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ABSTRACT

Aim Functional traits of organisms are key to understanding and predicting bio-
diversity and ecological change, which motivates continuous collection of traits and
their integration into global databases. Such trait matrices are inherently sparse,
severely limiting their usefulness for further analyses. On the other hand, traits are
characterized by the phylogenetic trait signal, trait–trait correlations and environ-
mental constraints, all of which provide information that could be used to statis-
tically fill gaps. We propose the application of probabilistic models which, for the
first time, utilize all three characteristics to fill gaps in trait databases and predict
trait values at larger spatial scales.

Innovation For this purpose we introduce BHPMF, a hierarchical Bayesian
extension of probabilistic matrix factorization (PMF). PMF is a machine learning
technique which exploits the correlation structure of sparse matrices to impute
missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait
prediction and provides uncertainty estimates for each imputation. In combination
with multiple regression against environmental information, BHPMF allows for
extrapolation from point measurements to larger spatial scales. We demonstrate the
applicability of BHPMF in ecological contexts, using different plant functional trait
datasets, also comparing results to taking the species mean and PMF.

Main conclusions Sensitivity analyses validate the robustness and accuracy of
BHPMF: our method captures the correlation structure of the trait matrix as well
as the phylogenetic trait signal – also for extremely sparse trait matrices – and
provides a robust measure of confidence in prediction accuracy for each missing
entry. The combination of BHPMF with environmental constraints provides a
promising concept to extrapolate traits beyond sampled regions, accounting for
intraspecific trait variability. We conclude that BHPMF and its derivatives have a
high potential to support future trait-based research in macroecology and func-
tional biogeography.

Keywords
Bayesian hierarchical model, gap-filling, imputation, machine learning, matrix
factorization, PFT, plant functional trait, sparse matrix, spatial extrapolation,
TRY.
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INTRODUCTION

Functional trait measurements and analyses have been the focus

of numerous studies in recent decades (e.g. Reich et al., 1997;

Wright et al., 2004; Chave et al., 2009; Schrodt et al., 2015).

However, due to the time and resources required and the sheer

number of species on earth, only a small number of species and

their traits could be captured to date, especially in tropical and

remote ecosystems. In addition, trait data are highly dispersed

among numerous datasets and are often not accessible to the

wider scientific community. The integration of databases is thus

becoming increasingly important for the consolidation of glob-

ally dispersed data, as a source of standardized data for further

applications, such as model building and validation, and to

coordinate future measurement efforts.

Combining trait observations from studies with different

research foci produces matrices with substantial gaps. For

example, the largest database for plant traits to date, TRY

(Kattge et al., 2011), currently contains 215 datasets with 5.6

million trait entries for 1100 traits of 2 million individuals,

representing 100,000 plant species. On average only 2 of the

1100 traits represented in TRY are measured for any individual,

restricting the usefulness of combined datasets especially for

multivariate analyses.

General characteristics of traits

Some characteristics inherent to functional traits may support

statistical gap-filling of sparse trait matrices: a strong

phylogenetic trait signal, functional and structural trade-offs

between traits and trait–environment relationships.

The phylogenetic trait signal is an effective aid in predicting

trait values (e.g. Lovette & Hochachka, 2006; Swenson, 2014):

the closer two individuals are related, the more similar their

traits will be – with exceptions due to convergent evolution and

environmental diversification. This phylogenetic trait signal is

reflected in the taxonomic hierarchy: on average individuals

within a species are more similar than individuals within genera,

families or phylogenetic groups (Kerkhoff et al., 2006; Swenson

& Enquist, 2007). In general, most of the trait variance is

observed between species (Kattge et al., 2011), differences

between species are consistent across spatial scales (Kazakou

et al., 2014) and mean trait values at native ranges are appropri-

ate estimates at invaded areas (McMahon, 2002; Ordonez,

2014). Due to these frequently observed patterns, mean trait

values of species and even genera are often used to fill gaps in

trait matrices (Fried et al., 2012; Cordlandwehr et al., 2013).

Traits possessed by any individual are not independent –

functional and structural trade-offs cause correlations between

traits (Reich et al., 1997). This has been characterized at the

global scale, for example for the leaf and wood economic

spectra, respectively (Wright et al., 2004; Chave et al., 2009).

Trait variability is also influenced by the environment which, on

the one hand, causes large-scale patterns, for example latitudinal

gradients of leaf N/P stoichiometry (Reich & Oleksyn, 2004) or

changes in the competitive success of Drosophila species along a

temperature gradient (Davis et al., 1998), and on the other hand

small-scale intraspecific variation, for example in plant traits

(Albert et al., 2010; Clark, 2010) and mammalian body size

(Diniz-Filho et al., 2007).

