
Chen, Jinfu and Kuo, Fei-Ching and Chen, Tsong Yueh
and Towey, Dave and Su, Chenfei and Huang, Rubing
(2017) A similarity metric for the inputs of OO programs
and its application in adaptive random testing. IEEE
Transactions on Reliability, 66 (2). pp. 373-402. ISSN
0018-9529

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/47713/1/A%20Similarity%20Metric%20for%20the%20Inputs
%20of%20OO%20Programs%20and%20Its%20Application%20in%20Adaptive%20Random
%20Testing.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

A Similarity Metric for the Inputs of OO Programs
and Its Application in Adaptive Random Testing

Jinfu Chen, Fei-Ching Kuo,Tsong Yueh Chen,Dave Towey, Chenfei Su, and Rubing Huang.

Abstract—Random testing (RT) has been identified as one of the
most popular testing techniques, due to its simplicity and ease of
automation. Adaptive random testing (ART) has been proposed as
an enhancement to RT, improving its fault-detection effectiveness
by evenly spreading random test inputs across the input domain. To
achieve the even spreading, ART makes use of distance measure-
ments between consecutive inputs. However, due to the nature of
object-oriented software (OOS), its distance measurement can be
particularly challenging: Each input may involve multiple classes,
and interaction of objects through method invocations. Two pre-
vious studies have reported on how to test OOS at a single-class
level using ART. In this study, we propose a new similarity metric
to enable multiclass level testing using ART. When generating test
inputs (for multiple classes, a series of objects, and a sequence of
method invocations), we use the similarity metric to calculate the
distance between two series of objects, and between two sequences
of method invocations. We integrate this metric with ART and ap-
ply it to a set of open-source OO programs, with the empirical
results showing that our approach outperforms other RT and ART
approaches in OOS testing.

Index Terms—Adaptive random testing (ART), method invoca-
tion, object distance, object-oriented software (OOS) testing, test
input distance.

ACRONYMS AND ABBREVIATIONS

OOS Object-oriented software.
RT Random testing.
SUT Software under test.
ART Adaptive random testing.
RefV Reference variable.
NRefV Nonreference variable.
OBJ Objects set.

J. Chen, C. Su, and R. Huang are with the School of Computer Science and
Communication Engineering, Jiangsu University, Zhenjiang 212013, China
(e-mail: jinfuchen@ujs.edu.cn; suzenfly@163.com; rbhuang@ujs.edu.cn).

F.-C. Kuo and T. Y. Chen are with the Department of Computer Science and
Software Engineering, Swinburne University of Technology, Hawthorn, VIC
3122, Australia (e-mail: dkuo@swin.edu.au; tychen@swin.edu.au).

D. Towey is with the School of Computer Science, University of Nottingham
Ningbo China, Ningbo 315100, China (e-mail: dave.towey@nottingham.edu.
cn).

MINV Method invocations.
LenD Length difference.
MsD Method set difference.
SD Sequence difference.
DT Data types.
DO-ART Divergence-oriented ART.
RT-1 RT with one method invocation.
RT-n RT with multiple method invocations.
CL Confidence level.
sDev Standard deviation.

NOTATIONS

T Executed test inputs set.
C Candidate set.
τ , λ, ν, φ Coefficients.
weight a, α Coefficients.
i Imaginary unit.
A Set of attributes.
N NRefV attributes.
R RefV attributes.
M Set of methods.
p, q Any two objects.
t A test input.
t.OBJ A list of objects in t.
t.MINV An ordered list of methods in t.
p.A.N [namei] Value of variable namei in p.A.N .
pG NRefV attributes sets for p.A.N .
DTi The ith data type.
pG[i][j] The jth nonreference variable of pG[i].
dist(x, y) The distance between x and y.
Fm The number of test inputs required to detect

the first failure.
Em Expected number of failures detected.
Fm - time Time taken to detect the first failure.
lowB Lower bound.
uppB Upper bound.

I. INTRODUCTION

I T is well recognized that object-oriented (OO) design in-
creases software reusability, extensibility, and interoperabil-

ity [1], and because of this, we have witnessed an increasing
amount of software being developed using OO programming
languages. Such software (hereafter abbreviated as OOS) con-
sists of classes, each of which is a design framework to create

multiple objects with common behavior and attributes, which
are realized as methods and instance variables, respectively.
Constructors are special methods used to create an object of a
class, and to initialize its attributes. Objects can be coordinated
to perform certain tasks in the OOS, and hence each test input
for OOS often involves multiple classes and object interactions
through method invocations.

Software testing is an important activity in software quality
assurance, but OOS testing can be particularly challenging due
to the special, but powerful features of OO languages, such as
encapsulation, inheritance, and polymorphism [2], [3].

Although simple in concept, random testing (RT) is an im-
portant quality assurance technique [4]–[6], which can facilitate
reliability estimation of the software under test (SUT), and, due
to its simplicity and ease of automation, is commonly used in
industry [7]. Many research studies have examined OOS testing
using RT [5], [8]–[10], which can be easily applied to test at
many levels (including unit, integration, and system levels) [5],
[9], [10]. However, it has been noted that RT’s effectiveness and
efficiency deteriorate as the OOS size and complexity increase.
Some studies have attempted to improve RT’s performance in
OOS testing [5], [7], [11], [12], an example of which is the
development of feedback-directed RT, which uses information
from executed test inputs to guide new test input generation.
When information shows that certain parameter settings cause
an exception, this technique will avoid such settings in subse-
quent RT test inputs.

In order to improve the failure-detection effectiveness of RT,
Chen et al. proposed an enhancement, adaptive random testing
(ART) [4], [13], [14], which was inspired by empirical obser-
vations that many faulty programs have contiguous regions of
failure-causing inputs [15]. To quickly find a failure in this sit-
uation, ART selects randomly generated follow-up test inputs
further away from the previously executed, nonfailure-causing
test inputs. ART has been found to consistently outperform RT
for fault detection [13], [15]. One challenge faced when ap-
plying ART is how to measure the difference between inputs
(named “distance” hereafter). ART has been applied to testing
OOS, with Ciupa et al. proposing a distance concept for ob-
jects, and a metric to measure differences between two objects
of the same class, or derived from the same ancestor [16], [17].
They developed a tool, ARTOO, in the Eiffel language using
this approach, and showed ARTOO to be better than RT, both
in terms of number of test inputs to detect the first failure, and
the number of uncovered faults. However, this metric can only
choose one object at a time as a test input to test one specific
method of the class. Lin et al. [18] tried to improve ARTOO
by invoking extra methods of the chosen object before running
the specific method. Using the Java language, they implemented
this approach (called divergence-oriented ART) in a new tool
called ARTGen, which was found to outperform RT in terms of
finding faults.

A challenge facing ARTOO and divergence-oriented ART
is that the distance metric may not readily allow generation
and even spreading of test inputs involving multiple objects
and methods of multiple classes. Although it can only be ap-
plied to pairs of objects, comparison of objects of different
classes, or those not sharing a common ancestor is not possible.

Furthermore, comparisons do not include object behavior in-
formation or complex object data (such as enumerated types,
arrays, structs, and pointers).

In this paper, we propose a more generic distance metric,
the object and method invocation sequence similarity (OMISS)
metric, which facilitates integration testing of OOS. Integration
testing requires that each test input be composed from multiple
classes, and that a set of objects be created and able to interact
with each other through a series of method invocations. When
measuring inputs such as this, two levels of measurement are
considered for developing the OMISS distance metric: object
level and test-input level. The object level measures any pair of
objects, regardless of which classes they are created from, and
whether or not they share the same ancestor. The test-input level
measures distances between object sets and method invocation
sequences in the two inputs. These two measurement levels
make the OMISS metric capable of handling complex inputs
involving multiple classes, objects, and method invocations,
and thereby facilitate integration testing. We have integrated
the OMISS distance metric with the fixed-sized-candidate-set
ART (FSCS-ART) [19] method to develop a testing tool, called
OMISS-ART, for testing C++ and C# programs.

The remainder of this paper is organized as follows. The
background information for OOS testing and ART is given in
Section II. Our distance metrics are detailed in Section III. The
development of OMISS-ART and procedures to generate test
inputs are discussed in Section IV. Settings and results of our
empirical studies are reported in Section V. Related work is
discussed in Section VI, and the conclusion and future work are
presented in Section VII.

II. BACKGROUND

A. OO Software Testing

Software testing is an essential software quality assurance ac-
tivity, but OOS testing can be particularly challenging due to the
intricacies introduced by the special features of OO languages,
such as encapsulation, inheritance, and polymorphism [1].

Test input design and generation are important aspects of
software testing, directly impacting on the testing cost and ef-
fectiveness, and are often guided by things such as program
structure, source code, the software specification, input/output
structure, and information about previously executed tests [4],
[20]. Depending on the information used, test input design and
generation techniques have been broadly classified as specifica-
tion based, structure based, and RT based [1], [21]. While both
specification-based and structure-based approaches require de-
tailed information about the OOS (either the specification or
program structure), RT-based approaches have no such require-
ments, and can generate a large number of test inputs at low cost
[1], [5], [8]–[10]. Furthermore, RT is conceptually simple, can
easily be scaled, is readily applicable to many kinds of software,
and has been widely used in industry [7].

RT techniques for unit testing of OOS have been attracting a
lot of attention recently [5], [7], [11], [12], [22], [23], an exam-
ple of which is Pacheco et al.’s [5], [7], [12] feedback-directed
RT technique, which improves on the fault-detection effective-
ness of RT by using information of previously executed test

Procedure 1: FSCS-ART algorithm based on max-min
selection criterion and a distance metric.
1: INPUT distance metric DistMetric
2: Construct T = {} to store past executed test inputs
3: Randomly generate a test input t
4: Add t to T
5: while before reaching the stopping condition do
6: Let maxD = 0.0
7: Randomly generate a set of k candidates: C = {c1 , c2 ,

. . . , ci , . . . , ck}
8: for each candidate ci in C do
9: Let minD = MAX_VALUE {MAX_VALUE is

the biggest value that a type of data can hold.}
10: for each test input tj in T do
11: Calculate the distance dj between ci and tj

according to DistMetric
12: if dj < minD then
13: minD = dj

14: end if
15: end for
16: if minD > maxD then
17: maxD = minD
18: t = ci

19: end if
20: end for
21: Add t to T
22: end while

inputs to guide new input generation. According to this tech-
nique, if certain parameter settings lead to an exception, then
inputs with these settings will be filtered out during the ran-
dom generation, thereby lowering detection of duplicate fail-
ures. Studies have shown that feedback-directed RT improves
the cost-effectiveness of RT in terms of detecting failures [5].

B. Adaptive Random Testing

ART [4], [14], [15], [19] has been proposed as an enhance-
ment to RT. Inspired by many empirical observations that faulty
programs usually have contiguous failure regions, ART aims to
evenly spread the random test inputs across the input domain in
order to enhance the failure-detection effectiveness.

ART has drawn a lot of attention, both from academia and
from industry, and a number of different algorithms have been
developed [13], [18], [19], [24]–[30], with one of the most pop-
ular being FSCS-ART [19]. With FSCS-ART, previously exe-
cuted test inputs are stored in a set T, and whenever a new test in-
put is needed, a fixed number of random inputs are generated as
a candidate set, C, from which, based on some selection criteria,
the best candidate is then chosen. One commonly used selec-
tion criterion is the max–min criterion, which involves selecting
the candidate whose “smallest” distance to T is the largest. The
FSCS-ART algorithm with max–min criterion is described in
Procedure 1.

To use ART, some form of distance measurement is required,
such as Euclidean distance for numeric inputs. For non-numeric
inputs, the measurement should take account of the functionali-

Fig. 1. Object structure.

ties or characteristics of the SUT. Web applications, for example,
often involve cookies, and Tappenden and Miller [31] proposed
a cookie-based distance metric to evenly spread test inputs for
web applications.

C. Object and Test Input in OOS

There are three distinctive characteristics of OO program-
ming: encapsulation, inheritance, and polymorphism. Encapsu-
lation refers to keeping the object’s attributes and implementa-
tion detail internally, but providing a simple interface (that is, a
list of public constructors/methods) for other objects to interact
with them. Inheritance means that one class (called a subclass)
can be derived from other existing classes (called superclasses),
and can also define its own unique properties and behavior.
Polymorphism refers to the ability to present the same interface
for entities of different types using techniques such as dynamic
binding, method overloading, and method overriding [1].

The class is an abstraction of a set of objects with common
attributes and methods, and is perhaps the most basic element of
OOS. Various structures and relationships are built upon classes.
For example, the inheritance relation is defined for classes as
follows: when a class A inherits from another class B, an object
of A will inherit elements from class B. When a class needs a
continuous relation with another class, it will store an object
reference of that class as one of its attributes.

Fig. 1 shows a typical object structure. Attributes and methods
derived from the superclass are called inherited elements, while
those defined within the class itself are called “self-defined” el-
ements. Furthermore, attributes can be either reference or non-
reference. A reference variable (abbreviated as RefV) refers to
an object, while a nonreference variable (abbreviated as NRefV)
stores values of primitive data types, such as integers, real preci-
sion numbers, boolean values, characters, strings, enumerated
types, and struct values.

Classes provide semantic information for the OOS which can
be very useful when designing test inputs. An OOS test input
t often consists of two parts: t.OBJ and t.MINV, where t.OBJ
is a list of objects and t.MINV is an ordered list of methods

Fig. 2. Object diagram for the animal system from [16].

TABLE I
OBJECT DISTANCES (CALCULATED USING ARTOO) FOR ALL

OBJECT PAIRS IN FIG. 2, AS REPORTED IN [16]

Bird1 Bird2 Dog1 Ps1 Ps2 P1 P2 P3 P4

Bird1 0 1 13 N/A N/A N/A N/A N/A N/A
Bird2 1 0 14 N/A N/A N/A N/A N/A N/A
Dog1 13 14 0 N/A N/A N/A N/A N/A N/A
Ps1 N/A N/A N/A 0 1 N/A N/A N/A N/A
Ps2 N/A N/A N/A 1 0 N/A N/A N/A N/A
P1 N/A N/A N/A N/A N/A 0 15.4 5.0 8.8
P2 N/A N/A N/A N/A N/A 15.4 0 16.0 15.0
P3 N/A N/A N/A N/A N/A 5.0 16.0 0 8.0
P4 N/A N/A N/A N/A N/A 8.8 15.0 8.0 0

(representing a sequence of method invocations) in the test input.
An object used to test a nonstatic method (nsM) is known as the
method receiver in OO programming, and is denoted rec(nsM)
in this paper. For any nonstatic method t.minvi ∈ t.MINV, its
receiver rec(t.minvi)∈ t.OBJ. Both t.minvi and rec(t.minvi)
must refer to the same class. In general, t = {t.OBJ, t.MINV},
size(t.OBJ)≥ 1, and size(t.MINV)≥ 1. However, if we are only
interested in the correctness of a constructor, then size(t.MINV)
will be 0; or if we are only interested in the correctness of a
static method, then size(t.OBJ) will be 0.

D. Distance Metric for ARTOO and Divergence-ART
Approaches

ARTOO [16], [17] was proposed to test one specific method
of a class, and hence the test input to for ARTOO con-
sists of only one object {to .obj} and one method {to .minv},
with to .obj = rec(to .minv). Divergence-oriented ART [18]
is an extension to ARTOO, and after an ARTOO test input
to is constructed, {to .obj} is used to call additional methods
{td .minv1 , . . ., td .minvs}, which are invoked before to .minv.
Hence, each test input td of divergence-oriented ART consists
of one object {to .obj} and one sequence of methods invoca-
tions {td .minv1 , . . ., td .minvs , to .minv}. Both ARTOO and
divergence-oriented ART use the same distance metric, which,
in the interest of clarity, in this paper is referred to as the
“ARTOO” metric.

