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A model for non-isothermal shear-driven thin-film flow on the inside surface of a stationary circular cyl-

inder is presented. Motivated by an application to film flow in an aero-engine bearing chamber the model

extends lubrication theory analysis of thin films to retain the important effects of inertia and heat con-

vection.

The accuracy of the depth-averaged temperature model is tested and comparisons illustrate the model

is accurate for both conduction- and convection-dominant flows although local inaccuracies are intro-

duced in regions exhibiting sharp changes in boundary temperature when convective effects are strong.

Three rimming-flow configurations are considered: uni-directional flow with slowly-varying film

height, a solution containing a steep front termed a shock, and a pooling solution where fluid accumu-

lates in a recirculation at the base of the cylinder. The temperature field in the latter two which include

recirculationfeaturesaregreatlyinfluencedbythestrengthofconvectioninthefilm.

1. Introduction

Modelling the temperature distribution in thin liquid films has

a diverse range of applications. This study is motivated by the need

to extend the modelling of shear-driven oil films in an aero-engine

bearing chamber where heat transfer arises within highly-sheared

thin films. Typical modelling of such films uses a lubrication

approximation that neglects film inertia and heat convection

which are important in this application.

In the context of an aero-engine bearing chamber thin liquid

films develop on the walls of the chamber from oil used to lubri-

cate provide a cooling mechanism. Such films are also subject to in-

tense surface shear from nearby rotating shafts. Non-isothermal

effects arise from temperature differences between the cylinder

wall and the shearing airflow, or a temperature distribution around

the cylinder wall may be developed from other nearby engine com-

ponents. There is a vast literature on the dynamics of rimming

flows, consult [1] for a review; these are generally considered with

low Reynolds number which neglects the effect of film inertia.

However for highly-sheared film flow these may be non-negligible

as shown in [2] and correspondingly may significantly influence

the heat-transfer.

In this paper we examine the non-isothermal flow of a thin li-

quid film on the inside of a partially-filled stationary cylinder dri-

ven by a constant surface shear. A depth-averaged approach to

modelling the film is used as outlined in [2] and extended to in-

clude film temperature variation. The mass, momentum and en-

ergy conservation equations in the film are integrated through

the depth of the film and incorporate the external boundary condi-

tions through the upper and lower limits of integration. This ap-

proach is used to model open-channel flow [3,4] as it allows

inertial effects and convection of heat to be retained as possible

mechanisms at leading-order. Application of the approach to vari-

ous instances of thin film flow has been by Gribben et al. [5]. The

simplified approximations are obtained with the full flow field

no-longer resolved precisely across the film but replaced by

approximations for the velocity and temperature profiles through

the film depth. A local quadratic profile is used for both film veloc-

ity and temperature. This approach is developed and the resulting

film temperature field is verified by comparing against a fully re-

solved solution to a specimen case.

Temperature profiles in rimming and coating flows have been

extensively studied using lubrication theory with inertia and heat

convection typically negligible, for example [6], and good reviews

of work on this is available in the recent publications [7,8]. Our pa-

per aims to extend the thin film analysis by including these effects

which may become important in the aero-engine application.

Additional relevant studies include non-isothermal planar thin

film flows which we use as a test case and has characteristics

shared with the rimming flow problem. An early paper on flow

over an inclined uniformly-heated plane [9] employed a lubrica-

tion theory model to derive an evolution equation for film thick-

ness, with evaporative and thermocapillary effects included, from

which the stability of wave structures on the surface were studied.
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This approach has subsequently been extended by various addi-

tions of, for example, inhomogeneities in substrate material [10],

a surfactant-laden film surface [11] and, pertinent to this paper, lo-

cal heating of the substrate [12,13]. Whilst representing a long-

wavelength/lubrication theory approach similar to ours, these

studies focus on the effect of temperature on the stability of sur-

face structures but do not analyses the film temperature field that

results which is the focus of our paper.

Local heating of planar films driven by an overlying air-shear

have been extensively studied [14–17]. In [14] numerical simula-

tions of the three-dimensional film flow field provided a detailed

picture of the flow field in the film which was later compared to

experimental data in [16]. We follow [15,17] in solution of the flat

film temperature field via separation of variables and a Sturm–

Liouville problem. Again we note from these that temperature

effects are generally studied for their effect on surface structure

stability though we note accord in results between our model

and those of [17].

Common to many of papers e.g. [9–13,15] is the construction of

an evolution equation for the film height containing terms that

represent the temperature-related mechanisms. Importantly the

film velocity and temperature field can be calculated once a solu-

tion of this evolution equation is obtained. Less well developed is

use of a depth-averaged method for modelling non-isothermal thin

films, in which a general form of the velocity and temperature field

is specified a-priori. In [18] a study is presented covering locally

heated planar flows with a parabolic velocity and linear tempera-

ture profiles resulting in a system of three coupled equations

(continuity, momentum and energy). This is used to investigate

free-surface stability. Nicol et al. [19] formulate a depth-averaged

model for the dynamics and heat transfer in a thin film of conden-

sate flowing on the cylindrical outer surface of a condenser and

compare with experimental results.

A more common use of the depth-averaged approach is for

larger-scale physical applications such as modelling lava flows

[20] where a lubrication approximation is valid arising from the

large disparity between the relevant horizontal and vertical

length-scales. The depth-averaging method has been applied to

thermal analyses of a smaller scale with the air cooling of printed

circuit boards [21].

As a preliminary to studying rimming flow the depth-averaged

model is applied to the case of uniform film flow over a horizontal

plate with a locally heated patch. The existence of both an analyt-

ical [17] and numerical (using finite differences) solution for the

two-dimensional temperature field for this specimen case provides

a gauge against which to test the accuracy of the one-dimensional

depth-averaged model.

The depth-averaged model is first applied to rimming flows of

constant film height with imposed wall temperature profile pro-

viding localised heating. This is extended to a non-uniform film

height profile with inhomogeneity in film temperature derived

from a temperature difference between the walls and shearing air-

flow. Three characteristic rimming flows are examined in detail

corresponding to the relative dominance of surface-shear over

gravity forces. These are uniform, unidirectional film flow (strong

shear), flow containing a recirculating pool at the base of the cylin-

der (weak shearing effect) and the intermediate case of the flow

containing a recirculating shock feature. The dynamics of these

three flow-types are complex depends on various physical param-

eters as elucidated in [22].

The structure of the paper is as follows. In Section 2 the depth-

averaged model is formulated. In Section 3 the accuracy of the

model is evaluated for the simplified case of a locally-heated

planar film. Sections 4 and 5 examine uniform and non-uniform

rimming flows and the effect convection and inertia on the

temperature field. Conclusions are drawn in Section 6.