Gap-filling in trait ecology

Many disciplines, for example psychology (e.g. Schafer &

Graham, 2002), sociology (e.g. Johnson & Young, 2011) or

biogeochemistry (e.g. Moffat et al., 2007; Lasslop et al., 2010)

have developed their own set of accepted techniques for predict-

ing missing values tailored to their data structure. In trait

ecology, due to the relatively recent advent of large databases,

gap-filling methods have been adopted from other disciplines,

often without adjusting them to differences in data structure. In

general three approaches are used within the community of trait

ecologists: (1) deleting rows with missing cases or pair-wise

analysis; (2) predicting trait values based on the taxonomic trait

signal at species or genus level (mean traits); and (3) predicting

values for individual missing entries based on structure, e.g.

multiple imputation (MI) (Rubin, 1987; Su et al., 2011) and

multivariate imputation using chained equations (MICE)

(Rubin, 1987; van Buuren & Groothuis-Oudshoorn, 2011),

or/and spatial correlations within the trait matrix (e.g. kriging;

Lamsal et al., 2012; Räty & Kangas, 2012). These approaches

provide useful imputations in some cases, but whilst deleting

missing cases can introduce bias in model parameters

(Nakagawa & Freckleton, 2008), taking the ‘mean’ adds new data

points without adding new information, which results in incor-

rect confidence limits. The techniques mentioned in (3) on the

other hand were developed to fill gaps in databases with 10–30%

missing entries, but not for a sparsity as high as that observed in

combined trait databases such as TRY.

A recent exercise comparing different approaches (amongst

them ‘mean’ and MICE) to filling gaps in a plant trait matrix –

although at the species rather than the individual level –showed

that all methods were indeed only effective up to 30% gaps, that

genus mean produced the least reliable results and that includ-

ing ecological theory, for example by taking into account trait–

trait correlations, will substantially improve the accuracy of gap-

filling approaches (Taugourdeau et al., 2014). Ogle (2013)

developed a hierarchical Bayesian model, which could be used

for gap-filling of individual trait values based on taxonomic

hierarchy and covariates. However, this method only allows for

one trait to be predicted at a time, ignoring the correlation

structure within a multi-trait matrix. In contrast, some

phylogenetic imputation methods, as reviewed recently by

Swenson (2014), do allow for multiple trait predictions but only

give species or higher-order means and lack any accounting for

intraspecific variability. While this may be resolved, for example

by adding ‘twigs’ on the ends of phylogenies with terminal nodes

as species (Swenson, pers. comm.) to the authors’ knowledge,

this has not been implemented yet.

Here we present a new approach – Bayesian hierarchical

probabilistic matrix factorization (BHPMF) – which imputes

trait values based on the taxonomic hierarchy, structure within

Gap-filling in trait databases
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the trait matrix and trait–environment relationships at the same

time as providing uncertainty estimates for each single trait

prediction. An extension of the method provides a concept for

out-of-sample predictions – the extrapolation of point measure-

ments to spatial scales beyond measured areas. We evaluate trait

predictions by BHPMF under various aspects and provide per-

spectives for future developments.

METHODS

Probabilistic matrix factorization

The method we present is a development of probabilistic matrix

factorization (PMF) (Salakhutdinov & Mnih, 2008). PMF is a

recommendation system developed on the example of predict-

ing users’ preferences in movies from other users’ movie ratings

(Netflix, 2009). Due to its good scalability and predictive accu-

racy, even for highly sparse datasets, PMF has become a standard

technique for imputing missing data (Koren et al., 2009).

PMF models a sparse matrix, such as the TRY database, as the

scalar (or inner, dot) product of two latent matrices with the aim

of finding a factorization that minimizes the error between pre-

dicted and observed data. This technique is closely related to

principal components analysis (PCA), which converts a set of

observations of correlated variables into a set of values of lin-

early uncorrelated variables called principal components. Like

PCA, PMF is efficient if the original matrix is of low rank, i.e. if

the axes of the original matrix provide strong correlations.

In the original case, each column represents a video and each

row a user, providing a video ranking (Salakhutdinov & Mnih,

2008). In the case of a trait matrix, videos are replaced by traits

and users by entities. In our case, entities are defined as individ-

ual plants. They could equally represent the level of an organ or

the average over different organisms, for example nitrogen

content of a single leaf, motility of a phytoplankton species or

the average beak length of several individuals of an avian species.

For simplicity, we refer to the individual plant as plant from now

on.

In a first step, independent latent vectors are generated over

each row (individual, u) and column (trait, v) of the plant × trait

matrix X N M∈ ×R with N rows and M columns (Fig. 1). Any

missing entry (n, m) in the original matrix X can be predicted as

the inner product of these latent vectors xnm = 〈un, vm〉 (Fig. 1).

PMF has been shown to be applicable to biological data, for

example in population genetics (Duforet-Frebourg and Blum,

2014). However, our first experiments indicated that for plant

traits the prediction accuracy of PMF was insufficient: the accu-

racy was worse than using species mean trait values to fill the

gaps (see Results). We therefore developed an extension of PMF,

which accounts for a plants’ taxonomic hierarchy to improve

prediction accuracy (Bayesian hierarchical PMF; BHPMF). The

concept was developed as HPMF in the context of machine

learning (Shan et al., 2012). We here introduce the additional

application of a Gibbs sampler in order to provide a measure of

uncertainty for each imputed trait value (BHPMF) (see ‘Gibbs

sampler – uncertainty quantified trait prediction’), as well as an

extension to facilitate out-of-sample predictions (aHPMF).

