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Asignificant amount of work has investigated inventory control problems associated with fresh produce.
Much of this work has considered deteriorating inventory control with many models having been proposed

for various situations. However, no researchers have specifically studied fresh produce, which has its own
special characteristics. Most research categorizes fresh produce into more general deteriorating categories with
random lifetimes and nondecaying utilities. However, this classification is not reasonable or practical because
the freshness of an item usually plays an important role in influencing the demand for the produce. In this
paper, a single-period inventory and shelf-space allocation model is proposed for fresh produce. These items
usually have a very short lifetime. The demand rate is assumed to be deterministic and dependent on both
the displayed inventory (the number of facings of items on the shelves) and the items’ freshness condition
(which decreases over time). Several problem instances of different sizes are provided and solved by a modified
generalized reduced gradient algorithm.
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1. Scope and Purpose
The profit on general foods, such as canned goods,
frozen vegetables, fruit juice, etc., is gradually de-
creasing due to highly competitive retail conditions.
The demand for these products is also slowing. On the
other hand, the demand for some other merchandise,
such as fresh produce, organic food, and children’s
clothes, has increased dramatically due to improving
living standards. This requires retailers to concentrate
more in these areas (Johnson 2002). We formulate a
model to assist in ordering and shelf-allocation deci-
sions for the retail of fresh produce, such as veg-
etables, fruits, fresh meats, etc. We draw together
two distinct areas: a packing problem (Bennell and
Dowsland 2001; Burke et al. 2004, 2006) and inven-
tory control (Nahmias 1982, Raafat 1991, Goyal and
Giri 2001).
The main characteristics of the items we consider

are their very short shelf life and decaying utilities
over time. Preliminary experiments are conducted
(using a modified generalized reduced gradient algo-
rithm), on our proposed model, to demonstrate that
good solutions can be found. Most of the litera-
ture has treated fresh produce as deteriorating items

with a random lifetime and nondecaying utilities
(Nahmias 1982, Goyal and Giri 2001). We assume that
the produce has a continuous utility and physically
deteriorates over time. Freshness is one of the main
criteria to evaluate a product’s quality and could dra-
matically affect its demand if its condition is infe-
rior. To obtain good financial performance from fresh
goods requires adoption of strict temperature con-
trol and intelligent inventory and shelf management
systems. Furthermore, although many deteriorating
inventory models have been proposed, most of them
are based on the analysis of a single item exclud-
ing the constraints of shelf space that arise when
considering a range of goods. No researchers, to
our knowledge, have yet integrated a deteriorating
inventory model with a shelf-space allocation model
(which plays a very important role in retail deci-
sion making due to the scarce shelf-space resources).
We formulate a fresh produce management model
that can simultaneously decide the ordering policy
as well as allocate shelf space among different items,
together with consideration of utility (i.e., freshness)
deterioration.1



2. Background
Perishable inventory has been intensively studied,
and many models have been proposed. See Nah-
mias (1982), Raafat (1991), and Goyal and Giri (2001)
for comprehensive reviews. However, most models
assume that a fixed fraction of the inventory dete-
riorates over time but the utilities of the items do
not decay before their expiration dates. Few models
specifically consider fresh produce with the character-
istics we mentioned in §1. Some of the shortcomings
of previous models include the following:
(1) Most models (Liu 1990, Jain and Silver 1994)

assume that fresh produce has a random lifetime
(usually assuming an exponentially distributed life-
time) but the item utilities do not decay over time.
Hence different ages of items capture the same
demand however fresh they are as long as they are
not completely spoiled. This is contradictory to the
common sense view that freshness is one of the most
important quality criteria for fresh produce.
(2) Some models (Mandal and Phaujdar 1989, Giri

et al. 1996) formulate the demand as a deterministic
function of instantaneous inventory with the assump-
tion that all stock could be displayed on the shelves.
However, this situation seldom occurs because the
shelf space for fresh food is normally limited. It is
also expensive due to the low temperature require-
ments. Therefore, only a part of the inventory can be
displayed on the shelf. Shelf-space allocation among
different items is especially important in this situa-
tion. The significance of shelf-space allocation for non-
perishable merchandise has been addressed in Kotzan
and Evanson (1969), Curhan (1972), Borin et al. (1994),
Urban (1998), Yang and Chen (1999), and Bai and
Kendall (2005).
(3) The approaches that were used to optimize the