Ciupa et al. [16] used a PET_STORE example to explain
ARTOO, and, for ease of comparison, their object diagram and
distance calculation results are reproduced here in Fig. 2 and
Table I, respectively. In Section III-D, we will also use the

Fig. 3. Class diagram for an animal system with behavior (methods).

PET_STORE example to compare our proposed distance metric
with the ARTOO metric, but because our distance metric takes
account of method invocation, we expanded and revised their
class diagram, as shown in Fig. 3.

The following are three formulae used in the ARTOO(p, q)
metric [16], with p and q denoting any two objects of the same
class, or derived from the same ancestor:

ARTOO(p, q) = field distance(p, q)

+ type distance(p, q)

+ recursive distance(p, q), where

field distance(p, q) =

φ ∗ Avg(Σa∈common(p.attribute, q .attribute)weighta

∗elementary distance(p.a, q.a)),

type distance(p, q) = τ ∗ λ ∗ sum path length

(p.type, q.type)

+ τ ∗ ν ∗ Σa∈different(p.attribute, q .attribute)weighta

recursive distance(p, q) =

α ∗ Avg(Σa∈common(p.Ref V , q .Ref V) weighta

∗ARTOO(p.a, q.a))

The purpose of these three formulae are as follows.
1) The field distance (p, q) formula calculates the dis-

tance between every two attributes p.a and q.a of the
same type (NRefV or RefV), based on their value dif-
ference, i.e., elementary distance(p.a, q.a). Standard
ways exist to calculate the difference between two num-
bers, including, for example, |p.a − q.a|. When p.a and
q.a do not belong to the same type, it is up to testers to
define the formula for elementary distance(p.a, q.a);
for example, when p.a and q.a are reference variables,
each of which stores objects, Ciupa et al. [16] proposed
elementary distance(p.a, q.a) = 0 if p.a and q.a both
either refer to the same object or to null; otherwise 10.

2) The type distance (p, q) formula involves two calcula-
tions: a) summing the lengths of the paths from p and
from q to their common superclass; and b) counting the
variables of different types (i.e. variables left out by the
field distance calculation).

3) The recursive distance (p, q) formula calculates the dis-
tance between two objects of the same type (p.a and q.a)
referenced in p and q, calling the ARTOO(p.a, q.a) for-
mula recursively. The depth of recursive calculation is
taken into account, with the setting α (a proper fraction)
used to attenuate the impact of deeper recursion.

In these formulae, Ciupa et al. set φ, τ , λ, ν, and weight a
to 1, and α to 1/2 [16]. To illustrate how the ARTOO metric
works, let us calculate the distance between Bird1 and Dog1
in Fig. 2.

According to Fig. 2, Bird1 and Dog1 have two common
attributes: age (integer) and Pet_store (a reference variable of
PET_STORE). Since Ps1 and Ps2 refer to different objects,
their elementary distance is 10. Hence, field distance(Bird1,
Dog1)=1/2 ∗ (|Bird1.age − Dog1.age| + 10)=1/2 ∗ (7 +
10)=8.5.

In addition, DOG and BIRD have one common superclass
ANIMAL. The path length from Dog1.type (DOG class) to
ANIMAL and that from Bird1.type (BIRD class) to ANIMAL are
both 1. Hence, the sum_path_length(Dog1.type, Bird1.type) is
2. Furthermore, Bird1 and Dog1 have two different attributes:
is_sick (a boolean) and breed (a string), both of whose weight_a
equal 1. Hence, type distance(Bird1, Dog1)=2 + (1 + 1)= 4.

Finally, Bird1 and Dog1 have one common reference vari-
able, Pet_store (which is Ps1 and Ps2, respectively). The re-
cursive_distance is equal to α ∗ ARTOO(Ps1, Ps2). This will
repeat the ARTOO distance calculation for Bird1.P s1 and
Dog1.P s2. Because both Ps1 and Ps2 belong to the same
class (Pet_store), their type_distance is zero. Since Pet_store
does not have any reference variables, the recursive_distance
between Ps1 and Ps2 is 0. The only distance between Ps1
and Ps2 is related to their common field: name (a string).
Since elementary distance(Ps1.{Store1}, Ps2.{Store2})
= 1, we have ARTOO(Ps1, Ps2) equal to 1. Consequently,
recursive distance(p, q) = α ∗ ARTOO(Ps1, Ps2) = (1/2) ∗
1 = 0.5.

In summary, ARTOO(Bird1, Dog1) = field distance
(Bird1, Dog1) + type distance(Bird1, Dog1) + recursive
distance(Bird1, Dog1) = 8.5 + 4 + 0.5 = 13. If, on the other
hand, we tried to apply ARTOO(p.a, q.a) to measure the dis-
tance between Bird1 and P1, because they do not share the
same superclass, their distance will be undefined, shown as N/A
in Table I.

To illustrate how Ciupa et al. generate a test input us-
ing ARTOO(p, q), suppose that Fly(integer height, string
place) is a method under test. To test this, ARTOO(p, q) is
used together with the FSCS-ART algorithm (Procedure 1) to
separately generate an object of BIRD as the method receiver,
as well as an “integer” and a “string” as arguments for the Fly
method. These are then combined to form a test input, which
can execute the Fly method. Throughout the entire test-input
generation, three sets of executed objects (T) are maintained:
one for Bird, one for integers, and one for string objects rel-
evant to the Fly method. Clearly, it will be very complicated
to measure the difference between test inputs, each of which
consists of multiple objects and multiple methods of multiple
classes.

III. TEST INPUT AND OBJECT DISTANCE

A. Current Distance Metric Issues

The discussion and examples in Section II-D highlight some
issues for the current distance metrics.

1) OOS often consists of multiple classes, objects, and meth-
ods, which, for integration and system level testing, nor-
mally involves a list of objects and a sequence of method
invocations in a test input. However, the distance metric
used in ARTOO and divergence-oriented ART is not im-
mediately suitable for the generation and even spreading
of test inputs involving multiple objects and methods of
multiple classes.

2) ARTOO was proposed to test OOS written in the Eif-
fel language, in which all objects have a common an-
cestor (a “super-class”). This was built into the ARTOO
metric, allowing it to calculate the difference between
two objects based on the distance to their closest com-
mon superclass. In C# and C++, however, objects do not
necessarily have common superclasses, in which case,
current distance metrics cannot show the object distance
between them (such as for Bird1 and P1, in Table I,
whose distance cannot be calculated, denoted as “N/A“).
Because the ARTOO metric can only compute the
distance between two objects if they belong to the same
class or if they share a common ancestor, it is not suit-
able for calculating the difference between any two ran-
domly chosen objects, whose classes are likely to be
unrelated.

3) The elementary distance(p.a, q.a) measures the dis-
tance between two attributes of the same type in p and q
objects, but is currently restricted to numeric types, char-
acters, strings, and tester-defined types associated with
reference variables. The enumerated, array, struct, union,
and pointer types, common features in C++ and C#, are
not supported by current distance metrics.

4) Current distance metrics do not always return intuitive
results. Although we might expect two objects of the same
class to be closer than two objects of different classes
(even if they share a common ancestor), some data in
Table I violates this intuition: the distance between Bird1
and Dog1 (created from different classes) is 13, but the
distance between P2 and P3 (both from Person class)
is 16.

5) Current distance metrics do not work for test inputs involv-
ing more than one class, object or method invocation (such
as those in Table II). Although divergence-oriented ART,
as an enhancement to ARTOO, increases the number of
methods per test input, these added methods are related to
the same method receiver chosen by the ARTOO metric:
neither ARTOO nor divergence-oriented ART consider
interactions among multiple objects.

In order to address the above problems, we propose a new
distance metric to calculate the distance between test inputs
involving multiple objects and multiple method invocations
of multiple classes. The calculation involves both the dis-
tance between objects (OBJ) and the distance between method

TABLE II
TEST INPUTS FOR THE ANIMAL SYSTEM IN FIG. 3

Test Input (T1) Test Input (T2) Test Input (T3)

{ { {
PET_STORE Ps1(”Store1”); PET_STORE Ps1(“Store1”); PET_STORE Ps2(“Store2”);
BIRD Bird1(3, &Ps1,true); BIRD Bird2(1, &Ps1,false); DOG Dog1(10, &Ps2,“good”);
Bird1.Grow(); Bird2.Grow(); Dog1.Grow();
Bird1.Expand(); Bird2.Expand(); Dog1.Bark();
Bird1.Fly(); Bird2.Expand(); Dog1.Follow();

} Bird2.Fly(); }
}

Fig. 4. Relationship among the 12 formulae.

invocation sequences (MINV) of two test inputs. Twelve for-
mulae have been developed to calculate the distance between
two test inputs t1 and t2 , with Fig. 4 showing the relationship
amongst these formulae. The formulae will be discussed in de-
tail in Sections III-B and III-C.

The OMISS metric can also handle objects with both inher-
ited elements and embedded objects (i.e., references to other
objects), and complex data types such as arrays, unions, and
structs. These data types can be used to store objects as well as
primitive data, and which distance formula is used to calculate
the distance between two arrays, unions or structs depends on
the elements stored inside. Let us take the array as an example.

If arrays of “primitive type” are passed to a constructor, these
arrays will be attributes inside an object, and Formula (12.8) will
be used to calculate their difference. On the other hand, if the
arrays are of a “nonprimitive type” (i.e., an array of references to
objects) passed to a constructor, then they will be RefV attributes
inside objects, and Formula (7) will be used to calculate the
distance between them. If arrays of “nonprimitive type” are not
passed to a constructor but used inside a test input, the objects
referred to by these arrays will be the methods’ receivers, and
the distance between the two object sets will be calculated using
Formula (2). Arrays that are not passed to a constructor, but are
used as parameters for some method are not addressed in this
paper.

B. Test Input Distance Formula

In this section, we explain how to calculate the distance be-
tween test inputs.

As discussed in Section II-C, a test input t for OO software
consists of two parts, t.OBJ and t.MINV. Hence, the distance
between two inputs, t1 and t2 , should be the sum of their t.OBJ
distance and t.MINV distance. The following formula shows the
calculation:

TestcaseDistance(t1 , t2) = TCobjDist(t1 .OBJ, t2 .OBJ)

+ TCmSeqDist(t1 .MINV, t2 .MINV). (1)

The distance between two sets is generally determined by
their elements, or more precisely, the distance between pairs of
their elements. However, there are many ways to pair objects,
resulting in different sums of distances. In this study, the mini-
mum sum of distances amongst all possible ways of pairing is
taken as the distance between t1 .OBJ and t2 .OBJ (explained in
the next paragraph) as shown below:

TCobjDist(t1 .OBJ, t2 .OBJ) =

⎧
⎪⎨

⎪⎩

Min(
⋃k !

i = 1

{∑k
j=1 ObjDist(t1 .objj , PLi(t2 .OBJ, j))

}
)

if k = max(size(t1 .OBJ), size(t2 .OBJ)) > 0
0 otherwise.

(2)

The comparison of two sets of objects t1 .OBJ and t2 .OBJ
using Formula (2) requires these sets to be of equal size—if one
set is smaller, then it is augmented with an appropriate number
of null-valued objects to increase its size. The distance between
each pair of objects in the two sets is measured, and the sum of
these distances (DistSum) is calculated. If there are k objects in
the larger set, then there will be k! different pair combinations
and k! possible DistSum values. Let us explain the notations in
Formula (2) with an example. Suppose that t1 .OBJ = {p1, p2}
and t2 .OBJ = {q1, q2, q3}, then k = 3, k! = 6, and t1 .OBJ
will become {p1, p2, null}. These six distinct combinations
are shown in Fig. 5, in which there are six permuted lists of
the object set t2 .OBJ = {q1, q2, q3}. For ease of discussion,
let PL2(t2 .OBJ) denote the second permuted list of t2 .OBJ
in Fig. 5(b), and DistSum(t1 .OBJ,PL2(t2 .OBJ)) denote the
corresponding sum of distances between pairs (p1, q1), (p2,
q3), and (null, q2) in t1 .OBJ and PL2(t2 .OBJ). In addition, let

Fig. 5. All possible sums of distances for two object sets t1 .OBJ and t2 .OBJ.
(a) DistSum(t1 .OBJ, PL1 (t2 .OBJ)), (b) DistSum(t1 .OBJ, PL2 (t2 .OBJ)),
(c) DistSum(t1 .OBJ,PL3 (t2 .OBJ)), (d) DistSum(t1 .OBJ,PL4 (t2 .OBJ)),
(e) DistSum(t1 .OBJ,PL5 (t2 .OBJ)), and (f) DistSum(t1 .OBJ,PL6 (t2 .OBJ)).

PL2(t2 .OBJ, 0), PL2(t2 .OBJ, 1), and PL2(t2 .OBJ, 2) denote
elements q1, q3, and q2, respectively, in the second permuted list
of t2 .OBJ [see Fig. 5(b)]. These notations are used in Formula
(2), according to which, the object distance (TCobjDist) between
two object sets (t1 .OBJ and t2 .OBJ) is the minimum DistSum
between these two sets.

If neither set contains more than one object, then their distance
is equal to the distance of their objects, calculated using Formula
(4), that is, TCobjDist(t1 .OBJ, t2 .OBJ) = ObjDist(t1 .obj1 ,
t2 .obj1), where t1 .obj1 , and t2 .obj1 are the single objects in the
sets t1 .OBJ, and t2 .OBJ, respectively.

It should be noted that measuring the distance between t1 .OBJ
and t2 .OBJ based only on the class structure will not work. Sup-
pose that size(t1 .OBJ) = size(t2 .OBJ) = 1, and that t1 .obj1
and t2 .obj1 are both generated from the same class. If the mea-
surement is only based on the class structure (attributes and
methods defined inside a class), then the distance between these
two objects will be zero; but there may be a significant difference
in their attribute values. To address this, we suggest differentiat-
ing these two objects based on the constructor arguments used
to initialize them. Such a distance definition is very similar to
the elementary distance in ARTOO. However, we also suggest
that this kind of distance should not be as significant as the
distance based on the class structure, and so we propose a two-
layer measurement: 1) the first measurement layer (the primary
distance) is based on the internal structure of the classes from
which the objects are created; and 2) the second measurement
layer (the secondary distance) is based on the actual constructor
arguments used to create the objects. Consequently, the distance
between two object sets is presented in the form a + bi, where
a is the primary distance, b is the secondary distance, and i is the
imaginary unit defined in this paper. Object distance calculation
will be explained in Section III-C.