Bayesian hierarchical probabilistic
matrix factorization

BHPMF exploits the taxonomic hierarchy of the plant kingdom

as a proxy for the phylogenetic trait signal, with the individual

plant being nested in species, species in genus, genus in family

and family in phylogenetic group (Fig. 2).

BHPMF sequentially performs PMF at the different hierar-

chical levels, using latent vectors of the neighbouring level (ℓ) as

prior information at the current level. For example, trait data

averaged at species level are used to optimize latent vectors at

species level, which in turn act as priors for latent vectors at

the individual level, which finally are optimized against the

observed trait entries in the trait matrix (Fig. 2, equation 1).The

sequential approach across the taxonomic hierarchy turned out

to be most effective if applied iteratively top down and bottom

up.

After transformation of traits to approximate normal distri-

butions and z-score transformation, the cost function is devel-

oped as the sum of absolute deviations of predictions versus

observations for traits (m) of entities (n) (first summand in

equation 1) and the sum of absolute deviations of posterior and

prior of the latent factors u and v (second and third summand of

equation 1) across all hierarchical levels (L):
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Figure 1 Schematic of the probabilistic matrix factorization
(PMF) model. u denotes the latent vector on the individual plant
side, v the latent vector on the functional trait side, both of which
have a Gaussian normal distribution with a mean of 0 and a
variance of σ2. Each missing entry Xij can be approximated by the
product of the transposed latent vector U and the latent vector V.
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where λ σ σu u= 2 2 , λ σ σv v= 2 2 with σ being the standard devia-

tion of the imputations. {·} denotes the set of data at all L levels,

and δnm
�( ) = 1 when the entry (n, m) of X �( ) is non-missing and 0

otherwise. Replace ℓ − 1 with ℓ + 1 and the parent node (p(n))

with the child node (c(n)) for the bottom-up approach. For

details see BHPMF in Appendix S1 in Supporting Information.

Gibbs sampler – uncertainty quantified
trait prediction

The parameters of our BHPMF model are optimized against the

observations in the matrix using a Gibbs sampler (Fazayeli et al.,

2014). The Gibbs sampler is a Markov chain Monte Carlo

(MCMC) method, which samples the probability density distri-

butions of model parameters (here the latent vectors) and

model predictions (here entries in the plant × trait matrix) (see

the grey inset in Fig. 2 and ‘Model evaluation’, as well as Gibbs

sampler results in Appendix S10). The Gibbs sampler-inferred

density distributions of trait values are then used to infer the

most likely imputation value, as well as the associated uncer-

tainty for each prediction.

aHPMF – extrapolation from point measurements to
regional scales

If BHPMF is stopped at the species level, i.e. without accounting

for trait variability specific to individual plants, the residual

error represents the intraspecific variability and modelling/

measurement errors. aHPMF focuses on explaining this residual

trait variability based on environmental variables, such as soil

and climate characteristics of their growth environment in order

to enable out-of-sample prediction, i.e. trait predictions for

individual plants where the only known factors are species iden-

tity and location but no traits have actually been measured on

the given individual (Fig. 3).

To capture trait variability that can be attributed to environ-

mental factors, we utilize a hierarchical regression framework,

taking into account the taxonomic structure of plants to regu-

larize the regression model. The regression framework takes as

independent predictor variables the climatic and soil variables

mentioned below at locations with georeferenced trait measure-

ments. The residuals of BHPMF for the 13 plant traits of each

observation are considered as the target dependent variables to

be predicted. We treat each plant trait independently of every

other while regressing them using climate and soil features.

In essence, combining BHPMF with least squares regression

over the residuals against environmental factors, we can model

the unknown value for species n and trait m in a probabilistic

model as

k u v w x enm n m nm= + +α βT T (2)

where (un, vm) are the latent factors, with un having a hierarchical

prior from the taxonomy and x being the environmental condi-

tion with w as the regression coefficient. enm is the zero mean

Gaussian noise. Note that α, β are scalar parameters: for BHPMF

set (α = 1, β = 0), for aHPMF set (α = 1, β = 1). For details see

‘aHPMF’ in Appendix S1.

Data: traits, climate and soil

We demonstrate the applicability of the methods introduced

above on the example of a trait matrix derived from TRY. For

details on data standardization see Kattge et al. (2011). The

spatial distribution of measurement sites and detailed informa-

tion on the original datasets are shown in Fig. S4.1 (Appendix

S4) and Tables S3.1 & S3.2 in Appendix S3.

