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A new model and a hyper-heuristic approach for two-
dimensional shelf space allocation

Ruibin Bai · Tom van Woensel ·
Graham Kendall · Edmund K. Burke

Abstract In this paper, we propose a two-dimensional shelf space allocation model.
The second dimension stems from the height of the shelf. This results in an integer
nonlinear programming model with a complex form of objective function. We propose
a multiple neighborhood approach which is a hybridization of a simulated annealing
algorithm with a hyper-heuristic learning mechanism. Experiments based on empirical
data from both real-world and artificial instances show that the shelf space utilization
and the resulting sales can be greatly improved when compared with a gradient method.
Sensitivity analysis on the input parameters and the shelf space show the benefits of
the proposed algorithm both in sales and in robustness.
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1 Motivation

Retailers aimtomaximize availability ofthegoods intheirproduct lineataminimum cost
tooperations.Inthestores, these goals have toberealized ontheshelves.Shelf spaces are
expensive resources for many retail stores and supermarkets .Space planning and shelf
operation isamajor area thatcansignificantly improve aretailer’sfinancial performance
andcustomersatisfaction.

One of the responsibilities ofmarketing isdesigning anattractive presentation on the
shelves inorder toattract customers .The amount of shelf space allocated toaproduct is
primarilyaconsequenceofmarketingdecisions:i.e.themerchandizingcategorytowhich
the product is assigned and the allocated number of facings (the number of slots on the
front of aretail shelf).Planograms (Bai and Kendall 2005)represent plans of how retail
products will be laid out on the shelves ,and show retailers where and how each stock
keeping unit (SKU)should be displayed .SKUs are used to uniquely identify aspecific
product in location and its characteristics . It is the smallest management unit in a retail
store.Planograms determine the available shelf space for the operations .From both an
operations and amarketing point of view , it is thus important to produce high -quality
planograms.

A planogram contains important information for the execution of the operations . In
general ,when constructing planograms the retailer decides on the assortment com -
position (which items are intheassortment?), the location of the item inthestores (where
aretheaisles,section,andshelf locations?)andtheamountofspaceallocated toeachitem
(how many facings and consumer units?). In an empirical study by VanWoensel et al. (
2006), itwasobserved thatplanogram integrity isaserious issue for retailers.Planogram
integrity is the degree to which the planograms are followed in practice .The empirical
evidence clearly demonstrated that the majority of differences are mainly due to facing
differences . In second and third place of importance , it was found that assortment and
locationdifferenceshaveanimpact.Amajorconsequenceofalackofplanogramintegrity
isthelossofasubstantial levelofefficiencyboth intermsofthemarketing strategy aswell
asintheoperationalexecutions.

An important underlying driver for these planogram integrity problems ,could be
related back to the inability of the planogram tools tocope with real-life situations .The
storemanagers tried toremedy thisbytaking intoaccount agreater number offactors and
changingtheproposedplanograms.Ingeneral,themotivationrelatesbacktotheissuethat
planogramsaremainlybuiltbasedonmarketingdecisionrules(e.g.thenumberoffacings
per product category )and are often one-dimensional (i.e.do not take into account the
depth nor height of the shelves ). This paper takes a signi ficant step towards the
development of more efficient planograming tools . In this paper ,we propose to model
shelves as two-dimensional spaces,whilst considering the location effects ofshelf space
on thedemand.Moreover ,weproposed anefficient hyper-heuristic method for tackling
thistwo-dimensionalplangramproblem.

The paper makes the following contributions:

– Most of the shelf space allocation models discussed in the literature treat shelf
space one-dimensionally, quantified either in volume or in shelf length. That is,
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the capacity of a shelf is usually quantified as a single real value (see e.g. Corstjens
and Doyle 1981; Dreze et al. 1994; Urban 1998; Yang 2001; Hwang et al. 2005; Bai
and Kendall 2008). These models are useful if all the shelves and items concerned
have similar height dimensions and it is impossible to improve the space utilization
by manipulating items across shelves. These models are also useful when items
cannot be stacked together for various reasons (for example wine and milk bottles).
Our paper presents a two-dimensional approach taking into account not only shelf
length but also shelf height. In addition, the paper proposes a hyper-heuristic based
approach which can potentially handle large-sized problem instances.

– Today, many items can be stacked together in order to make full use of the shelf
space with regard to the height dimension, but this is not explicitly considered
in current planogram optimization tools. Of course, in practice shelf operators
can still stack items on top of the facings allocated according to a one-dimensional
model. However, this usually leads to decreased space utilization and productivity.
We show, via a rigorous scale of experiments, that explicitly taking into account
the height dimension will improve the space utilization.

The paper is structured as follows: Section 2 discusses related work. Section 3
formulates our model of the shelf space allocation. Methodologies that are used to
optimize the problem model are presented in Sect. 4. Numerical examples are presented
in Sect. 5 along with sensitivity analysis on parameter estimation errors and Sect. 6
concludes the paper.

2 Related work

The study of shelf space allocation dates back to the 1960s with some empirical
experiments being carried out to study the influence of shelf space operations. For
example, Kotzan and Evanson (1969) made empirical studies for three products from
eight chain stores and found that a significant relationship existed between shelf facings
and sales. Cox (1970) carried out similar experiments for products from two brands of
two categories, salt and coffee cream. He reported a very weak relationship between
shelf facings and sales.

