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Abstract 

In this study, the heat transfer in an integrated double skin facade (DSF) and phase change material (PCM) 

blind system has been theoretically analysed. Both heat transfer and airflow models with CFD methods have 

been developed for the integrated DSF and PCM blind system. Data from an existing typical DSF building 

have been obtained in order to define input parameters for the simulation exercise and validate the numerical 

models. The temperature and velocity fields in DSF with the PCM blind system has been predicted under 

overheating scenario using the ANSYS Workbench FLUENT software and been compared with case of 

conventional aluminium blind system. This study has shown that the integrated PCM blind system was able to 

reduce the average air temperature and outlet temperature of the DSF while improving the convective heat 

transfer between the cavity air and the blades. Compared with the aluminium blind, the PCM blind can absorb 

large amount of excessive heat in the cavity. Overall the integrated PCM blind system has the potential to be 

used as an effective thermal management device for minimising the overheating effect in DSFs. 
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Nomenclature 

A area (m2) 

Cp specific heat (kJ/kgK) 

Q heat (W) 

E total energy 

H enthalpy (kJ/kg) 

∆H latent heat (kJ/kg) 

T temperature (K) 

∆T temperature difference 

T0 operating temperature/surface temperature 

of objective 

Ts,T∞ temperature on surface/of fluid far from 

surface 

Sφ user-defined source term 


 the diffusion coefficient 

φ a common variable that refers to the 

continuity equation, temperature, and 

velocity 

U

 velocity vector 

Gsol Solar irradiance 

jJ  diffusion flux of species j 

h convective heat transfer coefficient 

(W/m2K)/sensible enthalpy (kJ/kg) 

k, keff thermal conductivity/effective conductivity 

(W/mK) 

t time (s) 

ρ, ρ0 density/reference density 

ν kinematic viscosity 

μ molecular viscosity 

μt  turbulent viscosity 

s path length 

α absorption coefficient/expansion 

coefficient of air 

β thermal expansion coefficient/liquid 

fraction 

τ  transmittance of the DSF outer glass skin 

ɛ emissivity 

ơ Stefan-Boltzmann constant/solid 

angle/turbulent Prandtl number 

δ characteristic length of geometry 

 

Subscripts 

net net heat gain of DSF 

sol total solar radiation on the DSF 

refl reflected solar radiation 

ref reference value 

abs absorbed solar radiation 

tra transmitted solar radiation 

1 external glass skin of the DSF 

2 internal glass skin of the DSF 

conv convective heat transfer 

rad radiative heat transfer 

a cavity air 

b blind 

k turbulence kinetic energy 

i indoor 

o outdoor 

p PCM layer of the blind 

s substrate of the blind 

ɛ dissipation rate 

x, r, z axial/radial/swirl coordinate 

3 
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1 Introduction 

The building sector is responsible for approximately 40% of the world’s total annual energy consumption [1]. 

This situation has therefore raised the need for applying various sustainable design concepts for reducing energy 

consumption in buildings [2]. As a form of envelope in modern buildings, double skin façade (DSF) has already 

become a common architectural design feature around the world with great potential in energy saving [3]. DSFs 

are types of building envelopes consisting of external and internal skins with intermediate space between them. 

The DSFs have advantages such as providing natural ventilation, natural daylight, and acoustic barrier to 

buildings [4]. Kim et al. [5] also proved that DSFs can be used to reduce energy consumptions in buildings 

during both heating and cooling seasons while maintaining indoor comfort levels. However, studies conducted 

by Tascon [6] revealed that DSFs tend to experience overheating problems during warm seasons. 

To this end various methods have been studied as possible solutions for minimising the overheating problems. 

For instance Jager et al. [7] indicated that the overheating problem can be avoided by ensuring a minimum 

distance between the internal and external panes of a DSF due to greater stack effect and adequate air flow in 

wider cavities. Wigginton et al. [8] stated the sizes of ventilation openings are crucial parameters influencing 

the cavity temperature since they determine the efficiency of air exchange between DSF and external 

environment. Fallahi et al. [9] demonstrated that utilisation of concrete slats as thermal mass in mechanically 

ventilated DSF can help to decrease the risk of overheating. Recent studies have further reported that the 

effectiveness of concrete can be enhanced by incorporating phase change materials (PCMs) [10]. Gracia et al. 