models (Ben-Daya and Raouf 1993, Kar et al. 2001)
disregarded the integer nature of the solution and
assumed that the objective function is a quasicon-
cave function and is differentiable. The last assump-
tion is usually too strict for problems involving many
constraints.
The literature has classified different deteriorating

inventory models into two types: fixed-lifetime mod-
els and random-lifetime models. Examples of fixed-
lifetime models include photographic films, medicine,
computer chips, and canned food. A major charac-
teristic of this type of model is that inventory allows
for different ages of items with either a first-in-first-
out (FIFO) or last-in-first-out (LIFO) issuing policy
(Nandakumar and Morton 1990, Liu and Lian 1999).
However, fresh produce is usually treated as a typi-
cal example of a random-lifetime product due to the
uncertain spoilage (Liu 1990, Jain and Silver 1994).
These models usually assumed a constant fraction of

inventory decay over time (called exponential decay in
some publications).
Since fresh produce has only a very limited shelf

life, most of the literature employed a single-period
inventory model although different forms of demand
function are used. Both stochastic and deterministic
demand inventory models were proposed for the
perishable products. Ben-Daya and Raouf (1993)
proposed a multi-item, single-period perishable in-
ventory model with a uniform distribution for de-
mand. The objective was to maximize the total profit
of all the items during one period. The “optimal”
solution was calculated by a Lagrangian optimiza-
tion with the assumption that the objective is differ-
entiable. The integer nature of the variables was also
disregarded. Furthermore, the method is not efficient
when there are many constraints. Rajan et al. (1992)
proposed a dynamic pricing and ordering decision-
making model for decaying produce, in which the
demand was assumed to be deterministic and depen-
dent on the selling price. The products are assumed
to have an exponential deterioration. Abad (1996) for-
mulated the demand function as a function of instan-
taneous price. A closed-form mathematical procedure
was carried out to solve the problem and parameter
sensitivities were analyzed. However, the approach is
heavily dependent on the mathematical description
of the model so that adding even a single constraint
could invalidate this approach. Some other models
formulated the demand as a deterministic function of
instantaneous inventory. Mandal and Phaujdar (1989)
formulated a single-period inventory model for dete-
riorating items. The demand rate was linearly depen-
dent on the instantaneous inventory level, and the
inventory deteriorated according to a given function.
Backordering was allowed, and holding and short-
age costs were considered. The objective was to mini-
mize the average cost. The variables included the time
slots for different inventory stages and maximal stock
level and maximal stock deficit. Giri et al. (1996) for-
mulated the demand as a polynomial function of the
instantaneous inventory in their perishable inventory
model, which also assumed an exponential decay.
The objective is to maximize the profit, with order
quantity and reorder point (or cycle time) as deci-
sion variables. Some time-dependent demand func-
tions were also proposed in deteriorating inventory
models to capture changing demand over time. Xu
and Wang (1990) assumed a linear time-dependent
demand function within a limited time horizon. Expo-
nentially time-dependent demand was also proposed
to simulate a rapidly increasing/declining market
(Hollier and Mak 1983, Zhou et al. 2003). Urban and
Baker (1997) used a multiplicative demand function2



of price, time, and inventory level in their single-
period inventory model with the aim of finding opti-
mal ordering and pricing policies for nonperishable
products.
The first research to consider the effect of utility

deterioration on demand was Fujiwara and Perera
(1993) in the formulation of an economic order quan-
tity (EOQ) perishable inventory model. An exponen-
tial penalty function ��e�t −1� �� > 0, � > 0� was used
to measure the cost of keeping an aging item in inven-
tory. A closed form of economic order quantities was
obtained by a quadratic approximation of exponen-
tial terms. The results show that this model is consis-
tent with other EOQ models with exponential decay.
Sarker et al. (1997) also attempted to incorporate the
negative effect of aging inventory on demand. In
their production-inventory model, the demand func-
tion in the inventory build-up phase and depletion
phase considered a constant term and a negative term
that is proportional to the instantaneous inventory
(i.e., f �t� = D −�I�t�, where f �t� is the demand func-
tion, � > 0, D is constant demand, and I�t� is the
instantaneous inventory level). However, illogically,
the demand during the inventory-depletion phase is
actually an increasing function due to the continuous
decrease of the inventory I�t� over time. This con-
tradicts the authors’ initial intention to represent a
declining demand with the aging of the inventory.
Almost all the models described above consider

