface
temperature. Most scatter points are located near the 1:1 line. The correlation coefficient is 0.9268,
and the root mean squared error (RMSE) is 1.07 ◦C, showing the effectiveness of the method used to
estimate water temperature from the Landsat ETM+ thermal band.
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3.2. Uncertainty Analysis of Water Temperature Estimation

The objective of the study is to analyze the dam-caused thermal pollution, which is mainly
represented by the water temperature variation downstream of the dam. The temperature difference
(or relative temperature) between water bodies below the dam and in the reservoir upstream may be
more informative than absolute water temperatures. Therefore, besides direct temperature comparison,
an uncertainty analysis was further performed. The uncertainty analysis pays no attention to absolute
water temperatures themselves, but the water temperature difference between two sites in the same
Landsat scene.

In the analysis of the uncertainty of temperature differences, two water points in the Landsat
scene were first selected. The water temperatures of both points were estimated using the original
downloaded atmosphere parameters, and their water temperature difference was also calculated.
Then, random errors were added to original downloaded atmosphere parameters (Lup

λ , Ldown
λ , and t)

in Equation (2) to obtain simulated atmosphere parameters. Water temperatures of both points were
again estimated with simulated atmosphere parameters and their water temperature difference was
calculated. Finally, error between water temperatures of one point estimated with original atmosphere
parameters and simulated atmosphere parameters, and error between water temperature differences
of two points estimated with original atmosphere parameters and simulated atmosphere parameters,
are compared, in order to assess the uncertainty of the water temperature difference caused by the
uncertainty of used atmosphere parameters.

Table 2 shows the results of uncertainty analysis. Here, the difference of DN values between two
selected water points is 10, which is larger than most DN difference values between two water points
in all Landsat scenes in the study area. The error of atmosphere parameters is set to be in the range of
−50% to 50%. With these simulated atmosphere parameters, the absolute error of estimated water
surface temperatures can reach to 50 ◦C, which is not practical. Therefore, only absolute errors of
estimated water surface temperatures based on simulated atmosphere parameters within the range
between [−9 ◦C, 9 ◦C] are considered. It is noticed that, in most cases, the RMSE value of estimated
temperature difference between two sites is only about 1 ◦C, even the error of estimated absolute
temperature of each site is larger than 7 ◦C. Given water temperatures estimated from the Landsat
ETM+ images already have a high accuracy as the validation result shows, the water temperature
difference, which is more important for thermal pollution assessment, can also been estimated with
a high accuracy for each Landsat ETM+ scene in the study area.
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Table 2. Uncertainty analysis for the relative temperature difference. E1 is the error between absolute
water temperatures of one point estimated with original atmosphere parameters and simulated
atmosphere parameters. E2 is the error between water temperature differences of two points estimated
with original atmosphere parameters and simulated atmosphere parameters.

Range of E1
E2

Mean RMSE

[−9 ◦C, −7 ◦C] −0.01 ◦C 1.01 ◦C
[−7 ◦C, −5 ◦C] −0.08 ◦C 0.95 ◦C
[−5 ◦C, −3 ◦C] −0.13 ◦C 1.13 ◦C
[−3 ◦C, −1 ◦C] 0.03 ◦C 0.83 ◦C
[−1 ◦C, 1 ◦C] −0.04 ◦C 0.93 ◦C
[1 ◦C, 3 ◦C] 0.05 ◦C 1.02 ◦C
[3 ◦C, 5 ◦C] −0.01 ◦C 0.85 ◦C
[5 ◦C, 7 ◦C] 0.12 ◦C 0.93 ◦C
[7 ◦C, 9 ◦C] 0.10 ◦C 0.82 ◦C