[11, 12] integrated a PCM system into the air channel of a ventilated facade and observed reduction of 

overheating effect during the PCM solidification and melting periods. Even though the above highlighted 

studies have provided possible solutions to the overheating effect in DSFs, it is clear that there are still some 

technical and scientific barriers that need to be overcome. 
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The focus of this paper is on the development of a physical–mathematical model of an integrated DSF and PCM 

blind system by using CFD methods. The numerical results are validated by comparing with experimental 

measurements. The heat transfer behaviour of the integrated system under overheating scenario is then evaluated 

and compared with conventional aluminium system. 

2 Background 

Double skin facades have been widely applied in different climatic area around world [13, 14]. This study 

mainly investigates the hot summer and cold winter regions where DSFs are favourable applications in winter 

and mid-season [15], but face a major challenge of overheating in summer which tend to result in unpleasant 

indoor environment and increase the cooling loads in buildings [16, 17]. Previous researchers have raised the 

overheating problems associated with DSFs and come up with several solutions to dispel the problems. Tascon 

[5] raised that the main causes of overheating in DSF which included ineffective removal of heat stored within 

the DSF system, inappropriate location and size of shading devices, and inadequate operations of the DSF for 

specific thermal environmental conditions. Jager et al. [6] and Wigginton et al. [7] reported physical 

considerations at design stage of DSFs such as ensuring a minimum distance between the outer and inner skins 

and adjusting the sizes of openings for better ventilation in the cavity. Other flexible methods such as utilisation 

of shading devices (venetian blind as the commonest one [15]), integration of thermal mass (Fallahi et al. [8]), 

application of energy storage materials such as phase change materials (De Gracia et al. [10]), and thermal 

control strategies (Haase et al. [18, 19]) have also been investigated to assess their effectiveness in removing 

excess heat gains in DSFs. 

Even though the above methods may be adopted in DSF systems as solutions to overheating effect, there are 

some barriers to be overcome and improvements to be made. For instance, extensive research have been 

conducted on venetian blinds and prove that factors such as blind position [20-22], slat tilt angle [10, 22], and 

colour and size of the blind [21] can influence the DSF performance. The main problem of the existing venetian 
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blind systems for DSFs is the high surface temperature caused by solar absorption on the blinds [23]. The 

consequences are that the blinds may act as solar heaters which radiate heat and contribute to overheating in 

adjacent space. Fallahi et al. [8] investigated different integrations of concrete materials and DSFs and revealed 

limitations of the thermal mass system included comparably low energy storage capacity of the concrete and 

sacrifice of natural illumination through the DSF. 

Phase change material (PCM), as a thermal energy storage medium, can increase the thermal capacity of the 

building components and thus contribute to reducing heating and cooling loads in buildings [24]. Since PCMs 

have high energy storage capacity over a narrow temperature, large amount of heat can be stored during the 

melting processes. De Gracia et al. [10, 11] adopted PCM in DSF system and found it can prevent the 

overheating effect between the PCM solidification and melting periods. However, it is necessary to optimise 

the PCM-DSF system for achieving certain level of natural illumination and flexible operation under various 

weather conditions. By incorporating proper PCMs into the blind system, it is possible to embody the advantages 

and overcome the operational limitations of the currently existing thermal management strategies and systems 

the limitations of conventional venetian blind and thermal mass system can be eliminated. Weinlaeder et al. [25] 

monitored an integrated PCM solar blind system in a building and achieved some level of temperature 

reduction in comparison with a conventional blind. However, the systems which consisted of macro-

encapsulated salt hydrate panels suffered from low energy storage efficiency and solidification issues. To the 

author’s knowledge, there is still lack of numerical and experimental information on the effectiveness and 

performance of PCM blind systems in DSFs. 