only a single item without any constraints, with the
optimal solution usually obtained analytically. Re-
cently, researchers have begun to incorporate shelf-
space allocation technologies into their inventory
systems. Kar et al. (2001) proposed a single-period
inventory model for multi-deteriorating items with
constraints on shelf space and investment. The prob-
lem considers selling the deteriorating items from two
stores. At the beginning of the period, the ordered
items are separated into fresh items and items that
have begun to deteriorate. The fresh items are shipped
to the main store, selling at a high price, and the
deteriorating items are delivered to the second store
and sold at a lower price. During the period, all
decayed items in the main store are retained and deliv-
ered to the second store. The demand rate in the
first store was formulated as a function of the item’s
selling price and instantaneous inventory. However,
the demand in the second store was dependent only
on the selling price. A generalized reduced gradient
(GRG) method was used to optimize the model. How-
ever, as stated in Lasdon et al. (1978), GRG may not
be efficient or robust for larger problem sizes and can
guarantee only a local optimum. Besides, the non-
integer variables and continuous objective assump-
tion are the major drawbacks of this approach in

solving many NP-hard problems with integer vari-
ables. Hence, heuristic and metaheuristic approaches
(Glover and Kochenberger 2003, Burke and Kendall
2005) have been used in this area to optimize these
models. Borin et al. (1994) used a simulated-annealing
approach to solve a product-assortment and shelf-
space allocation problem. Genetic algorithms were
employed in Urban (1998) to solve an integrated
product-assortment, inventory, and shelf-space alloca-
tion model.

3. Model Formulation
Instead of assuming that fresh food has a random life-
time with an exponential decay, we assume that fresh
food has predictable expiration dates but their fresh-
ness condition also decreases continuously according
to a known function over time. The demand for the
fresh produce is deterministic and is dependent on
both the displayed inventory level and their fresh-
ness condition. The main difference between these
two assumptions is that the former assumes that all
items that have not yet deteriorated capture the same
demand however fresh they are. This may sound
reasonable for long-life perishable items (like photo-
graphic films and medicine) but is unrealistic for fresh
produce as freshness is one of the most important
aspects in evaluating their quality. In this paper, all
fresh items are assumed to have a fixed, but very
short, lifetime and will not entirely lose their utili-
ties before their expiration date. However, freshness
keeps deceasing over time, which has an effect on
demand. The assumption of a fixed lifetime of fresh
produce, with decreasing utilities, is realistic consider-
ing the advances in food planting, packing, and con-
servation technologies, especially the introduction of
temperature-control systems in most supermarkets.
We use the following notation:

Di�t� The demand function of item i over time.
fi�t� A decreasing function (within range �01�) rep-

resenting the freshness condition of item i over
time.

�i Scale parameter of item i.
�i Space elasticity of item i.
�i Decaying rate of item i.

Ii�t� Inventory level of item i at time t.
qi Procurement quantity of item i.
si The number of the facings assigned to item i.
ri The surplus of item i at the end of the cycle.

W Total shelf space available.
ai Shelf space required for one facing of item i.
pi Unit selling price of item i.

pdi Unit discounted price of item i. This price
should be low enough such that all of the re-
maining items at the end of period can be sold
out in a very short time at this price.3



cai Unit acquisition cost of item i (or unit procure-
ment price).

chi Unit holding cost of item i (including the costs
caused by inventory loses, damage, mainte-
nance, interest, insurance, etc.).

cs Shelf cost per unit space.
Coi Constant order cost of item i (independent of

the order quantity).
Tei Lifetime of item i after which the item is rotten

(i.e., cannot be sold).
Li Lower bound of the number of facings of
item i.

Ui Upper bound of the number of facings of
item i.

Ti Length of the cycle period of item i.
HC1i Total holding cost during �0 t1i�.
HC2i Total holding cost during [t1i Ti].