Space elasticity has been widely used to measure the responsiveness of the sales
with regards to the change of allocated space. Curhan (1972) defined space elasticity
as “the ratio of relative change in unit sales to relative change in shelf space” and
reported an average value of 0.212. However, this is just an average value: the actual
value of the space elasticity can be very different, depending on the products, stores
and in-store layout (Curhan 1973). Cross-product effects were also investigated in
Dreze et al. (1994) where space manipulations were made to enhance complementary
shopping by placing complementary products together. The results showed that com-
plementary merchandizing resulted a positive boost in sales (over 5 %) on the tested
products (toothbrush, toothpaste and laundry care). It was also found that, compared
with shelf facings, location had a larger impact as long as a minimum number of
shelf facings (to avoid out-of-stocks) was maintained. Shelves at the eyesight level are
more favorable than shelves located at the top or bottom of the shelf fixtures. Quan-

titative  models  have  been  proposed  to describe  the relationship between shelf
space
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and sales. Corstjens and Doyle (1981) firstly formulated their model in a non-linear
multiplicative way and incorporated cross elasticities, a set of problem parameters
that reflect the interrelationships between the different products under consideration.
The inventory and handling cost effects were also considered. Two parameter esti-
mation approaches were also compared and discussed. Zufryden (1986) proposed a
dynamic programming model for the shelf space allocation problem, which also took
into account some non-space factors such as price, advertising, promotion, store char-
acteristics, etc. However, the approach may only be suitable for small sized problems
and becomes computationally expensive for larger problem instances.

Recognizing that shelf space allocation is also closely related with other retail-
ing problems, some integrated models have been proposed. For example, Borin
et al.’s model (1994) could simultaneously provide a solution for both product assort-
ment and shelf space allocation. A simulated annealing algorithm was used to address
the proposed model. Urban (1998) integrated product assortment and inventory con-
trol with a traditional shelf space allocation model. A genetic algorithm was proposed
to solve the problem. However, these models usually involve a large number of para-
meters. Obtaining a reliable estimation of these parameters is generally challenging
and time-consuming. Therefore, it is difficult to put these models into a real applica-
tion. A simplified linear model was proposed in Yang (2001), which considered the
location effect of shelves on sales. The model, in fact, is a varied type of bounded
multi-knapsack problem, which is generally difficult to solve. The authors designed
several greedy heuristics to address the problem model.

However, these simple heuristics will only return a sub-optimal solution in many
cases due to their inability to escape from local optimality. To solve the weakness
of these simple heuristics, Lim et al. (2004) proposed several approaches, includ-
ing a network flow procedure, tabu search and a modified squeaky-wheel algorithm.
Experimental results, over several problem instances, showed that the modified
squeaky-wheel algorithm is able to obtain a large improvement over the simple greedy
heuristics used in Yang (2001). Recently, another shelf space allocation model was
proposed in Hwang et al. (2005) which considers both the inventory and location
influence on the demand. Both a gradient-based procedure and a genetic algorithm
were used to solve the problem and experimental results on several small numer-
ical instances showed that the genetic algorithm is able to obtain superior results.
Bai and Kendall (2008) proposed an integrated inventory and shelf space allocation
model specifically to handle fresh produce. A modified generalized reduced gradient
approach was used to search for good quality solutions. Murray et al. (2010) and
Hwang et al. (2009) have presented shelf space allocation models related to the one
presented in our paper. Specifically, Hwang et al. (2009) looked into a simultane-
ous shelf space design and allocation problem. A mathematical model was devel-
oped and two solution procedures were proposed based on a genetic algorithm.
This was applied to some very small test instances of four products. Murray et al.
(2010) developed a model that jointly addresses a retailer’s decisions for product
prices, display facing areas, display orientations and shelf-space locations in a prod-
uct category. This comprehensive model is solved by branch-and-bound procedures
on some small test instances. Our paper is distinct by the use of hyper-heuristics and

the ability to solve larger, more realistic sized instances.4



Hyper-heuristics (Burke et al. 2003a; Ross 2005) have recently received increasing
attention partly because one of their motivating goals is to establish a higher level
of generality across different problem solving scenarios. A hyper-heuristic searches
across a space of heuristics rather than the more usual heuristic approach of dealing
with the solution space directly. Hyper-heuristics have successfully been applied to
several difficult search problems, including timetabling and rostering (Burke et al.
2003b; Rattadilok et al. 2005; Bilgin et al. 2007; Bai et al. 2012), scheduling (Hart et al.
1998; Ouelhadj and Petrovic 2010), and packing and layout optimization (Terashima-
Marin et al. 2005; Bai et al. 2008; Dowsland et al. 2007; Terashima-Marín et al. 2010).

3 Model development

In a similar way to that presented in Yang (2001), it is assumed that retailers can prevent
going out-of-stock by improving their supply chain. Space allocation is carried out
within a given category (space allocation between different categories is usually a
strategic problem rather than a quantitative one). Shelves are multi-level with each
level having a different impact factor. The problem can be formulated as follows: we
are given a number of shelves m with each shelf j having a demand impact factor γ j

(γ j ≥ 1) and we are also given a number of n SKUs. The least popular shelves (i.e.
either the bottom or the top shelves) have an impact factor of one and shelves that are
close to “eye-level” have γi values greater than one. An SKU can be stacked on the
top of another but is limited to being stacked within the same SKU. The problem is to
allocate an appropriate number of facings to each SKU i such that the total sales of
the SKUs are maximized. The notations used in the model are defined in Table 1.