3.3. Spatio-Temporal Variation of Thermal Pollution

Figure 7 shows the resulting relative water temperature variations over four different dates.
The thermal pollution is clearly shown in Figure 7. In summer scenes of both years, generally, river
temperatures were warmer upstream and cooler downstream for both dams. For example, in the
scene of 17 July 2000, water temperature is warm in the reservoir upstream of the Geheyan Dam.
Downstream of the dam, water temperature cools along the river. From 30 km away from the dam
to the reservoir upstream of the Gaobazhou Dam, the water temperature warms again. Downstream
of the Gaobazhou Dam, however, water temperature becomes cooler until the water flows into the
Yangtze River. Moreover, it is also noticed that the spatial pattern of relative water temperature
variations is different in the two summer days in the years 2000 and 2001. In winter, by contrast,
there are only slightly water temperature variations along the river, and the abrupt thermal shift is
unnoticeable for both dams.
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Figure 8 shows longitudinal profiles of relative water temperatures from the reservoir upstream
of the Geheyan Dam to the river mouth in four different dates. Discontinuities of relative water
temperatures are clearly visible at the reservoir locations, in July 2000 and 2001. The longitudinal
relative water temperature profile shows a general pattern of “warm, cool, warm, and cool”. Taking
the result on 20 July 2001 as an example, relative water temperatures in the reservoir upstream of the
Geheyan Dam are approximately 0 ◦C, meaning that open water bodies in the reservoir almost have
the same water temperatures. A rapid temperature decrease is noticeable below the Geheyan Dam,
where the relative water temperature reaches approximately −5 ◦C. In the range of 0 km to 25 km
downstream the dam, the relative water temperature remains stable. Beyond this area, the relative
water temperature increases rapidly until 35 km downstream of the dam, again reaching approximately
0 ◦C and remains stable until the Gaobazhou Dam is reached. The relative water temperature again
decreases to about −5 ◦C downstream of the Gaobazhou Dam, remaining stable until the river enters
the Yangtze River. In 17 July 2000, a general trend exists, although the profile also shows changes in
the longitudinal heating rate along the river gradient. In the winter, such as that on 27 March 2000 and
10 February 2001, the relative water temperature profiles are much different with those in summer.
The relative water temperatures generally keep near zero, meaning that water temperatures up and
downstream both dams are similar.
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Water temperature values in four different sites, including the Geheyan reservoir, the site located
1 km away from the Geheyan Dam, the Gabazhou reservoir, and the site located 1 km away from the
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Gabazhou Dam, are plotted in Figure 9. It is noted that the intra-annual change of water temperatures
in the four sites are mainly affected by the meteorological conditions, and the trends of the water
temperature measured by Landsat ETM+ images are similar with that of the in-situ measurements,
as shown in Figure 2. However, for both dams, water temperatures upstream of the dams vary within
a larger range than downstream of the dams. A paired sample t-test showed that, at the 5% level, there
are significant differences between water temperature of the Geheyan reservoir and water temperatures
of the sites located 1 km downstream of the Geheyan Dam. The water temperature of the Gaobazhou
reservoir was also found to have a significant difference with water temperatures of the site located
1 km downstream of the Gaobazhou Dam, at the 5% level. However, no significant differences were
found between water temperature of the Geheyan reservoir and those of the Gaobazhou reservoir.
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Note that the number of water temperature values in each case is different because of the SLC-off
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Figure 10 shows the differences between water temperatures upstream the dams and water
temperatures downstream the dams in different sites along the river. Figure 10a–e shows the results
of the sites located 1, 10, 20, 30, and 50 km away from the Geheyan Dam, respectively. Similarly,
Figure 10f–h shows water temperature differences of the different sites located 1, 5, and 10 km
downstream of the Gabazhou Dam, respectively, by comparing the reference water and those of the
study locations. In Figure 10a–f, both Geheyan and Gaobazhou Dams have noticeable effects on water
temperature below the dams. The trends of water temperature difference are similar for both dams,
although the difference in the Geheyan Dam seems slightly larger. Generally, water temperatures
below the dams are lower than that of the reservoir in the summer. The highest difference exceeds
5 ◦C for both dams. By contrast, the water temperature difference is small in winter. Meanwhile,
the effect of the dam on downstream water temperatures is observed to decrease with increasing
distance to the Geheyan Dam. Comparing the sites 20, 10, and 1 km downstream of the Geheyan Dam,
the effect trend is similar, whereas the amplitude is decreasing. In the sites 30 and 50 km downstream
of the Geheyan Dam, as shown in Figure 10d,e, noticeable trends of water temperature differences are
essentially nonexistent, and the deviation indeed results from other factors, such as the uncertainty of
water temperature extracted by Landsat images. The trend for the Gaobazhou Dam is similar, that is,
the amplitude decreases with increasing distance. Considering that the Qingjiang River flows into the
Yangtze River in the site 12 km downstream of the Gaobazhou Dam, the Gaobazhou Dam also has
important effect on the thermal pattern in the main channel of the Yangtze River.
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4. Discussion