Many researchers (e.g., Kar et al. 2001, Urban 2002)
use the function in Figure 1 to describe the change
of inventory level over time t. From time 0 to t1i,
si facings of item i are displayed on the shelf with
some of the stock stored in the backroom. As sales
are made, the items in the backroom are moved to the
shelf until the stock in backroom reaches zero (corre-
sponding to the point when time reaches t1i�. There-
fore, during this period, the shelf is fully stocked and
the demand is a function only of product freshness.
From time t1i to t2i, the shelf is only partly stocked
and the demand is dependent on both the freshness
and the instantaneous inventory level. Once the time
reaches point Ti, a new order of quantity qi is placed
for item i (assuming no lead time), and the ri surplus
of item i is removed from the shelf and is assumed
to be sold at a discount price, pdi, immediately. We
adopt this representation together with a polynomial
demand function that is widely used in many shelf-

Ii(t)

qi

si

t1i0

ri

tTi t2i

Figure 1 Graphical Representation of Inventory-Level Changes
over Time

space allocation models (Corstjens and Doyle 1981,
Giri et al. 1996, Urban and Baker 1997, Urban 1998)

D∗
i �t�=




�is
�i
i 0≤ t ≤ t1i

�i�Ii�t��
�i t1i < t ≤ t2i

where �i and �i are scale parameters and the
space elasticity of item i, respectively, and �i >
0, 0< �i < 1. We assume that the demand function
conforms to a multiplicative form of the instanta-
neous inventory and the item’s freshness condition,
i.e., Di�t� = D∗

i �t�fi�t�, where fi�t� is a continuously
decreasing function over time and 0 ≤ fi�t� ≤ 1. fi�t�
could be a linear, quadratic, or exponential function
of time. During the beginning of the period, the items
are fresh and the value of the freshness function is
almost 1. The demand rate is affected only by the
displayed inventory level. However, as time passes,
fi�t� gradually decreases, and the demand is scaled
down according to how long an item has been kept
in inventory. To be consistent with the exponential
decay assumption in the literature, we assume that
an item’s freshness condition decreases exponentially
over time, i.e., fi�t� = e−�it , where �i > 0 is a constant
decay rate. Hence we have

Di�t�=D∗
i �t�fi�t�=

{
�is

�i
i e−�it 0≤ t ≤ t1i

�i�Ii�t��
�i e−�it t1i < t ≤ t2i 

Based on the assumptions above, the inventory level
of item i can be described by the differential equation
dIi�t�/dt =−Di�t�. During time �0 t1i�, we have

dIi�t�/dt =−�is
�i
i e−�it (1)

with the boundary conditions Ii�0�= qi and Ii�t1i�= si.
The solution of (1) is Ii�t� = qi + ��is

�i
i /�i��e

−�it − 1�
and t1i = �−1/�i� ln�1− �qi − si��i/��is

�i
i ��. During time

�t1i t2i�, we have the differential equation

dIi�t�/dt =−�i�Ii�t��
�i e−�it (2)

with the boundary conditions Ii�t1i�= si and Ii�t2i�= 0.
The solution of (2) is

Ii�t�=
[

�i�1−�i�

�i

e−�it +Ki

]1/�1−�i�

and

t2i =− 1
�i

ln
(
1− �qi −�i�qi − si���i

�i�1−�i�s
�i
i

)


where
Ki = �qi −�i�qi − si��s

−�i
i −#i

and
#i = �i�1−�i�/�i 4



In general, we have the inventory function

Ii�t�=




qi +
�is

�i
i

�i

�e−�it − 1� 0≤ t ≤ t1i

�#ie
−�it +Ki�

1/�1−�i� t1i < t ≤ t2i 

(3)

The length of cycle period Ti �Ii�Ti�= ri� is

Ti =− 1
�i

ln
[
1
#i

(
r

�1−�i�
i −Ki

)]
 

The holding cost during �0 t1i� is

HC1i = chi

∫ t1i

0

(
qi +

�is
�i
i

�i

�e−�it − 1�
)

dt

= chi

[(
qi −

�is
�i
i

�i

)
t1i + �1− e−�it1i �

�is
�i
i

�2i

]
 