For simplicity, we define length facing as the number of facings that are allocated to
an item along the shelf length and stack coefficient as the maximum number of facings
that can be allocated in height. Therefore, the total number of facings of an item is the
product of length facings and the stack coefficient.

We use the same deterministic demand function proposed by Hwang et al. (2005).
In their paper, they formulated the demand function as a multiplicative form of direct
space effect, cross space effect and location effect:

Fi = αi × sβi
i ×

⎡
⎣

n∏
k �=i

sβik
k

⎤
⎦ × Υi (1)

where si is the total number of facings allocated to item i . For a stacking coefficient
value πi j , si can be calculated as

si =
m∑

j=1

xi j × πi j (2)

and Υi the average location effect obtained as

Υi =
∑m

j=1 xi jπi jγ j

si
(3)5



Table 1 List of variables used in the analysis

Description

L j Length of shelf j

H j Height of shelf j

li Length of SKU i

hi Height of SKU i

πi j Stack coefficient of item i on shelf j , and πi j = � H j
hi

�
Fi Demand function of item i over time

Mi Sales realized on item i

αi Scale parameter for demand function of item i

βi Space elasticity for item i

βik Cross elasticity of item k on item i and βik is asymmetric

γ j Location impact factor of shelf j

pi Unit selling price of item i

smin
i Minimum number of facings for item i

smax
i Maximum number of facings for item i

xi j length facing of shelf j allocated to item i

xi Total shelf length facings allocated to item i , i.e. xi =
m∑

j=1
xi j

si Total facings allocated to item i

yi j yi j = 1, if item i is placed on shelf j

yi j = 0, if item i is not placed on shelf j

zi Shelf ID on which product i is displayed

The model can then be formulated as follows

max
n∑

i=1

Mi =
n∑

i=1

pi Fi (4)

subject to:

n∑
i=1

li xi j ≤ L j ,∀ j (5)

yi j ≤ πi j ,∀i, j (6)

smin
i ≤ si ≤ smax

i ,∀i (7)

xi j ∈ {0} ∪ Z+,∀i, j (8)

yi j ∈ {0, 1} ,∀i, j (9)

yi j ≤ xi j ,∀i, j (10)

yi j × L j/ li ≥ xi j ,∀i, j (11)
m∑

j=1

yi j = 1,∀i (12)6



Table 2 A numerical example taken from Hwang et al. (2005)

Itemi pi li smin
i smax

i αi βik

1 2 3 4

1 5.89 1 1 6 62.26 0.500 0.011 −0.014 −0.010

2 4.37 1 1 6 70.11 0.010 0.250 −0.009 0.014

3 4.91 1 1 6 66.92 −0.005 −0.006 0.400 −0.011

4 6.14 1 1 6 61.22 −0.008 0.009 −0.015 0.340

Shelf data: m = 4, L j = {3, 3, 3, 3}, γ j = {1.3, 1.2, 1.1, 1.0}

Fig. 1 A comparison of a 1D planogram with a 2D planogram. a Optimal solution for the 1D planogram.
b The 1D planogram when shelf height changed. c Optimal solution of the 2D planogram

Constraints(5)and(6)makesurethattheitemsallocatedtoeachshelfdonotexceedthe
capacity of theshelf (both in length andheight).Constraint (7)defines theminimum and
maximum facings which canbeallocated toeach item.Constraints (8), (9), (10)and(11)

define  the  integrality  of  decision  variables xi j  and  yi j and  their relationships .
Constraint (12)isacluster constraint which ensures that thesame typeofitemshave tobe
displayed together on one shelf .The cluster constraint is not considered in previous
models ,which means that the same type of items can be displayed on several different
shelves.Inpractice,retailersusuallywant tokeepthesametypeofitemsinthesameplace
topresentalargeattractiveblock.Therefore,thisconstraintisincludedinourmodel.

Toillustrate thenecessity tousea2Dmodel,wenowconsider oneofthe1Dnumerical
examples presented inHwangetal.(2005).Theexample isdrawnfromtheDataset1with
4“mixed ” items (i.e. including both substitutive and complementary items )and four
shelves.Forcompleteness,thedetails of theproblem instance arealsopresented inTable
2.

The optimal solution (obtained by an exhaustive search procedure) for this 1D
problem instance is displayed in Fig. 1a. As can be seen, this example assumes that7



both shelves and items have unit height sizes. In reality, however, shelves are often in
different heights (ranging from 100 to 1,000 mm based on our own data) and items can
be stacked if the shelf space and other conditions allow it. Now suppose that the fourth
shelf is two units in height instead of one. If the 1D planogram solution is still used,
one would probably come up with a solution by stacking three more of item 2 onto
the fourth shelf (corresponding to Fig. 1b). This solution gives an objective value of
2,492.55. However, the true optimal solution is 2,616.29 which is shown in Fig. 1c. The
retailer could potentially lose 123.74 worth of sales in this case. This simple example
shows that using a 1D planogram model can lead to considerable losses. It should be
noted that, in this example, we only slightly changed the original data instance (one
shelf only). In practice, both shelves and items may be of a different height, which
justifies the necessity of using a two-dimensional planogram model, although item
heights are not critical: (1) if the shelves are of the same height, the problems with
items of different heights could be easily transformed into a one-dimensional problem;
(2) even if the items are of the same height, the problems with shelves of different
heights can be transformed into a one-dimensional problem.