Thermal pollution caused by dams has an important impact on the downstream river environment
and ecology. The popular method of using long term in-situ water temperature records to evaluate
this influence is limited because in-situ records are not available for many areas. More importantly,
in-situ records are always measured only at sparse certain locations, and cannot provide detailed
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spatial information for thermal pollution assessment. By contrast, Landsat ETM+ thermal infrared
imagery can provide long term spatially continuous water temperatures, and then could be used as
an alternative dataset to assess the thermal pollution for large rivers.

By analyzing the spatial and temporal pattern of water temperatures estimated by Landsat ETM+
thermal infrared images, it is shown that both Geheyan and Gaobazhou Dams have a significant effect
on river temperature. Both Geheyan and Gaobazhou Dams are used for hydropower generation, then
the water is then taken from deep in the reservoir and after use is discharged downstream of the dam.
In Figure 4, it is shown that the water temperature distribution in the Geheyan reservoir is stratified
in the vertical dimension. In summer, the deep water is much cooler than the surface water. Then,
the released water from the reservoir to the downstream river is much cooler than the water in the
river, making the water temperature downstream of Geheyan Dam much lower than the surface water
temperature in the Geheyan reservoir. In spring and autumn, although the deep water in the reservoir
is still cooler than the surface water, the water temperature difference is much less than that in the
summer. Moreover, as shown in Figure 3, the monthly mean discharges in spring and autumn are
also much less than those in summer. Then, the temperature different between surface water in the
reservoir and that in the river downstream the dam is less then that in summer. The phenomenon
is in accordance with a typical thermal pollution caused by dams, due to the thermal stratification
characteristics of the reservoir formed by dams.

In this study, the inter-annual variation of water temperatures caused by meteorological and
hydrological conditions are not considered. The main reason is that, although the satellite can revisit
the same area every 16 days, only several Landsat ETM+ images can be applied to estimated water
temperatures each year because of the problem of cloud coverage. Then, all available Landsat ETM+
imagery is combined to analyze the intra-annual water temperature variations. In Figures 9 and 10,
it is noticed that both absolute and relative water temperatures are dissimilar for different dates and
locations. In general, the magnitude of thermal alterations caused by dams in summer is larger than
that in winter. However, the magnitude of thermal alterations might be different in the same season.
For example, in Figure 10b, near the 240th day, one relative water temperature value is about −5 ◦C
and another value is about 0 ◦C. This is mainly caused by different meteorological and hydrological
conditions in these two days. In general, with all available datasets, the general trend of thermal
pollution caused by both dams can be acquired, but detailed information of the daily thermal pollution
pattern cannot be assessed if using only Landsat ETM+ images.

The effectiveness of the proposed method is mainly affected by the accuracy of water temperatures
estimated from Landsat ETM+ thermal infrared images. In practice, there are many different sources
of uncertainty in river water temperature estimation [15]. The two most important influence factors,
the spatial resolution of image and the water temperature estimation algorithm used, should, therefore,
be carefully considered in future studies.

The spatial resolution of thermal imagery is a crucial factor that affects the accuracy of the
estimated water temperature from thermal imagery. In general, in order to estimate river water
temperature accurately, the rivers should be as large as three pixels in the thermal infrared imagery [15].
However, if image sharpening methods are applied, water temperatures in the rivers narrower than
the pixel size may also be estimated, and used to identify the along-stream temperature pattern [21].
In our experiments, the river is mostly wider than 200 m. Then, Landsat ETM+ thermal images, which
have a spatial resolution of 60 m, are suitable to be applied to estimate the water temperature. In other
cases, if Landsat 5 TM thermal imagery with a spatial resolution of 120 m or the Landsat 8 thermal
imagery with a spatial resolution of 100 m, are used, or the river width is not large enough, these
advanced water temperature algorithms should be used to improve the accuracy of results [38].

