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Abstract: Gliomas are devastating brain cancers that have poor prognostic outcomes for
their patients. Short overall patient survival is due to a lack of durable, efficacious treatment options.
Such therapeutic difficulties exist, in part, due to several glioma survival adaptations and
mechanisms, which allow glioma cells to repurpose paracrine signalling pathways and ion channels
within discreet microenvironments. These Darwinian adaptations facilitate invasion into brain
parenchyma and perivascular space or promote evasion from anti-cancer defence mechanisms.
Ultimately, this culminates in glioma repopulation and migration at distances beyond the original
tumour site, which is a considerable obstacle for effective treatment. After an era of failed
phase II trials targeting individual signalling pathways, coupled to our increasing knowledge
of glioma sub-clonal divergence, combinatorial therapeutic approaches which target multiple
molecular pathways and mechanisms will be necessary for better treatment outcomes in treating
malignant gliomas. Furthermore, next-generation therapy which focuses on infiltrative tumour
phenotypes and disruption of the vascular and perivascular microenvironments harbouring residual
disease cells offers optimism for the localised control of malignant gliomas.
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1. Introduction

High-grade gliomas remain one of the most aggressive and difficult to treat cancers in adults,
with a very poor prognosis of 14 months [1] despite current multimodal therapeutic approaches.
Unlike other solid tumours, high grade gliomas rarely metastasise outside the brain via
haematological and lymphatic vessels [2]. However, local invasiveness of these tumours
through normal brain tissue is one of the main challenges for more efficacious treatment.
Glioma cells which have infiltrated the surrounding parenchyma of the normal brain and along
nearby blood vessels, cannot be safely surgically resected. Moreover, the intra-tumour genetic
heterogeneity emerging from the dynamism of clonal selection processes within spatially distinct
niches allow glioma cells to escape conventional chemotherapeutic and radiological treatments.
Furthermore, temozolomide (standard-of-care chemotherapy) may confer a stringent selection pressure,
by which the acquisition of mutations in the protein kinase B/mammalian target of rapamycin
(AKT/mTOR), epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor
(PDGFR), c-Jun N-terminal kinase-extracellular signal-regulated kinase 1

2 (JNK-ERK1/2) and
retinoblastoma pathways, may facilitate disease recurrence [3,4]. Similarly, radiotherapy was
shown to enrich for stemness genotypes and phenotypes in some tumour subpopulations
which might initiate tumour resistance and propagate disease progression [5]. This stem-like
property in tumour subpopulations, which is intrinsic to cell survival or selected for during
aggressive treatment approaches, is another confounding factor in tumour therapy because of the
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self-renewal capacities of glioma stem cells (GSC). This sub-population can initiate tumour formation,
enhance tumour progression [6] and can be influenced by distinct tumour micro-compartments, where
some GSC may ultimately differentiate into daughter cells of different lineages with distinct genetic,
and epigenetic marks. The lack of any static and definitive markers of GSC to discriminate them from
the normal neural stem cell counterparts is another confounding factor [7]. Moreover, the astrocytic
marker, glial fibrillary acidic protein (GFAP), cannot fully discriminate between glioma progenitors
and further differentiated glioma cells. Historically, glioma studies have utilised clinical samples
surgically resected from tumour core regions; in hindsight, a reductionist approach which ignores
the intra-tumour heterogeneity of genetic and epigenetic profiles observed within spatially distinct
regions [8,9]. Glioma core regions are usually necrotic due to a rapidly growing tumour mass and
inter-cellular competition for oxygen and nutrients; tumour edges represent a key hallmark of gliomas
that is more clinically-relevant when considering next-generation therapy. Glioma invasive peripheries
form a characteristic perivascular and perineural satellitosis. Ignoring these infiltrative tumour
peripheries obscures the full biological profile of the invasive process, where residual infiltrating
tumour cells left after maximum surgical removal, ultimately give rise to malignant glioma recurrence.