4 Solution approaches and model extension

The problem presented in (4) subject to (5)–(12) is an integer nonlinear programming
model with a complex form of objective function. The decision variables are xi j . Due
to the cluster constraint (12), each item can only be displayed on one shelf. Therefore,
the solution can be represented by the following two vectors: let zi be the shelf ID on
which item i is displayed. Let xi be the shelf length facings that are allocated to item i .
This reduces the number of decision variables to 2n. Given this, the problem is still very
difficult to solve in a closed form. A complete search algorithm is also prohibitive even
for a medium sized problem. We therefore turn our attention to heuristic approaches.
This is also supported in the literature where heuristic approaches have been widely
used to solve several shelf space allocation or related problems (Borin et al. 1994;
Urban 1998; Yang 2001; Lim et al. 2004; Hwang et al. 2005; Bai et al. 2008).

4.1 A gradient approach

Because of the limited shelf space resources, items compete against each other for
space. A gradient approach iteratively allocates shelf space to the items that can pro-
duce the largest reward per unit space in terms of the objective value (in this case,
sales). However, due to the nonlinearity of the objective function, the ratio of sales
to the allocated space varies with different shelf facing values si . The partial deriv-
ative of the objective function with regard to decision variables xuv (u = 1, . . . , n,
v = 1, . . . , m) is quite complex and can be presented as follows:

∂
∑n

i=1 Mi

∂xuv

=
∑
i �=u

⎡
⎣piαiβiuπuvsβi −1

i sβiu−1
u

∏
k �=i,u

sβik
k

m∑
j=1

(xi jπi jγ j )

⎤
⎦8



+puαuπuvsβu−2
u

∏
k �=u

sβuk
k

⎡
⎣(βu − 1)

m∑
j=1

(xu jπu j r j ) + suγv

⎤
⎦ (13)

Due to the minimum facing constraint (7), most constructive heuristics for shelf
space allocation problems adopt a two-phase procedure, which we also use in this
paper. The first phase of the algorithm tries to allocate space to each item so that
the minimum facing requirements are satisfied. In the second phase, the algorithm
then repeatedly allocates the remaining space to the most preferable items accord-
ing to some criteria. For example, the partial derivative function (13) would be a
good candidate for this purpose. We can simply repeatedly increase the value of
xuv that gives the largest partial derivative value according to function (13), assum-
ing there is still sufficient space available on shelf v. If this is not the case, the
second largest partial derivative value is chosen, and so on. However, there is a
problem. The existence of the cluster constraint (12) means that each item can
only be displayed on one of the shelves. Therefore, once the first facing of an
item is allocated to a given shelf, the remaining facings of this item have to be
on the same shelf. This means that the first phase of the procedure is paramount
in terms of the accommodating shelf for each item. If function (13) is adopted
directly in the first phase of the algorithm, the algorithm tends to allocate the
first facing of most of the items to the most attractive shelves and leaves some
of the less attractive shelves empty. To solve this problem, the gradient algorithm
used in this paper selects shelves based on the following rules, instead of func-
tion (13). At each iteration, the shelf with the largest residual length is selected,
with ties broken by favoring larger shelf heights and then the location impact fac-
tor.

The algorithm can be described as follows:

S1. Initial Phase

S1.1 Select a shelf v with the largest residual capacity, with ties broken by favoring
larger shelf height and then the larger location coefficient.
S1.2 For each item u that has not been initialized, set su = smin

u , xu = 
su/πuv�,
su = xu × πuv , zu = v.
S1.3 Calculate the partial derivative according to function (13), select the item that
has the largest partial derivative value and that can be accommodated by the shelf v.
Label this item to be initialized.
S1.4 If all items are initialized, go to S2, otherwise, go to S1.1.

S2. Iterative Phase

S2.1 For each item and its accommodating shelf, update the corresponding derivative
value according to function (13). Sort the items according to the descending order of
their derivative values.
S2.2 Select the first item u in the list, denote v be the shelf on which u is placed, set
xu = xu + 1, su = su + πuv . If this results in an infeasible solution, set xu = xu − 1,
su = su − πuv and exclude this item from further consideration.
S2.3 Stop if no more facings can be allocated to any shelf, otherwise go to S2.1.9



Fig. 2 Pseudo code of the proposed multiple neighborhood search algorithm (Bai et al. 2012)

4.2 A multi-neighborhood approach

Metaheuristics (Glover and Kochenberger 2003) have been widely used to tackle
highly constrained optimization problems from various fields. Multiple neighbor-
hood search approaches have recently emerged as a popular meta-heuristic technique
because of their ability to handle difficult constraints and obtain high quality solutions.
Utilizing multiple neighborhoods could increase the accessibility of the search space
and also improve the efficiency of the local search.