Another important issue is the temperature estimation algorithm. For Landsat ETM+ imagery,
only the mono-window algorithm can be applied to estimate temperature because only one thermal
infrared band exists. The results in this study show that the radiative transfer equation method
obtained water temperatures with a high accuracy, satisfying the need for thermal pollution analysis.
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Moreover, the uncertainty analysis results show that the radiative transfer equation method can obtain
temperature differences with a high accuracy even the estimated absolute water temperatures have
large errors, showing the reliability of water temperature estimation with Landsat ETM+ thermal
images. In practice, however, the uncertainty of estimated water surface temperature is unavoidable,
because of the imperfect atmospheric correction. One possible method to reduce the impact caused by
the uncertainty is using Landsat time series. For example, in this study, 54 Landsat ETM+ scenes were
used. A large number of observations can help make the results robust.

In this study, Landsat ETM+ imagery are used as the only datasets to analyze the spatial temporal
pattern of thermal pollution below dams. In practice, if other additional data are available, they can be
incorporated into the analysis to further improve the results. For example, if in-situ water temperature
records can be collected, they should be used to improve the water temperature estimation accuracy
and provide more information about the thermal pollution pattern [5]. Other datasets, such as high
spatial resolution airborne thermal infrared dataset, can also be fused with long term Landsat ETM+
imagery to improve the accuracy of results. Results produced by water temperature simulation models
and results obtained by the current study are obviously mutually benefit, and the integration between
them needs further investigation [22].

Generally, the technique presented in this study offers a useful tool to fill in the sparse in-situ
observational record of water temperature in rivers. This technique can be applied in the global
scale because of the long time series and global coverage of Landsat ETM+ imagery. Based on the
current study, analyzing the spatial patterns of thermal pollution caused by different dams is now
possible. Such an analysis is important in reservoir management. Moreover, this technique can be
used to compare the effects of the various larger dams with freely available data. The approach of the
current study can be easily applied in other dams located in large rivers, and the results can provide
useful information for further understanding the extent and magnitude of thermal pollution associated
with dams.

5. Conclusions

In this paper, we proposed a method to monitor thermal pollution below dams using long time
series Landsat ETM+ thermal infrared imagery. Taking Geheyan and Gaobazhou Dams located in the
Qingjiang River as a case study, water surface temperatures were estimated from 54 Landsat ETM+
thermal images. Validation and uncertainty analysis results show that the estimated water surface
temperatures have a high accuracy and can be applied to analyze the spatial and temporal pattern of
thermal variations resulting from the dams. The results show that, on Qingjiang River, the Geheyan and
Gaobazhou Dams greatly alter the downstream water temperatures. According to the operating mode,
the discharges of both dams are taken from deep in the reservoir. Due to the thermal stratification
characteristics of reservoirs, the temperature difference between the released water and the surface
water is then large in summer and small in winter. Moreover, the flow discharges in summer are
larger than those in winter. Therefore, both dams result in a typical thermal pollution phenomenon. In
summer, water temperatures downstream of both dams are cooler than those upstream of both dams,
and the water temperature difference exceeds 5 ◦C. In winter, the water temperature remains stable
along the river. The area affected by the Geheyan Dam reaches beyond 20 km along the downstream
river, and that affected by the Gaobazhou Dam extends beyond the point where the Qingjiang River
enters the Yangtze River.

The results show that long term Landsat ETM+ thermal infrared imagery is a useful dataset to
study the river thermal behavior and to assess the thermal pollution caused by dams in large rivers.
However, other possibilities for improvement should still be considered. For example, given that
Landsat ETM+ images have a global coverage, the proposed method should be applied in other
dams globally to assess its ability. The water temperatures estimated from Landsat ETM+ images
should be compared with more in-situ observed data in different areas to assess the uncertainty of
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results. Moreover, the results should be further explored with methods in other research fields, such as
aquatic ecology.
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