Nomenclature

a lateral conduction parameter
/j orthogonal functions
s�a; s dimensional and dimensionless surface shear stress
Ai, Bi Airy functions of first and second kind
cj Fourier coefficients
D denominator in temperature profile coefficients
f 0; f 1; Q0; Q1 coefficients in integrated viscous and conduction

terms
I0; I1; J0; J1; K0

h; K0
q ; K1

h; K1
q ; W0; Z0

h; Z0
q ; M0; M1 coefficients

in inertia and convection integrals
k thermal conductivity and smoothing parameter for wall

temperature profile
L half length of heated section of plate
lh; lr azimuthal and radial components of surface unit tan-

gent
nh; nr azimuthal and radial components of surface unit normal
q dimensionless film flux
r radial coordinate
s dimensionless circumferential coordinate
t time
T�
w; Tw dimensional and dimensionless wall temperature

x flat plate coordinate
y dimensionless distance normal to wall
ðu; vÞ dimensionless velocity components
ðu�

r ;u
�
hÞ dimensional velocity components in r and h directions

�T depth-averaged film temperature
B surface Biot number

Ca capillary number
e film aspect ratio
c surface heat transfer coefficient
j surface curvature
k gravity parameter and eigenvalues of Sturm–Liouville

equation
l dynamic viscosity
Pe film Péclet number
Re film Reynolds number
q density
Pe� reduced film Péclet number
Re� reduced film Reynolds number
r surface tension coefficient
h angular coordinate
A filling fraction
a0j ; a1j leading and first order velocity profile coefficients
b
0
j ; b

1
j leading and first order temperature profile coefficients

g acceleration due to gravity
h
�
; h dimensional and dimensionless film height

h0 characteristic film height
p�; p dimensional and dimensionless film pressure
r0 cylinder radius
T�; T dimensional and dimensionless film temperature
Ta; Tb boundary temperatures on flat plate
U0 characteristic film speed
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2. Model formulation

2.1. Film flow equations in cylindrical geometry

A liquid film completely coats the inner surface of a stationary

cylinder of radius r0 and is subject to a constant shear stress s�a
and pressure p�

a at the surface. The liquid is taken to be incom-

pressible and Newtonian with constant density q, dynamic viscos-

ity l, heat capacity c, thermal conductivity k. The flow field is taken

as two-dimensional.

A cylindrical polar coordinate system ðr; hÞ is defined as shown

in Fig. 1 where h measures the angle from the vertically downward

direction. Gravity g ¼ g cos hr̂ � g sin hĥ acts in the downward

direction for a gravitational force per unit mass of g. The surface

of the film has surface tension coefficient r and is described by

the surface r� ¼ r� � h
�ðt�; hÞ. The film velocity, pressure and tem-

perature fields are u� ¼ u�
r r̂ þ u�

hĥ; p
� and T�. Here a superscript �

indicates dimensional variables and t� represents time. The unit

normal vector n ¼ nr r̂ þ nhĥ and unit tangent vector l ¼ lr r̂ þ lhĥ

are given by

nr ¼ �N; nh ¼ �N

H

@h
�

@h
; lr ¼ �N

H

@h
�

@h
; lh ¼ N; ð1Þ

where

N ¼ Nðh; t�Þ ¼ 1þ 1

H�
@h

�

@h

� �2
 !�1=2

ð2Þ

and H� ¼ H�ðh; t�Þ ¼ r0 � h
�ðh; t�Þ. The curvature of the interface j� is

calculated from the divergence of the normal vector on the

interface:

j� ¼ r� � n on r� ¼ r0 � h
�
: ð3Þ

Conservation of energy in the film and the Navier–Stokes equations

are

qcD�T�=Dt� ¼ kr�2T�; ð4Þ
r� � u� ¼ 0; ð5Þ
qD�u�=Dt� ¼ �r�p� þ qg þ lr�2

u�: ð6Þ

In the above r� is the dimensional gradient and

D�=Dt� ¼ @=@t� þ u� �r� is the dimensional convected derivative.

The boundary conditions on the cylinder walls are the no-slip and

no-penetration conditions on the film velocity together with a pre-

scribed temperature T�
w on the wall, i.e.,

u� ¼ 0 and T� ¼ T�
w on r� ¼ r0: ð7Þ

Across the film surface at r� ¼ r0 � h
�
the heat flux is proportional to

the temperature difference across the interface by c a heat transfer

coefficient, there is a jump in the stress tensor S� due to surface ten-

sion and a kinematic equation prescribes the evolution of the

interface

c T�
a � T�� �

¼ kr�T� � n; ð8Þ
nS

� ¼ �p�
an� rj�nþ s�al; ð9Þ

@H�

@t�
þ u �r�H� ¼ 0: ð10Þ

To evaluate the leading-order thermal and dynamic behaviour the

following non-dimensional variables and physical quantities are

introduced

t� ¼ r0t=U0; j� ¼ j=r0;

ðu�
h;u

�
r Þ ¼ U0ðu;�evÞ; p� ¼ qU2

0p;

s�a ¼ slU0=h0; T� ¼ T�
wT; h

� ¼ h0h: ð11Þ

For a thin film the aspect ratio e is small (e � 1). In (11) U0 is a typ-

ical film speed, h0 a typical film height and the surface shear stress

s�a has been scaled by viscosity. Coordinates s ¼ h and

y ¼ ðr0 � r�Þ=h0 are the local film coordinates as shown in Fig. 1.

These scalings give rise to the non-dimensional parameters

e ¼ h0=r0; Re ¼ qU0h0=l; Pe ¼ qcU0h0=k;

Ca ¼ lU0=r; k ¼ qgh2
0=lU0; B ¼ h0c=k: ð12Þ

These are respectively the film aspect ratio, the Reynolds number,

Péclet number, Capillary number, a ratio of gravitational to viscous

forces and the interface Biot number. The dynamic pressure qU2
0 is

selected to ensure azimuthal pressure gradients are retained (see

Section 2.2) as this has been identified previously as an important

stabilizing mechanism [22].

In the non-dimensional coordinate system the energy equation

(4) is

ePe
@T

@t
þ v

@T

@y
þ u

1� ey
@T

@s

� �

¼ @2T

@y2
� e
1� ey

@T

@y
þ e2

1� eyð Þ2
@2T

@s2
:

ð13Þ

The wall boundary condition (7) is

u ¼ v ¼ 0 and T ¼ Tw on y ¼ 0 ð14Þ

and the interface conditions (8) and (10) give, on y ¼ h,

BðTa � TÞN�1 ¼ @T

@y
� e2h0

H2

@T

@s
; ð15Þ

@h

@t
þ eh0

H
u� v ¼ 0; ð16Þ

where Hðs; tÞ ¼ 1� ehðs; tÞ and N ¼ ð1þ ðeh0
=HÞ2Þ

�1=2

in dimension-

less variables. Dimensionless forms of the continuity equation (5),

and normal and tangential components of the momentum Eq. (6)

and surface boundary condition (9) are respectively

@v

@y
þ 1

1� ey
@u

@s
� ev
1� ey

¼ 0; ð17Þ

eRe e
@v

@t
þ ev

@v

@y
þ eu
1� ey

@v

@s
þ u2

1� ey

� �

¼ �Re
@p

@y
� k cos s

þ e
@2
v

@y2
� e2

1� ey
@v

@y
� e3

ð1� eyÞ2
@2
v

@s2
� e3v

ð1� eyÞ2

þ 2e2

ð1� eyÞ2
@u

@s
; ð18Þ

Fig. 1. Cylinder geometry and coordinate system. 3



eRe
@u

@t
þ v

@u

@y
þ u

1� ey
@u

@s
� euv
1� ey

� �

¼ � eRe
1� ey

@p

@s
� k sin s

þ @2u

@y2
� e
1� ey

@u

@y
þ e2

1� ey
@2u

@s2
� 2e3

ð1� eyÞ2
@v

@s
� e2u

ð1� eyÞ2
; ð19Þ

pa ¼ �2N2

Re
e
@v

@y
� @u

@y
þ eu

H
þ e2

H

@v

@s

� �

eh0

H
þ e

H

@u

@s
� e2v

H

� �

eh0

H

� �� �

þ p� ej
ReCa

;

ð20Þ

sN�2 ¼ 1� eh0

H

� �2
 !