In this paper, a hybrid multiple neighborhood approach is proposed to solve this
two-dimensional shelf space allocation problem. The multiple neighborhood approach
utilizes a collection of neighborhoods in hybridization with a simulated annealing
algorithm and a hyper-heuristic learning mechanism. This approach has shown con-
siderable generality and competitiveness across large number of datasets of two very
different combinatorial optimisation problems (bin packing and university course
timetabling) (Bai et al. 2012). The increased generality is achieved by preventing the
hyper-heuristicfromusingproblem-dependentinformation.Figure2givesapseudo-10



code of this approach. Based on a given initial solution and a set of neighborhoods, this
hyper-heuristic approach intelligently changes the neighborhood preferences during
the search and the simulated annealing is used to determine whether a given neighbor-
hood move suggested by the hyper-heuristic is accepted or rejected. More specifically,
each neighborhood is associated with a weight wi to represent its preference in com-
parison to the other neighborhoods. At each iteration, a neighborhood is stochastically
ranked by the probability pi = wi/

∑n
i=1 wi . Initially, weights are set to a predefined

common minimum wmin and then updated periodically (defined by a learning period,
or LP). The performance of each neighborhood in a given learning period is monitored
and measured by two criteria, namely the acceptance ratio and the percentage of new
solutions being generated. During normal “annealing” phase, the weight wi is set to
the acceptance ratio of each heuristic in the previous period and then stays unchanged
during the learning period. If, however, at the end of the period the average accep-
tance ratio among all neighborhoods falls below a threshold, a “reheating” strategy is
triggered to diversify the search and neighborhoods that are more likely to generate
new solutions are favoured. Interested readers could refer to Bai et al. (2012) for more
discussion about this approach and its relationship with some other metaheuristics,
for example, iterated local search, variable neighbourhood search (VNS) and adaptive
large neighborhood search approaches.

4.2.1 Neighborhood structures

The following neighborhood structures are used.

N1 Swap: This neighborhood includes all the neighboring solutions that can be gen-
erated by swapping one shelf length facing of two items i , k that are sharing the
same shelf in the current solution. i.e. xi = xi + 1, xk = xk − 1.

N2 Shift: This neighborhood aims to improve the current solution by changing an
item’s current accommodating shelf. The neighborhood consists of all the solu-
tions that can be generated by moving all the facings of an item from its current
shelf to a different shelf.

N3 Interchange: This neighborhood enables the algorithm to interchange two items’
(i , k) accommodating shelves if they are different (i.e. zi ↔ zk). This neighbor-
hood is different from N1 in that it operates on the facings of items from two
different shelves while N1 operates on the items’ facings on the same shelf.

N4 Add_Facing: This neighborhood consists of all the neighboring solutions that
can be generated by increasing the length facing xi of item i by one.

N5 Delete_Facing: This neighborhood function deletes a length facing of a randomly
selected item.

4.2.2 Constraint handling

Since not all of the above neighborhood moves produce feasible solutions, a mecha-
nism has to be used to ensure that the algorithm searches within feasible regions of the
search space. In this paper, the following method is used. For neighborhoods N1, N4
andN5thatinvolveadding/deletingfacingsto/fromasingleshelf,ifaneighborhood11



move leads to an infeasible solution, the move is rejected and the search goes back
to the previous point. For neighborhoods N2 and N3, if the solution is not feasible
because of violations of shelf length constraint (6), the length facing variables xi that
are involved in the moves are adjusted to their maximum possible values while attempt-
ing to satisfy all the constraints. If this fails to generate a feasible solution, the current
neighboring solution is discarded and another neighboring solution is examined. The
complete multiple neighborhood search algorithm is shown in Fig. 2.

In this application, the parameters of the multi-neighborhood algorithm are set as
follows: the initial and stopping non-improving acceptance ratios are set as rs = 0.1
and re = 0.01. The number of iterations at each temperature is set to be equal to the
number of total neighborhoods used (i.e., nrep = 5). This implies that each neigh-
borhood is sampled, on average, once at each temperature level if the neighborhoods
are selected uniformly. We set the length of a single learning period L P = 5,000 and
the minimum weight for each heuristic wmin = 1/n. The total iteration count is set to
different values based on the size of the problem instances. We set K = 100,000 for
the small instance Pn6, K = 500,000 for the medium instance Pn29 (see Sect. 5.2),
and K = 2 × 106 for all the artificially generated instances (see Sect. 5.4).

4.3 Model extension: no clustering constraint

As mentioned earlier, the inclusion of a cluster constraint (12) simplifies the problem
in a sense that the search can concentrate on a smaller search space. However, the
solution procedures proposed in this paper can be easily adapted to the problem with-
out this cluster constraint. For the gradient approach, choosing both the best shelf and
item will be based on function (13) only. For the multi-neighbourhood approach, two
things need to change: firstly, feasibility check procedure will be relaxed accordingly.
Secondly, new neighourhood moves can be introduced which reallocate some of fac-
ings to another shelf. The overall framework and the other aspects of the algorithm
will remain the same. This also highlights one of the advantages of the proposed multi-
neighbourhood approach, which could adapt to the changes in a business environment.
However, this may not be the case for some mathematical programming techniques.

5 Numerical examples

In this section, we describe the empirical data available and then present some examples
based on this data.