We extracted a matrix of 13 georeferenced traits consisting of

204,404 trait measurements on 78,300 individuals, spanning

14,320 species, 3793 genera, 358 families and 6 phylogenetic

Figure 2 Schematic of the Bayesian hierarchical probabilistic
matrix factorization (BHPMF) model. N denotes the entity
(individual plant) side and U the corresponding matrix of latent
vectors on the row side, M the trait side and V the corresponding
matrix of latent vectors on the column side. x denotes an entry in
the original plant × trait matrix S. The numbers in parentheses
show the taxonomic level L. For example (4) is the species level
whereas (2) is the family level. The grey inset provides a schema
for the Gibbs sampler where p(n) is the parent node of n in the
upper level and c(n) is the set of child nodes n in the lower level.

Figure 3 Schematic of the advanced hierarchical probabilistic
matrix factorization (aHPMF) model. w denotes the regression
coefficient at different levels of the hierarchy and Q the
corresponding matrix of latent vectors. The numbers in
parentheses shows the taxonomic level L.

Gap-filling in trait databases
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groups. The sparsity ranged from 49.63% for leaf area to 92.33%

for the leaf N to P ratio, with an average sparsity of 79.9% across

the trait matrix (Table 1). All traits were log- and z-transformed

to improve normality and equalize traits in the cost function

during optimization.

For out-of-sample predictions by aHPMF, climate data for

mean annual precipitation, mean annual temperature, isother-

mally and precipitation seasonality were extracted from the

WorldClim dataset (Hijmans et al., 2005) and soil texture (sand,

silt, clay) and soil organic carbon content in the top soil from the

Harmonized World Soil Database v1.2 (FAO et al., 2012).

Model evaluation

We ran PMF, BHPMF and aHPMF on the test dataset extracted

from TRY. Given the plant × trait matrix, we randomly selected

80% of entries for training (parameter setting), 10% for valida-

tion (parameter adjustment by optimizing performance) and

10% for test (independent performance testing after parameter

adjustment and learning). This cross-validation improves model

fidelity by ensuring that none of the observations are known by

the model when performing new predictions. Test entries

without training data in the same row would have highly

inflated variance. Such cases were prevented by adjusting the

splitting accordingly (see ‘BHPMF’ in Appendix S1).

We evaluated the predicted trait values, using the root mean

squared error (RMSE; see equation S13 in Appendix S1) and the

correlation coefficient (R2) of z-transformed predicted versus

observed traits as indicators of overall prediction accuracy. We

compared the performance of PMF, BHPMF and aHPMF with a

baseline of species mean trait values (MEAN), which uses the

overall trait mean of all individual plants within a species for

prediction. The effectiveness of capturing the phylogenetic trait

signal was explored by performing BHPMF including increas-

ingly detailed taxonomic information (Fig. 2).

In order to evaluate how well not only predicted versus meas-

ured but also trait-trait correlations are preserved in BHPMF, we

performed standardized major axis (SMA) regression, the first

principal component vector of a correlation matrix fitted

through the data centroid (Taskinen & Warton, 2011), on the

measured and imputed trait values for some key trait correla-

tions. We also performed a Procrustes analysis with PROTEST

(using the R package ‘vegan’) on a PCA of a subset of the

original data versus a PCA based on the estimated values for

artificially introduced gaps. Due to its good data cover, we per-

formed this test on the RAINFOR extract from the TRY database

(see below). Procrustes is a statistical shape analysis tool (least-

squares orthogonal mapping) which compares two ‘superim-

posed’ matrices for overlap, with placement in space and object

size being adjustable. We show how uncertainty in trait predic-

tions is accounted for using the Gibbs sampler, comparing pre-

diction confidence (SD) with prediction accuracy (RMSE).

The sensitivity of BHPMF to the fraction of gaps and the

effect of using a global database to fill gaps in local or regional

datasets were explored using two approaches. First by ‘cutting

out’ a local dataset with high coverage, adding additional gaps

(0, 10, 30, 60 and 80%; see Table S8.1 in Appendix S8) and

second by using a regional gappy dataset, filling gaps in each of

these ‘cut-outs’ using (1) the global data with information from

the local/regional data and (2) just the local/regional data. For

our local example, we extracted TRY trait data contributed by

the RAINFOR group (Fyllas et al., 2009), which shows a good

coverage (sparsity 11%) and covers most of the Amazon

(Fig. S8.1 in Appendix S8). For our regional example, we

extracted all of the European data (sparsity 72%) (Fig. S8.2 in

Appendix S8). For details on methodology please refer to

Table 1 Number of entries, sparsity and
root mean square error (RMSE) of
species mean (MEAN), probabilistic
matrix factorization (PMF), Bayesian
hierarchical PMF (BHPMF) and
advanced hierarchical PMF (aHPMF) by
trait, as well as R2 values of the
regression of imputed versus measured
traits. The lowest RMSE and highest R2

are shown in bold.