@u

@y
þ eu

H
þ e2

H

@v

@s

� �

þ 2
eh0

H
e2

@v

@y
� e2

H

@u

@s
þ e2v

H

� �

: ð21Þ

The film surface curvature (3) is

j ¼ N

H

eh00

H
þ eh0

H

� �2
 !

eNh0

H

� �2

� 1

 !

� 1

" #

: ð22Þ

2.2. Thin film equations with inertial effects

In an aero-engine bearing chamber or other applications involv-

ing high surface shear, thin films may experience moderate inertial

and heat-convection effects corresponding to eRe � Oð1Þ and

ePe � Oð1Þ respectively, i.e. inertia and convection as leading-order

effects. The model developed in this paper is thereafter formulated

accurate to OðeÞ for dimensionless parameters within the moderate

inertia and convection regime

e � 1; Re � Oð1=eÞ; Pe � Oð1=eÞ and k � Oð1Þ: ð23Þ

The relation with k in (23) includes the classical lubrication theory

limit e � 1 which yields a constant pressure through the film; we

note after [23] that this is insufficient to model the abrupt changes

in pressure in the pool solution due to hydrostatic effects in regions

of high film height gradient. To include such effects gravity terms of

OðeÞ must be included and our model is made accurate to OðeÞ.
Hydrostatic terms are multiplied by h

0
which allows these effects

to be locally promoted to leading order in regions of sharp film

height variation. Similarly we include a lateral diffusion term from

(13), despite its appearance at Oðe2Þ, as this may become significant

in regions of high temperature gradient. With e and Pe satisfying

(23) the energy equation (13) can be written

ePe
@T

@t
þ u

@T

@s
þ v

@T

@y
þ eyu

@T

@s

� �

¼ @2T

@y2
� e

@T

@y
þ e2

@2T

@s2
þ Oðe2; e3PeÞ

ð24Þ

The wall boundary condition remains as (14); interface heat flux

(15) and kinematic conditions (16) on y ¼ h become

B Ta � Tð Þ ¼ @T

@y
þ Oðe2Þ; ð25Þ

@h

@t
þ u

@h

@s
þ ehu

@h

@s
� v ¼ Oðe2Þ: ð26Þ

To OðeÞ the governing Eqs. (17)–(19) and boundary conditions

(20) and (21) for film dynamics are

ð1� eyÞ @v
@y

þ @u

@s
� ev ¼ 0; ð27Þ

e2Reu2 ¼ �eRe @p
@y

� ek cosðsÞ þ Oðe2; e3ReÞ; ð28Þ

eRe
@u

@t
þ v

@u

@y
þ u

@u

@s
þ eyu

@u

@s
� euv

� �

¼ �eRe @p
@s

� k sinðsÞ

þ @2u

@y2
� e

@u

@y
þ Oðe2; e3ReÞ; ð29Þ

pa ¼ p� ej
ReCa

þ OðeÞ; ð30Þ

s ¼ @u

@y
þ euþ Oðe2Þ ð31Þ

and the curvature (22) is approximated by j ¼ 1� eðhþ h
00Þ.

2.3. Depth-averaging

Following [2] the energy equation (24) is reduced to a spatially

one-dimensional problem and boundary conditions (14), (25) and

(26) incorporated by first applying a depth-averaging procedure

to evaluate a mean film temperature. Similar expressions are ob-

tained for film dynamics by depth-averaging the continuity (27)

and azimuthal momentum (29) equations. The system is solved

for a film height profile h, film volume flux q and depth-averaged

film temperature �T given by

q ¼
Z h

0

udy; �T ¼ 1

h

Z h

0

T dy: ð32Þ

The depth-averaged azimuthal film velocity is defined by �u ¼ q=h.

Reconstruction of the film flow fields can be approximated from

these variables as described later. This integral method is used by

Nguyen and Balakotaiah [24] for planar film dynamics and, with a

linear temperature profile, by Kalliadasis et al. [18] for locally-

heated planar flows.

The depth-averaged energy equation (24) is

ePe
@

@t

Z h

0

T dyþ @

@s

Z h

0

uT dyþ e
@

@s

Z h

0

yuT dy

"

�e
Z h

0

vTdy

#

¼ @T

@y
� eT

� 	h

0

þ e2
@2

@s2

Z h

0

T dy� 2
@Tjh
@s

� Tjhh
00

 !

þ Oðe2Þ: ð33Þ

with notation ½a�h0 ¼ aðy ¼ hÞ � aðy ¼ 0Þ. From [2] the depth-aver-

aged continuity (27) and momentum (29) equations are

ð1� ehÞ @h
@t

þ @q

@s
¼ Oðe2Þ; ð34Þ

eRe
@

@t

Z h

0

udyþ @

@s

Z h

0

u2 dyþ e
@

@s

Z h

0

yu2 dy

"

�2e
Z h

0

uvdy

#

¼ �kh sin sþ e3

Ca
hðh0 þ h

000Þ

� e2Re
@

@s

Z h

0

Z h

0

u2dy�
Z y

0

u2dy

 !

dy� ek
@

@s

h
2
cos s

2

 !

þ @u

@y
� eu

� 	h

0

þ Oðe2; e3ReÞ: ð35Þ

The surface tension terms which appear at Oðe3Þ in (35) are retained

as these are known to become important in regions where h
000

is

large due to sharp changes in film height.

It is convenient to introduce the reduced Péclet and Reynolds

numbers Pe� ¼ ePe and Re� ¼ eRe giving the size of the convection

and inertia terms in (33) and (35) respectively. The regime of the

model (23) is for Re� � Oð1Þ and Pe� � Oð1Þ.4



2.4. Thin film velocity and temperature profiles

Evaluation of the integral terms in (33) and (35) is obtained by

prescribing a local functional form for the velocity and tempera-

ture across the film and globally with corresponding coefficients

which vary with azimuthal position around the cylinder. Quadratic

velocity and temperature profiles across the film are prescribed of

the form

u ¼ u0 þ eu1; T ¼ T0 þ eT1;

u0 ¼ a01yþ a02y
2; u1 ¼ a11yþ a12y

2;

T0 ¼ b
0
0 þ b

0
1yþ b

0
2y

2; T1 ¼ b
1
0 þ b

1
1yþ b

1
2y

2:

ð36Þ

The velocity profile automatically satisfy the no-slip condition (14)

and reduces to an exact representation in the case of Stokes flow. In

(36) the leading- and first-order coefficients ai ¼ aiðs; tÞ and

bi ¼ biðs; tÞ (identified by a superscript 0 and 1 respectively) are

determined in terms of h; q and �T by applying the surface and wall

boundary conditions and integral conditions (32).