Taken the above points, the present study proposed an integrated microencapsulated composite laminated PCM 

blind system, and investigates its thermal improvements towards minimising the overheating effect and thus 

enhance the thermal performance of DSFs. After the development of physical and mathematical models, a case 

study is conducted with a DSF test facility under summer condition for the purpose of model validation. 
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3 Model Descriptions 

Fig. 1a shows a physical model of an integrated naturally ventilated DSF system containing a number of blades 

in the air cavity and Fig. 1b presents the geometric dimensions of the modelled integrated system. By integrating 

PCM blind in the DSF system, it is intended to absorb any excess solar heat through the external glass skin 

which may be trapped in the DSF cavity, thus in this way prevents additional heat gain into the adjacent indoor 

area in warm seasons. 

Previous investigations carried out by Darkwa et al. [26, 27] have shown that laminated composite PCM with 

narrow phase-change zone was much more thermally effective than randomly mixed PCMs. For this reason a 

multilayer blind structure consisting of laminated composite PCM blades is proposed as presented in Fig. 1c. 

Each blade has a multilayer structure consisting of a laminated PCM layer and a substrate. The blind system 

was assumed to be located in the mid-section of the DSF with the slats tilted at an angle of 30o. When the 

temperature in the cavity increases above the melting temperature of the PCM, the PCM layer can absorb the 

solar heat trapped in the DSF cavity. The stored heat is then expected to be discharged and removed by means 

of natural or mechanical ventilation when the temperature in the cavity drops below the solidification 

temperature of the PCM. For the purpose of comparison, DSF containing conventional aluminium blind was 

also studied as shown in Fig. 1c. The physical properties of the integrated systems with PCM and aluminium 

blinds are presented in Tab. 1. For the benefit of simulation exercise, data for commercially available PCM 

product PX35 of RUBITHERM company [28] were adopted. The technical data of PX35 is shown in Tab. 1, 

while the DSC experimental test curve of PX35 is demonstrated in Fig. 2. 
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Figure 1: Integrated DSF and blind system 

(a) Schematic diagram (b) Dimensions of the modelled system (c) Details of the PCM/aluminium blade 

 

Table 1: Physical properties of the integrated systems 

 

Material Density Specific 

heat 

Heat 

storage 

capacity 

Melting 

temperature 

Thermal 

conductivity 

Reflec

tivity 

Emissivity Refractive 

index 

Absorptivity 

 (kg/m3) (J/kg·K) (KJ/kg) (oC) (W/m·K)  External Internal   

Glass 2500 966 — — 1.1 — 0.84 0.84 1.5 0.15 

PCM 

(PX35) 

650 See 

Fig. 2 

See 

Fig.2 

29-36  0.1 0.52 0.9 0.9 — 0.8 

Aluminium 2719 871 — — 202.4 0.67 0.7 0.7 1.44 0.18 

 

 

Figure 2: DSC curves for PX35 sample 

4 Modelling and Simulation 

Previous studies by Park et al. [29] and Yuan et al. [30] have shown that analytical lumped models can be used 

for understanding and analysing heat transfer processes in DSF systems. Other approaches such as airflow 

network model [31], control volume approach [32], and zonal approach [33] have been used to investigate 

more detailed airflow and heat transfer behaviours in DSF systems. However Computational Fluid Dynamics 

(CFD) method has proved to be the most accurate approach [15] and for that reason it was used for evaluating 

the heat and air flow distribution profiles in the DSF. 

4.1 Heat Transfer Model 
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As shown in Fig. 3, there are multiple heat transfer pathways involving convection, conduction and radiation 

which exist in the DSF and PCM integrated system based on the following assumptions: 

 Both convective and radiative heat transfer exist on the surface of the PCM blind. 

 Only one-dimensional conduction is considered within each PCM blade and convective heat transfer is 

negligible. 

 The PCM is homogeneous and isotropic with constant thermophysical properties except its enthalpy. 

 The thermophysical properties of the aluminium substrate are constant. 

 The tilt angle of the blind corresponds with the local latitude. There is no transmitted solar radiation on 

the internal glass skin of the DSF due to the length of the blade and the tilt angle of the blind. 