The holding cost during �t1i Ti� is

HC2i = chi

∫ Ti

t1i

(
�#ie

−�it +Ki�
1/�1−�i�

)
dt 

The approximate expression of HC2i is given in the
appendix. However, this part is very small, and we
use a simpler approximation (using �si + ri�/2 as an
approximation of average inventory during �t1i Ti�)

HC2i = chi�si + ri��Ti − t1i�/2 

Therefore, the average profit of item i per unit time is
the total income less any costs involved, divided by
the time of the period

Mi =
1
Ti

�pi�qi − ri�+ pdiri − caiqi −Coi

−HC1i −HC2i�− cssiai 

The objective is to maximize the overall profit of all
items during the unit time.

max
n∑

i=1
Mi�si qi ri� (4)

subject to
n∑

i=1
siai ≤W (5)

Li ≤ si ≤Ui i = 12    n (6)

ri ≤ si ≤ qi i = 12    n (7)

ri < qi i = 12    n (8)

0< Ti ≤ Tei i = 12    n (9)

si qi ∈ &123    ' i = 12    n (10)

ri ∈ &012    ' i = 12    n (11)

The decision variables are shelf space, order quantity,
and the amount of surplus at the end of the cycle.

Constraint (5) ensures that the total shelf space allo-
cated to each item is no more than the total available
shelf space. Constraint (6) makes sure that the space
allocated to each item must be within an upper and
a lower bound. Constraint (7) ensures that the order
quantity of each item must be greater than the shelf
displayed quantity, which itself should be greater
than the number of surplus items. Constraint (9)
ensures that the span of one cycle period must be
less than the product-validity period. Constraints (10)
and (11) ensure that the number of facings, order
quantity, and the number of surplus items are inte-
gers. The model is a nonlinear combinatorial opti-
mization problem and is difficult to optimize via
conventional approaches.
If we have n products, the total number of variables

is 3n. From the model, we have the upper and lower
bounds of variables ri �0 < ri ≤ si� and si �Li < si ≤
Ui� and lower bound of qi �qi ≥ si�. The upper bound
of qi can be obtained from constraint (9). Since

Ti =− 1
�i

ln
[
1
#i

(
r

�1−�i�
i −Ki

)]≤ Tei

we have

qi ≤
1

�1−�i�
r

�1−�i�
i s

�i
i + �i

�i

s
�i
i − �i

�1−�i�
si −

�i

�i

e−�iTei s
�i
i  

If 	x
 represent the largest integer no greater than x,
the upper bound of order quantity qub

i is

qub
i =

⌊
1

�1−�i�
r

�1−�i�
i s

�i
i + �i

�i

s
�i
i − �i

�1−�i�
si−

�i

�i

e−�iTei s
�i
i

⌋
 

An interesting implication of the model is that inven-
tory depletes exponentially over time (see (3)), which
is consistent with the exponential decay models in the
literature. In addition, when �i → 0, e−�it → 1−�it, so
the inventory function becomes the same polynomial
function derived in Urban (2002).

4. Optimization of the Model
We use GRG algorithm to search for good solutions
to the model (4–11). The underlying ideas behind
the algorithm are described in Gabriele and Ragsdell
(1977) and Lasdon et al. (1978). The algorithm has
been shown to be efficient in solving nonlinear pro-
gramming problems with smooth objective functions,
and its applications in optimizing the inventory and
shelf-space allocation model include Urban (1998) and
Kar et al. (2001), with good results. The GRG algo-
rithm is embedded in many spreadsheet software
packages. The one we use is Solver, which is included
in Microsoft Excel 2002. However, the GRG algorithm
has two major drawbacks: (1) It can solve only contin-
uous variable models. Although the package included5



in Microsoft Excel 2002 can deal with integer vari-
ables, it takes too long for the search to converge
(1,800 seconds computation time is needed for a prob-
lem with only six items, running on a Pentium IV
1.8 GHz with 256 MB RAM; for a problem with
18 products, the algorithm does not converge even
after one hour). (2) GRG usually gives only a local
optimum that is closest to the starting point. Some
preliminary experiments showed that, if the starting
point is not carefully chosen, GRG performs very
badly. Thus, we used a multithread GRG algorithm
together with a solution-repair heuristic. Each thread
of the algorithm can be divided into three subproce-
dures: initialization, GRG, and solution repair; shown
in Figure 2.