5.1 Empirical input data

Weuseempirical dataondailysales,productattributes andavailable shelfspaceobtained
from aEuropean supermarket chain .We focused on dry groceries which are delivered
fromtheretailers’distributioncenter.MediansalesperSKUareobservedtobearound3.8

customerunit/week.Themerchandising categorieswhichwereincludedin the  datasets 
are similar to the categories reported inBroekmeulenetal.(2007).The12



Table 3 Problem instance with six items

Itemi hi li pi smin
i smax

i αi βi βik

1 2 3 4 5 6

1 143 47 6.62 3 10 45.80 0.88 – −0.001 0.008 0 0 0

2 143 47 5.94 2 8 93.57 0.73 0.029 – 0.022 0 0 0

3 150 50 4.59 3 8 42.59 0.88 0.016 0.026 – 0 0 0

4 150 76 3.92 1 10 68.52 0.34 0 0 0 – 0 0

5 143 47 7.93 1 6 22.74 0.80 0 0 0 0 – 0

6 150 50 6.09 3 10 16.92 0.66 0 0 0 0 0 –

Shelf data: m = 3, L j = 500, H j = {150, 300, 150}, γ j = {1.0, 1.1, 1.0}

experiment contained SKUs from 44 stores. Usually, promotions are done in the stores
using other shelf space allocations. Therefore, promotions are eliminated to obtain the
true mean and the standard deviation of the weekly sales. The supermarket chain
reported the shelf capacity for each store-SKU combination. Unfortunately, the chain
did not have data on the exact position of the products on the shelves, nor did they
report on the specific sales prices of the SKUs due to reasons of confidentiality.

5.2 Two case studies

Due to data availability and commercial confidentiality limitations, only two instances,
one small instance (m = 3, n = 6) and one medium-sized instance (m = 5, n = 29),
were extracted from the data. For simplicity, they are denoted as Pn6 and Pn29. Detailed
information of these two instances is provided in the Tables 3 and 4. The instances are
based on a coffee category. Due to the limited data available, sales prices are drawn
from the range [2.0,8.0] with even probabilities and cross elasticities were uniformly
sampled within [−0.03,0.03] for the top ten SKUs (in sales). The elasticities for the
other SKUs are set to be zero. Direct space elasticities βi were estimated by simple
linear regression based on the real-world data. As can be seen from Table 7, most of
the direct space elasticities are in the range [0,1]. However, there are a few values
outside this range. A negative value means that a large well displayed stock may
lead to a decrease in demand (sometimes, a customer may associate poor quality or
defects with some items that have large stocks). Some direct space elasticities are
larger than one which means that allocating extra space to these items would lead to
a larger increase in demand. Note that these estimated values are only valid within
the corresponding facings ranges [smin

i , smax
i ]. Once the allocated facings exceed this

bound, the estimated direct elasticity values become invalid. All the other values were
directly drawn from the real-world data.

Tables 5 and 6 present a comparison of solutions obtained by the gradient approach,
the multi-neighborhood approach and the complete enumeration approach. All the
algorithms were run on a PC with a Pentium IV 1.8GHZ CPU and 2GB RAM. Due to
its stochastic nature, the multi-neighborhood approach was run 20 times for each prob-
lem instance (with the best solution and average objective value over 20 runs being pre-

sented in  the tables).From Table 5,it  can be  seen that thegradient approach isvery
fast. 13
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Table 5 A comparison of solutions by different approaches for Pn6

Itemi Gradient Multi-neighborhood Optimal solution

xi si zi xi si zi xi si zi

1 7 7 0 5 10 1 5 10 1

2 4 8 1 4 8 1 4 8 1

3 8 8 2 8 8 0 8 8 0

4 2 4 1 1 2 1 1 2 1

5 3 6 1 6 6 2 6 6 2

6 3 3 0 4 4 2 4 4 2

Objective (best/mean)a 8188.97 8975.50/8897.75 8975.50

Deviation from optimum 8.8 % 0.9 % –

Time (in sec.) <0.1 1.2 58.6
a The best and mean results by the multi-neighborhood algorithm were based on ten independent runs. Both
the gradient approach and the complete enumeration approach always obtained the same solution

For the small instance Pn6, our approach finds a solution in less than 0.1 s with an objec-
tive value that is 8.8 % away from the optimum. In contrast, the complete enumeration
is quite slow, with a computational time of almost a minute. For Pn29, the complete
enumeration approach (embedded with some simple bounding heuristics) failed even
to find a feasible solution after 12 h of computational time. The multi-neighborhood
approach seems to provide an appropriate compromise between the solution quality
and the computational time. On average, among 20 runs, it obtains a solution that is
only 0.8 % away from the optimum with much less computational time. For the small
instance Pn6, the multi-neighborhood approach is able to find the optimal solution
among 20 runs. For the instance Pn29, the multi-neighborhood approach could obtain
12.3 % (= 110640.14−97134.70

97134.70 ) improvement over the gradient approach in terms of the
objective function. Nevertheless, the multi-neighborhood approach consumes much
more (but still a reasonable level of) CPU time. A graphical representation of the best
solution by the multi-neighborhood approach is given in the Fig. 3.

5.3 Sensitivity analysis

5.3.1 Shelf space

Although shelf space is an expensive resource, in some cases, retailers may be able to
invest more in space in order to increase sales. A question that retailers are interested
in is how much extra sales can be realized by investing in more shelf space. The small
instance is considered here because its optimal solution can be found reasonably
quickly by the complete enumeration method. Figure 4 plots the relationship between
the percentage of increased sales and the increase in shelf length (the shelves’ height
dimensions are the same). It can be seen that increasing shelf length has a positive
effect on the sales. However, this relationship is extremely nonlinear. For example,
when the shelf length is increased from 300 to 340, the sales increased by almost 15 %.