Unlike the distance measurement for object sets, there is only
a one-layer measurement for method invocation (MINV) sets.
Because the distance calculated from method invocation sets
is as significant as the primary distance from object sets, we
consider it the primary distance, and present it as a + 0i. Ev-
ery MINV set has three parts: length, method set, and invoca-
tion sequence. Hence, the distance between two MINV sets is
the sum of the differences in lengths, in methods, and in in-
vocation sequences. The following formula shows the detailed

calculation:

TCmSeqDist(t1 .MINV, t2 .MINV)

= LenD(t1 .MINV, t2 .MINV)

+ MsD(t1 .MINV, t2 .MINV)

+ SD(t1 .MINV, t2 .MINV) (3)

LenD(t1 .MINV,t2 .MINV) =

|size(t1 .MINV) − size(t2 .MINV)| (3.1)

MsD(t1 .MINV, t2 .MINV) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − size(t1 .MINV ∩ t2 .MINV)
size(t1 .MINV ∪ t2 .MINV)

,

if min(size(t1 .MINV), size(t2 .MINV)) ≥ 1
0 otherwise

(3.2)

SD(t1 .MINV, t2 .MINV) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n
i=1 di

n
, where di =

{
1 if(t1 .MINV[i] �= t2 .MINV[i])
0 otherwise

if n = min(size(t1 .MINV), size(t2 .MINV)) ≥ 1
0 otherwise

(3.3)

In these formulae, size(t1 .MINV) is defined as the length
of the method invocation sequence in t1 . LenD denotes length
difference, MsD denotes method set difference, and SD denotes
sequence difference. In Formula (3.3), because the sequence dif-
ferences are important, the calculation is based on the ordered
lists, not sets. Comparing two methods involves the considera-
tion of the following:

1) the method names;
2) the classes of the method receivers; and
3) the method signatures (the types and number of

parameters)—the actual method arguments are not con-
sidered.

Given method invocation sequences t1 .MINV = {m1 , m2 ,
m3} and t2 .MINV = {m3 , m2 , m1 , m4}, which have three com-
mon methods: according to Formula (3), the length difference is
1 (= |3 − 4|), the method difference is 0.25 (= 1 − |{m1 , m2 ,
m3}|/|{m3 , m2 , m1 , m4}|=1 − 3/4), and the sequence differ-
ence is 0.667 (= 2/3), which gives a total difference (method
invocation distance) of 1.917 (= 1 + 0.25 + 0.667).

Because of the two-layer measurement related to object sets,
the test input distance also has primary and secondary distances,
in the form of a + bi.

There are two basic operations for the distance formulae:
Operation 1. Addition(+): For any two distances s = a + bi

and t = c + di, s + t = (a + bi) + (c + di) = (a + c) + (b + d)i.
Operation 2. Multiplication(×). For any distances s = a + bi,

s × n = (a × n) + (b × n)i.
The following rule is used to compare any two distances

dist1 = a + bi and dist2 = c + di.
dist1 = dist2 iff (a = c) and (b = d);

Fig. 6. Key object elements in our distance formula.

dist1 > dist2 iff (a > c) or (a = c and b > d);
dist1 < dist2 iff (a < c) or (a = c and b < d).

C. Object Distance Formula

In this section, we explain how to calculate the distance be-
tween two objects p and q. Since an object is created by calling
a constructor of a class, inputs to our object distance formulae
are the arguments passed to a constructor for initializing an ob-
ject, as well as the object’s internal elements, defined inside its
class. The general object structure is shown in Fig. 1. However,
because our distance formula does not differentiate between in-
herited and self-defined elements, we merge these and redraw
the object structure as in Fig. 6, where A = N ∪ R denotes a list
of NRefV and RefV attributes, and M denotes a list of methods
inside an object.

Objects consist of a set of attributes and a set of methods
(behavior), and hence the distance between two objects p and q is
the sum of the distance between p.M and q.M and that between
p.A and q.A [shown in Formula (4)]. The distance between
p.M and q.M is determined by their method-sequence length
and method set [see Formula (5)], and the distance between
p.A and q.A is determined by their RefV attributes and NRefV
attributes [see Formula (6)].

ObjDist(p, q)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

BehDist(p.M, q.M) + AttDist(p.A, q.A)
if neither p nor q = null

2 if either p or q = null

0 if both p and q = null

(4)

Note: It is impossible for both p and q to be null in this study.

BehDist(p.M, q.M) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|size(p.M) − size(q.M)| + (1 − size(p.M ∩ q.M)
size(p.M ∪ q.M)

)

if neither p.M nor q.M = null

1 if either p.M or q.M = null

0 if both p.M and q.M = null

(5)

AttDist(p.A, q.A) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nonRefDist(p.A.N, q.A.N) + refDist(p.A.R, q.A.R)
if neither p.A nor q.A = null

1 if either p.A or q.A = null

0 if both p.A and q.A = null.

(6)

If either p.A.R or q.A.R are nonempty sets (some RefV at-
tributes exist for comparison between p and q), then the distance
between them should be calculated using Formula (7). Since
RefV attributes store objects, Formula (7) passes the stored ob-
jects to the TCobjDist distance metric in Formula (2) (which
calculates the distance between two object sets). Formula (7)
serves the same purpose as the recursive_distance formula in
[16], and, to be consistent with their setup, we also set α to be
1/2 to attenuate the impact of deeper recursive calculations. In
the case where two objects mutually refer to each other, then the
distance is set to 2.

refDist(p.A.R, q.A.R) = TCobjDist(p.A.R, q.A.R) ∗ α

where α =
1
2
. (7)

When there are NRefV attributes, the distance calculations
are based on their data type and value difference, as shown in
Formula (8), which produces the secondary distance.

nonRefDist(p.A.N, q.A.N) = typeDist(p.A.N, q.A.N)

+ (secDist(p.A.N, q.A.N))i

(8)

where i is the imaginary unit.
Data type differences for the NRefV attributes include dif-

ferences in size and set differences. Formulae (9), (9.1), and
(9.2) show how to calculate the distance between the NRefV
attributes of p and q, based on their data types (DT). If p and q
are objects of the same class, their type distance, based on the
typeDist metric, will be zero, which would obviously be insuf-
ficient for differentiating between the two objects. To address
this, we define the secDist metric [see Formula (10)] to distin-
guish between two objects’ NRefV attributes which are of the
same data type.

typeDist(p.A.N, q.A.N) = TSizeDiff(p.A.N, q.A.N)

+ TSetDiff(p.A.N, q.A.N) (9)

TSizeDiff(p.A.N, q.A.N) = |size(p.A.N.DT)

− size(q.A.N.DT)| (9.1)

TSetDiff(p.A.N, q.A.N)=size(p.A.N.DT ∪ q.A.N.DT)

− size(p.A.N.DT ∩ q.A.N.DT). (9.2)

Data types in C++ and C# can be classified into 11 categories:
1) integer;
2) real number;
3) enumerated types;

secDist(p.A.N, q.A.N) =

{∑
dist(p.A.N [namei], q.A.N [namei]), if p and q are objects of the same class

∑11
i=1 gSecDist(pG[i], qG[i]), if p and q are objects of different classes

(10)

gSecDist(pG[i], qG[i])=Min

⎛

⎝
m !⋃

s=1

⎧
⎨

⎩

m∑

j=1

dist(pG[i][j], PLs(qG[i], j))

⎫
⎬

⎭

⎞

⎠ , (11)

where m = max(size(pG[i]), size(qG[i])) > 0.

dist(x, y) , where both x and y are of the same type : (12)

if x and y belong to one of ten commonly used types and either x or y is undefined (unknown value), then dist(x, y) = 1.

Note: It is impossible for both x and y to be undefined. (12.1)

If both x and y are defined as integer (int, short int, long int, signed int, or unsigned int) or real number (float or double) :
(12.2)

dist(x, y) =
|x − y|
Range

, where Range > 0 and is a specific range of input domain.

If both x and y are defined as enum :

dist(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
0, if x and y are identical

1, otherwise
if the ordering of the values is not important

|x − y|
Range

, where Range > 0 and is a specific range of input domain. if the ordering of the values is important

(12.3)

If both x and y are defined as char :

dist(x, y) =
|ascii(x) − ascii(y)|

Range
(12.4)

where ascii(x) represents the ASCII value of x, and Range > 0 and is a specific range of input domain.

If both x and y are defined as string :

dist(x, y) =
editDistance(x, y)

Range
(12.5)

where Range > 0 and is a specific range of input domain or the length of the longest user-set input string.

If both x and y are defined as bool :

dist(x, y) =

{
0, if x and y are identical

1, otherwise.
(12.6)

If both x and y are defined as pointer of primitive type :

dist(x, y) = dist(∗x, ∗ y). (12.7)

Note : ∗x and ∗ y are the reference values of x and y, respectively.

If both x and y are defined as array or struct of primitive type, and n = max(x.length, y.length) > 0

dist(x, y) =
∑n

i=1 dist(x[i], y[i])
n

(12.8)

Note : if max(x.length, y.length) = 0, both x and y are undefined, but it will not occur in this study.

If both x and y are defined as union of primitive type:

dist(variable∈x, variable∈y) =

{
dist(variable∈x, variable∈y), if variable∈x and variable∈y belong to the same type

1, otherwise

(12.9)

If x and y do not belong to ten commonly used types above, then dist(x, y) = 0. (12.10)

4) character;
5) string;
6) Boolean;
7) pointer to a primitive data;
8) array of primitive type;
9) struct of primitive type(s);

10) union of primitive type(s); and
11) “other” types.
The secDist formula [see Formula (10)] calculates the mini-

mum sum of distances between every pair of NRefV attributes
of the same primitive data type in p.A.N and q.A.N —
p.A.N [namei] denotes the value associated with the variable
namei in p.A.N . If p and q are objects of the same class, their
sets of attribute names must be identical, and thus calculation of
differences between NRefV attributes’ is based strictly on their
corresponding values; if p and q are objects of different classes,
p.A.N and q.A.N need to be grouped according to the 11 cate-
gories of data types. Let pG = {pG[1], . . ., pG[11]} denote the
11 sets of NRefV attributes for p.A.N ; and qG = {qG[1], . . .,
qG[11]} for q.A.N , where pG[i] and qG[i] are groups of NRefV
attributes of the same data type, DTi , from p.A.N and q.A.N ,
respectively.

In Formula (11), pG[i][j] and qG[i][j] denote the jth NRefV
attributes of DTi in the group pG[i] and qG[i], respectively.
This formula requires pairing NRefV attributes in pG[i] and
qG[i] such that it will return the minimum distance between
these two sets. The procedure of pairing variables is similar
to the procedure for pairing objects in t1 .OBJ and t2 .OBJ in
Formula (2). Hence, if one group (either pG[i] or qG[i]) has
fewer variables than the other, then it is filled with supplemental,
undefined values.

Formula (12) defines the distance calculation for two NRefV
attributes x and y of the same type. Because a group of variables
(pG[i] or qG[i]) may contain undefined values (to make a smaller
group be the same size as the larger one), Formula (12.1) handles
this special case. Formulae (12.2) to (12.9) manage calculations
for the ten commonly used data types in C++ and C#, and
Formula (12.10) handles everything else, including “other” data
types. The dynamic attributes in Formula (12), such as pointers
and arrays, are arguments required by a constructor to create
an object, or are required by a method under invocation. When
calculating the distance for pointers and arrays in Formula (12),
the initial values are used.

According to Formula (12.1), if either x or y is undefined,
then the distance is set to 1. Formulae (12.2)–(12.5) all require
a range, which, if not provided by the software specification,
is assigned to be the default maximum and minimum values
of the data type: for example, (signed) integers in C++ are
between (−232) and (232 − 1). If the ordering is not important
for an enumerated data type (e.g., CAR MODEL = {Audi,
BMW, Buick, Ford, Honda, Toyota, Nissan}), then the distance
between x and y is 0 if they are identical, and 1, otherwise; if the
ordering is important (e.g., WEEK DAY ={Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, Sunday}), then the
distance is the difference between the position of x’s value and
that of y’s value. The difference in ASCII code values is used for
the distance calculation between two characters. Levenshtein
distance [32] [namely the editDistance in Formula (12.5)] is

used when calculating the difference between two strings: this
is the minimum number of single-character edits (including
insertion, deletion, and substitution) required to change one
string into the other. If the range for two strings is not defined
in the system specification, then it is set to the length of the
longest user-set input string. The distance between two Boolean
values is 1 if they are different, and 0, otherwise. For pointers
of primitive types, the distance is calculated as the difference
between the values pointed to. When the data in arrays and
structs are of primitive types, the distance calculation for x and
y uses the average distance between data pairs x[i] and y[i]. If
the arrays or structs have different sizes, then the smaller one
is filled with enough undefined values to increase its size to that
of the larger one. When x and y are unions (a special storage
constructed to store a single data item, but which can be of more
than one primitive type), if the variable types are different, then
the distance is set to 1, otherwise the relevant distance metric
from Formula (12) is selected to calculate the value difference.

D. Examples of Test Input Calculation and Object Distance
Calculation

To illustrate how the formulae work, the different steps in-
volved when calculating the TestcaseDistance between T1 and
T3 in Table II are included in the Appendix. In this example, we
assume that the length of the longest user-set string is 10, and that
the input range of integer is from 0 to 100. As shown in the Ap-
pendix, the TestcaseDistance(T1 , T3) is 4.267 + 0.22i. The
same steps can be taken to calculate TestcaseDistance(T1 ,
T2) and TestcaseDistance(T2 , T3), which are 1.333 + 1.02i
and 5.267 + 0.24i, respectively.

This example illustrates two advantages of the proposed dis-
tance metric OMISS.

1) The metric not only considers the differences between test
input objects, but also considers the differences between
their method invocation sequences.

2) The metric can handle test inputs involving more than one
object and class.

OMISS is also applicable when test inputs consist of only one
object with no method invocations, or when they consist of only
one static method with no object receiver.

Using the formulae in Section III-C, the distances for all ob-
ject pairs shown in Fig. 2 can be calculated, as shown in Table III.
The largest distance among all object pairs is between Bird1 (or
Bird2) and P1, which is 7.5 + 0.25i; and the smallest distance
is between Ps1 and Ps2, which is only 0.1i. Table III shows
that the proposed metric can differentiate objects of different
classes, returning a smaller value for objects of the same class
and larger value for different classes.

E. Summary of OMISS Metric Advantages

A summary of the advantages of our proposed distance metric
OMISS is as follows.

1) As discussed previously, the OMISS metric includes both
object and test input distance metrics, and hence can mea-
sure the distance between any two test inputs consisting of
a series of objects and a sequence of method invocations
[see Formula (1)].

TABLE III
OBJECT DISTANCES (CALCULATED USING OMISS) FOR ALL OBJECT PAIRS IN FIG. 2

Objects Bird1 Bird2 Dog1 Ps1 Ps2 P1 P2 P3 P4

Bird1 0 1.02i 2.8 + 0.12i 6 6 7.5 + 0.25i 7.5 + 0.15i 6.5 + 0.25i 7
Bird2 1.02i 0 2.8 + 0.14i 6 6 7.5 + 0.25i 7.5 + 0.15i 6.5 + 0.25i 7
Dog1 2.8 + 0.12i 2.8 + 0.14i 0 4 + 0.5i 4 + 0.5i 5.5 + 0.75i 5.5 + 0.55i 4.5 + 0.75i 5 + 0.5i
Ps1 6 6 4 + 0.5i 0 0.1i 3 + 0.3i 3 + 0.5i 2 + 0.6i 2 + 0.6i
Ps2 6 6 4 + 0.5i 0.1i 0 3 + 0.3i 3 + 0.5i 2 + 0.6i 2 + 0.6i
P1 7.5 + 0.25i 7.5 + 0.25i 5.5 + 0.75i 3 + 0.3i 3 + 0.3i 0 2.4 + 0.56i 1 + 0.5i 1 + 1.01i
P2 7.5 + 0.15i 7.5 + 0.15i 5.5 + 0.55i 3 + 0.5i 3 + 0.5i 2.4 + 0.56i 0 2.2 + 0.78i 2.4 + 0.47i
P3 6.5 + 0.25i 6.5 + 0.25i 4.5 + 0.75i 2 + 0.6i 2 + 0.6i 1 + 0.5i 2.2 + 0.78i 0 2 + 0.4i
P4 7 7 5 + 0.5i 2 + 0.6i 2 + 0.6i 1 + 1.01i 2.4 + 0.47i 2 + 0.4i 0

2) The OMISS metric can calculate the distance between two
sets of multiple objects [see Formula (2)].