        
    (a) Schematic of the integrated DSF system         (b) Sectional view of a PCM blade 

Figure 3: Heat transfer paths in the integrated system 

As Fig. 3(a) shows, the net solar heat gain (Qnet) into the DSF system can be expressed as: 

 iconvoconvreflsol QQQQQ __net -   (1) 

Where 

 
refltraabssol QQQQ   (2) 

 
solabs GAQ  1  (3) 

 
soltra GAQ  1  (4) 

Therefore 
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iconvoconvtraabsnet QQQQQ __-   (5) 

The total heat transfers to the PCM blade (Qb) can be expressed as: 

 
1_1_ bconvbradtrab QQQQ    (6) 

As shown in Fig. 3(b), only one-dimensional conduction is considered within the PCM layer and therefore it 

can also be expressed as: 

 

0
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pb
dx

dT
kQ   (7) 

The energy equation of the PCM layer can be written as: 
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Where h is the sensible heat, ∆H is the latent heat: 

 HhH   (9) 

 

T

T

Ppref

ref

dTchh  (10) 

The heat conducted from the PCM layer to the substrate on the interface s1 can be expressed as: 

 
11 sx
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sx

p
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dx

dT
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dT
k



  (11) 

The energy equation within the substrate can be calculated as: 
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  (12) 

The heat transferred to interface s2 of the substrate (Qs) can be expressed as follows: 

 

2sx

s
ss

dx

dT
kQ



  (13) 

 
2_2_ bconvbrads QQQ   (14) 

The total heat transfer from the cavity air (Qa) can therefore be calculated as: 

 
aaPaa TmCQ   (15) 
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2_1_2_1_ bconvbconvconvconva QQQQQ   (16) 

 

4.2 Airflow Model 

In order to simplify modelling of the airflow in the DSF, the following assumptions were made: 

 The airflow is treated as 2-dimensional incompressible flow with constant air density. 

 There are turbulences in the cavity due to the presence of PCM blades. 

The general governing equations for the fluid domain are developed by using Navier-Stokes equations while 

the buoyancy effect of air is simulated with Boussinesq approximation [34]: 

 
       


SgraU
t




 
 (17) 

  T  -10
 (18) 

The fluid regime in natural convection is governed by the dimensionless numbers Grashof number (Gr) and 

Rayleigh number (Ra). The Grashof number provides the main criterion in determining whether the fluid flow 

is laminar or turbulent while Rayleigh number is often used to measure the strength of the buoyancy-induced 

flow. These important dimensional numbers can be expressed as follows: 
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Pr is Prandtl number which describes the relative thickness of the velocity and the thermal boundary layers. It 

can be used to investigate the relationships between the surface velocity and the surface temperature in 

determining the convective heat transfer coefficient. As previous research has summarised, the higher the 

velocity on the plate surface, the greater the convective heat transfer coefficient [35]. 

4.3 Simulation process 

CFD simulation software ANSYS FLUENT 14.0 was used for simulating the airflow and temperature 

distributions in the integrated DSF system. ANSYS FLUENT provides several turbulence and radiation models 

for solving problems involving turbulent flows and radiation. RNG k-ɛ model was selected as the turbulence 

model since it is applicable for a wider class of flows than the standard k-ɛ model [34, 36]. The discrete 

ordinates (DO) model was applied as the radiation model due to its ability in solving most radiation problems. 

For the purpose of comparison, two cases of integrated systems were simulated: Case 1 (DSF containing PCM 

blind) and Case 2 (DSF containing conventional aluminium blind) with both under overheating conditions. 

4.3.1 Meshing 

The mesh of the computational domain and mesh features are demonstrate in Fig. 4 and Tab. 2. Particular 

attention was paid on the mesh density and quality in order to achieve accurate results. Both quadrate and 

triangle cells were generated for the geometric model. The mesh was refined near the solid surfaces (wall 

boundaries and blind) with dense cell distribution in DSF cavity, and then gradually increased toward the air 

cavity in order to account for the boundary layer effect. The mesh independence were tested through a series 

of mesh refinements, and further refinement gave little difference on the main thermodynamic parameters. 