Trait Entries Sparsity

MEAN PMF BHPMF aHPMF

RMSE R2 RMSE R2 RMSE R2 RMSE R2

SLA 33001 57.9 0.53 0.85 0.88 0.49 0.46 0.88 0.53 0.89
Plant height 16465 79.0 0.47 0.90 0.91 0.40 0.40 0.92 0.44 0.93
Seed mass 7311 90.7 0.37 0.91 0.77 0.40 0.36 0.92 0.36 0.92
LDMC 17331 77.9 0.53 0.83 0.87 0.41 0.43 0.88 0.49 0.89
SSD 9191 88.3 0.51 0.86 1.01 0.19 0.44 0.87 0.51 0.87
Leaf area 39438 49.6 0.50 0.87 0.91 0.41 0.37 0.93 0.41 0.93
Leaf N 26882 65.7 0.67 0.77 0.99 0.28 0.53 0.86 0.59 0.86
Leaf P 11975 84.7 0.72 0.69 0.78 0.62 0.52 0.83 0.62 0.83
Leaf N/area 8180 89.6 0.79 0.65 0.80 0.64 0.51 0.82 0.72 0.82
Leaf fresh mass 11484 85.3 0.47 0.89 0.71 0.71 0.27 0.96 0.39 0.96
Leaf N/P ratio 5999 92.3 0.76 0.69 0.90 0.44 0.49 0.85 0.67 0.84
Leaf C/dry mass 8123 89.6 0.70 0.74 0.884 0.35 0.61 0.61 0.62 0.78
Leaf δ 15N 9022 88.5 0.63 0.79 1.02 0.02 0.50 0.87 0.53 0.88
Average 15723 79.9 0.58 0.80 0.88 0.41 0.45 0.88 0.53 0.87

SLA, specific leaf area; LDMC, leaf dry matter content; SSD, stem-specific density; Leaf N and Leaf P,
leaf nitrogen and phosphorus concentrations per dry mass, respectively; Leaf N/area, leaf nitrogen
concentration per leaf area; Leaf C/dry mass, leaf carbon concentration per dry mass. For definitions
of all traits and data sources as well as corresponding references see the Supporting Information
(Appendices S2, S3 and S11 respectively).

F. Schrodt et al.

Global Ecology and Biogeography, 24, 1510–1521, © 2015 John Wiley & Sons Ltd1514



Appendices S8 & S1. Finally, we provide an example for out-of-

sample prediction, extrapolating leaf nitrogen concentration

(leaf N) from point measurements to the whole species range of

Acer saccharum using aHPMF.

Probabilistic matrix factorization and subsequent regression

were developed and applied in MATLAB version 2012a

(MATLAB, 2012). All other analyses were performed using the

statistical platform R version 2.15 (R Core Team, 2014). The

maps reported here were produced in ArcMap 10.1 (ArcGIS

Desktop, 2011) and R, using the tree species distribution map of

A. saccharum from the US Geological Survey (Little, 1971). R

scripts to implement BHPMF are available from the authors by

request.

RESULTS

Predicted versus observed trait values

To analyse prediction accuracy we compare RMSE and the coef-

ficient of determination (R2) for MEAN, PMF, BHPMF and

aHPMF averaged across traits and for each trait separately

(Table 1; for scatterplots of observed versus predicted for all

traits see Fig. S9.1 in Appendix S9). On average, across all traits,

BHPMF outperforms PMF, MEAN and aHPMF, with MEAN

being significantly more accurate than PMF. This holds after

statistical evaluation using a paired t-test with P-values smaller

than 10−5 at all levels, and is supported by the evaluation of the

correlation coefficient R2 (Table 1). As the RMSE is calculated

from z-transformed approximate normal distributions of traits,

a RMSE of 0.45 for BHPMF indicates that the average error of

predictions is about half a standard deviation, or about 10% of

the 95% CI. BHPMF outperforms MEAN and PMF in all traits,

while aHPMF shows the same or higher RMSE and higher R2

than BHPMF for SLA, plant height, leaf dry matter content

(LDMC), leaf carbon (C) per dry mass and leaf δ 15N (D15N)

(Table 1). The advantage of BHPMF over MEAN is largest for

‘physiological traits’, such as leaf N and leaf phosphorus concen-

tration (leaf P), and smaller for more ‘structural traits’ such as

seed mass or plant height. The prediction accuracy of BHPMF

varies across traits: from RMSE = 0.36 (R2 = 0.92) for seed mass

to RMSE = 0.61 (R2 = 0.61) for leaf C content per dry mass.

Interestingly, prediction accuracy is not related to the number of

entries per trait (Table 1).

Accounting for taxonomic hierarchy

The RMSE of MEAN and BHPMF decreases with increasing

taxonomic information, indicating that both methods can

utilize the hierarchical structure to their advantage (Table S7.1

in Appendix S7). This is also supported by the scatter plot of

measured versus predicted specific leaf area (SLA) and leaf N

shown in Fig. 4. With increasing taxonomic information, the

scatter plot approaches the 1:1 line, i.e. prediction accuracy

improves.

Trait–trait correlations

Although the presence of strong trait–trait correlations is a pre-

requisite for the accuracy of BHPMF, such correlations are not

provided a priori and are thus not part of the objective function

used (equation 1). This turns them into a suitable evaluation

measure. An important quality criterion is to what extent the

imputed values reflect the observed bivariate correlations, as this

is a first indication of the extent to which the overall correlation

structure of the n-dimensional trait matrix is maintained by

imputation. Our dataset shows on average strong trait–trait cor-

relations, with some exceptions (Fig. S9.5 in Appendix S9).