3) The OMISS metric can distinguish among method invo-
cation sequences in test inputs [see Formula (3)].

4) The OMISS can measure distances between any two ob-
jects [see Formula (4)], without requiring that they are
from the same class, or share a common ancestor.

5) The OMISS metric considers not only attribute distances,
but also the behavioral distances among objects [see For-
mulae (5) and (6)].

6) The OMISS metric can differentiate between objects more
precisely than ARTOO, even only based on the type, field,
and recursive distances. It is because OMISS considers
both the “recursive distance” [see Formula (7) for RefV
attributes] and the “type distance” [see Formula (9)] as
“primary distances,” but the “field distance” as “secondary
distance” [see Formula (10)]. This means that the inter-
nal structure of a class from which an object is built is
considered more significant than the actual values used
to initialize that object. With this two-layer measurement,
OMISS can more easily distinguish between the origins of
these objects than ARTOO can, by reducing the influence
of their individual differences (attribute values).

7) The type, reference, and elementary distances are not
treated equally by OMISS metric, i.e., the elementary dis-
tance is considered secondary [see Formulae (8) and (10)].

IV. DEVELOPMENT OF THE OMISS-ART TOOL

As discussed in the previous section, OMISS has many ad-
vantages. Using this metric with the FSCS-ART algorithm (Pro-
cedure 1) can better evenly spread test inputs for integration
testing, however, two critical steps need to be completed before
applying it. Sections IV-A and IV-B explain these two steps,
and Section IV-C explains how OMISS and FSCS-ART are
implemented with a forgetting strategy to reduce the distance
computation overheads.

A. Obtaining the Class Diagram Information Through Source
Code Analysis

Because OOS is centered around classes, which carry very
useful information for the creation of test inputs and distance
measurements, the first step involves obtaining the class in-
formation (e.g., the class diagram) from the subject program’s

source code. Many tools exist which can facilitate this, includ-
ing Doxygen [33] and Understand [34]; we used Visual Studio
2010, which is an integrated development environment from Mi-
crosoft [35]. We developed a tool, OMISS-ART, which uses the
class diagram to extract class information, such as the attributes
list, and methods’ details.

B. Generating a Pool of Valid Test Inputs

After obtaining the class information, OMISS-ART can create
random test inputs, each of which has a set of objects and a set
of methods invoked in a sequence. However, many randomly
constructed inputs contain invalid method invocation sequences,
which may lead to abnormal termination of the program. In this
study, therefore, we excluded the invalid sequences to create a
pool of valid test inputs, as shown in Procedures 2–4.

The TestInputsGen function (Procedure 2) makes use of the
class information to generate a specified number of test in-
puts (TInputNum), calling OBJGen (Procedure 3) and MINVGen
(Procedure 4) to generate the objects (t.OBJ) and methods in-
vocation sequence (t.MINV), respectively. The test input pool is
created by combining each t.OBJ and t.MINV to form a test in-
put t, discarding any input that causes the program to terminate
abnormally. We use this approach to generate a test input pool
for each subject program in the empirical study (see Section V),
thus ensuring that all evaluated RT approaches can select valid
inputs during testing.

C. FSCS-ART With the Random Forgetting Strategy

After completing the above steps, OMISS can be used with
the FSCS-ART algorithm (Procedure 1) to determine which can-
didate test case from the pool is furthest away from previously
executed tests. In OMISS-ART, once the algorithm identifies
the best candidate from ten randomly constructed inputs in the
candidate set C, this candidate is then used to test the subject
program and added to the executed test set T. To reduce some
of the O(n2) computational overheads associated with FSCS-
ART (Steps 8–20 in Procedure 1), three forgetting strategies
[41] (random forgetting; consecutive retention; and restarting)
have been proposed to “forget” some previously executed test
inputs (Step 10). In this study, the random forgetting strategy
was implemented to reduce the overheads by randomly choos-
ing a fixed number (h = 20 in OMISS-ART) of items from T,
and only using these in distance calculations to decide the best
candidate in C.

Procedure 2: Generating test inputs.
1: TestInputsGen(classInfo, TInputNum,

MaxLengthMINV , MaxLengthOBJ)
2: Set TestPool = Φ;
3: for i =1 to TInputNum do
4: n = a random number between 1 and

MaxLengthMINV
5: m = a random number between 1 and

MaxLengthOBJ
6: OS = OBJGen(classInfo, m);
7: Set MList = Φ;
8: for each object obj in OS do
9: MList = MList∪ {obj′s public methods given in

classInfo}
10: end for
11: Set invalidTC = true;
12: while invalidTC do
13: MethodSeq = MINVGen(MList, n);
14: Create a test input ti by combing OS and

MethodSeq;
15: Run the program with ti
16: if ti causes abnormal program termination then
17: set invalidTC = true
18: else set invalidTC = false
19: end if
20: end while
21: TestPool = TestPool ∪ {ti}
22: end for
23: return TestPool

Procedure 3: Generating objects.
1: OBJGen(classInfo, m)
2: Set ObjectSet = Φ;
3: Set i = 0;
4: while i �= m do
5: Randomly select a class Cls from classInfo
6: Randomly select a constructor from Cls, and randomly

generate arguments for it
7: Construct an object oi using the chosen constructor and

generated arguments
8: if oi does not cause abnormal program termination

then
9: ObjectSet = ObjectSet ∪ {oi};

10: i = i + 1;
11: end if
12: end while
13: return ObjectSet;

In summary, the testing procedure in OMISS-ART consists
of three steps:

1) analyzing the subject program and obtaining class infor-
mation;

2) generating valid random test inputs; and

Procedure 4: Generating a method invocation sequence.
1: MINVGen(MLis, n)
2: Set MethodSeq = Φ;
3: for i =1 to n do
4: Randomly select a method mdi from MList, and

generate arguments for mdi

5: MethodSeq = MethodSeq ∪ {mdi};
6: end for
7: return MethodSeq;

3) selecting test inputs for the SUT using the FSCS-ART
algorithm with the random forgetting strategy.

V. EMPIRICAL STUDIES AND ANALYSIS

In this section, we describe two series of empirical studies
comparing the performance of OMISS-ART with existing RT
approaches.

A. Setup of the Empirical Studies

In the software testing community, mutated programs are of-
ten used when studying the failure-detection effectiveness of a
testing approach [42]. After seeding a fault into a subject pro-
gram, if the subject program and a faulty version (a mutant)
produce different outputs for a given test input, then the mu-
tant is said to be killed, meaning that the test input detects a
failure. In this study, we also used mutation testing to study the
effectiveness and efficiency of OMISS-ART.

In our empirical studies, the subject programs involved a
sequence of operations (methods) to achieve certain tasks. Such
programs are known as interactive programs [43], [44], and
have both method and object interactions. The 17 programs in
this study, all written in the C++ or C# language, are from open
sources [36]–[40]. Methods were randomly selected from each
program, and a single fault seeded into the method according to
one of the following 13 mutation operators [42], [45]. Of these
13 mutation operators, the last 6 are OO-specific, and are used
to generate OO-specific faults.

1) arithmetic operators replacement (AOR);
2) logical operators replacement (LOR);
3) relational operators replacement (ROR);
4) constant for scalar variable replacement (CSR);
5) scalar variable for scalar variable replacement (SVR);
6) scalar variable for constant replacement (SCR);
7) array reference for constant replacement (ACR);
8) new method invocation with child class type (NMI);
9) argument order change (AOC);

10) accessor method change (AMeC);
11) access modifier change (AMoC);
12) hiding variable deletion (HVD);
13) property replacement with member field (PRM).
Table IV shows the details for the subject programs and their

seeded faults, and Table V shows the type of mutation operators
and the number of faults seeded for each program.

TABLE IV
SUBJECT PROGRAMS

SUT SUT Lines of Num. of public Num. of public Num. of Description
ID name code classes methods faults

1 CCoinBox [36] 120 1 7 4 C++ library that simulates a vending machine
2 Calendar [36] 287 5 27 5 C++ library for calendar operation
3 Stack [37] 420 3 13 5 Microsoft C# library for stack operation
4 Queue [36] 201 3 12 4 Microsoft C# library for queue operation
5 WindShieldWiper [36] 233 1 13 4 C++ library that simulates a windshield wiper
6 SATM [36] 197 1 9 4 C++ library that simulates an ATM
7 BinarySearchTree [37] 588 3 19 7 C# library for binary search tree algorithms
8 RabbitAndFox [37] 770 6 33 9 C# program that simulates a predator-prey model
9 WaveletLibrary [38] 2406 12 84 15 C# library for wavelet algorithms
10 BackTrack [37] 1051 9 27 13 C# library for backtracking algorithms
11 NSort [39] 1118 18 61 14 C# library for sorting algorithms
12 SchoolManagement [37] 1726 11 131 21 C# program for managing school activities
13 EnterpriseManagement [37] 1357 8 76 8 C# program for managing enterprise business
14 ID3Manage [37] 4538 28 129 12 C# library for reading and writing of ID3 tags in MP3 files
15 IceChat [38] 71000 101 271 24 C# program that implements an IRC (Internet Relay Chat) Client
16 CSPspEmu [40] 406808 443 1433 26 C# program for a PSP (PlayStation Portable) emulator
17 poco-1.4.4: Foundation [40] 149547 641 4480 28 C++ library that contains a platform abstraction layer

and a large number of useful utility classes

TABLE V
MUTATION OPERATORS AND THE NUMBER OF FAULTS SEEDED

SUT ID Total number of faults General mutation operators (number) OO mutation operators (number)

#1 4 AOR(1), LOR(2), ROR(1) N/A
#2 5 AOR(1), LOR(1), ROR(2), CSR(1) N/A
#3 5 AOR(1), LOR(1), ROR(1), SVR(2) N/A
#4 4 AOR(1), LOR(1), ROR(1), SCR(1) N/A
#5 4 AOR(1), LOR(1), ROR(1), ACR(1) N/A
#6 4 AOR(1), LOR(1), ROR(1), SCR(1) N/A
#7 7 AOR(1), LOR(1), SVR(2) NMI(1),AOC(1), AMeC(1)
#8 9 AOR(1), LOR(1), SVR(1) NMI(1),AOC(1), AMeC(1),AMoC(1),HVD(1),PRM(1)
#9 15 LOR(1), SVR(1),CSR(2), SCR(1), ACR(2) NMI(1),AOC(1), AMeC(1), AMoC(2), HVD(2), PRM(1)
#10 13 AOR(1), ROR(1),CSR(1), SCR(2), ACR(1) NMI(2), AOC(2), AMeC(1), AMoC(1), PRM(1)
#11 14 AOR(1), LOR(1), ROR(2), SCR(2), ACR(1) NMI(2),AOC(2), AMeC(1), AMoC(2)
#12 21 AOR(2), LOR(3), ROR(1), SVR(2),CSR(2), SCR(1), ACR(2) NMI(1), AOC(1), AMeC(3), AMoC(1), HVD(1), PRM(1)
#13 8 ROR(1),CSR(1), SCR(1) NMI(2), AOC(2), AMeC(1)
#14 12 AOR(1), CSR(1), ACR(2) NMI(1), AOC(2), AMeC(2) AMoC(2), PRM(1)
#15 24 AOR(2), LOR(1), ROR(1), SVR(2),CSR(2), SCR(1),ACR(2) NMI(2), AOC(3), AMeC(2), AMoC(2), HVD(2), PRM(2)
#16 26 AOR(2), LOR(1), ROR(1),SVR(2),CSR(1), SCR(1),ACR(2) NMI(2), AOC(3), AMeC(3),AMoC(3), HVD(3), PRM(2)
#17 28 AOR(1), LOR(2), ROR(2), SVR(1),CSR(2),SCR(1),ACR(1) NMI(2), AOC(3), AMeC(4), AMoC(3), HVD(3), PRM(3)

As with other ART studies, the F-measure (the number of
test inputs required to detect the first failure, Fm) and the
E-measure (the expected number of failures detected, Em) [15]
are used in this study to measure the effectiveness of the pro-
posed approach. The time taken to detect the first failure, Fm -
time, was also recorded. The machine used to conduct testing
has an Intel dual core i3-2120 3.3 GHz processor, 4 GB of RAM,
and runs under the Windows 7 operating system.

OMISS-ART is a tool we developed using the Microsoft .NET
framework to implement the proposed approach. OMISS-ART
can test C++ and C# programs. In the study, our proposed ap-
proach was compared with four other testing approaches:

1) ARTOO;
2) Divergence-oriented ART (DO-ART);
3) RT with one method invocation (RT-1); and
4) RT with multiple object interactions and method invoca-

tions (RT-n).

Both ARTOO and divergence-oriented ART were redevel-
oped in .NET to facilitate their application to C++ and C# pro-
grams. The redeveloped versions were extensively tested and
verified, including by using the original examples in the AR-
TOO and divergence-oriented ART literature. Table VII sum-
marizes the structures of test inputs generated by the different
approaches, with the column “Evenly spread” denoting whether
or not methods and objects in the test inputs have been evenly
spread.

To use OMISS-ART in this study, the three parameters TIn-
putNum, MaxLengthMINV, and MaxLengthOBJ for Procedure
2 in Section IV were set to 10000, 5, and 5, respectively. When
calculating object distances with the ARTOO metric for AR-
TOO and DO-ART, if a program has primitive data types (such
as enum, array, struct, and union) which are not handled by
the ARTOO metric, then the elementary distance was arbitrar-
ily set to zero. The same settings used in divergence-oriented

TABLE VI
FM AND FM-TIME COMPARISON

SUT ID Fm Fm-time (Seconds)

OMISS-ART ARTOO DO-ART RT-1 RT-n OMISS-ART ARTOO DO-ART RT-1 RT-n

#1 70.17 128.87 103.05 194.00 71.94 1.32 0.25 0.30 0.16 0.54
#2 2.47 10.11 4.53 10.47 3.10 1.18 0.40 0.55 0.38 1.04
#3 19.47 42.72 15.36 44.27 24.76 2.68 0.81 1.33 0.81 1.64
#4 6.58 14.06 6.59 14.69 8.79 1.64 0.77 1.68 0.75 1.55
#5 66.51 173.59 80.13 197.69 70.09 1.06 0.25 0.33 0.19 0.62
#6 46.00 152.29 39.76 121.95 53.54 1.32 0.53 0.63 0.31 0.68
#7 27.24 90.75 40.29 123.42 31.65 4.49 0.87 1.52 0.85 2.32
#8 20.48 68.47 30.13 86.40 23.75 3.09 0.69 0.81 0.68 1.68
#9 6.90 22.26 10.83 24.72 7.71 3.52 1.43 1.94 1.39 3.40
#10 2.39 5.37 2.97 5.19 2.67 0.96 0.39 0.60 0.42 0.95
#11 32.84 91.91 76.59 82.51 40.48 1.11 0.18 0.24 0.16 0.49
#12 55.92 253.07 93.79 275.40 71.73 3.48 0.61 1.06 0.57 1.66
#13 37.80 123.03 68.94 154.28 45.53 3.57 1.12 1.13 1.07 1.98
#14 31.36 150.46 56.09 106.59 39.35 1.58 0.25 0.38 0.20 0.82
#15 97.80 341.73 252.38 398.12 147.36 3.44 0.99 1.31 0.61 2.72
#16 133.38 369.96 248.24 386.49 192.89 4.40 1.84 2.36 1.63 3.51
#17 180.28 377.58 257.30 410.54 212.37 4.82 2.20 2.87 1.97 3.99
mean 49.27 142.13 81.59 155.10 61.63 2.57 0.80 1.12 0.71 1.74
sDev 68.27 182.96 117.33 205.79 85.76 2.86 0.76 1.02 0.66 1.44
error (95% CL) ±2.06 ±5.53 ±3.55 ±6.22 ±2.59 ±0.09 ±0.02 ±0.03 ±0.02 ±0.04
uppB 51.33 147.67 85.14 161.33 64.22 2.66 0.82 1.15 0.73 1.78
lowB 47.21 136.60 78.04 148.88 59.04 2.48 0.78 1.09 0.69 1.70
Interval where 95% data fall 4.13 11.07 7.10 12.45 5.19 0.17 0.05 0.06 0.04 0.09
Accuracy% ±4.19 ±3.89 ±4.35 ±4.01 ±4.21 ±3.36 ±2.86 ±2.74 ±2.78 ±2.50
max 484.00 1283.00 1084.00 2509.00 537.00 35.53 8.51 14.67 3.78 8.75
min 1.00 1.00 1.00 1.00 1.00 0.01 0.01 0.02 0.01 0.02
range 483.00 1282.00 1083.00 2508.00 536.00 35.53 8.50 14.65 3.77 8.74

TABLE VII
TEST INPUT CHARACTERISTICS (M: METHODS, O: OBJECTS)

Testing Number of Number of Number of Evenly
approach objects in classes used to methods in spread

t.OBJ create t.OBJ t.MINV

OMISS-ART ≥1 ≥1 ≥1 M and O
ARTOO 1 1 1 O
DO-ART 1 1 ≥1 O
RT-1 1 1 1 N/A
RT-n ≥1 ≥1 ≥1 N/A

ART [18] were used in this study: create-deep was set to 4;
and both max-call and max-diversify were set to 5. The create-
deep setting is the depth of recursively created reference objects;
max-call is the maximum number of calls to the same public
method of the same object; and max-diversify is the maximum
number of calls to different public methods in the same object.
Furthermore, similar to the ARTOO and divergence-oriented
ART studies, some special numeric values were also considered
when generating test inputs:

1) MAX_VALUE;
2) MIN_VALUE;
3) MAX_VALUE − 1;
4) MIN_VALUE + 1;
5) −1;
6) 0; and
7) 1.