For the temperature profile, (14) gives leading-order and OðeÞ
components b

0
0 ¼ Tw and b

1
0 ¼ 0 respectively. The surface (25)

and integral (32) conditions give at leading-order

b
0
1h=2þ b

0
2h

2
=3 ¼ �T � Tw;

b
0
1ð1þ BhÞ þ b

0
2ð2hþ Bh

2Þ ¼ BðTa � TwÞ
ð37Þ

and at OðeÞ

b
1
1=2þ b

1
2h=3 ¼ 0;

ð1þ BhÞb1
1 þ ð2hþ Bh

2Þb1
2 ¼ 0:

ð38Þ

The OðeÞ system has the trivial solution b
1
1 ¼ b

1
2 ¼ 0 and the leading-

order system has solution

b1 ¼ ð�12Tw � 4hBTw � 2hBTa þ 12�T þ 6Bh�TÞ=Dh;
b2 ¼ ð6Tw þ 3hBTa þ 3hBTw � 6�T � 6Bh�TÞ=Dh2

ð39Þ

with D ¼ 4þ Bh.

Following the same approach for the velocity profile, wall (14)

and surface (31) boundary conditions along with the integral con-

dition (32) on the film flux allow calculation of a0
j and a1j as

a01 ¼ �s=2þ 3q=h
2
; a02 ¼ 3s=4h� 3q=2h

3
;

a11 ¼ 3q=4hþ hs=8; a12 ¼ �9q=8h
2 � 3s=16:

ð40Þ

The radial velocity profile, required in calculation of the second OðeÞ
integral in (35), is

v
0 ¼ � @a01

@h
h
0 þ @a01

@q
q0

� �

y2

2
� @a02

@h
h
0 þ @a02

@q
q0

� �

y3

3
: ð41Þ

We direct the reader to [2] for details.

All coefficients in (36) are now given in terms of h; q and �T .

Variations in h; q and �T around the cylinder are given from solving

(33)–(35). Relevant integral terms can now be found as follows
Z h

0

u2dy ¼
Z h

0

ðu0Þ2 þ 2e
Z h

0

u0u1dy ¼ I0 þ eI1;
Z

yu2dy ¼
Z h

0

Z h

0

u2dy�
Z y

0

u2dy

 !

dy ¼
Z

yðu0Þ2dy ¼ J0;

Z h

0

uvdy ¼
Z h

0

u0
v

0dy ¼ K0
hh

0 þ K0
qq

0;
Z h

0

uTdy ¼
Z h

0

u0T0dyþ e
Z h

0

u1T0dy ¼ M0 þ eM1;
Z h

0

yuTdy ¼
Z h

0

yu0T0dy ¼ W0;
Z h

0

vTdy ¼
Z h

0

v
0T0dy ¼ Z0

hh
0 þ Z0

qq
0:

ð42Þ

Further,

@u

@y
� eu

� 	h

0

¼ f 0 þ ef 1;
@T

@y
� eT

� 	h

0

¼ Q0 þ eQ1: ð43Þ

Coefficient functions in (42) and (43) are given in Appendix A.

The resulting system of three coupled Eqs. (33)–(35) represents

the final depth-averaged model for non-isothermal film flow and is

solved to give profiles for hðs; tÞ; qðs; tÞ and �Tðs; tÞ. Rimming flows

correspond to periodic solutions for hðs; tÞ, qðs; tÞ and �Tðs; tÞ in

�p 6 s 6 p, i.e.,

hð�pÞ ¼ hðpÞ; qð�pÞ ¼ qðpÞ and �Tð�pÞ ¼ �TðpÞ: ð44Þ

3. Uniform flow over a heated plate

In this section the accuracy of the depth-averaged approach is

tested in the case of shear-driven uniform film flow over a flat plate

with a heated patch. Here the Navier–Stokes equations have an ex-

act solution corresponding to shear flow with a linear velocity pro-

file. In the case of Dirichlet temperature boundary conditions,

solutions of the corresponding two-dimensional energy equation

are found analytical following [17] and numerically using finite-

differences and are used to examine the capacity of the depth-

averaged temperature model to provide a reconstructed film tem-

perature field.

For this section x� ¼ Lx denotes distance along the plate con-

taining a heated patch of length 2L. The velocity field in a uniform

flow of constant film height h0 driven across a plate by an imposed

surface shear stress s�a has an exact solution ðu�;v�Þ ¼ ðs�ay�=l;0Þ.
With U0 ¼ s�ah0=l the dimensionless velocity field is classical shear

flow ðu;vÞ ¼ ðy;0Þ with Re ¼ qh2
0s

�
a=l

2; Pe ¼ s�ah
2
0=lj; s ¼ 1 and

dimensionless flux q ¼ 1=2. The uniform film (h ¼ 1) now occupies

the domain 0 6 y 6 1 and �1 6 x 61.

A wall temperature profile

TwðxÞ ¼
1
2
ðTa � TbÞ½1� tanhðþk½xþ L�Þ� þ Tb; x 6 0;

1
2
ðTa � TbÞ½1� tanhð�k½x� L�Þ� þ Tb; x > 0

(

ð45Þ

is specified corresponding to a uniformly heated wall of tempera-

ture Ta with a region �L < x < L heated to temperature Tb. Narrow

regions around x ¼ �L smoothly link the localised inner tempera-

ture Tb with an asymptotic far field temperature Ta. The parameter

k > 0 controls the width of the transition region and as k ! 1 the

profile tends to a step function.

Under shear flow the two-dimensional film temperature field is

governed by the convection–diffusion equation

Pe�y
@T

@x
¼ @2T

@y2
þ a

@2T

@x2
in 0 6 y 6 1; �1 6 x 61; ð46Þ

where a ¼ e2 and e ¼ h0=L. In this case of planar flow (46) is exact

for arbitrary Pe� as compared to the rimming-flow analogue (24)

which is restricted up to Pe� � Oð1Þ. Eq. (46) possesses an analytical

solution in the case of the Dirichlet surface and wall boundary

conditions

T ¼ Tb on y ¼ 1;

T ¼ TwðxÞ on y ¼ 0
ð47Þ

with far field condition Tðx ¼ �1; yÞ ¼ Ta.