However,expanding  the shelf  length from 780 to  1,000  does not  increase sales

at all. 16



Table 6 Solutions obtained by the gradient method and the multi-neighborhood approach for Pn29

Itemi Gradient Multi-neighborhood (MN2)
xi si zi xi si zi

1 6 1 12 6 12 1

2 8 3 8 2 2 3

3 8 4 16 8 16 1

4 10 2 10 10 10 2

5 8 2 8 8 8 2

6 3 3 3 3 3 3

7 5 4 10 10 10 2

8 6 0 6 6 6 1

9 10 1 10 10 10 4

10 4 1 8 3 3 0

11 4 0 4 4 4 4

12 8 3 8 8 8 3

13 3 2 3 3 3 0

14 6 2 6 6 6 2

15 7 3 7 5 10 4

16 2 2 2 1 2 1

17 6 0 6 6 6 0

18 2 4 2 1 2 1

19 4 4 8 8 8 3

20 4 1 8 8 8 0

21 6 3 6 3 6 1

22 1 2 1 3 3 3

23 1 2 1 1 1 0

24 4 0 4 2 4 1

25 4 4 8 4 8 1

26 5 0 5 4 4 4

27 5 4 5 6 6 0

28 1 2 1 8 8 3

29 3 4 6 4 8 4

Objective (best/mean)a 97134.70 110640.14/110007.113

Time (in sec.) <0.5 43.4
a The best and mean results by the multi-neighborhood algorithm were based on 20 independent runs. The
gradient approach always returned the same solution

In general, when the shelf space is very limited, an increase in the shelf space has a
larger impact on the sales than when the shelf space is already large. When the shelf
length reaches over 1,400, it no longer has an impact on sales. This is partially due to
the diminishing return demand function we used. In addition, the number of facings
allocated to the items may reach the maximum allowed upper bounds, which define

the validranges of the demand function.17



Table 7 Average impact of errors in parameter estimation

αi βi βik

X% Me% X% Me% X% Me%

2.7 1.28 2.5 2.31 3.2 1.52

5.4 2.57 5.6 4.61 6.4 1.49

7.6 3.80 7.4 7.59 9.6 1.53

10.6 5.48 10.4 7.03 12.9 1.63

14.2 6.61 12.3 9.37 16.3 1.54

16.8 7.14 15.2 11.67 18.9 1.82

17.7 13.76 16.0 16.94 23.0 1.82

21.2 10.64 17.4 12.69 26.0 1.67

22.4 12.13 20.5 12.19 27.0 1.83

X% mean absolute percent error in parameter estimation
Me% mean percent deviation from optima

5.3.2 Sensitivity of the parameter estimation error

A number of parameters were estimated in the problem model such as, the scale
coefficient (αi ), the space elasticity (βi ), and the cross elasticities (βik). This could
introduce some estimation errors into the model. In this section, we analyze the effect
of these estimation errors over the objective function. The small instance was used
again due to its known optimal objective. The sensitivity analysis method is similar to
the approach used in Borin and Farris (1995). For each estimated parameter set (αi ,
βi , or βik), a random error is added to each element of the considered parameter set.
The errors were sampled from a normal distribution with mean values set to zero. The
errors have mean 0, while the resulting parameters have means to be the true values and
increasingly larger standard deviations. Let X% be the mean absolute percent error
from the true values. The enumeration search was again carried out to obtain the global
optimal objective values for both the original instance (without error) and the instance
with parameter errors. Let Morig and Merror be the corresponding optimal objective
values. A relative objective error, Me%, was calculated by |Morig−Merror |/Morig . For
each parameter set, this process was repeated 50 times. The average relative objective
errors are presented in Table 7.

Figures 5, 6 and 7 plot the distributions of the resulted errors in sales with respect
to the errors in three parameter sets: αi , βi , and βik . Each square box represents a
given percentage error in sales. Hence, areas crowded with square boxes mean more
values appearing in that range. The solid line plots the trend of the average relative
error in sales across different parameter errors. The evidence suggests that the model
is reasonably robust. In general, average errors in sales range from 1.28 % to less than
17 %. Larger errors in parameter estimation generally result in larger errors in sales
prediction by the model, except for the cross elasticity. Within three parameter sets,
the errors in αi and βi lead to larger errors in sales than the βik . Cross elasticities have
least impact on the sales. This is probably due to the fact that their values are much
smaller compared with αi and βi . 18



Fig. 3 The best solution obtained by the multi-neighborhood approach out of 20 runs
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Fig. 4 The impact of shelf space over sales

5.4 Larger instances

In order to fully test the model and the solution methods, we generated two artificial
data sets (Set1 and Set2), each of which is comprised by 20 larger instances. The

parameters  that  are  used  to create these instances are the same as those used by
Hwang 19
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et al. (2009). Each instance in Set1 contains 50 items and five shelves (denoted as
n50m5_01-n50m5_10). Instances in Set2 have 100 items and ten shelves (denoted
as n1000m10_01-n100m10_10). These instances are publicly available for download
from http://www.cs.nott.ac.uk/~rzb/files/2d-ssa-instances.zip.