The average of the Element Quality (ranges from 0 to 1, where values close to 1 correspond to good quality) 

was obtained as 0.9587 and the minimum was 0.5642; the average Skewness (ranges from 0 to 1, where values 

close to 0 correspond to good quality) was 0.05498 and the maximum was 0.7072; the average Orthogonal 
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Quality (ranges from 0 to 1, where values close to 1 correspond to good quality) was 0.9667 whereas the 

minimum was equal to 0.59. This indicate that the mesh quality is acceptable for the simulation since most of 

the Element Quality, Skewness, and Orthogonal values for the meshes are close to the good quality values [34]. 

 

Table 2:  Mesh features 

 

Figure 4: Mesh of the computational domain 

 

4.3.2 Boundary conditions and solver set-up 

The boundary conditions are set up as: velocity inlet for DSF inlet at the bottom, pressure outlet for DSF outlet 

at the top, and walls with no slip boundary conditions for the DSF glass skins and blind surface. For the solver 

solutions, SIMPLE scheme was selected as the pressure-velocity coupling method while second order 

approximations were used as differential equations solutions.The time step for the simulation was 10s for 8640 

steps covering a working cycle of the PCM blind system. 

The ambient environmental data for the hottest month (July) of the year 2014 were obtained from an existing 

demonstration DSF building - the Centre for Sustainable Energy Technologies (CSET) building (Fig. 5) 

located in the University of Nottingham Ningbo China. As shown in Fig. 6, time-dependent ambient 

temperature and global solar radiation for the measured date was fitted into polynomial functions and 

Mesh Number  

Nodes 16216 

Elements 12624 

Element Quality  

Min 0.5642  

Max 0.9999  

Average 0.9587  

Skewness  

Min 1.3057e-10  

Max 0.7072  

Average 5.4983e-2 

Orthogonal Quality  

Min 0.5900  

Max 1.0000 

Average 0.9667 
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introduced as a dynamic boundary condition to the CFD solver via user defined functions in FLUENT. DSF 

data and additional air properties were also adopted from recent studies on the same building by Darkwa et. al 

[37, 38] as summarised in Tab. 3. 

 

Figure 5: The CSET building  

 

(a) Ambient temperature 
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(b) Global solar radiation 

Figure 6: Ambient environmental data 

Table 3: DSF data and air properties 

Item Value Unit 

DSF   

External skin temperature 38.11 oC 
Internal skin temperature 35.98 oC 
Cavity air temperature 36.36 oC 
Inlet air velocity 0.45 m/s 

Air properties   
Thermal conductivity 0.02 W/mK 
Kinematic viscosity (ν) 15.11 mm2/s 
Density (ρ) 1.2 kg/m3 
Thermal diffusivity (α) 22.5 mm2/s 
Specific heat (cp) 1 kJ/kgK 
Prandtl number (Prt) 0.71  

 

4.4 Numerical Model Validation 

In order to validate the numerical models, a scale model test facility was installed in the cavity of the CSET 

building and performed under real environmental conditions of the DSF. It was measured at 1.05 m x 0.95 m x 

0.45 m with two 5 mm clear glass walls and two wooden sidewalls. There were six blades in the box at a tilt 

angle of 30o south facing. Twenty K-type thermocouples and two hot-wire anemometers were implemented at 

different positions in the test facility as shown in Fig. 7. The continuous data collection was conducted in the 

summer of 2014 except for rainy days and the time step of the data collection was 5 seconds. 
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Figure 7: DSF test facility and sensor installation spots 

(Tb: surface temperature of the blade; Tg: surface temperature of the DSF glass; 

Ta: air temperature; Va: airflow velocity) 

The simulated average cavity air temperature has been validated against experimental data on the same day as 

shown in Fig. 8. In general it was found that the predicted average air temperature agreed reasonably well with 

the average value of measured data at different positions in DSFs. Tab. 4 compares the surface temperatures of 

the PCM and aluminium blinds at different positions in DSF. The errors between the simulated and measured 

data were lower than 4% and the average difference was 1.31%, which also demonstrates a high accuracy of 

the simulation results and proved reliability of the numerical models. 