BHPMF and MEAN capture these general trait–trait correla-

tions, but BHPMF reproduces extreme values more accurately

than MEAN and is therefore generally better at capturing the

shape of the scatter of observed trait data, which is confirmed by

more similar SMA R2 values (Fig. S9.2 in Appendix S9). Looking

at the multivariate preservation of trait–trait correlations using

Procrustes analysis, our results indicate again that BHPMF does

Figure 4 Scatter plots of predicted versus true values for two
traits with increasing taxonomic information. Left column, leaf
nitrogen concentration per dry weight; right column, specific leaf
area. Row 1, no phylogenetic information is used; row 2, only the
phylogenetic group is used; row 3, phylogenetic group and family
are used; row 4, phylogenetic group, family and genus are used;
row 5, phylogenetic group, family, genus and species are used.
Predictions are based on Bayesian hierarchical probabilistic matrix
factorization. The data are presented in z-transformed space.
Dotted lines indicate the 1:1 correlation.
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not significantly alter the correlation structure of the gap-filled

matrix (Fig. 5). The first four principal component axes explain

83.4% and 83.4% of the variability in the dataset for the original

and gap-filled data, respectively. None of the principal compo-

nent axes are significantly different between the gappy and gap-

filled data for any of the traits. The traits stem specific density

and leaf carbon differ – but not significantly – along the third

and fourth axes (see Fig. S9.3 in Appendix S9).

Uncertainty quantified predictions

The Gibbs sampler provides a probability distribution for every

single prediction, as shown in the example of Gibbs sampler-

generated density plots of BHPMF-estimated LDMC, leaf N and

SLA for A. saccharum and Pinus sylvestris trees (Fig. S10.1 in

Appendix S10). This distribution can be exploited to calculate

indices for the best estimate (e.g. mean) and variability (e.g. SD).

This provides an additional means to evaluate our imputation

model by comparing prediction confidence (SD) with predic-

tion accuracy (RMSE): when we are confident about our pre-

dictions (small SD), these predictions should also be accurate

(small RMSE) and vice versa. Figure S10.2 in Appendix S10

shows that this is indeed the case for the whole 13-trait dataset,

implying that our model is appropriate. This remains true when

we evaluate the Gibbs sampler on each trait separately

(Fig. S10.3 in Appendix S10).

Gap-filling of regional/local data using BHPMF

As expected, increasing the number of gaps in the RAINFOR

dataset generally resulted in a decrease of prediction accuracy

(Fig. 6), although less so for structural traits, such as stem-

specific density (SSD) and plant height. Reproducibility was

high in all cases (Fig. 6). Prediction accuracy of BHPMF was

generally approximately equal, no matter whether the regional

(RforR) or global (WforR) datasets were used to fill the gaps

(Figs 6 & S8.3 in Appendix S8). This was particularly the case if

gap sizes were large (above 10%), whilst RforR outperformed

WforR for the imputations of plant height, leaf N, SLA and leaf

carbon only where additional gap sizes were small (0 and

10%).

Out-of-sample prediction (aHPMF)

We illustrate the extension of BHPMF towards out-of-sample

prediction with the example of leaf N across the species range of

A. saccharum (Fig. 7).

Figure 5 Procrustes analysis errors for the first and second
principal component axes comparing a princpal components
analysis (PCA) performed on the original, gappy RAINFOR data
with a PCA performed on the RAINFOR data with artificially
introduced gaps being filled using Bayesian hierarchical
probabilistic matrix factorization.

Figure 6 Root mean square error (RMSE) of performing
Bayesian hierarchical probabilistic matrix factorization (BHPMF)
on the RAINFOR cutout (red points in Fig. S8.1 in Appendix S8)
for the whole dataset (Total), specific leaf area (SLA), plant height
(PlantHt), stem-specific density (SSD), leaf nitrogen (LeafN), leaf
phosphorus (LeafP), leaf nitrogen per area (LeafNArea), leaf
carbon (LeafC) with increasing number of gaps added to the
original RAINFOR data (inherent gappiness of 11%). For the total
number of gaps for each trait and added gaps per dataset, see
Table S8.1 in Appendix S8. Left- and right-hand sections for each
trait (separated by a dotted line) show results when using only the
RAINFOR data (RforR) or using all available data (WforR),
respectively, to fill the gaps.
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BHPMF was stopped at species level, followed by a multivari-

ate regression of residuals of predicted versus observed traits at

the level of the individual plants against environmental condi-

tions. Trait predictions follow the trends in both measured leaf

N and environmental conditions. However, the variability

within aHPMF-predicted leaf N is low (18.69–18.80 mg g−1)

compared with the range of actually measured values (8.65–

28.23 mg g−1). While the amplitude of predicted traits for the

grid elements is much smaller than the observed ranges, it is

notable that A. saccharum occurs over a wide range of environ-

mental conditions and grid averages may not reflect variation at

local scales. The flat response surface Reich & Oleksyn (2004)

found for the correlation between leaf N in the genus Acer and

mean annual temperature may further support the validity of

our results.