Each special value had a probability of 0.25/7 of being se-
lected for testing. The null value for variables of object types
was not considered as a special value in the experiment be-
cause the probability of its occurrence could not be obtained
from the ARTOO or divergence-oriented ART studies. To en-
sure that these experiments were not interrupted by program
crashes caused by invalid inputs, Procedure 2 was used to gen-
erate the pools of valid test inputs for each of the programs.

B. Experiments

1) Experiment I to Measure Fm and Fm-Time: Table VI sum-
marizes the Fm and Fm -time results. All results in this table are
averaged over 300 runs of tests for each subject program using
different seeds. The statistical data in Table VI (from “mean”
to “range”) are based on 5100 (300 ∗ 17) datasets. In the exper-
iment, the confidence level was set to 95%, giving the sample
means, standard deviation (sDev), accuracy, and confidence in-
tervals (lowB and uppB), as shown in Table VI.

Table VI shows that OMISS-ART outperforms other ap-
proaches in terms of Fm , except for two cases (Programs #3
and #6, where DO-ART outperforms OMISS-ART); but spends
more time to find the first failure. This is because calculating
the test input distances when deciding the best candidate is time
consuming. In most cases (14 out of 17), Fm -time for OMISS-
ART is not more than twice that of RT-n, which was found to be
the best RT algorithm for OOS testing in this study. From the
statistical data of Table VI, we have the following observations
related to Fm .

TABLE VIII
STATISTICAL RESULTS OF FM FOR 17 SUBJECT PROGRAMS

SUT ID OMISS-ART ARTOO DO-ART RT-1 RT-n

#1 mean 70.17 128.87 103.05 194.00 71.94
sDev 61.14 104.33 93.31 199.55 69.36

#2 mean 2.47 10.11 4.53 10.47 3.10
sDev 1.72 9.31 3.85 9.16 2.82

#3 mean 19.47 42.72 15.36 44.27 24.76
sDev 20.73 41.18 16.46 43.22 23.90

#4 mean 6.58 14.06 6.59 14.69 8.79
sDev 5.63 12.88 5.45 13.34 8.90

#5 mean 66.51 173.59 80.13 197.69 70.09
sDev 70.37 144.83 81.72 195.15 64.54

#6 mean 46.00 152.29 39.76 121.95 53.54
sDev 49.94 149.56 39.12 116.92 51.69

#7 mean 27.24 90.75 40.29 123.42 31.65
sDev 28.50 70.54 35.39 119.61 31.22

#8 mean 20.48 68.47 30.13 86.40 23.75
sDev 19.66 69.35 32.56 81.07 24.97

#9 mean 6.90 22.26 10.83 24.72 7.71
sDev 6.39 21.25 9.59 24.55 6.67

#10 mean 2.39 5.37 2.97 5.19 2.67
sDev 1.75 4.69 2.32 4.61 1.87

#11 mean 32.84 91.91 76.59 82.51 40.48
sDev 47.56 142.19 124.10 134.37 64.92

#12 mean 55.92 253.07 93.79 275.40 71.73
sDev 64.71 242.72 90.62 302.88 71.56

#13 mean 37.80 123.03 68.94 154.28 45.53
sDev 37.99 123.57 66.63 150.86 41.53

#14 mean 31.36 150.46 56.09 106.59 39.35
sDev 31.98 156.40 69.39 97.89 43.29

#15 mean 97.80 341.73 252.38 398.12 147.36
sDev 57.44 196.96 140.09 231.05 84.30

#16 mean 133.38 369.96 248.24 386.49 192.89
sDev 81.00 221.48 127.74 219.80 105.30

#17 mean 180.28 377.58 257.30 410.54 212.37
sDev 96.84 219.80 152.94 244.35 122.36

1) The Fm was accurate to within ±5% of the mean value,
with 95% confidence.

2) The confidence intervals between the lower and upper
bounds (lowB and uppB) do not overlap on Fm .

3) The standard deviation for OMISS-ART is the smallest
(68.27).

4) There is no overlap between the lowB and uppB for
Fm -time.

Based on these observations, we can conclude that the Fm and
Fm -time experimental results statistically have good reliability
[46], which implies that the F-measure for OMISS-ART is lower
than those of other approaches, with high probability.

In order to further analyze the Fm of each testing approach
for each subject program, Table VIII summarizes the main sta-
tistical measures (mean and sDev) for the 17 subject programs.
Figs. 7– 23 show the experimental results in box plots for each
subject program. From these statistical data, we have the fol-
lowing observations.

1) OMISS-ART outperforms other approaches in terms of
the mean values of Fm , except for DO-ART in Programs
#3 and #6.

2) In most cases (13 out of 17), the standard deviation for
OMISS-ART is the smallest (not for Programs #3, #4, #5,
and #6).

Fig. 7. Experimental result of Fm for Program #1.

Fig. 8. Experimental result of Fm for Program #2.

Fig. 9. Experimental result of Fm for Program #3.

Fig. 10. Experimental result of Fm for Program #4.

Fig. 11. Experimental result of Fm for Program #5.

3) For some larger-scale programs (Programs #9, #14, #15,
#16, and #17), OMISS-ART clearly performs better than
other testing approaches.

4) In most cases (except for Programs #3 and #6), the in-
terquartile range (the box length) and maximum (the top
end of the whiskers) of OMISS-ART are smaller than
those of other approaches, which shows that OMISS-ART
has more stable data distribution than other testing ap-
proaches.

To facilitate the data comparison, we calculated the ratio be-
tween Fm of OMISS-ART and that of the other approaches,
reporting the minimum, maximum, and average ratios in
Table IX. Table IX shows that the majority of Fm ratios are
less than 1, except for two cases (Programs #3 and #6, where
DO-ART outperforms OMISS-ART). For detection of the first
failure, OMISS-ART required an average of 35%, 71%, 33%,
and 83% of the number of test inputs of ARTOO, DO-ART,
RT-1, and RT-n, respectively. Furthermore, RT-1 took the least

Fig. 12. Experimental result of Fm for Program #6.

Fig. 13. Experimental result of Fm for Program #7.

Fig. 14. Experimental result of Fm for Program #8.

Fig. 15. Experimental result of Fm for Program #9.

Fig. 16. Experimental result of Fm for Program #10.

time to find the first failure, followed by ARTOO, DO-ART,
RT-n, and OMISS-ART.

Another finding was that RT-n is generally better than AR-
TOO, DO-ART, and RT-1, the reason being that RT-n uses mul-
tiple classes to generate objects in OBJ and method calls in
MINV, for each test input t. As shown in Table VII, the structure
of those inputs generated by RT-1 and ARTOO are similar, and
so are those created by RT-n and OMISS-ART: the differences
between them is the presence or absence of distance measure-
ment and best candidate selection. This empirical study shows
that involving multiple classes, objects, and methods may be the
key to improving failure detection in OOS testing.

The cases where ARTOO performs similarly to RT-1 accord-
ing to respective Fm are related to those subject programs us-
ing test inputs with data types, such as enum, array, struct,
and union, which were not differentiated by the ARTOO dis-
tance metric for even spreading. However, ARTOO outperforms

Fig. 17. Experimental result of Fm for Program #11.

Fig. 18. Experimental result of Fm for Program #12.

Fig. 19. Experimental result of Fm for Program #13.

Fig. 20. Experimental result of Fm for Program #14.

Fig. 21. Experimental result of Fm for Program #15.

Fig. 22. Experimental result of Fm for Program #16.

Fig. 23. Experimental result of Fm for Program #17.

RT-1 according to the mean Fm , based on all subject programs.
Because OMISS differentiates test inputs for all the data types
when evenly spreading test inputs, OMISS-ART consistently
obtains better Fm results than RT-n.

Additionally, to investigate the impact of the total number of
method invocations used (i.e., size of MINV) on Fm reported
in Table VI, we calculated the total number of method calls used
in each testing approach (see Table X). From Tables VI and X,
we have the following observations.

1) Since every test input of OMISS-ART, DO-ART, and RT-n
involved a sequence of method calls, but those of ARTOO
and RT-1 involved only one, the total number of method
calls for each of OMISS-ART, DO-ART, and RT-n were
greater than that for ARTOO and RT-1. The main rea-
son why OMISS-ART, DO-ART, and RT-n outperform
ARTOO and RT-1 in terms of Fm is because those test
inputs with more method calls generally improve the code
coverage.

2) Although OMISS-ART employs 14% more method calls
than ARTOO, it requires only 35% of the number of test
cases to detect the first fault; OMISS-ART employs 5%
more method calls than RT-1, but requires only 32% of
the test cases to detect the first failure; DO-ART employs
71% more method calls than ARTOO, but only requires
57% of the number of test cases to detect the first fault;
and DO-ART employs 57% more method calls than RT-1,
but only requires 53% of the test cases to detect the first
failure.

3) Although the total number of method calls for OMISS-
ART is smaller than that for DO-ART and RT-n, OMISS-
ART outperforms DO-ART and RT-n in terms of the Fm

due to the even spreading of method invocations: it is
shown that an even spreading of test inputs can improve
the fault-detection effectiveness, especially with a good
distance metric, such as is used in OMISS-ART.

4) Similar results and observations can be found in ARTOO
and RT-1: ARTOO outperforms RT-1 because of its even
spread of test cases.

TABLE IX
FM AND FM-TIME RATIOS FOR OMISS-ART

Fm ratios Fm-time ratios

OMISS-ART OMISS-ART OMISS-ART OMISS-ART OMISS-ART OMISS-ART OMISS-ART OMISS-ART
ARTOO DO-ART RT-1 RT-n ARTOO DO-ART RT-1 RT-n

Min SUT ID 0.21 (#14) 0.39 (#15) 0.20 (#12) 0.66 (#15) 2.12 (#4) 0.97 (#4) 2.18 (#4) 1.02 (#10)
Max SUT ID 0.54 (#1) 1.27 (#3) 0.46 (#10) 0.98 (#1) 6.22 (#14) 4.61 (#11) 8.08 (#1) 2.46 (#1)
Ave 0.35 0.71 0.33 0.83 3.78 2.72 4.51 1.62

TABLE X
TOTAL NUMBER OF METHOD CALLS, OVER 300 RUNS

SUT ID OMISS ART ARTOO DO-ART RT-1 RT-n

1 87290 38661 92751 58200 82704
2 2983 3032 4021 3140 3507
3 13937 12816 13842 13282 14228
4 4341 4218 4390 4407 4699
5 70258 52078 72112 59308 75407
6 31601 45747 35744 36587 36167
7 32552 27225 36363 37026 36801
8 25738 20542 27265 25919 26183
9 8208 6679 9726 7416 7911
10 2226 1612 16454 1558 2248
11 44729 27571 69025 24754 52351
12 78186 75920 84391 82229 80405
13 51052 36911 62219 46286 51165
14 32648 45139 50666 31978 37563
15 69685 102520 197142 119436 135368
16 128044 110988 210447 115946 1851744
17 146026 113274 254727 123161 216617
Sum 829504 724933 1241285 790633 2715068

2) Experiment II to Measure Em : Table XI shows the aver-
age number of distinct faults (Em) detected by 5000 test inputs
for each testing approach. Again, this table is based on the data
collected over 300 runs of tests for each subject program using
different seeds. The statistical data (from “mean” to “range”) is
based on 5100 (300 × 17) datasets. In the experiment, the con-
fidence level was set to 95%, giving the sample means, standard
deviation (sDev), accuracy, and confidence intervals (lowB and
uppB), as shown in Table XI.

From Table XI, we have the following observations.
1) OMISS-ART never found fewer faults than the other ap-

proaches for the same number of test inputs.
2) RT-n has the next best performance, followed by DO-ART,

ARTOO, and RT-1.
3) The confidence intervals between the lower and upper

bounds (lowB and uppB) do not overlap, for any testing
approach, which implies that the Em for OMISS-ART is
greater than those of other approaches, with high proba-
bility.

4) The Em was accurate to within ±2% of the mean value,
with 95% confidence. Based on these observations, we
can conclude that the Em experimental results statistically
have good reliability [46].

In order to further analyze the Em of each testing approach
for each subject program, Table XII summarizes the main sta-
tistical measures (mean, sDev, and fPer) for the 17 subject

TABLE XI
AVERAGE NUMBER OF DISTINCT FAULTS DETECTED (Em)

SUT ID Em

OMISS-ART ARTOO DO-ART RT-1 RT-n

#1 3.93 3.33 3.45 3.32 3.77
#2 5.00 4.00 5.00 4.00 5.00
#3 5.00 4.87 5.00 4.00 5.00
#4 4.00 4.00 4.00 3.00 4.00
#5 4.00 2.45 3.73 2.39 3.71
#6 4.00 3.00 3.71 2.50 3.81
#7 7.00 5.47 6.27 4.30 6.31
#8 8.93 5.45 8.69 5.23 8.88
#9 14.99 12.09 13.62 12.01 14.57
#10 13.00 7.86 8.47 7.35 12.61
#11 12.91 9.85 9.17 9.24 12.46
#12 21.00 15.27 18.24 15.50 20.36
#13 8.00 6.47 7.14 5.94 8.00
#14 10.56 8.38 8.75 8.36 9.21
#15 21.56 10.97 14.77 9.67 19.08
#16 22.19 12.99 17.45 11.51 20.38
#17 23.19 13.84 17.71 12.46 21.73
mean 11.13 7.66 9.13 7.10 10.52
sDev 6.98 4.24 5.50 4.21 6.46
error (95% CL) ±0.21 ±0.13 ±0.17 ±0.13 ±0.20
uppB 11.34 7.79 9.29 7.23 10.72
lowB 10.92 7.54 8.96 6.98 10.33
Interval where 95% 0.42 0.26 0.33 0.25 0.39
data fall
Accuracy% ±1.90 ±1.67 ±1.82 ±1.79 ±1.86
max 28.00 21.00 25.00 21.00 26.00
min 3.00 0.00 1.00 0.00 1.00
range 25.00 21.00 24.00 21.00 25.00

programs—where fPer shows the percentage of faults detected
with 5000 test inputs for each subject program. Figs. 24–40 show
the experimental results in box plots for each subject program.
From the statistical data, we have the following observations.