    

(a) Tin: inlet air temperature; Tout: outlet air temperature; T_simulated: simulated average air temperature 
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(b) Tint: air temperature near internal glass skin; Text: air temperature near external glass skin; T_simulated: 

simulated average air temperature 

Figure 8: Comparison of simulated and measured DSF air temperatures 

 

Table 4: Comparison of simulated and measured blind surface temperatures 

Spot PCM surface temperature Substrate surface temperature 

Simulated Measured ∆T δ% Simulated Measured ∆T δ% 

1 37.33 36.99 0.34  0.93% 36.07 36.84 0.76 2.07% 

2 37.65 37.39 0.25  0.67% 36.70 37.27 0.57 1.53% 

3 37.96 37.40 0.56  1.49% 36.70 37.35 0.65 1.73% 

4 38.59 37.74 0.85  2.24% 37.33 37.34 0.01 0.04% 

5 37.96 37.59 0.37  0.99% 37.33 37.36 0.03 0.08% 

6 37.33 38.59 1.26  3.27% 37.96 38.23 0.27 0.70% 

Average  δ%:             1.31% 

 

5 Results and Discussions 

5.1 Temperature Profiles 

Fig. 9 compares the average outlet temperature of DSF with PCM blind and aluminium blind. The outlet 

temperature for both cases increased at the beginning, peaked at 1:30 pm, and then decreased. This demonstrates 

the combined effect of ambient temperature and solar radiation. In general, the average outlet temperature of 

DSF with PCM blind was lower than that with the aluminium blind. The temperature difference was larger than 

1 oC from 5:30 am to 7:00 pm and the highest outlet temperature of DSF with PCM blind was about 2.6 oC 

lower than that with the aluminium blind. The profiles illustrates that the PCM blind was thermally more 

effective than the basic aluminium blind since it was able to reduce the DSF outlet temperature. 
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Figure 9: Outlet temperature profiles for DSF with PCM and aluminium blinds 

The temperature distributions in the DSFs with PCM and aluminium blinds at different time during a 

computational cycle were also demonstrated. Fig. 8 shows the temperature contours of DSFs containing PCM 

(Fig. 10a) and aluminium (Fig. 10b) blind systems. It can be seen that the air temperature in both DSFs increased 

towards the outlets of the DSFs. However, the air temperature in DSF with the PCM blind was obviously lower 

than that with the aluminium blind at different times. This indicates that the PCM blind was capable of reducing 

the cavity air temperature in the DSF than the conventional aluminium blind. In addition, the air temperature 

around the aluminium blind was about 2 oC higher than that around the PCM blind. This phenomenon illustrates 

that unlike the aluminium blind, the PCM blind can store the solar heat during melting process instead of directly 

releasing it into the DSF cavity. 

 

(a) DSF with PCM blind 
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(b) DSF with aluminium blind 

Figure 10: Temperature contours of DSF with PCM and aluminium blinds 

5.2 Velocity Profiles 

As shown in Fig. 11, the outlet velocities of DSFs with PCM and aluminium blinds are similar during most of 

the time. The only difference between the outlet velocities of the two cases occurs when the outlet temperature 

of the DSFs peaks from time step 48600s (1:00 pm) to 55800s (3:30 pm). During this time range the outlet 

velocity of DSF with the aluminium blind was 0.516 m/s which was a little higher than the outlet velocity of 

the DSF with PCM blind of 0.484 m/s. This indicates that unlike the aluminium blind, the PCM blind was able 

to stabilise the airflow evacuated through the DSF outlet even when the cavity air temperature is high. 