Glioma aggressiveness and therapeutic resistance has led to many transcriptome- or genome-wide
studies aiming to unravel the complex molecular pathways of gliomas to better understand disease
progression and to design novel targeted therapeutic agents. For instance, efforts have been
made to research and analyse thousands of genetic profiles of tumour samples uploaded in a
shared online space called The Cancer Genome Atlas Research Network in order to identify
appropriate tumour targets [10–12]. Additionally, elegant studies involving multi-region sampling
were conducted to decipher the co-relation between the genetic [3] and epigenetic [4] profiles of
high-grade glioma recurrences and their patient-matched low-grade gliomas. Although distinct
genetic and epigenetic growth drivers have been observed, no clinical impact has been achieved
so far by purported targeted therapies. In this review, we aim to give some insights into the
perivascular compartment during glioma cell invasion, which is important for a better understanding
of tumour progression, and ultimately developing new translational research trends and prioritisation
of novel therapeutic agents.

2. The Glioma Invasive Phenotype

The invasive ability of gliomas has been the focus of pathologists since 1938, when German
neuropathologist Hans Joachim Scherer suggested that the tumour cells of glioma malignancies
infiltrate the normal brain parenchyma with distinct morphological patterns [13]. Of these,
he categorised the secondary structures, in which Scherer described the arrangement of the invading
glioma cells in relation to neural and glial cells or alongside the white matter tracts, blood vessels
and meninges. In particular, he described the perivascular satellitosis; i.e., the concentric arrangement
of glioma cells outside the Virchow–Robin spaces of the pre-existing normal brain vessels. Scherer also
described the predilection of the invasive malignant glioma cells to the capillaries and small vessels
as one of the distinctive features of glioma tumours from the perivascular gliosis. In addition,
he observed that glioma cells grow around blood vessels in areas of normal parenchymal brain
tissue at some distance from the original tumour mass. This view of the invasiveness of gliomas
is still valid and accepted [14–16] and has been further corroborated by several recent studies.
For example, the attachment of migrating glioma cells depends on receptors expressed on the surface
of cells and on the extracellular matrix and is mediated through cell-cell and cell-matrix interaction
by adhesion molecules such as integrins and cadherins. The detachment of these invading cells
occurs mainly through the degradation and remodelling of the surrounding extracellular matrix
by matrix metalloproteinases [17–21]. According to this hypothesis, malignant glioma cells detach
from their primary tumour, create new connections with surrounding parenchyma, destroy and
remodel the extracellular matrix and finally migrate into healthy tissue [22]. Similarly, some studies
found that glioma cells undergo several complex morphological changes, which are mediated by the
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actin-myosin machinery, to enable migration into surrounding brain tissue [23,24]. Additionally, these
significant volume and shape changes of glioma cells during the invasion process were observed by
in vivo and ex vivo time-lapse imaging techniques [14,25]. For example, significant hydrodynamic
glioma cell volume changes (that might reach up to 33% reduction of glioma cell volume) could
occur to facilitate invasion through small-sized surrounding spaces. This was inferred from in vitro
observations where a one-third reduction in glioma cell volume preceded infiltration through transwell
barriers with 3–8 µm pore size [25]. These periodic morphological changes were achieved by
repurposing ion-channels that are normally used to control normal neural excitability functions [26].
Such complex sequential mechanisms allow the invasion of glioma cells into narrow compartments
such as the perivascular space which otherwise would be too small for the cells [26].

Among all spaces provided by the Scherer model of invasion, the perivascular space has the
major share of glioma invasion, and more than 85% of the invading malignant cells migrate around
blood vessels to form the satellite tumour shape [16,27]. Furthermore, it could be argued that glioma
cells invade the vascular compartment and co-opt pre-existing vessels [27] early during disease
progression without the need for the neo-angiogenic factors produced by glioma tumour cells.
This may explain the failure of all anti-angiogenic drugs tested in clinical trials as a first line
treatment option. For example, bevacizumab has failed to show any overall survival benefit in
newly diagnosed glioma patients [28]. Moreover, at least some glioma cells retain or acquire the ability
to create tumour-derived vascular networks toward late-stages of the disease in a phenomenon
termed vascular mimicry [29,30]. El Hallani and colleagues showed that non-endothelial cells
derived from glioblastoma multiforme (GBM), which exhibited stem-like features, could secrete
pro-angiogenic factors and express endothelial markers, mimicking features of vascular smooth
muscle-like cells. Vascularity in gliomas was shown to be generated in both an oxygen-dependent
and oxygen-independent manner via the master angiogenic regulators vascular endothelial growth
factor (VEGF) and hypoxia induced factor-2α (HIF-2α) or through fibroblast growth factor 1 (FGF1)
signalling pathways respectively [31–33].