1) OMISS-ART never performs worse than other approaches
in terms of the mean values of Em .

2) In most cases, the standard deviation for OMISS-ART is
the smallest (the exceptions being for Programs #16 and
#17).

3) In most cases (except for Programs #14, #15, #16, and
#17), the interquartile range (the box length) of OMISS-
ART is equal to zero (which is reflected in the box plots
having the top, bottom, and middle all coinciding).

This shows that OMISS-ART has very stable Em values. For
the four larger programs (Programs #14, #15, #16, and #17),
the maximum and minimum (the two ends of the whiskers) are

Fig. 24. Experimental result of Em for Program #1.

Fig. 25. Experimental result of Em for Program #2.

Fig. 26. Experimental result of Em for Program #3.

TABLE XII
STATISTICAL RESULTS OF EM FOR 17 SUBJECT PROGRAMS

SUT ID OMISS -ART ARTOO DO -ART RT-1 RT-n

#1 Mean 3.93 3.33 3.45 3.32 3.77
sDev 0.26 0.65 0.50 0.62 0.42

fPer(%) 98.25 83.17 86.25 82.92 94.17
#2 Mean 5.00 4.00 5.00 4.00 5.00

sDev 0.00 0.68 0.00 0.69 0.00
fPer(%) 100.00 80.00 100.00 80.00 100.00

#3 Mean 5.00 4.87 5.00 4.00 5.00
sDev 0.00 0.36 0.00 0.71 0.00

fPer(%) 100.00 97.40 100.00 80.00 100.00
#4 Mean 4.00 4.00 4.00 3.00 4.00

sDev 0.00 0.00 0.00 0.63 0.00
fPer(%) 100.00 100.00 100.00 75.00 100.00

#5 Mean 4.00 2.45 3.73 2.39 3.71
sDev 0.00 0.68 0.67 0.69 0.72

fPer(%) 100.00 61.33 93.25 59.75 92.75
#6 Mean 4.00 3.00 3.71 2.50 3.81

sDev 0.00 0.31 0.69 0.60 0.55
fPer(%) 100.00 75.00 92.75 62.42 95.33

#7 Mean 7.00 5.47 6.27 4.30 6.31
sDev 0.00 0.92 0.58 1.20 0.46

fPer(%) 100.00 78.14 89.57 61.38 90.10
#8 Mean 8.93 5.45 8.69 5.23 8.88

sDev 0.25 0.96 0.71 1.16 0.34
fPer(%) 99.26 60.52 96.52 58.11 98.63

#9 Mean 14.99 12.09 13.62 12.01 14.57
sDev 0.10 1.44 0.50 1.29 0.52

fPer(%) 99.93 80.58 90.82 80.07 97.11
#10 Mean 13.00 7.86 8.47 7.35 12.61

sDev 0.00 1.06 0.92 1.42 0.57
fPer(%) 100.00 60.49 65.18 56.54 96.97

#11 Mean 12.91 9.85 9.17 9.24 12.46
sDev 0.36 1.01 1.24 1.20 0.70

fPer(%) 92.21 70.38 65.51 65.98 89.00
#12 Mean 21.00 15.27 18.24 15.50 20.36

sDev 0.00 3.01 2.75 2.85 1.24
fPer(%) 100.00 72.73 86.87 73.81 96.95

#13 Mean 8.00 6.47 7.14 5.94 8.00
sDev 0.00 0.90 0.57 1.09 0.00

fPer(%) 100.00 80.88 89.21 74.29 100.00
#14 Mean 10.56 8.38 8.75 8.36 9.21

sDev 0.85 0.86 0.89 0.89 0.85
fPer(%) 88.03 69.83 72.89 69.69 76.78

#15 Mean 21.56 10.97 14.77 9.67 19.08
sDev 1.79 2.05 4.41 2.28 2.52

fPer(%) 89.83 45.72 61.54 40.31 79.50
#16 Mean 22.19 12.99 17.45 11.51 20.38

sDev 2.54 1.98 4.25 2.32 2.19
fPer(%) 85.33 49.96 67.13 44.28 78.40

#17 Mean 23.19 13.84 17.71 12.46 21.73
sDev 3.19 2.49 4.62 2.89 2.87

fPer(%) 82.81 49.44 63.24 44.51 77.60

always greater than those of other approaches, which shows that
OMISS-ART performs better than other testing approaches.

Additionally, to investigate the impact of the number of
method invocations on the Em results reported in Table XI,
we calculated the number of method calls in 5000 test inputs for
each testing approach (see Table XIII), from which we have the
following observations.

1) Since test inputs for OMISS-ART, DO-ART, and RT-n
involved a sequence of method calls, but those for ARTOO
and RT-1 involved only one, the total number of method
calls for OMISS-ART, DO-ART, and RT-n were greater
than that for ARTOO and RT-1.

Fig. 27. Experimental result of Em for Program #4.

Fig. 28. Experimental result of Em for Program #5.

Fig. 29. Experimental result of Em for Program #6.

TABLE XIII
TOTAL NUMBER OF METHOD CALLS (MINV SIZE) FOR EACH TESTING

APPROACH, OVER 300 RUNS

SUT ID OMISS- ART ARTOO DO- ART RT-1 RT-n

1 4 266 001 1 500 000 4 650 928 1 500 000 5 247 390
2 4 617 064 1 500 000 4 391 472 1 500 000 5 232 427
3 3134968 1 500 000 4 533 284 1 500 000 2 870 650
4 3 050 748 1 500 000 4 498 792 1 500 000 3 178 748
5 4 747 366 1 500 000 4 598 439 1 500 000 5 341 942
6 3 228 475 1 500 000 4 509 030 1 500 000 3 673 603
7 5 307 716 1 500 000 4 505 780 1 500 000 5 350 326
8 5 186 694 1 500 000 4 976 929 1 500 000 5 342 729
9 5 201 134 1 500 000 4 529 852 1 500 000 5 439 405
10 4 359 535 1 500 000 4 504 068 1 500 000 4 500 210
11 5 162 748 1 500 000 4 802 293 1 500 000 5 248 734
12 5 262 663 1 500 000 4 750 511 1 500 000 5 248 790
13 5 534 135 1 500 000 4 864 961 1 500 000 5 249 939
14 4 510 429 1 500 000 4 393 281 1 500 000 4 336 979
15 5 136 332 1 500 000 4 950 184 1 500 000 5 362 359
16 4 964 538 1 500 000 5 125 687 1 500 000 5 235 772
17 5 345 691 1 500 000 5 235 176 1 500 000 5 398 264
Sum 79 016 237 25 500 000 79 820 667 25 500 000 82 258 267

Fig. 30. Experimental result of Em for Program #7.

2) For OMISS-ART, DO-ART, and RT-n, although the to-
tal number of method calls for OMISS-ART is less than
that for DO-ART or RT-n, OMISS-ART outperforms DO-
ART and RT-n because OMISS evenly spreads the method
calls, but DO-ART and RT-n do not. It is shown that even
spreading of test inputs can improve the fault-detection ef-
fectiveness with a better distance metric in OMISS-ART.

3) ARTOO and RT-1 have the same number of method calls
because they only involve one method in each test input,
but ARTOO outperforms RT-1. Thus, it is shown that an
even spreading of objects, using the distance metric in
ARTOO, can improve the fault-detection effectiveness.

Fig. 41 shows the average number of faults revealed by a
number (n) of test inputs generated by each testing approach,
among all subject programs. We found that Em increases as n
increases, and OMISS-ART outperforms all other approaches,

Fig. 31. Experimental result of Em for Program #8.

Fig. 32. Experimental result of Em for Program #9.

Fig. 33. Experimental result of Em for Program #10.

Fig. 34. Experimental result of Em for Program #11.

Fig. 35. Experimental result of Em for Program #12.

Fig. 36. Experimental result of Em for Program #13.

Fig. 37. Experimental result of Em for Program #14.

Fig. 38. Experimental result of Em for Program #15.

Fig. 39. Experimental result of Em for Program #16.

Fig. 40. Experimental result of Em for Program #17.

Fig. 41. Relationship between average number of faults found and number of
test cases used for all 17 subject programs.

Fig. 42. Relationship between average number of faults found and number of
test cases used for Program #1.

followed by RT-n, DO-ART, ARTOO, and RT-1, regardless of
the value of n.

In order to further analyze the difference between different ap-
proaches for each program as the number of test cases increases,
Figs. 42–58 are used to show the relationship between the av-
erage number of faults found and the number of test cases used
for each subject program. Based on Table XII and Figs. 42–58,
we have the following observations.

Fig. 43. Relationship between average number of faults found and number of
test cases used for Program #2.

Fig. 44. Relationship between average number of faults found and number of
test cases used for Program #3.

Fig. 45. Relationship between average number of faults found and number of
test cases used for Program #4.

1) In most cases, OMISS-ART can find more faults than the
other approaches for the same number of test cases.

2) Using up to 5000 test cases, OMISS-ART can detect all
faults for Programs #2 to #7, #10, #12, and #13, and more
than 80% of the faults for the other programs.

3) RT-n (also using up to 5000 test cases) can detect all faults
for Programs #2–#4, and more than 70% of the faults for
the other programs.

4) DO-ART (also using up to 5000 test cases) can detect
all faults for Programs #2–#4, and more than 60% of the
faults for the other programs.

The main reason why all the testing approaches could not
detect all seeded faults after 5000 tests for some subject pro-
grams is that there were some interaction faults whose failure

Fig. 46. Relationship between average number of faults found and number of
test cases used for Program #5.

Fig. 47. Relationship between average number of faults found and number of
test cases used for Program #6.

Fig. 48. Relationship between average number of faults found and number of
test cases used for Program #7.

rates were very small. These interaction faults could only be
triggered when special method sequences were invoked.

3) Discussion: In our empirical studies, we measured the
failure-detection effectiveness and efficiency of each approach
using the three metrics Fm , Fm -time, and Em .

Our studies show that in most of cases, OMISS-ART requires
the least number of test inputs to detect the first failure, and
when using the same number of test inputs, it finds more faults
than the other approaches. Although OMISS-ART outperforms
other approaches in terms of finding faults, it also required more
time (due to the distance calculations involved in determining
the best test candidate). However, in most cases, the time taken
to find the first failure by OMISS-ART is not more than twice
that taken by RT-n.

OOS generally consists of multiple objects and multiple meth-
ods, and uses the object- and method-interaction to complete

Fig. 49. Relationship between average number of faults found and number of
test cases used for Program #8.

Fig. 50. Relationship between average number of faults found and number of
test cases used for Program #9.

tasks. Any faults in these interactions can cause software fail-
ures, which are specific to OOS and only occur at runtime.
These faults are difficult to detect but test cases consisting of
method invocation sequences are more likely to reveal them
[43], [44]. When comparing with ARTOO and RT-1 approaches
which do not involve method invocation sequences, OMISS-
ART, DO-ART, and RT-n were found to detect more faults,
possibly because they revealed runtime interaction faults. Fur-
thermore, using a more powerful distance metric, OMISS-ART
was able to find faults faster, and find more faults with the same
number of test cases, than both DO-ART and RT-n.

In this study, we used semantic information (class informa-
tion and input structure) to construct and evenly spread the test
cases. We did not refer to the runtime information when calcu-
lating the distance among arrays, pointers, and other dynamic
attributes, and hence the calculations may have lost some degree
of accuracy. Furthermore, our distance metric has the following
two limitations.

1) Our TCmSeqDist metric differentiates between two sets
of method sequences based on the following:
a) their method names;
b) the class of their methods’ receivers; and
c) the method signatures (i.e. types and numbers of pa-
rameters).
This means that our approach treats Bird1.f ly(10000,
Melbourne) and Bird1.f ly(100, Melbourne) as the
same, which is not ideal.

2) The OMISS metric separates the distance calcula-
tion for object sets [see Formula (2)] from that for

Fig. 51. Relationship between average number of faults found and number of
test cases used for Program #10.

Fig. 52. Relationship between average number of faults found and number of
test cases used for Program #11.

method invocation sequences [see Formula (3)], which
means that Formula (3) cannot differentiate invoca-
tions of two methods based on their method receivers:
Formula (3) treats Bird1.f ly(10000,Melbourne) and
Bird2.f ly(10000,Melbourne) as the same, which is
also not ideal.

Although our approach does not consider runtime information
when measuring test input differences, it is, nonetheless, most
effective at distinguishing objects of different classes and inputs
involving method invocation sequences.

4) Threats to Validity: Despite our best efforts, our experi-
ments may still face some threats to validity.

The first potential threat is the experimental setup. We have
carefully designed the experiments such that OMISS-ART can
be fairly compared with other existing testing approaches. After
reimplementing ARTOO and divergence-oriented ART using
.NET, we validated their correctness against the examples and
results in the original papers [17], [18]. However, the conclu-
sions from our empirical studies are based on 5100 datasets
(300 runs for 17 subject programs), and since the datasets are
larger than those in the original empirical studies [17], [18], the
margins of error for the 95% confidence interval reported in
Tables VI and XI are tighter.

The second potential threat relates to the selection of subject
programs. The 17 programs we selected vary in size, and some
may be considered smaller than typical industrial OOS. In spite
of this, the subject programs have the following features: 1)
the programs are typical OO programs constructed based on
classes written in either C++ or C#, and 2) the program sizes

Fig. 53. Relationship between average number of faults found and number of
test cases used for Program #12.

Fig. 54. Relationship between average number of faults found and number of
test cases used for Program #13.

Fig. 55. Relationship between average number of faults found and number of
test cases used for Program #14.

vary from 150 to 406 808 lines of code, allowing demonstration
of OMISS-ART’s scalability. Although, our OMISS-ART tool
was implemented in C# and C++ based on the .Net framework,
our OMISS metric, however, can be applied to all OO programs
because it is based on OOS class and input structures, not on
language-specific features.

A final potential threat may be that the mutants were generated
by hand, which may be considered inappropriate. However, due
to the current lack of good automatic mutation tools for C++ and
C# programs, most researchers manually seed faults for subject
programs written in these languages [42]. In this study, we
applied a random number generator to select both the location
and type of faults to be seeded, making the process semirandom
and semiautomatic. During this process, some human effort
was required to make some sensible judgments on how to insert
appropriate types of faults in the specified location.