Following Section 2, a quadratic temperature profile (36) is se-

lected which satisfies both (47) and the definition of mean temper-

ature from (32). Substituting into (46) gives a one-dimensional

equation which governs the depth-averaged film temperature,

Pe�
1

2

d�T

dx
� 1

12

dTw

dx

� �

¼ 6ðTa þ Tw � 2�TÞ þ a
d
2�T

dx2
: ð48Þ5



Eq. (48) is the analogue of (33) for flow over a heated patch and the

mean film temperature must satisfy the far field conditions
�Tðx ¼ �1Þ ¼ Ta.

The remainder of this section tests the accuracy of solutions ob-

tained from the simpler depth-averaged temperature Eq. (48)

against those of the two-dimensional temperature Eq. (46) ob-

tained both analytically and numerically.

3.1. Analytical and numerical solutions to two-dimensional

temperature field

The case a ¼ 0 corresponds to negligible lateral conduction

with a balance between conduction in the vertical direction and

convection in the horizontal direction. A separable solution for

the film temperature in the case k ! 1, representing a discrete

heated patch, is found following [17] in each region. The solution is

Tðx; yÞ ¼ Ta in x 6 �L; ð49Þ

Tðx; yÞ ¼
X

1

j¼1

c2j/2je
�kjðxþLÞ=Pe� þ ðTa � TbÞyþ Tb in j x j< L; ð50Þ

Tðx; yÞ ¼
X

1

j¼1

c3j/3je
�kjðxþLÞ=Pe� þ Ta in x > L ð51Þ

corresponding to the regions upstream, above and downstream of

the plate respectively. The set of eigenvalues kj satisfy
ffiffiffi

3
p

Ai

ð�k
1=3
j Þ � Bið�k

1=3
j Þ ¼ 0 and eigenfunctions /j ¼

ffiffiffi

3
p

Aið�k
1=3
j yÞ

�Bið�k
1=3
j yÞ. /2j indicates the set of /j in the region above the patch

ð�L < x 6 LÞ; /3j in the region downstream of the patch (x > L). The

orthogonality of /j allows the coefficients c2j and c3j to be calculated

as

c2j ¼
R 1

0
y/2jðyÞ½ðTa � TbÞð1� yÞ�dy

R 1

0
y/2

2jðyÞdy
; ð52Þ

c3j ¼
R 1

0
y/3jðyÞf3ðyÞe2kjL=Pe

�
dy

R 1

0
y/2

3jðyÞdy
: ð53Þ

Using (53), f3ðyÞ is given by

X

1

j¼1

c2j/2je
�2kjL=Pe

� ¼ T2ðL; yÞ � Ta 	 f3ðyÞ; ð54Þ

where T2ðL; yÞ is the temperature field on the downstream end of

the patch and is a given from the coefficients c2j.

The general solution for (46) with a– 0 must be found numer-

ically. A finite difference scheme is applied to a rectangular grid of

points which in each direction are uniformly-spaced. Second-order

central differences approximate second-order derivatives and

third-order upwinding is used to approximate the convective

Pe�y@T=@x term. The resulting set of coupled non-linear algebraic

equations are solved in Matlab using the in-built fsolve function

to give the approximated temperature at each grid point.

A comparison of the mean film temperatures from the exact

solution (49)–(51) and the two-dimensional finite difference

(2DFD) solution for three values of Pe� is shown in Fig. 2. It was

found sufficient to include the first 25 terms in the infinite sums

in (50) and (51). Including further terms was found to change

the average film temperature by less than 10�8. Agreement be-

tween the two methods is shown in Fig. 2 for increasing Pe� indi-

cating that the convection term is well approximated in the

2DFD scheme. Around the ends of the patch (x ¼ �1) Tw is discon-

tinuous and there is a numerical error in the 2DFD solution

expected in the absence of smoothing from lateral conduction.

Fig. 2 shows this error does not depend on Pe� and so is indicative

this is not a problem related to convection.

In this section the analytic solution (49)–(51) has provided a

measure of the accuracy of the numerical 2DFD solution. In the fol-

lowing section the 2DFD solution method will be used to evaluate

the accuracy of the depth-averaged (DA) approach.

3.2. Comparison of depth-averaged method with full two-dimensional

solution

The depth-averaged method is applied to the test case with

the (48) solved numerically for �TðxÞ; the film temperature

Tðx; yÞ is reconstructed from the definition of the quadratic tem-

perature profile (36). The numerical scheme is that described in

Section 3.1 with discretisation in only one spatial direction. Using

the 2DFD numerical solution as a reference the accuracy of the

depth-averaged formulation is tested. The 2DFD temperature field

Tðx; yÞ is also retrospectively depth-averaged to obtain �TðxÞ to

compare with the solution of (48). The lateral conduction mech-

anism is included.

A first comparison is of mean temperature profiles. Results

illustrated in Fig. 3 for flow over a smoothed wall temperature

(k ¼ 1) with Pe� ¼ 1;10 and 100 show good agreement between

the two approaches for both conduction- and convection-domi-

nant flows. The heated region extends further downstream with

increasing convection: for Pe� ¼ 1, case (a), �T follows the wall tem-

perature and for Pe� ¼ 100, case (c), �T returns to Ta within approx-

imately one patch length.

Comparisons of Tðx; yÞ and a series of calculated profiles

through the depth of the film are shown in Fig. 4 for Pe� ¼ 100. Re-

sults show good agreement indicating the full temperature field

may be accurately reconstructed from a mean temperature profile.

Any discrepancy is in regions where Tw changes rapidly; at the

midpoint of the heated section the temperature contours are coin-

cident. In case (d) the profile from the 2DFD solution in the region

y > 0:5 is nearly constant and cannot be replicated by the qua-

dratic profile (36). This produces an underestimation of the film

temperature. Temperature contours and profiles of the low convec-

tion case Pe� ¼ 1 give excellent agreement over the domain as pro-

files are linear (the exact solution to the conduction-dominant

case).

The analysis is repeated with k ¼ 100 – the case of a sharp

change in wall temperature around x ¼ �L. Comparison of mean

temperature from the two methods is shown in Fig. 5. The depth-

averaged solution is in very good agreementwith the 2DFD solution

(a) (b)

(c)

Fig. 2. Comparison of mean film temperature from analytic (� � �� � �) and 2D finite

differences (—) solutions to (46) (a ¼ 0). (a) Pe� ¼ 1, (b) Pe� ¼ 10 and (c) Pe� ¼ 100.
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across the range of Pe� values and even in the convection-dominant

case with Pe� ¼ 100 (c) there is only a slight over- and under-esti-

mation of �T at the upstream and downstream ends of the heated

section respectively. Convective effects extend the heated region

downstream and �T returns to the far-field temperature over a sim-

ilar distance as for k ¼ 1. When Tðx; yÞ is reconstructed from �TðxÞ
cases Pe� ¼ 1 and Pe� ¼ 10 give excellent agreement and are not

shown. Results for Pe� ¼ 100 are shown in Fig. 6.