3. Molecular Basis of Glioma Perivascular Invasion

Despite a predilection in gliomas to vascularity, it is not clear yet whether glioma cells infiltrate
this perivascular space preferentially as a response to appropriate nutrients and environmental cues
which promote tumour survival and growth, or whether this space represents the least physical
barrier that resists tumour cell propagation to surroundings. According to our current knowledge,
this question is yet to be answered and therefore needs to be comprehensively addressed, as it affects
the trends and the prioritisation of tumour treatment modalities. It could be argued that the availability
of certain chemo-attractive molecules in the perivascular and endothelial cell niches could explain the
preferential habitation of glioma cells around the vascular tree (Figure 1). For example, Bradykinin
(BK) provides chemotactic signalling to glioma cells in the perivascular niche [16]. BK cleavage
from high molecular weight kininogen is initiated by vascular endothelial cells (VEC) via the
activation of the kallikrein–kinin system, which ultimately leads to the conversion of pre-kallikrein into
kallikrein [34]. Kallikreins are a subgroup of serine proteases which coordinate various physiological
functions including blood pressure. Binding of BK to its receptors leads to the activation of G
protein-coupled receptors which increases Ca2+ concentrations through inositol-1,4,5-triphosphate
receptor 3 [35,36]. Calcium concentrations under the regulation of BK levels were shown to be
crucial to glioma invasion [16]; i.e., low BK levels caused a prolonged persistence of intracellular
calcium [16,37], whereas long exposure to BK lead to Ca2+ oscillations [16,38]. These incremental
alterations in the intracellular Ca2+ resulted in the activation of ion channels necessary for volume and
morphology changes of glioma cells during migration through narrow spaces. Calcium oscillations
results in reprogramming of the Cl− and K+ channels which are normally set to regulate neural
membrane potential. This enables the glioma cell to reduce its volume down to 33% of its original size,
and thus facilitating the infiltration through small compartments by removing free cytoplasmic water
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outside the cell via Cl− efflux [26,39]. Seifert and Sontheimer (2014) showed that BK may enhance
amoeboid glioma cell migration via mobilisation of the intracellular Ca2+ which, in turn, induces the
contraction of cellular cytoskeleton, cytosolic flow and ultimately the formation of bleb protrusions at
glioma cell membranes. Both BK receptor 2 inhibitor, Hoe-140, and bleb retraction blocker, blebbistatin,
were both effective in inhibiting glioma cell invasion [40]. Montana and Sontheimer (2011) further
suggested that not only is BK a key ligand for glioma cell invasion via fluctuation of Ca2+ levels,
but it can also enhance human and rat glioma cell migration in vitro via binding to BK receptor 1.
This leads to the activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT cascade
signalling pathway [41], involved in cellular growth and metabolism [42], or the release of several
molecules from astrocytes such as D-serine, ATP, and glutamate which in turn support and stimulate
glioma invasion [43–47]. It is noteworthy to observe that in addition to the major role of BK in glioma
cell migration around the perivascular space, it can promote the migration of glioma cells into the
surrounding brain matrix by remodelling this compartment via matrix metalloproteinase [48].