VI. RELATED WORK

There are many OOS testing approaches, such as search-
based testing, UML diagram-based testing, symbol execution-
based testing, RT-based testing, and code coverage-based testing
[1], [2]. Compared with other approaches, RT is very easy to
use and requires less information to create test inputs. Hence,
RT-based testing techniques have been widely applied to OOS
testing. Unit testing of OOS based on RT techniques has drawn a
lot of attention in the software testing community [5], [7]–[12],
[22], [23]. Pacheco et al. [5], [7], [12] proposed a technique
that improves RT by using information of previously executed
test inputs to guide new test input generation. This informa-
tion, which includes methods and related arguments as well as
their execution traces and outputs, is used as feedback to avoid
repeating entry into invalid states. This feedback-directed RT
has been applied to some systems, and found to be more ef-
fective in finding faults than RT. Jaygarl et al. [47] improved
feedback-directed RT by incorporating input-on-demand cre-
ation, coverage-based selection, and sequence-based-reduction
techniques: they developed a tool, GenRed, which was able
to improve branch coverage and effectively remove redundant
test inputs. Both feedback-directed RT and GenRed are RT ap-
proaches that use runtime information to guide test case gener-
ation. In this study, we used the class information (static infor-
mation) to construct a pool of random test inputs, from which
we removed any inputs that triggered a runtime exception and
crashed the software. Consequently, the final pool of test inputs
which was used for all the testing approaches in our experiments
contained only valid method invocation sequences.

ART [15], [19] has also been applied to testing OOS [16]–
[18]. Ciupa et al. proposed a distance concept for objects, and
a metric for measuring distances between objects [16], [17].
Their metric measures the distance between two objects of the
same class, or two objects sharing the same ancestor, by con-
sidering the objects field distance, type distance, and recursive
distance. They implemented their test approach, ARTOO, into a
tool in the Eiffel language, and compared its performance with
that of RT, finding ARTOO better than RT in terms of number
of test inputs required to detect the first failure and the num-
ber of faults uncovered. Lin et al. [18] improved on ARTOO’s
code coverage by increasing the number of method invocations
in each test input. They used the ARTOO distance metric to
choose an object and generate a method receiver, using this
method receiver to call more methods in that object. They im-
plemented their approach, named divergence-oriented ART, as
a tool, ARTGen, in the Java language, and found that it was able
to find more faults with fewer test inputs than RT. However, the
distance metric used in ARTOO and divergence-oriented ART
can only be applied to a pair of objects. It cannot compare test
inputs that involve multiple objects/methods of multiple classes
and objects of different classes without common ancestor. Our
approach uses a more comprehensive distance metric to support
integration testing using ART.

d’Amorim et al. [48] integrated symbolic execution with op-
erational models to form a model-based symbolic testing ap-
proach for OO unit testing. They conducted empirical studies

Fig. 56. Relationship between average number of faults found and number of
test cases used for Program #15.

Fig. 57. Relationship between average number of faults found and number of
test cases used for Program #16.

Fig. 58. Relationship between average number of faults found and number of
test cases used for Program #17.

to compare the performance of their approach with that of three
other techniques: model-based RT, exception-based symbolic
testing, and exception-based RT. Their studies showed that RT
performance depends on the number of test cases used, while
symbolic execution performance depends on the power of the
constraint solvers used. They recommended using all four tech-
niques, arguing that they are complementary for revealing dif-
ferent faults. In contrast, our studies investigated an advanced
RT strategy, ART, for testing OOS. Our approach employed
a new distance metric to evenly spread test inputs, which is
different from the approach proposed by d’Amorim et al. Our
study shows that RT effectiveness can be improved by evenly
spreading test cases.

There have also been studies into using RT to test interactive
programs, which require that methods are run in a certain order,

and hence satisfy the preconditions for running each method.
Wei et al. [49] found that RT may leave some methods en-
tirely untested due to its inability to satisfy the preconditions for
these methods. To solve this, they proposed obtaining the pre-
conditions for all methods by analyzing the source code: when
testing a specific method r, they find a set (M) of methods
that r depends on, and search for all related methods required
to run all methods in M . At the end of this search, they con-
struct a test sequence for all these methods found, and randomly
select test inputs that can run this sequence. In our empirical
studies, we were aware of the existence of preconditions for
certain methods, and thus, we removed any unsafe or invalid
method sequences (those causing exceptions) during pretesting,
and used only those remaining ones in the test pool for the
experiments.

The impact that the number of method invocations in the
test cases has on the fault-detection effectiveness of RT, and
the relationship between this and the consumption of testing
resources when testing interactive programs have been exam-
ined [43], [44], with the conclusion that more invocations will
consume more resources, but also improve fault detection. We
also studied the impact of the number of method invocations
on the effectiveness of RT. Test inputs involving a sequence
of method calls have a higher chance of detecting the interac-
tion faults than those involving a single method call. Addition-
ally, our study shows that diversifying methods and their argu-
ments can further improve the fault-detection effectiveness and
efficiency.

VII. CONCLUSION AND FUTURE WORK

Testing OOS is challenging because of the need to deal with
new problems introduced by the special features of OO lan-
guages such as encapsulation, inheritance, and polymorphism.
ART is an enhancement of RT, but requires a distance metric
to differentiate candidate test cases. Ciupa et al. were the first
to propose such a distance metric, and applied it to test indi-
vidual methods in a single class; but their metric was not very
well suited to evenly spreading test inputs that involved multiple
objects/methods of multiple classes for integration testing.

In this paper, we have proposed a new distance metric OMISS
that can handle test inputs involving multiple classes, objects,
and methods, and can facilitate integration testing of OOS. We
integrated this metric with the FSCS-ART algorithm to evenly
spread test inputs to test mutants of 17 open source programs.
Two series of empirical studies were conducted to compare
our approach with ARTOO, divergence-oriented ART, and two
variants of RT approaches, with results showing that our ap-
proach outperforms the others in terms of both the F-measure
(the number of test inputs required to detect the first failure) and
the E-measure (the total number of faults detected by a set of
test inputs).

In the future, we will address the two limitations of OMISS
metric discussed in Section V-B3. Additionally, we would like to
consider runtime information when calculating distances, and
enhance the functionality and efficiency of the OMISS-ART
tool. We will also customize our OMISS-ART tool to support
testing of OO software written in Java.

APPENDIX

DETAILED CALCULATION STEPS FOR TestcaseDistance BETWEEN T1 AND T3

Step Formula_ID Formula_Detail Steps required for calculation (SrC)
& Result of calculation (RoC)

1 1 T estcaseDistance (T1 , T3) = T C objDist(T1 .OBJ , T3 .OBJ) + T C mSeqDist(T1 .M IN V , SrC = Steps 2 and 45

T3 .M IN V) = (2.8 + 0.22i) + 1.467 = 4.267 + 0.22i RoC = 4.267 + 0.22i

2 2 T C objDist(T1 .OBJ , T3 .OBJ) = M in (ObjDist(T1 .OBJ , P L1 (T3 .OBJ)), ObjDist SrC = Steps 3 and 24

(T1 .OBJ , P L2 (T3 .OBJ))), where P L1 (T3 .OBJ) = (P s2, Dog1) and P L2 (T3 .OBJ) =(Dog1, P s2) RoC = 2.8 + 0.22i

ObjDist(T1 .OBJ , P L1 (T3 .OBJ)) = ObjDist(P s1, P s2) + ObjDist(Bird1, Dog1) = 2.8 + 0.22i

ObjDist(T1 .OBJ , P L2 (T3 .OBJ)) = ObjDist(P s1, Dog1) + ObjDist(Bird1, P s2) =
10 + 0.5i

3 2 ObjDist(T1 .OBJ , P L1 (T3 .OBJ)) = ObjDist(P s1, P s2) + ObjDist(Bird1, Dog1)=0.1i + SrC = Steps 4 and 13

(2.8 + 0.12i) = 2.8 + 0.22i RoC = 2.8 + 0.22i

4 4 ObjDist(P s1, P s2) = BehDist(P s1.{null}, P s2.{null}) + AttDist(P s1.{Store1}, P s2. SrC = Steps 5 and 12

{Store2}) = 0 + 0.1i = 0.1i RoC = 0.1i

5 6 AttDist(P s1.{Store1}, P s2.{Store2}) = nonRef Dist(P s1.{Store1}, P s2.{Store2})+ SrC = Steps 6 and 11

ref Dist(P s1.null, P s2.null) = 0.1i + 0 RoC = 0.1i

6 8 nonRef Dist(P s1.{Store1}, P s2.{Store2}) = typeDist(P s1.{null}, P s2.{null})+ SrC = Steps 7 and 10

secDist(P s1.{Store1}, P s2.{Store2})i = 0 + 0.1i = 0.1i RoC = 0.1i

7 10 secDist(P s1.{Store1}, P s2.{Store2})i = gSecDist(P s1.{Store1}, P s2.{Store2})i SrC = Step 8

= 0.1i RoC = 0.1i

8 11 gSecDist(P s1.{Store1}, P s2.{Store2})i = dist(P s1.{Store1}, P s2.{Store2})i = 0.1i SrC = Step 9

RoC = 0.1i

9 12.5 dist(P s1.{Store1}, P s2.{Store2}) = 1/range = 1/10 = 0.1 RoC = 0.1

10 9 typeDist(P s1.{null}, P s2.{null}) = 0 RoC = 0

11 7 ref Dist(P s1.{null}, P s2.{null}) = 0 RoC = 0

12 5 BehDist(P s1.{null}, P s2.{null}) = 0 RoC = 0

13 4 ObjDist(Bird1, Dog1) = BehDist(Bird1.{f ly (), expand(), grow ()}, Dog1.{bark(), SrC = Steps 14 and 23

f ollow (), grow ()})+AttDist(Bird1.{Age = 3, P et store = P s1, I s sick = true}, RoC = 2.8 + 0.12i

Dog1.{Age = 10, P et store = P s2, B reed = good}) = 0.8 + (2 + 0.12i) = 2.8 + 0.12i

14 6 AttDist(Bird1.A , Dog1.A) = nonRef Dist(Bird1.{Age = 3, I s sick = true}, Dog1.{ SrC = Steps 15 and 22

Age = 10, Breed = good}) + ref Dist(Bird1.{P et store = P s1}, Dog1.{P et store = RoC = 2 + 0.12i

P s2}) = (2 + 0.07i) + (0.05i) = 2 + 0.12i

15 8 nonRef Dist(Bird1.{Age = 3, I s sick = true}, Dog1.{Age = 10, Breed = good}) = SrC = Steps 16 and 19

typeDist(Bird1.{I s sick = true}, Dog1.{Breed = good}) + secDist(Bird1.{Age = 3}, RoC = 2 + 0.07i

Dog1.{Age = 10})i = 2 + 0.07i

16 10 secDist(Bird1.{Age = 3}, Dog1.{Age = 10})i = gSecDist(Bird1.{Age = 3}, Dog1. SrC = Step 17

{Age = 10})i = |3 − 10|/100i = 0.07i RoC = 0.07i

17 11 gSecDist(Bird1.{Age = 3}, Dog1.{Age = 10})i =dist(Bird1.{Age = 3}, Dog1.{Age = SrC = Step 18

10})i = 0.07i RoC = 0.07i

18 12.2 dist(x, y) = |x −y |
R a n g e , Range = 100, dist(Bird1.{Age = 3}, Dog1.{Age = 10}) = |3 − 10| RoC = 0.07

/100 = 0.07
19 9 typeDist(Bird1.{I s sick = true}, Dog1.{Breed = good}) = T S izeDif f (Bird1.{ SrC = Steps 20 and 21

I s sick = true}, Dog1.{Breed = good}) + T SetDif f (Bird1.{I s sick = true}, Dog1. RoC = 2

{Breed = good}) = 0 + 2 = 2
20 9.1 T S izeDif f (Bird1.{I s sick = true}, Dog1.{Breed = good}) = | 1-1| = 0 RoC = 0

21 9.2 T SetDif f (Bird1.{I s sick = true}, Dog1.{Breed = good}) = |{bool,string}| -|null|= RoC = 2

2 − 0 = 2
22 7 ref Dist(Bird1.{P et store = P s1}, Dog1.{P et store = P s2}) = T C objDist(Bird1.{ SrC = Step 4

P et store = P s1}, Dog1.{P et store = P s2})∗1/2 = ObjDist(P s1, P s2) ∗ 1/2 = 0.1i∗ RoC = 0.05i

1/2 = 0.05i

23 5 BehDist(Bird1.M , Dog1.M) = |size(Bird1.M) − size(Dog1.M)| + (1 − size{(Bird1. RoC = 0.8

M) ∩ (Dog1.M)}/size{(Bird1.M) ∪ (Dog1.M)}) = |(|{f ly (), expand(), grow ()}| − |{
bark(), f ollow (), grow ()}|) + (1 − |{grow ()}|/ |{grow (), f ly (), expand(), bark(),

f ollow ()}|)= |3 − 3| + (1 − 1/5) = 0 + 0.8 = 0.8
24 2 ObjDist(T1 .OBJ , P L2 (T3 .OBJ)) = ObjDist(P s1, Dog1) + ObjDist(Bird1, P s2) SrC = Steps 25 and 36

= (4 + 0.5i) + (6 + 0i) = 10 + 0.5i RoC = 10 + 0.5i

25 4 ObjDist(P s1, Dog1) = BehDist(P s1.{null}, Dog1.{bark(), f ollow (), grow ()})+ SrC = Steps 26 and 35

AttDist(P s1.{Store1}, Dog1.{Age = 10, P et store = P s2, Breed = good}) = 1 + (3+ RoC = 4 + 0.5i

0.5i) = 4 + 0.5i

26 6 AttDist(P s1.{Store1}, Dog1.{Age = 10, P et store = P s2, Breed = good}) = SrC = Steps 27 and 34

nonRef Dist(P s1.{Store1}, Dog1.{Age = 10, Breed = good}) + ref Dist(P s1.{null}, RoC = 3 + 0.5i

Dog1.{P et store = P s2}) = (2 + 0.5i) + (1) = 3 + 0.5i

27 8 nonRef Dist(P s1.{Store1}, Dog1.{Age = 10, Breed = good}) = typeDist(P s1.{null}, SrC = Steps 28 and 31

Dog1.{Age = 10}) + secDist(P s1.{Store1}, Dog1.{Breed = good})i = 2 + 0.5i RoC = 2 + 0.5i

APPENDIX (CONTINUED)

28 10 secDist(P s1.{Store1}, Dog1.{Breed = good})i = gSecDist(P s1.{Store1}, Dog1.{ SrC = Step 29

Breed = good})i = 5/10i = 0.5i RoC = 0.5i

29 11 gSecDist(P s1.{Store1}, Dog1.{Breed = good})i = dist(P s1.{Store1}, Dog1.{Breed SrC = Step 30

= good})i = 0.5i RoC = 0.5i

30 12.5 dist(P s1.{Store1}, Dog1.{Breed = good})=5/range = 5/ 10 = 0.5 RoC = 0.5

31 9 typeDist(P s1.{null}, Dog1.{Age = 10}) = T S izeDif f (P s1.{null}, Dog1.{Age = 10}) SrC = Steps 32 and 33

+T SetDif f (P s1.{null}, Dog1.{Age= 10}) =1 + 1= 2 RoC = 2

32 9.1 T S izeDif f (P s1.{null}, Dog1.{Age= 10}) = | 0-1| = 1 RoC = 1
33 9.2 T SetDif f (P s1.{null}, Dog1.{Age = 10}) = ||{int}|-|null|| = 1 RoC = 1

34 7 ref Dist(P s1.{null}, Dog1.{P et store = P s2}) = T C objDist(P s1.{null}, Dog1. RoC = 1

P et store = P s2) ∗ 1/2 = ObjDist(null, P s2)∗1/2 = 2 ∗ 1/2 = 1
35 5 BehDist(P s1.{null}, Dog1.{bark(), f ollow (), grow ()}) = 1 RoC = 1

36 4 ObjDist(Bird1, P s2) = BehDist(Bird1.{f ly (), expand(), grow ()}, P s2.{null})+ SrC = Steps 37 and 44