An inaccuracy in �T at the ends of the plate is more apparent in

the reconstructed field. This arises because the local temperature

field (2DFD) changes sharply in response to the sharp change in

wall temperature producing a distribution not well-modelled lo-

cally by a quadratic profile; as previously the constant temperature

region in (d) cannot be accurately fitted by the quadratic. The film

temperature obtained from the depth-averaged method is particu-

larly accurate in regions where Tw does not change too rapidly

(cases (e) and (f)) but inaccuracies are introduced in regions where

dTw=dx 
 1 if convection is strong.

Instances of very high Pe�, as shown in Fig. 7, indicate �T matches

qualitatively the profile of Tw. Asymptotic analysis of (48) for

Pe� 
 1 confirms this but is deferred until the following section

within the context of rimming flows.

3.2.1. Effect of lateral conduction

In regions of large temperature gradients in the film lateral

conduction, the terms a@2T=@x2 in (46) and ad2�T=dx
2
in (48) may

become locally important. Physically this acts to smooth sharp

changes in the temperature field and in numerical solutions it pro-

vides an important stabilising mechanism. This term is important

around x ¼ �L where Tw changes rapidly but is negligible outside

this region.

Inclusion of this term is illustrated in profiles of �T obtained for

both a ¼ 0 and a– 0 in Fig. 8. In (a) (and shown in detail in (b)) the

case a ¼ 0 illustrates a small numerical instability around the end

of the heated section at x ¼ 1. When lateral conduction is included

(a– 0), as illustrated in (c) and (d), this is smoothed. There is no

significant difference outside this area.

4. Temperature profiles for rimming flow with steady-state

constant film height

An important application is to investigate the thin film temper-

ature field in a rimming flow of constant film height such as corre-

sponding to thin high speed film flow. Inhomogeneity in the

temperature profiles arises from a heated patch on the cylinder

wall; the wall temperature outwith the patch is T ¼ 1, the patch

is at temperature T ¼ 1:5. A Dirichlet temperature boundary condi-

tion at the film surface is imposed.

The mathematical formulation corresponds to solving the

depth-averaged energy equation (48) and the two dimensional en-

ergy Eq. (46) with the independent variable x replaced by the cylin-

drical coordinate s and periodic conditions at s ¼ �p imposed on �T

and T respectively. The wall temperature profile (45) is restricted

to the range �p 6 s 6 p. The case k ¼ 10 with L ¼ 1 is examined

(a)

(b)

(c)

Fig. 3. Mean film temperature for the depth-averaged (� � �� � �) and 2DFD (—)

methods. Wall temperature profile Tw indicated by (- - -). (a) Pe� ¼ 1, (b) Pe� ¼ 10

and (c) Pe� ¼ 100. Ta ¼ 1; Tb ¼ 1:5; e ¼ 0:1; L ¼ 5; k ¼ 1.

(a)

(b)

(c) (d) (e) (f) (g)

Fig. 4. Film temperature fields for Pe� ¼ 100 with k ¼ 1 using (a) 2DFD and (b) DA

solution methods. (c)–(g) show temperature profiles through the film at points

indicated by connecting lines; 2DFD solution (—) and depth-averaged solution (- - -).

Other parameters as in Fig. 3.
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such that Tw returns to Ta with numerical accuracy within the

s-domain. The numerical solver as described in Section 3.1 is

extended to impose periodic conditions on T replacing the far-field

conditions.

Mean film temperature profiles from the depth-averaged model

(48) and 2DFD solution are plotted in Fig. 9 for Pe� ¼ 1;10;100 and

10; 000. The case Pe� ¼ 10;000 is selected to show the limiting

behaviour of the model. At low Pe� heat convection is sufficiently

weak ((a) and (b)) that heat introduced to the film at the patch is

quickly conducted back into the boundaries. As Pe� increases (c)

convection extends the heated region sufficiently to prevent the

temperature returning to that of the unheated wall and T > Ta

everywhere.

In the limiting case of very high convection (Fig. 9(d)) the film

temperature remains constant as conduction through the bound-

aries is relatively weak. The mean film temperature in this case

matches the profile of Tw closely as can be verified by examining

(48) asymptotically which, for Pe� 
 1, gives d�T=ds ¼ ð1=6ÞdTw=ds.

Integrating and applying the piecewise value for Tw between the

heated region (TwA) and non-heated region (TwB) gives the relation
�TA � �TB ¼ TwA � TwBð Þ=6 for Pe� 
 1. For the case in Fig. 9(d), numer-

ical results give �TA � �TB ¼ �0:080 and ðTwA � TwBÞ=6 ¼ �0:083

which are in very good agreement although it is noted that the abso-

lute value for �T must be obtained by solving (48).

(a)

(b)

(c)
(d)

Fig. 5. Mean film temperature for the depth-averaged (� � �� � �) and 2D finite

difference (—) methods. Wall temperature profile Tw indicated by (- - -). (a)

Pe� ¼ 1, (b) Pe� ¼ 10 and (c) Pe� ¼ 100. (d) shows the detail of �T around x ¼ L for

Pe� ¼ 100. Ta ¼ 1; Tb ¼ 1:5; e ¼ 0:1; L ¼ 5; k ¼ 100.

(a)

(b)

(c) (d) (e) (f) (g)

Fig. 6. Temperature fields for Pe� ¼ 100 with k ¼ 100 using (a) 2DFD and (b) DA

solution methods. (c)–(g) show temperature profiles through the film at points

indicated by connecting lines; 2DFD solution (—) and depth-averaged solution (- - -).

Other parameters as in Fig. 5.

(a)

(b)

Fig. 7. The effects of strong convection for (a) a smooth wall temperature profile

where k ¼ 1 and (b) a stepped profile where k ¼ 10. Solution of depth-averaged

Eq. (48) (—) and solution of (46) using 2DFD (—). Pe� ¼ 104; Ta ¼ 1;

Tb ¼ 1:5; a ¼ 0:01; L ¼ 5.8



5. Temperature profile for a general rimming flow

The film profile and temperature field arising in a general rim-

ming flow, determined by (35) from the competing effects of grav-

ity and surface shear and modified by surface tension, inertial

effects and gradients of hydrostatic pressure, is studied. The corre-

sponding film temperature is determined from (33). In the remain-

der of the paper uniform air and wall temperatures, at Ta ¼ 0:5 and

Tw ¼ 1 respectively, are taken and the Robin boundary condition

(25) applied at the film surface.

The full system of Eqs. (33)–(35), are solved numerically to ob-

tain h; q and �T as functions of s using a transient solver following

that described in Section 3.1. A fully-implicit time stepping scheme

with first-order forward-difference approximations for the time

derivative was used. During solution the filling fraction of the

solution was calculated at each time step and monitored to ensure

constancy. Numerical solution were taken as converged to a stea-

dy-state solution if all residuals ri ¼ max½ðfi � fi�1Þ=fi� < 10�5,

where fi corresponds to any of h; q or �T at the ith time-step.

5.1. Steady state film dynamics

For a steady-state solution the flux q is constant and depends

on the filling fraction A[22] which in the context of this work is de-

fined to OðeÞ as pA ¼ e
R p
�p hds. This, and the physical parameters

(12), govern the solution types cited in Section 1. The temperature

field in three types of rimming flow solution are investigated cor-

responding to a smooth solution, shock solution and pooling solu-

tion; characteristic flow profiles for these solutions types are

shown illustrated in Fig. 10 and briefly described.