As a consequence of the significant role of BK in glioma perivascular satellitosis, a BK
receptor inhibitor, Icatibant (Firazyr; Shire), has been tested in preclinical studies using glioma
rat models and shown to be effective in impairing the migration of glioma cells through cerebral
parenchyma and ultimately resulting in a smaller tumour mass [16]. Similarly, a family of cell surface
integrin receptors (e.g., integrin β subunit when heterodimerised with the α-subunit), attach to collagen,
laminin, fibronectin, vitronectin, osteopontin and tenascins of the perivascular extra cellular matrix and
have been observed to be important in glioma invasion [19]. Thus, these integrins have been targeted
by many pharmacological blockers proposed in preclinical studies and been tested in clinical trials.
Despite the strong relationship between integrins and the glioma cell invasion phenotype, no clinical
impact has been demonstrated in clinical trials. For example, cilengitide which showed moderate
efficacy in Phase II trials, has failed to add any overall survival benefit in Phase III trials [49].
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Figure 1. The glioma invasive perivascular niche. Characteristic perivascular satellitosis occurs due
to the migration of glioma cells towards ligands expressed by the vascular endothelial cells (VEC).
These chemotactic molecules are also capable of attracting glioma stem cells (GSC) towards the
perivascular niche via several molecular pathways. Bradykinin is an inflammatory mediator causing
blood vessels to dilate, promoting the chemotactic invasion of malignant gliomas. Vascular endothelial
growth factor (VEGF); chemokine (C-X-C motif) ligand 12 (CXCL12).
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4. Chemokine Signalling within the Perivascular Invasive Niche

Integrins likely also promote perivascular invasion through the activation of the chemokine
(C-X-C motif) ligand 12 (CXCL12)/CXCR4) signalling pathway [50]. CXCL12, previously known as
induced stromal cell-derived factor-1α, is a key signalling molecule, hypothesised to act through
CXCR4/CXCR7 receptors as a chemotactic ligand for glioma cells to invade the perivascular
compartment [15,51]. Zagzag and colleagues observed that CXCL12 induced a strong transcriptomic
signal in neurons and vessels bordering with the invading edge of mouse brain gliomas. CXCL12 was
upregulated in normoxic conditions in vitro after paracrine exposure of neuronal and endothelial cells
to VEGF secreted by the nearby perivascular fibroblasts and by tumour cells in an autocrine manner.
Additionally, CXCL12 was shown to selectively attract and positively stimulate the migration of glioma
cells which exclusively upregulated the expression of CXCR4 receptors [15]. Alternatively, hypoxia,
which usually develops in the tumour core region progressively with the growing tumour mass,
leads to an increase in CXCR7 expression in the microvascular endothelium and ultimately enhances
CXCL12-dependant glioma cell migration [52,53]. This was also corroborated by Liu and colleagues
who suggested that glioma cells which express CXCR7 were shown to migrate toward CXCL12
gradients in close vicinity to blood vessels of highly vascularised glioma tumours [51]. Another in vitro
study conducted by Yadav and colleagues showed that human and murine GSC can migrate toward
brain VEC via activation of the CXCL12/CXCR4 pathway, and CXCR4 genetic knockdown in a mouse
model or pharmacological block using small molecule inhibitor AMD3100 (Plerixafor) leads to the
reduction of tumour growth and vascular invasion [54]. There are two currently open clinical trials
involving Plerixafor treatment in newly diagnosed patients with high-grade glioma (clinical trials.gov).
The CXCL12–CXCR4/CXCR7 pathway is fully reviewed in [50]. Recently, it was shown that CXCR4
GSC are attracted to the perivascular space and transforming growth factor beta (TGF-β) expressed
by endothelial cells canguide the differentiation of CXCR4 expressing GSC into mature pericytes to
support tumour vascular sprouting and further growth [55].