DISCUSSION

We demonstrate that BHPMF provides accurate and robust

uncertainty-quantified trait predictions, even for sparse matri-

ces with up to 80% missing entries. BHPMF outperforms the

species MEAN baseline in all aspects: RMSE and R2 of predicted

versus observed entries are smaller and larger, respectively, for

each individual trait (Table 1) and trait–trait correlations are

better retrieved (Fig. S9.2 in Appendix S9). Prediction accuracy

is high (small RMSE) when prediction uncertainty is small

(small SD; Fig. S10.2 in Appendix S10), providing a measure of

confidence for prediction accuracy. In addition, aHPMF pro-

vides a concept to extrapolate from point measurements to

species ranges accounting for intraspecific variability (Fig. 7).

These results give rise to three major questions: (1) Why does

BHPMF provide accurate and robust trait predictions even for

sparse trait matrices? (2) Is the prediction accuracy of BHPMF

sufficient for applications in ecological contexts? (3) What are

the prospects for BHPMF?

Why are BHPMF predictions robust and accurate?

BHPMF is a Bayesian hierarchical approach that simultaneously

takes the taxonomic trait signal, the correlation structure within

the trait matrix and environmental constraints into account to

fill gaps in trait matrices. A comparison of BHPMF-predicted

trait values with results based on PMF, MEAN and aHPMF

indicates the relevance of all three aspects.

PMF has been shown to be accurate even for the imputation

of sparse datasets (Koren et al., 2009). However, in the case of

our test dataset, PMF performs worse than the baseline MEAN

approach. This indicates that our test dataset is not of suffi-

ciently low rank to allow for robust trait predictions based on

the correlation structure in the matrix alone.

BHPMF converts PMF into a hierarchical Bayesian model.

This has two effects: (1) the higher levels of taxonomy (e.g.

phylogenetic group, family) provide almost complete informa-

tion (very low sparsity), which enables efficient PMF; (2)

approximations of the matrices at higher taxonomic level

provide excellent prior information for the approximations at

lower levels (e.g. genus, species), thus constraining imputations

due to the taxonomic signal in trait variation at all levels.

This is achieved without a priori assuming a phylogenetic

signal in the trait variability, but rather by opening the door for

our model to extract a signal, if it should be there. Thus, in some

cases, BHPMF might not put any constraint on the imputed

Figure 7 Advanced hierarchical probabilistic matrix factorization (aHPMF)-predicted leaf nitrogen concentration (mg g−1) of Acer
saccharum (a), measured values for leaf nitrogen (mg g−1) (b), MAT (mean annual temperature) (c), and MAP (mean annual precipitation)
(d) across the species range of A. saccharum. For a map of the geographic location see Figure S5.1 in Appendix S5.
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trait values from the taxonomy side, whereas in others, this

signal might be stronger, hence the constraint from the tax-

onomy. The hierarchical taxonomic structure in combination

with a consistent phylogenetic trait signal is therefore the key to

facilitate robust gap-filling by BHPMF – despite high sparsity –

at the level of the individual observations. On the other hand

BHPMF outperforms the MEAN approach in all aspects. This

indicates that the capture by PMF of the correlation structure of

the matrix on top of the phylogenetic trait signal is the key to

providing accurate predictions.

A comparison of BHPMF with aHPMF indicates that explic-

itly taking environmental constraints into account surprisingly

adds little or no improvement to BHPMF: the average R2 was

only higher in 5 out of 13 traits with the RMSE being consist-

ently smaller for BHPMF compared with aHPMF (Table 1). At

the individual level, PMF was replaced by multiple regressions

against environmental constraints, based on the assumption

that the phylogenetic trait signal is mainly observed at the

species level whilst environmental constraints add to the trait

variability at the individual level.

The fact that BHPMF largely outperforms aHPMF is an indi-

cation that, by taking into account trait–trait correlations, PMF

seems to be more appropriate than the multiple regression at the

individual level. Also, BHPMF implicitly takes environmental

information into account via the correlation of measured to

predicted traits. This environmental constraint is related to the

immediate environment experienced by the observed plant and

propagated via trait–trait correlations to the predicted traits,

while environmental information incorporated in the multiple

regression model by necessity represents only the average over

larger scales. Taking environmental information explicitly into

account may therefore not substantially improve BHPMF-based

gap-filling. Rather, it may be a tool to extrapolate traits from

point measurements to the regional scale, i.e. perform out-of-

sample predictions.

Is the prediction accuracy sufficient for applications
in ecological contexts?

Our results indicate that BHPMF outperforms the species

MEAN baseline in all aspects, but is the prediction accuracy

indeed appropriate for use in ecological contexts, and to what

extent are the results a special case of our test dataset?

The test dataset is an extract of 78,300 individual observations

and the 13 best covered traits from the TRY database, still with

80% of trait entries missing. Our dataset is not typical for

common datasets of traits, which generally originate from spe-

cific measurement campaigns with only 5–30% missing entries.