5.1.1. Smooth solutions

For k � Oð1Þ (Fig. 10)(a)) and A small (0:02 in this study) the

gravitational body forces in the film are insufficient to overcome

the surface shear stress. The film will be smoothly distributed over

the cylinder wall and the velocity field will be unidirectional. Typ-

ically the film will be thicker on the rising side of the cylinder as

gravity acts against the surface shear and thinner on the falling

side; the profile will satisfy @h=@s � 1.

5.1.2. Shock solutions

For k � Oð1Þ (Fig. 10(b)) as A is increased (0:14 in this study) an

accumulation of fluid forms on the rising side of the cylinder.

Above a critical value of A this accumulation begins to form a recir-

culation region as the surface shear is unable to maintain the uni-

directional flow. The film profile in this region is characterised by

having a steep front where @h=@s 
 1.

5.1.3. Pool solutions

For k > 1 (Fig. 10(c)) as A is increased (0:2 in this study) the

shock location will move downwards on the rising side of the cyl-

inder to accommodate the excess fluid. Beyond a critical value of

a pooling solution configuration exists in which the excess fluid is

held in a recirculating pool in the bottom of the cylinder with a

thin film of unidirectional flow covering the remainder of the

wall.

An important feature of the depth-averaged approach is inclu-

sion of inertia as a leading-order mechanism to provide transition

between these solution types. Studies using lubrication theory for

rimming flows [25] obtain a critical value of the filling fraction Ac ,

and a critical flux qc , above which smooth solutions cannot be

found. Solutions with larger A require excess fluid to be held in a

discontinuous shock configuration. The inclusion of inertial effects

allows a smooth solutions to exist when q > qc . This permits a full

range of solutions to be obtained beginning at the low-Re� shock/

pool solutions up to a smooth rimming flow with q > qc .

The parameters governing the dynamics of the three solution

types, chosen to ensure formation of either a smooth rimming

(a) (b)

(c) (d)

Fig. 8. Effect of lateral conduction on �T calculated from 2DFD solution (—) and

depth-averaged solution (� � �� � �). In (a) a ¼ 0; (b) detail around x ¼ 1; (c) a ¼ 0:01;

(d) shows detail around x ¼ 1. Ta ¼ 1; Tb ¼ 1:5; Pe� ¼ 1; L ¼ 1.

(a) (b)

(c) (d)

Fig. 9. Mean film temperature for uniform rimming flow of constant film height.

(� � �� � �) solution of depth-averaged formulation and (—) solution of the two-

dimensional temperature field. Wall temperature profile (- - -). (a) Pe� ¼ 1, (b)

Pe� ¼ 10, (c) Pe� ¼ 100 and (d) Pe� ¼ 10;000.

e ¼ 0:1; L ¼ 1; k ¼ 10; Ta ¼ 1; Tb ¼ 1:5.

(a) (b) (c)

Fig. 10. Solution types for rimming flow. (a) smooth unidirectional flow, (b) shock

solution, (c) pooling solution. The radial scale has been magnified �25 in (b) to

show the structure of the flow field. The surface shear stress acts to drive the film in

the anticlockwise direction.9



flow, a pool or a shock profile in the long-time evolution of the

transient solver, are given in Table 1.

5.2. Temperature profiles in film solutions

Mean film temperature profiles are calculated for the smooth,

shock and pool solutions and film temperature fields recon-

structed. The effect of the strength of convection and inertia on

these solutions is investigated by calculating for a range of values

of Pe� and Re�. The model (33)–(35) is solved to obtain h; q and �T,

the mean film quantities, and the two-dimensional temperature

field Tðs; yÞ recovered from these using (36).

5.2.1. Smooth solutions

The temperature field in the smooth solution and the effect of

the interface heat transfer coefficient is examined. Mean film tem-

perature profiles with Pe� ¼ 0:01 for B ¼ 0:1 and B ¼ 0:01 are

shown in Fig. 11(a). For B ¼ 0:01 the mean film temperature is

higher than for B ¼ 0:1 since the interfacial heat flux is reduced

by (25). Profiles of T through the film at the top of the cylinder

(s ¼ �p) shown in Fig. 11(b) confirm this. This was observed in

[17] for locally-heated planar films where surface temperatures re-

mained elevated downstream of the region of local heating for

small surface Biot numbers.

Solutions show an independence from the value of Pe�, and

hence convection, and results for Pe� ¼ 10 are identical to those

in Fig. 11. This is confirmed by the linear film temperature profiles

in Fig. 11(b) and explained by (33) where convection depends on

azimuthal gradients in the flow and boundary conditions which

are zero in this case of a flat film.

5.2.2. Pool solutions

As an initial study the effect of convection on the temperature

field of the pooling solution with Re� ¼ 1 is examined. In this and

all remaining cases B ¼ 0:1 is chosen; for B ¼ 0:01 the mean film

temperature is essentially uniform and shows little dependence

on either the film height profile or strength of convection. Stream-

lines of this solution are illustrated in Fig. 12. The temperature field

for a range of values of Pe� are examined over which the solution

exhibits distinct characteristics.

Table 1

Parameters governing dynamics of the non-isothermal rimming flow solutions, s ¼ 1

and k ¼ 1.

Solution e Re� Ca A

Smooth 10�2 1 10�1 0:008

Pool 10�1 0:1� 100 10�1 0:200

Shock 10�2 0:1� 200 10�3 0:014

(a) (b)

Fig. 11. Effect of B on smooth solution temperature field for Pe� ¼ 0:01. (a) mean

film temperature and (b) temperature profiles through film depth at s ¼ �p.

Fig. 12. Streamlines of the pool solution with Re� ¼ 0:1 showing the recirculation.

Other parameters as given in Table 1.

Fig. 13. Effect of convection on mean film temperature of pooling solution.

(a) (b)

(c) (d)

Fig. 14. Effect of convection on temperature distribution in a pool solution.

Temperature contours for (a) Pe� ¼ 0:1, (b) Pe� ¼ 1, (c) Pe� ¼ 5 and (d) Pe� ¼ 10.

Fig. 15. Temperature distribution through the pool at the point of maximum depth

for Re� ¼ 0:1.10



Profiles of mean film temperature are shown in Fig. 13 and the

corresponding temperature field in Fig. 14. The cooled region in the

pool is driven downstream with increasing convection. There is an

increase in mean temperature at the entrance to the pool as Pe�

is increased caused by the capillary waves. Outside of the

recirculation the mean film temperature does not change signifi-

cantly with Pe�.

Temperature contours in Fig. 14 show the recirculation strongly

influences the temperature field. At low Pe� (a) the film tempera-

ture is driven by cross-film conduction, is lowest furthest from

the wall and shows no dependence on the velocity field. As Pe� is

increased (b) the recirculation moves the cooled region towards

the wall. At the highest Pe� the temperature is significantly raised

in the pool ((c) and (d)).