5. Perivascular Niche Enhances Glioma Stem Cell Invasion

The GSC theory postulates an explanation for tumour aetiology, albeit the dynamic nature of GSC
subpopulations cautions against reductionist descriptions of static populations. It suggests that the
bulk of genotypically diverse tumour could be generated by a small population of self-renewing cancer
stem-like cells that in turn can differentiate into multiple tumour cell lineages [6]. However, as is
the case for any solid tissue cancer stem cells, it is yet to be identified whether these GSC arise from
normal brain stem cells or from reprogramming of glial progenitors or mature differentiated cells. It is
likely that many or all cells within glioma tumours demonstrate some degree of stem-like phenotype
and that this cellular characteristic is likely to vary depending on micro-environmental conditions.
In 2007, Calabrese and colleagues described the predilection of GSC (glioma cells expressing the neural
stem/progenitor markers Nestin and CD133) to the endothelium of blood vessels and suggested
that factors such as pigment epithelium-derived factor, and stem cell factor in the perivascular
microenvironment are responsible for maintaining the self-renewal and proliferation potential of
this population of cells [56]. Another study showed that Nestin+/CD133+ GSCs are located around
CD31+ endothelial cells [57]; likewise, Yadav and colleagues (2016) showed the migration capacity
of GSC toward brain VEC through activation of the CXCL12/CXCR4 pathway and where blocking
CXCR4 signalling inhibits the invasive phenotype of GSC, rendering them more vulnerable and
sensitive to radiotherapy [54]. Recently, it was shown that ephrin-B2 expressed in GSC may also play a
significant role in perivascular invasion of GSCs by two mechanisms; firstly, Eph activation leads to the
expulsion of these GSC within the tumour mass, which ultimately potentiates GSC motility and results
in dissemination of individual cells away from the original tumour; secondly, Eph activation leads
to the repression of sensitisation of these escaped GSC to the surrounding VEC-derived ephrin-B2,
and thus “hijacks” the signalling pathway by which the normal vasculature inhibits the formation
of tumour [7]. In addition, knock down of the gene encoding for ephrins (EFNB2) in GSC derived
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from patients’ samples or treating tumours generated from these GSC with anti-ephrin-B2 antibodies,
showed a significant reduction in the initiation and progression of glioma tumourigenesis.

6. Vascular Endothelial Cell-Glioma Stem Cell Cross-Talk

Despite the anti-tumour activity of endothelial cells advocated by studies conducted in other
tumours such as colorectal and prostate cancers [58,59], several studies showed the remarkable role of
VEC in providing the appropriate microenvironment for GSC invasion and survival via the secretion
of several factors which can induce multiple signalling pathways [56]. Of these, immunofluorescent
staining of GSC in GBM revealed the upregulation of Notch receptors 1 and 2 in a region with close
approximation to VEC expressing Notch ligands JAGGED 1/2 (JAG1/2), and delta-like ligand 4 (DLI4),
which have been shown to be vital for the self-renewal capacity of GSC [60]. Moreover, nitric oxide
provided by VEC was shown to switch on GSC self-renewal and to promote glioma tumorigenesis
via Notch signalling [61]. Several other factors which are expressed by VEC and involved in GSC
invasion and survival such as angiopoietin (via the activation of Tie2 receptor), leads to the expression
of extracellular adhesion molecules such as N-cadherin and integrin β1, that may plausibly enhance
GSC invasion [62]. Finally, VEC was shown to support GSC proliferation through activation of sonic
hedgehog and mTOR signalling pathways [63,64].

7. Heterogeneous Location of Glioma Stem Cells

Current consensus in the glioma field suggests that GSC are located within two main
compartments; firstly, GSC could be located where hypoxia is evident, and pseudopalisading glioma
cells (a pathognomonic feature observed by light microscopy during histopathological diagnosis of
GBM) are gathered with this characteristic form around the necrotic regions in the glioma core [65];
the second compartment is located around blood vessels that are present in the periphery of the tumour
to form the perivascular satellitosis as discussed above. Most studies using patient-derived tissue
usually involve a single specimen for each tumour per patient, which is usually taken surgically from
the core region of the glioma. However, it is reasonable to speculate that the main difference between
GSC in the core of the tumour and the periphery is that surgical intervention may remove the bulk of
tumour core while the peripheral residual invasive GSC are left even after extensive surgical removal
and ultimately contributing to disease recurrence and treatment resistance [66]. However, one cannot
exclude the possibility that the combination of multi-modal therapeutic approaches confers a stringent
selection pressure within distinct tumour micro-environments, thereby inducing subpopulations of
glioma cells to initiate self-renewal programs that facilitate the repopulation of recurrent glioma.
Thus, we advocate the importance of multi-region sampling in studies involving tumour specimens
to better understand invasive GSC at the tumour edge, enabling the development of novel therapies
targeting tumour invasion, recurrence, and treatment resistance.