Set MaxIter;
Set iter = 0;
Loop
//Initialization subprocedure
For each item i �1≤ i ≤ n� set si = Li , qi = si, ri = 0;
Loop
Select a random item j ;
sj = sj + 1;

Until no more facings can be added without violating the space
constraint (5);

For each item i
Increase qi until no improvement can be obtained in the
objective value;

Increase ri until no improvement can be obtained in the
objective value;

Output solution S0�qi si ri�

//GRG calling subprocedure
S ′ = Solver�S0�;
//Solution repair subprocedure
Round every si, qi , ri �1≤ i ≤ n� in S ′ to their nearest integers
While space constraint (5) is violated
Rank the items by their unit space profit value Mi/�aisi�;
Delete one facing of the item with the smallest unit space
profit value (if this operation causes a constraint violation,
the next item in the ranking list is considered);

If free shelf space> the size of the smallest item
Loop
Rank the items by their unit space profit value Mi/�aisi�;
Add one facing of the item with the largest unit-space
profit value (the next item in the ranking list is
considered if the operation generates a constraint
violation);

Until no more facings can be added without violating the
space constraint (5);

For each item i �1≤ i ≤ n�
Increase/decrease qi until no improvement can be obtained
in the objective value;

Increase/decrease ri until no improvement can be obtained
in the objective value;

Remember the best solution �Sbest� found so far;
iter++;

Until iter = MaxIter;
Output Sbest;

Figure 2 Pseudocode of the Multistart GRG Algorithm

To prevent GRG from getting stuck at a local opti-
mum, MaxIter runs of GRG were executed using dif-
ferent initial states (solutions) and the best solution
was output as the final solution. In this application,
we set MaxIter = 5 after some preliminary experi-
ments. The initialization subprocedure was used to
generate a set of diverse solutions that can be used
by GRG. Note that, because GRG is efficient only
when handling continuous variables, a relaxed model
(ignoring integrality constraints (10) and (11)) was
input into the Excel Solver. Therefore, the solution
output by GRG was not feasible. The solution-repair
subprocedure is used to recover feasibility of the solu-
tion and further improve it by using a simple local-
search method described in Figure 2 (several other
rounding heuristics were tried, and this one generally
performs best across the five problem instances we
tested). All results were averaged over 10 runs on a
Pentium IV 1.8 GHz CPU with 256 MB RAM, running
Microsoft Windows 2000 Professional Version 5.

5. A Numerical Example
To provide a better understanding of the model and
the solution procedure described above, a numerical
example with six items was generated (denoted by
BORIN94/6). The problem scale parameters ��i� and
space elasticities ��i� are taken from Borin et al. (1994)
and the other parameters are listed in Table 1. The
GRG algorithm described in §4 was run 10 times with
different initial random solutions. The algorithm con-
sistently returned the same solution, which is shown
in Table 2. For comparison, an exhaustive search was

Table 1 Parameters of the Numerical Example

Item ai pi cai chi pdi Co 	i 
i �i

1 0.028 5�03 2.46 0.19 1.23 34.3 28.53 0.1532 0.06
2 0.061 9�37 5.67 0.20 2.84 48.9 23.62 0.2273 0.07
3 0.025 5�10 2.70 0.26 1.35 35.6 25.59 0.2089 0.06
4 0.060 11�48 6.11 0.16 3.06 47.9 22.40 0.2143 0.04
5 0.036 6�74 3.53 0.30 1.77 33.9 15.62 0.2955 0.03
6 0.033 5�97 3.41 0.27 1.71 39.1 10.50 0.3104 0.03

Note. W = 0�608 (m2), cs = 5�0 (pounds/m2/unit time), Li = 1, Ui = 12,
Tei = 7 (days).