In these cases, gap-filling may not be such a challenge and

common approaches may be sufficient. However, given the

experience that BHPMF substantially outperforms both PMF

and MEAN, we also expected improved trait predictions in such

cases. Indeed, our sensitivity test using ‘cut outs’ from Europe

and data across the Amazon showed that BHPMF was able to

impute gaps even in smaller and extremely sparse databases.

When taking advantage of using the global database to fill

gaps in a smaller ‘cutout’, possible confounding factors intro-

duced by global trait variability influencing the sometimes more

constrained trait space of a local dataset should be considered.

For example in the case of the RAINFOR cut-out, plant height

was better predicted using just the local dataset. One likely

explanation is that a large amount of new information was

included from the global database, amounting to more than

60% more data with a high standard deviation within species.

For SSD, on the other hand, only 30% more data were contrib-

uted by the global dataset, which were also less plastic within

species compared with plant height. Thus, a global dataset may

easily introduce ‘false’ information in the case of plastic traits

that are highly influenced by local environmental conditions but

provide a lot of valuable additional information in the case of

traits that are mainly determined by phylogeny. We recommend,

depending on the number and sparsity of the data, using both

approaches wherever possible – local and global gap-filling –

and select the best-fitting approach depending on the target trait

and aim.

BHPMF trait prediction uncertainties are well correlated with

their error, turning uncertainty into a good surrogate for pre-

diction error (Fig. S10.2 in Appendix S10). This offers the

opportunity to select trait predictions with high probability of

low errors or weight results in further analyses according to their

uncertainty.

Perspectives

Statistical approaches to gap-filling and improvement of eco-

logical understanding of species occurrence and dynamics have

been criticized for being too complex and including parameters

and assumptions without appropriate prior validation (Lavine,

2010). In contrast, BHPMF is a simple and generic model, which

has the advantage of incorporating factors known to influence

trait expression, such as phylogenetic trait signals, trait–trait

correlations and trade-offs without implicitly requiring prior

assumptions. This simplicity opens the opportunity to add com-

plexity to improve trait predictions, for example by replacing the

taxonomic hierarchy by a hierarchy of phylogenetic distances.

BHPMF has been explicitly developed for gap-filling (matrix

completion), not for the prediction of trait values in individuals

where no trait has ever been measured before, i.e. out-of-sample

predictions. Advancing BHPMF to account for phylogenetic dis-

tances instead of taxonomy will improve opportunities for effi-

cient out-of-sample predictions, at least in well-resolved clades.

Uncertainty quantified predictions support the validity of the

BHPMF approach, where predictions with low uncertainty

(small SD) also show high accuracy (small RMSE), and vice

versa. Using the Gibbs sampler to get an indication as to where

uncertainties are largest merits special attention. Data coverage

for traits such as SLA, which are relatively fast and easy to collect,

is much better than for other traits. In addition, some traits are

highly variable across ecosystems and plant populations. Using

the Gibbs sampler, one can statistically define where more sam-

pling effort is probably going to significantly improve our
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understanding of variation in any specific trait and where the

currently available data are sufficient.

The combination of BHPMF with environmental covariates

may not necessarily improve gap-filling of trait matrices, but

seems to be a promising concept for the extrapolation of traits

from point measurements to regional scales. The concept of

out-of-sample prediction presented here illustrates a fundamen-

tal problem in trait ecology, separating the phylogenetic signal

and environmental impact on intraspecific trait variation. The

regression of trait values against the environment after gap-

filling by BHPMF provides an advantage over using non-gap-

filled data of an improved number of data points, which might

be essential as trait predictions are often limited by data avail-

ability (Verheijen et al., 2013). BHPMF-filled trait matrices

could thus become an invaluable tool for the parameterization

and validation of global vegetation models.

The TRY database is a typical example of a combination of

datasets which have been collected for different purposes. Other

disciplines besides plant ecology which have also started to

combine their (trait) data are faced with the same problem of

sparsity and restrictions in the context of multivariate analyses.

BHPMF provides an opportunity to extract the entire informa-

tion content from such databases combining data from various

aspects measured at locations all over the world.

Conclusion

BHPMF is a hierarchical Bayesian implementation of probabil-

istic matrix factorization, which for the first time simultaneously

utilizes the taxonomic trait signal, the correlation structure

within trait matrices and – implicitly through trait–

environment relationships – environmental constraints for gap-

filling of trait matrices. We demonstrate using the example of

different plant trait datasets that BHPMF provides robust and

accurate predictions even for sparse matrices. In addition, Gibbs

sampler-calculated uncertainties indicate how accurate each

imputed trait value is, and thus how to treat it in further analy-

ses. The combination of BHPMF with environmental informa-

tion provides the opportunity to extrapolate from point

measurements to continuous trait surfaces across large spatial

scales whilst accounting for intraspecific trait variability. We

therefore conclude that BHPMF-based gap-filling and trait pre-

diction has a high potential to support future trait-based

research in macroecology and functional biogeography.
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