Two versions of the simulated annealing hyper-heuristics were implemented and
tested. In the first version (denoted as MN1), the neighborhoods are uniformly
selected and hence does not have any adaptation. The second version is the one
that we described in Fig. 2 where the probabilities of neighborhood calls are adap-
tively tuned during the search. All the other parameters for MN1 and MN2 are the
same. In addition, we also implemented a first-decent VNS, consisting of two repet-
itive phases, local search phase and perturbation phase. The neighborhoods N1, N2,
N3, N4 described in Sect. 4.2.1 were used as the first-descent local search neigh-
borhoods and N5 was used as a perturbation method. The VNS algorithm succes-
sively searches through each of the local search neighborhoods (i.e. N1–N4) until
it gets stuck at a local optimum. A perturbation is then applied to the current solu-
tion using neighborhood function N5 before the next iteration of the local search
phase.

The following parameter settings were used: for both MN1 and MN2, we set K =
2×106, L P = 5,000, which corresponds to around 280 s computational time for Set1
instances and 600 s for Set2 instances on the same machine that we used in the previous
experiments. For VNS, computational time limit was set to 280 s for Set1 instances
and 600 s for Set2 instances. Therefore, all the algorithms used approximately similar
amounts of computational time. Each of the 20 instances was solved by each of these
algorithms (MN1, MN2, VNS) 20 times from different random seeds.

Table 8 gives the computational results for these 20 instances by the gradient
method, the VNS, the multi-neighborhood approach with random neighborhood
selection (MN1), multi-neighborhood approach with adaptive neighborhood selec-
tion (MN2). A few observations can be made from the results: (1) The gradient
method performed poorly, particularly for instances with 100 items and ten shelves.
(2) The VNS does well for Set1 instances but is significantly inferior to MN1 and
MN2 for instances in Set2. (3) In terms of average objective values, the hyper-
heuristic approach with adaptive neighbourhood selection (MN2) performed gener-
ally better than the random neighbourhood selection (MN1). Nevertheless, the mean
results by MN1 were better for four instances (e.g. n50_08, n100_02, n100_08,
n100_10).

The two-tailed student’s t-tests were also carried out to find out whether the pro-
posed hyper-heuristic method (MN2) is statistically different from VNS or MN1.
Table 9 presents the probabilities of the test results. We can see that, at 5 % confi-
dence level, MN2 is significantly different from VNS for every instance. From both
Tables 8 and 9, we can conclude that MN2 is significantly better than VNS except for 3
out 20 instances (n50m5_07, n50m5_08, and n50m5_10), for which VNS performed
better. The differences in performance between MN1 and MN2 are not as obvious
but overall MN2 is slightly better. For 8 out of 20 instances, there is no significant
difference between them. For the remaining 12 instances, MN2 is significantly better
than MN1 for 11 instances and MN1 outperformed MN2 statistically for one instance,
n100m10_10. 21
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Table 9 The probability results of the student’s t tests between MN2, VNS and MN1

Set1 MN2 versus MN2 versus Set2 MN2 versus MN2 versus
VNS (%) MN1 (%) VNS (%) MN1 (%)

n50m5_01 2.4 4.2 n100m10_01 0.0 40.7

n50m5_02 0.0 0.8 n100m10_02 0.0 80.7

n50m5_03 4.5 0.2 n100m10_03 0.0 3.6

n50m5_04 0.0 0.0 n100m10_04 0.0 2.9

n50m5_05 0.0 0.2 n100m10_05 0.0 78.4

n50m5_06 0.0 1.1 n100m10_06 0.0 62.5

n50m5_07 0.0 10.2 n100m10_07 0.0 88.4

n50m5_08 0.0 3.2 n100m10_08 0.0 52.3

n50m5_09 0.0 18.8 n100m10_09 0.0 1.4

n50m5_10 1.7 0.0 n100m10_10 0.0 4.8

Fig. 8 Adaptation of neighbourhood calls at different annealing temperatures (for instance n50m5_01.
Distributions for other instances are similar)

5.5 Adaptation of neighborhood selection

Inourproposed algorithm,theselection ofneighborhoods arebasedonanonline learning
mechanism .As we discussed in the previous section , this online selection mechanism
provides aslightly better overall performance than the random uniform neighborhood
selection for most instances .Figure 8 shows a typical dynamic adaptation process of

different neighbourhood calls over different annealing temperatures . It  can  be 
observed that, although the probabilities with which neighborhoods were23



chosen are the same at the beginning of the search, they are changed for different tem-
peratures during the search. Overall, the first neighbourhood, N1, was selected more
than the other neighborhoods. This trend intensifies when the annealing temperature
decreases.

6 Conclusions

In this paper, we have presented a two-dimensional shelf space allocation model.
The contributions of the paper are two fold: (1) rather than focusing on a single
dimension, shelf length, the proposed shelf space allocation model adds the height
dimension to the shelf space allocation decisions. As such, the new model is much
more realistic than one-dimensional models. (2) An efficient simulated annealing
hyper-heuristic approach is proposed for this 2D shelf space allocation problem. This
approach can flexibly be adapted to other types of shelf space allocation problems
(e.g. three-dimensional versions) thanks to the increased generality of hyper-heuristics
compared to other heuristic methods. The performance of the algorithm was tested on
two real-world instances and 20 artificial instances.

We have showed via a small example used in a previous study, that explicitly taking
into account the height dimension will improve shelf space utilization and the resulting
sales. Sensitivity analysis has shown the benefits of the proposed algorithm: if one has
allocated limited shelf space to an SKU, a shelf space increase will have a relatively
large impact on sales than if one already has abundant shelf space allocated. In addition,
the shelf space allocation model is fairly robust against input parameter errors.
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