8. The Gliovascular Regulatory Unit

Current studies indicate that the infiltration of glioma cells through the perivascular space of the
adjacent surrounding parenchyma has several dismal effects on the locally invaded niche of brain tissue.
In normal physiological conditions, astrocytic end-feet circumferentially covers almost the entire
surface of blood vessels [67] to form an interactive unit that is required for regulating neural function,
maintaining the integrity of the blood-brain barrier (BBB), controlling vascular tone, and coordinating
ion and metabolite exchange through specialised channels [68]. During glioma invasion through
the perivascular space, the amoeboid processes of the migrating malignant cells elevate the end-feet
of the astrocytes from the abluminal surface of blood vessels (Figure 2), which in turn disrupts and
even breaches the adjacent BBB [27]. This disfigurement of the gliovascular regulatory unit results
in the loss of control of normal astrocytes on the vascular tone via the Ca2+-dependant release of K+.
Moreover, this also leads to several dysfunctional consequences on the delicate neurovascular unit
such as the decrement of shuttling energetic metabolites such as lactate from astrocytes to neurons [69],
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and the reduction of blood flow previously observed in glioma patients [70]. The repurposing of
vascular tone achieved by the migrating glioma cells was attributed to the tumour survival capability
as vasoconstriction was hypothesised to be important for increasing the volume of the perivascular
compartment during invasion, whereas vasodilatation is thought to be essential for the growing
malignant mass [27]. The displacement of the astrocytic end-feet can also lead to disruption of the
BBB and results in increasing vascular permeability, which in turn facilitates serum leakage into the
surrounding region of brain tissue. However, it is not yet known whether these leaky vessels are due
to the physical damage caused by the glioma cells while lifting the astrocytic end-feet from the blood
vessel basement membrane, or due to down-regulation of the tight junction proteins (e.g., claudins) in
the endothelial cells of the vasculature [27].
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Figure 2. Astrocytic end-feet retraction due to the perivascular invasion of glioma tumour cells
and/or glioma stem cells (GSCs). The function of both glio-neural and glio-vascular units are affected,
leading to an increase in the neural excitotoxicity of neural tissue. Such toxicity includes local
tissue oedema, vascular tone dysregulation and tumour repopulation from migratory GSC.

9. Conclusions

Although the definitive mechanism of glioma invasion through the perivascular space is
largely unclear, we advocate that gliomas and GSC seek to invade the perivascular compartment
to reach the abluminal surface of the blood vessels via tracking different chemotactic ligands,
activating signalling pathways, expressing extracellular adhesive molecules, and even reprogramming
the normal protective mechanisms towards tumour benefit. Such mechanisms hint at the adaptive
nature of glioma cells as the perivascular compartment provides several advantages for the tumour,
in addition to nutrients provided in the serum leaked trough fragile basement membranes of the
invaded blood vessels. For instance, the generation of new vascular stem microenvironments
by the migrating GSC could lead to considerable repopulation of tumour, with a completely
distinct genetic and epigenetic profile and facilitate further tumour growth and invasion at the
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new site [56]. This niche also provides the appropriate environment for GSC to proliferate and
invade via different molecular pathways. GSC can secrete VEGF which could lead to endothelial
migration and ultimately promote neo-angiogenesis [56]. Furthermore, trans-differentiation of GBM
stem-like cells into endothelial cells and/or vasculogenic mimicry could further contribute to tumour
circulation [71]. As the vascular niche may provide a protective shield for GSC against chemo- and
radiotherapies [56,72,73], targeting the dynamic GSC compartment of the invasive residual glioma
is essential to inhibit tumour repopulation, differentiation into multiple cell lineages, migration and
ultimately suppress the prolonged survival of tumour cells. We encourage a shift in philosophy from
exclusively devising therapeutic strategies which target proliferation (i.e., canonical receptor kinases or
cell cycle regulators) to including considerations for targeting the molecular basis of malignant glioma
infiltrative phenotypes. Furthermore, impairment of glioma invasion may also enhance adjuvant
cytotoxic chemo- and radiotherapy by potentially ensuring that residual disease remains local to the
primary tumour site, rather than have penetrated deep into brain parenchyma.
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