Temperature profiles through the maximum depth of the film,

shown in Fig. 15, confirm the transition between conduction-

and convection-dominant flows and become increasingly non-

linear as Pe� is increased.

As described, the depth-averaged model (33)–(35) can describe

a range of film profiles from low-Re� pooling through high-Re� uni-

form flow. In this section the film temperature is examined across

this range for a conduction-dominant (Pe� ¼ 0:1) and convection-

dominant (Pe� ¼ 10) flow. Beginning at Re� ¼ 0:1 (recirculating

pool), (33)–(35) are solved for Re� ¼ 5;10 and 100 (uniform flow).

The case Re� ¼ 100 lies outside the bounds given in (23) but with

h
0 � 1 inertia is negligible and the solution remains valid.

Mean film temperatures are shown in Fig. 16(a)–(d), corre-

sponding reconstructed temperature fields in (e)–(l). Low Re� cases

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 16. Effect of Re� on the film temperature in the pool solution. Panels (a)–(d) show mean temperature profiles with (� � �� � �) indicating Pe� ¼ 0:1 and (—) Pe� ¼ 10. Panels

(e)–(l) show reconstructed temperature fields. The first column of panels show Re� ¼ 0:1, second Re� ¼ 5, third Re� ¼ 10 and fourth Re� ¼ 100. The second row of panels have

Pe� ¼ 0:1, the third Pe� ¼ 10.

Fig. 17. Streamlines of the film flow for the shock solution Re� ¼ 0:1. Other

parameters as given in Table 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 18. Effect of Pe� and Re� on the film temperature for a shock solution. (a)–(c) show mean temperature profiles and (d)–(i) show film temperature fields. In (a), (d) and (g)

Re� ¼ 0:1, in (b), (e) and (h) Re� ¼ 10 and in (c), (f) and (i) Re� ¼ 20. Mean temperature profiles are shown for Pe� ¼ 0:01with (� � �� � �) and Pe� ¼ 10 with (—). In (d)–(f)

Pe� ¼ 0:01, in (g)–(i) Pe� ¼ 10. 11



((a) and (b)) exhibit the conduction- and convection-dominant

characteristics of a cooled and heated pool respectively. Increasing

inertial effects flatten then film, the temperature becomes circum-

ferentially uniform and independent of convection (d).

5.2.3. Shock solutions

The same analysis is repeated for a film profile containing a

shock structure. Values of Re� ¼ 0:1;10 and 20 characterise the

transition between shock and uniform flow and Pe� ¼ 0:01 and

10 represent conduction- and convection-dominant flows. Stream-

lines of the flow field for Re� ¼ 0:1 are shown in Fig. 17. The mean

and reconstructed film temperatures are illustrated in Fig. 18.

As in the pool, the shock is cooled (heated) in conduction-

(convection-) dominant flows. As the film height profile becomes

increasingly uniform with stronger inertia the film temperature

at both Pe� ¼ 0:01 and Pe� ¼ 10 becomes circumferentially

uniform. For cases of weak convection the mean temperature is

observed to follow inversely the profile of the film height and this

reversed when convective effects dominate.

6. Conclusions

A simplified approach to modelling the two-dimensional tem-

perature distribution within a fluid film flow is established. This

approach is applicable to film flows extending lubrication theory

to films with moderate inertia and heat convection effects.

Modelling is based on assuming a quadratic dependency for

temperature and velocity through the depth of the film. A spatially

one-dimensional depth-averaged film temperature and velocity

are first obtained and the corresponding two-dimensional fields

reconstructed using the quadratic profiles. The effect on the film

temperature field of increasing inertia and heat convection repre-

sents the major novel contribution of this work.

The robustness of the approach and numerical scheme was

tested in the simplified case of a uniform flat film on a horizontal

plate containing a heated patch. Results from the one-dimensional

model are compared to those obtained from a numerical solution

of the full two-dimensional film temperature field and an analytic

solution.

The film temperature field from the one-dimensional depth-

averaged model is in close agreement to the two-dimensional

model particularly for low-Pe� conduction-dominant flows. For

convection-dominant flows (higher Pe�) the depth-averaged solu-

tion was found to become inaccurate where sharp changes in

boundary temperature existed. This is attributed to the limitations

of a quadratic temperature profile which does not allow local tem-

perature changes resulting from convection effects to be resolved

without affecting the global temperature field. In cases where the

boundary temperatures are smooth these inaccuracies are reduced

and the depth-averaged model provides a very good estimation of

the average temperature. In some cases reconstruction of the two-

dimensional temperature field is limited by the quadratic profile

assumption.

The depth-averaged model was used to investigate the temper-

ature field for some characteristic rimming-flow solutions: smooth

uniform flow, shock solution and pooling solution. The model pre-

dicted the heating of recirculation regions in the shock and pool

solutions when the heat convection term was dominant. As inertial

effects in the film increase and dynamically these recirculation

gave way to a smooth uniform flow, these regions showed conse-

quential cooling. In cases of weak convection the film temperature

field had little dependence on the flow field.
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Appendix A. Coefficient functions for inertia and convection

integrals

The dynamic coefficient functions in expressions (42) and (43)

are

I0 ¼ h
3s2=120þ hsq=20þ 6q2=5h;

I1 ¼ �h
4s2=240� 3h

2sq=80� 3q2=40;

J0 ¼ h
4s2=160þ 3h

2sq=40þ 33q2=40;

K0
h ¼ hsq=8þ 33q2=40hþ h

3s2=160;

K0
q ¼ �h

2s=40� q=2;

f 0 ¼ 3s=2� 3q=h
2
; f 1 ¼ �5hs=8� 15q=4h

ðA:1Þ

and the thermal coefficients

M0D ¼ sh3
BTa=30� sh3

BTw=120þ sh2�T=10� sh3
B�T=40

� sh2
Tw=10þ qhBTa=10� 3qhBTw=20þ 24q�T=5

þ 21qBh�T=20� 4qTw=5;

M1D ¼ ðsh2 þ 6qÞhð�4hBTa þ hBTw � 12�T þ 3Bh�T þ 12TwÞ=480;

W0D ¼ hð6sh3
BTa � sh3

BTw þ 36sh2�T � 16sh2
Tw þ 36qhBTa

� 30qhBTw þ 792q�T þ 144qBh�T � 192qTwÞ=240;

Z0
hD ¼ sh3

BTa=40� sh3
BTw=80þ 7sh2�T=20þ sh3

B�T=20

� sh2
Tw=10þ 3qhBTa=20� qhBTw=8þ 33q�T=10þ 3qBh�T=5

� 4qTw=5;

Z0
qD ¼ �hð4hBTa � 3hBTw þ 80�T þ 14Bh�T � 20TwÞ=40;

Q0Dh ¼ 6hBTa þ 6hBTw � 12�T � 12Bh�T þ 12Tw;

Q1D ¼ hBTw þ 6Tw � hBTa � 6�T:
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