AttDist(Bird1.{Age = 3, P et store = P s1, I s sick = true}, P s2.{Store2}) = 1 + (5 + 0i) = 6 + 0i RoC = 6 + 0i

37 6 AttDist(Bird1.{Age = 3, P et store = P s1, I s sick = true}, P s2.{Store2}) = SrC = Step 38 and 43

nonRef Dist(Bird1.{Age = 3, I s sick = true}, P s2.{Store2}) + ref Dist(Bird1.{ RoC = 5 + 0i

P et store = P s1}, P s2.{null}) = (4 + 0i) + (1) = 5 + 0i

38 8 nonRef Dist(Bird1.{Age = 3, I s sick = true}, P s2.{Store2}) = typeDist(Bird1.{Age SrC = Steps 39 and 40

= 3, I s sick = true}, P s2.{Store2}) + secDist(Bird1.{null}, P s2.{null})i = 4 + 0i RoC = 4 + 0i

39 10 secDist(Bird1.{null}, P s2.{null})i = 0i RoC =0i

40 9 typeDist(Bird1.{Age = 3, I s sick = true}, P s2.{Store2}) = T S izeDif f (Bird1.{Age SrC = Steps 41 and 42

= 3, I s sick = true}, P s2.{Store2}) + T SetDif f (Bird1.{Age = 3, I s sick = true}, RoC = 4

P s2.{Store2}) = 1 + 3 = 4
41 9.1 T S izeDif f (Bird1.{Age = 3, I s sick = true}, P s2.{Store2}) = | 2-1|= 1 RoC = 1

42 9.2 T SetDif f (Bird1.{Age = 3, I s sick = true}, P s2.{Store2})= |{int, bool, string}|− RoC = 3

|null| = | 3-0| = 3

43 7 ref Dist(Bird1.{P et store = P s1}, P s2.{null}) = T C objDist(Bird1.{P et store = RoC = 1

P s1}, P s2.{null}) ∗ 1/2 = ObjDist(null, P s1) ∗ 1/2 = 2 ∗ 1/2 = 1
44 5 BehDist(Bird1.{f ly (), expand(), grow ()}, P s2.{null}) = 1 RoC = 1

45 3 T C mSeqDist(T1 .M IN V , T3 .M IN V) = Size(T1 .{Bird1.Grow (), Bird1.Expand(), SrC = Steps 46, 47, and 48

Bird1.F ly ()}, T3 .{Dog1.Grow (), Dog1.Bark(), Dog1.F ollow ()}) + M sD (T1 .{Bird1. RoC = 1.467

Grow (), Bird1.Expand(), Bird1.F ly ()}, T3 .{Dog1.Grow (), Dog1.Bark(), Dog1.

F ollow ()}) + SD (T1 .{Bird1.Grow (), Bird1.Expand(), Bird1.F ly ()}, T3 .{Dog1.

Grow (), Dog1.Bark(), Dog1.F ollow ()}) = 0 + 0.8 + 0.667 = 1.467
46 3.1 Size(T1 .M IN V , T3 .M IN V) = |length({Bird1.Grow (), Bird1.Expand(), Bird1.F ly () RoC = 0

})| − |length({Dog1.Grow (), Dog1.Bark(), Dog1.F ollow ()})| = |3 − 3| = 0
47 3.2 M sD (T1 .M IN V , T3 .M IN V) = (1 − |{Bird1.Grow (), Bird1.Expand(), Bird1.F ly}∩ RoC = 0.8

{Dog1.Grow (), Dog1.Bark(), Dog1.F ollow ()}|/ |{Bird1.Grow (), Bird1.Expand(),

Bird1.F ly} ∪ {Dog1.Grow (), Dog1.Bark(), Dog1.F ollow ()}| = 1 − 1/5 = 0.8
48 3.3 SD (T1 .M IN V , T3 .M IN V) = (0 + 1 + 1)/3 = 2/3 = 0.667 RoC = 0.667

ACKNOWLEDGMENT

The authors would like to thank Y. Guo, X. Zhao, and S. Cai
for their help in the experiments, and the anonymous reviewers
for their comments on earlier versions of this paper.

REFERENCES

[1] R. V. Binder, “Testing object-oriented software: A survey,” Softw. Testing,
Verification Rel., vol. 6, no. 3/4, pp. 125–252, Sep. 1996.

[2] M. Pezze and M. Young, “Testing object-oriented software,” in Proc. 26th
Int. Conf. Softw. Eng., 2004, pp. 739–740.

[3] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In black and white: An
integrated approach to class-level testing of object-oriented programs,”
ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3, pp. 250–295, Jul. 1998.

[4] S. Anand et al., “An orchestrated survey of methodologies for auto-
mated software test case generation,” J. Syst. Softw., vol. 86, no. 8,
pp. 1978–2001, Aug. 2013.

[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. 29th Int. Conf. Softw. Eng., 2007, pp. 75–
84.

[6] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Zhou, “A revisit of three
studies related to random testing,” Sci. China Inf. Sci., vol. 58, no. 5,
pp. 052104:1–052104:9, May 2015.

[7] C. Pacheco, S. K. Lahiri, and T. Ball, “Finding errors in .Net with feedback-
directed random testing,” in Proc. 2008 Int. Symp. Softw. Testing Anal.,
2008, pp. 87–96.

[8] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Experimental assessment
of random testing for object-oriented software,” in Proc. 2007 Int. Symp.
Softw. Testing Anal., 2007, pp. 84–94.

[9] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella,
“An empirical study about the effectiveness of debugging when ran-
dom test cases are used,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 452–462.

[10] W. Zheng, Q. Zhang, M. Lyu, and T. Xie, “Random unit-test generation
with MUT-aware sequence recommendation,” in Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., 2010, pp. 293–296.

[11] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in ACM Sigplan Notices, vol. 40, no. 6, Jun. 2005,
pp. 213–223.

[12] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random test-
ing for Java,” in Proc. Companion 22nd ACM SIGPLAN Conf. Object-
Oriented Program. Syst. Appl. Companion, 2007, pp. 815–816.

[13] T. Y. Chen, F.-C. Kuo, and H. Liu, “Adaptive random testing based
on distribution metrics,” J. Syst. Softw., vol. 82, no. 9, pp. 1419–1433,
Sep. 2009.

[14] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code cover-
age of adaptive random testing,” IEEE Trans. Rel., vol. 62, no. 1,
pp. 226–237, Mar. 2013.

[15] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random
testing: The art of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
pp. 60–66, Jan. 2010.

[16] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object distance and its
application to adaptive random testing of object-oriented programs,” in
Proc. 1st Int. Workshop Random Testing, 2006, pp. 55–63.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive random
testing for object-oriented software,” in Proc. ACM/IEEE 30th Int. Conf.
Softw. Eng., 2008, pp. 71–80.

[18] Y. Lin, X. Tang, Y. Chen, and J. Zhao, “A divergence-oriented approach
to adaptive random testing of Java programs,” in Proc. 2009 IEEE/ACM
Int. Conf. Autom. Softw. Eng., 2009, pp. 221–232.

[19] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Proc.
9th Asian Comput. Sci. Conf., 2004, pp. 320–329.

[20] M. M. Hassan and J. H. Andrews, “Comparing multi-point stride cover-
age and dataflow coverage,” in Proc. 2013 Int. Conf. Softw. Eng., 2013,
pp. 172–181.

[21] D. C. Kung, P. Hsia, Y. Toyoshima, C. Chen, and J. Gao, “Object-oriented
software testing-some research and development,” in Proc. 3rd IEEE Int.
High-Assurance Syst. Eng. Symp., 1998, pp. 158–165.

[22] M. Oriol and S. Tassis, “Testing .Net code with yeti,” in Proc. 2010 15th
IEEE Int. Conf. Eng. Complex Comput. Syst., 2010, pp. 264–265.

[23] H. Y. Chen and T. H. Tse, “Equality to equals and unequals: A re-
visit of the equivalence and nonequivalence criteria in class-level testing
of object-oriented software,” IEEE Trans. Softw. Eng., vol. 39, no. 11,
pp. 1549–1563, Nov. 2013.

[24] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random testing: Adap-
tive random testing by exclusion,” Int. J. Softw. Eng. Knowl. Eng., vol. 16,
no. 04, pp. 553–584, Aug. 2006.

[25] T. Y. Chen, R. G. Merkel, G. Eddy, and P. K. Wong, “Adaptive random
testing through dynamic partitioning, ” in Proc. 4th Int. Conf. Qual. Softw.,
2004, pp. 79–86.

[26] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, “Mirror adaptive random
testing,” Inf. Softw. Technol., vol. 46, no. 15, pp. 1001–1010, Dec. 2004.

[27] H. Liu, X. Xie, J. Yang, Y. Lu, and T. Y. Chen, “Adaptive random test-
ing through test profiles,” Softw., Pract. Experience, vol. 41, no. 10,
pp. 1131–1154, Sep. 2011.

[28] J. Mayer, “Lattice-based adaptive random testing,” in Proc. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2005, pp. 333–336.

[29] A. Shahbazi, A. F. Tappenden, and J. Miller, “Centroidal voronoi
tessellations—A new approach to random testing,” IEEE Trans. Softw.
Eng., vol. 39, no. 2, pp. 163–183, Feb. 2013.

[30] A. F. Tappenden and J. Miller, “A novel evolutionary approach for adaptive
random testing,” IEEE Trans. Rel., vol. 58, no. 4, pp. 619–633, Dec. 2009.

[31] A. F. Tappenden and J. Miller, “Automated cookie collection testing,”
ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, Feb. 2014, Art. no. 3.

[32] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Phys. Doklady, vol. 10, no. 8, pp. 707–710,
Feb. 1966.

[33] “Doxygen: Source code documentation generator tool,” 2013. [Online].
Available: http://www.doxygen.org

[34] “Understand: Source code analysis & metrics,” 2013. [Online]. Available:
http://www.scitools.com/index.php

[35] “Microsoft visual studio,” 2013. [Online]. Available: https://www.
visualstudio.com

[36] “Codeforge-free open source codes forge and sharing,” 2013. [Online].
Available: http://www.codeforge.com

[37] “Sourceforge-download, develop and publish free open source software,”
2013. [Online]. Available: http://sourceforge.net

[38] “Codeplex-open source project hosting,” 2013. [Online]. Available: http://
www.codeplex.com

[39] “Codeproject-for those who code,” 2013. [Online]: Available: http://
www.codeproject.com

[40] “Github, where software is built,” 2015. [Online]. Available: https://
github.com

[41] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting test cases,” in Proc.
30th Annu. Int. Comput. Softw. Appl. Conf., 2006, vol. 1, pp. 485–494.

[42] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep. 2011.

[43] J. H. Andrews, A. Groce, M. Weston, and R.-G. Xu, “Random test run
length and effectiveness,” in Proc. 2008 23rd IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2008, pp. 19–28.

[44] A. Arcuri, “Longer is better: On the role of test sequence length in software
testing,” in Proc. 2010 3rd Int. Conf. Softw. Testing, Verification Validation,
2010, pp. 469–478.

[45] A. Derezinska, “Quality assessment of mutation operators dedicated
for C# programs,” in Proc. 2006 6th Int. Conf. Qual. Softw., 2006,
pp. 227–234.

[46] Y. Liu and H. Zhu, “An experimental evaluation of the reliability of
adaptive random testing methods,” in Proc. 2nd Int. Conf. Secure Syst.
Integr. Rel. Improvement, 2008, pp. 24–31.

[47] H. Jaygarl, K.-S. Lu, and C. K. Chang, “GenRed: A tool for generating and
reducing object-oriented test cases,” in Proc. IEEE 34th Annu. Comput.
Softw. Appl. Conf., 2010, pp. 127–136.

[48] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Ernst, “An em-
pirical comparison of automated generation and classification techniques
for object-oriented unit testing,” in Proc. 21st IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2006, pp. 59–68.

[49] Y. Wei, S. Gebhardt, B. Meyer, and M. Oriol, “Satisfying test precondi-
tions through guided object selection,” in Proc. 2010 3rd Int. Conf. Softw.
Testing, Verification Validation, 2010, pp. 303–312.

Jinfu Chen (M’13) received the B.E. degree from Nanchang Hangkong Univer-
sity, Nanchang, China, in 2004, and the Ph.D. degree from Huazhong University
of Science and Technology, Wuhan, China, in 2009, both in computer science.

He is an Associate Professor in the School of Computer Science and Commu-
nication Engineering, Jiangsu University, Zhenjiang, China. His major research
interests include software testing, software analysis, and trusted software.

Dr. Chen is a Member of the ACM and the China Computer Federation.

Fei-Ching Kuo (M’06) received the Bachelor’s of Science (Hons.) degree in
computer science and the Ph.D. degree in software engineering, both from Swin-
burne University of Technology, Hawthorn, VIC, Australia.

She was a Lecturer at the University of Wollongong, Wollongong, NSW,
Australia. She is currently a Senior Lecturer in the Department of Computer
Science and Software Engineering, Swinburne University of Technology. She
was also the Program Committee Chair for the 10th International Conference
on Quality Software 2010 and the Guest Editor of a special issue of the Journal
of Systems and Software, special issue of the Software Practice and Experi-
ence, and special issue of the International Journal of Software Engineering
and Knowledge Engineering. Her current research interests include software
analysis, testing, and debugging.

Tsong Yueh Chen (M’03) received the B.Sc. and M.Phil. degrees from the Uni-
versity of Hong Kong, China, the M.Sc. and Diploma degrees from the Imperial
College of Science and Technology, London, U.K., and the Ph.D. degree from
the University of Melbourne, Australia.

He is currently a Professor of software engineering in the Department of
Computer Science and Software Engineering, Swinburne University of Tech-
nology, Melbourne, VIC, Australia. He is the originator of metamorphic testing
and adaptive random testing. His current research interests include software
testing, debugging, and program repair.

Dave Towey (M’03) received the B.A. and M.A. degrees in computer sci-
ence, linguistics, and languages from the Trinity College, University of Dublin,
Ireland; the M.Ed. degree in education leadership from the University of Bris-
tol, U.K.; and the Ph.D. degree in computer science from the University of Hong
Kong, China.

He is currently an associate professor at the University of Nottingham Ningbo
China, in Zhejiang, China, where he also serves as the director of teaching and
learning for the School of Computer Science. His current research interests
include software testing and technology enhanced teaching and learning. He
cofounded the ICSE International Workshop on Metamorphic Testing in 2016.

Dr. Towey is a member of the ACM.

Chenfei Su received the B.E. degree in computer science in 2012 from Jiangsu
University, Zhenjiang, China, where he is currently working toward the Master’s
degree in the School of Computer Science and Communication Engineering.

His research interests include software testing and service computing.

Rubing Huang (M’12) received the Ph.D. degree in computer science and tech-
nology from Huazhong University of Science and Technology, Wuhan, China,
in 2013.

He is currently an Assistant Professor in the Department of Software Engi-
neering, School of Computer Science and Communication Engineering, Jiangsu
University, Zhenjiang, China. He has more than 20 publications in journals
and proceedings including the Journal of Systems and Software, Information
and Software Technology, the International Journal of Software Engineering
and Knowledge Engineering, Security and Communication Networks, the IEEE
Computer Society International Conference on Computers, Software & Appli-
cations, the International Conference on Software Engineering and Knowledge
Engineering (SEKE), ACM Symposium on Applied Computing, etc. His current
research interests include software testing and software maintenance, especially
combinatorial testing, random testing, adaptive random testing, and test case
prioritization.

Dr. Huang has served as the Program Committee Member of SEKE2014,
SEKE2015, and SEKE2016. He is a member of the ACM and the China Com-
puter Federation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