Table 2 Solution of the Numerical Example

Solution by GRG Optimal solution

Item qi si ri Ti qi si ri Ti

1 83 3 0 2.68 81 2 0 2.78
2 78 2 0 3.17 78 2 0 3.17
3 77 3 0 2.61 77 3 0 2.61
4 88 3 0 3.35 88 3 0 3.35
5 64 3 0 3.17 64 3 0 3.17
6 50 1 0 5.19 56 2 0 4.68

Objective 347.45 347.586



Table 3 Parameters of Problem Instances

Parameters Values Parameters Values

n 18/32/49/64 Li 1
	i U�10�30� Ui 12

i U�0�15�0�3� pdi 0.5cai
�i U�0�03�0�1� cs 5.0 pounds/m2/day
ai U�0�01�0�09� m2 Co U(30, 50) pounds
cai N�100ai �0�4� pounds Tei 7 days
pi N�1�8cai �0�4� pounds W 2.5 ∗minSpace
chi U�0�1�0�3� pounds

Notes. U�a� b�: uniform distribution. N�c� d�: normal distribution. minSpace:
the minimal space requirement to satisfy products’ number-of-facings lower
bounds.

also carried out to get an optimal solution, also shown
in Table 2. For this numerical example, the solution
obtained by GRG is very close to the optimal solution.
The relative deviation from optimality is only 0.04%
��347 58− 347 45�/347 58�100%�.

6. Larger Problem Instances
Although numerical examples are helpful in under-
standing the model and testing the performance of
the solution procedure, it is necessary to test the algo-
rithm over larger problem instances. We created four
benchmark problem instances using the parameters
in Table 3. The problem sizes range from 18 to 64
products. These data sets can be downloaded from
the Online Supplement to this paper (available at
http://joc.pubs.informs.org/ecompanion.html). Here
we provide the computational results of the modified
GRG algorithm, shown in Table 4. The modified GRG
algorithm is quite robust on the five tested problem
instances. With BORIN94/6 and FRESH2, all 10 runs
consistently returned the same solution although each
run started from different, random initial solutions.
For the other three instances, the difference between
the best solution and worst solution, among the 10
runs, is very small and the standard deviations are
less than one, a small value compared with the objec-
tive values. All solutions obtained by the algorithm

Table 4 The Computational Results of the GRG Algorithm on Five
Problem Instances

BORIN94/6 FRESH2 FRESH3 FRESH4 FRESH5

n 6 18 32 49 64
Av. obj. 347�45 1�129�60 2�056�46 3�163�98 4�387�16
Best obj. 347�45 1�129�60 2�057�15 3�164�59 4�387�73
Worst obj. 347�45 1�129�60 2�055�17 3�163�33 4�386�66
Std. dev. 0�00 0�00 0�97 0�51 0�43
Av. cpu 3�2 73�6 74�3 179�2 209�7

Notes. Av. obj.: the average objective value over 10 runs. Best obj.: The best
objective value over 10 runs. Worst obj.: The worst objective value over 10
runs. Std. dev.: Absolute standard deviation of 10 results obtained by GRG.
Av. cpu: Average cpu time consumed by GRG (in seconds).

satisfy the integer constraints and are therefore feasi-
ble solutions.

7. Conclusions
A single-period inventory and shelf-space allocation
model has been proposed for fresh produce. The
demand is assumed to be deterministic and con-
forms to a multiplicative form of the displayed stock-
level and items’ freshness conditions. The items’
freshness condition is assumed to drop exponentially
over time but could still capture some demand. The
model is consistent with deteriorating inventory mod-
els reported in literature, in which an exponential
decay in the inventory is assumed. Unlike other work,
the proposed model considers the integer nature of
the solution. Five benchmark problem instances were
generated for the fresh produce inventory control and
shelf-space allocation problem. A modified GRG algo-
rithm was used to search for good solutions and their
computational results were reported. The algorithm
used in this paper ensures integrality of the decision
variables.
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Appendix
Denote y�t� = �#ie

−�it + Ki�
1/�1−�i�. Divide the range �t1i Ti�

into k identical ranges by point x0 = t1i, x1x2     xk = Ti.
We have

HC2i = chi

∫ Ti

t1i

(
�#ie

−�it +Ki�
1/�1−�i�

)
dt

≈ chi�Ti − t1i�

k

[ 1
2 �y�x0�+ y�xk��+ y�x1�+ · · ·+ y�xk−1�

]
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