 

Figure 11: Outlet velocity profiles of DSF with PCM and aluminium blinds 

Fig. 12 demonstrates the velocity vectors in DSFs with PCM blind and aluminium blind at time step 52200s 

(2:30 pm). It could be observed that larger fluctuations of air velocity occurs in DSF with PCM blind as 

compared with DSF with aluminium blind. This could also be further justified by Fig. 13 which demonstrates 
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the velocity profiles along the mid-section of the DSFs at time step 52200s (2:30 pm). It shows that both systems 

suffered from comparably low air velocity between each two blades which was attributed to low convective 

heat transfer on surface of the blind. However, larger fluctuations of air velocity within the PCM blind system 

were found as compared with the aluminium blind. These velocity fluctuations can enhance the convective heat 

transfer between the cavity air and the PCM blind system as indicated by Chen et, al. [39]. 

 
Figure 12: Velocity vectors of DSF with PCM and aluminium blinds (t=52200s) 

 

Figure 13: Velocity profiles of DSF with PCM and aluminium blinds (t=52200s) 

5.3 Heat Transfer Profile 

Fig. 14 shows the heat flux profiles of the PCM and aluminium blinds. It can be seen that the PCM blind started 

to absorb heat from the cavity air from the beginning (t=0s) of the simulation and this process lasted till time 

step 41400s (11:30 am). In contrast, the aluminium blind re-emitted and released heat from its surface to the 
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surroundings during the whole cycle. Therefore compared with the aluminium blind, the PCM blind was able 

to absorb the solar heat gain in the DSF cavity with its heat storage capacity during the melting process. However, 

there is still great potential for the PCM blind in capturing more heat in DSF cavity since the absorbing process 

ended before night-time. 

 

Figure 14: Heat flux profiles of PCM blind and aluminium blind 

6 Conclusions 

In this study, an integrated DSF and PCM blind system was proposed to mitigate the overheating problem in 

the DSF. The heat transfer in the proposed system was simulated and compared with DSF integrated with 

conventional aluminium blind under overheating scenario by using ANSYS Workbench FLUENT software. 

The simulation results were validated by comparing with experimental measurements. In general, this study 

revealed that the PCM blind system has the potential to be used as an effective thermal management device in 

DSF systems. The main conclusions are as follow: 

 Compared with the basic aluminium blind, the proposed thermal management system based on PCM 

blind was able to reduce the outlet temperature in DSF while the average air temperature in DSF also 

decreased. 
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 The PCM blind helped to stabilise the outlet airflow of the DSF while improving the convective heat 

transfer in the DSF between the cavity air and the blind surface. 

 The PCM blind can absorb excessive heat from the cavity air thus overcoming the limitation of 

conventional aluminium blind in re-emitting large amount of solar heat from its high-temperature 

surface. 

6.1 Limitations of the study 

Although the developed system has demonstrated some level of capacity of minimising the overheating 

problems in DSFs, there are limitations and future work which can be raised as follow: 

 Since the type and quantity of PCM play key roles in the amount of heat which can be captured in DSF 

cavity [40], there is potential for the PCM blind which can be obtained by raising the number of blades, 

increasing the thickness of the PCM layer, or replacing the PCM with more thermally effective ones. On 

the other hand, parameters including the position of the blind and its tilt angle also have impact on the 

performance of DSF. Thus for achieving higher effectiveness of the integrated DSF and PCM blind system, 

it would be necessary to conduct further numerical and experimental investigations, and parametric 

analysis into the impacts and various combinations of the materials, the amount of the materials, 

dimensions, locations, and tilt angles of the PCM blind system. 

 Due to that the geometry and input data of the simulation is from DSF test facility with small dimensions 

to represent a facade unit, it is necessary to conduct simulations for entire façades of different geometry 

and dimensions in future study to include different types of DSFs. Besides, there is the need for longer 

term experimental investigations into the energy storage efficiency of the PCM due to repeated charging 

and discharging cycling. 
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 Given different climatic regions and weather conditions, investigations should also be carried out on the 

interactions of the integrated system with DSF building operation strategies such as the control strategies 

of HVAC system. The effectiveness of the integrated system should also be tested under various climatic 

conditions for wider applications. 

 Finally, life cycle assessment of the developed integrated thermal management system is essential in order 

to obtain full technical and economic evaluation. 
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